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Metabolic priming by multiple enzyme systems
supports glycolysis, HIF1α stabilisation, and human
cancer cell survival in early hypoxia
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Abstract

Adaptation to chronic hypoxia occurs through changes in protein
expression, which are controlled by hypoxia-inducible factor 1α
(HIF1α) and are necessary for cancer cell survival. However, the
mechanisms that enable cancer cells to adapt in early hypoxia,
before the HIF1α-mediated transcription programme is fully
established, remain poorly understood. Here we show in human
breast cancer cells, that within 3 h of hypoxia exposure, glycolytic
flux increases in a HIF1α-independent manner but is limited by
NAD+ availability. Glycolytic ATP maintenance and cell survival in
early hypoxia rely on reserve lactate dehydrogenase A capacity as
well as the activity of glutamate-oxoglutarate transaminase 1
(GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-
derived NAD+. In addition, GOT1 maintains low α-ketoglutarate
levels, thereby limiting prolyl hydroxylase activity to promote
HIF1α stabilisation in early hypoxia and enable robust HIF1α target
gene expression in later hypoxia. Our findings reveal that, in nor-
moxia, multiple enzyme systems maintain cells in a primed state
ready to support increased glycolysis and HIF1α stabilisation upon
oxygen limitation, until other adaptive processes that require more
time are fully established.
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Introduction

Glucose metabolism is important for many physiological and
pathological processes. In cancer, glycolysis is often increased
though multiple mechanisms that include upregulated expression
of glucose transporters and glycolytic genes, differential expression

of metabolic enzyme isoforms, and aberrant oncogenic signalling
(Gambhir et al, 2001; Gatenby and Gillies, 2004; Hsu and Sabatini,
2008). These mechanisms promote both glucose transport into cells
as well as increased glycolytic enzyme activity, which, collectively,
enhance glucose metabolism (Porporato et al, 2011). Furthermore,
a high oxidised-to-reduced nicotinamide adenine dinucleotide
(NAD+/NADH) ratio is also required to sustain the NAD+-
dependent activity of the glycolytic enzyme glyceraldehyde
3-phosphate dehydrogenase (GAPDH), which becomes rate-
limiting when glycolysis is high (Hosios and Vander Heiden,
2018; Liberti et al, 2017).

The function of increased glycolysis in tumours remains under
intense investigation. Although glucose metabolism can provide
precursors for biosynthetic pathways, a relatively low proportion of
glucose carbons enters biomass production (Hosios et al, 2016).
However, there is significant evidence that a major role of glycolysis
is to maintain energy balance by producing ATP under conditions
that perturb cellular bioenergetics (DeBerardinis and Chandel,
2016; Hao et al, 2010; Kroemer and Pouyssegur, 2008). Accord-
ingly, increased glucose uptake correlates well with hypoxic tumour
regions (Cher et al, 2006; Gatenby and Gillies, 2007; van Baardwijk
et al, 2007), where ATP production from mitochondria is
attenuated due to limiting oxygen (Bunn and Poyton, 1996;
Gerweck et al, 1993).

During chronic hypoxia, upregulation of glycolysis is achieved
through a co-ordinate increase in the activities of glycolytic
enzymes (Robin et al, 1984) linked to an increased expression of
the corresponding genes that is orchestrated by the prolyl
hydroxylase (PHD)-hypoxia-inducible factor 1α (HIF1α) signalling
axis (Eales et al, 2016; Seagroves et al, 2001; Wheaton and Chandel,
2011). PHDs use iron, α-ketoglutarate (αKG), ascorbate and O2 to
hydroxylate proline residues on HIF1α, which are then recognised
by the E3 ligase von Hippel Lindau (VHL), leading to its
ubiquitination and subsequent degradation by the proteasome
(Berra et al, 2003; Bruick and McKnight, 2001; Chowdhury et al,
2009; Epstein et al, 2001; Ivan and Kaelin, 2017; Maxwell et al,
1999). The Km of PHDs for O2 lies within the physiologically
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relevant range of O2 concentrations in tissues, therefore these
enzymes are thought to function as oxygen sensors (Chan et al,
2016; Ehrismann et al, 2007; Ivan et al, 2001; Koivunen et al, 2006;
Wang et al, 1995). Binding of O2 to the catalytic pocket of PHDs
requires prior binding of αKG (Chowdhury et al, 2009), which also
prevents re-association of hydroxylated HIF1α to PHDs, enabling
more efficient HIF1α degradation (Abboud et al, 2018). Some
oncometabolites can outcompete αKG binding to PHDs, leading to
HIF stabilisation (Hewitson et al, 2007; Intlekofer et al, 2017;
Koivunen et al, 2007; Selak et al, 2005), and this can be alleviated by
exogenous αKG (Isaacs et al, 2005; MacKenzie et al, 2007; Tennant
et al, 2009). Consequently, in addition to fluctuations in O2 and
post-translational modification of PHD catalytic residues (Briggs
et al, 2016; Lee et al, 2016), αKG levels may also determine the
turnover kinetics of HIF1α. However, it is not known which of the
pathways involved in αKG metabolism regulate HIF1α expression
dynamics during the onset of hypoxia.

Upon its stabilisation in hypoxia, HIF1α controls the transcrip-
tion of genes that include glucose transporters and most glycolytic
genes (Semenza, 2013). Concomitantly, HIF1α drives the expres-
sion of pyruvate dehydrogenase kinase 1 (PDK1), which catalyses
the inhibitory phosphorylation of pyruvate dehydrogenase (PDH),
leading to attenuated pyruvate oxidation and, consequently,
decreased contribution of glucose-derived carbons into the
tricarboxylic acid (TCA) cycle (Kim et al, 2006; Papandreou et al,
2006). It has been postulated that decreased TCA cycle activity
attenuates mitochondrial NAD+-regenerating pathways, such as the
malate-aspartate shuttle (MAS), leading to increased reliance of
glycolysis on lactate dehydrogenase A (LDHA) for NAD+ (Eales
et al, 2016; Young and Anderson, 2008). Increased availability of
pyruvate, the LDHA substrate, in the cytoplasm following PDH
inhibition promotes LDHA activity (Wigfield et al, 2008). More-
over, the LDHA gene is also a HIF1α target, resulting in enhanced
LDHA protein expression in hypoxia to further increase NAD+

production (Locasale and Cantley, 2011). Accordingly, cells that
rely more on glycolysis are more sensitive to inhibition of LDHA
compared to cells that depend on mitochondria for ATP
production (Boudreau et al, 2016). Furthermore, knock-down or
pharmacological inhibition of LDHA in hypoxic cancer cells results
in decreased proliferation and leads to cell death attributed to
oxidative stress (Fantin et al, 2006; Le et al, 2010; Shim et al, 1997;
Xie et al, 2009). Collectively, this evidence indicates that, increased
LDHA protein expression, in addition to that of glucose
transporters and glycolytic enzymes, is also required for increased
glycolysis in chronic hypoxia (Hance et al, 1980; Zdralevic
et al, 2017).

Intriguingly, while changes in gene expression through HIF1α,
or other mechanisms, require more than 24 h to reach maximal
levels (Lal et al, 2001), upregulation of glycolysis occurs within
minutes to hours upon exposure to hypoxia and is essential for
sustaining ATP levels under these conditions (Burgman et al, 2001;
Clavo et al, 1995; Gerweck et al, 1993; Mertens et al, 1990). Acute
increase in glycolysis upon hypoxia, or after inhibition of
mitochondrial respiration, is due to the reversal of the Pasteur
effect, which describes the inhibitory effect of oxygen on glycolysis.
The Pasteur effect is mediated, in part, by increased activity of
phosphofructokinase (PFK) due to decreased production of its
allosteric inhibitor ATP in mitochondria (Krebs, 1972; Passonneau
and Lowry, 1962), and increased phosphorylation by adenosine

monophosphate-activated protein kinase (AMPK) (Hardie, 2000;
Marsin et al, 2002). Moreover, oxygen limitation can also
upregulate glycolysis by directly influencing glucose uptake through
mechanisms that include modification of glucose transporters or
their increased translocation to the plasma membrane (Barros et al,
2007; Burgman et al, 2001; Clavo et al, 1995; Liemburg-Apers et al,
2016; Morgan et al, 1961; Shetty et al, 1993). Although our
understanding of the processes involved in the initiation of the
Pasteur effect is substantial, the mechanisms used to provide
enough NAD+ to support the upregulation of glycolysis during
the onset of hypoxia remain elusive. In particular, in light of the
apparent need for increased expression of LDHA in chronic
hypoxia, it is unclear whether basal LDHA expression suffices
to sustain redox balance also in early hypoxia, prior to HIF1α-
mediated effects, or whether other mechanisms exist to support the
cellular requirements for NAD+ upon acute oxygen limitation.

Here we show that glycolysis increases within 3 h of exposure to
hypoxia in a HIF1α-independent manner. Reserve LDHA capacity
provides additional NAD+ that, however, is not sufficient to sustain
a maximal increase of glycolysis in early hypoxia, as evidenced by
efflux of glucose carbons to α-glycerophosphate. Because of this
limitation, maintenance of malate dehydrogenase 1 (MDH1)
activity by GOT1 (glutamate-oxoglutarate transaminase 1, also
known as aspartate aminotransferase 1), becomes more important
in hypoxia than in normoxia for ATP homeostasis and cellular
survival. In addition, GOT1 consumes αKG leading to attenuated
PHD activity and increased HIF1α stabilisation in early hypoxia,
and robust HIF1α target gene expression in later hypoxia.

Results

Glycolysis increases within 3 h in hypoxia and correlates
with decreased aspartate levels

To investigate metabolic changes elicited by low oxygen concen-
trations, we measured intracellular metabolites in MCF7 cells
incubated in 21% (normoxia) or 1% O2 (hypoxia) for increasing
lengths of time, between 1 and 24 h (Fig. 1A). The earliest and most
statistically significant changes we observed were an increase in
lactate and a decrease in intracellular aspartate levels, both of which
persisted into later time points (Fig. 1B–D). These changes also
occurred, to varying degrees, in other breast cancer cell lines, as
well as immortalised, non-tumorigenic mammary epithelial cells
(Appendix Fig. S1A,B). Upon reoxygenation following 3 h in
hypoxia, lactate and aspartate levels in MCF7 cells returned to pre-
hypoxia levels with comparable, albeit slower, kinetics than their
onset, indicating that hypoxia-induced changes in lactate and
aspartate are reversible (Appendix Fig. S1C,D). Treatment of cells
with antioxidants did not attenuate the increase in lactate or
decrease in aspartate (Appendix Fig. S1E–G), negating an
involvement of increased reactive oxygen species (ROS), which
have other important signalling roles in early hypoxia (Chandel
et al, 1998; Guzy et al, 2005). Accumulation of intracellular lactate
coincided with increased cellular glucose uptake at 1% O2

[(1.69 ± 0.02)-fold and (2.78 ± 0.78)-fold after 3 h and 24 h,
respectively] (Fig. 1E) and was accompanied by elevated lactate
excretion into the media (Fig. 1F). Isotopic labelling with [U-13C]-
glucose showed that 13C-labelling of secreted lactate was higher in
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hypoxia (Appendix Fig. S1H), which, together with the increased
total abundance indicate that increased lactate is due to enhanced
glycolysis. Together, these data showed that increased glycolysis
occurs within 3 h after cells are exposed to 1% O2 and coincides
with decreased aspartate levels.

Early increase in glycolysis is not dependent on HIF1α

Upregulation of glycolysis in chronic hypoxia is commonly
attributed to the transcriptional activity of HIF1α, which results
in increased glucose uptake and lactate production (Nakazawa et al,
2016). We found that HIF1α protein levels increased within 1 h and
reached maximal levels within 3 h in hypoxia in all cell lines tested
(Fig. 2A left; Appendix Fig. S2A). Expression of HIF2α, which also
has important roles in the regulation of gene expression in hypoxia
(Keith et al, 2011), did not change detectably within the time frame
tested. Although changes in mRNA expression of many known
HIF1α target genes (Benita et al, 2009) were detected in MCF7 cells
after 3 h at 1% O2, transcriptional up- and downregulation of most
genes within this panel was more pronounced after 24 h in hypoxia
(Fig. 2B). Despite the early onset of the transcriptional response
(within 3 h in hypoxia), changes in protein levels of HIF1α targets
involved in glucose uptake (GLUT1), glycolysis (HK2, PKM2) and

lactate production (LDHA) were only detected after 6 h, but not
after 3 h in hypoxia (Fig. 2A, left). Therefore, the early metabolic
changes described above occurred before robust expression of
HIF1α target genes involved in glycolysis and lactate production
was detectable on the protein level.

