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Abstract—In this work, we study integrated sensing and
communication (ISAC) networks to optimize and balance the
sensing and communication (S&C) performance. Using stochastic
geometry, we analyze S&C performance by deriving tractable
expressions for area spectral efficiency (ASE), based on which,
we optimize cooperative base station cluster sizes for S&C, along
with user/target numbers, to achieve a flexible S&C tradeoff. It
is shown that interference cancellation significantly improves the
average data rate and the radar information rate. Interestingly,
optimal communication tradeoffs aimed at maximizing ASE
mainly emphasize spatial resource utilization for multiplexing
and diversity gain without interference nulling. Conversely, for
sensing objectives, resource allocation tends towards interference
cancellation. Simulation results confirm that our proposed coop-
erative ISAC scheme significantly improves S&C performance.

I. INTRODUCTION

Integrated sensing and communication (ISAC), as a can-
didate for sixth generation (6G) communications, can pro-
vide both sensing and communication (S&C) services with a
unified infrastructure/waveform/network, thereby overcoming
the problems of spectrum scarcity and severe interference [1],
[2]. ISAC offers an exciting opportunity not only to improve
spectrum efficiency, but also to enable hardware reuse, power
savings and the development of various environment-aware
applications envisioned for 6G systems [3]. In the literature,
most existing works on this topic mainly focus on the system
design and optimization in single cell [4], while multi-cell
ISAC is seldom investigated.

In large-scale dense ISAC networks, inter-cell interference
emerges as a critical constraint limiting network performance.
Coordinated beamforming presents a promising solution to
mitigate inter-cell interference, thus significantly enhancing
the S&C performance of the whole network [5]. Furthermore,
network-level ISAC introduces new performance metrics,
novel coordination frameworks, and extra degrees of freedom
(DoF) for balancing S&C performance. For instance, it allows
for the control of cooperative base station (BS) cluster sizes
and the average numbers of served users/targets to enhance
S&C performance. However, quantitatively analyzing average
network performance for S&C in ISAC networks is highly
non-trivial, especially when considering the effects of random
channel fading and spatial locations.

In the literature, stochastic geometry becomes a powerful
mathematical tool for the analysis of multi-cell wireless com-
munication networks [6], [7]. For instance, the authors in [6]

proposed a general framework for analysis of the average data
rate and the coverage probability in communication networks.
Besides evaluating the performance of communication-only
networks or sensing-only networks, stochastic geometry may
also be adopted for the performance analysis of ISAC net-
works. For example, in [8], an ISAC beam alignment approach
for THz networks was investigated, where stochastic geometry
was employed to derive expressions for coverage probability
and network throughput. In [9], closed-form expressions for
energy efficiency (EE) in ISAC networks were derived to
maximize the network EE by optimizing the BS density.
However, the aforementioned works focus solely on serving
one user/target per cell and o not take into account inter-cell
interference management. Thus, this approach fails to fully
exploit the multiplexing gain inherent in spatial resources.

Motivated by the above discussion, our study investigates
a cooperative ISAC scheme aimed at optimizing S&C perfor-
mance at the network level. Leveraging stochastic geometry
tools, we conduct a comprehensive performance analysis,
elucidating critical cooperative dependencies within the ISAC
network. Then, we derive the tractable S&C area spectral
efficiency (ASE) expression to analyze three kinds of system
objectives of spatial resource allocation, including serving
multiple users/targets for spatial multiplexing gain, spatial
diversity gain, and inter-cell interference nulling. This analysis
provides valuable insights to facilitate a closer inspection of
specific features and emerging trends. Furthermore, we prove
that it is not necessary to perform interference nulling when
maximizing the communication ASE under some general
parameter setups; in contrast, interference nulling is required
when maximizing the sensing ASE.

