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Abstract

Elastocaloric alloys stand as the preferred technology for non-vapor-compression
refrigeration. Here, we present a machine learning (ML) framework to accelerate the
development of novel elastocaloric alloys with large adiabatic temperature change (A
Tad) and low stress hysteresis (/Aony). The comprehensive framework comprises
database construction, feature selection, model construction, alloy design and
validation, and model interpretation. Features are selected according to the physical
attributes they represent. Properties that may reflect the compatibility between parent
and product phases, lattice distortion, and the free energy in the alloy are considered in
the model. Among them, the key features are screening by recursive feature elimination
and exhaustive search methods. The trained models in combination with the Bayesian
optimization method are exploited to achieve multi-objective optimization. Using the
results, a newly designed elastocaloric alloy shows a large adiabatic temperature change
of 15.2 K and low average stress hysteresis of 70.3 MPa at room temperature, which is
consistent with our predictions. The predictions of our ML model are interpreted by the
Shapley Additive exPlainations (SHAP) approach, which explicitly quantifies the
effects of each feature in our model on the adiabatic temperature change and stress
hysteresis. Additionally, we employ the Sure-Independence Screening and Sparsifying
Operator (SISSO) method in conjunction with the key features to formulate explicit A
T2¢-SISSO and A ony-SISSO model. The optimal SISSO model agree with the finding
derived from the SHAP analysis. Our work represents a starting platform for the digital
design of innovative alloys with optimized properties for elastocaloric applications.
Keywords: FElastocaloric alloys, Adiabatic temperature change, Stress hysteresis,

Machine learning, Multi-objective optimization



1. Introduction

Vapor-compression refrigeration based on hydrocarbon has gained widespread
utilization in improving human daily lives such as home air conditioning systems [1].
However, vapor-compression technology with high energy consumption contributes to
global warming and ozone depletion and poses a major challenge to environmental
sustainability [2-4]. As the world strives for carbon neutrality and environmental
protection, scientists have developed a growing interest in environment-friendly and
energy-efficient novel cooling technologies based on, magnetocaloric [5], elastocaloric
[6] and electrocaloric refrigeration [7, 8]. According to a comprehensive report by the
United States Department of Energy, the elastocaloric system based on TiNi shape
memory alloys (SMAs) has emerged as a highly recommended approach for non-vapor-
compression refrigeration [9-12]. Most recently, Qian et al. [13] demonstrated a high-
efficiency elastocaloric cooling system incorporating nitinol tubes, showing remarkable
and exceptional cooling performance.

The phenomenon of elastocaloric effect (eCE) is closely associated with stress-
induced thermoelastic martensitic transformation, wherein the adiabatic temperature
change or the isothermal entropy change serves as prominent characterization
parameters [11, 14-16]. Under the influence of mechanical loading, the parent phase
(austenite) undergoes a transition to the martensitic phase, thereby increasing the
environmental temperature with the release of latent heat. Conversely, during unloading,
the reverse martensitic transformation occurs, resulting in the absorption of heat from
the surrounding environment, thus enabling solid-state cooling. Until now, there are
several SMAs including TiNi-based [17-19], Cu-based [20-25], Co-based [15, 26], and
Heusler alloys [16, 27-33]. TiNi-based alloys have been successfully used as critical
materials for caloric cooling prototypes due to their promising elastocaloric capacity
[13, 29, 34-36]. However, TiN1 alloys possess a high stress hysteresis, which gives rise
to the accumulation of defects and suppresses the reversibility of martensitic
transformation [29, 37, 38]. Stress hysteresis is related to the macroscopic manifestation

of energy dissipation during phase transformation. In general, SMAs with a small



hysteresis can acquire high energy conversion efficiency and low fatigue due to small
energy loss and favorable transformation compatibility. It is well known that the
addition of third elements such as Fe, Pd, Co, and Cu will adjust the hysteresis [29, 37,
39, 40]. Nevertheless, several published studies have indicated that the elastocaloric
effect has a tendency to decrease when third elements are added [10, 34, 37, 41, 42].
Therefore, achieving a balance between the elastocaloric effects and hysteresis is of
utmost importance in the design of novel TiNi-based shape memory alloys.

