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Abstract
We prove lower bounds on the error incurred when approximating any oscillating function using

iecewise polynomial spaces. The estimates are explicit in the polynomial degree and have optimal
ependence on the meshwidth and frequency when the polynomial degree is fixed. These lower bounds,
or example, apply when approximating solutions to Helmholtz plane wave scattering problem.

2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this article, we study the error incurred when approximating highly oscillatory functions
sing piecewise polynomial spaces. This type of space is standard when using both finite ele-
ent and boundary element methods to numerically approximate solutions to partial differential

quations (PDE). We are motivated by the application of these methods to solve high frequency
roblems. For example, to solve the Helmholtz sound-soft or sound-hard scattering problem:

(−∆ − k2)u = f in Rd
\ Ω , u|∂Ω = g, (∂r − ik)u = or→∞(r

1−d
2 ),

(−∆ − k2)u = f in Rd
\ Ω , ∂νu|∂Ω = g, (∂r − ik)u = or→∞(r

1−d
2 ),

(1.1)

here Ω ⋐ Rd is a bounded domain with connected complement or the variable wave speed
elmholtz problem:

− ∂x j (a
i j∂xi u) − k2c−2(x)u = f in Rd , (∂r − ik)u = or→∞(r

1−d
2 ), (1.2)
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where ai j (x) ≡ δi j and c(x) ≡ 1 for |x | ≫ 1. In both cases the solution, u, with data coming
rom a scattering problem will oscillate at frequency k in a sense to be made precise below.
ince numerical methods such as the Galerkin method seek to approximate u in some finite
imensional space, Vk , it is important to understand what the best possible approximation error
or such oscillating functions is. Indeed, a numerical method for a high frequency PDE is
requency-robust quasi-optimal if the error in the method is controlled uniformly by the best
pproximation error in the relevant finite dimensional space; i.e. if the numerical solution, unum ,
atisfies

∥u − unum∥ ≤ Cqo inf
v∈Vk

∥u − v∥

here u is the exact solution and Cqo > 0 is a constant that is uniform over k > 1.
here has been a great deal of effort in understanding when numerical methods based on
iecewise polynomial spaces are frequency-robust quasi-optimal (see e.g. [4,7,9,11–13,15–17]
nd references there-in).

Upper bounds on the error for piecewise polynomial approximations are completely standard
n the literature (see e.g. [5, Section 3.1] [3, Chapter 4] [19, Chapter 4]). In this article, we prove
omplementary, optimal lower bounds on the error when approximating any oscillatory function
y piecewise polynomials and hence, on the absolute error for many frequency-robust quasi-
ptimal methods (see Section 1.4 for more details). Furthermore, in forthcoming work [8],
e will use these estimates to show that the standard second-kind boundary element methods

or trapping Dirichlet problems and, even non-trapping, Neumann problems suffer from the
ollution effect i.e. that, when the polynomial degree is fixed, the mesh-width, h, must satisfy

hk = o(1) in order to maintain accuracy as the frequency increases.
We now state a consequence of the main theorem of this paper (Theorem 1.25) informally.

heorem 1.1. Let 0 < ΞL < ΞH . Then there are k0 > 0 and c > 0 such that for all
p ∈ 0, 1, . . . , k > k p+1

0 , all u ∈ L2(Rd ) oscillating with frequency between ΞLk and ΞH k, all
0 < h < 1, and all piecewise polynomials, vh , of degree p on a regular mesh with scale h(chk

p2

)p+1
∥u∥L2(Rd ) ≤ ∥u − vh∥L2(Rd ). (1.3)

Remark 1.2. The precise definition of a piecewise polynomial on a regular mesh is given in
Section 1.1 and of the concept of oscillating with a certain frequency in Section 1.3.

Remark 1.3. Note that we have used a mesh on all of Rd to simplify the statement of the
theorem. Such a mesh can easily be defined, for example, by constructing a mesh on [0, 1]d

and tiling Rd with this mesh.

A standard assumption in numerical analysis of high-frequency Helmholtz problems is that
the meshwidth h must satisfy hk ≲ 1 (see e.g. [12]). Here, we use the notation a ≲ b
if a ≤ Cb for some constant independent of k. This can be justified heuristically using
the Shannon–Nyquist–Whittaker sampling theorem. However, this theorem holds only in one
dimension and for functions with compactly-supported Fourier transform. Theorem 1.1, or more
precisely, Theorem 1.25, shows that, at least when p is bounded independent of k, hk ≪ 1 is
required to approximate a function oscillating with frequency ∼ k (i.e. ck ≤ frequency ≤ Ck)
accurately using piecewise polynomials. In other words, for piecewise polynomials ∼ kd
degrees of freedom are required to approximate such a function and hence, no method based on
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polynomials of fixed degree in dimension d can be accurate without at least this many degrees
of freedom.

Despite the fact that they have many natural applications in numerical analysis, lower
estimates on the approximation error for oscillatory functions are absent in the literature.
Indeed, the only lower estimates on approximation by finite dimensional spaces of which the
author is aware concern the Kolmogorov n-width (see [14] and references there-in). These
stimates assert the existence e.g. of some H p+1 function, u, not necessarily oscillating at any
articular frequency which achieves (1.3). This existence result says nothing about the structure
f u nor how many such u there are (see Section 1.7 for a more detailed discussion). Because

of this, it is not useful for giving lower estimates on the approximation error in practice for
many numerical problems.

Remark 1.4. The reader may be aware of the lower bound on polynomial approximation
provided by Bramble–Hilbert [2]

|u|H p+1(Ω) ≤ inf
v∈Pp

∥u − v∥H p+1(Ω),

where Pp denotes the space of polynomials of degree p and |u|H p+1(Ω) denotes the (p + 1)st

Sobolev seminorm. However, this estimate is not useful in practice since it involves an
equal number of derivatives on the left-hand and right-hand sides. Moreover, this estimate is
essentially trivial since |v|H p+1 = 0 and |u|H p+1 ≤ ∥u∥H p+1 .

In fact, one requires both control from below on (p + 1)th order derivatives and from
bove on high derivatives of u to obtain an estimate like (1.3). For instance, consider u(x) :=

1 + ε p+1 sin(ε−1kx) on [0, 1], with the standard mesh by intervals ( j/N , ( j + 1)/N ) j =

, . . . , N − 1. Then, with Pp,N the piecewise polynomials of degree p, on this mesh, we have

inf
v∈P0,N

∥u − v∥L2(0,1) ≤ Cε p+1
≪ (k/N )p+1

∥u∥L2(0,1), inf
ε>0

|u|H p+1(0,1) ≳ k p+1

provided that ε ≪ k/N .

Proving Theorem 1.1 involves two substantial new difficulties relative to existing results.
First, for a given u, unlike for the corresponding upper bounds, it is not possible to prove (1.3)
by construction of an interpolating polynomial. One must instead consider all possible piece-
wise polynomial and all possible regular meshes simultaneously and hence the proof must be
based on the inherent structure of piecewise polynomial spaces. Second, since we want the
estimate (1.3) for all possible oscillating functions, it is not sufficient to construct a single
bad oscillating function and again one must use instead the structure inherent in the space of
oscillating functions.

1.1. Definitions of meshes and polynomial spaces

We work with piecewise polynomial finite element spaces. In order to describe these spaces,
we first introduce regular meshes of an (open) Riemannian manifold (M, g) of dimension d,

ossibly with Lipschitz boundary. In practice, M is usually either a domain O in Rn (with
d = n) and the standard Euclidean metric or a hypersurface Γ embedded in Rn (with d = n−1)
ndowed with the metric inherited from Rn . In order to place these two cases in a uniform

ramework, we use the language of Riemannian manifolds.

3
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Definition 1.5 (Meshes for M). Let S ⋐ Rd be open with Lipschitz boundary. A mesh for M
ith reference element S, T , is a locally finite collection of open subsets of M such that the

ollowing holds:

(1) The open sets are disjoint in the sense that if T1, T2 ∈ T and T1 ∩ T2 ̸= ∅, then T1 = T2.
(2) T covers M in the sense that M =

⋃
T ∈T T .

