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Abstract

Numerous real-world phenomena and challenges require a new way of thinking

from a systems perspective and this new approach is broadly called complex sys-

tems. Instead of having to break down a system into its individual components and

studying their respective dynamics and contribution to the entire system, complex

systems adopt a more collective approach with the emphasis on the whole rather

than the sum of it, while sometimes the individual components may still be of in-

terest. Among them, biological systems have attracted growing attention in recent

years and are reckoned able to demonstrate a wealth of intelligence of different

types which has remained untapped by humans. Therefore, the thesis is dedicated

to the advancement that has been made during my PhD in revealing the intelligence

that the systems can exhibit, ranging from molecular circuits to neuronal networks

with the aid of mathematical and computational models. We will first leverage Hill

equations to investigate the two advanced properties for associative learning that we

newly proposed in the context of genetic circuits. Later, we will focus on the various

forms of intelligence that neuronal networks can enable. It comprises the investi-

gation of short-term memory in the presence of astrocytes, information processing

and the disorder of the network, and classifying time series inputs.



Impact Statement

The thesis comprises the breakthrough that has been made to better reveal the in-

telligence that complex biological systems can potentially possess and demonstrate

using mathematical and computational models.

In Chapter 2, we manage to characterize two advanced properties of associative

learning that can be potentially exhibited by synthetic genetic circuits using math-

ematical models. To this end, we propose two advanced properties, reinforcement

effect and forced dissociation, that can be considered in the design of new genetic

circuits so as to unleash the untapped potential of synthetic biology. Therefore,

we demonstrate that the Fernando’s model can display the reinforcement effect but

fails to display the forced dissociation, while we also construct a new model that

can meet both requirements at the cost of several limitations.

In Chapter 3, we arrive at a plausible hypothesis of the impact of astrocytic

coverage of synapses on the short-term memory using a neuron-astrocyte network.

Working memory refers to the capability of the nervous system to selectively retain

short-term memories in an active state and besides, growing evidence has suggested

that astrocytes exhibit diverse coverage of synapses which are considered to partic-

ipate in neuronal activities. Hence, we leverage a computational neuron–astrocyte

model to study the short-term memory performance subject to various astrocytic

coverage and we demonstrate its susceptibility along with varying spatial frequen-

cies.

Biological systems also possess considerable potential in learning new patterns

and dynamics. Among all machine learning challenges, time series classification

(TSC) has gained increasing attention due to its wide application and impact. In
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Chapter 4, we develop two reservoir computing methods, Diff-ESNs and Interp-

ESNs, that can efficiently deal with a wide spectrum of challenging TSC tasks.

Among 33 UCR time-series benchmark datasets, the Diff-ESN outperforms the

gold standard dynamic time warping (DTW) method on 23 datasets whilst achiev-

ing comparable results on the remaining 10 datasets. As for more irregular time

series data, the Interp-ESN can be used to achieve desirable performance and en-

able flexible forecasting.

In Chapter 5, we harness the core structure of liquid state machines, another

type of reservoir computing, to investigate the propensity of entropy change in re-

sponse to the external stimulation. To this end, a new biophysical formalism has

been proposed to properly simulate the dynamics of a pseudo-brain in the pres-

ence of external input with biological plausibility. Most importantly, we provide a

reasonable explanation for the reduced brain entropy in some studies from the mod-

elling perspective. Besides, we reveal the propensity of entropy change within the

networks of different sizes and shed more light on these observations by delving

into the dynamics of the networks.
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Chapter 1

Review and overview

In this day and age, numerous real-world phenomena and challenges require a new

way of thinking from a systems perspective, ranging from ecosystems to urban traf-

fic, and we name this new approach complex systems [1–3]. The complex system

approach generically features the partial or global collective behaviors that emerge

from an intertwined network where the individual status of the agents is no longer

of great importance. In particular, mathematical modelling of complex systems

attempts to unravel the underlying properties that underpin the global dynamics,

reproduce the observed phenomena and suggest novel behaviors that are yet un-

known to the public [4–6]. Among them, biological systems have attracted growing

attention in the last few decades due to their broad potential implication for manag-

ing the ecological environment and medical treatment, etc [7–10]. Spanning from

single cells to the whole ecosystem, the biological components coordinate in an ei-

ther cooperative or competitive way in order to sustain the normal function of the

living organisms. Therefore, interdisciplinary approaches have been widely used

to expand the scope of the field and enhance our understanding of the systems at

different hierarchical levels.

Intelligence refers to the ability of a unit or a system to exhibit behaviors such

as decision making, comprehension, generalization and memory formation that at-

tain or transcend beyond the intellectual level of humanity [11]. Nowadays, it is

widely accepted that biological systems possess a wealth of intelligence of differ-

ent types and their potential is largely untapped by human beings [12–18]. Even
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though intelligence is a fairly abstract concept and it is nearly impossible to give

a precise definition to each form of intelligence, it is still worthwhile to dig into

this complicated field from a numeric perspective for several reasons. Firstly, it can

help us better understand the formation of self-awareness of humans and the extent

to which the other living systems have developed; secondly, it can help bridge the

gap between the biological intelligence and the artificial intelligence and a case in

point is the latest development in neuromorphic computing [19–21]; thirdly, it may

provide theoretical foundations for the design of engineered systems that can po-

tentially revolutionize the treatment of various diseases. As a result, in this thesis,

we will present the advancements of revealing and modelling the emergent intel-

ligence from the biological systems that have been made during my PhD. Specif-

ically, the biological systems that we are mainly concerned with are genetic and

neuronal networks and furthermore, the primary focus revolves around investigat-

ing the emergence of intelligence by virtue of the temporal and spatial variation of

the components in these systems. Indeed, spatial and temporal variation are uni-

versal phenomena and reckoned to underpin the subsistence of many species. For

instance, [22] quantified the pattern of the spatial variation within a bird species

and discovered that the species was orders of magnitude more abundant in a few

locations than others; [23] examined the spatial variation of the refractive index in

liver cells and revealed that only the nucleus and the membrane of the cell yield a

visibly different phase shift relative to the mean value of the cell; [24] assessed the

spatial as well as the temporal variation in plant hydraulic traits and their impact

on vegetation subject to climate change. In [25], visible temporal and spatial dif-

ferentiation was observed among the endangered Lake Saimaa seals in a time span

of several decades. All these findings may point to the necessity of some structural

formulation of intelligence emergence facilitated by the information transmission

between the components in a biological system owing to their spatial and temporal

variation in concentration. In the next few paragraphs, we will define the precise re-

search questions that we attempt to answer and introduce the fundamental concepts

and terminologies that underpin our methodologies in the meantime.
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Synthetic biology is an interdisciplinary field that combines expertise from

biology, chemistry, and engineering to design and construct new devices or sys-

tems [26–29]. They are normally expected to perform specific functions or produce

desired products in an attempt to address the challenges that arise from medicine,

agriculture and environment, etc. There are many key components in synthetic bi-

ology and here the focus is on the cellular engineering as this is the part that is the

most relevant to the mathematical modelling that will be covered later. The cellular

engineering involves the construction of synthetic genetic circuits and regulatory

elements so as to control gene expressions and cellular behaviors. Genetic circuits

have numerous applications and many studies have demonstrated the potential of

them to carry out some specific tasks which are reckoned to require a certain level

of intelligence by human standard [30–35]. They are composed of interconnected

genetic and regulatory elements, such as genes, promoters and proteins, that inter-

act with each other to accomplish some specific functions. Promoters are DNA se-

quences that regulate the onset of transcription as well as the extent to which a gene

is expressed. Regulatory elements are anything that can modulate gene expressions

through the interactions with promoters. The most commonly used elements are

proteins such as transcription factors, activators and repressors. A simple example

is given in Figure 1.1. The transcription factor binds to the promoter that initiates

the transcription of the gene, and a product is produced as a result. In mathematics,

Figure 1.1: A simple genetic circuit. TF: transcription factor, P: product.

the aforementioned reactions are conventionally described by the Hill equation:

Ob =
T n

Kn +T n (1.1)

Here Ob is the fraction of the operator concentration that is bound by the tran-
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scription factor, T is the concentration of the specific transcription factor, K is the

Hill constant and n is the Hill exponent. More details about the origin of the Hill

equation along with the derivation of the translation equation as well as biological

background can be found in Appendix A.

Associative learning is one of the most fundamental principles that underlie

our psychology and physiology [36–39]. It is aimed to investigate and depict how

the association of certain stimuli takes place with specific responses as well as their

implication for memory and decision-making. One of the main types of associative

learning is the classical conditioning, featured by the renowned Pavlov’s dog ex-

periment. The experiment can be summarized as through repeated pairings of the

food presence with the bell’s ring, the dog would eventually be able to make the

connection between the food and the ringing. Next time, when only the bell ringed,

the dog would still salivate even without food presence. An active area in synthetic

biology is to design and implement novel genetic circuits with the property of asso-

ciative learning [35, 40, 41]. However, the current development is restricted to the

formation of the association and the discussions around the properties beyond this

is absent. Hence, in Chapter 2, these properties will be accounted for comprehen-

sively and mathematical models will be constructed to furnish a theoretical basis as

well as generate simulation results. In parallel, we will demonstrate that the tempo-

ral variation in the concentration of proteins involved in the circuit are behind the

realization of these properties.

Neurons are the basic processing units in the brain and the most fundamental

building blocks of the communication system. Neurons in the brain form intricate

circuits or networks and the transmission of electrical or biochemical signals from

one neuron to another is permitted by the physiological junction, synapse [42–44].

Enormous evidence has revealed that neurons play an imperative role in the forma-

tion of intelligence of various types that is instrumental to the subsistence of humans

and other animals. It includes but is not limited to plasticity, learning and decision

making, sensory and information processing and memory formation [45–52].

Astrocytes are star-shaped glial cells that have been found prevalent in the
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brain. While neurons are often considered the primary cells in the brain, in recent

years, astrocytes have been increasingly recognized for their indispensable contri-

bution to the normal functioning of the brain [53–56]. It is now widely believed

that astrocytes are not only the structural guardians of the neurons and the nervous

system, but also actively involved in brain activities such as the formation of the

blood-brain barrier, synapse formation and elimination, participation in neuronal

signaling, etc. In this work, we will focus on the contribution of astrocytes to the

neurotransmission between pre- and postsynaptic neurons. The process is enabled

by the tripartite synapse [57–59]. It is a specialized type of synapse in the sense

that the transmission is facilitated by the presence of the perisynaptic astrocytes.

A schematic diagram is shown in Figure 1.2. The neurotransmitters (blue dots)

released from the terminal of the presynaptic neurons, often as a result of the oc-

currence of action potentials, bind to the receptors on the astrocyte and initiate the

release of gliotransmitters (yellow dots). The gliotransmitters will thereafter bind

to the receptors on the terminal of the postsynaptic neurons and the signals have

been bridged from one side to another. More detailed mechanisms along with the

mathematical models will be described in Chapter 3.

Figure 1.2: A schematic diagram of the tripartite synapse

Working memory is reckoned prevalent in the nervous system and is responsi-

ble for the temporary storage and retrieval of information crucial for various cog-

nitive tasks [60–62]. It creates a temporary workspace where transient information

can be held and processed to inform actions such as decision-making or learning.

The duration of working memory is typically in seconds. It is often regarded as
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an extension of the term short-term memory. Even though a precise boundary be-

tween the working memory and the short-term memory has never been drawn, one

can generally interpret working memory as a more dynamic and complex system

while short-term memory is more often applied to a more static scenario. For in-

stance, recalling the picture shown to you 5 seconds ago may be categorized as

short-term memory whereas recalling the exact sequence of motions may be con-

sidered in relation to working memory. Since we will only implement a simply

vision task, short-term memory will be used for the most part to avoid providing

misleading information. In [63–66], in silico neurn-astrocyte models have been de-

veloped to investigate the formation and the performance of the working memory

with the assistance of astrocytes. Nevertheless, the coverage of the astrocytes re-

mains unchanged and the alteration in spatial frequencies of the input patterns has

been left out of discussion. Therefore, in Chapter 3, we will study the impact of as-

trocytic coverage of synapses on short-term memory in the presence of varying spa-

tial frequencies of the input signals using a neuron-astrocyte computational model.

Essentially, the spiking frequencies of individual neurons and the concentrations of

ions in individual astrocytes can be viewed as the main source of spatial variation

in the network. Moreover, the alteration of astrocytic coverage of synapses can be

regarded as the variation in the spatial pattern given that the density of astrocytes

will be adapted accordingly.

Reservoir computing is a specific type of recurrent neural networks and has

been broadly applied in machine learning and neuroscience to deal with time series

data [67–70]. It normally consists of three layers: the input layer, the reservoir layer

and the output layer. The output layer is essentially indispensable when it comes to

machine learning tasks but can be removed if one only wants to study the dynamics

in the reservoir layer. As a matter of fact, if one removes the output layer, it is

effectively a simplified representation of how the brain receives input signals and

processes the acquired information within it, as shown in Figure 1.3.

As for the machine learning tasks such as time series prediction and classifi-

cation, the precision is of the top priority and the biological accuracy as a conse-
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Figure 1.3: A schematic diagram of the first two layers of reservoir computing

quence, may need to be compromised. Echo state networks (ESNs) are a type of

RC where the sigmoid functions are used as the activation functions for the neurons

in the reservoir layer to permit information transmission and computational efficacy

within the network [71]. The role played by the sigmoid activation function is to en-

sure the echo state property (ESP) which will be explained in due course. The idea

is to map the input time series to a high-dimensional recurrent neural network such

that the intrinsic dynamics can be better characterized. It is attributed to the tempo-

ral and spatial variation in the activation values in the reservoir layer as a result of

the weights in the input and the reservoir layer, the values of which are randomly

assigned. The training is conducted by adjusting weights in the output layer using

statistical machine learning techniques in the hope that the right connections can

be established between the input and the output. Up until now, ESNs have demon-

strated colossal success in sequential predictions but the potential of dealing with

time series classification (TSC) tasks is still to be discovered. In Chapter 4, we

will develop efficient approaches that can perform TSC for an array of time series

datasets.

Information processing in the brain involves a series of intricate steps that al-

low us to perceive, store and analyze information. The sensory receptors discover

the external stimuli and integrate information into the nervous system. In particular,

information theory and the brain are considered interconnected in mysterious ways,

not least because the brain can be regarded as a complex information processing
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system as well as that the spiking patterns resemble some coding theories [72–76].

One of the most central concepts in information theory is the entropy. Entropy is

a quantitative measure of the amount of disorder, uncertainty, or surprise in a sys-

tem and in the backdrop of brain science, some researchers believe that it in a way,

reflects the diversity in the firing patterns and the efficiency in information transmis-

sion [77–84]. Nowadays, brain stimulation techniques are extensively employed to

modulate the brain activity with the aim of treating neurological diseases and un-

veiling the mystery of brain functions [85–88]. However, apart from a few isolated

studies [89–91], a general understanding of how the entropy in the brain is affected

by the external stimuli is still deficient, particularly from the modelling viewpoint.

Therefore, a preliminary analysis of this crucial relationship using mathematical

approaches will constitute the main content of Chapter 5.

Liquid state machines (LSMs) are another type of RC where the units are bio-

logical neurons, as in more emphasis is put on biological plausibility [92–94]. The

liquid reservoir is composed of numerous recurrent spiking neurons and they are

described by biophysical neuronal models in silico. It is also preferable that the

input of the time series data to the reservoir layer can be converted to spike trains

using some specific neural encoding methods. Consequently, the reservoir can be

seen as the brain in miniature and the dynamics of the brain susceptible to the ex-

ternal stimulation can be studied numerically. With that being said, we should also

point out that the LSMs can be equally adopted to perform machine learning tasks

through the training of the output layer, while facing more difficulty in terms of

efficacy as compared to ESNs.

Spike-timing-dependent plasticity (STDP) is a type of synaptic plasticity well

considered in neuroscience and biophysics [95–99]. It is a reasonable encapsula-

tion of the phenomena observed in the brain that involves the modulation of synaptic

weights on the basis of the relative spike times between pre and post-synaptic neu-

rons. It has been argued that STDP rules have broad implications for learning and

memory processes in the nervous system. In this work, STDP rules will be used to

alter the synaptic weights in the reservoir layer in the presence of external stimu-
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lation and empower the analysis of the change in entropy. One may also note that

it will subsequently update the timing and frequency of the spike for each neuron

in the reservoir, allowing for a rich repertoire of firing patterns both spatially and

temporally.



Chapter 2

Modelling advanced properties of

associative learning in genetic circuits

2.1 Introduction
Synthetic biology is an emerging field that involves re-engineering existing biolog-

ical systems or creating new ones that may solve real-world problems in medicine,

agriculture, etc [100–108]. Over the past few decades, synthetic biology has wit-

nessed a rapid revolution in the biotechnology industry, and opened up enormous

potential for next-generation research in biology due to the increasingly tremendous

power of genetic engineering technology, and ever decreasing cost of synthesis and

sequencing [7, 109–115]. Particularly, increasing attention has been drawn to de-

signing and testing synthetic biological circuits in vitro, in vivo and in silico in an

attempt to better understand bioartificial intelligence at the cellular and molecular

levels [116–121]. These artificial circuits can, therefore, function as fundamental

units to modify existing cellular behaviours, and to perform a wide range of tasks

of our own interest in programmable organisms [122–126]. Numerous synthetic

circuits were developed for associative learning, decision making, and oscillators,

and a brief summary is exhibited in Table 2.1 [30–35, 127–129]. With the grow-

ing collaboration between theorists and experimentalists in almost every discipline,

we also noticed a trend in synthetic biology that mathematical models are frequently

used to acquire insight, inform troubleshooting, and perform predictions [130–133].



2.1. Introduction 39

Associative learning occurs in many aspects of our life, and it is reckoned to

form the basis of our understanding of other forms of behaviours and cognition in

human and nonhuman animals [134–138]. The most classical experiment on asso-

ciative learning is the Pavlov’s dog, in which the dog associated the ring of a bell

with the smell of food [139,140]. The dog learned to associate the conditioned stim-

ulus (bell’s ring) with the unconditioned stimulus (smell), such that next time, in the

presence of the bell’s ring alone, the dog knew that the food would be served soon,

and the learned response (the saliva from its mouth) was observed. The historical

viewpoint is that the mammalian nervous system plays a vital role in associative

learning through neuronal signaling and reconfiguration [141–144].

Table 2.1: Types of synthetic circuits.

Associative Learning Decision Making Oscillator
Fernando et al., 2009 [40] Nene et al., 2012 [31] Stricker et al., 2008 [128]
Nesbeth et al., 2016 [116] Filicheva et al., 2016 [32] Tigges et al., 2009 [129]

Macia et al., 2017 [35] Abrego and Zaikin, 2017 [33] Borg et al., 2022 [127]

However, some studies revealed the possibility that non-neural agents may also

organise in a similar fashion [35, 145, 146]. Naturally, molecular circuits may dis-

play similar behaviours as molecular reactions form the building block of cellular

activities. As a result, the design and investigation of molecular interactions that

manifest associative learning have become active research topics in recent years.

Although logic gates have been widely adopted in synthetic biology for emulating

diverse biological behaviours [147–151], in this chapter, the focus is confined to the

continuous models constructed by the Hill equations [152, 153], since continuous

models tend to generate more accurate results and facilitate the comprehension of

fine details of the system.

One of the first models along the line is the Fernando’s model [40]. The work

stands as a well-organised interdisciplinary article in which mathematical modelling

and the bioengineering approach were given equal coverage and attention. In this

work, the authors first built a genetic circuit motivated by the Hebbian learning

which is reckoned prevalent in neural networks. A system of ordinary differential

equations (ODEs) was later constructed using the Hill equation and the response
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levels were visualised when subject to different conditions in order to exhibit the

occurrence of associative learning. The article concluded with a brief description

of the practical implementation in a single cell. Nonetheless, partly due to its inter-

disciplinary nature, the work only demonstrated that learning can be formed after

conditioning with a brief simulation study and an in-depth analysis of the dynamics

was still lacking. Furthermore, it may be worthwhile to consider some advanced

properties beyond the formation of learning itself so as to increase the scope of

applications in practical scenarios.