The primary objective of computational material design approaches is to employ
both conceptual and numerical approaches to predict the composition, structure, and
properties of materials and use the models to design new ones with improved
performance [43]. Conventional material design approaches relying on trial and error
[44, 45] prove to be inefficient and costly, especially when confronted with the
challenge of multi-objective optimization from a large pool of data from candidate
materials [46, 47]. With the advancement of artificial intelligence, data-driven machine
learning methods provide a tremendous boost to accelerate material discovery [48-52].
Extensive research efforts have substantiated the potential of machine learning in
designing shape memory alloys with desired properties. Peltier et al. [53], Udesh et al.
[54], and Xue et al. [55] used machine learning to study the relationships between alloy
composition and martensitic phase transformation and develop novel high-temperature
shape memory alloys (HTSMAs). Lookman et al. [56] designed shape memory alloys
with ultra-low thermal hysteresis by active learning. Pang et al. [57] developed shape
memory ceramics with low thermal hysteresis by polynomial machine learning
algorithm in combination with CALPHAD. Tian et al. [58] and Ding et al. [59]
exploited machine learning to predict the elastocaloric effect. These studies have
predominantly concentrated on optimizing a single property, whereas material design
often necessitates the consideration of multiple properties. Machine learning coupled
with multi-objective optimization methodologies has been established as an effective
approach for addressing multiple properties. For instance, Gopakumar et al. [60]

employed an adaptive design strategy to optimize the thermal hysteresis and transition



temperature of shape memory alloys (SMAs). Solomou et al. [61] devised a framework
for efficiently discovering precipitation-strengthened NiTi shape memory alloys
possessing three desired properties using Bayesian methods. Despite data-driven
models significantly advancing the discovery of SMAs with desirable thermodynamic
properties, scant attention has been devoted to stress hysteresis behavior.

In this work, we develop a co-optimization framework for accelerating the design
of new TiNi-based shape memory alloys with a satisfactory combination of adiabatic
temperature change and stress hysteresis using Bayesian multi-objective optimization
and machine learning techniques. We synthesize a novel alloy and measure its
transformation properties to validate our computational framework. In addition, we
utilize the Shapley Additive Explanation (SHAP) and Sure Independent Screening and
Sparsifying Operator (SISSO) technique to analytically interpret the relationships
between selected features and electrocaloric properties in the black-box models. The

last section presents further discussion and the conclusions arising from this work.

2. Methodology

The design strategy of novel SMAs with the desired combination of adiabatic
temperature change and hysteresis based on the machine learning method is shown in
Fig. 1. There are five modules including database construction, feature selection, model

construction, alloy design and validation, and model interpretation.
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Fig. 1. Proposed framework of machine learning employed to design novel elastocaloric alloys

with desired adiabatic temperature change and stress hysteresis.

2.1 Database construction

The performance of machine learning significantly depends on the quality of the
database used. A reliable database enables the acquisition of data models with both high
accuracy and generalization capabilities. The experimental information of adiabatic
temperature change and stress hysteresis for SMAs is highly dispersed and limited,
especially for TiNi-based alloys. To minimize the uncertainties introduced by
experiments as much as possible, we adopt a selection criterion that focuses on bulk
SMAs with similar fabrication processes including vacuum melting, homogenization
treatment, and aging treatment. The test temperature and loading condition are also used
as input variables to construct the prediction model because they are strongly associated
with adiabatic temperature changes. We collect 137 alloy data with adiabatic

temperature change (/\ Taq) and 60 alloy data with average stress hysteresis (Aony) [5,



9-11, 13, 14, 17, 20, 26, 34, 37, 41, 42, 59, 62-77]. It is worth noting that ATaq
represents the absolute value of the adiabatic temperature change during cooling. Then
the data preprocessing is used to eliminate the influence of different data dimensions
on the convergence speed and accuracy of the model. Specifically, predictive models
that utilize distance metrics, such as support vector machines (SVM) and decision trees,
are highly sensitive to disparities in feature dimensionality. In this work, we adopt a
data normalization process to eliminate the dimensionality of variables. The formula is

as follows:

X—Xmin

(1

Xnorm =
Xmax—Xmin

Where X is the feature value, Xin is the minimum feature value, Xyuqx is the maximum

feature value, Xyorm 1s the standardized feature value.

2.2 Feature selection

Alloy design based on machine learning requires selecting relevant alloy features
and connecting them to their chemical composition. Alloy properties are considered
akin to fingerprints, establishing a strong connection with the properties of the alloy.
Developing reliable prediction models based on alloy features to improve design
predictability has been highlighted by numerous scholars [47, 54, 78, 79]. In addition
to the three test parameters (test temperature, stress, strain rate), we use the matminer
toolkit [80] to extract 23 alloy features comprising atomic features and physical
parameters from alloy composition. Atomic features such as atomic radii and atomic
number are inherent physical and chemical attributes of individual alloy constituents,
while alloy parameters such as phase fraction originate from specific parameter
formulas. Details of all features are listed in the Supplementary material. Considering
the potential risk of overfitting associated with an excessive number of features, we
employ feature selection methods comprising correlation analysis, recursive feature
elimination, and exhaustive search methods to systematically search for the optimal

combination of features.