(3) For every T ∈ T , there is p ≥ 1 and a bijection γT : S → T such that

sup
T ∈T

sup
x∈T

sup
|α|≤p

∥∂α
x γT (x)∥ + ∥(DγT )−1(x)∥ < ∞,

where DγT denotes the Jacobian of γT .

e say that T is a mesh for M if there is S ⋐ Rd such that T is a mesh for M with reference
element S. For R > 0 and p ∈ {1, . . . } we say that T is (p, R) regular if there are {γT }T ∈T
such that

sup
T ∈T

sup
|α|≤p

sup
x∈T

1
|α|

((
∥∂α

x γT (x)∥
) 1

|α| + ∥(DγT )−1(x)∥
)

≤ 1 + R|α|
−1. (1.4)

e call a collection {γT }T ∈T satisfying (1.4) a (p, R)-regular set of coordinates for T .

emark 1.6. It is easy to see that for any p ≥ 1, a (p, R) regular mesh is shape regular with
shape regularity constant ≲ R2. Indeed,

diam
(
γT (S)

)
≤ CS sup

x∈T
sup
|α|=1

∥∂α
x γT (x)∥ ≤ CS R,

and, if B(x0, rS ) ⊂ S, then B(γT (x0), R−1rS ) ⊂ γT (S).

Definition 1.7 (Broken Sobolev Spaces). For a mesh T , we define the broken Space, H ℓ
T (M) ⊂

L2(M) to be the set of u ∈ L2(M) such that u|T ∈ H ℓ(T ) for all T ∈ T and endow it with
he norm

∥u∥
2
Hℓ
T (M)

:= ∥u∥
2
L2(M) +

∑
T ∈T

∥u|T ∥
2
Hℓ(T ).

emark 1.8. Observe that if u ∈ H ℓ(M), then ∥u∥Hℓ
T (M) = ∥u∥Hℓ(M) for any mesh T .

We introduce the notion of (p, R) regularity in (1.4) because we are interested in uniform
stimates as the size of a mesh element decreases. In order to do this, we need to assume that
s the mesh elements decrease in size, their behavior does not become too wild. This will be
ncoded using (p, R) regularity.

Below, we will actually work with families of meshes at decreasing scale. To do this, we
ake the following definition.

efinition 1.9 (Scales of Meshes for M). Let p ∈ {1, . . . } ∪ {∞} and S ⋐ Rd open with
ipschitz boundary. A p-scale of meshes for M with reference element S is a set I ⊂ (0, 1)
ith 0 ∈ I and a collection of meshes for M , {Th}h∈I , such that Th is a mesh for M with

reference element hS and there is R > 0 such that for all h ∈ I , Th is (p, R) regular.
We say that M := (I, {Th}h∈I ) is a p-scale of meshes for M if there is S as above such

hat M is a p-scale of meshes for M with reference element S. We say that M is a scale of
eshes for M if there is p such that M is a p-scale of meshes for M .
4
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The mesh, by itself, is not sufficient to define piecewise polynomial spaces. We need, in
ddition, a choice of maps γT .

efinition 1.10 (Coordinates for a Scale of Meshes). Let M = (I, {Th}h∈I )h∈I be a p-scale of
eshes for M , we call a collection {γT }T ∈Th ,h∈I a set of coordinates for M if there is R > 0

such that for all h ∈ I , k ∈ (0, ∞), {γT }T ∈Th is a (p, R)-regular set of coordinates for Th .

emark 1.11. Although in practice, the coordinate mappings γT are usually either affine or
soparametric (i.e. mappings whose coordinate functions are, themselves polynomials of some
xed degree, in many theoretical considerations one assumes, for example, that the boundary of
domain is perfectly resolved. Since this cannot be done with affine or isoparametric mappings,
e retain the flexibility to have more general coordinates.

emark 1.12. In order that an isoparametric mapping of some fixed degree p be a set of
oordinates for a scale of meshes it is necessary only that the coefficients of the polynomials
nvolved be uniformly bounded as h → 0 and that the inverse of the Jacobian of the mapping
e uniformly bounded above as h → 0.

We next define spaces of piecewise polynomials on a scale of meshes. We emphasize again
hat this definition depends both on the mesh and on the coordinates for the mesh.

efinition 1.13 (Piecewise Polynomial Spaces). Let M := (I, {Th}h∈I ) be a scale of meshes
or M and C := {γT }T ∈Th ,h∈I a set of coordinates for M. Let S be the reference element for

, p ∈ {0, 1, . . . }, and m ≥ 0. For h ∈ I , we define the polynomial approximation space of
egree p by

S p,m
M,C,h := {u ∈ L2(M) : u ◦ γT ∈ Pp|hS} ∩ H m(M),

here Pp denotes the space of polynomials of degree p on Rd . Let P p,m
Th ,ℓ : H ℓ

Th
(M) → S p,m

M,C,h
enote the broken H ℓ

k,Th
(M) orthogonal projection onto S p,m

M,C,h ; i.e. the orthogonal projector
with respect to any inner product whose norm is equivalent to

∥u∥
2
Hℓ

k,Th
(M)

:= ∥u∥
2
L2(M) +

∑
T ∈Th

⟨k⟩
−2ℓ

∥u∥
2
Hℓ(T ), ⟨k⟩ := (1 + k2)1/2.

Observe that, for some combinations of m and p, S p,m
M,C,h may consist only of global poly-

nomials of degree p. However, it is useful to consider the conforming spaces of polynomials
when trying to understand the ‘frequency-k’ part of the error. See Theorems 1.20 and 1.26.
Although analogous statements hold in the broken spaces, these statements are weaker than the
ones given; in particular, the dual space for H ℓ

k,T requires L2-type regularity at the interfaces
between mesh elements and so does not measure only the frequency ∼ k parts of a function.
n practice, one typically uses piecewise polynomials which are at most in H 1 but, because it
oes not complicate the analysis, we retain the flexibility to take m > 1.

emark 1.14. Notice that when u ∈ H ℓ(M),

∥u∥
2
Hℓ

k,Th
(M)

= ∥u∥
2
Hℓ

k (M)
:= ∥u∥

2
L2(M) + ⟨k⟩

−2ℓ
∥u∥

2
Hℓ(M).

emark 1.15. It is more standard to work with a fixed reference element, S, rather than
he shrinking element hS. However, the latter will be more convenient here and one can
5
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translate between the methods by pre-composing each of our coordinate γT with the scaling
ap sh : S → hS, sh(x) = hx . Defining meshes as in Definitions 1.9 and 1.10 allows us to

guarantee that certain estimates (e.g the Poincaré–Wirtinger inequality) can be made uniform as
h → 0. The assumptions needed to guarantee these uniform estimates could instead be encoded
directly in the derivatives of coordinate maps γ̃T : S → M , but the necessary assumptions on
the maps from a fixed domain to a small (h-size) domain would be more complicated than
those we use (from a small domain to a small domain).

1.2. Lower bounds for approximations on Rd

Although we give applications to meshes on manifolds below, our results are simplest to
understand when approximating functions on Rd and we state them in this case first. For
u ∈ L2(Rd ), we let û denote its Fourier transform.

Theorem 1.16. Let r ∈ {0, 1, . . . , } ∪ {∞}, M = (I, {Th}h) a 2(r + 1)-scale of meshes for
Rd , C a set of coordinates for M, and 0 < ΞL < ΞH . Then there are c > 0 and k0 > 0 such
that for all 0 ≤ p ≤ r , 0 ≤ ℓ ≤ m ≤ p + 1,all k > k0cp, all u ∈ L2(Rd ) satisfying

supp û ⊂ {ξ ∈ Rd
: ΞLk ≤ |ξ |}, ∥u∥H2(p+1)(Rd ) ≤ ⟨ΞH k + p + 1⟩

2(p+1)
∥u∥L2(Rd ),

(1.5)

all h ∈ I with chk/p2
≤ 1, and all 0 ≤ m ′, m we have

cp
(hk

p2

)p+1−m′

∥u∥L2(Rd ) ≤ ∥(I − P p,m
Th ,ℓ)u∥Hm′

k,Th
(Rd ). (1.6)

urthermore, if p = 0, then k0 can be taken arbitrarily small.

emark 1.17. One should heuristically understand (1.5) as follows. The first condition
uarantees that u has no very low frequencies (≪ k), while the second guarantees that it has
o very high frequencies (≫ k).