More specifically, it is natural to assume that the learned response becomes

stronger with increasing times of conditioning. For illustrative brevity, we name

the phenomenon reinforcement effect. It is also reasonable to suppose that the re-

sponse becomes weaker with the repeated cuing of the conditioned stimulus (with

no unconditioned stimulus taking place at the same time) shortly after the formation

of conditioning, and we call it forced dissociation. To the best of our knowledge,

neither of them has been formally discussed in the previous literature. The poten-

tial importance of these two behaviours can be explained from two aspects. On the

one hand, in the Pavlov’s dog experiment, the former would be equivalent to the

scenario that the repeated conditioning of the bell and the food would reinforce the

dog’s belief that the bell’s ring is a reminder of food availability; the latter would

be that the repeated bell’s ring alone shortly after the conditioning would stop the

dog reckoning that the bell is related to the food’s availability. On the other hand,

these properties may provide experimentalists with more flexibility over the con-

trol of some biological systems, as synthetic circuits are widely used to regulate

them [103, 105, 154, 155]. We show that the Fernando’s model is able to manifest

the reinforcement effect by choosing the proper parameters, but is unable to man-

ifest forced dissociation. This motivated us to design a new circuit that possesses

the potential to display forced dissociation. The new circuit also involves fewer

proteins and does not contain any feedback loop, which can potentially reduce the

wiring complexity in practical implementation. In the meantime, we also study the

robustness of the respective models to the Hill coefficients, as this instructs experi-
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mentalists on the type of polymers that can be used to implement the circuit.

2.2 Models

2.2.1 Fernando’s Model

The circuit diagram of the Fernando’s model is shown in Figure 2.1, and we assume

that the circuit can be implemented in a programmable cell. Unlike the schematic

Figure 2.1: The schematic circuit of the Fernando’s model. The correspondence to the
components in the Pavlov’s dog (indicated by blue arrows) is included for ease
of reading.

diagram given in [40], here we omit genes for illustrative simplicity. In the diagram,

each oval box denotes a particular protein. The activation is drawn with an arrow,

and the inhibition is drawn with a hammerhead. Except for inhibitions u1→ r1 and

u2→ r2, where the input molecules are directly bound to the repressors, all other ac-

tivations and inhibitions are realised by transcription and translation. For instance,

repressor r1 inhibits the transcription of a particular gene, which guides the manu-

facture of molecule ω1. The upstream gene of protein p has two available operator

sites, one for r1, ω1 and another for r2, ω2. A more detailed explanation can be

found in [40]. The Fernando’s model is characterised by the system as follows
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In the equations above, u1 and u2 represent the respective concentrations of

the unconditioned and conditioned stimuli, and they are given to the cell in a

transient time window. ω1 and ω2 represent the respective concentrations of the

weight molecules. r1 and r2 represent the respective concentrations of the repressor

molecules. The concentration of the response molecule is denoted by p. Kω , Kr and

Kp denote the respective Hill constants for molecule ω , r and p that measure the

concentrations of the transcription factors required for half occupancy. R denotes

the repressor concentration in the absence of molecule u. a and b are Hill coeffi-

cients that measure the cooperativity of the respective transcription factors. In [40],

the authors used a = 4 and b = 2; however, in this work, we will also study the

impact of varying integer values of a and b on qualitative behaviours. ε denotes the

basal grow rate, and we assume that it is only nonzero for j = 1. v and δ denote the

growth and degradation rate parameter, respectively, and the subscripts are used to

signify the source of contribution. The architecture shows that the genetic circuit is

structurally symmetric, and the left and the right halves are independent. The asso-

ciation is triggered by the feedback of the response molecule p, and the inspiration

is derived from the Hebbian learning that dictates information exchange between

neurons [156].

In order for an association to be formed, we can simply render the concentra-

tion of the molecule ω1 abundant, and the molecule ω2 insignificant before the start

of the experiment. When only molecule u1 is given to the cell, it is bound to the

repressor molecule r1 and reduces the concentration of molecule r1. Therefore, the

inhibition of the transcription with respect to the genes controlled by molecule r1

is lifted. Eventually, sufficient molecule ω1 activates the transcription of the gene
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associated with the response molecule p and promotes the production of p. Con-

versely, when only molecule u2 is given to the cell, we will not be able to observe

abundant molecule p due to the shortage of ω2 availability. However, at the time

when molecule u1 is paired with molecule u2, the production of molecule p (trig-

gered by u1) elevates the concentration of molecule ω2 because of the feedback

loop, so that the next time, even when only molecule u2 is present, there will al-

ready exist sufficient molecule ω2 for the production of p, which implies that the

association has been formed.

In order to analyse a system of differential equations, one often converts the

system to a dimensionless scale as a first step. One generally reduces the volume

of parameters and removes physical units from the system, which facilitates math-

ematical investigations and renders the model more flexible for experimentalists

who wish to implement the system in vivo or in vitro, as the units are not specified.

By using the scaling ω j =
ω j
Kω

, r j =
r j
Kr

, p = p
Kp

, t = δpt, u j = ku j, the dimensionless

model becomes (overlines were dropped for simplicity):



d p
dt

=
N

∑
j=1

α

( ωa
j

1+ωa
j

)( 1
1+ rb

j

)
− p

dω j

dt
= β

( pb

1+ pb

)( 1
1+ rb

j

)
−θω j + τ j

r j =
S

1+u j

(2.2)

where α =
vp

Kpδp
, β = vω

Kω δp
, θ = δω

δp
, τ j =

ε j
Kω δp

, S = R
Kr

.

We can now try to intuitively interpret whether the reinforcement effect can be

realised by the Fernando’s model or not. Suppose we carry out the conditioning

twice in order to guarantee that the second learned response is more abundant than

the first, the simplest way is to ensure that the initial concentration of ω2 is small,

and the growth parameter β is not too large, so that we could anticipate p to keep

growing with the repeated conditioning according to Equation (2.2). Additionally,

we need to select a relatively small θ to guarantee that the memory that is reflected

by the weight molecules will not disappear too rapidly. Next, we investigate how the
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two stimuli dissociate. Intuitively, in light of the design of the Fernando’s model,

the disappearance of the learned response is dictated by the time elapse. This is due

to the fact that ω2 promotes the production of p, such that the response eventually

disappears only if ω2 falls to 0. Additionally, the learned response does not attenuate

if the time interval between the two successive stimuli is insufficient relative to the

decay rate. In all, the dissociation is autonomous and is not dictated by the repeated

cuing of the conditioned stimulus (alone). This can be circumvented by a different

design, which is introduced next.

2.2.2 A Model with Forced Dissociation

The circuit for the model proposed here was inspired by [116] and is shown in

Figure 2.2. In the diagram, each oval box denotes a particular protein, and we

Figure 2.2: The schematic circuit of the model with forced dissociation. The correspon-
dence to the components in the Pavlov’s dog (indicated by blue arrows) is in-
cluded for ease of reading. Also for the sake of clarity, the wiring that results in
the production of the molecule y is also broken down in order to detail different
binding scenarios that contribute to the initiation of translation and transcrip-
tion. The orange square indicates the presence of the molecule on the operate
site whereas the grey square indicates the absence.

again omit the genes for the illustrative brevity. More specifically, input x initiates
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the transcription of a particular gene which guides the manufacture of molecule

u; the translation of molecule v is controlled by another gene, the expression of

which is dictated by x, u and z together. Similarly, y is controlled by a third gene,

the expression of which is dictated by x, v and z. The activation is drawn with an

arrow, and the inhibition is drawn with a hammerhead. Input x plays the role of

the conditioned stimulus, input z plays the role of the unconditioned stimulus, and y

represents the response. However, the discrimination between the conditioned and

unconditioned stimuli has been downplayed in some sense; we will explain this in

the discussion part. The design of this new architecture comes with at least two

purposes. First, we intend to construct a simple circuit of which the mechanism is

completely different from that of the Fernando’s model, aiming for the components

of the circuit to be more interactive with each other, and the association not to be

reliant upon the participation of the feedback loops. These may lift a few restrictions

on the synthetic implementation. Second, given that the Fernando’s model is not

capable of demonstrating forced dissociation, we hope to build a model that could

successfully dissociate the two stimuli by repeating the cuing of the conditioned

stimulus alone right after the conditioning. To fulfil the latter requirement, instead

of placing a molecule (ω2 in Fernando’s model) that promotes the transcription of

the response protein molecule, we could actually consider introducing an inhibitor

upstream of the response molecule. In this way, the consistent input of conditioned

stimulus alone is expected to reduce the amount of the response molecule, so long

as the stimulus promotes the expression of the inhibitor after the conditioning of

the conditioned and unconditioned stimuli. This explains why we introduce the

x→ v→ y pathway in Figure 2.2. Regarding the other parts of the circuit, z→ y

and z→ v→ y guarantee that input z can always activate the output y, x→ y ensures

that there can exist a sufficient learned response upon the formation of associative

learning, and u functions as a moderator, speeding up the consumption of v that

renders the reinforcement effect more likely to occur. Here, we assume that the Hill

coefficients for all molecules are identical, and they are denoted by a.

By employing the Hill equation, the system can be described with the following
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equations: 

dy
dt

= αyx
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Ka
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)( Ka
z

Ka
z + za

)( Ka
v

Ka
v + va

)
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( Ka
x

Ka
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)( za

Ka
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)( Ka
v

Ka
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)
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)( za
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)
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Ka
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= αvx
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Ka
x + xa

)( Ka
u

Ka
u +ua

)( Ka
z

Ka
z + za

)
−δvv

(2.3)

Similarly to the Fernando’s model, Kx, Kz, Kv, and Ku denote the Hill constants

for molecules x, z, v, and u, respectively. The production and degradation rates are

denoted by α and δ , where the subscripts are used to signify the source of contri-

bution. Then, we use a similar scaling approach to render the system dimensionless

and the dimensionless system is shown below:



dy
dt

= αyx

( xa

1+ xa

)( 1
1+ za

)( 1
1+ va

)
+αyz

( 1
1+ xa

)( za

1+ za

)( 1
1+ va

)
+αxyz

( xa

1+ xa

)( za

1+ za

)( 1
1+ va

)
− y

du
dt

= αux
xa

1+ xa −βuu

dv
dt

= αvx

( xa

1+ xa

)( 1
1+ua

)( 1
1+ za

)
−βvv

(2.4)

One of the drawbacks of this circuit is that the model is not as heuristic as

the Fernando’s model. Indeed, the Fernando’s model borrows the architecture of

Hebbian learning, whereas we built our model from scratch, tailored for the prop-

erties that we wanted to achieve. Intuitively, in order for the reinforcement effect to

occur, we anticipate that, by properly choosing the parameter values, the presence

of x alone could significantly elevate the amount of v, and the conditioning (when-

ever both x and z are present) could speed up the consumption of v. This ensures
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that the second learned response is more abundant than the first, and the response

to the conditioned stimulus alone is simultaneously less abundant than that to the

unconditioned stimulus. When it comes to forced dissociation, as we discussed pre-

viously, the repeated cuing of input x alone after the conditioning could elevate the

concentration of v, which subsequently reduces output y as a result of x→ v→ y.

The numerical result is given in the next section.

Before closing this section, we briefly mention a potential adjustment to the

current circuit that could simplify the system given in Equation (2.4). Our existing

scheme allows for x, v, and z to bind at a single operator site. In fact, we can adjust

the output part in a way such that z exploits the operator site that only restricts to z

itself, which makes it look somehow analogous to the output part of the Fernando’s

model, in which the left half and the right half are unrelated. The dimensionless

model arising from the adjustment can then be reduced to:



dy
dt

= αyx

( xa

1+ xa

)( 1
1+ va

)
+αyz

( za

1+ za

)
− y

du
dt

= αux
xa

1+ xa −βuu

dv
dt

= αvx

( xa

1+ xa

)( 1
1+ua

)( 1
1+ za

)
−βvv

(2.5)

The adjustment provides an alternative with a simpler mathematical formulation

(but likely with more biological complexity) for readers who wish to implement

our circuit. We will demonstrate later on that this adjusted model can also display

the same qualitative behaviours.

2.3 Results
Figure 2.3a displays one simulation result for the Fernando’s model (Equation

(2.2)), and the parameter values used in the simulation are listed in Table 2.2. Here,

we used the Hill coefficients recommended in [40], which are a = 4 and b = 2.

The first spike in p was stimulated by the unconditioned stimulus u1. The sec-

ond (small) spike in response p was triggered by the conditioned stimulus u2.

Of course, the response p could be adjusted to 0 only in the presence of u2 by setting

the initial concentration of ω2 to 0 just as in the original paper. Here, we highlight



2.3. Results 48

the fact that various levels of the conditioned response are available to be chosen.

The first conditioning was formed at the third spike, and the second conditioning

was formed at the fifth spike in p when both u1 and u2 were present. The fourth

and the sixth spikes in p represent the first and the second learned responses, respec-

tively, when solely u2 is present. The learned response was reinforced after repeated

conditioning. Next, we move on to the discussion of how the two stimuli dissoci-

ate, namely, how the learned response is attenuated in the presence of consecutive

conditioned stimuli alone after the formation of conditioning. The conjecture in the

previous section was validated by the last four spikes in response p in Figure 2.3a.

As is apparent, the sixth, seventh, and eighth spikes were of the same amplitude,

as the time intervals were not wide enough. Conversely, the response started to de-

crease (shown by the last two spikes) when the time interval was further widened.

This could be deemed to be a limitation for the model because, in some applications

(e.g., immune inflammation), we may hope to force the stimuli to dissociate by the

repeated cuing of the conditioned stimulus alone in a short time window after the

formation of associative learning, therefore establishing one of the motivations for

our novel design.

Furthermore, we studied whether the qualitative behaviours of associative

learning that we previously introduced are preserved or not apart from using the

Hill coefficients recommended in [40]. The values for the other parameters remain

the same, as shown in Table 2.2.

First, we fixed b = 2 and altered the Hill coefficient for the weight molecules

from a = 1 to a = 4. The respective responses of molecule p are displayed in Fig-

ure 2.4. As is obvious from the figure, the qualitative behaviours barely changed

irrespective of the value of a, apart from the fact that a = 1 gave rise to a relatively

notable response when only conditioned stimulus u2 was present prior to condi-

tioning. However, the result of a = 1 could still be classified as a valid associative

learning in broad terms, as the response triggered by the conditioned stimulus u2

alone is more significant after conditioning than before.

Then, we studied the case when a = b, and we altered a from a = 1 to a = 4.
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The respective responses of molecule p are displayed in Figure 2.5, which shows

that only a = 1 gave rise to undesirable behaviours, as the concentration of response

p never came down to 0. This is because a = 1 leads to a large transient growth rate

of the weight for conditioned stimulus ω2.

In all, the Fernando’s model is robust to the variation in Hill coefficients even

without exploring the other parameters. It may offer more flexibility to synthetic

biologists, since two dimers are not required to be bound cooperatively for weight

molecules ω1 and ω2. As we show in Figure 2.4, even a = 1 and b = 2 could

produce desirable results, which may reduce the experimental complexity.

Table 2.2: Parameter values used in the simulation for the Fernando’s model (Equation
(2.2)).

Parameter Value
α 1
β 0.8
θ 0.02
τ 0.1
S 10

Figure 2.3b displays the simulation result for the model with forced dissocia-

tion 2.4 using a = 2, and the other parameter values used in the simulation are listed

in Table 2.3.

Table 2.3: Parameter values used in the simulation for the model with forced dissociation
(Equation (2.4)).

Parameter Value
αyx 2
αyz 4
αxyz 4
αux 0.6
αvx 1.5
βu 0.1
βv 0.02

The first spike in response y was stimulated by unconditioned stimulus z, and

the second spike was stimulated by conditioned stimulus x. The first conditioning

was formed at the third spike, and the second conditioning was formed at the fifth
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Figure 2.3: (a) Time series for the Fernando’s model: (1) response molecule p; (2), (3)
conditioned stimulus u2 and unconditioned stimulus u1; (4) weight molecule
ω1 (blue) and ω2 (red); α = 1,β = 0.8, θ = 0.02,τ = 0.1,S = 10. (b) Time
series for the model with forced dissociation (1) response molecule y; (2), (3)
conditioned stimulus x and unconditioned stimulus z; (4) weight molecule u
(blue) and v (red); a = 2,αyx = 2,αyz = 4,αxyz = 4,αux = 0.6,αvx = 1.5,βu =
0.1,βv = 0.02. In (1), the first spike was stimulated by the unconditioned stim-
ulus, and the second spike was triggered by the conditioned stimulus; the first
and second conditionings were formed at the third and fifth spikes, respectively;
the first and the second learned responses were reflected by the fourth and the
sixth spikes; the remaining spikes demonstrate whether the forced dissociation
could be realised or not.

spike in p when both z and x were present. The fourth and sixth spikes in p represent

the first and the second learned responses, respectively. The learned response was
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Figure 2.4: The concentration of molecule p under various Hill coefficients a when the
value of b is fixed for the Fernando’s model. (a–d) Results when a = 1,2,3,4.
b = 2, α = 1, β = 0.8,θ = 0.02,τ = 0.1,S = 10, respectively.

reinforced after repeated conditioning. As opposed to the Fernando’s model, this

model could successfully repress the learned response to the preconditioned level by

means of the repeated cuing of the conditioned stimulus within a short time window,

which was corroborated by the last two spikes in response y in Figure 2.3b.

Considering that our model is not as heuristic as the Fernando’s model, it is

necessary to validate that the reinforcement effect is indeed the result of the con-

ditioning. Therefore, we removed the second and the third unconditioned stimuli z

from the system, and the result is shown in Figure 2.6a . As can be seen, the rein-

forcement effect no longer existed without the conditioning of x and z. The result

also validates our conjecture in the previous section that the presence of x and z

speeds up the degradation of u, which is a game changer for the formation of the

reinforcement effect.

Similarly to what we performed for the Fernando’s model, we studied the be-

haviours of this model under various Hill coefficients a while keeping the other

parameters specified in Table 2.3 unchanged.

From a = 1 to a = 4, the respective responses of molecule y are displayed in



2.3. Results 52

0 100 200 300
0

0.5

1

1.5

p

(a)

0 100 200 300
0

0.5

1

1.5

2
(b)

0 100 200 300

time

0

0.5

1

1.5

2

p

(c)

0 100 200 300

time

0

0.5

1

1.5

2
(d)

Figure 2.5: The concentration of molecule p under various Hill coefficients when a= b for
the Fernando’s model. (a–d) Results when a = 1,2,3,4. α = 1,β = 0.8,θ =
0.02, τ = 0.1,S = 10, respectively.

Figure 2.7. As can be observed, only a = 2 and a = 3 yielded desirable associative

learning behaviours. The effect of conditioning is not discriminative for a = 1,

and for a = 4, the response during conditioning is not more significant than the one

when only the unconditioned stimulus is present.

The previously introduced adjusted model (Equation (2.5)) could also display

the qualitative behaviours that are shown in Figure 2.6b when using a = 2. The pa-

rameter values used in this simulation are listed in Table 2.4. The adjusted model

could give rise to a more abundant response on the dimensionless scale compared

to the original version (Figures 2.3b and 2.6b).

Again, we studied the behaviours of the model with various Hill coefficients a

without changing the other parameters specified in Table 2.4. As is apparent from

Figure 2.8, the qualitative behaviours of the associative learning are largely pre-

served. However, the learned responses for cases a= 3 and a= 4 are less significant

than that of a = 2.
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(a) (b)

Figure 2.6: (a): Time series for the model with forced dissociation without condition-
ing (1) response molecule y; (2), (3) conditioned stimulus x and unconditioned
stimulus z; (4) weight molecule u (blue) and v (red); a = 2,αyx = 2,αyz =
4,αxyz = 4,αux = 0.6,αvx = 1.5,βu = 0.1,βv = 0.02. (b) Time series for the
adjusted model with forced dissociation (1) response molecule y; (2), (3) con-
ditioned stimulus x and unconditioned stimulus z; (4) weight molecule u (blue)
and v (red); a = 2,αyx = 4,αyz = 1,αux = 0.6,αvx = 1,βu = 0.1,βv = 0.02.

2.4 Discussion
In this work, we presented a detailed analysis of two advanced behaviours (rein-

forcement effect and forced dissociation) in associative learning. The Fernando’s

model could successfully demonstrate the reinforcement effect if we properly chose

the parameter values. However, the attenuation of the learned response only oc-
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Figure 2.7: The concentration of molecule y under various Hill coefficients a for the model
with forced dissociation. (a–d) Results when a = 1,2,3,4. αyx = 2,αyz =
4,αxyz = 4, αux = 0.6,αvx = 1.5,βu = 0.1,βv = 0.02.

Table 2.4: Parameter values used in the simulation for the adjusted model with forced dis-
sociation (Equation (2.5)).