2.3 Model construction

Three classical machine learning methods, extreme gradient boosting (XGBT),
support vector regression (SVR), and random forest (RF) are utilized to evaluate the
predictive capability of the model. We randomly divided 80% of the database as the
training set and allocated 20% as the test set. The complexity and diversity of the model
parameters provide a broad spectrum of possibilities for optimizing the model
performance. Indeed, finding the optimal balance between model parameters is a
challenging task. In this work, we use a fast search method [81] in combination with
Leave-One-Out (LOO) to determine the best parameter group. The fundamental
concept behind the LOO method involves dividing the dataset into k subsets, with each
subset containing a single test sample, where k corresponds to the size of the dataset.
These data partitioning methods contribute to assessing the generalization ability of
machine learning models trained on small samples. Furthermore, the Root Mean Square
Error (RMSE) and Pearson correlation coefficient R are used to evaluate the accuracy

of the model.

2.4 Alloy design and validation

Machine learning models can facilitate the direct search for shape memory alloys
with desired adiabatic temperature changes or hysteresis within a defined compositional
space. However, when the optimization involves simultaneously considering the
combination of adiabatic temperature change and hysteresis, the task of developing a
satisfactory alloy composition becomes more complex and challenging. We combine
two predictive models with Bayesian optimization (BO) to achieve multi-objective
optimization of the properties mentioned above [79, 82]. Bayesian optimization (BO)
is a strategy used for black-box optimization, where the scalar function to be optimized
(sometimes referred to as the oracle) may be non-differentiable or difficult to evaluate
(computationally expensive). The optimization principle of adiabatic temperature
change and hysteresis with BO method is presented in Fig. 2, which mainly comprises

alloy composition boundary conditions, composition candidate search and score,



property prediction, and stop criteria. To validate the calculations, an optimal alloy
candidate was synthesized and prepared using vacuum induction melting in a graphite

crucible. A detailed fabrication process has been described in our previous work [42].
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Fig. 2. Schematic of the computational workflow of Bayesian optimization.

2.5 Model interpretation

While the black-box model approach in Machine Learning has been extensively
employed in material design, demonstrating accuracy in predicting material properties,
it is often challenging to identify explicit correlations between input features and alloy
properties. SHAP (SHapley Additive exPlanations) [83] is a game theory approach that
elucidates the importance of each feature on the output of any machine learning model.
This method involves calculating the marginal contribution of features to the overall
output of the model and subsequently provides an indirect understanding of the "black
box model" from both a global and local perspective. The importance of key features is
calculated and the effects of key alloy features on adiabatic temperature change and
hysteresis is determined by SHAP in this work. Another approach to understanding the
relationship between inputs and output is using an interpretable white-box model such
as SISSO [84] (Sure Independent Screening and Sparsifying Operator). SISSO is a data-
driven approach that combines symbolic regression and compressed sensing to identify
models and descriptors in explicit mathematical expressions for materials science.
Although symbolic regression can establish more easily interpretable analytical
equations, discovering the optimal combination of mathematical operators from a large

number of features is still a significant challenge. To mitigate the computational cost



associated with symbolic regression, we utilize the aforementioned feature selection
method to obtain an optimal combination of features. Subsequently, we derive the
explicit formulas for adiabatic temperature change and hysteresis by integrating the best

feature group with the SISSO method.

3. Results

3.1 Feature selection and modeling

Pearson product-moment correlation coefficient (R) quantifies the level of
correlation between two variables. A high absolute value of R, close to 1, indicates a
strong linear correlation between the variables. Thus, the correlation coefficient can be
used to evaluate the linear relationship calculation between alloy features and target
properties and to eliminate redundant features that exhibit highly linear correlations.
The correlation coefficients of adiabatic temperature change and hysteresis are
presented in Fig. 3, where a lighter color indicates a stronger linear relationship. Many
alloy features exhibit weak linear correlations with adiabatic temperature change and
hysteresis. The maximum absolute correlation coefficients (|R| values) are less than 0.6,
suggesting the presence of a non-linear relationship between alloy features and these
two properties. Furthermore, the maximum |R| values between alloy features are less

than 0.95, which falls short of the threshold for feature elimination.
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Fig. 3. Feature processing based on the correlation coefficients. (a) Adiabatic temperature change.