II. SYSTEM MODEL

In this study, we introduce a coordinated beamforming
approach aimed at achieving adaptable interference nulling
within ISAC networks. Our method involves each BS trans-
mitting independent data to K users, while concurrently
conducting sensing operations for J targets (e.g., localization)
by using unified ISAC signals. To suppress S&C interference
separately, Q (L) closest BSs are selected for interference
nulling of sensing (communication). By forming separate S&C
cooperative clusters according to the locations of targets and
users, the corresponding beamforming vectors of Q BSs (L
BSs) are jointly designed for interference nulling of sensing



(communication), as depicted in Fig. 1. In the considered
system, Mt (Mr) transmit (received) antennas are deployed
at each BS, whose location follows a homogeneous Poisson
point process (PPP), denoted by Φb = {di ∈ R2}, where di

represents the location of BS i. Similarly, the point processes
of the locations of single-antenna communication users and
targets are respectively denoted by Φu and Φt. Here, Φb,Φu,
and Φt are assumed to be mutually independent PPPs with
intensities λb, λu, and λs, where λu, λs ≫ λb [7].

The typical user, identified as user k, is assumed to be
positioned at the origin, and its performance is analyzed for
representing the average performance for all users [7]. The
typical user is served by its nearest BS (referred to as the
serving BS), identified by index 1. Then, the received signal
at the typical user k can be expressed as

yc,k =∥d1∥−
α
2 hH

k,1W1s1 +
∑∞

i=2
∥di∥−

α
2 hH

k,iWisi + nk,c,

(1)
where α ≥ 2 is the pathloss exponent, hH

k,i ∼ CN (0, IMt
)

is the channel vector from BS at di to user k, Wi =[
wi

1, . . . ,w
i
K

]
∈ CMt×K is the beamforming matrix of the

BS at di, and si =
[
si1, . . . , s

i
K

]T
is the information symbol

vector transmitted from the corresponding BS with equal
power allocation.

In response to severe interference in dense cell scenarios,
this work concentrates on an interference-limited network
where noise can be disregarded, employing the signal-to-
interference ratio (SIR) as the basis for performance evaluation
[10]. The BS located at di employs zero-forcing beamforming
Wi, distributing equal power among the K users, thereby
suppressing intra-cluster S&C interference and optimizing the
desired signal strength for all K users within the cluster. Then,
the SIR at the typical user can be given by

SIRc =
gkk,1∥d1∥−α∑∞

i=L+1 gk,i∥di∥−α , (2)

where gkk,1 =
∣∣∣hH

k,1w
1
k

∣∣∣2 and gk,i =
∑K

j=1

∣∣∣hH
k,iw

i
j

∣∣∣2. In this
work, we adopt ASE [11] as the network-level communication
performance metric. Then, the mathematical expression for the
communication ASE is given by

TASE
c = λbKRc, (3)

where Rc = E[log(1 + SIRc)] denotes the average data rate.
Likewise, the typical target, denoted as target j, is posi-

tioned at the origin and sensed by the nearest BS situated at d1.
The large-scale pathloss fading from the target to the serving
BS is modeled as |d1|−2β , where β ≥ 2 represents the pathloss
exponent from the serving BS to the typical target. Each
BS designs its respective receive filter directed towards the
direction of target j’s direction θj . To maintain tractability in
our analysis, we adopt the maximum-ratio combining receive
filter vjH(θj) = [1, · · · , e−jπ(Mr−1) cos(θj)]T , since it strikes
a balance between performance and analytical convenience.

After the operation of receive filtering for target j, the
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Fig. 1. Cooperative ISAC networks with S&C interference nulling.

corresponding received signal at the serving BS is given by

ys,j = vH
j (θj)∥d1∥−β

b(θj)a
H(θj)W1s1(t− 2τj,1)

+
∑∞

q=2
∥dq − d1∥−

α
2 hH

q,1(θj)Wqsq(t−τq,1)+vH
j ns, (4)

where aH(θj) = [1, · · · , ejπ(Mt−1) cos(θj)]T , b(θj) =
[1, · · · , ejπ(Mr−1) cos(θj)], hH

q,1(θj) = vH
j (θj)G

H
q,1, and

∥dq − d1∥ represents the distance from the interfering BSs
at dq to the serving BS. In (4), τj,1 and τq,1 respectively
represent the transmission delay of target-serving BS link and
BS q-serving BS link. The transmit beamforming of BS q in
the cooperative cluster is designed based on the interference
channel from BS q to the serving BS and the receive filter.
Then, with a matching filter over the symbol domain, the SIR
of echo signals reflected from the typical target can be given
by