To confirm that the early upregulation of glycolysis was
independent of HIF1α transcriptional activity, we engineered
MCF7 cells that lack functional HIF1α (henceforth referred to as
HIF1αmut cells) using CRISPR/Cas9 (Appendix Fig. S2B). HIF1αmut

cells showed a severe impairment in upregulating HIF1α target
genes in hypoxia, both on the mRNA and protein level (Fig. 2A
right, C). Moreover, decreased entry of glucose carbons into the
TCA cycle, which occurs in a HIF1α-dependent manner in chronic
hypoxia (Papandreou et al, 2006), was partially attenuated in
HIF1αmut cells after 24 h in 1% O2 (Fig. 2D; Appendix Fig. S2C); this
attenuation was detectable even though suppression of glucose
labelling into the TCA in wt cells is likely masked by continuous
labelling throughout the incubation in hypoxia. Similarly, lactate
accumulation at later time points (6 and 24 h in 1% O2), was
partially suppressed in HIF1αmut cells compared to wild-type MCF7
cells (Fig. 2E). However, within the first 3 h in hypoxia, HIF1αmut

cells showed similar increases in lactate and decreases in aspartate
as wild-type MCF7 cells (Fig. 2E). Together, these data
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Figure 1. Increased glycolysis occurs within 3 h upon exposure to 1% O2 and correlates with decreased intracellular aspartate levels.

(A) Heatmap showing log2 fold changes of the abundance of the indicated metabolites in MCF7 cells exposed to 1% O2 for the indicated lengths of time, compared to cells
at 21% O2. Metabolites are ordered according to log2 fold changes after 24 h in 1% O2. (B) Z-score plot of changes in metabolite abundances shown in (A). Metabolites are
ordered according to their z-score values at 3 h in 1% O2. (C, D) Intracellular abundances of aspartate and lactate, respectively, shown in (A). See also Appendix Fig. S1A,B.
(E) Glucose (2DG) uptake of MCF7 cells in 21% O2 and after 3 or 24 h in 1% O2. (F) Lactate concentration in culture media of MCF7 cells incubated in 21% O2 or 1% O2 for
the indicated lengths of time. Data information: Data are representative of experiments with similar conditions performed independently N times as follows: N ≥10
(A–D, 3 h), N ≥2 (A–D other time points and E, F). Datapoints in (C, D) represent mean ± s.d. n= 4 (A–D, F) and n= 6 (E) cultures per time point and condition, except
t= 0 in (F) (n= 1), which corresponds to media without cells. P values for differences between 21% vs 1% O2 were calculated by two-way ANOVA Sidak’s test (C, D, F) or
one-way ANOVA Dunnett’s test (E). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Source data are available online for this figure.
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Figure 2. Increased glycolysis and depletion of aspartate in early hypoxia are independent of HIF1α.

(A) Western blot to assess levels of HIF1α and a panel of HIF1α targets in wild-type (wt) MCF7 and HIF1αmut MCF7 cells incubated in 21% O2 or at 1% O2 for the indicated
lengths of time. The asterisk marks a HIF1α immunoreactive band of smaller molecular weight than HIF1α that increases upon hypoxia in HIF1αmut MCF7 cells, indicative of
a truncated HIF1α that likely lacks the transactivation domain where the sgRNA sequence is targeted at. See also Appendix Fig. S2A. (B) Log2 fold changes in mRNA
expression levels of a panel of HIF1α targets in MCF7 cells exposed to 1% O2 for 3 or 24 h, compared to control cells at 21% O2. (C) Heatmap showing log2 fold changes in
mRNA expression levels of a panel of HIF1α targets in wild-type (wt) and HIF1αmut MCF7 cells exposed to 1% O2 for 3 or 24 h, compared to control cells in normoxia. (D)
Fraction labelled (left) and absolute abundances of the M+ 2 isotopologue (right) of citrate from [U-13C]-glucose in wild-type (wt) and HIF1αmut MCF7 cells after
incubation with the tracer at 21% O2 or 1% O2 for the indicated lengths of time. Time points indicate both the duration of hypoxia treatment and incubation with the tracer.
See also Appendix Fig. S2C. (E) Changes in lactate and aspartate abundance in wild-type (wt) and HIF1αmut MCF7 cells incubated in 21% O2 or 1% O2 for the indicated
lengths of time, compared to control cells in normoxia. Data information: Data are representative of experiments with similar conditions performed independently N times
as follows: N ≥ 2 (A, D, E), N= 1 (B, C). Datapoints in (D, E) represent mean ± s.d. n= 3 (B, C) and n= 4 (D, E) cultures for each time point and condition. Statistical errors
in (D, left and E) were propagated to calculate variance of the change in isotopic labelling between normoxia and hypoxia for each cell line. FDRs in (B, C) were calculated
using the ’exactTest’ function of the edgeR package (see 'Methods') with a cut-off set at 1%; only changes with FDR < 0.01 are shown. The P values shown were calculated
by two-way ANOVA Sidak’s test (D, left and E) or two-way ANOVA Tukey’s test (D, right). ns non-significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Source
data are available online for this figure.
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demonstrated that, while later metabolic changes are, at least
partially, dependent on HIF1α, the early increase in glycolysis upon
hypoxia treatment occurs independently of HIF1α transcriptional
activity. Henceforth, we refer to 3 h hypoxia as “early hypoxia” to
distinguish it from other, previously described, acute responses
mediated by ROS (Chandel et al, 1998; Guzy et al, 2005).

Knock-out of GOT1 attenuates the increase in glycolysis
in early hypoxia

To investigate mechanisms that sustain increased glycolysis in the
absence of protein expression changes, we started by exploring
further the strong counter-correlation between aspartate and lactate
levels. We first asked whether decreased aspartate was due to
decreased production or increased consumption. Incubation of cells
with [U-13C]-glucose or [U-13C]-glutamine showed decreased
labelling of aspartate from both labels at 1% O2 vs 21% O2

(Appendix Fig. S3A–D). Notably, within 5 h, labelling from
glutamine had nearly reached isotopic steady state, whereas
labelling from glucose had not. With this caveat in mind, we noted
that fractional labelling of glutamate decreases from [U-13C]-
glutamine and increases from [U-13C]-glucose, suggesting potential
efflux of intermediates out of the TCA cycle. Incubation with
supraphysiological concentrations (1.5 mM) of [U-13C]-aspartate
revealed a non-significant trend for decreased amount of labelled
intracellular 13C-Asp, suggesting no substantial increase in
aspartate consumption within 3 h in 1% O2 vs 21% O2 (Appendix
Fig. S3E); in contrast, we observed a vast decrease in unlabelled
aspartate. Together, these labelling data suggested that, within the
timeframe tested, decreased production is a significant contributor
to the low aspartate levels in early hypoxia.

Lactate accumulation accelerated after 2 h, when aspartate had
decreased >75% compared to normoxic cells (Fig. 1C,D), raising
the possibility that low aspartate levels may be required for the
increase in lactate. To test this idea, we attempted to boost aspartate
levels in hypoxia by providing cells with exogenous aspartate or its
cell-permeable analogue, dimethyl-aspartate (DM-aspartate). Exo-
genous aspartate raised intracellular aspartate levels only modestly
in normoxia, likely due to low expression of aspartate transporters
(Garcia-Bermudez et al, 2018) in MCF7 cells, and had minimal
effects on intracellular aspartate and lactate concentrations when
cells were exposed to 1% O2 for 3 h (Appendix Fig. S3F). The
reason DM-aspartate failed to have a more pronounced effect on
intracellular aspartate levels is less clear. To address the experi-
mental limitation arising from poor exogenous aspartate uptake,
and because at the time of these experiments, a specific aspartate
transporter had not been identified, we cultured cells chronically
with aspartate in the media and obtained an MCF7 derivative cell
line that we named MCF7Asp. In contrast to parental MCF7 cells,
exogenous aspartate attenuated the hypoxia-induced decrease in
intracellular aspartate in MCF7Asp cells without affecting the degree
of increase in lactate (Appendix Fig. S3G). We therefore concluded
that low aspartate levels are not causal to the increased lactate
levels.

Aspartate is a substrate for GOT1, one of the enzymes that form
the malate-aspartate shuttle (MAS), which links glycolysis and
mitochondrial metabolism by transporting electrons across the
inner mitochondrial membrane. Decreased aspartate levels in early
hypoxia could curtail MAS activity, so we embarked on

investigating whether GOT1 is necessary for glycolysis in early
hypoxia and, if yes, how it copes with decreased substrate
availability. CRISPR/Cas9-mediated knock-out of GOT1 in MCF7
cells—henceforth referred to as GOT1ko cells—resulted in a
338 ± 45% increase in the steady-state levels of the intracellular
aspartate pool (Fig. 3A,B). Upon hypoxia treatment, the decrease in
aspartate persisted in GOT1ko cells (Fig. 3B). Concomitantly,
glutamine-labelled aspartate increased more in hypoxia compared
to normoxia in GOT1ko cells (Appendix Fig. S3H). We also
observed a non-significant trend for increased malate labelling from
[U-13C]-aspartate (Appendix Fig. S3E). Together, these data
suggested that GOT1 activity contributes to but does not, alone,
account for the hypoxia-induced decrease in aspartate in wild-type
cells. Interestingly, after 3 h in hypoxia, the upregulation of glucose
uptake was only modestly attenuated, whereas the accumulation of
both intracellular and secreted lactate were significantly suppressed
in GOT1ko cells (Fig. 3C–E). Glucose uptake became significantly
attenuated after 24 h in hypoxia in GOT1ko cells compared to wild-
type cells (Fig. 3C). Ectopic expression of HA-tagged GOT1
reversed the accumulation of aspartate in GOT1ko cells and
restored hypoxia-induced lactate to levels similar to those in wild-
type MCF7 cells (Fig. 3F–H). These data suggested that, even
though its substrate aspartate decreases, GOT1 activity is required
to sustain the increase in glycolysis in early hypoxia.

GOT1 contributes to cytoplasmic NAD+/NADH balance
by sustaining flux through MDH1

To further probe the requirement of GOT1 for glycolysis, we
quantified glycolytic and pentose phosphate pathway (PPP)
intermediates by liquid chromatography-mass spectrometry (LC-
MS). Metabolite pools upstream of GAPDH increased, while
downstream metabolites decreased in GOT1ko compared to wild-
type cells (Fig. 4A; Appendix Fig. S4A). This metabolic profile
indicated a bottleneck for glycolytic flux at GAPDH (Kornberg
et al, 2018; Liberti et al, 2017), which was unlikely due to carbon
substrate limitation since glucose uptake in normoxia was similar
in both cell lines (Fig. 3C). GAPDH activity depends on the
availability of NAD+ and is attenuated by increased levels of NADH
through competitive product inhibition (Aithal et al, 1985;
Copeland and Zammit, 1994). We therefore quantified NAD+

and NADH by LC-MS and compared the respective NAD+/NADH
ratios in wild-type and GOT1ko cells. In wild-type cells, 3 h in 1%
O2 led to a decrease in NAD+/NADH ratio from 6.0 ± 0.2 to
3.4 ± 0.2 (Fig. 4B). In contrast, the NAD+/NADH ratio in GOT1ko
cells was already lower (3.6 ± 0.4) at 21% O2 and did not change
significantly upon incubation of cells in 1% O2. Notably,
comparable NAD+/NADH ratios did not reflect equivalent redox
states, because the hypoxia-induced decrease in NAD+/NADH
ratio in wild-type cells was due to increased NADH levels, while the
lower NAD+/NADH ratio in GOT1 cells reflected decreased NAD+

levels (Fig. 4B–D). These findings are consistent with the idea that
upregulation of glycolysis, associated with higher consumption of
NAD+ by GAPDH, imposes an increased need for NADH
oxidation to maintain redox balance. They also indicate that
regeneration of NAD+ is compromised and may underlie impaired
glycolysis in GOT1ko cells during early hypoxia.

The cellular pools of NAD(H) are asymmetrically distributed
between subcellular compartments, due to the differential
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localisation of pyridine nucleotide precursors and biosynthetic
pathways, as well as the impermeability of the inner mitochondrial
membrane to NADH and the low apparent affinity of a recently
identified mitochondrial transporter for NAD+ (Kory et al, 2020;
Xiao et al, 2018). Since GAPDH activity depends on cytoplasmic
NAD+/NADH, we specifically assessed cytoplasmic redox state in
wild-type and GOT1ko cells using the genetically encoded NADH
sensor Peredox (Hung et al, 2011). To this end, we recorded the
basal Peredox T-sapphire signal of individual cells incubated in
buffer supplemented with regular concentrations of the main
carbon sources glucose and glutamine, and subsequently compared
it to the T-sapphire signal after sequential incubation with only
10 mM lactate or 10 mM pyruvate. In the absence of extracellular
glucose to counter-balance cytoplasmic redox changes, incubation
of cells with lactate leads to the production of NADH via LDHA
and results in maximal Peredox T-sapphire signal that depends on
the amount of available NAD+ (Bucher et al, 1972; Hung et al,
2011). Conversely, incubation of cells with pyruvate leads to the

consumption of available cytoplasmic NADH via LDHA and
minimises Peredox T-sapphire signal (Appendix Fig. S4B). Assess-
ment of the basal Peredox T-sapphire, together with the maximal
availability of NADH and NAD+ reported by incubation with
pyruvate and lactate, respectively, allows comparison of the
cytoplasmic redox state in wild-type versus GOT1ko cells.

In wild-type MCF7 cells, the basal Peredox signal was similar to
the high NAD+/NADH state (Pyr), while lactate treatment (Lac)
caused a dramatic increase in Peredox signal intensity irrespective
of the order of substrate addition (Fig. 4E; Appendix Fig. S4C).
Conversely, in GOT1ko cells extracellular lactate failed to increase
cytoplasmic NADH, further supporting our interpretation of the
cell population-level NAD+/NADH quantification by LC-MS that
GOT1ko cells have a deficit in cytoplasmic NAD+. Accordingly,
overexpression of GOT1-HA in wt cells enhanced the lactate-
induced and suppressed the pyruvate-induced Peredox response;
overexpression of GOT1-HA in GOT1ko cells restored the Peredox
response to wt cell levels (Appendix Fig. S4D). Together, these

Figure 3. GOT1 supports increased glycolysis in early hypoxia.