(b) Average stress hysteresis.
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To reduce the complexity of the machine learning model, the recursive feature
elimination with cross-validation (RFECV) method is employed to eliminate
dimensions of alloy features. RFECV is to select features by recursively considering
smaller and smaller sets of features and computing the cross-validated scores. This
approach involves two steps: model selection and feature elimination. The selection of
an appropriate model is of utmost importance when considering subsequent feature
selection. As shown in Fig. 4, three models based on XGBT, SVR, and RF methods are
used to predict the adiabatic temperature change and hysteresis. We use the training set
with cross-validation to determine the best combination of model parameters, and then
test the model performance. Fig. 4 (a)-(f) depict the comparisons between measured
and predicted adiabatic temperature change. The cross-validations of the three models
show similar results where several predictions deviate significantly from the
experimental results. The training and testing results indicate the XGBT model
performs better compared with the other models. Fig. 4 (g)-(I) presents the machine
learning results of average stress hysteresis. There are subpar performances for the three
models where most predictions are inconsistent with the measurements. However, the
SVR model presents an adequate performance where the predictions mostly agree with
experiments. We also calculate the RMSE and R values to demonstrate the performance
of the three models. According to Fig. 5, It is evident that the XGBT-based adiabatic
temperature change has the lowest RMSE of 1.39 K and the highest R of 0.98, while
the SVR-based hysteresis has the lowest RMSE 0f22.28 MPa and the highest R 0f 0.96.
Thus, the XGBT and SVR models are used to eliminate the alloy features for adiabatic

temperature change and hysteresis, respectively.
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Average stress hysteresis.

Fig. 6 (a) and (b) depict the recursive feature elimination (RFE) process for
adiabatic temperature change and stress hysteresis, respectively. The objective of
recursive feature elimination is to adjust the number of features by systematically
eliminating them based on their importance. In the figures, it is evident that as the
number of features increases, the model's error initially decreases and then exhibits a
tendency to increase. The optimal number of features for adiabatic temperature change
is identified as 9, whereas for hysteresis, it is determined to be 13. The details of
reserved features are listed in the supplementary information. To further reduce the
number of features, an exhaustive search elimination (ESE)method is employed to
identify the best combinations of features by using all the combinations of the
remaining alloy factors from the RFE process. The results of feature selection using the
exhaustive search elimination method for adiabatic temperature change are presented
in Fig. 6 (¢). The model's error initially decreases and then rises with the feature number
increasing. The minimum error is achieved when the number of features is 7. The
corresponding feature combination is as follows: APE (Atomic Packing Efficiency),
CE (Configuration Entropy), VEC (Mean Valence Electron Concentration), SMM
(Shear Modulus Mean), T (Test Temperature), ST (Stress), SR (Strain rate). As shown
in Fig. 6 (d), When the number of features is 7, the model achieves the minimum error.
The corresponding feature combination is as follows: YD (Yang Delta), RLM (Radii
Local Mismatch), CE (Configuration Entropy), AWM (Mean Atomic Weight), ED
(Electronegativity Delta), SMD (Shear Modulus Delta), SMSM (Shear Modulus
Strength Model).
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After the feature selection procedure, we employ the XGBT algorithm for
constructing the prediction model of adiabatic temperature change, and the Support
Vector Regression (SVR) algorithm for constructing the prediction model of hysteresis.
The performance of the machine learning model of adiabatic temperature change
utilizing the XGBT algorithm is illustrated in Fig. 7 (a) and (b). Notably, the training
and testing data exhibit a close alignment along the diagonal (dashed line). The root
mean squared error (RMSE) values for the training and testing data are reported as 0.32
K and 1.38 K, respectively, while the calculated R values are determined to be 0.99 and
0.97, respectively. These outcomes are indicative of a strong concordance between the
model predictions and experimental observations. Fig. 7 (¢) and (d) illustrate the
distribution of data points evenly on both sides of the diagonal line for hysteresis. The
RMSE values for the training and testing data are reported as 16.71 MPa and 9.23 MPa,

respectively. Additionally, the R values are determined to be 0.99 and 0.96, respectively,
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indicating good agreement between the predictions and experimental results within a
reasonable error range. Considering the concern of overfitting, we employ cross-
validation as a method to evaluate the model's generalization ability. Indeed, the cross-
validation method with leave-one-out (LOOCV) is a recommended procedure for
preventing overfitting. The cross-validation results for adiabatic temperature change
and hysteresis are illustrated in Fig. 7 (b) and (d). While there are a few data points that
deviate from the diagonal line, the majority of predictions exhibit strong agreement
with the experimental results. The RMSE of adiabatic temperature change and
hysteresis are 1.75 K and 23.40 MPa, respectively, and the R values of adiabatic
temperature change and hysteresis are 0.9352 and 0.9234, respectively. These scores

indicate a favorable generalization ability of the model introduced in this study.
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hysteresis.