Parameter Value
αyx 4
αyz 1
αux 0.6
αvx 1
βu 0.1
βv 0.02

curred when the time interval between the learned responses is large enough in the

sense that there is no way to force the learned response to decrease within a short

time window. The model introduced in Section 2.2.2 could manifest the reinforce-

ment effect and forced dissociation with the parameter values listed in Table 2.3,

which could potentially provide more possibilities for the biological and medical

applications of synthetic biology.

Having highlighted the contribution of our model, we must point out that it

comes with a few constraints of which synthetic biologists need to be aware. First,
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Figure 2.8: The concentration of molecule y under various Hill coefficients a for the
adjusted model with forced dissociation. (a–d) Results when a = 1,2,3,4.
αyx = 4,αyz = 1, αux = 0.6,αvx = 1,βu = 0.1,βv = 0.02.

the overall qualitative behaviour of the system is not very robust to the parameters

aside from the Hill coefficients. We found that a 25% change in parameter values

could lead to less desirable behaviours. An example is given in Figure 2.9, where

αux was changed from 0.6 to 0.45. The first spike was then of the same amplitude

as that of the third in response y. However, the stringent constraint can be relaxed

if we expect to implement only one of the two behaviours, either reinforcement

effect or forced dissociation. Second, it is extremely difficult, if not impossible,

to control the response to the conditioned stimulus prior to conditioning at an in-

significant level (second spike in y in Figure 2.3b) while maintaining the behaviours

of interest. Hence, the model proposed here may not be a suitable candidate to em-

ulate the behaviours of the Pavlov’s dog, but fits the context of associative learning

in a broader sense where conditioning and learning are major concerns. Third,

the model demands that v remains abundant in order for associative learning to hap-

pen. Therefore, v needs to be supplemented to a sufficient level before the start of

each experiment. Otherwise, conditioned stimulus x alone could result in an over-
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expression of the response.
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Figure 2.9: An example to illustrate the effect of change in parameter values on the model
with forced dissociation. a = 2,αyx = 2,αyz = 4,αxyz = 4,αux = 0.45,αvx =
1.5,βu = 0.1,βv = 0.02.

Last but not least, we also want to mention several potential applications of

our work in the field of synthetic biology and medicine. First, in the treatment for

diabetes, Ye et al. [157] built a synthetic signaling cascade that enhances blood-

glucose homeostasis. The reinforcement effect that we demonstrated in the models

may pave the way for further adjustment to the circuit in the hope to attain the more

efficient control of glucose level. Second, in the treatment of immune-mediated

diseases, adoptive T-cell transfer technology shows immense promise in the treat-

ment of immune-mediated disease such as cancer immunotherapy [158]. The fea-
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ture of forced dissociation displayed in our model may provide more flexibility for

experimentalists to shut off an excessive immune response once the tumours are

eliminated. Lastly, some recent studies were focused on modelling the network of

neurodegenerative markers [159, 160]. The models that we discussed in this article

may shed light on how to model these new findings at the genetic circuit level and

build hierarchical neuronal architectures. The models may also play a supportive

role in the existing technology that controls neurotransmitter release [161].



Chapter 3

Studying the impact of astrocytic

coverage of synapses on the

short-term memory

3.1 Introduction
Over the past few decades, the dynamics of neuronal networks have been widely

studied [162–166] and increasing effort has been devoted to understanding the roles

played by a type of glial cells, astrocytes [167–172]. Traditionally, astrocytes have

been reckoned as auxiliary cells to neurons and it has now become evident that

astrocytes can not only support the structure of the nervous system, but also mod-

ulate synaptic transmission [173–177]. Neuron–astrocyte coupling plays an indis-

pensable role in the functioning of neuronal networks via bidirectional communi-

cation under the notion tripartite synapse [57–59, 178, 179]. It is found that astro-

cytes can sense the synaptic activities by the uptake of neurotransmitters released

from the synaptic cleft and provide feedback to pre- and post-synaptic neurons via

gliotransmitter release caused by the temporary elevation of intracellular calcium

concentration which normally lasts seconds to minutes [180–184]. All these find-

ings in molecular biology pave the way for a better understanding of the informa-

tion processing in neuron–astrocyte circuits and the formation of cognitive func-

tions. Very recently, mathematical and computational approaches have been used
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to investigate the contribution of astrocytes to the organisation of spatial and tem-

poral synchronization in neural networks [185–188], formation of working mem-

ory [63–65, 189, 190] and generation of integrated information in neuronal ensem-

bles [191–194], which takes a step further to the understanding of the intelligence

arising from the nervous system.

Nowadays, a widely accepted fact is that astrocytes play an active role in vari-

ous types of memory and the memory improvement may be related to the change in

the astrocyte density [195–199]. Working memory is the ability of an entity to retain

limited information in a readily accessible form and provides an interface between

memory and cognition [200–202]. Some biological evidence has already raised the

possibility that astrocytes could be highly involved in working memory [203–206]

and it has been well known that the astrocytic coverage of synapses is a highly dy-

namic process that alters throughout lifetime [207–209]. Therefore, it is natural

to hypothesize that there exists a potential correlation between the working mem-

ory and the astrocytic coverage (or astrocyte density) but very little effort has been

made so far. In this work, the astrocytic coverage is equivalent to the astrocyte den-

sity and it will become clear when we introduce our model. Furthermore, some

studies have also revealed that the attenuation of calcium events correlates with the

reduction of astrocytic coverage of asymmetric synapses in the hippocampal CA1

region in mice and that the size of the calcium events within astrocytes follows the

power law [210–213]. Hence, this line of research may also help explain the cause

of various sizes of calcium events.

Lately, an in silico neuron–astrocyte network model has been employed to

manifest that astrocytes indeed assist the formation of short-term memory and medi-

ate analogous memory [63–65,189,190]. It provides a quantitative score to measure

the recall accuracy as a result of the short-term memory. In this work, we leverage

this computational model and study the impact of varying astrocytic coverage areas

of synapses on the short-term memory performance. Unlike in the original arti-

cle [64], here, we focus on the performance of the single-item task so as to ensure

that the real pattern remains unchanged throughout the experiment. We also intro-
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duced a low-pass filter to the input image in order to alter the spatial frequencies.

In particular, it is of great interest to learn how the change in the number of spa-

tial frequency components will impact the short-term memory and how the relation

is affected by the astrocytic coverage. The input image is also subject to differ-

ent levels of the salt-and-pepper noise to make our evaluation more comprehensive.

We demonstrate that the short-term memory performance is significantly affected

by the astrocytic coverage. Additionally, we also underlie some other observations

that may interest biologists.

3.2 Models and Methods
Our work employed the neuron–astrocyte network developed in [64] and an illus-

trative diagram for the architecture is shown in Figure 3.1. From left to right are the

input image, neuronal network and astrocytic network, respectively. The neuronal

network is of dimension W ×W and the astrocytic network is of dimension M×M.

All neurons are excitatory and each astrocyte from the astrocytic network regulates

an l× l neuronal square of the same size from the neuronal network. All neurons

within the square are connected to the astrocyte. The connections in the neuronal

network will be defined later and the astrocytes in the astrocytic layer are connected

to their nearest neighbours vertically and horizontally. The input digital image is

converted into electric current and is applied to the neuronal network in that one

image pixel corresponds to exactly one neuron. The values used for the parameters

introduced in Sections 3.2.1–3.2.3 are listed in [64], unless otherwise specified. The

novel methodology used to study the impact of astrocytic coverage on short-term

memory is introduced in Sections 3.2.4–3.2.6.

3.2.1 Neuronal Network

Considering that we were to simulate a relatively large network, we used the

Izhikevich model to characterize the dynamics of neurons as it demonstrates com-

putational efficiency while maintaining the biological properties of the canonical

Hodgkin–Huxley model [214]. The comparison of the properties and the efficiency

with the Hodgkin–Huxley model as well as a few other prevalent biophysical neu-
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Figure 3.1: An illustrative diagram for the neuron–astrocyte network, courtesy of Yuliya
Tsybina. Neurons receive the input signal converted from a digital pattern of
the same size. The number of out-connections per neuron is fixed and the con-
nections follow an exponential distribution. Each astrocyte regulates a neuronal
square of the same size and neurons within the square are connected to the as-
trocyte. The adjacent neuronal squares have the same width of overlap. More
details are in the main text.

ronal models is shown in Appendix B. The model is shown below:
dV (i, j)

dt
= 0.04V (i, j)2

+5V (i, j)−U (i, j)+140+ I(i, j)app + I(i, j)syn

dU (i, j)

dt
= a(bV (i, j)−U (i, j))

(3.1)

where V denotes the membrane potential of a particular neuron and U represents

the membrane recovery variable, with post-spike resetting: if V (i, j) ≥ 30mV, then

V (i, j) = c

U (i, j) =U (i, j)+d
(3.2)

The part 0.04V (i, j)2
+ 5V (i, j)−U (i, j) + 140 was chosen to ensure the membrane

potential V has the mV scale and the time t has ms scale. The model can also exhibit

the known types of firing patterns of cortical neurons such as regular spiking, fast

spiking, chattering, etc, in choosing the appropriate values of parameters a, b, c,

d. The superscript (i, j) denotes the positional index of the neuron. Iapp represents

the applied input current converted from the digital image and Isyn represents the



3.2. Models and Methods 62

net current received from all presynaptic neurons which takes the form (generalized

from [215, 216]):

I(i, j)syn = ∑
k

g(i, j)syn (Esyn−V (i, j))

1+ exp(
−V k

pre
ksyn

)
(3.3)

where the summation is over all presynaptic neurons. The synaptic weight is dic-

tated by g(i, j)syn = η +ν(i, j) where η reflects the baseline weight and ν(i, j) describes

the impact of astrocytic calcium events which will be defined later. Esyn denotes the

reversal potential for excitatory synapses and V k
pre denotes the membrane potential

of the neuron k. For clarity, we need to point out that the short-term synaptic plas-

ticity is not considered in our model. We use a = 0.1,b = 0.2,c = −65,d = 2 in

order to enable the occurrence of fast spiking in the neurons.

In this work, we fixed the number of out-connections per neuron as Nout in that

each presynaptic neuron interacts with Nout postsynaptic neurons. The connections

are established according to an exponential distribution with R being the distance

between each pair of neurons:

f (R) =


1
λ

exp(−R/λ ) R≥ 0

0 R < 0
(3.4)

3.2.2 Action Potential-Induced Elevation of Glutamate and IP3

For each presynaptic neuron, the amount of glutamate, a type of neurotransmitter

released into the synaptic cleft is dictated by the spiking events of the neuron [217]:

dG(i, j)

dt
=−αgluG(i, j)+ kgluΘ(V (i, j)−30) (3.5)

where Θ denotes the Heaviside function.

IP3 is a ligand and is produced in response to the external stimuli such as

neurotransmitters [218]. It regulates many pathways including the release of Ca2+

from Endoplasmic Reticulum (ER) into cytoplasm [219] which will be described

in due course. The dynamics of the intracellular concentration of the molecule IP3
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within each astrocyte is described by

dIP(m,n)
3
dt

=
IP⋆

3 − IP(m,n)
3

τIP3

+ J(m,n)
PLCδ

+ J(m,n)
glu +di f f (m,n)

IP3
(3.6)

Here, IP⋆
3 denotes the steady state of the intracellular IP3 concentration and

JPLCδ
encapsulates the IP3 produced by phospholipase Cδ which takes the form

JPLCδ
=

v4(Ca+(1−α)k4)

Ca+ k4
(3.7)

where Ca denotes the Ca2+ concentration in the astrocytic cytoplasm. We use

di f fIP3 to represent the diffusion of IP3 via gap junctions between adjacent astro-

cytes and is given by

di f fIP3 = dIP3(∆IP3) (3.8)

where ∆IP3 denotes the discrete Laplace operator reflecting the diffusion as a result

of Ca2+ exchange with neighbouring astrocytes. The production of IP3 stimulated

by glutamate via metabotropic glutamate receptors (mGluRs) and phospholipase

Cβ is characterized by

Jglu =

Aglu t0 < t ≤ t0 + tglu

0 otherwise
(3.9)

where tglu denotes the duration that persists since time t0, when the total level of

glutamate associated with a particular astrocyte reaches the threshold Fact :

1
Na

∑
(i, j)∈Na

Θ(G(i, j)−Gthr)> Fact (3.10)

Here, we use tglu = 0.06s.

3.2.3 Astrocytic Network

Although voltage-gated calcium channels (VGCC) have been shown to be able to

elevate intracellular calcium concentration and many authors included them in their

models [220–223], here, we use the Ullah model [224] to simplify the description
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of the calcium dynamics within astrocytes where only the impact of glutamate is

considered:
dCa(m,n)

dt
= J(m,n)

ER − J(m,n)
pump + J(m,n)

leak + J(m,n)
in − J(m,n)

out +di f f (m,n)
Ca

dh(m,n)

dt
= a2

(
d2

IP(m,n)
3 +d1

IP(m,n)
3 +d3

(1−h(m,n))−Ca(m,n)h(m,n)

) (3.11)

The explicit forms of the individual terms are summarized below:



JER = c1v1Ca3h3IP3
3

c0/c1− (1+1/c1)Ca
(IP3 +d1)3(Ca+d5)3

Jpump =
v3Ca2

k2
3 +Ca2

Jleak = c1v2(c0/c1− (1+1/c1)Ca)

Jin =
v6IP2

3

k2
2 + IP2

3

Jout = k1Ca

di f fCa = dCa(∆Ca)

(3.12)

Here, Ca denotes the Ca2+ concentration within cytoplasm and h denotes the

fraction of opened IP3 receptors (IP3Rs) on the ER. We assume that the astrocytes

are spatially homogeneous. ER is a continuous membrane system that stores a

reservoir of Ca2+ within astrocytes. The released IP3 then binds to IP3Rs on the ER

and opens the channel allowing for the flow of Ca2+ from the ER into the cytoplasm,

which is characterized by JER. In this model, we assume the co-existence of the ER

and the cytoplasm in individual astrocytes and the homogeneous distribution of ER

in the interior of astrocytes. Jpump denotes the ATP-dependent pump that recovers

Ca2+ from the cytoplasm back to the ER. Jleak denotes the leakage of Ca2+ from

the ER to the cytosol due to the concentration gradient. Jin and Jout denote the Ca2+

exchange with the extracellular space. di f fCa represents the diffusion of Ca2+ via

gap junctions. As one will see in Section 3.3, the diffusion may have a negative

impact on short-term memory based on our toy example. However, the existence

of propagation in the form of calcium signaling via gap junction has been verified
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by a number of studies [225–227] for the cross-talk between astrocytes. Therefore,

we retain the diffusion term in the model to emphasize this important biological

property.

Finally, the calcium-dependent gliotransmitter-induced modulation of synap-

tic weight by the associated astrocyte via the N-methyl-D-asparate receptors (NM-

DARs) is defined as

ν = ν
⋆
Θ(Ca−Cathr) (3.13)

where ν⋆ denotes the weight of the synapse as a result of the astrocytic modulation

of synaptic transmission if the Ca2+ concentration is beyond the threshold required

for gliotransmitter release, Cathr, and the fraction of spiking neurons associated with

that astrocyte during the time interval τsyn is above Fastro. The duration of feedback

is denoted by τastro and we use τastro = 250ms.

3.2.4 Variation of Astrocytic Coverage

In order to study the short-term memory performance of the network under various

astrocytic coverage areas, we need to vary the size of the astrocytic layer M. How-

ever, to ensure that each astrocyte modulates an identical size of neuronal square

and there are no neurons left uncovered, the following equation must be satisfied:

W −1
l− p

= M (3.14)

where p is the size of the overlapping edge and l is the size of the neuronal square

covered by each astrocyte. In this work, we fixed p = 1. Since the input image

is of dimension 79× 79, if W = 79, the equation is satisfied for l = 2,3,4,7. To

analyze the effect of l = 5,6,9, the image is adjusted by adding a periphery of stripe

of width 1 outside of the edge, the intensity of which is chosen to be the same as

the background. Now W = 81 and the equation is satisfied. Similarly, the equation

is satisfied for l = 8 by choosing W = 78 (edge removal on one side). In this way,

the size of the image is by and large maintained and the digital patterns are least

damaged.
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3.2.5 Variation of Spatial Frequencies

In this work, we utilized low-pass filter to alter the spatial frequencies of the input

image.

The 2D discrete forward Fourier transform converts the image from the spatial

domain into the frequency domain with:

F(k, l) =
W−1

∑
x=0

W−1

∑
y=0

f (x,y)e−i2π( kx
W + ly

W ) (3.15)

The inverse transform converts from the frequency domain back to the spatial

domain with:

f (x,y) =
1

W 2

W−1

∑
k=0

W−1

∑
l=0

F(k, l)ei2π( kx
W + ly

W ) (3.16)

where f (x,y) denotes the intensity at pixel (x,y) whilst F(k, l) consists of the spec-

trum and the phase angle at frequency (k, l). In general, one is more concerned

with the spectrum as compared to the angle so the angle is not within the scope of

our discussion. Figure 3.2 displays what digit zero looks like in the spatial domain

(left) and spectral domain (right), respectively. By convention, F(0,0) is placed at

the center of the spectral domain and is also the largest component of the image.

Moreover, we display the frequency domain on the logarithmic scale so as to make

the other frequency components more visible. The frequency increases as we move

farther away from the center in the spectral domain.
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Figure 3.2: Spatial domain and spectral domain of digit 0.

A low-pass filter applies a threshold f0 to the spectral domain and sets all the
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components above f0 to zero. In this work, the filter will be applied to the input

current at each time step. By slowly increasing the threshold, we hope to figure

out the sensitivity of the short-term memory performance to the change in spatial

frequencies.

3.2.6 Simulation Protocols

Most of the parameter values and protocols used in this work are identical to those

in [64]. Since the size of our parameters is huge, we do not list the values used

in this article. One can refer to [64] for more details. Here, we only made a few

adjustments in order to study the impact of spatial frequencies in a more effective

way. Therefore, unless otherwise specified, one can assume that we herein use the

same protocol as in [64].

The dynamics of the astrocytic network are simulated using the Runge-Kutta

fourth-order method and the remaining part using the forward Euler method with

time-step ∆t = 0.1 ms. The input current Iapp is converted from a digital image (0–

9) with the same size of the neuronal network by scaling the pixel intensity, which

will be used in the learning and the testing stage. The pixel intensity is scaled in

the range [0,Astim] for learning and [0,Atest ] for testing in order to prevent over-

excitation of neurons. In this work, we employ the binary encoding that converts

intensity over 127 to Astim (Atest) and to 0 otherwise. The input is also subject

to salt-and-pepper noise which will also alter the frequency domain in addition to

the low-pass filter. Different from a low-pass filter which will cut off the frequency

components above a threshold, increasing the salt-and-pepper noise tends to include

more frequency components (high frequency components in particular) as the noise

will break the image down into pieces. We are interested in investigating the effect

of both on the short-term memory performance. In this work, we do not introduce it

in the learning stage so as to keep the real pattern intact and only alter the noise level

in the testing stage. Here, our work is only focused on the single-item implemen-

tation. This is to ensure that the real spatial pattern is fixed during the experiment.

Unless otherwise specified, in the learning stage, the input current Iapp is applied to

the network at t1 = 0.1 s for tstim = 200 ms and in the testing stage, Iapp is applied
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to the network at t2 = 2 s for ttest = 150 ms. The simulation terminates at te = 2.3

s. We alter t2 and te when investigating the impact of the time interval between

training and testing. In addition, note that changing the frequency domain will re-

sult in complex values in the spatial domain when conducting the inverse transform.

To this end, we take the absolute values and re-scale them with Astim (Atest). Our

simulation time is shorter as compared to the one used in [64] but the time interval

between the learning and the testing stage is already long enough for the activation

of calcium release within astrocytes. Besides, the time scale of the calcium events

in astrocytes described by the calcium model in Section 3.2.3 is several seconds. It

corresponds to the typical duration of short-term memory and the speed of calcium

signaling in astrocytes [228].

3.2.7 Performance Measure

To measure the performance of our model, i.e., to what extent the model is able to

memorize the real pattern, we came up with a correlation measure Cp that compares

the recalled pattern (during testing) with the real pattern:

Mi j(t) = I

[( t+ω

∑
k=t

I[Vi j(k)> 30]
)
> thr

]
CD(t) =

1
|P| ∑

(i, j)∈P
Mi j(t)

CB(t) =
1

W 2−|P| ∑
(i, j)̸∈P

(1−Mi j(t))

C(t) =
1
2
(CD(t)+CB(t))

Cp = max
thr

C(t)

(3.17)

Here t is the start time of the testing stage and we use ω = 250ms. P represents

the set of pixels belonging to the real pattern. CD represents the true positive rate

in our context, namely, how many pixels that belong to the real pattern have been

recalled. Similarly, CB represents the true negative rate. Therefore, C can accurately

reflect the overall performance of the neuron–astrocyte network. We select Cp that

maximizes C(t) over the whole-number thresholds, thr = 1,2, . . . ,30.
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3.3 Results
In this section, we mainly show how short-term memory performance is affected

by astrocytic coverage under various spatial frequencies and salt-and-pepper noise

levels.