(A) Western blot to assess levels of GOT1 in wild-type (wt) and GOT1ko MCF7 cells. (B) The intracellular abundance of aspartate in wild-type (wt) and GOT1ko MCF7
cells incubated in 21% O2 or 1% O2 for 3 h. (C) Glucose (2DG) uptake of wild-type (wt) and GOT1ko MCF7 cells in normoxia and after 3 and 24 h in 1% O2. (D) The
intracellular abundance of lactate in wild-type (wt) and GOT1ko MCF7 cells incubated in 21% O2 or 1% O2 for 3 h. (E) Lactate concentration in cell culture media of wild-
type (wt) and GOT1ko MCF7 cells incubated in 21% O2 or 1% O2 for the indicated lengths of time. (F) Western blot to assess the levels of HIF1α, endogenous GOT1 and
HA-tagged GOT1 in wild-type (wt) and GOT1ko MCF7 cells stably expressing GOT1-HA or GFP. (G, H) Intracellular abundance of aspartate and lactate in wild-type (wt)
and GOT1ko MCF7 cells stably expressing GOT1-HA or GFP at 21% O2 and after 3 h in 1% O2, relative to wild-type cells at 21% O2. Data information: Data are
representative of experiments with similar conditions performed independently N times as follows: N ≥9 (A), N ≥5 (B, D), N ≥ 2 (C, E, G, H), N ≥3 (F). Datapoints in
(B–E, G, H) represent mean ± s.d. n= 3 assays per condition (C) and n= 4 cultures for each time point and condition (B, D, E, G, H), except for E 1% O2, t= 0 and all
measurements at 21% O2 where n= 3. P values shown were calculated by two-way ANOVA Sidak’s test (C) or two-way ANOVA Tukey’s test (B, D, E, G). Statistical errors
in (H) were propagated to calculate the error of the change in lactate between normoxia and hypoxia for each condition, and significance between these changes was then
tested using one-way ANOVA Tukey’s test. ns non-significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Source data are available online for this figure.
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observations indicated that the attenuated increase in glycolysis of
GOT1ko cells in early hypoxia may be due to decreased NAD+

availability.
GOT1 converts aspartate to oxaloacetate (OAA), a substrate of

MDH1, which produces malate and concomitantly oxidises NADH
to NAD+ (Fig. 4F). To assess whether deletion of GOT1 influences
MDH1 activity and thereby the production of cytoplasmic NAD+,
we incubated cells with [4-2H]-glucose, which leads to the
production of cytoplasmic NAD2H that can be subsequently used
by MDH1 to incorporate a deuterium into malate (malate M+ 1)
(Lewis et al, 2014) (Fig. 4F). Malate M+ 1 abundance was 50 ± 10%
and 42 ± 19% lower in normoxia and early hypoxia, respectively, in
GOT1ko compared to wild-type cells (Fig. 4G), while labelling of
NADH was similar in both cell lines and conditions (Appendix
Fig. S4E). These results show that a significant fraction of MDH1
flux depends on GOT1 both in normoxia and in early hypoxia,
consistent with the lower basal NAD+ levels we observed in
GOT1ko cells (Fig. 4C).

MDH1 flux does not increase in early hypoxia

Other reports have previously indicated that increased flux through
MDH1 is required to support glycolysis (Gaude et al, 2018) and this
may be associated with increased MDH1 expression (Hanse et al,
2017). We also observed an increase in MDH1, but not GOT1
protein levels in hypoxia (Appendix Fig. S4F), however, we found
no significant differences in malate M+ 1 levels between normoxia
and hypoxia in either cell line (Fig. 4G). We therefore explored the
contribution of GOT1, versus other potential OAA sources, to
MDH1 flux in early hypoxia.

In wild-type MCF7 cells, the incorporation of deuterium into
malate reached steady state within 1 h in hypoxia (Fig. 4H, left
panel). After accounting for the significant decrease in the malate
pool size (Fig. 4H, middle panel), we found that the abundance of
malate M+ 1 at steady-state was similar in 21% O2 and 1% O2

(Fig. 4H, right panel). Malate M+ 1 levels remained relatively
constant even after 6 h in hypoxia, despite the progressive decrease
in aspartate over time (Appendix Fig. S4G), indicating that
aspartate did not become limiting for GOT1-MDH1 flux.

Furthermore, overexpression of ectopic GOT1-HA in wild-type
MCF7 cells modestly enhanced lactate accumulation (Fig. 3H),
suggesting that lower glycolysis under these conditions may be
limited by GOT1 expression.

Reductive carboxylation (RC) has also been proposed as a source
of OAA for MDH1 to support glycolysis in cells with mitochondrial
defects or upon growth factor stimulation (Gaude et al, 2018; Hanse
et al, 2017). Similar to previous reports (Metallo et al, 2011), RC
increased in MCF7 cells after 24 h in hypoxia, however, we found
no significant increase in RC after 3 h in hypoxia (Appendix
Fig. S4H). GOT1ko cells showed a modest increase in RC
(Appendix Fig. S4I), but this was not sufficient to fully restore
MDH1 flux (Fig. 4G) and prevent the observed attenuation of
glycolysis in early hypoxia (Fig. 3C,D).

Together, these data showed that MDH1 flux is maximal in
normoxia and does not further increase in early hypoxia.

NAD+ is limiting for the maximal flow of carbons from
upper to lower glycolysis in early hypoxia

Given the lack of increase in MDH1 flux during early hypoxia, we
investigated whether LDHA, which has an established role in
supporting increased glycolysis in chronic hypoxia (Fantin et al,
2006; Le et al, 2010) has a similar role also in early hypoxia. In
normoxia, the amount of lactate M+ 1 produced from [4-2H]-
glucose was comparable to that of malate M+ 1 (Fig. 4H, I, right
panels). In hypoxia, incorporation of 2H into lactate increased
linearly over time, indicating an increased contribution of LDHA to
NAD+ production (Fig. 4I). We concluded that, in contrast to
MDH1, flux through LDHA in normoxia is not maximal and can
increase in early hypoxia despite the lack of increased LDHA
protein expression.

Interestingly, we observed that the production of α-
glycerophosphate (α-GP, glycerol 3-phosphate) M+ 1 from
[4-2H]-glucose also increased in hypoxia (Fig. 4J), which was
further reflected by the increased labelling of α-GP from [U-13C]-
glucose (Fig. 4K, wt cells on the left). α-GP is produced by α-GP
dehydrogenase 1 (GPD1), from dihydroxyacetone phosphate
(DHAP), which, alongside glyceraldehyde 3-phosphate (GAP) is a

Figure 4. GOT1 supports MDH1 flux and cytoplasmic redox balance, but MDH1 flux does not change in hypoxia vs. normoxia.

(A) Heatmap showing log2 fold changes in the abundance of the indicated metabolites in GOT1ko at 21% O2 or after 3 h in 1% O2, compared to wild-type MCF7 cells under
the same conditions. Data for each condition separately are shown in Appendix Fig. S4A. 6-PG 6-phosphogluconic acid, FBP fructose 1,6-biphosphate, DHAP
dihydroxyacetone phosphate, 1,3-BPG 1,3-biphosphoglyceric acid, 2PG 2-phosphoglyceric acid, PEP phosphoenolpyruvate. (B–D) NAD+/NADH ratio (B) calculated from
the intracellular abundance of NAD+ (C) and NADH (D) in wild-type (wt) and GOT1ko MCF7 cells incubated in 21% O2 or 1% O2 for 3 h. (E) Peredox T-sapphire
fluorescence signal intensity of wild-type (wt) and GOT1ko MCF7 cells in buffer containing 5.5 mM glucose and 2 mM glutamine (Glc+Gln) and after sequential incubation
first with 10mM lactate (Lac) and then with 10 mM pyruvate (Pyr). Signal was normalised per nucleus and is shown relative to the Glc+Gln condition. See also Appendix
Fig. S4B,C. (F) Schematic showing theoretical labelling patterns in the indicated metabolites from [4-2H]-glucose. Carbon atoms are shown in white and deuterium atoms
are shown in red. Adapted from (Lewis et al, 2014). (G) The intracellular abundance of the M+ 1 isotopologues of malate in wild-type (wt) and GOT1ko MCF7 cells after
incubation with [4-2H]-glucose for 3 h. See also Appendix Fig. S4E. (H–J) Fraction labelled from [4-2H]-glucose, absolute total abundances and absolute abundances of
M+ 1-labelled isotopologues from [4-2H]-glucose of the shown metabolites. Time points indicate duration of incubation at 21% O2 or 1% O2, as well as duration of
incubation with the isotopic tracer. (K) The intracellular abundance of α-glycerophosphate (α-GP) M+ 3 labelled from [U-13C]-glucose in wild-type (wt) and GOT1ko
MCF7 cells after the indicated lengths of time in 21% O2 or 1% O2. Cells were incubated with the tracer for 3 or 24 h, respectively. (L) Intracellular abundance of α-
glycerophosphate (α-GP) M+ 3 labelled from [U-13C]-glucose in wild-type (wt) and GOT1ko MCF7 cells, stably expressing an empty vector (EV) or LbNOX. Cells were
incubated with the tracer for 3 h in 21% O2 or 1% O2, respectively. Data information: Data are representative of experiments with similar conditions performed
independently N times as follows: N ≥2 (A, K), N ≥3 (B–D, G), N= 4 (E), N= 1 (H–J, except 3 h time-point where N= 3, and L). Datapoints in (B–E, G–L) represent
mean ± s.d. n= 4 cultures for each time point or cell line and condition (A–D, G, H–L) except for (H–J): 1% O2, 2 h, n= 3 and 21% O2, 3 h, n= 2. Data points in (E)
represent mean ± s.d. of four independent replicates per cell line (n= 25–55 cells per replicate). P values shown were calculated by two-way ANOVA Dunnett’s test (B–E),
two-way ANOVA Sidak’s test (G–J, L) or two-way ANOVA Tukey’s test (K). ns non-significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Source data are available
online for this figure.
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product of aldolase (Appendix Fig. S4J). DHAP and GAP are
interconverted by triose phosphate isomerase (TPI), which
thermodynamically favours DHAP formation. However, in cells,
high GAPDH activity rapidly consumes GAP and shifts the TPI
equilibrium towards GAP formation, thereby allowing the reactions
of lower glycolysis to occur (Aithal et al, 1985; Amelunxen and
Grisolia, 1962; Harris et al, 1998; Herlihy et al, 1976; Tucker and
Grisolia, 1962; Veech et al, 1969). Therefore, increased incorpora-
tion of glucose carbons to α-GP may reflect a limitation in carbon
flow from upper to lower glycolysis due to attenuated GAPDH
activity, increased GPD1 activity, or both.

Consistent with this idea, GOT1ko cells, which have impaired
NAD+-regenerating capacity (Fig. 4G) and attenuated lower glycolysis
(Fig. 4A), show increased labelling of α-GP from [U-13C]-glucose
compared to wild-type cells in normoxia (Fig. 4K, left) despite lower
glucose uptake (Fig. 3C). Expression of the bacterial NADH oxidase
LbNOX (Titov et al, 2016) completely prevented the hypoxia-induced
increase in α-GP labelling from [U-13C]-glucose in GOT1ko cells but
not in wild-type cells (Fig. 4L), further supporting our model that
elevated efflux of glucose carbons to α-GP in early hypoxia when
GOT1 is absent reflects limiting NAD+. Expression of exogenous
GOT1-HA in GOT1ko cells decreased α-GP to similar levels as those
found in parental cells in hypoxia and partly reversed the impairment
in MDH1 flux (Fig. S4K). Intriguingly, α-GP labelling decreased in
wild-type cells after 24 h in hypoxia, compared to normoxia, but
remained elevated in GOT1ko cells (Fig. 4K, right). Together, these
data suggested that, in early hypoxia, cellular NAD+-regenerating
capacity is not sufficient for maximal flow of carbons from upper to
lower glycolysis. After 24 h in hypoxia, decreased α-GP production
indicates that flux through the reactions of lower glycolysis can match,
or exceed, that of upper glycolysis, likely because of increased NAD+-
regenerating capacity due to higher LDHAprotein expression (Fig. 2A)
or increased RC via MDH1 (Appendix Fig. S4K).

We next tested whether LDHA is sufficient for sustaining lower
glycolysis or whether its function can be substituted by GOT1-
MDH1. Knock-out of LDHA (LDHAko) in MCF7 cells effectively
abrogated the production of lactate from glucose and led to an
accumulation of labelled pyruvate (Fig. 5A,B), demonstrating that
LDHA is the predominant LDH isoform in these cells. α-GP
labelling from glucose increased in LDHAko cells, pointing to a
bottleneck between upper and lower glycolysis. This interpretation
was confirmed by the observed increase in the levels of metabolites
in upper glycolysis and depletion of metabolites in lower glycolysis
both under normoxia and, to a greater extent, under hypoxia
(Fig. 5C; Appendix Fig. S5A). Notably, these changes in glycolytic
intermediates were more pronounced than those in GOT1ko cells
(Fig. 4A; Appendix Fig. S4A). This observation, combined with the
enhanced synthesis of α-GP from glucose in LDHAko versus
GOT1ko cells, revealed a greater reliance of lower glycolysis on
LDHA than GOT1-dependent MDH1 flux. Together, our data
indicated that LDHA is necessary but not sufficient, even combined
with GOT1-MDH1, to sustain maximal carbon flow from upper to
lower glycolysis in hypoxia.