SIRs = ξ∆TκMr

ht
j,1∥d1∥−2β∑∞

q=Q+1 hq,1∥dq − d1∥−α , (5)

where ht
j,1 =

∑K
k=1

∣∣aH(θj)w
1
k

∣∣2 is the effective signal
channel gain from the serving BS towards the target’s di-
rection,

∑∞
q=Q+1 hq,1∥dq − d1∥−α is the inter-cluster inter-

ference, and hq,1 =
∑K

k=1

∣∣hH
q,1(θj)w

q
k

∣∣2. In equation (5),
∆T represents the matching filter gain, κ ∈ [0, 1] denotes the
mismatch loss of the receiving filter, and ξ signifies the radar
cross-section (RCS) of the target. Typically, the maximum
distinguishable number of targets, Jmax, is constrained by
factors such as the number of receive antennas and processing
time requirements.

In previous studies, it has been observed that higher in-
formation rates between the target impulse response and
measurements lead to improved radar capabilities [12]. Conse-
quently, radar information rate serves as a suitable metric for
assessing the accuracy of system parameter estimation. Then,
we introduce the concept of sensing ASE to comprehensively
characterize the network-level performance of ISAC. The
mathematical expression for sensing ASE is

TASE
s = λbJRs, (6)

where Rs = E[log(1 + SIRs)] is the target’ average radar
information rate.



III. SENSING AND COMMUNICATION PERFORMANCE

A. Communication Performance
According to [13], under a given distance r from the typical

user to the serving BS, the conditional expectation can be
derived as follows:

E
[
log (1 + SIRc)

∣∣r]=E

[
log

(
1+

gkk,1∑∞
i=L+1 gk,i∥di∥−α

rα

)]
.

(7)
In the following, we exploit the mean interference-to-signal-
ratio (MISR)-based gain method [14] to analyze the average
rate and obtain a more tractable expression in Theorem 1.

Theorem 1: The communication rate can be approximated
as

TASE
c = λbK

∫ ∞

0

1− e−zY (K,L,J,Q)

zF(z, α)
dz, (8)

where F (z, α) = (e−z − 1) + z
2
αΓ
(
1− 2

α , z
)

and

Y (K,L, J,Q) =
Γ(L+α

2 )(Mt−J(Q−1)+1−KL)

KΓ(L+1)Γ(1+α
2 )

.
Proof: Please refer to Appendix A. ■
Theorem 1 provides a more tractable form of the the

communication ASE. It is verified that (8) achieves a good
approximation by Monte Carlo simulations, as shown in
Section V. It can be observed that only the term Y (K,L, J,Q)
in (8) involves cooperative cluster sizes L and Q. In addition,
the optimal L∗ must belong to the range [1, Mt−J(Q−1)+1

K −1].
Thus, with any given K, the optimal cluster size can be
obtained by calculating ∂Y (K,L,J,Q)

∂L = 0. However, it is still
difficult to analyze the optimal cooperative cluster size, since
the specific relationship of the Gamma function on L is unclear
if α takes any value. To draw useful insights, we prove the
optimal number of cooperative clusters under some typical
parameters in wireless cellular networks.

Proposition 1: When α = 4, the optimal L∗ = 1 when
TASE
c is maximized.
Proof: Please refer to Appendix B. ■
According to Proposition 1, when α = 4, the ASE of

communication is generally a decreasing function of the
cooperative cluster size L. This can be explained by the fact
that the communication performance improvement brought by
interference nulling cannot compensate for the performance
loss caused by the reduction of the diversity/multiplexing gain
for the average throughput of the networks. Thus, it is optimal
retain all spatial dimensions for multiplexing and diversity.
When α → 2, the conclusion in Proposition 1 can also be
proved in a similar way.