Figures 3.3 and 3.4 display the model’s performance scores Cp for digit zero

(a symmetric digit) and two (an asymmetric digit) under various conditions, respec-

tively. Each square represents one single simulation using the protocol described in

the last section. In each sub-figure, the vertical axis denotes various levels of the

salt-and-pepper noise at the testing stage. The horizontal axis denotes the moving

threshold f0 (increased by 2 units) of the low-pass filter from f0 = 4 to f0 = 58.

Namely, more frequencies will be included as we move farther away from the ori-

gin. The plot starting from f0 = 4 is to ensure the visual contrast for the performance

over f0 = 4 and we will explain in more detail why there exists a sharp rise in perfor-

mance from 4 later. The filter threshold terminates at f0 = 58 because it will already

incorporate all frequency components with respect to the largest picture (W = 81)

in this study.

On the one hand, for all sizes (l = 2,3,4,5,6,7,8,9) of the astrocytic coverage

and noise levels during the testing stage, the performance plunges when moving the

filter threshold from 5 to 4, which corresponds to (5×2)/79≈ 1/8− (4×2)/79≈

1/10 of the distance from the center to the edge in the spectral domain. On the

other hand, the trace width of the digit in the image we use is about 8–10 pixels. By

trace width we mean the interval between the boundaries of the digit. This makes

it a wavelength of 16–20 (so a frequency of 1/16–1/20, namely 1/8–1/10 of the dis-

tance from the center to the edge in the frequency domain). This correspondence

demonstrates that our short-term memory model does manage to detect the dom-

inant frequency pattern of the input image. The performance of the other integer

threshold (1,2,3) is not shown in Figures 3.3 and 3.4 because we would like to have

a contrasting color scale for higher thresholds. As expected, the performance de-

creases sharply from f0 = 4 to f0 = 0 which is demonstrated in Figure 3.5. Here,

the threshold is increased by 1 unit.
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From Figures 3.3 and 3.4, we note that our model is mostly noise-tolerant up to

the noise level equal to 0.1. This manifests that our network is able to precisely re-

call very analogous patterns but has some trouble recalling the exact patterns for less

analogous inputs. Another notable feature is that there exists a shift in performance

pattern under different filter thresholds as the astrocytic coverage size is increased

from l = 2 to l = 9, which stands as the central observation of our research, and

next, we use l = 4 and l = 8 to explain it at greater length.

From Figures 3.3 and 3.4 we observe that for l = 4, the performance color

transitions from light red to dark and back to light at a relatively high noise level.

Take for example noise level equal to 0.2 (Figure 3.6), a low filter threshold, f0 = 10

smooths the picture and prevents over-firing of neurons. A high filter threshold,

f0 = 58, ensures that most of the digital pixels are firing, although at the cost of

slight over-firing. However, a middle one, f0 = 40 corrupts the picture to a certain

degree and yields a relatively low performance. For l = 8, the performance color

transitions from light red to dark and there exists a slight recovery before going

dark again at high noise levels. At the noise level equal to 0.2 (Figure 3.7), the

firing patterns of f0 = 10 and f0 = 40 are very similar to those in l = 4, despite the

alteration in the astrocytic coverage. However, for f0 = 58, l = 8 significantly favors

the over-firing which results in many misclassifications, and f0 = 50 is somewhere

in the middle.

In order to better summarize the results shown in Figure 3.3, we use box plots

to exhibit our statistical analysis. Figure 3.8a displays the overall short-term mem-

ory performance subject to low salt-and-pepper noises by grouping the noise level

from 0 to 0.1. Similarly, the performance subject to high salt-and-pepper noises

is shown in Figure 3.8b by grouping the noise level from 0.12 to 0.2. We note

that at the low noise level, the overall performance starts to decrease at l = 6 and

there does not exist a significant change in performance when it comes to the high

noise, although l = 4 and l = 5 have a higher median. Figure 3.9a displays the

overall short-term memory performance subject to low filter thresholds by group-

ing the threshold from 4 to 22 and Figure 3.9b displays the performance subject to
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high filter thresholds by grouping the threshold from 24 to 58. In both of them, we

have witnessed a slight decrease in performance from l = 6. The cutting points of

low and high in the above cases are chosen based on the patterns shown in Figures

3.3 and 3.4. However, if we investigate the performance subject to individual fil-

ter thresholds, it could look very different from what is shown in Figure 3.9. For

instance, in Figure 3.10, at f0 = 46 the best median is achieved at l = 7 whilst at

f0 = 18 there is a decrease in performance after l = 6 which is similar to the overall

result (Figure 3.9a). This may raise the possibility that different sizes of astrocytic

coverage might optimize the performance at different spatial frequencies. However,

we need to point out that the number of data at individual thresholds is limited and

therefore, the difference may not be as considerable as shown in the figures.

We also observe that for large astrocytic coverage, l = 8 for instance, a shorter

time interval between training and testing tends to outperform a longer one when

most of the frequency components have been included (Figure 3.11 right-end). Con-

versely, the performance barely changes with respect to a small astrocytic coverage

such as l = 4 (Figure 3.12). For high filter thresholds, a longer time interval will

result in more activated astrocytes as a result of calcium diffusion. However, a

smaller astrocytic coverage has relatively little impact on the firing patterns of neu-

rons at the testing stage because each astrocyte controls fewer neurons. Conversely,

a larger coverage will result in the over-firing of neurons in that more neurons that

should not be activated have been activated, which decreases the performance. The

above analysis is supported by the calcium patterns of astrocytes with different as-

trocytic coverage sizes and time intervals between training and testing shown in

Figure 3.13. For relatively low filter thresholds, the firing pattern remains largely

unchanged because of smoothing, as demonstrated previously.

3.4 Discussions
In light of the results shown in Figures 3.3, 3.4, 3.9 and 3.10, there are two hypothe-

ses that may sound plausible:

1. Astrocytes may adjust their coverage areas in response to the change in spatial
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frequencies in order to optimize the short-term memory.

2. Different astrocytes may have different coverage areas in order to process

different frequency components in order to optimize the short-term memory.

To the best of our knowledge, these open questions have not been given enough

consideration yet and therefore, our work aims to raise the awareness of these plau-

sible relations so that interested researchers may test and verify them in the lab-

oratory. Hypothesis 1 and 2 are not identical but they are somehow similar and

could co-exist. As shown in Figures 3.9 and 3.10, although the majority of l = 4

outperforms l = 7, at some specific thresholds ( f0 = 46 for instance) l = 7 gives a

slightly better performance. This may raise an open question for experimentalists

to validate whether astrocytes adjust their coverage areas in response to the chang-

ing spatial frequencies (hypothesis 1), or whether different astrocytes have differ-

ent coverage areas (hypothesis 2), so as to assist the short-term memory. More

precisely, it may be plausible to hypothesize that individual astrocytes are free to

select from a wide range of coverage areas in order to optimally process the spa-

tial information containing diverse frequency components; or at a particular time

point, individual astrocytic modules, in which all astrocytes have identical cover-

age, process some particular frequency components and hierarchically summarize

the information to achieve the optimal short-term memory. In all, one is interpreted

from a dynamic viewpoint and the other one from a static viewpoint, but they do

not contradict each other. The former one may also help to explain the findings

that the astrocytic coverage of synapses is highly dynamic. Additionally, over the

last decade, emerging evidence has shown that astrocytes actively participate in the

brain energy mechanisms and potentially assist the energy-efficient coding of neu-

ronal circuits [229–231]. It is reasonable to reckon that a compactly connected

astrocytic network tends to consume more energy, therefore it seems plausible that

a sparse layout could become more favorable so long as the precision is not con-

siderably compromised. The results may provide a new perspective for those who

study the roles played by astrocytes in the cerebral energy-efficiency.

In regards to the small noise level, on the whole, a small astrocytic coverage
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tends to outperform a big one irrespective of the filter threshold. This may indirectly

support the experimental result that the increasing density of astrocytes enhances

short-term memory performances [199]. The comparison of l = 2, l = 3 and l = 4

also raises the potential to study whether over-crowded astrocytes will have negative

effect on short-term memory for biologists.

As for the relatively high noise level, it appears that the performance score

remains relatively low in a threshold interval and the more noisy the image is, the

wider the interval is. We suppose that the phenomenon is due to the fact that a higher

salt-and-pepper noise distorts the original image more massively and the image de-

composes into more frequency components (including many high frequencies). A

relatively high filter threshold retains these frequencies (as a result of noise) which

leads to a decrease in performance.

The astrocytic layer is bittersweet when it comes to short-term memory. On

the one hand, the slow time scale (seconds) of calcium events in astrocytes enables

the storage of the input pattern in the astrocytic layer and therefore, assists with the

formation of short-term memory. On the other hand, the enhanced noise in the astro-

cytic layer may also corrupt the shape of the input pattern. As demonstrated in the

previous section, the noise may be categorized into two classes. First, the neurons

in the neuronal layer that fire incorrectly will translate the noise to the astrocytic

layer and some astrocytes may be incorrectly activated. Second, the diffusion of the

calcium event may also result in the activation of astroyctes that ought to remain

silent. However, one should note that the results shown in Figure 3.11 were only

based on a specific scenario of a toy example. It is still unknown how the diffusion

between astrocytes will affect short-term memory in reality.

Finally, the sensitivity to the filter threshold also validates the necessity of

introducing convolutional layers in spiking neural networks [232–234] for pattern

recognition tasks because the idea of introducing filters is to extract the local pat-

terns such as curves and straight lines.

One open question is whether the pattern displayed in Figure 3.3 will scale up

with the size of the input image. Namely, when the size of the input is scaled up
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or down, whether the same pattern will be observed when the astrocytic coverage

alters with the same ratio. This may shed light on the correspondence between the

size of the input image and the astrocytic coverage.

To summarize, in this work, we leveraged a computational neuron–astrocyte

model for short-term memory that has been recently developed to study the impact

of astrocytic coverage and spatial frequencies on short-term memory. We demon-

strated a shift in the performance of the short-term memory under different filter

thresholds as the astrocytic coverage size is altered. We also raised two hypotheses

about the potential relationship between astrocytic coverage, spatial frequencies and

short-term memory. These hypothetical results emerged from several experimen-

tal facts which show that the rearrangement of the structural interactions between

synaptic elements and perisynaptic astrocytic processes alters the efficacy of neu-

rotransmitter transport and gliotransmitter release, thereby inducing changes in the

synaptic gain and long-term potentiation induction [235, 236]. However, the role

of astrocytic morphological plasticity in memory processes required further exper-

imental evaluation including cellular and in vivo studies. In particular, different

genetic-interference strategies which impact the plasticity of structural interactions

between astrocytes and synapses can be used to monitor memory impairments in

animal studies [205]. We expect that the article can bring these unattended aspects

to the attention of biologists as a better understanding of this topic may pave the

way for some transformative findings as to how neurons and glial cells adapt their

behaviors in response to external stimuli.
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(f) l = 7
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(g) l = 8
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Figure 3.3: Performance score Cp for digit Zero. In each sub-figure, the vertical axis de-
notes various levels of the salt-and-pepper noise at the testing stage. The hori-
zontal axis denotes the threshold f0 (increased by 2 units) of the low-pass filter.
Each square represents the performance score Cp obtained from the simulation
described in Section 3.2.6, when a specific noise level is introduced in the test-
ing stage and a specific low-pass filter threshold is applied at each time step.
There exists a clear shifting pattern in performance as the size of the astrocytic
coverage l increases from 2 to 9, mainly in the lower right part of the figure.
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(g) l = 8
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(h) l = 9

Figure 3.4: Performance score Cp for digit Two. In each sub-figure, the vertical axis de-
notes various levels of the salt-and-pepper noise at the testing stage. The hori-
zontal axis denotes the threshold f0 (increased by 2 units) of the low-pass filter.
Each square represents the performance score Cp obtained from the simulation
described in Section 3.2.6, when a specific noise level is introduced in the test-
ing stage and a specific low-pass filter threshold is applied at each time step.
There exists a clear shifting pattern in performance as the size of the astrocytic
coverage l increases from 2 to 9, mainly in the lower right part of the figure.
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Figure 3.5: Performance score Cp at diverse levels of noise with l = 8 for digit zero includ-
ing all the whole-number low-pass filter thresholds. Each square represents the
performance score Cp obtained from the simulation described in Section 3.2.6,
when a specific noise level is introduced in the testing stage and a specific low-
pass filter threshold is applied at each time step. There is a sharp change in
performance at threshold 4 and further explanation is elaborated in Section 3.3.
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(d) f0 = 40
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(f) f0 = 40
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(g) f0 = 58
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(h) f0 = 58
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(i) f0 = 58

Figure 3.6: Snapshots for l = 4. The left panel displays the input current after being trans-
formed by the low-pass filter at testing. The middle panel displays the firing
pattern of neurons at t = 2.1 s. The right panel displays the calcium pattern of
astrocytes at t = 2 s. In each sub-figure, the x- and y-axis denote the positional
indices of the image. The colorbar describes the level of the input current, neu-
ronal firing and astrocytic calcium concentration. The level has been scaled in
the range 0–255 for visualization. The model exhibits very similar calcium pat-
terns irrespective of the filter thresholds. From the first and the second column,
we observe that f0 = 10 smooths the picture and prevents over-firing of neu-
rons; f0 = 58 ensures that most of the digital pixels are firing; f0 = 40 corrupts
the picture to a certain degree. Therefore, the performance of f0 = 40 is less
desirable.
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(f) f0 = 40
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(h) f0 = 50
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(j) f0 = 58
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(k) f0 = 58
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(l) f0 = 58

Figure 3.7: Snapshots for l = 8. The left panel displays the input current after being trans-
formed by the low-pass filter at testing. The middle panel displays the firing
pattern of neurons at t = 2.1 s. The right panel displays the calcium pattern of
astrocytes at t = 2 s. In each sub-figure, the x- and y-axis denote the positional
indices of the image. The colorbar describes the level of the input current, neu-
ronal firing and astrocytic calcium concentration. The level has been scaled
in the range 0–255 for visualization. The model exhibits very similar calcium
patterns irrespective of the filter thresholds. From the first and the second col-
umn, we observe that f0 = 10 smooths the picture and prevents over-firing of
neurons; f0 = 40 corrupts the picture to a certain degree; f0 = 58 results in
over-firing; f0 = 50 is somewhere in the middle. Therefore, the performances
of f0 = 40 and f0 = 58 are less desirable.
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(a) Low noise
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(b) High noise

Figure 3.8: Short-term memory performance subject to low and high salt-and-pepper
noises. Each box in the subfigure for the low noise is obtained by grouping
the scores from 0 to 0.1 for all filter threshold values of the corresponding as-
trocytic coverage l in Figure 3.3. The high noise is by grouping the scores from
0.12 to 0.2. The horizontal axis denotes the size of astrocytic coverage and
the vertical axis denotes the performance score Cp. At the low noise level, the
performance starts to decrease from l = 6; at the high noise level, there does
not exist a significant change in performance, although the medians are slightly
different.
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(a) Low-pass filter with low thresholds
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(b) Low-pass filter with high thresholds

Figure 3.9: Short-term memory performance subject to low-pass filter with low and high
thresholds. Each box in the subfigure for the low thresholds is obtained by
grouping the scores from 4 to 22 for all noise levels of the corresponding astro-
cytic coverage l in Figure 3.3. The high noise is by grouping the scores from
24 to 58. The horizontal axis denotes the size of astrocytic coverage and the
vertical axis denotes the performance score Cp. Both figures demonstrate a de-
cline in performance from l = 6.
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(a) f0 = 18
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(b) f0 = 46

Figure 3.10: Short-term memory performance subject to two individual filter thresholds.
Each box in the subfigure is obtained by grouping the scores for all noise
levels of the corresponding astrocytic coverage l in Figure 3.3. The horizontal
axis denotes the size of astrocytic coverage and the vertical axis denotes the
performance score Cp. At individual thresholds, f0 = 18 is similar to the
overall performance of the low thresholds; the highest median of f0 = 46 is
achieved at l = 7.
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(a) t2 = 2s, te = 2.3s
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(b) t2 = 1.5s, te = 1.8s

Figure 3.11: The performance score Cp with different starting time t2 with l = 8. In each
sub-figure, the vertical axis denotes various levels of the salt-and-pepper noise
at the testing stage. The horizontal axis denotes the threshold f0 (increased by
2 units) of the low-pass filter. The right-end of (a) is darker than (b) and the
remaining regions are nearly the same.
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(a) t2 = 2s, te = 2.3s
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(b) t2 = 1.5s, te = 1.8s

Figure 3.12: The performance score Cp with different starting time t2 with l = 4. In each
sub-figure, the vertical axis denotes various levels of the salt-and-pepper noise
at the testing stage. The horizontal axis denotes the threshold f0 (increased by
2 units) of the low-pass filter. The performance is barely affected by the time
interval.
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(a) l = 8, t2 = 2s
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(b) l = 8, t2 = 1.5s

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

50

100

150

200

250

(c) l = 4, t2 = 2s
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(d) l = 4, t2 = 1.5s

Figure 3.13: Calcium patterns of astrocytes with different astrocytic coverage areas and
time intervals between training and testing. Here, we use f0 = 58 and noise
level equal to 0.2 as an example.



Chapter 4

Novel efficient reservoir computing

methodologies for regular and

irregular time series classification

4.1 Introduction
Time series refers to a sequence of data points collected in chronological order over

a period of time with each point typically being recorded at a specific timestamp.

A time series has two main components, timestamp and observation. Timestamp

presents the time at which a specific record is taken while an observation displays

a value associated with each timestamp that informs the relative importance to the

other time points. Additionally, time series data may come with some other pat-

terns that makes the analysis of time series more challenging. For instance, samples

from the same dataset may have different lengths (variable length) and/or adjacent

time points may have different time intervals (heterogeneous interval). Time series

analysis involves studying and interpreting patterns such as trends and dependency

within the sample over time and has been widely applied to real-world phenom-

ena [237–239]. Among them, time series classification (TSC) focuses on the task of

categorizing and labeling sequential data into their distinct classes or categories and

plays an indispensable role in medicine, telecommunications and finance. The effi-

cacy of TSC algorithms relies on their capability of balancing short- and long-term
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memory as well as capturing the time dependency, whilst distinguishing desired

patterns from the noisy ones.

Over the past few decades, an astronomical amount of algorithms have been

developed to address this particular field. Thus far, Long Short-Term Memory

(LSTM) networks can be seen as a milestone breakthrough, offering a robust so-

lution to the challenges posed by modelling complex long-term dependencies in

sequential data [240–243]. LSTM networks are a type of recurrent neural networks

(RNN) that take advantage of memory cells and gates as a means to control the

flow of information through the network so that the vanishing gradient problems

can be largely mitigated. However, the training of the network is enabled by the

state-of-the-art backpropagtion through time (BPTT) techniques. While BPTT is

a powerful and effective method, it can be computationally expensive, not least

for large and deep neural networks. Apart from backpropagation-facilitated neural

networks, distance-based methods have also demonstrated enormous success on a

wide range of TSC tasks [244–246] and among them, 1-Nearest Neighbour Dy-

namic Time Warping (1NN-DTW) has been proven difficult to beat as compared

to other similar methods [247]. Nevertheless, 1NN-DTW requires the computation

of the pairwise distance between samples which can still substantially increase the

computation overhead especially when the sample size is large. As a result, the

quest for some more efficient methods has never ceased in an attempt to strike the

right balance between accuracy and energy consumption.

Complex dynamical systems have demonstrated colossal potential in learning

and computation in a wide spectrum of frameworks such as gene regulatory net-

works, cellular networks and artificial neural networks [248–252]. Among them,

Reservoir Computing (RC) stands at the forefront of cutting-edge research in the

field of machine learning and artificial intelligence, providing a promising approach

to the challenges of processing complex temporal data [253–255]. It maps input sig-

nals to a non-linear high-dimensional dynamical system where neurons are recur-

rently connected, generating a comprehensive representation of the input features,

and the training is only applied to the output layer which makes it a hyper-efficient
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alternative to the mainstream deep neural networks including LSTM networks. Ad-

ditionally, RC can also be regarded as a mini-brain, making it a more biologically

plausible model and paving the way for better understanding the information pro-

cessing in the brain [256–258]. Echo state networks (ESNs) are an instance of

RC where sigmoid functions have been employed as the activation functions in the

reservoir and have drawn growing attention by virtue of their ease of implementa-

tion and computational efficiency [259–261]. Nevertheless, most of these methods

are focused on sequential predictions and the classification methods are still un-

derdeveloped, partially down to the non-existence of BPTT training, in the sense

that the loss at the terminal prediction may not be able to flow back and adapt the

weights in the previous layer(s). Hence, in this work, we will propose two new

paradigms for ESN that can efficiently perform TSC tasks whilst maintaining a de-

sirable classification accuracy.