3.2 Alloy design and validation

The objective of our alloy design approach using a machine learning model is to
15



discover optimized alloy compositions that can achieve a balance between adiabatic
temperature change and average stress hysteresis. It is well known that the hysteresis
of SMAs can be adjusted by the addition of elements such as Fe, Pd, Co, and Cu [29,
37, 39, 40]. The incorporation of Cu into TiNi shape memory alloys (SMAs) has been
extensively demonstrated to result in a reduced lattice mismatch and enhanced middle
eigenvalue (A2). The middle eigenvalue of the transformation stretch tensor between the
parent and product phases, A2, is a crucial parameter to assess the crystallographical
compatibility of these phases. Small lattice mismatch and a A, value closer to 1 usually
indicate low stress hysteresis [85]. Thus, Cu is the first alloying element in our design
criteria, other elements comprising Co, Fe, and Pd will be randomly selected by BO
optimization. It is worth noting that small additions of third elements such as V, Zr, and
Al are used to improve the mechanical properties of alloys [42, 86, 87]. The boundary
condition is then set as TizNi100--p-c-¢ApBCa, Where 4 is Cu, B can be Fe, Pd, Co, and
C can be V, Zr, Hf, Al. As for their compositional range, a lies between 49.2 and 50, b

lies between 1 and 10, ¢ lies between 1 and 3, and d is within 0.1-1.
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Fig. 8. The evolution of Bayesian optimization for adiabatic temperature change and average

stress hysteresis. Red point represents the best composition.
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Fig. 8 illustrates the iterative process of Bayesian optimization, where the
development of the optimal composition is conducted through continuous observation
and updating of the estimate for the objective function. Based on the optimization result,
Ti49.3Ni45.9Cu3.7C01.0Zr10.1 1s identified as the optimal alloy composition. Subsequently,
this composition is synthesized and prepared to validate the predictions made by our
models. The fully recovered superelastic curves at temperatures from 278 K to 303 K
are shown in Fig. 9 (a). It is evident that the applied stress gradually increases as the
testing temperature increases. The stress-strain curves exhibit small hysteresis loops,
with stress hysteresis values of 76 MPa at 278 K, 65 MPa at 283 K, 74 MPa at 293 K,
and 66 MPa at 303 K. Thus, the average stress hysteresis is 70.3 MPa. Fig. 9 (c¢) shows
the adiabatic temperate change at temperatures from 278 K to 303 K. The adiabatic

temperature change exhibits an initial increase followed by a subsequent decrease as
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the temperature rises. It reaches its peak value of 15.2 K at 293 K, as illustrated in the

Fig. 9 (b).
Table. 1. Comparison of ML predictions and the experimentally measured adiabatic temperature

change (in K) and average stress hysteresis (in MPa) for the designed synthesized samples.
Alloys Property Experiment Calculation Error
ATad 15.2 16.8 1.6
Aoy 70.3 83.1 12.8

Ti49.3Ni45.9Cu3.7C01.0Z10.1

A comparison of the predicted and measured adiabatic temperature change and
hysteresis for the designed alloy is listed in Table. 1. The predicted adiabatic
temperature change and hysteresis are 16.8 K and 83.1 MPa, respectively, which is
consistent with the measured results. The absolute errors, amounting to 1.6 K and 12.8
MPa, fall within the acceptable range for model error. We also compare our designed
alloy data with other results reported in the literature. As shown in Fig. 10, our new
alloy exhibits large adiabatic temperature change and small hysteresis, achieving a good
balance of the two competing properties. This result corroborates the effectiveness of
our computational approach in designing novel elastocaloric shape memory alloys. In
future research, we can adopt an iterative approach to improve our model and optimize
the alloy composition cyclically for pushing the boundaries of performance and
achieving superior performance characterized by exceedingly high adiabatic

temperature change and extremely low hysteresis.
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4. Discussion

4.1 Relationship between inputs and outputs using the SHAP method

The majority of machine learning models are based on a “black-box™ approach
that builds complex implicit relationships between inputs and outputs. This in turn
hinders any physical insights into the phenomena under examination [84, 92]. it is
imperative to employ alternative methods that aid in interpreting the black-box model
to gain a deeper understanding of potential physical mechanisms involved in the
transformation processes and to enhance the design of SMAs. In this work, SVR and
XGBT models are regarded as black-box models owing to their ability to capture
complex and implicit relationships between inputs and outputs. The inherent
complexities of these models involve highly intricate relationships that are difficult to

comprehend directly. Recently, Lundberg et al. [93] proposed a black-box
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interpretability method known as SHAP (SHapley Additive exPlanations), which offers

the capability to explain the outputs of any machine learning model, regardless of its

complexity or black-box nature. SHAP provides valuable insights into the contributions

of individual features in the model's output. It has been widely used to interpret the

effect of relevant material features or alloy compositions on targeted properties. For

example, He et al. [78] grasped the key features that influence the transformation

temperature of high-entropy shape memory alloys and investigated the impact rule of

electronegativity and atomic radius differences on the phase transition temperature.
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Fig. 11 provides a visual representation of the distribution of SHAP values across

the samples. The magnitude of the absolute SHAP value indicates the impact of a

feature on the output. A larger absolute value gives rise to a stronger influence on the

outputs. Additionally, positive SHAP values tend to increase the output, while negative