GOT1 and LDHA synergistically maintain ATP
homeostasis and cell survival in hypoxia

An important function of increased glycolysis in chronic hypoxia,
when respiration is suppressed, is to maintain intracellular ATP

levels (Kroemer and Pouyssegur, 2008). We observed a comparable
decrease in respiration of wt cells at 3 and 24 h hypoxia (23 ± 18%
vs 37 ± 11%, respectively, Fig. 5D), that was accompanied by a more
pronounced decrease in ATP after 24 h (31 ± 4%) than after 3 h in
hypoxia (6 ± 2%, Fig. 5E). These results suggested that increased
glycolysis could also preserve ATP levels upon suppression of
mitochondrial respiration in early hypoxia.

As our data pointed to a differential role for GOT1-MDH1 and
LDHA in sustaining lower glycolysis, we compared the relative
ability of GOT1ko and LDHAko cells to maintain ATP home-
ostasis. ATP levels in both GOT1ko and LDHAko cells were
comparable to those in wild-type cells in normoxia (Fig. 5E),
suggesting that remaining flux through lower glycolysis after
deletion of either GOT1 or LDHA is sufficient to maintain ATP
homeostasis in normoxia. Under hypoxia, ATP levels decreased
similarly in wild-type and GOT1ko cells, but more significantly in
LDHAko cells, both at 3 h and 24 h (Fig. 5E). Expression of low
levels of exogenous LDHA attenuated the hypoxia-induced
decrease in ATP from 56% to 32% (Appendix Fig. S5B). ATP
depletion in LDHAko cells was accompanied by a 68 ± 8% loss of
cell mass after 24 h in hypoxia compared to normoxia, whereas,
under the same conditions, wild-type cells showed a more modest
decrease in cell mass (15 ± 4%, Appendix Fig. S5C). These data are
in line with the increased reliance of lower glycolysis on LDHA
compared to GOT1-MDH1 in early hypoxia and indicate that
MDH1 fuelled by OAA from GOT1, or other sources, cannot
compensate for decreased LDHA activity. Conversely, our results
suggest that LDHA may suffice to support ATP production upon
loss of GOT1 (Fig. 5F).

To test the dependence of GOT1ko cells on LDHA for
maintaining ATP levels, we treated GOT1ko cells with oxamate,
a competitive inhibitor of LDHA (Novoa et al, 1959) that led to a
dose-dependent decrease in the production of lactate from
[U-13C]-glucose (Fig. 5G, left). In agreement with our findings in
LDHAko cells, treatment with oxamate had no effect on ATP levels
in wild-type cells in normoxia but led to a dose-dependent
decrease in ATP levels in hypoxia (Fig. 5H), without affecting
mitochondrial respiration (Appendix Fig. S5D). The oxamate-
induced decrease in ATP under hypoxia correlated remarkably well
(R2 = 0.975) with the magnitude of the increase in α-GP synthesis
from glucose under the same conditions (Fig. 5G, right, I), further
supporting our model that increased α-GP synthesis reflects efflux
of glucose carbons from glycolysis via GPD1 and diminished
activity of lower glycolysis. In contrast to untreated GOT1ko cells,
treatment of GOT1ko cells with oxamate resulted in lower ATP
levels even in normoxia. This decrease in ATP was further
exacerbated after 3 h in hypoxia (Fig. 5H) but did not occur either
in normoxia or hypoxia with oligomycin (Appendix Fig. S5E).
Furthermore, oxygen consumption in GOT1ko cells was modestly
decreased compared to that of wild-type cells (Appendix Fig. S5F).
Together, these observations indicated that GOT1ko cells rely
more on glycolytic flux supported by LDHA, rather than
compensatory mitochondrial respiration, to maintain intracellular
ATP levels. Importantly, oxamate caused a more profound
decrease in GOT1ko than wild-type cell number in hypoxia than
in normoxia, and this decrease was rescued by exogenous GOT1-
HA (Fig. 5J; Appendix Fig. S5G). Collectively, these data revealed
that while GOT1-MDH1 and LDHA contribute differentially to
ATP production from lower glycolysis, they synergise to maintain
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ATP homeostasis in early hypoxia and contribute to cell survival
after 24 h in hypoxia.

In summary, our results suggest that enhanced upper glycolysis
in early hypoxia imposes an increased need for NAD+ to sustain
maximal flow of carbons to lower glycolysis. This increased
requirement for NAD+ is met by reserve LDHA capacity and is
further supported by (saturated) GOT1-MDH1, to sustain ATP
homeostasis in early hypoxia. However, even with the combined
action of LDHA and MDH1, NAD+ regeneration is not enough to
achieve the maximal flow of carbons from upper to lower glycolysis.

GOT1 consumes αKG to attenuate PHD activity and
promote HIF1α stabilisation

To investigate whether loss of GOT1 also affects the long-term hypoxic
response, we first monitored wild-type and GOT1ko cell proliferation
over 2 days. We found that loss of GOT1 did not affect proliferation
either in normoxia or hypoxia (Appendix Fig. S6A). We next
compared gene expression in wild-type and GOT1ko cells incubated
in 1% O2 for 24 h. Both cell lines exhibited widespread gene expression
changes in hypoxia, compared to normoxia, including changes in
HIF1α target genes (Appendix Fig. S6B andDataset EV1. However, the
induction of HIF1α target gene expression was markedly suppressed in
GOT1ko cells compared to wild-type cells (Fig. 6A). This suppression
was not due to a defect in transcription, as the profile of global gene
expression changes induced by hypoxia in GOT1ko cells was largely
similar to that of wild-type cells (Appendix Fig. S6C). Therefore, these
data show that HIF1α-dependent transcription is attenuated in
GOT1ko cells.

Decreased induction of HIF1α target mRNAs was associated
with both a delay and decrease in the hypoxia-induced accumula-
tion of HIF1α protein in GOT1ko cells (Fig. 6B). This was
particularly evident within the first hours in hypoxia, whereas the
kinetics of the decrease in HIF1α protein levels at longer times
(>15 h) under hypoxia (Lin et al, 2011) were similar. Re-expression
of HA-tagged GOT1 restored HIF1α expression, showing a GOT1-

specific effect (Fig. 6C). These data indicate that GOT1 promotes
HIF1α stabilisation in early hypoxia and suggest that attenuation of
HIF1α target gene expression in GOT1ko cells in later hypoxia
reflects a cumulative effect of suppressed early HIF1α stabilisation.

Although we observed a modest decrease (<21%) in HIF1α
mRNA levels in GOT1ko cells compared to wild-type cells
(Appendix Fig. S6D), treatment of cells with the proteasome
inhibitor MG-132 led to similar kinetics of HIF1α protein
accumulation in both cell lines (Appendix Fig. S6E), indicating
that decreased protein synthesis was unlikely to be the cause for the
difference in HIF1α protein levels. We therefore reasoned that the
difference in HIF1α stabilisation between wild-type and GOT1ko
could be attributable to higher rates of HIF1α degradation in
GOT1ko cells. When, after 3 h in hypoxia, HIF1α protein
translation was inhibited with cycloheximide, HIF1α protein levels
decreased more rapidly in GOT1ko cells than in wild-type MCF7
cells (Fig. 6D). Furthermore, treatment with MG-132 eliminated
the difference in HIF1α levels between wild-type and GOT1ko cells
but revealed higher levels of hydroxylated HIF1α in GOT1ko than
in wild-type MCF7 cells (Fig. 6E; Appendix Fig. S6F). The HIF1α
hydroxylation signal was eliminated after treatment with the PHD
inhibitor FG-4592, confirming that increased HIF1α hydroxylation
is due to PHD activity. Taken together, these data suggest that
GOT1ko cells retain higher PHD activity in hypoxia that could
account for the delay in HIF1α stabilisation.

Although we observed small differences in mRNA expression of
PHDs in GOT1ko compared to wild-type MCF7 cells (Appendix
Fig. S6D), such differences were not reflected on the protein level
(Appendix Fig. S6G) and pointed to increased PHD activity. PHD
activity depends on O2 which, binds to PHDs in an αKG-dependent
manner, therefore fluctuations in both O2 and αKG can influence
PHD activity. Accordingly, incubation of cells in 1% O2 in the
presence of increasing amounts of the cell-permeable αKG
analogue dimethyl-αKG (DMKG) led to a dose-dependent decrease
in HIF1α protein levels (Appendix Fig. S6H). αKG abundance
increased in GOT1ko cells compared to wild-type cells (Fig. 6F),

Figure 5. LDHA has spare capacity in normoxia and is necessary to maintain ATP levels in early hypoxia.

(A) Western blot to assess the levels of LDHA in wild-type (wt) and LDHAko MCF7 cells. (B) The intracellular abundance of pyruvate, lactate and α-glycerophosphate (α-
GP) in wild-type (wt) and LDHAko MCF7 cells. Striped bars represent the fraction of metabolites fully labelled from [U-13C]-glucose after 3 h incubation with the tracer.
(C) Heatmap showing log2 fold changes in the abundance of the indicated metabolites in LDHAko at 21% O2 or after 3 h in 1% O2, compared to wild-type MCF7 cells in the
same conditions. Data for each condition separately are shown in Appendix Fig. S5A. Wild-type data are the same as shown in Fig. 4A and Appendix Fig. S4A and
statistical tests were performed on the whole data set. 6-PG 6-phosphogluconic acid, FBP fructose 1,6-biphosphate, DHAP dihydroxyacetone phosphate, 1,3-BPG 1,3-
biphosphoglyceric acid, 2PG 2-phosphoglyceric acid, PEP phosphoenolpyruvate. (D) Mitochondrial respiration of MCF7 cells after incubation at 1% O2 for the indicated
lengths of time. Cellular oxygen consumption was corrected for ROX (residual oxygen consumption) by the addition of the complex III inhibitor antimycin A. (E) ATP levels
in wild-type (wt), GOT1ko and LDHAko MCF7 cells at 21% O2 and after 3 h or 24 h in 1% O2. See also Appendix Fig. S5B. (F) Schematic of a theoretical working model, for
illustrative purposes, summarising the observed effects of GOT1 and LDHA deletion (GOT1ko and LDHAko, respectively) on carbon flux from upper to lower glycolysis
(indicated by the colour scale) and changes in cellular ATP during early hypoxia. Decreased NAD+/NADH ratio in GOT1ko cells leads to an attenuation of carbon flux into
lower glycolysis that is not large enough to affect ATP levels. In contrast, loss of LDHA leads to more profound inhibition of lower glycolysis, associated with ATP depletion
and cell death. wt: wild-type cells. (G) Intracellular abundance of lactate and α-glycerophosphate (α-GP) in MCF7 cells treated with a range of concentrations of the LDHA
inhibitor oxamate for 3 h at 21% O2 or 1% O2. Striped bars represent the fraction of metabolites fully labelled from [U-13C]-glucose after 3 h incubation with the tracer. (H)
ATP levels in wild-type (wt) and GOT1ko MCF7 cells at 21% O2 and after 3 h in 1% O2 treated with the indicated oxamate concentrations for 3 h. (I) Scatter plot showing
changes in abundance of α-glycerophosphate (α-GP) M+ 3 labelled from [U-13C]-glucose (3 h incubation with the tracer) versus the corresponding changes in ATP levels,
in MCF7 cells treated with a range of oxamate concentrations for 3 h at 1% O2 relative to cells treated at 21% O2. (J) Change in cell confluence of wild-type (wt) and
GOT1ko MCF7 cells within 24 h at 21% O2 or 1% O2 with the indicated oxamate concentration in cell culture media, shown relative to 0 mM oxamate per cell line. Data
information: Data are representative of experiments with similar conditions performed independently N times as follows: N= 2 (B, D, H, J), N ≥3 (A), N= 1 (C, E, G, I).
Datapoints in (B, D, G–J) represent mean ± s.d. n= 4 (B, C) and n= 3 (E, I, J) cultures for each cell line and condition; n= 3 assays per cell line, time point and condition;
n= 3 cultures per condition; (D) graphs show combined replicates of two independent experiments: [n= 7 (0 h); n= 5 (3 h); n= 4 (6 h); n= 6 (24 h)]. P values shown
were calculated by two-way ANOVA Dunnett’s test (D, E, G) or two-way ANOVA Sidak’s test (B, H, J). ns non-significant, *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. Source data are available online for this figure.
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consistent with αKG being a substrate of GOT1, and was associated
with an enhanced αKG/succinate ratio, which promotes dioxygen-
ase activity (Hewitson et al, 2007). These data indicate that, in
addition to its immediate contribution to glycolysis upon oxygen
limitation, GOT1 activity contributes to αKG turnover and thereby
controls the kinetics of HIF1α stabilisation.