It is easy to see that Theorem 1.16 is optimal for uniformly bounded p. Indeed, any u
atisfying (1.5) has

∥∂α
x u∥L2(Rd ) ≤ CΞ

|α|

H ⟨k⟩
|α|

∥u∥L2(Rd ), |α| ≤ 2(p + 1),

for some C depending only on α and the choice of norm on H s . and hence the standard estimate

∥(I − P p,m
Th ,m)u∥Hm (Rd ) ≤ Ch p+1−m

∥u∥H p+1(Rd ) 0 ≤ m ≤ p + 1,

(see e.g [19, Theorem 4.3.19], [3, Section 4.4], [5, Section 3.1]) together with the fact that our
u satisfies

∥u∥H s (Rd ) ≤ C⟨k⟩
s
∥u∥L2(Rd ), 0 ≤ s ≤ p + 1

shows that, up to a constant, (1.6) cannot be improved for many standard scales of meshes.
Formally the results in these references apply only to compact subsets of Rd , however, since
the H m norm is local in the sense that for any open domains Si with Lipschitz boundary and⋃

S i = Rd , Si ∩ S j = ∅, for i ̸= j,

i

6
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we have

∥u∥
2
Hm (Rd ) =

∑
Si

∥u∥
2
Hm (Si ), u ∈ H m(Rd ),

these results easily extend to all of Rd .

Remark 1.18. Note that, while we write the estimate (1.6) with the L2 norm of u on the left
hand side, we could replace it by the H p+1(Rd ) norm and an appropriate power of k using the
second inequality in (1.5). In fact, the proofs below proceed by controlling the H p+1

k norm of
u by e.g. ∥(I − P p,m

Th ,ℓ)u∥L2(Rd ), and a small multiple of the H 2(p+1)
k norm of u. The oscillatory

nature of u is then used to absorb this very high derivative into the left-hand side.

In particular, Theorem 1.16 is optimal when the mesh is conforming in the following sense.

Definition 1.19. We say that the mesh Th is (p, m) conforming if

∥I − P p,m
Th ,ℓ∥H p+1

k →Hℓ
k,Th

≤ C(hk)p+1−ℓ (1.7)

It is often interesting not only to have lower bounds for the approximation error in H s
k , but

o understand lower bounds for the ‘frequency k’ components of the best H s
k approximant.

his is the content of our next theorem.

heorem 1.20. Let r ∈ {0, 1, . . . } ∪ {∞}, M = (I, {Th}h) be a 2(r + 1)-scale of meshes for
d , C be a set of coordinates for M, and 0 < ΞL < ΞH . Then there are c > 0 and k0 > 0

such that for all 0 ≤ p ≤ r , 0 ≤ ℓ ≤ m ≤ p + 1, s ≥ 0, all k > k0c−p, all u ∈ L2(Rd )
atisfying

supp û ⊂ {ξ ∈ Rd
: ΞLk ≤ |ξ |},

∥u∥
Hmax(2(p+1),2ℓ+s)

k (Rd ) ≤ ⟨ΞH k + max(2(p + 1), 2ℓ + s)⟩max(2(p+1),2ℓ+s)
∥u∥L2(Rd )

ll h ∈ I with chk/p2
≤ 1 we have

cp
(hk

p2

)2(p+1−ℓ)
∥u∥L2(Rd ) ≤ ∥(I − P p,m

Th ,ℓ)u∥H−s
k (Rd ). (1.8)

f p = 0, then k0 can be taken arbitrarily small. Finally, the estimate (1.8) is optimal for
ounded p and meshes which are (p, m)-conforming.

Because the H−s
k norm weights frequencies |ξ | ≫ k by |k−1ξ |

−s , Theorem 1.20 shows
hat the ‘frequency k’ components of the error are in general much smaller than the very high
requency components of the error (note that the power on the left hand side of (1.8) is twice
hat on the left-hand side of (1.6)), but nevertheless retain a controllable amount of the mass
f u.

.3. Functions oscillating with a given frequency on a manifold

In order to state our results on a manifold, we first introduce an appropriate notion of a
unction that oscillates at frequency k in a certain Sobolev space H m .

efinition 1.21. Let m ≥ 1, a ≤ b, M be a Cm manifold with Lipschitz boundary and
g ∈ C1 be a Riemannian metric on M . Let −∆ : L2(M) → L2(M) denote the Dirichlet
g

7
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or Neumann Laplace–Beltrami operator on (M, g) (i.e. the Friedrichs extension defined by the
quadratic form Q(u, v) := ⟨∇gu, ∇gv⟩L2(M) with form domain H 1

0 or H 1 respectively) and d Eλ

ts spectral measure.

emark 1.22. As discussed above, in finite and boundary element methods the relevant
anifold (M, g) is usually either a domain O ⊂ Rn with boundary or a hyper-surface Γ ⋐ Rn .

In the case of a domain O , we typically use the usual Euclidean metric, in which cases −∆g

is the standard Dirichlet or Neumann Laplacian on O . In the case of a surface Γ , we endow
with the metric induced from the Euclidean metric on Rn . That is, we endow it with the

usual surface volume. In this case, once again, −∆g becomes the surface Laplacian (with the
relevant boundary condition).

We say that u ∈ L2(M) oscillates with frequencies between a and b in H m if u ∈

D((−∆g + 1)m/2) and

Π[a,∞)u = u, ∥u∥H s (M) ≤ ⟨b + j⟩ j
∥u∥L2(M), 0 ≤ j ≤ m

where we write

Π[a,∞) :=

∫
∞

a2
d Eλ

for the orthogonal projection onto functions oscillating with frequencies larger than a

Remark 1.23. Below, we use the notation Cω to denote a real analytic object and j < ω for
ll j ∈ N. For the purposes of scales of meshes and coordinates, we identify ω and ∞.

Examples.

(1) If (M, g) is a compact manifold without boundary, then −∆g has an orthonormal basis
of eigenfunctions {uλ j }

∞

j=1 satisfying (−∆g − λ2
j )uλ j = 0 and hence

Π[a,∞)v =

∑
λ j ∈[a,∞)

⟨v, uλ j ⟩L2(M)uλ j .

(2) If (M, g) = (Rd , gEuc) is Rd with the standard metric,

Π[a,∞)u =
1

(2π )d

∫
a≤|ξ |

ei⟨x,ξ⟩û(ξ )dξ.

It will also be convenient to have a notion of approximately k oscillating.

Definition 1.24. Let {C j }
∞

j=1 ⊂ R+. We say that a family of functions {uk}k ∈ L2(M) is
approximately k oscillating with constants C j if for all j = 0, 1, . . . , and k > 1,

∥Π[εk,∞)uk − uk∥L2 ≤ C j k− j , ∥uk∥H j
k (M) ≤ C j∥uk∥L2(M)

.4. Approximate k-oscillation and solutions of the Helmholtz equation

The main motivation for this article is the study of numerical solution of the Helmholtz
roblems (1.1) and (1.2) when the data comes from a natural scattering problem; e.g. plane
ave scattering. In the case of plane wave scattering, one aims to find the scattered field caused
y an incident plane wave u := eikx ·a with a ∈ Rd , |a| = 1. To do this, we let χ ∈ C∞(Rd ) so
I c

8
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that the scatterer is contained in χ ≡ 1 and find uS outgoing such that u = uS+u I satisfies (1.2)
r (1.1) with 0 right-hand side and no outgoing condition

In this case, uS solves (1.2) or (1.1) with

f = (kχ1(x) + χ2(x))eikx ·a, χi ∈ C∞

c (Rd ), (1.9)

nd

g = φ(x)eikx ·a, φ ∈ C∞(∂Ω ). (1.10)

.4.1. k-oscillation of the bulk solution
Using methods of semiclassical analysis; specifically the elliptic parametrix construction

see e.g. [6, Appendix E]), one can show that for ai j , c ∈ C∞(Rd ) with c(x) > c0 > 0
nd ai j (x)ξiξ j ≥ c0|ξ |

2, the solution, u to (1.2) with f of the form (1.9) is approximately k
scillating for some constants C j . Furthermore, for obstacle scattering, when the boundary of
he obstacle is smooth and the data is as in (1.9) and (1.10) one can use the functional calculus
echniques from [7] to see that the solution to the Helmholtz equation (1.1) is approximately

oscillating.
The estimates in Theorems 1.16, 1.20 and 1.25, 1.26 then have direct applications to error

nalysis in finite element methods (FEM) based on piecewise polynomials. For example, when
he FEM using the space S p,m

M,C,h is applied to solve one of (1.2) or (1.1) a key role in this
nalysis is played by the quantity

η
(
S p,m
M,C,h

)
:= sup

f ∈L2

∥(I − P p,m
Th ,1)u f ∥H1

∥ f ∥L2
,

here u f is the solution to (1.2) or (1.1) with the radiation condition changed to

(∂r + ik)u = or→∞(r
1−d

2 ).

ndeed, conditions for quasioptimality of FEM as well as error estimates are given explicitly
n terms of this η [16,18,20]. Because the solution of the Helmholtz problem is approximately
-oscillating, Theorems 1.16 and 1.25 thus give sharp lower bounds on this quantity and hence
rovide lower estimates on how refined the grid must be to apply these results.