The chapter will be organized as follows: Section 4.2 will introduce two new

paradigms that we proposed in the context of ESNs, in which Section 4.2.1 provides

an overview of the ESNs, Section 4.2.2 presents a novel method that can address

a wide range of datasets with regular time series whereas Section 4.2.3 presents an

alternative to address the irregular ones. Section 4.3 presents the performance of

our new methods and Section 4.4 includes the conclusion and discussion. Unfortu-

nately, There does not exist a precise definition for regular and irregular. Loosely

speaking, in this work, we refer to the sequences from the same dataset as regular

if they have the same and a sizable length, and the intervals between the adjacent

timestamps are even.

4.2 Methods

4.2.1 Echo state networks

Echo state networks (ESNs) are an instance of reservoir computing and the diagram

is shown in Figure 4.1. An ESN generally consists of three layers, from the left to

right are: an input layer, a reservoir layer and an output layer. The weights in the

input and the reservoir layer are randomly created and fixed throughout the training
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process and only the weights in the output layer are trainable. Here the weights in

the input layer refer to the weights of the connections from the input to the reservoir

layer.

Figure 4.1: Echo state network (ESN)

First the input layer transforms the sequential data from the input layer into the

reservoir layer using a randomly created input matrix. At the heart of an ESN is

this fixed, large-scale recurrent reservoir of sparsely connected neurons. A distinct

feature of ESNs is their echoic or fading memory property, mathematically known

as the echo state property (ESP) which will be defined properly later. This char-

acteristic allows ESNs to efficiently capture and retain relevant information from

input sequences, making them particularly adept at handling time series data. In a

standard setting, there are typically a lot more neurons in the reservoir layer than

in the input layer in order for the reservoir to encode the input information into a

high-dimensional dynamical system using sigmoid functions. The distribution used

to generate the random connections will be introduced in due course. Then the tem-

poral representation of the input signals within the reservoir layer can therefore be

used to train the output weights given the teacher signals using a standard statistical

model.

After introducing the basic notions of the ESNs, we will next define the general

framework of an ESN using mathematical equations. Suppose a given longitudinal

input signal has k features and T timestamps, the number of neurons inside the

reservoir layer is M and the number of neurons in the output layer is C. Here the
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input signal at each timestamp is essentially a multidimensional data point. Then

the sequential data at timestamp t can be denoted by ut ∈ Rk, the internal state in the

reservoir layer by xt ∈ RM and the output by yt ∈ RC. Here ut is simply the vector

of the input values and xt is the vector of values of all neurons within the reservoir

layer. The internal state is updated by

xt+1 = (1−a)xt +atanh(Winut+1 +Wresxt +Wbackyt) (4.1)

where Win is the input weight matrix, Wres is a square matrix that represents the

connections of the reservoir layer, Wback is the connections that project the output

back to the reservoir and a ∈ [0,1] is the leakage rate. tanh performs element-

wise operation. However, as for the TSC tasks, the output is expected to be the

predicted probabilities for distinct classes and normally only occurs at the terminal

point which may not be informative of and compatible with the temporal dynamics

in the reservoir layer. As a consequence, the feedback loop will be removed in our

new paradigms and the equation will be reduced to

xt+1 = (1−a)xt +atanh(Winut+1 +Wresxt) = T(xt ,ut+1) (4.2)

Apart from the size of the reservoir layer M, another pivotal factor is the leakage rate

a and it determines to what extent the internal state xt is susceptible to the current

input ut and their neighbouring neurons. It has conventionally been chosen to be

slightly less than 1. Lastly, the resulting output response at time t can be described

by

yt = f (Wout [xt ;ut ]) (4.3)

where Wout denotes the weight matrix in the output layer and f is an arbitrary

activation function. Wout is the only trainable part in ESNs and is normally trained

by a linear classifier with input being the internal state xt (sometimes together with

ut) and output being the target of interest at timestamp t. Here we need to point out

that in our new paradigms, the output layer will not be processed and trained as it

stands which will be further clarified in due course.
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The validity of an ESN is imparted by a basic stability property called the echo

state property (ESP). It states that an ESN has the ESP if it can forget the initial

values at a rate independent of the input, given any input sequence from a compact

set [262]. A strict definition is provided below:

Definition 1. An ESN has the echo state property if for any compact set A, there

exists a null sequence (δt), t = 0,1,2, . . . such that for any input sequence ut ⊂ A,

t = 0,1,2, . . ., ||x1
t − x2

t || ≤ δt holds for any two initial states x1
0 and x2

0 and any

t ≥ 0. A null sequence is a sequence that converges to 0.

To this end, Wres is scaled by a factor in order to largely ensure the ESP and

details are included in Appendix C. Also for the sake of conciseness, we use the

same notation Wres to denote the scaled matrix by default.

4.2.2 Method 1: Differential Echo State Networks

In this section, we will present our first paradigm for TSC tasks, Differential Echo

State Networks (Diff-ESNs) and show that it can perform efficiently on a variety of

datasets with regular time series.

The ESNs are based on the fact that the current internal state xt is dependent

on the last one xt−1 together with the current input ut . Let us assume that a dataset

contains N time series samples and the observation of sample i at timestamp j can be

represented by ui, j = [u1
i, j,u

2
i, j, . . . ,u

k
i, j]

T , where i = 1, ...,N and j = 1, . . . ,ni. Here

ni denotes the length of the sequence of sample i and k is the number of features

in the dataset. Note that in our setting the first subscript denotes the sample index,

the second subscript denotes the timestamp, and the superscript denotes the feature

index. The outcome of patient i is denoted by yi ∈ {1,2, . . . ,C} where C is the total

number of classes in this specific dataset.

One of the main obstacles that impedes the development of TSC techniques

using ESNs is the invariable nature of the connections in most part of the ESN.

Unlike sequential prediction tasks, where the output can be immediately linked to

the input at each time step since the output is typically the prediction for the next

observation ui, j+1 given ui, j, in TSC tasks, the class of a sample can only be inferred
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after the time series reaches the terminal stage. Since the weights in the input and

the reservoir layer are not adaptable in ESNs and as a result, the class information at

the terminal point cannot effectively alter the dynamics in the reservoir layer on the

basis of previous timestamps, an alternative route needs to be taken for the purpose

of facilitating TSC while retaining the hyper-efficiency of ESNs. In this section,

we will introduce a novel framework that leverages a bio-inspired neural coding

method along with a hallmark of the dynamics in the reservoir layer to conduct

TSC tasks.

The neural coding refers to the intricate way that the nervous system represents

and processes information, specifically in the context of neurons and their activity

patterns. There are several theories around neural coding mechanisms [263–265]

and in spite of their controversy and validity, it seems plausible to boil the principles

down to Three S’s: Spikes, Sparsity, Static suppression, and a brief description is

given as follows.

1. Spikes: It is widely believed that the cross-talk between biological neurons is

enabled by spikes (action potentials or firings). Therefore, the input and out-

put signals of a neuron may be reckoned to be a sequence of binary outcomes

such as 0,0,1,0,0,0,0,0,1,0.

2. Sparsity: Biological neurons spend most of the time in a silent state in order

to minimize unnecessary energetic costs, which makes 0 far more likely to

occur than 1.

3. Static suppression: It is also known as event-driven processing in plainer lan-

guage. It has been demonstrated that the neuronal systems in the sensory

periphery have the tendency to stimulate neuronal responses when subject to

drastic spatial or temporal change in external stimuli [266, 267].

Since ESNs are artificial neural networks that employ the sigmoid activation func-

tions to process information, it may not be appropriate to convert the continuous

observations into spikes. However, we may still take advantage of principle 2 and

3 to make our new method more biologically plausible and heuristic. Instead of
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using the original input sequence ui,1,ui,2, . . . ,ui,ni for each sample i, here the se-

quence will be transformed into their adjacent pairwise differences such that the

new observation for sample i at timestamp j can be denoted by

ûi, j = ui, j+1−ui, j, j = 1,2, ...,ni−1. (4.4)

Also for the sake of conciseness, from now on, we will drop the hat on these new

observations ûi, j and the notations will stay the same in the context of ESNs. Now

the information that the neurons in the reservoir layer have to learn has been trans-

formed from the raw observations to the sharpness of change in magnitude of the

adjacent observations. Besides, after the transform, the observations at many times-

tamps will lie in the vicinity of 0 which corresponds to the second principle listed

above. In addition to its biological plausibility, abrupt changes in time series are

reckoned to entail critical information of the fate of the sample and lie at the heart

of time series analysis and as a result, using the differential values as in Equation 4.4

may be more informative than using the original sequence [268–270]. An example

is given in Figure 4.2.

Now that we have properly defined the time series representation as the input to

the ESN, we can now start formulating the model. After feeding the input sequence

ui,1,ui,2, . . . ,ui,ni−1 for participant i into the ESN, the stimuli will update the internal

state of the reservoir layer by

xi, j+1 = (1−a)xi, j +atanh(Winui, j+1 +Wresxi, j) (4.5)

Note that the internal state should be reset to zero xi,0 = 0 after feeding each sample

so as to remove the unwelcome dependency between samples. Then we collect all

internal states for each sample i, xi,1,xi,2, . . . ,xi,ni−1 and next we need to seek a

hallmark of the internal state that can be used as the features for the classifier. Here

we use the variance of the sequence as the hallmark of the sample and the variance

vector of sample i can be denoted by Var(i) ∈ RM. Below is a brief reasoning for

the choice of this particular hallmark. Sequences from different classes may have
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Figure 4.2: The sequence of a sample from the UCR ECG200 dataset. The upper panel
exhibits the original sequence and the bottom exhibits the new sequence after
being transformed by the differential operator. The x-axis indicates the times-
tamps and the y-axis indicates the magnitude of the observation at each times-
tamp.

distinct change levels at specific timestamps and the local level of variations can be

captured by the variance to a certain extent. Thanks to the aforementioned coding

method using the differential operator, the local variations can be more precisely

reflected and fed into the reservoir layer. The reservoir layer generates rich and

more complex dynamics capable of better retaining short-term memory such that

the similar level of variation at distinct timestamps can be in a way, distinguished

by separate neurons in the reservoir layer. Finally, the variances of all samples in
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the training set will be stacked to form the input features to the classifier:

Xtrain =



Var(1)T

...

Var(i)T

...

Var(Ntrain)
T


=



Var1(1) . . . VarM(1)
... . . . ...

Var1(i) . . . VarM(i)
... . . . ...

Var1(Ntrain) . . . VarM(Ntrain)


(4.6)

Here Xtrain can be regarded as the design matrix in the regression model. Similarly,

the corresponding classes will be stored in a vector ytrain:

ytrain = [y1, . . . ,yi, . . . ,yNtrain]
T (4.7)

Then we fit ytrain to Xtrain using the linear support vector machine (SVM) to train

the classifier [271] as it is effective in high dimensional space, not least when the

number of samples is not sufficient enough as compared to other statistical ma-

chine learning methods such as logistic regression. A quick treatment of SVM can

be found in Appendix D. Lastly, the feature matrix and the classes of the test set

can be defined in a similar way and we denote them by Xtest and ytest . In order

to evaluate the performance of the model, we apply the trained classifier to Xtest ,

ŷtest =CL(Xtest) so that the outcomes of distinct samples can be predicted and com-

pared with the ground truth outcomes. Here ŷtest is the predicted class assignment

and CL is the classifier. The performance of the method will be shown in Section

4.3.1.

4.2.3 Method 2: Interpolation Echo State Networks

4.2.3.1 Overview

As will be shown in Section 4.3.1, the Diff-ESNs have the potential to perform

well when the time series data are regular. However, some datasets are more com-

plicated than that due to the intrinsic difficulties in the data collection process. In

some extreme cases, different samples (sequences) can have different numbers of

observations with irregular time intervals whilst each sample may only have a hand-
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ful of timestamps (< 5).

In this work, we use ovarian cancer screening to encapsulate the context of this

particular data type and highlight the importance of tackling it. Ovarian cancer is

a hereditary and lethal disease that disproportionately hits women aged above 50

and causes more than 150,000 overall deaths in the UK between 2017 and 2019,

accounting for more mortalities than any other cancer arising from the female re-

productive system. It is reported that the chance of a woman getting ovarian cancer

is 1.3% and dying from it is 0.9% during her liftime. Whereas the 5-year survival

rate is only around 40% due to late diagnosis, of which the majority of cases are

diagnosed at stage III and IV, up to 90% of patients at stage I can be cured with

conventional therapies, indicating the importance of early detection and interven-

tion [272]. In order to address this long-standing health concern for ovarian cancer,

various programs have been deployed worldwide which aim to discover early signs

of cancer before the symptom appears when the medical intervention is more likely

to be effective [273,274]. Thus far, one of the most popular tests for ovarian cancer

is the screening for tumour biomarkers. The participants have their samples taken

several times in a time span of years so that their risks are well tracked and moni-

tored. Some of them, unfortunately, will be diagnosed with cancer in the process of

screening and will be transferred to medical treatment. As one can well imagine, the

engagement of the participants is a highly spontaneous and independent behaviour

which essentially makes the time series data exceptionally irregular. Furthermore,

it is often too late for the treatment to kick in when the cancer is confirmed and as a

result, early detection and prevention is also part and parcel to the wider population

as well as to the optimization of the public health resources. Consequently, we will

develop another method that can appropriately handle this type of datasets in the

context of ESNs.

Unlike the Diff-ESNs, here the idea is to enhance the continuity of the time

series such that more observations can be generated and the timestamps become

more informative in the backdrop of the problem. For instance, if the biomarkers

of a participant are registered at the age of 54.3, 54.9, 55.2 and 56.1, it might be of
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interest to construct a more continuous trajectory with observations being recorded

by month given that month is a meaningful unit in clinical study. Later, we will

also show that it can enable flexible early forecasting, which is strongly preferable

in cancer.

As a first step, linear interpolation is applied to the sequence of participant i,

ui,1,ui,2, . . . ,ui,ni to fit the data into a continuous curve. Then the new sequence is

acquired by sampling the interpolated curve on a monthly basis since the first record

of screening and again for consistency, we will adopt the same notation to denote

the new sequence for each i. An example is given in Figure 4.3. The curve exhibits

the alteration of the expression of the biomarker CA125 from a specific participant.

The blue dots signify the original data points and the crosses signify the new data

points sampled by month after interpolation.

Figure 4.3: The linear interpolation of the biomarker CA125 of a specific participant. The
x-axis stands for the month index since the start of the screening and the y-
axis stands for the expression of the biomarker CA125. The blue dots are the
original data points upon standardization and the crosses are the new data points
sampled by month after interpolation.

Similar to the procedure in Section 4.2.2, we first collect all internal states for

each sample i, xi,1,xi,2, . . . ,xi,ni . In order to prepare the internal states as the input

for a linear classifier, one needs to find a way to appropriately summarize the past

history, not solely the last timestamp for each participant. There are effectively

several options and here we will introduce two of them in the next two sections.
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4.2.3.2 Skip sampling approach

The first option is to stack all internal states in the training set according to the time

series for individual participants into a matrix Xtrain:

Xtrain =



x1
1,1 . . . xM

1,1
... . . . ...

x1
1,n1

. . . xM
1,n1

... . . . ...

... . . . ...

x1
i,1 . . . xM

i,1
... . . . ...

x1
i,ni

. . . xM
i,ni

... . . . ...

... . . . ...

x1
Ntrain,1 . . . xM

Ntrain,1
... . . . ...

x1
Ntrain,nNtrain

. . . xM
Ntrain,nNtrain



(4.8)

And the corresponding outcomes will be stored in a vector ytrain:

ytrain = [y1, . . . ,y1, . . . . . . ,yi, . . . ,yi, . . . . . . ,yNtrain, . . . ,yNtrain ]
T (4.9)

In a nutshell, provided that participant i has ni timestamps, then there will be ni

entries in ytrain and ni rows in Xtrain. However, we may not want to use all of them

as training samples for two reasons:

1. The time span of a screening program is typically several years and after in-

terpolating and sampling by month, most participants have dozens of times-

tamps. This may result in a substantial increase in the sample size and in-

crease in the training overheads.

2. The internal state at timestamp j for participant i, xi, j may already contain

a certain piece of the past information of the internal state, not least those
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near the current timestamp j by virtue of the recurrent structure. Including

all timestamps may increase the learning variance and fail to generalize the

patterns in the datasets.

Hence, we introduce an additional parameter τ , where τ = 1,2, . . . ,nmin, to en-

able the option for users to sample the internal state xi, j with skips. Here nmin =

min{ni}i=1,2,...,N is the minimum length of time series among all participants. Since

the marker expressions at the last timestamp may be of the utmost clinical relevance,

we will always retain the internal state at the last timestamp for each participant in

Xtrain and select rows in Xtrain backward with the skip τ such that the block for

participant i will become

Xi =



... . . . ...

x1
i,ni−2τ

. . . xM
i,ni−2τ

x1
i,ni−τ

. . . xM
i,ni−τ

x1
i,ni

. . . xM
i,ni

 (4.10)

The resulting design matrix therefore becomes

Xtrain =



X1
...

Xi
...

XNtrain


(4.11)

And the corresponding subset of ytrain will be taken to form the new outcome vector

and again we keep the notation unchanged, ytrain. As such, enough samples can be

ensured to train the classifier while taking into account the temporal dynamics. By

training the internal states that incorporate diverse lengths of history (not just the last

one) of a particular participant, it also potentially enables a better generalization

when seeing the longitudinal features from other participants. Then we fit ytrain

to Xtrain using the linear SVM to train the classifier and generate the predicted

outcomes for the test set ŷtest = CL(Xtest). Note that as opposed to the one shown
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in Section 4.2.2, here the predicted outcomes ŷtest are given in probability and the

reason will be discussed at greater length later. As a result, the SVM with the

probability output is implemented as a replacement [275]. Besides, at the moment,

each participant still has multiple predicted outcomes and they are disparate for the

same participant:

ŷtest = [ŷ1
1, . . . , ŷ

n1
1 , . . . . . . , ŷ1

i , . . . , ŷ
ni
i , . . . . . . , ŷ

1
Ntest

, . . . , ŷnNtest
Ntest

]T (4.12)

One may need a single predicted outcome for each participant in order to be com-

pared with the ground truth label. Here we select the prediction at the last time

point to be the representative of the specific participant. In this way, we put more

emphasis on the last time point as it not only contains arguably the most relevant

information (the last screening), but also the history before that. In order to distin-

guish the approach from the one that we will show next, we name it skip sampling.

Early forecasting is instrumental to successful cancer treatment as it is often

too late for the treatment to take effect when the cancer is confirmed. Therefore,

lastly, we will demonstrate that the skip sampling approach can also enable flexible

forecasting. The training process will remain the same and Xtrain will be employed

as the input to the classifier. Suppose that we want to make the forecast γ months

before the last record. Instead of gathering all available observations, only the ob-

servations up to the timestamp ni−γ will be used as the input to the classifier in the
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test stage:

Xtest =



x1
1,1 . . . xM

1,1
... . . . ...

x1
1,n1−γ

. . . xM
1,n1−γ

... . . . ...

... . . . ...

x1
i,1 . . . xM

i,1
... . . . ...

x1
i,ni−γ

. . . xM
i,ni−γ

... . . . ...

... . . . ...

x1
Ntest ,1 . . . xM

Ntest ,1
... . . . ...

x1
Ntest ,nNtest−γ

. . . xM
Ntest ,nNtest−γ



(4.13)

The remaining procedures stay the same and one can implement the skip sampling

if needed.