B. Sensing Performance
First, under a given distance R from the serving BS to the

typical target, we can derive the conditional radar information
rate expectation as follows:

Rs =

∫ ∞

0

1− E
[
e−zξ∆TκMrh

t
j,1

]
z

E
[
e−zIS

]
dz, (9)

where IS =
∑∞

q=Q+1 hq,1∥dq − d1∥−α
R2β . According to the

analysis of the distribution of effective signals and interference

signals, we have E
[
e−zξ∆TκMrh

t
j,1

]
= (1 + ξ∆TκMrz)

−K .
We note that it is challenging to derive the radar information
rate expression due to the special probability density function
(PDF) of distance from the interfering BSs to the serving BS.
Specifically, considering that the typical target is sensed by
the closest BS, i.e., the serving BS, it is impossible to find
another BS in the circle defined with the target as its center
and a radius equal to the distance to the serving BS (namely
interference hole).

To tackle the above issue, we analyze the exact PDF of
interfering BS’s distance from a perspective of geometry, and
obtain a extremely tight expressions with Q = 1 as follow.

Proposition 2: When Q = 1, the average radar information
rate Rs can be given by

Rs =

∫ ∞

0

1− (1 + ξ∆TκMrz)
−K

z

∫ ∞

0

LIS(z)f(R)dRdz,

(10)
where f(R) = 2πλbRe−πλbR

2

and LIS(z) =

exp

(
− R

(
Kz

2
β

(
R

πλb

) 2α
β −1

B
(
1, 1− 2

β ,K + 2
β

)
+ 1 −

∫ 2

0
2
π arccos t

2

(
1−

(
1+z

(
R

πλb

)α−β/2

t−β

)−K)
tdt

))
.

Proof: The effective transmit beamforming gain at the tar-
get’s direction and sensing interference channel gain between
BSs can be approximated as gamma random variables, i.e.,
ht
j,1 and hi,1 ∼ Γ(K, 1). The strip’s area, formed by the

intersection of the annular area with no interference and the
serving BS’s circle, can be represented as 2x dx(π − φ(x)),
with φ(x) = arccos

(
x
2R

)
denoting the angle within the

hole. Consequently, the Poisson distribution models the num-
ber of interfering points within this strip, with a mean of
λb2x dx(π − φ(x)). Using this intermediate result, we now
derive tight bounds on the Laplace transform of sensing
interference as follows:

LIS(z)= exp

(
−πλbKz

2
β R

4α
β B

(
1, 1− 2

β
,K +

2

β

)
+λbR

2

∫ 2

0

2 arccos
t

2

(
1− 1

(1 + zR2α−βt−β)
K

)
tdt

)
.

(11)

In (11), the second part is to subtract the interference in the
hole with the service BS as the center. By calculating the
probability integral of the target distance R, we have

LIS(z) =∫ ∞

0

exp

(
−R

(
Kz

2
β

(
R

πλb

) 2α
β −1

B

(
1, 1− 2

β
,K +

2

β

)
+1

−
∫ 2

0

2

π
arccos

t

2

(
1− (1 + z(

R

πλb
)
α−β/2

t−β)

−K)
tdt

))
dR.

(12)
Then, by plugging (12) into (9), the radar information rate can
be expressed as

Rs =

∫ ∞

0

1− (1 + ξ∆TκMrz)
−K

z

∫ ∞

0

LIS(z)f(R)dRdz.

(13)



This completes the proof. ■
The density of BSs typically impacts the average sensing

performance because of the varying path loss coefficients
between effective signals and interference. However, when
Q ≥ 2, deriving a tractable expression for radar information
rate becomes challenging due to the intricate PDF of interfer-
ing BSs. To address this challenge, we adopt an approximation
method to obtain a tractable expression as follows.

Theorem 2: When Q ≥ 2, the sensing ASE can be given
by

TASE
s =

∫ ∞

0

1− (1 + ξ∆TκMrz)
−K

z
ĨSdz, (14)

where ĨS=
∫∞
0

∫∞
0

exp

(
−πλb

(
r2Q

((
1 + zR2αr−β

Q

)−K

−1

)
+Kz

2
β R

4α
β B

(
zR2αr−β

Q

zR2αr−β
Q +1

, 1− 2
β ,K + 2

β

)))
frq (r)fR(r)dRdrq .