.4.2. k-oscillation of the boundary traces
In the case of the boundary element method, one tries to approximate the boundary traces

f u rather than u itself. The k-oscillation properties of the traces of u are slightly more
omplicated than those of u. It is easy to see that the upper bounds in 1.21 hold. However,

the lower frequency bound may not hold. Nevertheless, the boundary traces will typically have
a component containing most of the energy of the trace which is approximately k oscillating.
n fact, the only way for this to fail is for the function, u to have nearly all of its energy

on directions normal to the boundary. As an illustrative example, consider a smooth, convex
obstacle Ω and the plane wave data as in (1.10). Then, one can show that the outgoing
Dirichlet to Neumann map is pseudodifferential (albeit in an exotic calculus) and hence that
k−1∂νu ∼ a(x)eikx ·a

|∂Ω . In particular, except in a neighborhood of ν · a = 0, k−1∂νu is
pproximately k-oscillating. This type of argument can be made more precise and more general
y using the concepts of wavefront-set and propagation of singularities from semiclassical
nalysis (see [6, Appendix E]).
9
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1.5. Lower bounds on a manifold

We now restate Theorems 1.16 and 1.20, generalizing them to Riemannian manifolds in the
rocess.

heorem 1.25. Let r ∈ {0, 1, . . . } ∪ {ω}, M be a C2(r+1) manifold with Lipschitz boundary,
g be a Cr+1 Riemannian metric on M, M = (I, {Th}h) be a 2(r + 1)-scale of meshes for M,

be a set of coordinates for M, and 0 < ΞL < ΞH . Then there are c > 0 and k0 > 0 such
that for all 0 ≤ p ≤ r , 0 ≤ ℓ ≤ m ≤ p + 1, , all k > k0c−p, all u ∈ L2(M) oscillating with
requencies between ΞLk and ΞH k in H 2(p+1)(M), 0 ≤ m ′, and all h ∈ I with chk/p2 < 1,

we have

cp
(hk

p2

)p+1−m′

∥u∥L2(M) ≤ ∥(I − P p,m
Th ,ℓ)u∥Hm′

k,Th
(M). (1.11)

urthermore, if p = 0, then k0 can be taken arbitrarily small.

As in Rd , we also obtain lower bounds for the ‘frequency k’ part of the error.

Theorem 1.26. Let r ∈ {0, 1, . . . } ∪ {ω}, M be a C2(r+1) manifold with Lipschitz boundary,
g be a Cr+1 Riemannian metric on M, M = (I, {Th}h) be a 2(r + 1)-scale of meshes for M,

be a set of coordinates for M, and 0 < ΞL < ΞH . Then there are c > 0 and k0 > 0 such
that for all 0 ≤ p ≤ r , s ≤ 2(p + 1), 0 ≤ ℓ ≤ (r + 1) −

s
2 , ℓ ≤ m ≤ p + 1, all k > k0c−p, all

∈ L2(M) oscillating with frequencies between ΞLk and ΞH k in H max(2(p+1),2ℓ+s)(M) and all
h ∈ I with chk/p2 < 1,we have

cp
(hk

p2

)2(p+1−ℓ)
∥u∥L2(M) ≤

(I − P p,m
Th ,ℓ)u


H−s

k (M). (1.12)

Furthermore, if p = 0, then k0 can be taken arbitrarily small. Finally, the for p bounded
niformly in k, estimate (1.12) is optimal if the boundary of M is Cmax(2(p+1),2ℓ+s) with the

mesh (p, m)-conforming.

Note that piecewise polynomial spaces which satisfy (1.7) under various conditions on ℓ are
constructed in [19, Chapter 4].

Remark 1.27. In fact, if C consists only of affine maps, then one can take k0 arbitrarily
small for all p in Theorems 1.16 and 1.20. In general, when p ̸= 0 and the maps γT need

ot be affine, this is not possible. To see this, we work on the circle S1
= [−π/2, 3π/2).

e need only consider a single mesh T := {T1, T2, T3, T4}, T1 := (−π/2, 0), T2 := (0, π/2),
T3 := (π/2, π), T4 := (π, 3π/2)}, with reference domain [0, 1]. To define our coordinates, we

ill need two branches of sin−1(t). For this, let s1 : [−π/2, π/2] → [−1, 1], s1(t) = sin(t),
nd s2 : [π/2, 3π/2] → [−1, 1], s2(t) = sin(t). Set γ1(t) = s−1

1 (−1 + t2), γ2(t) := s−1
1 (1 − t2),

3(t) := s−1
2 (1 − t2), and γ4(t) := s−1

2 (−1 + t2).
To see that γ1 is a regular coordinate map, observe that

γ ′

1(t) =
−2t√

1 − (1 − t2)2
= −

2
√

2 − t2
.

n particular, γ ′

1(t) is smooth up to the boundary of (0, 1) and satisfies γ ′

1(t) > c > 0. Similar
nalysis shows that γi (t) is regular for i = 2, 3, 4. Now, notice that

sin(γ (t)) = sin(s (−1 + t2)) = −1 + t2, sin(γ (t)) = sin(s (1 − t2)) = 1 − t2,
1 1 2 1

10
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sin(γ3(t)) = sin(s2(1 − t2)) = 1 − t2, sin(γ4(t)) = sin(s2(−1 + t2)) = −1 + t2.

n particular, u := sin(x) ∈ S2,2
M,C,1 so that (I − P2,2

T1,ℓ)u = 0. On the other hand, since
∆Su = −∂2

x u = u, we have Π[1,∞)u = u and hence u is oscillating with frequencies between
and 2. In particular, for this mesh, we do not have (1.11) for functions oscillating with small

requency.

Finally, we record an estimate when u is approximately k-oscillating.

orollary 1.28. Let p, s ≥ 0, 0 ≤ ℓ ≤ m ≤ p + 1, 0 < ε < 1, and {C j }
∞

j=1 ⊂ R+, M be a
max(2(p+1),2ℓ+s) manifold with Lipschitz boundary and g be a C p+1 Riemannian metric on M.
et M be a 2(p + 1) scale of meshes for M and C be a set of coordinates for M. Then for
ll N > 0, there is c > 0 such that for all ε approximately k oscillating, u with constants C j ,
here is k0 ≥ 0 such that for k > k0, 0 ≤ m ′

≤ m, and h ∈ I with h > k−N , we have

c(hk)2(p+1−ℓ)
∥u∥L2(M) ≤ ∥(I − P p,m

Th ,ℓ)u∥H−s
k (M),

c(hk)p+1−m′

∥u∥L2(M) ≤ ∥(I − P p,m
Th ,ℓ)u∥Hm′

k (M).

1.6. Ideas behind the proof of Theorem 1.25

For the purposes of this outline, we work on Rd , assume that γT : Sh → T is a rotation
followed by a translation, and consider only m ′

= 0. There are four important facts used to
prove Theorem 1.25:

(1) For a function oscillating between ΞLk and ΞH k in H 2(p+1) and p + 1 = 2m + r ,

ck2(p+1)
∥u∥

2
L2(Rd ) ≤ ⟨(−∆)p+1u, u⟩L2(Rd ) = ∥∇

r (−∆)mu∥
2
L2(Rd ),

∥u∥
2
H2(p+1)(Rd ) ≤ C⟨k⟩

4(p+1)
∥u∥

2
L2(Rd ).

(1.13)

(2) We have

∥∇
r (−∆)mu∥

2
L2(Rd ) =

∑
T ∈Th

∥∇
r (−∆)mu∥

2
L2(T ). (1.14)

(3) For a polynomial, qT , of degree p on T

∥∇
r (−∆)mu∥

2
L2(T ) = ⟨∇

r (−∆)mu, ∇r (−∆)m(u − qT )⟩L2(T ). (1.15)

(4) Integrating by parts and using trace estimates, the pairings can be estimated∑
T ∈Th

|⟨∇
r (−∆)mu, ∇r (−∆)m(u − qT )⟩L2(T )|

≤ ε∥u∥
2
H2(p+1)(Rd ) + Cε−1h−2(p+1)

∥u −

∑
T ∈Th

1T qT ∥
2
L2(Rd ). (1.16)

ere 1T denotes the indicator function of T . Combining (1.13), (1.14), (1.15), and (1.16) and
hoosing ε = ε0k−2(p+1) for some ε0 > 0 then completes the proof.