Discussion

Adaptation to low oxygen is critical for the survival and
proliferation of cancer cells (Bensaad and Harris, 2014). While
the PHD-HIF1α signalling axis is a key orchestrator of cellular
responses to chronic hypoxia, the mechanisms that allow cells to
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survive until a full HIF1α response is established are not well
understood.

It has long been recognised that oxygen suppresses glycolysis in
both healthy and transformed cells, a phenomenon known as the
Pasteur effect. Accordingly, we find that, upon oxygen limitation,
glycolysis increases within 3 h and demonstrate that this occurs in a
HIF1α-independent manner. Various well-established allosteric
and signalling mechanisms that increase flux through the first
enzymatic steps in glycolysis and glucose transport lead to
increased upper glycolysis in hypoxia (Burgman et al, 2001; Clavo
et al, 1995; Krebs, 1972; Liemburg-Apers et al, 2016; Morgan et al,
1961; Racker, 1980; Shetty et al, 1993; Stubbs et al, 1972). It is,
therefore, reasonable to suggest that such mechanisms elevate the
activity of upper glycolysis in early hypoxia and impose an
increased requirement for NAD+ that is used by GAPDH to enable
the flow of incoming carbons to lower glycolysis.

Lactate labelling from [4-2H]-glucose increased in early hypoxia,
in the absence of detectable changes in LDHA protein levels,
suggesting that LDHA has reserve capacity in normoxia that can be
used in early hypoxia to sustain NAD+. Intriguingly, we also
observed increased α-GP synthesis from glucose in early hypoxia,
which indicated a shift of the TPI equilibrium towards DHAP, the
substrate of the α-GP-producing enzyme GPD1. The TPI
equilibrium is influenced by the relative activities of GAPDH
(which depends on NAD+ – see scheme in Appendix Figure S4J)
and GPD1 (which depends on NADH). In hypoxia, a lower NAD+/
NADH ratio, reflecting increased NADH levels, could either inhibit
GAPDH (Aithal et al, 1985), promote GPD1 activity (Bentley and
Dickinson, 1974) or both. LDHA knock-out led to decreased lower
glycolysis and a concomitant increase in α-GP synthesis from
glucose. Importantly, the LDHA inhibitor oxamate did not decrease
respiration, confirming that the observed changes in α-GP are due
to increased production from glucose, rather than decreased
consumption due to lower activity of GPD2, an enzyme that
converts α-GP to DHAP and provides reduced flavin adenine
dinucleotide (FADH2) for mitochondrial respiration. Furthermore,
increased α-GP synthesis after treatment of cells with oxamate
correlated well with the decrease in ATP levels under the same
conditions, which is likely due to attenuated lower glycolysis given
that mitochondrial respiration was unchanged. Together, these
observations are in line with a model where efflux of glucose
carbons from the core glycolytic pathway to α-GP reflects a
bottleneck at the GAPDH step.

In early hypoxia, we showed that both mitochondrial respiration
(as also previously shown (Chandel et al, 1997)) and aspartate
synthesis from glutamine decreased; these are conditions that have
been broadly thought to attenuate MAS activity in chronic hypoxia
(Birsoy et al, 2015; Eales et al, 2016; Henderson, 1969; Sullivan et al,
2018), in a HIF1α-dependent manner (Melendez-Rodriguez et al,
2019). Given the function of MAS in translocating electrons
between cytosolic and mitochondrial NADH, the strong decrease in
aspartate production led us to interrogate the role of GOT1 (the
canonical aspartate-consuming enzyme of the MAS) in glycolysis
during early hypoxia. These investigations revealed that knock-out
of GOT1 resulted in decreased flux through MDH1 and caused a
lower NAD+/NADH ratio. Furthermore, loss of GOT1 promoted α-
GP synthesis from glucose, similar to LDHAko, and attenuated
lactate production from glucose only in hypoxia. These data
pointed to an increased need for MDH1-derived NAD+ selectively
under oxygen-limiting conditions. In view of the decreased
aspartate availability, the finding that the aspartate-consuming
GOT1 is required for increased glycolysis in early hypoxia was, at
first sight, paradoxical. However, we show that the amount of
labelled malate produced from [4-2H]-glucose was similar in
normoxia and hypoxia. This finding suggests that MDH1 flux is
not impaired, even when aspartate levels decrease to less than 30%
of those in normoxic cells, unlike the limitation in biomass
production due to low aspartate seen in cells in chronic hypoxia or
with mitochondrial defects (Altea-Manzano et al, 2022; Birsoy et al,
2015; Garcia-Bermudez et al, 2018). Importantly, overexpression of
GOT1 led to increased lactate levels in hypoxia (Fig. 3H). Together,
these results support the idea that even when aspartate levels
decrease in early hypoxia, they do not become limiting for GOT1-
fuelled MDH1 flux, and indicate that MDH1 flux in normoxia (as
in other proliferating cells (Wang et al, 2022)) and early hypoxia is,
effectively, saturated.

In light of these observations, increased α-GP synthesis from
glucose in early hypoxia in wt cells strongly suggests that NAD+

provided by LDHA, even when supplemented by basal GOT1-
MDH1 activity and possibly other pathways that support glycolysis
in chronic hypoxia (Kim et al, 2019), is not sufficient for the
increased amount of glucose carbons from upper glycolysis to flow
into lower glycolysis (Fig. 7—early hypoxia). Importantly, a model
where increased upper glycolysis due to the Pasteur effect
overwhelms GAPDH capacity also elucidates the apparent increase
in the reliance of glycolysis on GOT1-MDH1 in hypoxia, even

Figure 6. Elevated αKG levels, increased HIF1α hydroxylation and attenuated HIF1α stabilisation in GOT1ko cells under hypoxia.

(A) Volcano plot of gene expression changes of a panel of HIF1α target genes in wild-type (wt) MCF7 and GOT1ko cells exposed to 1% O2 for 24 h, compared to control
cells in normoxia. Lines connect identical genes in the two cell lines to illustrate the differences in hypoxia-induced gene expression changes. (B) Western blot to assess
HIF1α protein levels in wild-type (wt) and GOT1ko MCF7 cells exposed to 1% O2 for the indicated lengths of time. The graph on the right shows the quantification of the
HIF1α signal. (C) Western blot to assess the protein levels of HIF1α, endogenous GOT1 and HA-tagged GOT1 in wild-type (wt) and GOT1ko MCF7 cells stably expressing
GOT1-HA or GFP and exposed to 1% O2 for 3 h. (D) Western blot to assess HIF1α protein levels in wild-type (wt) and GOT1ko MCF7 cells exposed to 1% O2 for 3 h and
then treated with cycloheximide (CHX, 20 μM) for the indicated lengths of time. Graph on the right shows the quantification of the HIF1α signal. (E) Western blot to assess
the levels of HIF1α, and HIF1α hydroxylated at proline 564 (Pro564) in wild-type (wt) and GOT1ko MCF7 cells exposed to 1% O2 for the indicated lengths of time. Cells
were treated with the PHD inhibitor FG-4592 (50 μM), the proteasome inhibitor MG-132 (10 μM) or a combination of both for the duration of the experiment. See also
Appendix Fig. S6F for additional controls. (F) The intracellular abundance of α-ketoglutarate (α-KG, left) and corresponding αKG/succinate ratios (right) in wild-type (wt)
and GOT1ko MCF7 cells after 3 h at 21% O2 or 1% O2. Data information: Data are representative of experiments with similar conditions performed independently N times
as follows: N= 1 (A), N= 3 (B), N ≥ 3 (C), N= 2 (D–F). Datapoints in (F) represent mean ± s.d. n= 3 (A) and n= 4 (F) cultures for each cell line and condition. FDRs in (A)
were calculated using the ’exactTest’ function of the edgeR package (see 'Methods') with a cut-off set at 1%; only changes with FDR < 0.01 are shown. The P values shown
in (F) were calculated by two-way ANOVA Sidak’s test. ns non-significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Source data are available online for this
figure.
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though flux through this pathway is not elevated (Fig. 7). In
normoxia, a lower amount of incoming carbons from upper
glycolysis can be sustained by sub-saturated LDHA and saturated
GOT1-MDH1. However, upon elevation of upper glycolysis in early
hypoxia, a greater need for NAD+ arises, requiring “all hands on
deck” to provide as much NAD+ as possible, therefore increasing
the apparent reliance on GOT1-MDH1. As a consequence,
combined inhibition of LDHA and GOT1 is detrimental to cells
only in hypoxia but not in normoxia (Fig. 5J), an effect that is
associated with an ATP deficit (Fig. 5H). It is likely that, for long-
term survival in hypoxia, GOT1-supported cellular bioenergetics
work together with other functions of MAS components shown to
sustain biomass production in cells subjected to chronic hypoxia or
with mitochondrial deficits (Altea-Manzano et al, 2022; Birsoy et al,
2015; Garcia-Bermudez et al, 2018).

In addition to GOT1, another major source of cytoplasmic OAA
for MDH1 is ATP citrate lyase (ACL). In chronic hypoxia, RC of
glutamine can provide carbons for lipids and OAA via ACL. RC-
derived OAA supports MDH1-dependent NAD+ generation, which

is required for glycolysis in cells stimulated with growth factors for
24 h (Hanse et al, 2017) and in cells that harbour stable genetic
mutations causing mitochondrial dysfunction (Gaude et al, 2018).
In the latter case, increased RC is caused by a decreased NAD+/
NADH ratio. We also found a significant decrease in the NAD+/
NADH ratio after 3 h under hypoxia, however, RC during this time
remained unchanged. Nevertheless, RC increased after 24 h,
consistent with previous reports that RC is controlled by HIF1α
(Gameiro et al, 2013; Metallo et al, 2011). Furthermore, a modest
increase in RC in GOT1ko cells did not suffice to rescue the
attenuation of glycolysis upon loss of GOT1.

Interestingly, cells with profound mitochondrial defects take up
more aspartate from the media compared to isogenic cells with
more functional mitochondria, and exogenous aspartate increases
secreted lactate in an MDH1-dependent manner (Gaude et al,
2018). However, whether metabolism of endogenous aspartate via
GOT1 itself is sufficient for glycolysis, and the relative contribution
of GOT1 and RC to glycolysis remained unexplored. Intriguingly, a
higher degree of mitochondrial dysfunction is associated with
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Figure 7. Model summarising the dual role of GOT1 in enabling the cellular response to hypoxia.

In normoxia, carbon flux through lower glycolysis matches that of upper glycolysis because LDHA and GOT1-driven MDH1 provide sufficient NAD+, which is needed for the
flow of carbons (indicated by the high reading of the gauge) to lower glycolysis. The coloured scale for the reading of the gauge indicates flux from upper to lower
glycolysis. In early hypoxia, elevation of upper glycolysis increases the requirement for regeneration of NAD+, which is supported by an increase in the flux through LDHA
and by GOT1-dependent MDH1 activity that does not increase compared to normoxia. However, carbon flow to lower glycolysis is limited by NAD+ in early hypoxia, as
indicated by the increased efflux of glucose carbons to α-GP. In late hypoxia, increased RC provides additional OAA for MDH1 and, combined with increased LDHA
expression, confers additional NAD+-regenerating capacity enabling increased flow of carbons to lower glycolysis. In parallel, GOT1 consumes αKG (an essential co-factor
for PHDs), which, in combination with lower oxygen, suppresses HIF1α hydroxylation and therefore promotes its stabilisation, leading to robust HIF1α target gene
expression later in hypoxia. RC reductive carboxylation.
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decreased flux through the MAS. It has also been shown that
reversal of the MAS can overcome the mitochondrial NAD+ deficit
in cells with respiratory defects (Altea-Manzano et al, 2022). In
such cases, GOT1 provides aspartate to its mitochondrial counter-
part, GOT2, which fuels MDH2-dependent NAD+ production to
sustain glutaminolysis through glutamate dehydrogenase (GDH).
Our data suggest that, in early hypoxia GOT1 largely remains an
aspartate consumer and that decreased glutaminolysis is likely due
to attenuation of a step upstream of GDH. Altogether, despite
parallels between attenuated respiration induced by early hypoxia
and respiratory inhibition, the differences highlighted above
suggest that RC, and reversal of the MAS, rather than canonical
GOT1 activity, may have a more important role for sustaining
glycolysis in cells harbouring mitochondrial defects.

Our observation that in early hypoxia glycolytic flux is not
maximal, even when supported by both LDHA and GOT1-MDH1,
elucidates the need for increased LDHA expression and increased
RC to sustain MDH1 in chronic hypoxia. Such a model is further
corroborated by our observation that synthesis of α-GP from
glucose decreases after 24 h in hypoxia, when both LDHA
expression and RC are increased, and are therefore expected
to bestow a higher cellular capacity to regenerate glycolytic
NADH (Fig. 7—late hypoxia). Combined with evidence from the
studies discussed above, our findings highlight the possibility
that the mechanisms employed to provide NAD+ to glycolysis,
and their relative contributions, may vary depending on different
cues (hypoxia, growth factor stimulation, mitochondrial dysfunc-
tion) and the different lengths of time they require to increase
glycolysis. It is conceivable that combinatorial targeting of multiple
redox pathways, as we and others (Hanse et al, 2017) showed, may
be a useful therapeutic strategy to attenuate glycolysis. However,
the successful selection of relevant target combinations should rely
on the relative contributions of these systems to sustaining
glycolysis depending on the cellular and physiological context.