SHAP values indicate a tendency to lower the values of the output. From Fig. 11 (a),
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the feature with the most significant impact on adiabatic temperature change is SR,
while the least influential is T. The ranking of feature importance for the adiabatic
temperature change is SR > ST > APE > VEC > CE > SMM > T. According to Fig. 11
(b), CE is the most significant feature affecting the stress hysteresis, whereas SMSM is
the least influential feature. The ranking of feature importance for stress hysteresis is
CE >RLM >YD > AWM > ED > SMD > SMSM. As shown in Fig. 11 (¢) and Fig. 11
(d), the abscissa describes the feature values of the sample numbers, while the ordinate
depicts the corresponding SHAP values. A common color code is used, with blue
typically denoting lower feature values and red indicating higher feature values.
Positive SHAP values denote the positive impact of the feature value on output, while
negative values indicate the opposite. A SHAP value of zero suggests that the
corresponding feature does not influence the sample. Comparing the SHAP values and
feature values offers a promising approach to understanding the effect of each feature
on adiabatic temperature change and hysteresis.

As shown in Fig. 12, the vertical axis describes the values of each feature, whereas
the horizontal axis describes the corresponding SHAP value. The pink color indicates a
low feature value, and the yellow color indicates a high feature. SR and ST are
important parameters for testing adiabatic temperature changes, which represent strain
rate and applied maximum stress. From Fig.12 (a) and (b), as the feature values of SR
and ST increase, the corresponding SHAP values of SR and ST continuously increase.
High strain rates and stress values play a pivotal role in promoting the elastocaloric
effect, while their reduction can suppress this effect. This is attributed to the fact that
high strain rates facilitate the creation of adiabatic environments, where heat transfer is
minimized, while elevated stress levels enable a complete martensitic phase
transformation. Our results align with the previous studies conducted by Schmidt et al.
[94] and Tusek et al. [95]. The Atomic packing efficiency, APE, compares the ratio of
the radii of the central atom to neighboring atoms with the ideal radii ratio of an
optimally-packed cluster containing the same number of atoms. [96]. As the difference

between the ratios increases, APE rises as well. Remarkably, our findings in Fig. 12 (¢)
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reveal that negative APE contributes to an increase in the adiabatic temperature change,
whereas a positive APE value leads to a decrease in the adiabatic temperature change.
Based on this observation, we deduce that an increase in APE results in an elevated
ratio of inner atomic radius to outer atomic radius. This will increase the unoccupied
space within the clusters, which may result in lower lattice compatibility and higher
plastic strain accumulation. Consequently, it affects adiabatic capacity negatively.
VEC refers to valence electron concentration, which serves as a significant
parameter in first-principles band calculations for phase selection rules [97, 98]. The
influence of VEC on the structural transformation and mechanical properties of alloys
has been extensively studied and documented. For instance, it has been observed that
both the martensite start temperature (M) and austenite finish temperature (4y) decrease
as the valence electron concentration increases [98]. Fig. 12 (d) illustrates a declining
trend in the SHAP values with increasing VEC. Furthermore, VEC values below 9
positively impact the adiabatic temperature change, whereas they exhibit a negative
influence when the VEC exceeds 9. This result bears resemblance to the phase selection
rules commonly observed in high-entropy alloys, where VEC values below 6.87 favor
the stability of the BCC phase [99]. CE is the configurational entropy, which is a very
important thermodynamic parameter that describes the degree of disorder in the state
of a mixed system [100-102]. In general, high CE values contribute to the extent of
disorder in an alloy system and lower the tendency of ordering and segregation of alloy
elements. In other words, high CE values stabilize the formation of the solid-solution
phase, while low CE enables intermetallic compounds/secondary phases to form more
easily. As depicted in Fig. 12 (e), there is a decreasing trend in the SHAP values with
increasing CE. This can be attributed to the fact that high mixing entropy leads to higher
lattice distortions and modifications to the Thermodynamic driving force, thereby
influencing the inverse martensitic phase transformation. Plastic strain that accumulates
due to high local lattice distortions, causes energy dissipation, thus, lower adiabatic
temperature change. The shear mean modulus (SMM) is associated with the interaction

forces between atoms [103]. In general, elevated shear modulus values indicate robust
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chemical bonds and significant resistance to shape alterations. As shown in Fig. 12 (f),
with SMM increase, its influence on adiabatic temperature change shifts from
promotion to inhibition, possibly due to stringing bonding delaying the phase
transformation. Lastly, it can be observed from Fig .12 (g) that high test temperature
(T) tends to have a positive effect on adiabatic temperature changes, although data

slightly deviates from this trend.
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Fig. 12. Feature independence plots for adiabatic temperature change showing the SHAP values as
a function of a pair of the seven features. The color bars represent the values of features. (a) Strain
rate. (b) Stress. (c) Atomic packing efficiency. (d) Valance electron concentration. (e)
Configuration entropy. (f) Shear modulus mean. (g) Test temperature.