The estimates (1.13) follow directly from the definition of oscillating between ΞLk and ΞH k,
nd (1.14) follows from the definition of the L2 norm. Eq. (1.15) follows from the fact that
erivatives of order ≥ p + 1 vanish on a polynomial of order p. The work of this paper is
hen in proving (1.16). This is done in two steps. First, in Section 2, we prove estimates on a
11
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pairing ⟨∂α
x u, ∂α

x v⟩L2(T ) that are uniform in the scale h and involve Sobolev norms of u together
ith the L2 norms of v and its (p + 1)th derivatives (see Lemma 2.5). We then combine the

stimates on all elements of the mesh in Section 3 (see Lemma 3.2) to obtain (1.16).

.7. Comparison with Kolmogorov n-width bounds

The only other lower estimates on approximation by finite dimensional spaces of which the
uthor is aware concern the V-Kolmogorov n-width of a space where V is a normed space
see [14] and references there-in). For example, for Ω ⊂ Rd , the L2(Ω )-Kolmogorov n width
f B ⊂ L2(Ω ) is defined by

dn(B) := sup
u∈B, ∥u∥B≤1

inf
w∈W

dimW=n

∥u − v∥L2(Ω).

or instance, [14] shows that when Ω has Lipschitz boundary,

0 < lim inf
n→∞

n
1
d dn(H 1

0 (Ω )) ≤ lim sup
n→∞

n
1
d dn(H 1

0 (Ω )) < ∞. (1.17)

For concreteness, we will consider the case of H 1
0 (Ω ) in the rest of this subsection. Standard

pper estimates on piecewise polynomial approximation then show that the space of piecewise
olynomials saturate the estimate (1.17) in the sense that they achieve the estimate: for all
∈ H 1

0 (Ω ),

∥(I − P p,m
Th ,0)u∥L2(Ω) ≤ Ch∥u∥H1(Ω) ≤ Cn−

1
d ∥u∥H1(Ω). (1.18)

emark 1.29. Here, we have used that a p-scale of meshes is necessarily quasiuniform and
ence the volume of any element is bounded above and below by hd .

The estimate (1.17), when applied to the space S p,m
M,C,h shows that for h small enough,

sup
u∈H1

0 (Ω),∥u∥H1(Ω)≤1

∥(I − P p,m
Th ,0)u∥L2(Ω) ≥ ch,

and hence (1.18) is optimal when one considers all possible u in H 1
0 (Ω ). In particular, there

xists a function u ∈ H 1
0 (Ω ) such that ∥u∥H1 ≤ k and

∥(I − P p,m
Th ,0)u∥L2(Ω) ≥ chk.

owever, the estimate (1.17) gives no information about the structure of this u nor how many
uch u there are and hence it cannot be applied to understand approximation errors in concrete
ituations like Helmholtz scattering with natural data.

In contrast, the estimates in Theorem 1.25 show that every k-oscillating function with
u∥L2 ∼ 1 (and hence ∥u∥H1 ∼ k) satisfies

∥(I − P p,m
Th ,0)u∥L2(Ω) ≥ chk.

n particular, as noted in Section 1.4, these estimates apply to every Helmholtz scattering
olution and hence can be used to understand approximation errors for numerical solution of
elmholtz scattering problems.
12
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2. Estimates on the reference element

2.1. Estimates at a fixed scale

In this section, we recall several standard estimates for functions in Sobolev spaces on
ipschitz domains and their boundary values. The first estimate can be found in [10, Theorem
.5.1.10].

emma 2.1. Let S ⋐ Rd be open with Lipschitz boundary. Then there is C > 0 such that
for all u ∈ H 1(S), and 0 < ε < 1

∥u∥L2(∂S) ≤ C(ε−1
∥u∥L2(S) + ε∥∇u∥L2(S))

Next, we recall a useful, equivalent norm on H m(S) for m ∈ {0, 1, . . . }.

Lemma 2.2. Let S ⋐ Rd open with Lipschitz boundary. Then for all m ∈ N, there is Cm > 0
such that for all u ∈ H m(S),

∥u∥Hm (S) ≤ Cmm2m
∥u∥L2(S) + Cm

∑
|γ |=m

∥∂γ
x u∥L2(S). (2.1)

Proof. To prove (2.1), we follow the same proof as the non-m explicit proof (see e.g. [1,
Theorem 5.2]), but require the inverse estimate:

∥v∥H1(S) ≤ CS p2
∥v∥L2(S), v ∈ Pp. (2.2)

Since S is open with Lipschitz boundary we may decompose S ⊂
⋃N

j=1 S j , and, up to a
rotation and translation

Si := {(x1, . . . , xd ) ∈ Rd
: |(x1, . . . , xd−1)| < εi , 0 ≤ xd ≤ fi (x1, . . . , xd−1)}

where fi > ci > 0 and ∥∇ f ∥L∞ ≤ tan(θi )
Now, let {ω j } j=1,...,d ⊂ Rd be linearly independent, have unit length, and satisfy ⟨ω j , (0, . . . ,

0, 1)⟩ > cos(θi ). Then, for v ∈ Pp, we have by rotating coordinates,∫
Si

|⟨∇, ω j ⟩v|
2dx =

∫
U j,i

∫ fi, j (y′)

0
|∂yd v(y′, yd )|2dyddy′

≤ Cp4
∫

U j,i

∫ fi, j (y′)

0
|v(y′, yd )|2dyddy′

= Cp4
∥v∥

2
L2(Si ),

where in the last inequality, we have used that v(y′, ·) is a polynomial of degree ≤ p, the
inverse estimate [21, Theorem 3.91], and that fi, j > c > 0.

Now,

|∇v|
2

≤ Ci

d∑
j=1

|⟨∇v, ω j ⟩|
2.

Hence,

∥∇v∥
2
L2(Si ) ≤ Ci p4

∥v∥
2
L2(Si ).

Summing over i completes the proof of (2.2). □
13
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2.2. Uniform estimates at all scales

We now record the estimates corresponding to Lemma 2.1 and Lemma 2.2 on the rescaled
omain Sh := hS.

emma 2.3. Let S ⋐ Rd open with Lipschitz boundary and Sh := hS. There is C > 0 such
hat for all u ∈ H 1(Sh), 0 < h < 1, and 0 < ε < 1

∥u∥L2(∂Sh ) ≤ Ch−
1
2 (ε−1

∥u∥L2(Sh ) + ε∥h∇u∥L2(Sh )) (2.3)

roof. Let u ∈ H 1(Sh). Then, putting v(x) := u(hx) ∈ H 1(S), we have

∥v∥L2(∂S) = h−
d−1

2 ∥u∥L2(∂Sh ),

∥v∥L2(S) = h−
d
2 ∥u∥L2(Sh ), ∥∇v∥L2(S) = h−

d
2 ∥h∇u∥L2(Sh ).

he lemma now follows directly from Lemma 2.1. □

Lemma 2.4. Let S ⋐ Rd open with Lipschitz boundary and Sh := hS. There is C > 0 such
that for all m ∈ {0, 1, . . . }. u ∈ H m(S), and 0 < h < 1,

∥u∥Hm
h (Sh ) ≤ Cmm2m

∥u∥L2 + (Ch)m
∑

|γ |=m

∥∂γ
x u∥L2(Sh ). (2.4)

Proof. Let u ∈ H m(Sh). Then v(x) := u(hx) ∈ H m(S) and the estimate follows from
emma 2.2 applied to v. □

