
1 

 

Accelerated learning and co-optimization of elastocaloric effect and stress 

hysteresis of elastocaloric alloys 

Shiyu He1,2, Fei Xiao1,3,6*, Ruihang Hou1, Shungui Zuo1, Ying Zhou1, Xiaorong Cai1, 

Zhu Li1, Yanming Wang4, Aysu Catal Isik5, Enrique Galindo-Nava5, Xuejun Jin1,3** 

1State Key Lab of Metal Matrix Composite, School of Materials Science and 

Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, 

P. R. China 

2Materials Genome Initiative Center, Shanghai Jiao Tong University, Shanghai 200240, 

China 

3Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China 

4University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao 

Tong University, 800 Dong Chuan Road, Minhang District, Shanghai 200240, China 

5Department of Mechanical Engineering, University College London, Torrington Place, 

London WC1E 7JE, United Kingdom 

6Department of Materials Science and Engineering, Graduate School of Engineering, 

Osaka University, 2-1, Yamada-oka, Suita, Osaka 565-0871, Japan  

  

 
 * Corresponding author. Tel.: +86 21 54745567. 

E-mail address: xfei@sjtu.edu.cn (F. Xiao). 
** Corresponding author. Tel.: +86 21 54745560 

E-mail address: jin@sjtu.edu.cn (X. Jin). 

mailto:xfei@sjtu.edu.cn
mailto:jin@sjtu.edu.cn


2 

 

Abstract 

Elastocaloric alloys stand as the preferred technology for non-vapor-compression 

refrigeration. Here, we present a machine learning (ML) framework to accelerate the 

development of novel elastocaloric alloys with large adiabatic temperature change (△

Tad) and low stress hysteresis (△σhy). The comprehensive framework comprises 

database construction, feature selection, model construction, alloy design and 

validation, and model interpretation. Features are selected according to the physical 

attributes they represent. Properties that may reflect the compatibility between parent 

and product phases, lattice distortion, and the free energy in the alloy are considered in 

the model. Among them, the key features are screening by recursive feature elimination 

and exhaustive search methods. The trained models in combination with the Bayesian 

optimization method are exploited to achieve multi-objective optimization. Using the 

results, a newly designed elastocaloric alloy shows a large adiabatic temperature change 

of 15.2 K and low average stress hysteresis of 70.3 MPa at room temperature, which is 

consistent with our predictions. The predictions of our ML model are interpreted by the 

Shapley Additive exPlainations (SHAP) approach, which explicitly quantifies the 

effects of each feature in our model on the adiabatic temperature change and stress 

hysteresis. Additionally, we employ the Sure-Independence Screening and Sparsifying 

Operator (SISSO) method in conjunction with the key features to formulate explicit △

Tad-SISSO and △σhy-SISSO model. The optimal SISSO model agree with the finding 

derived from the SHAP analysis. Our work represents a starting platform for the digital 

design of innovative alloys with optimized properties for elastocaloric applications. 

Keywords: Elastocaloric alloys, Adiabatic temperature change, Stress hysteresis, 

Machine learning, Multi-objective optimization   
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1. Introduction 

Vapor-compression refrigeration based on hydrocarbon has gained widespread 

utilization in improving human daily lives such as home air conditioning systems [1]. 

However, vapor-compression technology with high energy consumption contributes to 

global warming and ozone depletion and poses a major challenge to environmental 

sustainability [2-4]. As the world strives for carbon neutrality and environmental 

protection, scientists have developed a growing interest in environment-friendly and 

energy-efficient novel cooling technologies based on, magnetocaloric [5], elastocaloric 

[6] and electrocaloric refrigeration [7, 8]. According to a comprehensive report by the 

United States Department of Energy, the elastocaloric system based on TiNi shape 

memory alloys (SMAs) has emerged as a highly recommended approach for non-vapor-

compression refrigeration [9-12]. Most recently, Qian et al. [13] demonstrated a high-

efficiency elastocaloric cooling system incorporating nitinol tubes, showing remarkable 

and exceptional cooling performance.  