4.2.3.3 Average classifier approach

Thus far, we have presented a relatively generic approach since it does not demand

any specific information about the nature of the dataset. As for the cancer data, it

may be beneficial to take advantage of clinical observations to facilitate the algorith-

mic detection of cancer. The inception of tumor cell growth is widely recognized to

occur well in advance of the manifestation of any noticeable. Therefore, a feasible

idea is to train several classifiers with respect to different timestamps of interest and

take the average of the respective classifiers. In mathematical terms, we first define
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the matrices to account for each timestamp:

X( j)
train =



x1
1, j . . . xM

1, j
... . . . ...

x1
i, j . . . xM

i, j
... . . . ...

x1
Ntrain, j . . . xM

Ntrain, j


(4.14)

in which X( j)
train collects the biomarker expressions at timestamp j for all partici-

pants. In this work, we use j = −1 and j = −6 to collect input features for the

separate classifiers because 6 months can be seen as a golden window in cancer

diagnosis and treatment. We trained the two classifiers separately using the training

set and we denote them by CL−1 and CL−6. Then the trained classifiers will be

applied to their respective test sets X( j)
test , j = −1,−6, and the respective predicted

outcomes will be generated such that ŷ−1
test =CL−1(X

(−1)
test ) and ŷ−6

test =CL−6(X
(−6)
test ).

The final predicted outcomes (in probability) will be the average of the two

ŷtest =
ŷ(−1)

test + ŷ(−6)
test

2
(4.15)

Again to make the distinction, we call this method average classifier.

4.3 Performance

4.3.1 Performance of the Differential Echo State Networks

The performance of the method can be assessed by computing the error rate in the

test set of each dataset. Namely,

ER =
∑

Ntest
i=1 I(yi ̸= ŷi)

Ntest
(4.16)

Here Ntest is the number of samples in the test set, I is an indicator function, yi is

the ground truth class of sample i and ŷi is the class category predicted by using the

aforementioned trained classifier.
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The UCR repository [276] is widely used as the benchmark datasets for assess-

ing the performance of TSC algorithms. Each of these UCR datasets comprises a

training set and a test set and the idea is to train any new model on the training set

and report the error rate of the test set. In each dataset of this repository, all samples

(sequences) have the same length and the lengths are all no less than 30 but can go

up to several thousands for some datasets. Furthermore, all samples are recorded at

the same timestamps in each dataset. In order to demonstrate the extensive applica-

tion of our method, as a first step, the error rates of 33 datasets have been calculated

and compared with the gold standard 1NN-DTW method. The parameters used for

this study are M = 50 and a = 0.9. The connections in the input and the reservoir

layer are fixed random matrices following the standard normal distribution. We

will show that employing a small reservoir layer (M = 50 and hence with superb

efficiency) and a commonly used leakage rate a can lead to adequate classification

accuracy. The robustness of the method will be evaluated later.

Table 4.1 displays the error rates generated by the Diff-ESN method, with a

reference to the publicly available results using 1NN-DTW. The columns from the

left to the right are the name of the dataset, number of classes, training size, test

size, the error rate of using the 1NN-DTW and the Diff-ESN. The error rates in

the last column will be highlighted in bold colour if they outperform the 1NN-

DTW method. Some dataset names are abbreviated to fit the window for better

visualization. As can be seen, the Diff-ESN achieves comparable results on all these

33 datasets relative to the 1NN-DTW. Among them, the Diff-ESN outperforms the

1NN-DTW on 23 datasets and 19 of them are below 0.25. Furthermore, all these

tasks can be completed on a personal computer with minimal costs (< 5 minutes for

the most training expensive dataset without even exploiting the parallel processing).

Since the connections in the input and the reservoir layer are randomly created,

it is also imperative to validate the robustness of our new method. To this end, we

select four datasets and have a closer look at the variation in performance subject

to different connections. Figure 4.4 lays out the error rates of the dataset ECG200,

Plane, ProxPhalOutAgeGrp and ShapeletSim produced by 50 different connections.
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As illustrated, the performance is barely susceptible to the change in connections.

Take the dataset ECG200 for example, as a matter of fact, the reported result in

Table 4.1 (0.24) is located in the upper side of the violin plot in the sense that the

majority of the connections will give rise to a lower error rate than 0.24.

Figure 4.4: The robustness check for the Diff-ESN using the dataset ECG200, Plane, Prox-
PhalOutAgeGrp and ShapeletSim. Each violin plot contains 50 error rates gen-
erated by different random connections in the input and the reservoir layer. The
vertical axis denotes the error rate.

4.3.2 Performance of the Interpolation Echo State Networks

The error rate (or accuracy in reverse) is an intuitive measure of correctness of sta-

tistical models. The UCR benchmark datasets have been extensively studied by the

wider community and the training and the test sets have been carefully pre-split for

a more perspective comparison and therefore, in Section 4.3.1, we compute the er-



4.3. Performance 102

Table 4.1: Error rates of UCR datasets using the Differential ESN. The columns from the
left to the right are the name of the dataset, number of classes, training size,
test size, the error rate of using 1NN-DTW and Diff-ESN. The error rates in the
last column will be highlighted in bold colour if they outperform the 1NN-DTW
method. Some dataset names are abbreviated to fit the window. The unavailable
results will be denoted by /.

Dataset #class #train #test 1NN-DTW Diff-ESN
BeetleFly 2 20 20 0.300 0.250

BirdChicken 2 20 20 0.250 0.100
CinCECGTorso 4 40 1380 0.349 0.336

Coffee 2 28 28 0 0.070
DistPhalanxTW 6 400 139 0.290 0.324

Earthquakes 2 322 139 0.258 0.252
ECG200 2 100 100 0.230 0.240

ECG5000 5 500 4500 0.250 0.081
ECGFiveDays 2 23 861 0.232 0.245

ElectricDevices 7 8926 7711 0.399 0.404
FordA 2 3601 1302 0.438 0.120
FordB 2 3636 810 0.406 0.328
Ham 2 109 105 0.533 0.377

Herring 2 64 64 0.469 0.406
ItalyPowerDemand 2 67 1029 0.050 0.076
MidPhalOutCorr 2 600 291 0.352 0.354
MidPhalanxTW 6 399 154 0.416 0.442

OSULeaf 6 200 242 0.409 0.380
Plane 7 105 105 / 0.029

ProxPhalOutAgeGrp 3 400 205 0.195 0.141
ProxPhalOutCorr 2 600 291 0.216 0.258
ProxPhalanxTW 6 400 205 0.263 0.195
RefrigeDevices 3 375 375 0.536 0.528

ShapeletSim 2 20 180 0.350 0.039
SmallKitchenAppl 3 375 375 0.357 0.307

SonyAIBORobotSurf1 2 20 601 0.275 0.170
SonyAIBORobotSurf2 2 27 953 0.169 0.127

StarLightCurves 3 1000 8236 0.093 0.089
ToeSegmentation1 2 40 228 0.228 0.180

Trace 4 100 100 0 0.020
TwoLeadECG 2 23 1139 0.096 0.001

Wafer 2 1000 6164 0.02 0.015
Worms 5 181 77 0.536 0.442

ror rate of the test set and compare it with the publicly available results. However, in

many other cases, it is more advantageous to generate the receiver operating char-
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acteristic curve (ROC curve) and calculate the area under the curve (ROC AUC in

short form) in order to evaluate the discrimination power of the model. It comes

with a few reasons. Firstly, as opposed to the error rate, the ROC curve examines

all possible classification which accurately reflects the model’s response to the al-

teration of the threshold value. Secondly, the ROC curve is less susceptible to the

imbalanced datasets. It is often the case that the clinical data are imbalanced since

negative outcomes are way more likely to occur than positive outcomes. Subse-

quently, the error rate may still be low even if the model under-performs on the

minority class and this can be substantially alleviated by the ROC curve. A detailed

illustration of the ROC curve is provided in Appendix E.

In this study, the dataset that we used to assess the performance of our model

is the BD dataset [277–279]. The BD dataset contains 222 patients on screening

for ovarian cancer after removing those with only one timestamp. The biomarkers

of interest are CA125, Glycodelin, HE4, MSLN25, MMP745 and CYFRA55, the

expressions of which have been standardized before fitting any machine learning

models. Among them, CA125 is a protein that has been regarded as the primary

marker for ovarian cancer and the elevated levels of CA125 can be associated with

certain conditions [280, 281]. The recorded times of these marker expressions are

also included in the dataset which enables the interpolation of the time series.

With a view to evaluating the performance of our method, the BD dataset is

split 50-50 randomly in that half of the dataset is used for training and the other half

for testing. Considering that the BD dataset is a new and relatively small dataset,

the robustness of the model in regard to the dataset needs to be checked carefully.

With this goal in mind, 50 different splits of the dataset will be studied so as to

gain a more comprehensive view of the model. Additionally, multiple values of the

number of the neurons in the reservoir layer, M, will also be explored since changing

the value of M will not only examine this important parameter, but also alter the

connections in the input and the reservoir layer so that more random connections

can be inspected at the same time.

Figure 4.5 displays the ROC AUC scores using the skip sampling method with
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τ = 4 with (a) being the case where only CA125 is used as the input and (b) where

all 6 markers are included. Each figure contains 4 violin plots and each violin

plot exhibits 50 AUC scores that correspond to 50 different splits of the training

and the test set. In order to better evaluate the discrimination power of our time

series based method, a comparison has also been made with the scores using only

the last time point. In the latter case, only the last recorded marker expressions

are selected for each participant and the logistic regression model is fitted to the

training set and the outcomes (in probability) of the participants are predicted in the

test set accordingly. The first row of each figure shows the AUC scores obtained by

using the aforementioned logistic regression model as a baseline result. Row 2-4

show the AUC scores obtained by the skip sampling method with M = 40,50,60,

respectively. As can be seen, most splits give rise to a consistently high ROC AUC

score (> 0.9), irrespective of the markers involved. In the case where only CA125

has been used, M = 60 yields a slightly better overall performance than the baseline

while M = 40 and M = 50 also reach a comparable level (and arguably better in

some aspects). In the case of the 6 markers, M = 40, M = 50 and M = 60 all give

rise to a higher overall performance and among them, the improvement of M = 50

on the baseline result is highly significant.

As for the average classifier, another 13 participants with only two registered

timestamps will also be removed to ensure that the 6-month record from the last ex-

ists for each participant. Figure 4.6 displays the ROC AUC scores using the average

classifier method. Similar to the skip sampling method, most splits give rise to a

consistently high ROC AUC score. For CA125, M = 40 results in a notably better

performance while M = 50 and M = 60 both reach comparable performance. For

the 6 markers, M = 50 results in a marginally higher median while M = 40 achieves

a comparable performance in terms of median and inter-quartile. Also note that

the overall performance is marginally lower than the skip sampling method which

could boil down to the fact that more participants are removed from the dataset and

consequently, few samples are included in the training set.

Finally, the performance of the 6-month forecast is presented in Figure 4.7
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using the skip sampling approach. As before, only the participants with at least

three timestamps will be included to ensure the existence of the 6-month window.

As shown, most splits give rise to a reasonably high ROC AUC score (> 0.75) and

the majority of them lie above 0.8, which demonstrates a robust forecasting power

of our method.

The reason that we want to assess the performance of different parameters

(M) is that, as compared to using the cross validation and selecting the optimal

parameter from the training set, it allows for a better inspection of the robustness

subject to different parameters, which is reckoned crucially important for any new

methodologies.

(a) CA125 (b) 6 markers

Figure 4.5: ROC AUCs of the skip sampling method. (a) shows the ROC AUC scores us-
ing only the marker CA125 and (b) shows the scores using the marker CA125,
Glycodelin, HE4, MSLN25, MMP745 and CYFRA55. Each violin plot con-
tains 50 AUC scores obtained from 50 different splits of the dataset. Each figure
contains four violin plots. The first row shows the reference scores using the
logistic regression model only on the last timestamp. Row 2-4 show the scores
with different M respectively. The x-axis denotes the ROC AUC score.

4.4 Conclusion and discussion
In this work, we established a novel ESN framework that can effectively address

TSC tasks, comprising standard benchmark datasets as well as the more challenging

cancer screening dataset, with tremendous efficiency.

We demonstrated that the Diff-ESN method has attained comparable perfor-

mance with the classic 1NN-DTW method and resulted in notable improvement
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(a) CA125 (b) 6 markers

Figure 4.6: ROC AUCs of the average classifier method. (a) shows the ROC AUC scores
using only the marker CA125 and (b) shows the scores using the marker
CA125, Glycodelin, HE4, MSLN25, MMP745 and CYFRA55. Each violin
plot contains 50 AUC scores obtained from 50 different splits of the dataset.
Each figure contains four violin plots. The first row shows the reference scores
using the logistic regression model only on the last timestamp. Row 2-4 show
the scores with different M respectively. The x-axis denotes the ROC AUC
score.

(a) CA125 (b) 6 markers

Figure 4.7: ROC AUCs of the 6-month forecast using the skip sampling method. (a) shows
the ROC AUC scores using only the marker CA125 and (b) shows the scores us-
ing the marker CA125, Glycodelin, HE4, MSLN25, MMP745 and CYFRA55.
Each violin plot contains 50 AUC scores obtained from 50 different splits of
the dataset. Each figure contains three violin plots and they show the scores
with different M respectively. The x-axis denotes the ROC AUC score.

on error rate on several datasets, as shown in Table 4.1. The Interp-ESN method

has been designed to tackle the famously hard irregular time series such as cancer

screening data where forecasting on a regular basis is desirable. All cases that we

considered as in Figure 4.5 and 4.6 achieve at least no worse overall performance
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than the baseline using the logistic regression on the last recorded time point. Some

parameters have given rise to a significant increase in performance in terms of as-

pects such as median and inter-quartile. Most importantly, the method entails a flex-

ible forecasting option that empowers the prediction of the outcome at any month

in advance and attains high ROC AUC scores with a 6-month forecast.

With the contribution being said, our model comes with several limitations and

some further considerations can be given in the future. First of all, the Diff-ESN

may not be an appropriate approach for the irregular time series such as the can-

cer screening data. It is because the interpolated sequence only yields a predicted

coarse trajectory and the differential operator will compute inaccurate difference

between two adjacent timestamps. Therefore, the hallmark of the trajectory that we

chose, variance, may not be as predictive. Secondly, even though the Interp-ESN,

not least the skip sampling approach, may be deemed as a more generic method, it

comes with inevitable inconvenience when being applied to the regular time series

data such as those listed in Table 4.1. The most prominent one is the pre-specified

sampling step and its trade-off with computational efficiency. Even a sizable step

size can still incur a relatively high computational cost when the time series se-

quence is exceptionally long and there is no guarantee that the selected sampling

step is informative in any possible way. Lastly, there still exists a significant gap be-

tween the performance of our method reported in Table 4.1 and the state-of-the-art

LSTM neural networks shown in [282] for most of the datasets. Yet, the deep neu-

ral networks require the training of an astronomical amount of parameters through

back-propagation whereas our method is free of back-propagation and the training

can be completed with a negligible energy cost. The future direction may lie in a

more sensible trade-off between classification accuracy and energy consumption.

One might consider introducing a light training algorithm for the weights in the

reservoir layer as well as the output layer at each time step. This is also in compli-

ance with the observation in Figure 4.4, 4.5 and 4.7 that some random connections

lead to better performance than others. However, it is not very clear how to fix the

computational complexity and whether the convergence will be guaranteed or not.



Chapter 5

When reservoir computing meets

information theory: the tendency of

entropy change through spike

timing-dependent plasticity

5.1 Introduction
In Chapter 4, we have thoroughly discussed how ESNs, an instance of RC, can be

potentially harnessed to accomplish TSC tasks and attain an accuracy comparable to

some state-of-the-art methods with great efficiency. Another instance of RC, liquid

state machines (LSMs), stand out as a promising and innovative approach in compu-

tational neuroscience, not least in understanding information processing and trans-

mission [283–286]. LSMs leverage the dynamic properties of a liquid medium to

enable robust and adaptive computations and can be regarded as a better-simplified

brain by virtue of the utilization of biological neuronal models, which makes them

a more biologically inspired framework, as opposed to the ESNs [92]. Because of

this, it is also sometimes referred to as spiking RC. The fundamental mechanism

behind LSMs is the use of a recurrent network, often referred to as the liquid con-

sisting of interconnected biological neurons with random synaptic weights between

them. This liquid medium exhibits rich temporal dynamics, allowing it to process
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and transform incoming information in a highly parallel and distributed manner.

The interactions among these neurons create a dynamic reservoir that serves as the

foundation for the computation performed by the system.

Information theory is a discipline of applied mathematics that was first intro-

duced in 1948 in an attempt to quantify information and to better unravel the myth of

data transmission in telecommunication and biological systems [287–293]. It com-

prises numerous concepts and among them, entropy plays an indispensable role in

uncovering the fundamental nature of information processing. In essence, entropy

measures the uncertainty, or disorder inherent in data, offering profound insights

into the efficiency of data compression, reliability of information transmission, and

the intricacies of coding theory, etc. In particular, the complex relationship between

the brain and entropy has attracted growing attention in recent years due to the in-

creasing demand for deciphering the function of the brain [294–298]. A case in

point is the hypothesis, the entropic brain, which seeks to establish the connection

between entropy and the state of consciousness [299–301].

Aside from studying the information processing arising from different dynam-

ics and spatial patterns at resting states, the response of the brain activity to external

stimuli can also be investigated by means of ever-growing brain stimulation tech-

niques. Amidst them, several works have already delved into the entropy change

in the brain subject to various types of stimulation under miscellaneous physio-

logical conditions and either increase or decrease in entropy was reported accord-

ingly [89–91]. For example, [89] measured the Shannon entropy change in EEG

and FEMG activity within a specific frequency range among patients during painful

stimuli. [90] recorded the action potentials of neurons in the globus pallidus and

the motor thalamus of monkeys rendered parkinsonian during high-frequency stim-

ulation and clinically ineffective low-frequency stimulation, and the difference in

Shannon entropy was computed accordingly. In [91], the sample entropy [302] of

healthy patients was measured from resting state fMRI before and after applying

high-frequency repetitive transcranial magnetic stimulation or control stimulation.

However, these experiments are confined to a specific setting and a global un-
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derstanding of the trend of entropy change in the brain is still lacking and it is

difficult to be carried out in a wet lab due to the cost and conditions. Therefore,

mathematical models can be potentially useful for providing more insight into the

phenomena of this kind and suggest plausible hypotheses from a global perspective

provided that the model is appropriately constructed. In particular, we will attempt

to answer a slightly different question to the experiments mentioned before. The

emphasis will be on the tendency of entropy change when subject to stimulation,

rather than a direct comparison of the entropy level between the two groups with

different conditions.

Spike-timing-dependent plasticity (STDP) is a fundamental and biologically

plausible concept in the field of neuroscience that has revolutionized our interpreta-

tion of synaptic plasticity – the ability of neuronal connections to adapt in response

to external stimuli. Unlike traditional models of synaptic plasticity that solely focus

on the frequency or intensity of neuronal activity, STDP factors the precise timing

of spikes into the mechanism that underlies the crosstalk between neurons. At the

heart of it is the asymmetric form of Hebbian learning induced by the correlations

between the arrival times of the spikes of pre- and post-synaptic neurons. This

phenomenon has profound implications for learning and memory processes in the

brain, as it allows synapses to dynamically adjust their efficacy based on the tempo-

ral order of neuronal firing [303–307]. As a result, in this work, we will leverage a

mathematical model to enable the update of the synaptic weights subject to external

stimuli.

In using these mathematical components, we will develop a formalism that al-

lows us to directly investigate the impact of STDP rules as a consequence of the

external stimulation on the tendency of entropy change in a reservoir of recurrent

neurons. Essentially, we will furnish supporting evidence for the experimental find-

ings mentioned before in a more generic framework and reveal other observations

that remain untouched so far in biology and physiology. The chapter will be or-

ganized as follows: Section 5.2 presents the models and methods that are used to

construct this biologically plausible formalism. Section 5.3 exhibits the simula-
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tion results generated by the model. A summary and some further discussions are

included in Section 5.4.

5.2 Models and methods

5.2.1 Overview of the model

The LSMs share a similar structure with ESNs that have been thoroughly intro-

duced in Chapter 4. However, since we are now only concerned with the impact

of the input stimuli on the entropy in the reservoir layer through STDP rules, the

output layer can be permanently removed and a schematic is shown in Figure 5.1.

Note that the input data as well as the neuronal signals in the reservoir layer shall

be converted to spike trains using biophysical models for the sake of biological

plausibility, as indicated in the schematic diagram. The basic procedure of our ex-

Figure 5.1: Liquid state machine (LSM)

periment can be described as follows. We employ the publicly available time-series

recordings as the input to the reservoir layer in order to make our simulations better

resemble real-world scenarios. To this end, a temporal encoding method will be

leveraged to convert the intrinsically continuous sequences into spike trains so as to

reduce the loss of temporal information. The neurons inside the reservoir layer will

be characterized by the leaky integrate-and-fire (LIF) model by reason of its com-

putational simplicity that can practically facilitate the simulation of large networks.