Our investigations into the long-term effects of GOT1 knock-
out also pointed to a role for GOT1 in influencing HIF1α protein
levels. While many αKG-consuming and -producing enzymes likely
contribute to determining the steady-state intracellular concentra-
tion of αKG (Chen et al, 2017; Raffel et al, 2017), our results suggest
that GOT1 is a significant consumer of αKG. Given the critical role
for αKG in PHD activity, increased αKG in GOT1ko cells is
associated with decreased HIF1α protein stability. HIF1α destabi-
lisation may further be promoted by increased cytoplasmic oxygen
availability due to decreased respiration (Appendix Fig. S5F), and
increased expression of Egln3 (Appendix Fig. S6D) found in
GOT1ko cells. Regardless, although HIF1α expression is not
completely suppressed, a delay in stabilisation suffices to attenuate
HIF1α target gene transcription in the long term, likely due to a
cumulative effect over a period of several hours.

Chronic hypoxia develops over periods of tumour growth that
are longer than the lengths of hypoxia treatment we used in our
experiments. Nevertheless, hypoxia-reoxygenation cycles (also
referred to as intermittent hypoxia) have important functional
consequences for both tumour physiology and response to therapy
(Bhaskara et al, 2012; Brown, 1979; Chaplin et al, 1986; Chen et al,
2018; Gillies and Gatenby, 2007; Jubb et al, 2010; Kang et al, 2020;
Toffoli and Michiels, 2008; Verduzco et al, 2015) and occur in
timescales that range between minutes and hours (Braun et al,

1999; Brurberg et al, 2006; Cardenas-Navia et al, 2004). Therefore,
elucidating what factors determine the ability of cells to rapidly
adapt during intermittent hypoxia is crucial. There is significant
evidence that other cellular responses to low oxygen, such as
suppression of translation (Koritzinsky and Wouters, 2007) and
increased ROS production (Hamanaka and Chandel, 2009), can
occur within minutes to hours and also play an important role for
cell survival. Our findings suggest that GOT1 functions help
maintain cells in a primed state that increases their chances of
survival when oxygen becomes limiting and, more broadly, support
the notion that, upon exposure to stress, cells employ specific
mechanisms that help them survive while other adaptive processes,
that require more time, are established.

Methods

Reagents and tools table

Reagent/resource
Reference or
source

Identifier or
catalogue #

Antibodies

Mouse anti-β-Actin Sigma-
Aldrich

Cat# A2228;
RRID:AB_476697

Rabbit anti-GLUT1 Millipore Cat# 07-1401;
RRID:AB_1587074

Rabbit anti-GAPDH Cell Signaling
Technology

Cat# 2118;
RRID:AB_561053

Rabbit anti-GOT1 Proteintech
Group

Cat# 14886-1-AP;
RRID:AB_2113630

Rabbit anti-HA, Clone C29F4 Cell Signaling
Technology

Cat# 3724;
RRID:AB_1549585

Mouse anti-HIF1α, Clone 54 BD
Biosciences

Cat# 610958;
RRID:AB_398271

Rabbit anti-HIF-2α Abcam Cat# ab199;
RRID:AB_302739

Rabbit anti-HK2, Clone C64G5 Cell Signaling
Technology

Cat# 2867;
RRID:AB_2232946

Rabbit anti-hydroxy-HIF1α Pro564, Clone
D43B5

Cell Signaling
Technology

Cat# 3434S;
RRID:AB_2116958

Rabbit anti-LDHA Cell Signaling
Technology

Cat# 2012S;
RRID:AB_2137173

Rabbit anti-MDH1 Atlas
Antibodies

Cat# HPA027296;
RRID:AB_10611118

Rabbit anti-PDH2, Clone D31E11 Cell Signaling
Technology

Cat# 4835S;
RRID:AB_10561316

Rabbit anti-PDHE-1α pSer293 Abcam Cat# ab92696;
RRID:AB_10711672

Rabbit anti-PDK1, Clone C47H1 Cell Signaling
Technology

Cat# 3820;
RRID:AB_1904078

Rabbit anti-PKM2, Clone D78A4 Cell Signaling
Technology

Cat# 4053;
RRID:AB_1904096

Mouse anti-Tubulin, Clone DM1A Sigma-
Aldrich

Cat# T9026;
RRID:AB_477593

Goat anti-rabbit IgG antibody conjugated to
HRP

Millipore Cat# AP132P

Goat anti-mouse IgG antibody conjugated to
HRP

Millipore Cat# AP127P

Bacterial strains

Subcloning efficiency DH5α competent cells Thermo
Fisher
Scientific

Cat# 18265017
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Reagent/resource
Reference or
source

Identifier or
catalogue #

Chemicals, peptides, and recombinant proteins

Acetic acid Fisher
Scientific

Cat# A10360/
PB17

Acetonitrile, Optima LC-MS grade Fisher
Scientific

Cat# A955-212

Ammonium bicarbonate Fisher
Scientific

Cat# 10785511

Antimycin A Sigma-
Aldrich

Cat# A8674

BbsI Thermo
Fisher
Scientific

Cat# ER1001

β-Mercaptoethanol Sigma-
Aldrich

Cat# M6250

Bromophenol blue Sigma-
Aldrich

Cat# B0126

Bovine serum albumin Sigma-
Aldrich

Cat# A9647

Blasticidin Millipore Cat# 203350

N,O-bis(trimetylsilyl)trifluoroacetamide
(BSTFA)+ 1% trimethylchlorosilane (TMCS)

Sigma-
Aldrich

Cat# 33148

Chloroform Acros
Organics

Cat# 390760025

Cholera toxin Sigma-
Aldrich

Cat# C-8052

Crystal violet Sigma-
Aldrich

Cat# C3886

DMEM, high glucose, no glutamine Thermo
Fisher
Scientific

Cat# 11960085

DMEM, no glucose, no glutamine, no phenol
red

Thermo
Fisher
Scientific

Cat# A14430

DMEM/F12 Thermo
Fisher
Scientific

Cat# 21331046

DMEM-F12 no glutamine, no glucose Generon Cat# L0091

Ethanol Fisher
Scientific

Cat# E/650DF/17

EGF Preprotech Cat# 100-15

Foetal calf serum Sigma-
Aldrich

Cat# F7524

FG-4592 Cayman
Chemical

Cat# 15294

Fugene HD Promega Cat# E2691

Glucose Sigma-
Aldrich

Cat# SLBC6575V

Glucose (4-2H) Omicron
Biochemicals

Cat# GLC-035

Glucose (13C6) Sigma-
Aldrich

Cat# 389374

Glutamine Thermo
Fisher
Scientific

Cat# 25030-081

Glycerol Sigma-
Aldrich

Cat# G5516

Horse serum Thermo
Fisher
Scientific

Cat# 16050-122

Glutamine (13C5) Cambridge
Isotope
Laboratories

Cat# CLM-1822

Reagent/resource
Reference or
source

Identifier or
catalogue #

Hydrocortisone Sigma-
Aldrich

Cat# H-0888

Insulin Sigma-
Aldrich

Cat# I-1882

Lactate Sigma-
Aldrich

Cat# L7022

Methanol, Optima LC-MS grade Fisher
Scientific

Cat# A456-212

MG-132 Sigma-
Aldrich

Cat# 474787

MluI Thermo
Fisher
Scientific

Cat# FD0564

β-Nicotinamide adenine dinucleotide (NAD) Sigma-
Aldrich

Cat# N1511

β-Nicotinamide adenine dinucleotide, reduced
(NADH)

Sigma-
Aldrich

Cat# N8129

β-Nicotinamide mononucleotide (NMN) BioVision Cat #2733

Nicotinamide riboside (NR) Cayman
Chemical

Cat #23132

Oligomycin Sigma-
Aldrich

Cat# O4876

Penicillin–streptomycin Thermo
Fisher
Scientific

Cat# 15140-122

Paraformaldehyde (PFA) Sigma-
Aldrich

Cat# 158127

Polybrene Sigma-
Aldrich

Cat# H9268

Pyromycin dihydrochloride Sigma-
Aldrich

Cat# P7255

Pyridine Sigma-
Aldrich

Cat# 270970

Pyruvate Sigma-
Aldrich

Cat# P5280

Sodium dodecyl sulfate (SDS) Sigma-
Aldrich

Cat# 400036

Scyllo-Inositol Sigma-
Aldrich

Cat# I8132

Trizol Thermo
Fisher
Scientific

Cat# 15596026

Tween-20 Sigma-
Aldrich

Cat# P7949

Valine (15N,13C) Cambridge
Isotope
Laboratories

Cat# CNLM-442-
H-PK

WZB-115 Merck
Millipore

Cat# 400036

XhoI Thermo
Fisher
Scientific

Cat# FD0694

Critical commercial assays

BCA Protein Assay Kit Thermo
Fisher
Scientific

Cat #23225

CellTiter-Glo Luminescent Cell Viability Assay Promega Cat# G7570

Glucose Uptake-Glo Assay Promega Cat# J1341

Deposited data

RNA sequencing data: wild-type and HIF1α-
mutant MCF7 cells in normoxia (21% O2),
and in hypoxia (1% O2) for 3 h or 24 h

This study GEO: GSE122059
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Reagent/resource
Reference or
source

Identifier or
catalogue #

Experimental models: cell lines

Human: MCF7 ATCC Cat# CRL-12584;
RRID:CVCL_0031

Human: MCF10A ATCC Cat# CRL-10317;
RRID:CVCL_0598

Human: HEK-293T ATCC Cat# CRL-321;
RRID:CVCL_0063

Human: MDA- MC-231 ATCC Cat# CRM-HTB-
26;
RRID:CVCL_0062

Human: BT-474 ATCC Cat# HTB-20;
RRID:CVCL_0179

Oligonucleotides

Forward primer GOT1 cDNA amplification:
cgcacgcgtaccATGGCACCTCCGTCAGTC

This study N/A

Reverse primer GOT1 cDNA amplification:
gcgctcgagCTGGATTTTGGTGACTGCTTC

This study N/A

Forward primer LDHA cDNA amplification:
cgcacgcgtaccATGGCAACTCTAAAGGATCAG

This study N/A

Reverse primer LDHA cDNA amplification:
gcgctcgagAAATTGCAGCTCCTTTTGGATC

This study N/A

Forward primer HIF1α CRISPR sgRNA:
caccgTTCTTTACTTCGCCGAGATC

This study N/A

Reverse primer HIF1α CRISPR sgRNA:
aaacGATCTCGGCGAAGTAAAGAAc

This study N/A

Forward primer GOT1 CRISPR sgRNA:
caccgAGTCTTTGCCGAGGTTCCGC

This study N/A

Reverse primer GOT1 CRISPR sgRNA:
aaacGCGGAACCTCGGCAAAGACTc

This study N/A

Forward primer LHDA CRISPR sgRNA:
caccGGCTGGGGCACGTCAGCAAG

This study N/A

Reverse primer LHDA CRISPR sgRNA:
aaacCTTGCTGACGTGCCCCAGCC

This study N/A

Forward primer HIF1α knockout validation:
TTCCATCTCGTGTTTTTCTTGTTGT

This study N/A

Reverse primer HIF1α knockout validation:
CAAAACATTGCGACCACCTTCT

This study N/A

M13 forward primer:
TGTAAAACGACGGCCAGT

This study N/A

Recombinant DNA

pMSCV-Peredox-mCherry-NLS Addgene Cat# 32385

pSpCas9(BB)-2A-Puro (PX459) V2.0 Addgene Cat# 62988

pUC57-LbNOX Addgene Cat# 75285

pLenti-HA-IRES-BSD Origene Cat# PS100104

pLenti-GFP-P2A-BSD Origene Cat# PS100103

pOTB7-GOT1 Dharmacon Clone ID:
BC000498

pDNR-LIB-LDHA Dharmacon Clone ID:
BC067223

Software and algorithms

Prism v7.0c GraphPad
Software

N/A

Chemstation Agilent N/A

Masshunter Agilent N/A

Xcalibur QualBrowser Thermo
Fisher
Scientific

N/A

Tracefinder v4.1 Thermo
Fisher
Scientific

N/A

Cell lines and cell culture

Cell lines (MCF7, female, ATCC Cat# CRL-12584, RRID:CVCL_0031;
MCF10A, female, ATCC Cat# CRL-10317, RRID:CVCL_0598; HEK-
293T, female, ATCC Cat# CRL-3216, RRID:CVCL_0063; MDA-MB-
231, female, ATCC Cat# CRM-HTB-26, RRID:CVCL_0062; BT-474,
female, ATCC Cat# HTB-20, RRID:CVCL_0179) were obtained from
the American Type Culture Collection (ATCC, Manassas, VA, USA).
All cell lines were tested mycoplasma-free and cell identity was
confirmed by short tandem repeat (STR) profiling by The Francis
Crick Institute Cell Services Science Technology Platform. Cells
(except MCF10A) were cultured in high-glucose DMEM (Gibco, Cat#
11960085) supplemented with 10% foetal calf serum (FCS), 2 mM L-
glutamine and 100 U/mL penicillin/streptomycin in a humidified
incubator at 37 °C, 5% CO2. MCF10A cells were cultured in DMEM/
F12 (Gibco, Cat# 21331046), supplemented with 5% horse serum,
2 mM L-glutamine, 20 ng/ml EGF (PreproTech), 0.5 μg/ml hydro-
cortisone, 100 ng/ml cholera toxin, 10 μg/ml insulin and
penicillin–streptomycin (Debnath et al, 2003).