The phenomenon of elastocaloric effect (eCE) is closely associated with stress-

induced thermoelastic martensitic transformation, wherein the adiabatic temperature 

change or the isothermal entropy change serves as prominent characterization 

parameters [11, 14-16]. Under the influence of mechanical loading, the parent phase 

(austenite) undergoes a transition to the martensitic phase, thereby increasing the 

environmental temperature with the release of latent heat. Conversely, during unloading, 

the reverse martensitic transformation occurs, resulting in the absorption of heat from 

the surrounding environment, thus enabling solid-state cooling. Until now, there are 

several SMAs including TiNi-based [17-19], Cu-based [20-25], Co-based [15, 26], and 

Heusler alloys [16, 27-33]. TiNi-based alloys have been successfully used as critical 

materials for caloric cooling prototypes due to their promising elastocaloric capacity 

[13, 29, 34-36]. However, TiNi alloys possess a high stress hysteresis, which gives rise 

to the accumulation of defects and suppresses the reversibility of martensitic 

transformation [29, 37, 38]. Stress hysteresis is related to the macroscopic manifestation 

of energy dissipation during phase transformation. In general, SMAs with a small 
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hysteresis can acquire high energy conversion efficiency and low fatigue due to small 

energy loss and favorable transformation compatibility. It is well known that the 

addition of third elements such as Fe, Pd, Co, and Cu will adjust the hysteresis [29, 37, 

39, 40]. Nevertheless, several published studies have indicated that the elastocaloric 

effect has a tendency to decrease when third elements are added [10, 34, 37, 41, 42]. 

Therefore, achieving a balance between the elastocaloric effects and hysteresis is of 

utmost importance in the design of novel TiNi-based shape memory alloys.  

The primary objective of computational material design approaches is to employ 

both conceptual and numerical approaches to predict the composition, structure, and 

properties of materials and use the models to design new ones with improved 

performance [43]. Conventional material design approaches relying on trial and error 

[44, 45] prove to be inefficient and costly, especially when confronted with the 

challenge of multi-objective optimization from a large pool of data from candidate 

materials [46, 47]. With the advancement of artificial intelligence, data-driven machine 

learning methods provide a tremendous boost to accelerate material discovery [48-52]. 

Extensive research efforts have substantiated the potential of machine learning in 

designing shape memory alloys with desired properties. Peltier et al. [53], Udesh et al. 

[54], and Xue et al. [55] used machine learning to study the relationships between alloy 

composition and martensitic phase transformation and develop novel high-temperature 

shape memory alloys (HTSMAs). Lookman et al. [56] designed shape memory alloys 

with ultra-low thermal hysteresis by active learning. Pang et al. [57] developed shape 

memory ceramics with low thermal hysteresis by polynomial machine learning 

algorithm in combination with CALPHAD. Tian et al. [58] and Ding et al. [59] 

exploited machine learning to predict the elastocaloric effect. These studies have 

predominantly concentrated on optimizing a single property, whereas material design 

often necessitates the consideration of multiple properties. Machine learning coupled 

with multi-objective optimization methodologies has been established as an effective 

approach for addressing multiple properties. For instance, Gopakumar et al. [60] 

employed an adaptive design strategy to optimize the thermal hysteresis and transition 
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temperature of shape memory alloys (SMAs). Solomou et al. [61] devised a framework 

for efficiently discovering precipitation-strengthened NiTi shape memory alloys 

possessing three desired properties using Bayesian methods. Despite data-driven 

models significantly advancing the discovery of SMAs with desirable thermodynamic 

properties, scant attention has been devoted to stress hysteresis behavior.  

In this work, we develop a co-optimization framework for accelerating the design 

of new TiNi-based shape memory alloys with a satisfactory combination of adiabatic 

temperature change and stress hysteresis using Bayesian multi-objective optimization 

and machine learning techniques. We synthesize a novel alloy and measure its 

transformation properties to validate our computational framework. In addition, we 

utilize the Shapley Additive Explanation (SHAP) and Sure Independent Screening and 

Sparsifying Operator (SISSO) technique to analytically interpret the relationships 

between selected features and electrocaloric properties in the black-box models. The 

last section presents further discussion and the conclusions arising from this work. 

 

2. Methodology 

The design strategy of novel SMAs with the desired combination of adiabatic 

temperature change and hysteresis based on the machine learning method is shown in 

Fig. 1. There are five modules including database construction, feature selection, model 

construction, alloy design and validation, and model interpretation. 
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Fig. 1. Proposed framework of machine learning employed to design novel elastocaloric alloys 

with desired adiabatic temperature change and stress hysteresis. 