The synaptic weights in the reservoir layer will be adjusted through STDP rules
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according to the firing patterns of neurons as a result of the stimulation by the input

spike train. Lastly, the entropy values before and after the adaption with respect

to the same input sequence will be compared to investigate the effect of external

stimulation on the entropy through STDP rules. More details will be provided in

the following sections.

5.2.2 Temporal encoding of the input sequence

In contrast to artificial neural networks (ANNs) where the original sequence can be

directly used as the input to the network, spiking neural networks often require the

input sequence to be converted to a spike train as the binary information which is

more in agreement with our current understanding of the way that neurons process

sensory stimulation. A spike will be generated when the neuron fires at a particular

time and nothing otherwise.

From now on, we will restrict our description to one-dimensional sequences

for conciseness and later one will easily see how the method can be translated into

multivariate cases. Before conducting any conversion procedure, we first introduce

the bio-inspired differential operator presented in Section 4.2.2 to be concerned with

the contrast in the input:

ût = abs(ut+1−ut), t = 1,2, ...,n−1. (5.1)

where (ut)t=1,2,...,n is the representation of a specific sequence and t denotes the

timestamp index. Note here we also take the absolute value of the difference so

as to only differentiate the degree of change such that the change in either direction

can be treated equally important. With that being said, we still want to point out that

one can proceed without taking the absolute value and it will not affect the quali-

tative result of this study. Again, we will hereafter drop the hat on the transformed

observation for the sake of simplicity. Lastly, a min-max scaler is applied to the

sequences (from the same source) to confine the values between 0 and 1:

ut =
ut−umin

umax−umin
(5.2)
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where umin and umax denote the minimum and the maximum within the whole

dataset, respectively.

In order to convert a given time-series sequence into a spike train, the sim-

plest and the most intuitive solution is to binarize the entire sequence with a cut-off

threshold. Namely, (I[ut > thr])t=1,2,...,n. Here ut is the value at timestamp t, I is

an indicator function and thr is the threshold. However, this simple solution comes

with an obvious drawback. Now that the values of the observations of the time series

have been turned into binary categories, the relative importance among observations

in the same category will be lost and this will greatly impact the resolution of the

sequences. To alleviate this, one may consider encoding the relative magnitude into

the temporal difference of spikes so that the accuracy of the sequence can be largely

preserved. Here we adopted the method using the radial basis functions presented

in [308]. Assume any data ut ∈ [a,b]. In our settings, a = 0 and a = 1 as we ap-

plied the min-max scaler to our original data. Then we choose a series of Gaussian

functions as of the radial basis functions with the mean µi and the variance σ2.

f (x) =
1

σ
√

2π
e−

(x−µi)
2

2σ2 (5.3)

where i = 1, . . . ,Nc, and µi and σ are defined as
µi = a+

2i−3
2

b−a
Nc−2

σ =
1
c

b−a
Nc−2

(5.4)

Here Nc is the number of functions and c is a designed parameter. As such, the

value in any time series sequence ut will be translated into Nc channels with respect

to their corresponding bases and can be thereafter converted into their surrogate

temporal latency from t = 0 to t = Nc− 1. More precisely, the temporal latency is

determined by the relative distance between f (ut) and f (µi) such that

T t
i =
[
Nc−

Nc f (ut)

f (µi)

]
(5.5)
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where the bracket is an operator that rounds the value to the nearest integer and T t
i

essentially indicates the firing time in the time window that concerns this partic-

ular value ut in channel i. If the computed firing time lies outside the time win-

dow Nc − 1, there will be no firing that takes place in the time window. Next

we will use Nc = 5 and c = 0.8 as a quick example. The five Gaussian func-

tions are plotted in Figure 5.2. If ut = 1, then the corresponding values of f (x)

will be 0.0015,0.01900,0.1296,0.4660,0.8838, and consequently, the correspond-

ing T t
i will be 5,5,4,3,0 with respect to i = 1,2,3,4,5. In other words, within the

time window that is dedicated to ut , no spike is generated in channel 1 and 2, spikes

are generated at timestamp 4, 3 and 0 in channel 3, 4 and 5. The firing pattern of

ut+1 can be produced similarly and it will be passed right after the pattern by ut . In

Figure 5.2: Illustration of the encoding principle.

summary, if a time series sequence has k features and the length of it is n, then the

new sequence after the conversion will have kNc features and the length will be nNc.

Here we use Nc = 10 and the input sequences are univariate, namely k = 1. Lastly,

we denote the resulting input spike trains by Sin
t .

As one can easily tell, the strength of the method lies in the accurate encod-

ing of continuous data into temporal spikes whereas the main shortcoming is the

significantly prolonged sequence which can potentially increase the computational
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cost.

5.2.3 Neuronal model

As shown in Figure 5.1, the reservoir layer is composed of numerous neurons, the

dynamics of which are determined by the input spike trains as well as the intercon-

nections between neurons. In this work, we employ an adapted version of the leaky

integrate-and-fire (LIF) model to depict the membrane potentials of the neurons

in the reservoir layer. Assume that the reservoir comprises M neurons. Then the

membrane potentials of neurons can be denoted by Ut ∈ RM and the spike variables

by St ∈ {0,1}M. Accounting for the input signals and the reset of the membrane

potentials, the LIF model can be therefore written as [309]

Ut = βUt−1 +WinSin
t +Wt−1St−1−St−1θ (5.6)

and

St(i) =

1, Ut(i)> θ

0, otherwise
(5.7)

The derivation of this ODE-free model is shown in Appendix F. Here β is the decay

rate of the membrane potentials Ut that dictates the effect of the previous step on

the current one. Win is the matrix of the input connections and remains unchanged

throughout the experiment. Wt is the matrix of the connections in the reservoir

layer and will be updated in response to the input signal over time, the mechanism

of which will be explained in due course. θ is the threshold of the action potential

and the soft reset is in use to push the membrane potential to the resting state. Here

we use β = 0.9 and θ = 0.6. In Equation 5.7, i indexes the neurons in the reser-

voir layer and a spike is generated if the membrane potential is above the threshold

θ . As compared to the ODE models, the model using discrete update naturally fits

the structure of RNNs as the input spike trains can be easily incorporated into the

dynamics of neurons. The simplicity of the model also empowers efficient compu-

tation when attempting to simulate a large network in order to better epitomize the

brain.
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Now that we have constructed a biologically plausible model that can be lever-

aged to coarsely represent the dynamics of neurons in the brain, next we need to

further depict the synaptic plasticity to account for the change in synaptic weight

in response to external stimulation. The basic STDP model simply computes the

difference in the firing times between pre- and post-synaptic neurons and translates

it into the synaptic weight:

∆ω = E(tpost− tpre) (5.8)

where E takes the form of

E(x) =


A+ exp(− x

τ+
) x > 0

−A− exp(
x

τ−
) x < 0

(5.9)

Here ∆ω reflects the change in weight of a synapse. tpre and tpost are the firing times

of the pre- and post-synaptic neurons. A+, A−, τ+ and τ− are positive parameters.

However, the model requires the tracking of the entire history of the pre- and the

post-synaptic neurons spikes and the pre- and post-synaptic may fire at the same

time step if the step-size is not small enough in a numerical simulation. To this

end, in this work, we adopt the online implementation of STDP models for its fine

physiological detail and memory efficiency [310]:



dω

dt
= A+xpre ∑

i
δ (t− t i

post)−A−xpost ∑
i

δ (t− t i
pre)

τ+
dxpre

dt
=−xpre +a+∑

i
δ (t− t i

pre)

τ−
dxpost

dt
=−xpost +a−∑

i
δ (t− t i

post)

(5.10)

where ω is the synaptic weight between two neurons in the reservoir layer, xpre is

the pre-synaptic trace variable and xpost is the post-synaptic trace variable. There

are 6 parameters that control the rate of them, A+,A−,a+,a−,τ+,τ− and their con-

tribution can be easily interpreted from the equations. δ is the delta function. t i
pre
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and t i
post are the arrival times of the pre- and post-synaptic spikes and i denotes

the index of the spikes in the spike train. The pre/post-synaptic spike will elevate

the concentration of the trace variable xpre/xpost and the persistent trace will decay

exponentially in the absence of subsequent spikes. The synaptic weight ω will be

substantially increased if the post-synaptic neuron fires at t i
post whilst xpre stays at

a high concentration level, whereas ω will be depressed if the pre-synaptic neuron

fires at t i
pre whilst xpost stays at a high concentration level. Hence, the change in

synaptic weight in the reservoir layer due to the stimulation can be appropriately

modelled using the difference in the arrival times of pre- and post-synaptic spikes.

The parameter values that we use in this work are A+ = A− = 0.15, a+ = a− = 0.1,

τ+ = τ− = 10. The time step ∆t used to simulate the system 5.10 is chosen to be 1,

which is in agreement with the assumption made in deriving the Equation 5.6.

Lastly, block entropy will be used to quantify the uncertainty that the reservoir

layer possesses. It is the Shannon entropy applied to the time series sequence with

k histories of it being considered and it takes the form

BE(X (k)
i ) =−∑

j
P(X (k)

i = j) log2(P(X
(k)
i = j)) (5.11)

for each neuron i. Here X (k)
i denotes the k-history variable for neuron i and j denotes

all categories that correspond to a k-history block. For instance, k = 1 represents

that every single timestamp is a realization and reverses back to the basic Shannon

entropy and j ∈ {[0], [1]}. For k = 2, j ∈ {[0,0], [0,1], [1,0], [1,1]}. As a result, the

total entropy of the neurons in the reservoir layer can be written as

BEres = ∑
i

BE(X (k)
i ) (5.12)

5.2.4 Experimental design

In this section, we will thoroughly elaborate the procedure of a simple experiment

so as to study the impact of STDP rules on the alteration in entropy. Admittedly,

there is no such thing as a sensible model for this objective as the mechanism that
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underpins the function of the brain remains largely unknown. Nonetheless, a com-

putational model with sufficient physiological details together with a practical pro-

cedure can still be implemented which can potentially shed more light on the exist-

ing knowledge as well as reveal insightful observations that were not seen before.

The steps of our experiment can be summarized as follows:

1. 100 different pairs of matrices (Win,W0) are randomly created.

2. 100 time series sequences are chosen from the same dataset and converted

from the continuous values to spike trains.

3. For each pair of the matrices and for each sequence i, the corresponding spike

train Sin
t is fed into the reservoir. The spiking pattern in the reservoir layer is

generated and the total entropy as in Equation 5.12 is calculated and denoted

by E i
1. The synaptic weights Wt remain unchanged at this stage and are still

W0.

4. Feed the spike train Sin
t into the reservoir again but this time the STDP rules

as in Equation 5.10 are applied and Wt is changed accordingly.

5. Now that the synaptic weights have been altered, the spike train Sin
t is again

fed into the reservoir and the total entropy is calculated and denoted by E i
2.

6. Reset Wt to W0.

7. For each pair of the matrices, a = ∑i I(E1 > E2) is calculated where I is the

indicator function.

8. The histogram of a produced by 100 different pairs of matrices is generated.

Admittedly, the experiment setting is far from the precise way that the brain receives

and processes the signals. However, as the very first attempt in this line of research,

our aim is to directly compare the entropy before and after the impact of the STDP

rules when seeing the same input sequence for a number of different random synap-

tic connections and the experiment presents an intuitive framework. Note that in

this work, the initial weight matrix in the reservoir layer W0 is generated using a
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normal distribution N(0,σ2) with σ = 0.2 and all the diagonal entries are zeroed to

avoid the self-loop. The input matrix Win is first generated by a uniform distribution

U(−0.5,0.5) and the entries in the matrix are scaled such that x = x+0.5sign(x) so

as to make sure that the neurons in the reservoir layer can be properly excited. Here

x denotes an arbitrary entry in the matrix and sign(x) is used to take the sign of the

input x. A concise algorithm can be found below.

Algorithm 1 Algorithm for the experiment

The main objective is to capture for each pair of matrices, how many of 100
time series sequences result in a decrease in entropy after the synaptic weights are
adapted by STDP rules in response to external stimulation.

Given 100 different pairs (Win,W0) and 100 time series sequences
for each pair of matrices do

a← 0
for each sequence do

feed Sin
t , compute E i

1.
feed again and Wt is updated by STDP rules through time.
feed Sin

t , compute E i
2.

a← a+ I(E1 > E2)
end for

end for
Plot the histogram of all a.

5.3 Results
In this section, we will leverage three different sources of time series sequences,

one artificial and two real datasets, to delve into the propensity in entropy change

of various weight matrices W0 in response to the external stimuli. The two real

datasets that we chose for the experiment are Wafer and ArrowHead from the UCR

dataset since their time series sequences are long enough to manifest the STDP

effect. The original sequences are converted to spike trains using the method intro-

duced in Section 5.2.2. The artificial data have 10 input channels in order to comply

with the input dimension of Wafer and ArrowHead after being converted to spike

trains. The length of the data is specified as 1500 and each timestamp is generated

by the Bernoulli distribution with the probability of spike occurrence being 0.1.
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Figure 5.3 - 5.8 present the histograms of the occurrence of E1 > E2 among

100 time series sequences with respect to each of 100 different randomly initiated

matrices for three datasets and k = 1,10. We will first use the first bar in M = 20

in Figure 5.7 as an example to illustrate the function of the figure. The height of

the first bar is 20 means that, out of 100 randomly created matrices, the frequency

that fewer than 5 sequences out of 100 sequences induce a decline in entropy is 20.

In other words, as for these 20 out of 100 matrices, 95% of sequences lead to an

increase in entropy as the width of each bar is 5.

Figure 5.3, 5.5, 5.7 are the results for k = 1 for three datasets and k = 1 is

the canonical Shannon entropy as explained previously. For small networks, it is

clear that when subject to external stimulation, the vast majority of the weight ma-

trices have the tendency to change in a direction that either increases or decreases

the entropy when seeing the same sequence again. One may note that the decline

in entropy is the more favourable tendency for the dataset Wafer and ArrowHead

(Figure 5.5 and 5.7), not least when the size of the reservoir layer becomes rela-

tively large (M = 100 and M = 200). However, the tendency is not notable for the

artificial data (Figure 5.3) and the increase in entropy seems to be the favourable

one for small M. This may lead to the conclusion that time dependency in the input

sequence can prompt a decrease in entropy for most small networks. When the size

of the network further grows, the tendency will largely disappear with M = 2000 in

Figure 5.5 being an exception.

We will first have a close look into the firing patterns when the entropy is

increased or decreased. To this end, the spike trains of two networks with M = 20

that lead to a decrease and an increase in entropy have been visualized and are

shown in Figure 5.9. As is shown, the decrease in entropy is accompanied by a

significant decline in the firing frequency whereas the increase is accompanied by a

hike in the firing frequency for some neurons.

In order to shed more light on this difference in distribution between the small

and the large networks, we attempt to analyze it through the synaptic weight with

the largest change in strength when subject to external stimulation. In Figure 5.10,
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Figure 5.3: The histograms of the occurrence of E1 > E2 among 100 time series sequences
with respect to each of 100 different randomly initiated matrices from M = 20
to M = 2000. The sequences are randomly generated and k = 1. The height
of each bar in each subfigure indicates the number of pairs of matrices (out of
100) initiated in Algorithm 1. The width of the bar indicates the interval of
the cases of decreased entropy out of the 100 time series sequences. The bar
essentially summarizes the number of pairs of matrices (out of 100), where a
certain number of cases of decreased entropy occurs out of the 100 time series.
More details are available in Section 5.2.4 and 5.3.

for M = 20, we select a random connection (out of 100) that results in the decrease

in entropy for all 100 samples of the dataset Wafer and the trajectories of the weight

with the largest change of 20 of them are displayed. As can be seen, there are only

two predominant trajectories (straight up or straight down) and the largest variation

always happens to the same few synaptic weights with respect to these 20 samples

by inspecting the value of the synaptic strength at the start and at the end. Con-

versely, for M = 1000, we select a random connection (out of 100) that results in

about 50-50 outcome of increase and decrease in entropy and there is a lot more

global and local variability even for those with a similar trend. More importantly,

the largest variation happens to a number of synaptic weights, again, by inspect-

ing the value at the start and at the end. As a result, the loss of the tendency in
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Figure 5.4: The histograms of the occurrence of E1 > E2 among 100 time series sequences
with respect to each of 100 different randomly initiated matrices from M = 20
to M = 2000. The sequences are randomly generated and k = 10. The height
of each bar in each subfigure indicates the number of pairs of matrices (out of
100) initiated in Algorithm 1. The width of the bar indicates the interval of
the cases of decreased entropy out of the 100 time series sequences. The bar
essentially summarizes the number of pairs of matrices (out of 100), where a
certain number of cases of decreased entropy occurs out of the 100 time series.
More details are available in Section 5.2.4 and 5.3.

entropy change in large networks for k = 1 may be attributed to the more complex

spatial and temporal variation within it such that the change in synaptic weights and

therefore, in entropy, becomes less unidirectional.

The next question that we attempt to answer is why the increase in entropy

stops being a preferred propensity when the network grows larger, as is reflected

from M = 20,50 to M = 100 and beyond. Even though it is not possible to provide

solid reasoning for this question, one can still try to gain more information from

the statistical perspective. To this end, in the case of M = 20 and M = 50, when

the propensity of entropy increase still prevails (sometimes in conjunction with the

decreasing propensity), we each choose one initial connection that results in the

increase in entropy for all 100 samples, and one that results in decrease for all 100

samples. For each of them, we compute the absolute change in entropy for these



5.3. Results 123

Figure 5.5: The histograms of the occurrence of E1 > E2 among 100 time series sequences
with respect to each of 100 different randomly initiated matrices from M = 20
to M = 2000. The sequences are from the dataset Wafer and k = 1. The height
of each bar in each subfigure indicates the number of pairs of matrices (out of
100) initiated in Algorithm 1. The width of the bar indicates the interval of
the cases of decreased entropy out of the 100 time series sequences. The bar
essentially summarizes the number of pairs of matrices (out of 100), where a
certain number of cases of decreased entropy occurs out of the 100 time series.
More details are available in Section 5.2.4 and 5.3.

100 samples and plot the histogram as shown in Figure 5.11. In each figure, the

histogram of the decrease is shown in blue and the increase in orange. As one can

observe, the decrease trend seems to have a larger absolute entropy change (not least

for M = 50) and this may imply that the decrease is more predominant even in the

prevalence of the increase trend for many different initial connections.

Figure 5.4, 5.6, 5.8 are the results for k = 10 for three datasets. Recall the

definition of the Shannon entropy (Equation 5.11). The case k = 1 simply explores

the binary outcome at each timestamp in the sequence and the entropy is a reflection

of the probability of occurrence of each. By contrast, the case k = 10 looks into a

block of 10 consecutive timestamps and therefore, many more outcomes (210) will

be considered accordingly. It can measure the amount of uncertainty in a system at

a higher complexity level as the dependency in a short time window has been taken
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Figure 5.6: The histograms of the occurrence of E1 > E2 among 100 time series sequences
with respect to each of 100 different randomly initiated matrices from M = 20
to M = 2000. The sequences are from the dataset Wafer and k = 10. The height
of each bar in each subfigure indicates the number of pairs of matrices (out of
100) initiated in Algorithm 1. The width of the bar indicates the interval of
the cases of decreased entropy out of the 100 time series sequences. The bar
essentially summarizes the number of pairs of matrices (out of 100), where a
certain number of cases of decreased entropy occurs out of the 100 time series.
More details are available in Section 5.2.4 and 5.3.

into consideration. The distribution of k = 10 shares some similarity with k = 1

up to a medium-sized network (M = 200), apart from the fact that the decrease

tendency seems to be more categorical. The distribution of large networks parts

with k = 1 and the decrease in entropy still remains the overriding tendency, even

though the tendency has become less significant. This may suggest the existence of

a favored tendency in entropy when the block outcome is considered and provide an

explanation for some experimental results in relation to the entropy change subject

to external stimulation. However, the networks larger than 2000 neurons are not

considered in this work due to the limits of computation.
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Figure 5.7: The histograms of the occurrence of E1 > E2 among 100 time series sequences
with respect to each of 100 different randomly initiated matrices from M = 20
to M = 2000. The sequences are from the dataset ArrowHead and k = 1. The
height of each bar in each subfigure indicates the number of pairs of matrices
(out of 100) initiated in Algorithm 1. The width of the bar indicates the interval
of the cases of decreased entropy out of the 100 time series sequences. The bar
essentially summarizes the number of pairs of matrices (out of 100), where a
certain number of cases of decreased entropy occurs out of the 100 time series.
More details are available in Section 5.2.4 and 5.3.