Proof: Please refer to Appendix C. ■

IV. SYSTEM OPTIMIZATION

In this section, we study the optimization of the cooperative
ISAC networks to achieve a flexible balance between S&C.
First, the weighted sum ASE is defined as a function of the
S&C rates and given by

TASE = ρTASE
c + (1− ρ)TASE

s . (15)

In (15), ρ represents the weighting factor of S&C performance.
The problem formulation can be expressed as

(P1) : max
J,K,Q,L

TASE
(16)

s.t. KL+ J(Q− 1) + 1 ≤ Mt, (16a)
J,K,Q,L ≥ 1, J ≤ Jmax. (16b)

A direct way to find the optimal value is to exhaustively search
all feasible variables (K,L, J,Q). However, such an operation
is with high computational complexity, especially when the
number of transmit antennas is large.

It is observed that in (8), to maximize the communication
ASE TASE

c efficiently, we can relax K to continuous variables
and substituting v = K

Mt−J(Q−1)+1 into (8), we have

TASE
c = λb(Mt − J(Q− 1) + 1)G(v), (17)

where G(v) =
∫∞
0

1−e

−z
Γ(L+α

2 )( 1
v
−L)

Γ(L+1)Γ(1+α
2 )

zF (z,α) dz. Therefore, we
know that the optimal v∗ is only related to variable L. The
following lemma gives the optimal v∗ to maximize TASE

c .
Proposition 3: With any given J and Q, the optimal K can

be uniquely found by solving the following equation:∫ ∞

0

1− e−z( 1
v−L) − ze−z( 1

v−L)/v

zF(z, α)
dz = 0. (18)

Proof: G(v) is a concave function with respect to
v since the second-order derivative of G(v) satisfies
G′′(v) > 0. The fist-order derivative of G(v) is

G′(v) =
∫∞
0

1−e
−z( 1

v
−L)−ze

−z( 1
v
−L)/v

zF(z,α) dz. Then, we have

lim
v→0

G′(v) =
∫∞
0

1
zF(z,α)dz > 0, and G′(1) =∫∞

0
1−e−z(1−L)−ze−z(1−L)

zF(z,α) dz < 0. Considering that G(v) is
a concave function and G′(v) < 0, there is always a unique
solution v∗ within [0, 1] to solve the equation G′(v) = 0. ■

Based on Proposition 3, the optimal K can be obtained by a
binary search instead of a one-dimensional search. Moreover,
with L = 1, the optimal ratio of scheduled users K

Mt+1 is
constant, which is also verified in simulations (c.f. Fig. 2).
According to the Theorem 1, it can be verified that the
communication ASE TASE

c decreases monotonically with the
increase of J(Q − 1). The optimal communication part is
to satisfy K

Mt−J(Q−1)+1 = v, where v can be deemed as a
constant parameter with a given L. Therefore, (P1) can be
solved more efficiently.

Furthermore, Let us consider the case that there are min-
imum service quality constraints for the users/targets being
served/detected, i.e., L ≥ Lth and Q ≥ Qth. In this case,
there is a new tradeoff between the average performance of
S&C (Rs and Rc) and the whole network performance (TASE

s

and TASE
c ). To illustrate such a tradeoff, we formulate problem

(P2) as follows:

(P2) : max
J,K,Q,L

TASE
c (19)

s.t. Rs ≥ Rth
s , Rc ≥ Rth

c , TASE
s ≥ T th

c , (19a)
KL+ J(Q− 1) + 1 ≤ Mt, (19b)
J,K,Q,L ≥ 1, J ≤ Jmax. (19c)

By adopting similar conclusions in problem (P1), (P2) can also
be solved efficiently, and the results are shown in Fig. 5.

V. SIMULATIONS

Numerical simulations are averaged over network typologies
and small-scale channel fading realizations. The system pa-
rameters are given as follows: the number of transmit antennas
Mt = 20, the number of receive antennas Mr = 10, the RCS
ξ = 0.1, κ = 1, matching filter gain ∆T = 1, the BS density
λb = 1/km2, Jmax = 10, pathloss coefficients α = 4, and
β = 2.