The SHAP values of feature dependence for hysteresis are presented in Fig. 13.
As the CE increases, the overall tendency of SHAP values shifts from negative to

positive. High CE facilitates the formation of solid solution phases and results in greater
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lattice disorder. Crystal defects have the potential to disrupt the crystal structure of B2
and lead to incompatible martensitic phase transformations. Subsequently,
incompatibility can decrease middle eigenvalue A, and increase energy loss leading to
a rise in stress hysteresis in Fig. 13 (a). The RLM, or radii local mismatch, quantifies
the disparities in atomic sizes [101]. It is well known that the lattice distortion and
diffusion of atoms in the matrix are affected by the atomic size differences. Large radii
differences increase the local strain energy and free energy in the alloy system, but also
decrease the diffusion rate in the matrix and could result in local atom segregation.
According to Fig. 13 (b), Our calculations indicate that while a low RLM negatively
affects the hysteresis of the alloy, and a high RLM generally has a positive effect on the
hysteresis, the impact of RLM is not linear. This may suggest that lattice distortion due
to RLM can obstruct dislocation movements and create lattice incompatibility. These
two outcomes have opposite impacts on hysteresis; therefore, an optimal value of RLM
exists [104]. The YD is an important phase formation parameter, which describes the
comprehensive effect of the atomic size difference in the n-element alloy. As shown in
Fig. 13 (c), the SHAP value of YD is similar to the RLM in this work. AWM is the
mean atomic weight. It is interesting to see from Fig. 13 (d) that the SHAP values
decrease with AWM. This suggests that the addition of heavy elements can significantly
reduce the stress hysteresis in the alloy. ED is the difference of electronegativity [101],
which is associated with elemental segregation [55, 99]. ED has been used to determine
the phase selection in high entropy alloys. As depicted in Fig. 13 (e), ED shows no
significant effect on stress hysteresis. The SMD represents the difference in shear
modulus, which reflects the elastic interaction between atoms [105]. It is interesting to
see from Fig. 13 (f) that high SMD tends to decrease stress hysteresis. SMSM, or
modulus mismatch in the strengthening model, is utilized to forecast the hardness in
high entropy alloys. In Fig. 13 (g), with the SMSM increase, the SHAP value first
increases and then decreases. This suggests high modulus mismatch between elements
tend to reduce phase compatibility during the martensitic transformation. In addition,

feature dependence plots of adiabatic temperature change and stress hysteresis are
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showed in Supplementary information.
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4.2 Interpreting the machine learning model by SISSO

The SHAP method facilitates the analysis of the relationship between selected
features and alloy properties. However, it does not provide an explicit expression for
this relationship. SISSO is a symbolic regression method, which defines appropriate
combinations of mathematical operators that analytically relate the selected features
with the outputs using an optimization method. Compared with the black-box model,
in this “white-box” model based on SISSO, it is easy to interpret the relationships

between inputs and outputs and accelerate the development of novel materials.
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However, when dealing with an extensive array of variables, SISSO demands
significant computational resources and becomes challenging to identify pivotal
features and associated mathematical expressions. We propose a combined strategy that
uses the key feature combination from our black-box model and is merged with SISSO
to achieve an interpretable ML model. Cross-validation with “leave-one-out” is used to
evaluate the performance of SISSO. We use operators ® = (+, —, X, +, exp, In, \/, 12,
%) merging with the selected features to generate enough descriptor spaces yicn with
specific complexity. Particle swarm optimization is employed to search for the optimal
descriptor combination from a pool of millions of descriptors. The formula for adiabatic

temperature change and average stress hysteresis are expressed as Eq (2) and Eq (3),

respectively:
SR™* - ST
ATyq = —6.46W — 4.86APE(SMM — SR)VSR
+3514.68 ( CE 1)
“C\n(sSMM) T
+0.015 r +2297(2
2 ST(APE = VEC — CE) 97(2)
A = +20.58 ED + 4.28 SMSM
hy = " CE-AWM + SNE — CE """ ED?+ CE *RLM
+34.58 +12.09 SMSM
" ED + SNE — RML? " CE-AWM,+VED
1659——M | 016 ED +45.77 (3)
ED™ — RLM? YD + SMSM — oo

Where the A\ Thq is the absolute value of adiabatic temperature change during the cooling

. . SR™1-sT ED
process, the A\any is the average stress hysteresis. The and are
VEC3 CE-AWM+SNE—CE

the symbolic operators.