.3. Estimates on pairings in Sh

emma 2.5. Let S ⋐ Rd open with Lipschitz boundary. Then there is C > 0 such that for all
p, h > 0, α ∈ Nd with |α| = p + 1, and Sh := hS, there are β j ∈ Nd with |β j | = p + 1 + j ,
j = 0, 1, . . . , p such that for all u, v ∈ H 2(p+1)(Sh), α1 + α2 = α, 0 < h < 1, and 0 < r j < 1

|⟨∂α
x u, ∂α

x v⟩L2(Sh )| ≤ ∥∂α+α1
x u∥L2(Sh )∥∂

α2
x v∥L2(Sh )

+

p−|α2|∑
j=0

C1+t− j
∥∂

β j
x u∥H1

h (Sh )

(
h−t+ j−1s2(t− j)+1

+ h−1−
t− j

p+2+ j s1+
t− j

p+2+ j r
−

t− j
p+2+ j

j + s−1−
t− j+1
p+1+ j (Cr−1

j )
t− j+1
p+1+ j

)
|v|H |α2|(Sh )

+

p−|α2|∑
j=0

r j C t− j+1
∥∂

β j
x u∥H1

h (Sh )|v|H2(p+1)(Sh ),

(2.5)

where s := 2(p + 1) − |α2|, t := p − |α2|, and | · |Hm (Sh ) denotes the H m Sobolev seminorm.

roof. Integration by parts shows that for j = 0, 1, . . . , p − |α2| there are β j , β ′

j with
β | = p + 1 + j , |β ′

| = p − j and f ∈ L∞(∂S ), with ∥ f ∥ ∞ bounded by the Lipschitz
j j j h j L

14
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i

constant of S such that

|⟨∂α
x u, ∂α

x v⟩L2(Sh )| ≤ |⟨∂α+α1
x u, ∂α2

x v⟩L2(Sh )| +

p−|α2|∑
j=0

|⟨ f j∂
β j
x u, ∂

β ′
j

x v⟩L2(∂Sh )|

≤ ∥∂α+α1
x u∥L2(Sh )∥∂

α2
x v∥L2(Sh ) +

p−|α2|∑
j=0

∥ f j∂
β j
x u∥L2(∂Sh )∥∂

β ′
j

x v∥L2(∂Sh ).

Then, using the Sobolev trace estimate (2.3) and the estimate (2.4) on Sh , together with
nterpolation in the H s

h (Sh) spaces, and Young’s inequality, we have, with t = p − |α2|,

≤ ∥∂α+α1
x u∥L2(Sh )∥∂

α2
x v∥L2(Sh )

+

p−|α2|∑
j=0

∑
|γ |=p− j

|γ ′|=p− j+1

C∥∂
β j
x u∥H1

h (Sh )h
−t+ j−1(ε−1

j ∥ht− j∂γ
x v∥L2(Sh )

+
ε j

2
∥ht− j+1∂γ ′

x v∥L2(Sh ))

≤ ∥∂α+α1
x u∥L2(Sh )∥∂

α2
x v∥L2(Sh )

+

p−|α2|∑
j=0

∑
|γ |=|α2|

C∥∂
β j
x u∥H1

h (Sh )h
−t+ j−1(ε−1

j ∥∂γ
x v∥H t− j

h (Sh ) +
ε j

2
∥∂γ

x v∥
H t− j+1

h (Sh ))

≤ ∥∂α+α1
x u∥L2(Sh )∥∂

α2
x v∥L2(Sh )

+

p−|α2|∑
j=0

∑
|γ |=|α2|

C∥∂
β j
x u∥H1

h (Sh )h
−t+ j−1

(
ε−1

j ∥∂γ
x v∥

1−
t− j

2(p+1)−|α2|

L2(Sh )
∥∂γ

x v∥

t− j
2(p+1)−|α2|

H
2(p+1)−|α2|

h (Sh )

+
ε j

2
∥∂γ

x v∥
1−

t− j+1
2(p+1)−|α2|

L2(Sh )
∥∂γ

x v∥

t− j+1
2(p+1)−|α2|

H
2(p+1)−|α2|

h (Sh )

)
≤ ∥∂α+α1

x u∥L2(Sh )∥∂
α2
x v∥L2(Sh )

+

p−|α2|∑
j=0

∑
|γ |=|α2|

C∥∂
β j
x u∥H1

h (Sh )h
−t+ j−1

((
C t− jε−1

j s2(t− j)
∥∂γ

x v∥L2

+ (Ch)t− j [ε−1−
t− j

p+2+ j
j (r j h)−

t− j
p+2+ j ∥∂γ

x v∥L2 + r j h
∑

|γ̃ |=2(p+1)−|α2|

∥∂ γ̃+γ
x v∥L2

])
+

(
ε j C t− j+1s2(t− j+1)

∥∂γ
x v∥L2

+ (Ch)(t− j+1)(1+
1

p+1+ j )[
ε

1+
t− j+1
p+1+ j

j (r j h)−
t− j+1
p+1+ j ∥∂γ

x v∥L2
]))

≤ ∥∂α+α1
x u∥L2(Sh )∥∂

α2
x v∥L2(Sh )

+

p−|α2|∑
j=0

C∥∂
β j
x u∥H1

h (Sh )

(
h−t+ j−1C t− jε−1

j s2(t− j)

+ C t− j h−1−
t− j

p+2+ j ε
−1−

t− j
p+2+ j

j r
−

t− j
p+2+ j

j + ε j h−t+ j−1C t− j+1s2(t− j+1)

+ C (t− j+1)(1+
1

p+1+ j )
ε

1+
t− j+1
p+1+ j r

−
t− j+1
p+1+ j

)
|v| |α |
j j H 2

15
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3

c

L
b
b
f

M

P

w
k

N

I

+

p−|α2|∑
j=0

∥∂
β j
x u∥H1

h (Sh )r j C t− j+1
|v|H2(p+1)

≤ ∥∂α+α1
x u∥L2(Sh )∥∂

α2
x v∥L2(Sh )

+

p−|α2|∑
j=0

C1+t− j
∥∂

β j
x u∥H1

h (Sh )

(
h−t+ j−1s2(t− j)+1

+ h−1−
t− j

p+2+ j s1+
t− j

p+2+ j r
−

t− j
p+2+ j

j + s−1−
t− j+1
p+1+ j (Cr−1

j )
t− j+1
p+1+ j

)
|v|H |α2|

+

p−|α2|∑
j=0

∥∂
β j
x u∥H1

h (Sh )r j C t− j+1
|v|H2(p+1)

where in the last line we grouped terms and set ε j = [2(p+1)−|α2|]−1, s := 2(p+1)−|α2|. □

. Estimates on the manifold

We now proceed to estimate the finite element approximation error. We first estimate a
ertain sum of derivatives over the mesh from below by the L2 norm of u.

emma 3.1. Let r ∈ {0, 1, . . . } ∪ {ω}, M be a C2(r+1) manifold with Lipschitz boundary, g
e a Cr+1 Riemannian metric on M, M = (I, {Th}h) be a 2(r + 1)-scale of meshes for M, C
e a set of coordinates for M, and 0 < ΞL < ΞH . Then there are c > 0 and k0 > 0 such that
or all u oscillating between ΞLk and ΞH k in H p+1, k > k0c−p, and h ∈ I ,

cp+1k2(p+1)
∥u∥

2
L2(M) ≤

∑
T ∈Th

∑
|α|=p+1

∥∂α
x (u ◦ γT )∥2

L2(Sh ,dx). (3.1)

oreover, if p = 0, then we may take k0 = 0.

roof. Let p + 1 = 2m + r with r ∈ {0, 1}, m ∈ {0, 1, . . . }. Observe that

Ξ
2(p+1)
L k2(p+1)

∥u∥L2(M) ≤ ⟨(−∆g)m+r u, (−∆g)mu⟩L2(M) = ∥Lg,p+1u∥
2
L2(M) (3.2)

here Lg,p+1 is a p + 1 order differential operator with L∞ coefficients such that 1 ∈

er(Lg,p+1) (i.e. Lg,p+1 has no constant term). Then

∥Lg,p+1u∥
2
L2(M) =

∑
T ∈Th

∥1γT (Sh )Lg,p+1u∥
2
L2(M). (3.3)

ow, on each mesh element γT (Sh), we write in coordinates

Lg,p+1 =

∑
|α|=p+1

aT
α ∂α

x +

∑
1≤|β|≤p

bT
β ∂β

x . (3.4)

f g is analytic, there is C > 0 such that for any α and p

∥aT
α ∥L∞ ≤ ∥g−1

∥
p+1
C0 , ∥bT

β ∥L∞ ≤ C p+1
∏

∑ ∥g∥
β j

C j .
jβ j =p+1−|β|

16
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T

a

L

b

Therefore,

1
2
∥1γT (Sh )Lg,p+1u∥

2
L2(M) ≤ ∥

∑
|α|=p+1

aT
α ∂α

x (u ◦ γT )∥2
L2(Sh ,dvg )

+ ∥

∑
1≤|β|≤p

bT
β ∂β

x (u ◦ γT )∥2
L2(Sh ,dvg )

≤ C p+1
1

∑
|α|=p+1

∥∂α
x (u ◦ γT )∥2

L2(Sh ,dx) + C2∥du∥
2
H p−1(γT (Sh )).