In Fig. 2, the tractable expressions obtained using Theorem
1 exhibit a notably close approximation to truth for Mt = 5,
Mt = 10, and Mt = 20, respectively. When optimizing the
communication ASE, we observe that the ratio between the
number of users and the number of BS antennas remains
consistent at approximately 60% across various numbers of
transmit antennas. This finding aligns with the analysis pre-
sented in Proposition 3. Furthermore, with fewer scheduled
users, the increase in the number of transmit antennas leads to
limited improvement in ASE performance. This is anticipated
as optimal spatial resource allocation for multiplexing and
diversity gain plays a crucial role in maximizing performance
gains in ISAC networks. To validate the analysis regarding
optimal spatial resource allocation for maximizing commu-
nication ASE TASE

c , we conducted a comparison of TASE
c

across various values of L and K, as illustrated in Fig. 3. The
analysis reveals that at the maximum communication ASE,
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Fig. 5. ASE tradeoff between S&C versus different link-level constraints.

the optimal values of K and L are 12 and 1 respectively.
This indicates that there is no necessity for interference nulling
to maximize communication ASE, affirming the conclusions
drawn in Proposition 1.

As illustrated in Fig. 4, with K = 1 and L = 1, the accuracy
of the derived expression for the sensing ASE is confirmed.
We observe that the sensing ASE initially increases and then
decreases as Q increases. Therefore, to maximize the sensing
ASE, while the number of simultaneously sensed targets J
may inevitably decrease, interference nulling for sensing with
an appropriate cooperative cluster size can effectively enhance
the sensing ASE. This expectation arises because interference
does not suffer from round-trip path loss like echo signals,
and it is possible that the distance from other interfering BSs
to the sensor may be shorter than that from the target. Specif-
ically, with Mr = 20, our proposed cooperative scheme can
attain up to twice the ASE compared to the scenario without
interference nulling. Furthermore, as J(Q − 1) must be an
integer, increasing the cooperative cluster size may necessitate
appropriately reducing J to fulfil the DoF constraints (c.f.
(16a)). This fluctuation in J results in variations of the sensing
ASE as the cooperative cluster size increases.

In Fig. 5, with Mt = 30, the boundary comparison of net-
work performance under various link-level quality constraints
is depicted, denoted by L ≥ Lth and Q ≥ Qth. Here, Qth and
Lth represent the minimum cooperative cluster sizes needed
to attain the required S&C quality for the served targets or

Mt = 10

Mt = 40

Fig. 6. Weighted sum ASE comparison with respect to weighting factor ρ.

users. The relationship between the link quality constraint
and network performance boundary is evident: as the link
quality constraint becomes stricter, the network performance
boundary decreases. This effect primarily stems from the
constraint that limits the optimization range of variables L
and Q, thereby reducing the DoF available for balancing the
network performance of S&C. Figure 6 illustrates the optimal
weighted summation ASE TASE for problem (P1) across
varying weighting factors ρ. As the weighting coefficient ρ
increases, the sensing ASE monotonically increases while the
communication ASE decreases. Furthermore, it is observed
that TASE is consistently lower than the maximum of the
sensing ASE and the communication ASE. This is because
the weighted summation ASE value always lies between the
sensing-only ASE and the communication-only ASE.

VI. CONCLUSION

In this paper, we introduced a novel cooperative scheme for
ISAC networks by leveraging coordinated beamforming. We
demonstrated that interference nulling is unnecessary when
maximizing communication ASE, whereas it is essential when
maximizing sensing ASE. We formulated two optimization
problems to assess ISAC network performance, confirming
that optimal spatial resource allocation effectively enhances
cooperative gain. Our simulation results offer valuable insights
for the design of practical ISAC networks.



APPENDIX A: PROOF OF THEOREM 1

Specifically, according to equation (5) in [14], the coverage
probability can be approximated by PL(γ) = P1(γ/GL),
where γ is the SIR threshold and GL denotes the effective
gain by adopting interference nulling in the cooperative cluster.
Then, under the given distance from the typical user to the
serving BS r, the conditional expectation can be further
approximated as follows:

Rc ≈EΦb

log
1 +

E
[
gkk,1

]
∑∞

i=L+1 E [gk,i] ∥di∥−α
rα


=

∫ ∞

0

1− e−z
Mt−KL−J(Q−1)+1

K

z
E
[
e−zIC

]
dz.