As shown in Fig. 14, the data points are distributed in proximity to the diagonal
line. For adiabatic temperature change, the RMSE is 2.13 with an R of 0.90, while for
average stress hysteresis, the RMSE is 20.00 with an R of 0.94. The results suggest

good agreement between predictions and experiments.
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Fig. 14. The cross-validation for A Ty4-SISSO and Aon,-SISSO model. (a) Adiabatic temperature

change. (b) Average stress hysteresis.

Table. 2. The representations for FTX and FHY.

FTX Operators FHY Operators
-1 _ ED
FT1 SR — ST FHI
VEC3 CE -AWM + SNE — CE
FT2 SMSM
— v/ FH2
APE(SMM — SR)VSR EDZ + CE -RLM
CE 1
FT3 —_— = FH3 ED
In(SMM) T ED + SNE — RMI3
FT4 T FH4 SMSM
ST(APE *VEC — CE) CE - AWM, +VED
- RLM
- FH5 _—_
ED-' — RLM3
- ED
- FH6 YD
YD + SMSM — RLM

According to Eq (2) and (3), the adiabatic temperature change demonstrates an
increasing trend with ST and SR, while it exhibits a decreasing trend with APE. The
average stress hysteresis showcases a reduction with AWM, aligning with the findings
derived from the SHAP method. These discoveries reinforce the concurrence of results
from the SHAP method. Eq (3) also indicates that the additions of heavy elements
contribute to obtaining small stress hysteresis. As shown in Table 2, the operators are
marked as new features FTX and FHY (X, Y are 1 2 3, ...) for adiabatic temperature
change and average stress hysteresis, respectively. We also use Pearson correlation to
analyze the importance of these operators. Fig. 15 (a) shows the correlation coefficient
between FTX and AT.. The operator most strongly correlated with adiabatic
temperature change is FT1, with a correlation coefficient exceeding 0.7. Conversely,

FT3 exhibits the weakest correlation, with a coefficient below 0.1. As shown in Fig. 15
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(b), FH1 demonstrates the most robust correlation with average stress hysteresis,
exhibiting a correlation coefficient exceeding 0.6. In contrast, FH4 displays the weakest
correlation, with a coefficient falling close to 0. Furthermore, there is no discernible
correlation among the operators for FHX and FHY. In summary, the utilization of
analytical expressions enhances the understanding of how material features affect their

transformation behavior.
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Fig. 15. Correlation matrix between operators and properties. (a) Adiabatic temperature change.
(b) Average stress hysteresis.
5. Conclusion

In this work, we presented a machine learning framework for efficiently evaluating
the adiabatic temperature change and average stress hysteresis in shape memory alloys
that accelerate the development of alloys with large elastocaloric effects and low stress
hysteresis. More specifically, the conclusions from our work are as follows:

(1) The key features for each property were identified by using recursive feature
elimination and exhaustive search elimination. The ranking of feature importance for
the adiabatic temperature change is SR > ST > APE > VEC > CE > SMM > T. The
ranking of feature importance for stress hysteresis is CE > RLM >YD > AWM > ED >
SMD > SMSM.

(2) The XGBT model yields the best performance for predicting adiabatic

temperature change, achieving an RMSE of 1.75 K. Meanwhile, for predicting stress
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hysteresis, the SVR model exhibits good performance with an RMSE of 23.4 MPa.

(3) Leveraging our trained machine learning model in conjunction with a Bayesian
optimization algorithm, a novel alloy Tis9 3Ni45.9Cus 7Co01.0Z10.1 has been developed with
large adiabatic temperature change and low average stress hysteresis (A 7Ty = 15.2 K,
Aony = 70.3 MPa). These measurements are consistent with our predictions (A Tag =
16.8 K, Aony = 83.1 MPa), corroborating the accuracy of our model.

(4) The SHAP method was used to interpret the implicit relationship between the
input key features and properties. Except for the features representing specific
experimental conditions, like strain rate, the most crucial alloy features APE, CE, and
RLM are attributed to changes in lattice compatibility, local lattice distortion and
chemical driving force in the alloy.

(5) Based on the selected key feature group, the operators generated by the SISSO
method were used to construct analytical expressions for the adiabatic temperature
change and average stress hysteresis using key features as variables. The new descriptor
agreed well with the results from the SHAP method.

In summary, the present computational framework serves as a starting platform for
high-throughput material discovery and optimization, and it holds the potential to play
a pivotal role in the systematic design of novel elastocaloric alloys with desired
properties. This in turn will facilitate the fast development of non-vapor compression

machines that will help to realize carbon-neutral refrigeration technologies.
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