Prior to experiments, cells (except MCF10A) were seeded in
glucose-free DMEM (Gibco, A1443001), supplemented with 5.5 mM
glucose, 10% dialysed FCS (MWCO 3500), 2 mM L-glutamine and
penicillin–streptomycin. MCF10A cells were seeded in DMEM/F12
(Generon Cat# L0091) supplemented with 5.5 mM glucose, 5%
dialysed horse serum (MWCO 3500), 2 mM L-glutamine, 20 ng/ml
EGF (PreproTech), 0.5 μg/ml hydrocortisone, 100 ng/ml cholera toxin,
10 μg/ml insulin and penicillin–streptomycin.

DNA plasmids and cloning

pMSCV-Peredox-mCherry-NLS (Addgene plasmid # 32385) was a
gift from Gary Yellen (Hung et al, 2011); pSpCas9(BB)-2A-Puro
(PX459) V2.0 (Addgene plasmid # 62988) was a gift from Feng
Zhang (Ran et al, 2013). Plasmids pLenti-HA-IRES-BSD
(PS100104) and pLenti-GFP-P2A-BSD (PS100103) were from
Origene. pUC57-LbNOX was a gift from Vamsi Mootha (Addgene
plasmid # 75285) and used to subclone LbNOX into the MluI and
XhoI sites of pLenti-HA-IRES-BSD. The plasmids containing the
cDNA of human GOT1 (Clone ID: BC000498) and human LDHA
(Clone ID: BC067223) were obtained from Dharmacon. The
cDNAs were amplified (GOT1 forward primer: cgcacgcgtac-
cATGGCACCTCCGTCAGTC, GOT1 reverse primer:
gcgctcgagCTGGATTTTGGTGACTGCTTC; LDHA forward pri-
mer: cgcacgcgtaccATGGCAACTCTAAAGGATCAG; LDHA
reverse primer: gcgctcgagAAATTGCAGCTCCTTTTGGATC; low-
ercase italics=Kozak sequence; lowercase bold=restriction enzyme
cleavage site; UPPERCASE=insert) and cloned into pLenti-HA-
IRES-BSD using the MluI and XhoI sites for lentivirus production.
Results from experiments where this construct was used were
compared to a control cell line transduced with virus encoding
empty pLenti-GFP-P2A-BSD vector.

Hypoxia treatments

Hypoxia treatments were performed in a Baker Ruskinn InVivo2 400
hypoxic workstation at 1% O2, 5% CO2, 37 °C and 70% humidity.
Before each experiment, the media of cells were exchanged with media
that had been pre-equilibrated at 1% O2 overnight as soon as cells
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were transferred to the hypoxia workstation. For hypoxia treatments
prior to metabolomics experiments, see ‘Stable isotope labelling and
metabolite extraction’.

Virus production and cell transduction

Retroviruses were produced in HEK-293T cells by co-transfecting
pMSCV-Peredox-mCherry-NLS and a plasmid containing the
amphotropic receptor gene (pHCMV-AmphoEnv) using FuGENE
HD Transfection Reagent (Promega). Viral supernatants were
harvested 48 h and 72 h after transfection, filtered and supplemen-
ted with 4 μg/mL polybrene. Viral supernatants were added to
target cells for 6–8 h and cells were allowed to recover for 24 h prior
to selection with 1 μg/mL puromycin for at least 5 days.

Lentiviral production and cell transduction were performed as
for retroviruses, except that HEK-293T cells were transfected with
pLenti-based vectors together with pMD2.G (VSV-G), pMDLg/
pRRE (GAG/POL) and pRSV-Rev. Cells were selected with 5 μg/mL
blasticidin for at least 5 days.

Generation of knockout cell lines using CRISPR/Cas9

CRISPR-Cas9 expression constructs were designed and cloned into
pSpCas9(BB)-2A-Puro as previously described (Ran et al, 2013)
with minor modifications detailed below. CRISPR guide sequences
(sgRNAs) were designed using the MIT CRISPR Design Tool
(crispr.mit.edu): (HIF1α_forward: caccgTTCTTTACTTCGCCGA-
GATC, HIF1α _reverse: aaacGATCTCGGCGAAGTAAAGAAc,
GOT1_forward: caccgAGTCTTTGCCGAGGTTCCGC, GOT1_re-
verse: aaacGCGGAACCTCGGCAAAGACTc; LDHA_forward:
caccGGCTGGGGCACGTCAGCAAG, LDHA_reverse:
aaacCTTGCTGACGTGCCCCAGCC). Corresponding guide oligo-
nucleotides were mixed, phosphorylated using T4 Polynucleotide
Kinase (New England Biolabs) and annealed in a thermocycler
using the following programme: 37 °C for 30 min, 95 °C for 5 min,
decrease temperature to 25 °C at 0.1 °C/min. The empty Cas9
expression plasmid was linearised using BbsI, ligated to annealed
oligonucleotides and transformed into DH5α E. coli. Colonies were
tested for successful insertion by colony PCR using the forward
primer AATTTCTTGGGTAGTTTGCAGTTTT and the reverse
guide oligonucleotide, with an expected band at 150 bp.

MCF7 cells (70–90% confluency) were transfected with the
CRISPR-Cas9 expression constructs using FuGENE HD Transfec-
tion Reagent (Promega), according to the manufacturer’s instruc-
tions. The day after transfection 1 μg/mL puromycin was added to
the medium for 72 h before cells were seeded at limiting dilutions to
obtain monoclonal colonies (500–1000 cells per 15-cm cell culture
dish). After 2 weeks, colonies (>100 cells) were isolated and
expanded until they could be tested for loss of the target protein by
western blot.

Validation of HIF1α knockout in MCF7 cells

To verify the sequence of mutated HIF1α alleled in HIF1α-mutant
MCF7 cells, genomic DNA was extracted using the NucleoSpin
Blood kit (Macherey-Nagel), according to the manufacturer’s
instructions. Exon 2 of the HIF1α gene, which had been targeted
using CRISPR/Cas9, was amplified (forward primer: TTCCATCTCG
TGTTTTTCTTGTTGT, reverse primer: CAAAACATTGCGA

CCACCTTCT) and PCR products were resolved on a 2% agarose
gel. Bands around the expected size (317 bp) were purified and ligated
into the pCR4Blunt-TOPO vector using the Zero Blunt TOPO PCR
Kit for Sequencing (Thermo Fisher Scientific). Ligation products were
transformed into One Shot TOP10 Chemically Competent E. coli cells
(Thermo Fisher Scientific). E. coli cells were plates on LB plates
containing kanamycin with X-gal (20 μl per plate, 8% w/v in
dimethylformamide) and plasmid DNA was amplified and sequenced
from 10 blue E. coli colonies (M13 forward primer: TGTAAAACG
ACGGCCAGT).

Cell mass accumulation assay (crystal violet staining)

Cells were seeded in 24-well plates (50,000 cells/well), and after the
indicated treatments, cells were washed twice with PBS, fixed with
4% PFA, pH 7.4 (15 min, room temperature), washed with PBS and
stained with 0.1% crystal violet in 20% methanol. After staining,
cells were washed twice with distilled water (10 min each) and
dried. After re-solubilisation in 10% acetic acid, absorbance at
595 nm was measured using a Tecan infinite M1000 Pro plate
reader.

Continuous cell proliferation assay

Cells were seeded the day before the experiment in 96-well plates
(black, transparent bottom, Corning, #3606; 9000–12,000 cells/
well). After the addition of treatments and/or changing the oxygen
concentration in the incubator to 1% O2, cell confluence was
monitored using an IncuCyte S3 (Essen Bioscience) by taking
phase-contrast images using a 10× objective.

End-point cell proliferation assay

Cells were seeded the day before the experiment in 96-well plates
(black, transparent bottom, Corning, #3606; 9000–12,000 cells/
well). 24 h after the addition of treatments and/or changing the
oxygen concentration in the incubator to 1% O2, cells were fixed by
adding an equal volume (100 μl) of 8% paraformaldehyde, pH 7.4
and incubated for 10 min at room temperature. Cells were washed
with PBS and stored in PBS at 4 °C until further processing. Cells
were stained with DAPI (4’,6-diamidino-2-phenylindole, 1 μg/ml)
for 1 h at room temperature, washed twice with PBS and nuclei
counting was performed using an Acumen Explorer eX3 laser
scanning microplate cytometer (TTP Labtech).

Cell lysis and western blotting

Cells were washed twice with PBS and lysed in Laemmli buffer (50mM
Tris-HCl pH 6.8, 1% SDS, 10% glycerol) and stored at −20 °C until
further use. Lysed samples were sonicated (2 × 10 s), protein concentra-
tion was measured, and samples were boiled at 95 °C for 5min after the
addition of 5% β-mercaptoethanol and bromophenol blue. Samples
(20 μg of protein) were resolved by SDS-PAGE and proteins were
transferred to nitrocellulose membranes by electroblotting. Membranes
were blocked with 5% milk in TBS-T (50mM Tris-HCl pH 7.5, 150mM
NaCl, 0.05% Tween-20) for 1 h at room temperature and incubated with
the primary antibody overnight at 4 °C. Membranes were washed three
times with TBS-T and incubated with secondary antibody conjugated to
horseradish peroxidase (1:2000) in 5% milk TBS-T for 1 h at room
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temperature. Antibodies were visualised by chemiluminescence and
imaged using medical X-ray film developed in an AGFA Curix 60
processor (Figs. 2A, 3A and 5A; S2A) or imaged using the Amersham
Imagequant 600 RGB (Figs. 3F and 6B–D; S4E and S6D-F). Primary
antibodies used: mouse anti-β-actin antibody (Sigma-Aldrich Cat#
A2228, RRID:AB_476697), 1:2000 in 5% BSA/TBS-T; rabbit anti-
GAPDH (Cell Signaling Technology Cat# 2118, RRID:AB_561053),
1:1000 in 5% BSA /TBS-T; rabbit anti-GLUT1 (Millipore Cat# 07-1401,
RRID:AB_1587074), 1:5000 in 5% milk /TBS-T; rabbit anti-GOT1
(Proteintech Group Cat# 14886-1-AP, RRID:AB_2113630), 1:250 in 5%
BSA /TBS-T; rabbit anti-HA (Clone C29F4, Cell Signaling Technology
Cat# 3724, RRID:AB_1549585), 1:1000 in 5% BSA /TBS-T; mouse anti-
HIF1α (Clone 54, BD Biosciences Cat# 610958, RRID:AB_398271),
1:250 in 5% milk/TBS-T; rabbit anti-HIF-2α (Abcam Cat# ab199,
RRID:AB_302739), 1:1000 in 5% BSA /TBS-T; rabbit anti-HK2 (Clone
C64G5, Cell Signaling Technology Cat# 2867, RRID:AB_2232946),
1:1000 in 5% BSA /TBS-T; rabbit anti-Hydroxy-HIF1α Pro564 (Clone
D43B5, Cell Signaling Technology Cat# 3434S, RRID:AB_2116958),
1:1000 in 5% BSA /TBS-T; rabbit anti-LDHA (Cell Signaling Technology
Cat# 2012S, RRID:AB_2137173), 1:1000 in 5% BSA /TBS-T; rabbit anti-
MDH1 (Atlas Antibodies Cat# HPA027296, RRID:AB_10611118), 1:500
in 5% BSA /TBS-T; rabbit anti-PDH2 (clone D31E11, Cell Signaling
Technology Cat# 4835S, RRID:AB_10561316), 1:500 in 5% BSA /TBS-T;
rabbit anti-PDHE-1α pSer293 (Abcam Cat# ab92696, RRI-
D:AB_10711672), 1:500 in 5% BSA /TBS-T; rabbit anti-PDK1 (Clone
C47H1, Cell Signaling Technology Cat# 3820, RRID:AB_1904078),
1:100 in 5% BSA /TBS-T; rabbit anti-PKM2 (Clone D78A4, Cell
Signaling Technology Cat# 4053, RRID:AB_1904096), 1:1000 in 5% BSA
/TBS-T; mouse anti-Tubulin (Clone DM1A, Sigma-Aldrich Cat# T9026,
RRID:AB_477593), 1:2000 in 5% milk/TBS-T; Secondary antibodies
(Millipore): Goat anti-rabbit IgG antibody conjugated to HRP, goat anti-
mouse IgG antibody conjugated to HRP.

Transcriptional profiling by RNA sequencing

Cells were seeded 48 h before harvest (1.5 × 106 cells per 6-cm plate)
and after indicated treatments (3 h or 24 h at 1% O2, or medium
change 3 h before harvest in control cells), cells were washed three
times with PBS and lysed in 1 ml TRIzol Reagent (Thermo Fisher
Scientific). Chloroform (0.2 ml, Acros Organics) was added to
lysates and after shaking for 5 s samples were centrifuged for
18 min at 10,000 × g. The upper, aqueous phase was mixed with an
equal volume of 100% ethanol (500 μl) and RNA was purified using
the RNeasy Kit (Qiagen), according to the manufacturer’s
instructions. DNase treatment was omitted since initial tests
showed no contamination by genomic DNA. After RNA quanti-
fication and quality control (NanoDrop, Qubit and Agilent 2100
Bioanalyzer), libraries were prepared using the TruSeq RNA
Library Prep Kit v2 (Illumina) or KAPA mRNA HyperPrep Kit
(Kapa Biosystems). mRNA sequencing was performed on a
Illumina HiSeq 2500 instrument (paired-end or single-end reads,
25 million reads total).