(20)

Then, the Laplace transform of communication interference
with L = 1 can be given by

E
[
e−zIC

]
=exp

(
− πλx

(
1− e−zrαx−α/2

)∣∣∣∞
r2

− πλ

∫ ∞

r2

α

2
zrαx−α

2 e−zrαx−α/2

dx

)
=exp

(
−πλr2 (F (z, α)− 1)

)
,

(21)

where F (z, α) = e−z + z
2
αΓ
(
1− 2

α , z
)
.

By plugging E
[
e−zIC

]
and (20) into∫∞

0
Eg,Φb

[
log (1 + SIRc)

∣∣r] fr (r) dr,
we have Eg,Φb

[log (1 + SIRc)] =∫∞
0

exp
(
−πλr2(F (z, α)− 1)

)
f(r)dr = 1

F(z,α) . Then,
we need to further obtain the effective gain of SIR with L
cooperative BSs compared to the case with L = 1. According
to [14], we can obtain an approximate coverage probability
with L−1 interference nulling based on no-interference nulling

case, i.e., PL(γ) = P1(γ/GL), where GL =
Γ(L+α

2 )
Γ(L+1)Γ(1+α

2 )
and PL(γ) denotes the coverage probability with SIR threshold

γ. Therefore,
E[gk

k,1]∑∞
i=L+1 E[gk,i]∥di∥−αrα

and
E[gk

k,1]GL∑∞
i=2 E[gk,i]∥di∥−αrα

follow nearly identical distributions. Then, it follows that

Rc ≈
∫ ∞

0

1− e
−z

Γ(L+α
2 )(Mt−J(Q−1)+1−KL)

KΓ(L+1)Γ(1+α
2 )

zF(z, α)
dz.

(22)

Plugging (22) into 6, this thus completes the proof.

APPENDIX B: PROOF OF PROPOSITION 1

When α = 4, GL = L+1
2 . For any given

K, Q, J , we have
Γ(L+α

2 )
Γ(L+1)Γ(1+α

2 )
Mt−KL−J(Q−1)+1

K =

1
2

(
−L2 +

(
Mt−J(Q−1)+1

K − 1
)
L+ Mt−J(Q−1)+1

K

)
≜ y(L).

y(L) is a quadratic function about L. It can be found that
when Mt−J(Q−1)−K+1

2K ≤ 1, y(L) is maximized when L = 1.
Otherwise, y(L) is maximized when L = Mt−J(Q−1)−K+1

2K ,
let v = K

Mt−J(Q−1)+1 , we have

∂TASE
c

∂v
=

∫ ∞

0

1−
(
1 + z 1+v

2v2

)
e−z 1

4 (
1
v+1)

2

zF (z, α)
dz ≥ 0. (23)

Thus, in this case with Mt−J(Q−1)−K+1
2K ≥ 1, TASE

c is
a monotonically increasing function with respect to K.
Since K ≤ Mt−J(Q−1)+1

3 , y(L) is maximized with K =
Mt−J(Q−1)+1

3 , and in this case, L = Mt−J(Q−1)+1
2K − 1

2 = 1.
Combining the above analysis, we complete the proof.

APPENDIX C: PROOF OF THEOREM 2

It can be readily found that the interference term in the hole
can be ignored when Q ≫ 1. Thus, to simplify the expression
derivation, we remove the second term in (10) for the case
with Q ≥ 2, and then the conditional Laplace transform of
sensing interference can be given by[
e−zIS

∣∣R, rQ
]
= exp

(
− πλb

(
r2Q

((
1 + zR2αr−β

Q

)−K

− 1

)
+Kz

2
β R

4α
β B

(
zR2αr−β

Q

zR2αr−β
Q + 1

, 1− 2

β
,K +

2

β

)))
.

(24)
Then, the Laplace transform of sensing interference is[
e−zIS

]
=
∫∞
0

∫∞
0

[
e−zIS

∣∣R, rq
]
frq (r) fR(r)dRdrq . Finally,

by plugging
[
e−zIS

]
into (9) and (6), the tractable expressions

of the radar information rate and sensing ASE can be obtained.
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