(3.5)

Summing over the mesh and using (3.2) and (3.3), together with (3.5) we obtain

Ξ
2(p+1)
L k2(p+1)

∥u∥L2(M) ≤ C p+1
1

∑
|α|=p+1

∥∂α
x (u ◦ γT )∥2

L2(γT (Sh ),dx) + C2∥du∥
2
H p−1(M)

≤ C p+1
1

∑
|α|=p+1

∥∂α
x (u ◦ γT )∥2

L2(γT (Sh ),dx)

+ C2⟨ΞH k + p⟩
2p

∥u∥
2
L2(M).

(3.6)

Here, du is the differential of u. Taking k0 large enough, we may absorb the last term into the
left-hand side and hence obtain the result for p ≥ 1. For p = 0, notice that the second term
in (3.4) is identically 0 and hence there are no ∥du∥H p−1 terms in (3.5) or (3.6), so that we
need not take k0 large enough in this case.

In order to handle the analytic case, we need a slightly better estimate than (3.5). Indeed,
we estimate

∥

∑
1≤|β|≤p

bT
β ∂β

x (u ◦ γT )∥L2(Sh ,dvg ) ≤ C p+1
∑

1≤ℓ≤p

∏
∑

jβ j =p+1−ℓ

∥g∥
β j

C j ∥du∥Hℓ−1

≤ C p+1
∑

1≤ℓ≤p

(p + 1 − ℓ)(p+1−ℓ)
⟨ΞH k + ℓ⟩ℓ∥u∥L2(M)

≤ C p+1
⟨ΞH k + p⟩

p
∥u∥L2(M).

hus, we require k > C p+1 as stated. □

Next, we estimate the right-hand side of (3.1) using the L2 norm of (I −P p,m
Th ,ℓ)u. This lemma

mounts to a type of Bramble–Hilbert Lemma for our polynomial spaces on a manifold.

emma 3.2. For all 0 < δ < 1, there is C > 0 such that for all 0 < h, 0 ≤ p, m ≤ k,
0 < hk < δ−1 p2, 0 ≤ m ′, ℓ ≤ m, δ p+1 < ε < 1, and 0 < ΞL < ΞH and all u oscillating

etween ΞLk and ΞH k in H 2(p+1),∑
T ∈Th

∑
|α|=p+1

∥∂α
x (u ◦ γT )∥2

L2(Sh ,dx)

≤ C p(ε⟨ΞH k⟩
2(p+1)

∥u∥
2
L2(M)

+ε−1h−2(p+1−m′)(2(p + 1) − m ′)4(p+1−m′)
∥(I − P p,m

Th ,ℓ)u∥
2
Hm′ (M)

). (3.7)

Proof. We start by observing that, since [P p,m
Th ,ℓu] ◦ γT is a polynomial of degree p,∑ ∑

∥∂α
x (u ◦γT )∥2

L2(Sh ,dx) =

∑ ∑
⟨∂α

x (u ◦γT ), ∂α
x ([(I − P p,m

Th ,ℓ)u]◦γT )⟩L2(Sh ).
T ∈Th |α|=p+1 T ∈Th |α|=p+1

17
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H

We apply Lemma 2.5, to each summand to obtain with v = vT := [(I − P p,m
Th ,ℓ)u] ◦ γT ,

u = uT := u ◦ γT . Note that we can do this since γT ∈ C2(p+1) and hence u ◦ γT ∈ H 2(p+1).
We obtain with t = p − m ′, s := 2(p + 1) − m ′,∑

T ∈Th

∑
|α|=p+1

∥∂α
x uT ∥

2
L2(Sh ,dx)

≤

∑
T ∈Th

∑
|α|=p+1
α1+α2=α

|α2|=m′

(
∥∂α+α1

x uT ∥L2(Sh )∥∂
α2
x vT ∥L2(Sh )

+

p−m′∑
j=0

C t− j+1
∥∂

β j
x uT ∥H1

h (Sh )

(
h−t+ j−1s2(t− j)+1

+ h−1−
t− j

p+2+ j s1+
t− j

p+2+ j r
−

t− j
p+2+ j

j + s−1−
t− j+1
p+1+ j (Cr−1

j )
t− j+1
p+1+ j

)
|vT |m′

+

p−m′∑
j=0

∥∂
β j
x uT ∥H1

h (Sh )r j C t− j+1
|vT |H2(p+1)

)
Now, using again that [P p,m

Th ,ℓu] ◦ γT is a polynomial of degree p, we have ∂
γ ′

x vT = ∂
γ ′

x uT .
ence applying Young’s inequality, we have∑

T ∈Th

∑
|α|=p+1

∥∂α
x uT ∥

2
L2(Sh ,dx)

≤ C
∑
T ∈Th

∑
|α|=p+1
α1+α2=α

|α2|=m′

(
δ∥∂α+|α1|

x uT ∥
2
L2(Sh ) + δ−1

∥∂α2
x vT ∥

2
L2(Sh )

+ C
p−m′∑
j=0

C t− j+1
∥∂

β j
x uT ∥H1

h (Sh )

(
h−t+ j−1s2(t− j)+1

+ h−1−
t− j

p+2+ j s1+
t− j

p+2+ j r
−

t− j
p+2+ j

j + s−1−
t− j+1
p+1+ j (Cr−1

j )
t− j+1
p+1+ j

)
|vT |m′

p−m′∑
j=0

∥∂
β j
x uT ∥H1

h (Sh )r j C t− j+1
|uT |H2(p+1)

)
≤ C p+1

(
δ∥u∥

2
H2(p+1)−m′ (M)

+ δ−1
∥(I − P p,m

Th ,ℓ)u∥
2
Hm′

Th
(M)

+

p−m′∑
j=0

(δ j (∥u∥
2
H p+1+ j (M) + h2

∥u∥
2
H p+2+ j (M))

+ δ−1
j

(
h−2(t− j+1)C2(t− j)s4(t− j)+2

+ C2(t− j)h−2−
2(t− j)
p+2+ j s2+2 t− j

p+2+ j r
−2 t− j

p+2+ j
j

+ C2(t− j+1)(1+
1

p+1+ j )s−2−2 t− j+1
p+1+ j r

−2 t− j+1
p+1+ j

j

)
∥(I − P p,m

Th ,ℓ)u∥
2
Hm′

Th
(M)

p−m∑
δ−1

j r2
j C2(t− j+1)

∥u∥
2
H2(p+1)(M)

)

j=0
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L

t

P

Then, using that u is oscillating between ΞLk and ΞH k and p ≤ Ck, we have∑
T ∈Th

∑
|α|=p+1

∥∂α
x uT ∥

2
L2(Sh ,dx)

≤ C p
((

δ⟨ΞH k⟩
4(p+1)−2m′

+

p−m′∑
j=0

δ j ⟨ΞH k⟩
2(p+1+ j)

+ δ j h2
⟨ΞH k⟩

2(p+2+ j)
+ δ−1

j r2
j C2(t− j+1)

⟨ΞH k⟩
4(p+1)

)
∥u∥

2
L2(M)

+

(
δ−1

+

p−m′∑
j=0

δ−1
j

(
h−2(t− j+1)C2(t− j)s4(t− j)+2

+ C2(t− j)h−2−
2(t− j)
p+2+ j s2+2 t− j

p+2+ j r
−2 t− j

p+2+ j
j

+ C2(t− j+1)(1+
1

p+1+ j )s−2−2 t− j+1
p+1+ j r

−2 t− j+1
p+1+ j

j

))
∥(I − P p,m

Th ,ℓ)u∥
2
Hm′

Th
(M)