5.4 Conclusion and discussion
In this work, we proposed a biologically plausible framework using biophysical

models to investigate the impact of external stimulation on the entropy propensity

through STDP rules in a reservoir of neurons, which can be seen as a brain in minia-

ture. Above all, we managed to provide some additional evidence for the experi-

mental findings reported in [90,91] from a modelling viewpoint. Figure 5.4, 5.6 and

5.8 demonstrate that a decrease in entropy (k = 10) is the tendency for the majority

of relatively large networks and it is also mostly the case for the medium-sized net-

works when k = 1. In addition to this, we also observed a shift in the distribution

of the tendency of entropy change when the network grows larger. To the best of

our knowledge, results of this kind are still non-existent either in silico or in vivo
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Figure 5.8: The histograms of the occurrence of E1 > E2 among 100 time series sequences
with respect to each of 100 different randomly initiated matrices from M = 20
to M = 2000. The sequences are from the dataset ArrowHead and k = 10. The
height of each bar in each subfigure indicates the number of pairs of matrices
(out of 100) initiated in Algorithm 1. The width of the bar indicates the interval
of the cases of decreased entropy out of the 100 time series sequences. The bar
essentially summarizes the number of pairs of matrices (out of 100), where a
certain number of cases of decreased entropy occurs out of the 100 time series.
More details are available in Section 5.2.4 and 5.3.

and our findings might serve as a starting point for the research in this direction. It

is possible that a small number of neurons function as a special module and their

dynamics are distinct from the global ones. In the meantime, some elucidation has

been made in order to better interpret the numerical results that we observed. Last

but not least, the connection between the STDP rules and the tendency of entropy

change is not trivial. STDP rules can be seen as a type of unsupervised learning.

Multiple studies have already employed entropy as an objective function to perform

semi-supervised learning [311, 312] and our investigation could open new avenues

for the study of the impact of learning on entropy.

Admittedly, our model still has many limitations in terms of biological pre-

cision and some further analysis can be carried out. For instance, it may not be
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(a) Decrease in entropy

(b) Increase in entropy

Figure 5.9: Each figure contains representative spike trains of the neurons in the reservoir
before and after the adaption by the STDP rules. Here we use M = 20 and we
only show the first 1000 time steps for the dataset Wafer.

plausible to assume that under the same external stimulation, the synaptic weights

are altered in some process (step 4 in Section 5.2.4) but not in others (step 3 and 5).

With that being said, our setting is still arguably the most direct way of illustrating
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(a) M = 20

(b) M = 1000

Figure 5.10: There are 20 sub-figures in figure (a) and (b). Each sub-figure displays the
trajectories of the synaptic weight with the largest change for a specific set of
random connections in the input and the reservoir layer (Win and W0). The
dataset that we used here is Wafer.

the effect of STDP rules as a result of the external stimulation and can be seen as a

benchmark for any downstream analysis. Another noticeable limitation is that the

entropy calculated thus far is the summation of entropy from individual neurons in

the network. Namely, the entropy of concern is computed on the basis of the uni-

variate data and neurons are treated independent during the calculation. It would be
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(a) M = 20 (b) M = 50

Figure 5.11: In each figure, we select one initial connection that gives rise to a decrease in
entropy for all 100 sequences in the dataset Wafer, and another that gives rise
to an increase in entropy for all 100 sequences. Then we compute the absolute
value of the change in entropy and plot the histogram for each of them.

more intriguing to investigate the multivariate case where all neurons are consid-

ered simultaneously. Moreover, transfer entropy is a measurement of the amount of

information transferred between two processes and can be used to better study the

information transmission from the input to the reservoir layer [313–316]. As such,

a more global perspective on the diversity in firing patterns can be obtained and it

can potentially shed more light on the transmission efficiency of the input signal.

Nevertheless, computing the entropy of this kind is impossible when the network

grows big and a possible solution will be briefly discussed later.

One future direction is to experiment with a more biologically plausible setting

and probe into the entropy with and without external stimulation in a single process.

One can first let the network evolve when only subject to the background noise and

later apply the external current to the network. As such, a parallel can be drawn

between the entropy in the early and in the late stage. However, one may need to be

careful with the design as we do not want to see an increase in entropy solely as a

result of the increasing firing rate.

One can also consider introducing the heterogeneity into the network in order

to better resemble the real brain in using the macroscopic description of the neu-

ronal network such as mean-field models [317–320]. At present, all neurons share

the same parameters and it may not be a good representation of the neuronal pop-
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ulation in the brain. The macroscopic description can be used to characterize the

average property (e.g., firing rate, membrane potential) of the neurons in the same

population and it enables us to simulate different populations at the same time with

lower computational overheads but at the cost of coarse detail. Besides, the mean-

field models may also be used to theoretically describe the entropy change in the

limit of an infinitely large network, but it is not clear yet how the entropy equation

can be incorporated into the description. Lastly, it will also enable the analysis of

the aforementioned entropy in the multivariate case as the network can be reduced

to a low-dimensional system.



Chapter 6

Conclusive summary

In this thesis, we elaborated the new findings about the emerging intelligence within

biological systems from the systems biology regard, as a direct result of the spa-

tial and temporal variation among the components in the system, facilitated by the

mathematical and statistical models.

In Chapter 2, we revisited the formation of associative learning in the context of

genetic circuit and opened the door for the appearance of some advanced properties

such as reinforcement effect and forced dissociation. The canonical Fernando’s

model is capable of exhibiting the reinforcement effect but its formulation is not

compatible with the occurrence of the forced dissociation. In order to overcome this

limitation, we constructed a new model that can enable reinforcement effect as well

as forced dissociation, at the cost of some other inevitable restrictions. Numerical

simulations were conducted to predict the outcome of the chemical reactions and

the model robustness was also discussed alongside.

In Chapter 3, we attempted to preliminarily address a pioneering but yet largely

unanswered question about the impact of astrocytic coverage of synapses on the

short-term memory of the visual system together with spatial frequencies. To this

end, a newly developed neuron-astrocyte network was adopted to represent the sys-

tem in miniature and elucidate the change in response. It is facilitated by the in-

terplay among presynaptic neuron, postsynaptic neuron and their perisynaptic as-

trocytes. In the meantime, we also raised some other hypotheses that may be of

interest to the wider community.
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In Chapter 4, we founded a new ESN framework that is able to perform TSC

tasks with exceptionally low computational overhead. Through the coding of the

input sequence into the temporal difference between the adjacent time stamps, the

Diff-ESN method succeeds in learning and amplifying the input features in the

reservoir layer, thanks to the spatial representation enabled by the intricate recurrent

connections. We showed that the method achieved comparable performance with

the 1NN-DTW method on a number of benchmark datasets with regular time series.

In order to address the more challenging irregular time series, we developed the

Interp-ESN method and we demonstrated that it can attain desirable performance

on a recent cancer dataset. Moreover, the method also provides the users with an

option to predict the outcome in advance.

In Chapter 5, a biologically plausible framework was constructed to represent

the means in which the neurons in the brain respond to external stimulation. In

specific, we employed the model to study the impact of external stimulation on the

tendency in entropy change, the simulation results of which supply some comple-

mentary evidence for some experimental observations. Additionally, the shifting

pattern of the tendency in entropy change was inspected as the reservoir layer alters

in size, opening up an interestingly new research direction for biologists to delve

into the effect of network size on information transmission. The temporal and spa-

tial change in the spiking pattern is empowered by a synaptic plasticity rule, STDP.

As shown in the previous chapters, mathematical and statistical models can

be used to describe and investigate miscellaneous types of intelligence that some

simple biological structures can potentially realize, including associative learning,

short-term memory, classification and information processing, etc. Admittedly, the

respective subjects were modelled with different levels of biological plausibility,

largely attributed to the gap between the theoretical description and the reality.

Nonetheless, given that the vast majority of biological systems remain poorly un-

derstood, theoretical and numerical analysis is part and parcel when it comes to

enriching the existing comprehension as well as proposing plausible hypotheses in

order to pave the way for future research. Chapter 2 not only expanded the scope of



133

the topic based on the current framework, but also pointed to the future engineer-

ing of genetic circuits for medical treatment, etc. Indeed, dose control is crucial

for the success of treatment and the properties covered in Chapter 2 may make a

big difference if appropriately accounted for in vitro and in vivo. For example, the

reinforcement effect can indirectly amplify the response concentration and forced

dissociation can reduce the level of response in a short time window. In Chapter

3, even though the neuron-astrocyte network simulated was not comparable to the

brain on any level, in terms of scale and complexity, it shed light on the connections

among the essential components involved in processing visual stimuli and memory

storage for the first time. Moreover, one should be aware of the ongoing study of the

functional brain where the interactions of various regions are emphasized and one

can think of our toy model as a specific region of interest. With the ever-increasing

computational power, it may become tractable to bring the model even closer to bio-

logical reality. For instance, one can increase the size of the network while creating

a modular structure, with convolution-like connections between the input pattern

and the network. At first sight, the model employed in Chapter 4 seems quite distant

from the way that biological neurons process signals in reality. However, simply bi-

narizing the activation values in the reservoir layer will closely resemble a neuronal

circuit in the human brain. One important direction is to continue with the develop-

ment of neuromorphic computing, for the sake of enabling next-generation comput-

ing and a better understanding of the computations carried out in neuronal circuits.

Another direction is to improve the performance by introducing light training al-

gorithms to the input and reservoir layer so as to strike a better balance between

accuracy and training efficiency. In Chapter 5, the simulation of a relatively large

neuronal network with STDP rules has been made possible, thanks to the adoption

of the LIF model and parallel computing. In addition to supplying supportive ev-

idence for the existing experimental observations, it also raised the discussion on

the entropy change concerning the size of the network and the complexity of the

dynamics considered, when subject to external stimulation. Mathematical models

also possess a lot more freedom over the settings of the experiments as compared to
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the experiments in practice. Hence, the biological detail can be further enhanced by

deriving population models enabled by the mean-field description. Besides, some

other more advanced measures of information can be accounted for once the com-

puting requirement is met. For example, integrated information may be considered

as it measures the amount of information lost if a system is divided into parts. It is

reckoned to be overlaid with the functional structure of the brain.



Appendix A

Derivation of the translation

equation and biological background

In molecular biology, a promoter is a short sequence of DNA upstream of the gene

that it regulates. Promoters are regulated by transcription factors (TFs) and within

them contains sequences of DNA, known as operator sites that TFs can bind to.

Broadly speaking, depending on the type of promoters and TFs, the TFs either

activate or inhibit the transcription of the gene after the operator sites are bound by

the TFs.

The monomers of a TF typically forms a polymer before binding to the opera-

tor site and the biochemical reactions can be expressed as


T + · · ·+T

kp
⇀↽
k−p

Tn

Ou +Tn
kb⇀↽

k−b
Ob

(A.1)

where T is the concentration of the monomer of the TF, Tn is the concentration of the

polymer of order n (or n-mer), Ou and Ob are the concentrations of the unbound and

the bound operator, respectively. kp, k−p, kb, k−b stand for the respective forward

and backward reaction rates. Using the law of mass action, the biochemical reac-

tions can therefore be translated into the following equations when the equilibrium
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is attained:  kpT n = k−pTn

kbOuTn = k−bOb

(A.2)

If we assume that the total concentration of DNA is conserved such that

Ou +Ob = N (A.3)

Hence, 
Ou =

NKn

Kn +T n

Ob =
NT n

Kn +T n

(A.4)

where K =
(k−pk−b

kpkb

) 1
2 . If one moves N to the left and retain the names of the vari-

ables, it becomes 
Ou =

Kn

Kn +T n

Ob =
T n

Kn +T n

(A.5)

Here K is called Hill constant and n is called Hill exponent. Then the rate of tran-

scription can be assumed to have the form

r(T ) = auOu +abOb (A.6)

where au and ab are the parameters that control the contribution of Ou and Ob to the

rate. If the TF activates the transcription, we generally assume au = 0 and likewise,

ab = 0 is the TF inhibits the transcription. Lastly, if we make a further assumption

that the translation rate (the rate of protein production) is proportional to the rate of

transcription, then the translation rate can be written as

dx
dt

= auOu +abOb−d(x) (A.7)

where x is the concentration of the protein and d(x) is the decay rate.

One can also construct the equations for more complex cases in which there

are more than one TF involved in a similar way. As a matter of fact, this would
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merely be a task of finding the right combination of Ou and Ob.



Appendix B

Comparing properties of

computational neuron models

In Table B.1, we provide a quick overview of whether the biological properties

of the firing of cortical neurons can be realized by some of the most widely used

biophysical models. The models of concern are the Izhikevich model, the Hodgkin-

Huxley model, the FitzHugh-Nagumo model, and the integrate-and-fire model. The

table is adapted from [321] and a detailed description of the properties can also be

found there. As shown, the Izhikevich model is able to match all the properties that

can be simulated from the gold-standard Hodgkin-Huxley model except not being

biologically meaningful. The biological meaning has to be inevitably traded for

computational efficiency as the contraction of gating variables is necessary.
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Table B.1: Comparison of the biological properties of Izhikevich (Izh) model, Hodgkin-
Huxley (HH) model, FitzHugh-Nagumo (FN) model and integrate-and-fire (IF)
model. The first column lists the biological properties in consideration. From
the second to the fifth column indicate if the properties can be achieved numer-
ically by the respective models, Yes (Y) or No (N). The last row provides a
qualitative description of the computational efficiency of the models.

Property Izh HH FN IF
bio-meaningful N Y N N
tonic spiking Y Y Y Y

phasic spiking Y Y Y N
tonic bursting Y Y N N

phasic bursting Y Y N N
mixed mode Y Y Y N

spike frequency adaption Y Y N N
spike latency Y Y Y N

subthreshold oscillation Y Y Y N
chaos Y Y N N

efficiency excellent undesirable good best



Appendix C

Choosing the scaling factor for the

weight matrix in the reservoir layer

Definition 2. The singular values of a matrix W are the non-negative square roots

of the eigenvalues of the symmetric positive semi-definite matrix WT W.

Definition 3. The spectral radius of a square matrix W is the maximum of the

absolute values of its eigenvalues: ρ = max{|λ1|, |λ2|, . . . , |λn|}.

Proposition 1. Assume Equation 4.2 will be used in the reservoir layer to update the

internal state and assume Wres satisfies σmax < 1 where σmax is the largest singular

value of it. Then d(T(x,u),T(x′,u)) < σmaxd(x,x′) for all inputs u and for all

internal states x,x′ ∈ [−1,1]M and it implies echo state property, where d(a,b) is

the Euclidean distance between a and b.

Proof. If σmax < 1

d(T(x,u),T(x′,u))≤ d((1−a)x,(1−a)x′)+ad(Wresx,Wresx′)≤ (1−a)d(x,x′)+

aσmaxd(x,x′) = (1−a+aσmax)d(x,x′)< d(x,x′)

As a result, for any given Wres, the scaling Ŵres =αWres =Wres/σmax ensures

that the ESP will be satisfied. However, the condition in Proposition 1 is very

stringent and as per the investigation in [259,322], the ESP can be largely conserved

and the performance can be equally well, if not better, if the scaling factor α is in

the marginal vicinity of 1/ρ . Therefore, we choose α = 1/ρ in this work.



Appendix D

Support Vector Machine: binary

classification case

For illustrative purposes, here we only confine to the binary classification case using

the linear kernel. The objective of the support vector machine algorithm(s) is to

find the best hyperplane that separates data into two different classes. To this end,

a plane that has the widest margin, namely, the maximum distance between data

points from the two classes will be found such that any new unseen data points may

be classified with more confidence. Data points lying on the same side of the plane

can be assigned to the same class.

The SVM seeks a linear transform on each data point xi to minimize the cost

function

λ ||β ||2 +
n

∑
i
(1− yi⟨β , xi⟩)+ (D.1)

where

f (x)+ = max( f (x),0) (D.2)

Here n is the number of data points in the training set, λ is a regularization parameter

and β is the parameter that needs to be optimized. Also in the SVM, the class labels

are {−1,1}.

An example is shown in Figure D.1. The plane is marked by the solid line

and the boundary of the margin is marked by the dash line. The points within the

boundary are highlighted by circles.
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Figure D.1: An example of the SVM.



Appendix E

Receiver operating characteristic

curve (ROC curve)

Firstly, we need to introduce several fundamental definitions that are widely used in

binary classification tasks in statistics.

Definition 4. True Positive (TP): the number of cases in which the ground truth

class is positive while the prediction is also positive.

Definition 5. True Negative (TN): the number of cases in which the ground truth

class is negative while the prediction is also negative.

Definition 6. False Positive (FP): the number of cases in which the ground truth

class is negative while the prediction is positive.

Definition 7. False Negative (FN): the number of cases in which the ground truth

class is positive while the prediction is negative.

Definition 8. True Positive Rate (TPR) = TP / (TP + FN)

Definition 9. False Positive Rate (FPR) = FP / (FP + TN)

A Receiver Operating Characteristic (ROC) curve is a graphical representation

that illustrates the performance of a binary classification model at various classifi-

cation thresholds. It is extensively employed in machine learning and statistics to

evaluate the trade-off between sensitivity (TPR) and specificity (1-FPR) of a model
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across different threshold values. An ROC curve plots TPR vs. FPR at differ-

ent classification thresholds. Lowering the classification threshold classifies more

items as positive, thus increasing both the TPR and the FPR. An example is shown

in Figure E.1. ROC AUC is the area under the ROC curve. ROC AUC = 0.5 rep-

Figure E.1: ROC curve

resents that the model has no discrimination power and ROC AUC = 1 represents a

model with perfect separation.



Appendix F

Derivation of the LIF model shown in

Equation 5.6

The dynamics of the passive membrane potential U of a neuron determined by a

resistor-capacitor (RC) circuit can be describe as

τ
dU
dt

=−U + I(t)R (F.1)

where τ = RC is the time constant. Here C is the capacitance and R is the resistance.

I(t) is the current being applied to the neuron. Then applying the forward Euler

method to Equation F.1 gives rise to

τ
U(t +∆t)−U(t)

∆t
=−U(t)+ I(t +∆t)R (F.2)

After some re-arrangement,

U(t +∆t) = (1− ∆t
τ
)U(t)+

∆t
τ

I(t +∆t)R (F.3)

Next we let β = (1− ∆t
τ
) and further assume that R = 1Ω and ∆t = 1, it follows that

U(t +1) = βU(t)+(1−β )I(t +1) (F.4)
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Even though it is not a fully physiologically accurate model as we made the as-

sumption that R and ∆t should take special values, it somehow makes the model

more compatible with the structure of the RNNs which can effectively allows us

to handle the update with great ease. Moreover, here I(t) stands for the cumula-

tive current flowing into the neuron and (1−β ) can be seen as a scaling parameter.

Lastly, we make another assumption that the second term can be replaced by the

weighted sum of incoming spikes to accommodate the fact that the incoming cur-

rent into the neuron arrives through the synapses that connect to other presynaptic

neurons. Hence, the multi-dimensional version will become

Ut+1 = βUt +WinSin
t+1 +WtSt (F.5)

where we moved the time stamp label to the footnote to comply with the notation

in the main text. A soft reset term can be added at the end to push the membrane

potentials to the resting state:

Ut+1 = βUt +WinSin
t+1 +WtSt−Stθ (F.6)
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in engineered multicellular consortia. Journal of The Royal Society Interface,

14(129):20170158, 2017.

[36] Richard F Thompson, Shaowen Bao, Lu Chen, Benjamin D Cipriano, Jef-

frey S Grethe, Jeansok J Kim, Judith K Thompson, Jo Anne Tracy, Martha S

Weninger, and David J Krupa. Associative learning. International review of

neurobiology, 41:151–189, 1997.

[37] Geoffrey Hall and Robert Honey. Perceptual and associative learning. In

Contemporary learning theories, pages 117–147. Psychology Press, 2014.

[38] Mohamed Adel and Leslie C Griffith. The role of dopamine in associative

learning in drosophila: an updated unified model. Neuroscience bulletin,

37(6):831–852, 2021.

[39] Tamara Boto, Aaron Stahl, and Seth M Tomchik. Cellular and circuit mech-

anisms of olfactory associative learning in drosophila. Journal of neuroge-

netics, 34(1):36–46, 2020.

[40] Chrisantha T Fernando, Anthony ML Liekens, Lewis EH Bingle, Christian

Beck, Thorsten Lenser, Dov J Stekel, and Jonathan E Rowe. Molecular cir-

cuits for associative learning in single-celled organisms. Journal of the Royal

Society Interface, 6(34):463–469, 2009.
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