ATP quantification assay

Cells were seeded in 96-well plates (15,000 cells per) 24–48 h before
measurement. After treatment with hypoxia for the indicated
lengths of time, or the indicated compounds for 3 h, ATP-
dependent luciferase luminescence was measured using the

CellTiterGlo kit (Promega, Cat# G7570) according to the
manufacturer’s instructions. Luminescence counts were normalised
to cell number.

Glucose uptake

Cells were seeded in 96-well plates (15,000 cells per well) 48 h prior
to measurement. 2DG uptake was measured using the Glucose
Uptake-Glo Assay kit (Promega) after indicated hypoxia treatments
(or medium change 3 h before the experiment for control cells) and
incubation with 1 mM 2DG for 10 min.

For measurements under hypoxic conditions, 2DG was added to
cells in the hypoxia workstation, the plates were sealed with several
layers of parafilm, transferred to ambient atmosphere and
incubated for 10 min. After adding stop and neutralisation
reagents, samples were transferred to a white 96-well plate and
incubated for 1 h before luminescence was measured using a Tecan
infinite M1000 Pro plate reader. Luminescence counts were
normalised to cell number. Wells containing cells without 2DG
as well as cells treated with the GLUT1 inhibitor WZB-115 (50 μM
for 15 min, #400036, Merck) were used as negative controls.

Mitochondrial oxygen consumption

Cells were seeded 48 h before the experiment and, after the
indicated treatments, cells were trypsinised, centrifuged (1500 rpm,
3 min, room temperature) and resuspended at 5–7.5 × 105 cells/mL.
Hypoxia-treated cells were processed in the hypoxic workstation
and resuspended in medium pre-equilibrated in a hypoxic atmo-
sphere (as in Hypoxia treatments). Respiration was measured using
an O2k oxygraph (Oroboros instruments) as previously described
(Gnaiger, 2008; Gnaiger, 2012) in sealed chambers to prevent
reoxygenation of hypoxia-treated cells. Residual oxygen consump-
tion (ROX) was measured after the addition of the complex III
inhibitor antimycin A (2.5 μM) and was subtracted from basal
oxygen consumption. Oxygen consumption was corrected for cell
number.

Imaging of cytoplasmic NADH with Peredox

MCF7 cells stably expressing Peredox (Hung et al, 2011) were
seeded in glass-bottom 24-well plates the day before the experiment
(100,000 cells/well). One hour before the experiment, the medium
was replaced with imaging buffer (10 mM HEPES pH 7.4, 140 mM
NaCl, 1 mM CaCl2, 1 mM MgCl2, 5.4 mM KCl) containing 5.5 mM
glucose and 2 mM L-glutamine to acquire baseline images. After
image acquisition, cells were incubated with imaging buffer
containing 10 mM lactate or 10 mM pyruvate for 5 min before
imaging. Cells were kept at 37 °C throughout the experiment and
washed with warm imaging buffer between treatments.

Fluorescence images were acquired using an AxioObserver Z1
microscope (Zeiss) and Plan-Apochromat 20×/0.8 M27 objective
(picture size 512 × 512 pixels, 0.6× zoom, 600.3-μm pinhole.
T-sapphire was excited at 800 nm (10% laser power, gain 800)
using a Mai Tai DeepSee laser (Spectra-Physics), and emission was
recorded at 525 nm. Images were processed using Fiji software by
converting pictures from vendor format to 8-bit tiff format,
thresholding and identifying nuclei using the ‘Analyse particle’
function. Mean intensity per particle was used to calculate changes

Fiona Grimm et al The EMBO Journal

© The Author(s) The EMBO Journal 19



of T-sapphire fluorescence in individual nuclei from baseline to
treatment with lactate or pyruvate.

Stable isotope labelling and metabolite extraction

Metabolomics sample preparation, GC-MS data processing and
analysis were performed as described in (Grimm et al, 2016). In
brief, cells were seeded in 6-well plates (0.35–0.5 × 106 cells per well,
4–5 replicates per condition) 24–48 h before harvest. One hour
before the start of the experiment the medium was refreshed and
was again changed to medium containing the isotopically labelled
nutrient (5.5 mM [U-13C]-glucose, 5.5 mM [4-2H]-glucose or 2 mM
[U-13C]-glutamine) at the start of the experiment. Cells were
washed twice with PBS, immediately quenched with liquid nitrogen
and kept on dry ice until extraction. Metabolites were extracted by
scraping cells in 500 μl methanol, followed by washing the plate
with 250 μl methanol and 250 μl water containing the polar internal
standard scyllo-inositol (1 nmol per sample). Fractions were
combined with 250 μl chloroform containing the apolar internal
standard [1-13C]-lauric acid (C12:0, 40 nmol per sample). Extracts
were vortexed, sonicated for 3 × 8 min and incubated at 4 °C
overnight. Precipitate was removed by centrifugation (10 min,
18,000×g, 4 °C) and phases were separated by adding 500 μl water
(resulting in 1:3:3 (v/v) chloroform/methanol/water) and centrifu-
gation (5 min, 18,000×g, 4 °C). In parallel, cells from three wells per
experimental condition were trypsinised and counted using a
Nexcelcom Bioscience Cellometer Auto T4 for subsequent normal-
isation of data to cell number.

The protocol used to extract NAD+ and NADH was adapted
from (Lewis et al, 2014). Briefly, cells were scraped in 250 μl
acetonitrile:methanol:20 mM ammonium bicarbonate pH 9.0
(2:2:1 v/v) containing 5 μM 15N13C-valine as internal standard,
followed by sonication for 3 × 8 min and incubation at 4 °C for 1 h.
Precipitate was removed by centrifugation, samples were trans-
ferred to glass vials, and immediately analysed by LC-MS.

Gas chromatography-mass spectrometry (GC-MS)

For GC-MS analysis of intracellular metabolites, aqueous phases of
cell extracts were transferred to glass vial inserts. For analysis of
metabolites in media, 5 μl of media samples were transferred to
glass vial inserts and spiked with 1 nmol scyllo-inositol. Samples
were dried in a centrifugal evaporator and washed twice with 40 μl
methanol followed by drying. Samples were methoxymated (20 μl
of 20 mg/mL methoxyamine in pyridine, at room temperature
overnight) and derivatised with 20 μl of N,O-bis(trimetylsilyl)
trifluoroacetamide (BSTFA)+ 1% trimethylchlorosilane (TMCS)
for at least 1 h. GC-MS analysis of metabolites was performed using
Agilent 7890B-5977A and 7890A-5975C systems in splitless
injection mode (1 μl of sample, injection temperature 270 °C) with
a DB-5MS DuraGuard column, helium as carrier gas and electron
impact ionisation. Oven temperature was initially 70 °C (2 min),
followed by a temperature increase to 295 °C at 12.5 °C/min and
subsequently to 320 °C at 25 °C/min (held for 3 min). Chemstation
and MassHunter Workstation software (B.06.00 SP01, Agilent
Technologies) was used for metabolite identification and quanti-
fication by comparison to the retention times, mass spectra, and
responses of known amounts of authentic standards. Internal
standards were used to correct for sample losses during phase

separation and metabolite abundances were normalised to cell
number. See Appendix Table S1 for fragment ions used for
metabolite quantification by GC-MS.

Liquid chromatography-mass spectrometry (LC-MS)

Aqueous phases were transferred to glass vial inserts and dried in a
centrifugal evaporator. Dried metabolites were resuspended in
100 μl methanol:water (1:1 v/v). The LC-MS method was adapted
from (Zhang et al, 2012). LC-MS analysis was performed using a
Dionex UltiMate LC system (Thermo Scientific) with a ZIC-
pHILIC column (150 mm × 4.6 mm, 5-μm particle, Merck
Sequant). A 15 min elution gradient of 80% Solvent A (20 mM
ammonium carbonate in Optima HPLC grade water, Sigma-
Aldrich) to 20% Solvent B (acetonitrile Optima HPLC grade,
Sigma-Aldrich) was used, followed by a 5 min wash of 95:5 Solvent
A to Solvent B and 5 min re-equilibration. Other parameters were
as follows: flow rate, 300 μL/min; column temperature, 25 °C;
injection volume, 10 μL; autosampler temperature, 4 °C.

MS was performed in positive/negative polarity switching mode
using a Q Exactive Orbitrap instrument (Thermo Scientific) with a
HESI II (Heated electrospray ionisation) probe. MS parameters were
as follows: spray voltage 3.5 kV for positive mode and 3.2 kV for
negative mode; probe temperature, 320 °C; sheath gas, 30 arbitrary
units; auxiliary gas, 5 arbitrary units; full scan range: 70–1050m/z with
settings of AGC target and resolution as ‘Balanced’ and ‘High’ (3 × 106

and 70,000), respectively. Data were recorded using Xcalibur
3.0.63 software (Thermo Scientific). Mass calibration was performed
for both ESI polarities before, and lock-mass correction was applied to
each analytical run using ubiquitous low-mass contaminants to
enhance calibration stability. Pooled biological quality control (PBQC)
samples were prepared by pooling equal volumes of each sample, and
were analysed throughout the run to provide a measurement of the
stability and performance of the instrument. PBQC samples were also
analysed in parallel reaction monitoring (PRM) mode to confirm the
identification of metabolites. PRM acquisition parameters: resolution
17,500, auto gain control target 2 × 105, maximum isolation time
100ms, isolation window m/z 0.4; collision energies were set
individually in HCD (high-energy collisional dissociation) mode.
Qualitative and quantitative analyses were performed using Xcalibur
Qual Browser and Tracefinder 4.1 software (Thermo Scientific)
according to the manufacturer’s workflows. See Appendix Table S2 for
fragment ions used for metabolite quantification by LC-MS.

Quantification and statistical analyses

Statistical analyses were performed using R (R Development Core
Team, 2016) or GraphPad Prism v7.0c. Comparisons were made
using either two-tailed, unpaired t tests, one-way or two-way
ANOVA with Dunnett’s correction, Sidak’s correction or Tukey’s
correction for multiple comparisons, as indicated in the respective
figure legends. All error bars shown in graphs and measurement
error in the text (±) represent standard deviation. Statistical errors
were propagated where indicated in the figure legends. Significance
levels are defined as follows: *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001. Curve-fitting was performed using GraphPad
Prism v7.0c using a one-phase decay model with standard
parameters. Western blot images were quantified using Fiji ImageJ
v1.45 software.
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GC-MS metabolomics data were analysed using Agilent
Chemstation and MassHunter software, as well as in-house R
scripts. Qualitative and quantitative analysis of LC-MS metabo-
lomics data was performed using Xcalibur QualBrowser and
Tracefinder 4.1 software (Thermo Fisher Scientific). Isotopic
labelling data were corrected for natural isotope abundance using
a script provided by Sean O’Callaghan (Bio21 Institute, The
University of Melbourne). Where applicable, stripping correction
was applied manually. To plot heatmaps, data were expressed as
log2-fold change relative to the mean of the control condition,
averaged across all replicates per sample group and subsequently
plotted using the RColorBewer v1.1-2 (Neuwirth, 2014) and
pheatmap R packages v1.0.8 (Kolde, 2015). Breakpoints for all
heatmaps were specified manually to <floor > , −1.5, −1, −0.75,
−0.5, −0.25, 0.25, 0.5, 0.75, 1, 1.5, <ceiling> to enable comparisons
across graphs. Z-scores were calculated by subtracting the mean of
control condition from the measured value and dividing by the
standard deviation of the control condition. All isotope labelling
data are expressed as fraction of labelled molecules per metabolite,
unless specified otherwise in the figure legends.

Analysis of RNA sequencing data was performed in the R
environment and controlled by a GNU make pipeline. Transcript
reads were aligned to the Ensembl GRCh37 genome using Tophat2
v2.1.1 (Kim et al, 2013). Aligned transcript reads were filtered for genes
with at least 10 reads per gene in 5 or more samples. Between-sample
normalisation was performed using the RUVSeq R package v1.10.0
(Risso et al, 2014) and differential expression between sample groups
was evaluated using the DESeq2 package v1.16.1 (Love et al, 2014).
The ’exactTest’ function of the edgeR package v3.18.1 (Robinson et al,
2010) was used to calculate false discovery rates (FDR) and a cut-off of
1% was applied. Ensembl IDs were converted to gene names and
Entrez IDs using the AnnotationDBI v1.40.0 (Pagès et al, 2018),
EnsDb.Hsapiens.v79 v2.99.0, ensembldb v2.2.2 (Rainer, 2018) and
org.Hs.eg.db v3.5.0 (Carlson, 2018) packages.

No blinding, sample size estimation, determination of data
normality or randomisation were applied except for metabolomics
sample runs, where samples were analysed in a random order,
determined using either the RAND function in Microsoft Excel or
within the manufacturer’s data acquisition software.

Data availability

The following dataset produced in this study is available: RNA-Seq
data: Gene Expression Omnibus GSE122059.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44318-024-00065-w.
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