)
et

δ = ε⟨ΞH k⟩
−2(p+1)+2m′

,

δ j = ε⟨ j⟩−2
⟨ΞH k⟩

−2 j j = 0, . . . , p − m ′,

r j = ε⟨ΞH k⟩
− j−p−1 j = 0, . . . , p − m ′,

hen we obtain∑
T ∈Th

∑
|α|=p+1

∥∂α
x uT ∥

2
L2(Sh ,dx)

≤ C p
((

Cε⟨ΞH k⟩
2(p+1)

+ εh2
⟨ΞH k⟩

2(p+1)+2
+ εC2t

⟨ΞH k⟩
2(p+1)

)
∥u∥

2
L2(M)

+ ε−1
(
⟨ΞH k⟩

2(p+1)−2m′

+ C t
(

h−2(t+1)s4t+2
+ h−2−

2t
p+2 s2+2 t

p+2 ⟨ΞH k⟩
2(1−

1
p+2 )t

ε
−2 t

p+2

+ s−2−2 t+1
p+1 ⟨ΞH k⟩

2(t+1)ε
−2 t+1

p+1
))

∥(I − P p,m
Th ,ℓ)u∥

2
Hm′

Th
(M)

)
.

Using ε > δ p+1, and hk/p2 < C , we obtain the desired estimate. □

roof of the L2 lower bound: Theorem 1.25. We now combine Lemmas 3.1 and 3.2 to prove
the main theorem. Indeed, Lemma 3.1 implies that there are k0 > 0 (with k0 arbitrary when
p = 0) and c0 > 0 such that for k > k0C p (3.1) holds. In particular,

cp
0 k2(p+1)

∥u∥
2
L2(M) ≤

∑
T ∈Th

∑
|α|=p+1

∥∂α
x (u ◦ γT )∥2

L2(Sh ,dx). (3.8)

Then, Lemma 3.2 implies that there is C > 0 such that for 0 ≤ m ′
≤ m,∑

T ∈Th

∑
|α|=p+1

∥∂α
x (u ◦ γT )∥2

L2(Sh ,dx)

≤
cp

0

2
(1 + k−2

0 )p+1
⟨k2(p+1)

∥u∥
2
L2(M) + C ph−2(p+1−m′) p4(p+1−m′)

∥(I − P p,m
Th ,ℓ)u∥

2
Hm′

Th
(M)

≤
cp

0 k2(p+1)
∥u∥

2
L2(M) + C ph−2(p+1−m′) p4(p+1−m′)

∥(I − P p,m
T ,ℓ)u∥

2
m′ .

(3.9)
2 h HTh
(M)
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Combining (3.8) and (3.9), we obtain

cp
0 k2(p+1)

∥u∥
2
L2(M) ≤

cp
0

2
k2(p+1)

∥u∥
2
L2(M) +C ph−2(p+1−m′) p4(p+1−m′)

∥(I − P p,m
Th ,ℓ)u∥

2
Hm′

Th
(M)

.

Subtracting the first term on the right-hand side to the left-hand side, we obtain for 0 ≤ m ′
≤ m

cp
0

2
k2(p+1)

∥u∥
2
L2(M) ≤ C ph−2(p+1−m′) p4(p+1−m′)

∥(I − P p,m
Th ,ℓ)u∥

2
Hm′

Th
(M)

,

which completes the proof. □

Proof of the ‘frequency k’ lower bound: Theorem 1.26. By Theorem 1.25, we have

∥(I − P p,m
Th ,ℓ)u∥Hℓ

k (M) ≥ cp(hk p−2)p+1−ℓ
∥u∥L2(M). (3.10)

Next, since ⟨(I − P p,m
Th ,ℓ)u, P p,m

Th ,ℓu⟩Hℓ
k (M) = 0, and u is oscillating with frequencies between ΞLk

and ΞH k in H max(2(p+1),2ℓ+s)(M) we have

∥(I − P p,m
Th ,ℓ)u∥

2
Hℓ

k (M)
= ⟨(I − P p,m

Th ,ℓ)u, u⟩Hℓ
k (M)

≤ ∥(I − P p,m
Th ,ℓ)u∥H−s

k (M)∥u∥H2ℓ+s
k (M)

≤ C∥(I − P p,m
Th ,ℓ)u∥H−s

k (M)∥u∥L2(M).

(3.11)

Combining (3.10) and (3.11) completes the proof. □

4. Optimality of the low frequency bounds for shape regular meshes

In this section, we show that Theorem 1.26 is optimal for any mesh satisfying (1.7). First, we
prove the following elementary duality estimate based on the fact that (I − P p,m

Th ,ℓ) : H ℓ
k → H ℓ

k
is an orthogonal projector.

Lemma 4.1. Suppose that M is a C2(p+1) manifold with Cmax(2(p+1),2ℓ+s) boundary. Then for
all −ℓ ≤ s ≤ 2(p + 1) − ℓ, we have

∥(I − P p,m
Th ,ℓ)∥Hℓ

k →H−s
k

≤ C∥(I − P p,m
Th ,ℓ)∥H2ℓ+s

k →Hℓ
k
.

Proof. Let Aℓ := (1 − k−2∆g)ℓ for a Cmax(2(p+1),2ℓ+s) metric g. Then, Aℓ is self-adjoint as an
unbounded operator on L2, Aℓ : H t

k → H t−2ℓ
k is invertible for 0 ≤ t ≤ max(2(p + 1), 2ℓ + s),

and the inner product on H ℓ
k (M) can be defined by

⟨v, w⟩Hℓ
k

:= ⟨v, Aℓw⟩L2 .

Then, since (I − P p,m
Th ,ℓ) is orthogonal on H ℓ

k ,

⟨(I − P p,m
Th ,ℓ)v, w⟩Hℓ

k
= ⟨v, (I − P p,m

Th ,ℓ)w⟩Hℓ
k
,

and hence

⟨(I − P p,m
Th ,ℓ)v, Aℓw⟩L2 = ⟨v, Aℓ(I − P p,m

Th ,ℓ)w⟩L2 .

In particular,

[A (I − P p,m )]∗ = A (I − P p,m ) ⇒ (I − P p,m ) = A−1(I − P p,m )∗ A .
ℓ Th ,ℓ ℓ Th ,ℓ Th ,ℓ ℓ Th ,ℓ ℓ
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T
a

D

A

o
t
C
a
T
E

R

So that

∥(I − P p,m
Th ,ℓ)∥Hℓ

k →H−s
k

≤ ∥A−1
ℓ ∥H−2ℓ−s

k →H−s
k

∥(I − P p,m
Th ,ℓ)∗∥H−ℓ

k →H−2ℓ−s
k

∥Aℓ∥Hℓ
k →H−ℓ

k

≤ C∥A−1
ℓ ∥H−2ℓ−s

k →H−s
k

∥(I − P p,m
Th ,ℓ)∥H2ℓ+s

k →Hℓ
k

= C∥A−1
ℓ ∥H s

k →H s+2ℓ
k

∥(I − P p,m
Th ,ℓ)∥H2ℓ+s

k →Hℓ
k

≤ C∥(I − P p,m
Th ,ℓ)∥H2ℓ+s

k →Hℓ
k
,

where the last line follows since s + 2ℓ ≤ max(2(p + 1), 2ℓ + s). □

Next, we prove that Theorem 1.26 is, in fact, optimal.

Proof of optimality of Theorem 1.26. Observe that by Lemma 4.1 and (1.7)

∥I − P p,m
Th ,ℓ∥H p+1

k →H−s
k

= ∥(I − P p,m
Th ,ℓ)(I − P p,m

Th ,ℓ)u∥
H p+1

k →H−s
k

≤ ∥(I − P p,m
Th ,ℓ)∥Hℓ

k →H−s
k

∥(I − P p,m
Th ,ℓ)∥

H p+1
k →Hℓ

k

≤ C∥(I − P p,m
Th ,ℓ)∥2

H p+1
k →Hℓ

k
≤ C(hk)2(p+1−ℓ).

he optimality of Theorem 1.26 then follows from the definition of oscillating between ΞLk
nd ΞH k. □
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