 

2.1 Database construction 

The performance of machine learning significantly depends on the quality of the 

database used. A reliable database enables the acquisition of data models with both high 

accuracy and generalization capabilities. The experimental information of adiabatic 

temperature change and stress hysteresis for SMAs is highly dispersed and limited, 

especially for TiNi-based alloys. To minimize the uncertainties introduced by 

experiments as much as possible, we adopt a selection criterion that focuses on bulk 

SMAs with similar fabrication processes including vacuum melting, homogenization 

treatment, and aging treatment. The test temperature and loading condition are also used 

as input variables to construct the prediction model because they are strongly associated 

with adiabatic temperature changes. We collect 137 alloy data with adiabatic 

temperature change (△Tad) and 60 alloy data with average stress hysteresis (△σhy) [5, 
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9-11, 13, 14, 17, 20, 26, 34, 37, 41, 42, 59, 62-77]. It is worth noting that △Tad 

represents the absolute value of the adiabatic temperature change during cooling. Then 

the data preprocessing is used to eliminate the influence of different data dimensions 

on the convergence speed and accuracy of the model. Specifically, predictive models 

that utilize distance metrics, such as support vector machines (SVM) and decision trees, 

are highly sensitive to disparities in feature dimensionality. In this work, we adopt a 

data normalization process to eliminate the dimensionality of variables. The formula is 

as follows: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                         (1) 

Where X is the feature value, Xmin is the minimum feature value, Xmax is the maximum 

feature value, Xnorm is the standardized feature value. 

 

2.2 Feature selection 

Alloy design based on machine learning requires selecting relevant alloy features 

and connecting them to their chemical composition. Alloy properties are considered 

akin to fingerprints, establishing a strong connection with the properties of the alloy. 

Developing reliable prediction models based on alloy features to improve design 

predictability has been highlighted by numerous scholars [47, 54, 78, 79]. In addition 

to the three test parameters (test temperature, stress, strain rate), we use the matminer 

toolkit [80] to extract 23 alloy features comprising atomic features and physical 

parameters from alloy composition. Atomic features such as atomic radii and atomic 

number are inherent physical and chemical attributes of individual alloy constituents, 

while alloy parameters such as phase fraction originate from specific parameter 

formulas. Details of all features are listed in the Supplementary material. Considering 

the potential risk of overfitting associated with an excessive number of features, we 

employ feature selection methods comprising correlation analysis, recursive feature 

elimination, and exhaustive search methods to systematically search for the optimal 

combination of features. 
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2.3 Model construction 

Three classical machine learning methods, extreme gradient boosting (XGBT), 

support vector regression (SVR), and random forest (RF) are utilized to evaluate the 

predictive capability of the model. We randomly divided 80% of the database as the 

training set and allocated 20% as the test set. The complexity and diversity of the model 

parameters provide a broad spectrum of possibilities for optimizing the model 

performance. Indeed, finding the optimal balance between model parameters is a 

challenging task. In this work, we use a fast search method [81] in combination with 

Leave-One-Out (LOO) to determine the best parameter group. The fundamental 

concept behind the LOO method involves dividing the dataset into k subsets, with each 

subset containing a single test sample, where k corresponds to the size of the dataset. 

These data partitioning methods contribute to assessing the generalization ability of 

machine learning models trained on small samples. Furthermore, the Root Mean Square 

Error (RMSE) and Pearson correlation coefficient R are used to evaluate the accuracy 

of the model. 

 

2.4 Alloy design and validation 

Machine learning models can facilitate the direct search for shape memory alloys 

with desired adiabatic temperature changes or hysteresis within a defined compositional 

space. However, when the optimization involves simultaneously considering the 

combination of adiabatic temperature change and hysteresis, the task of developing a 

satisfactory alloy composition becomes more complex and challenging. We combine 

two predictive models with Bayesian optimization (BO) to achieve multi-objective 

optimization of the properties mentioned above [79, 82]. Bayesian optimization (BO) 

is a strategy used for black-box optimization, where the scalar function to be optimized 

(sometimes referred to as the oracle) may be non-differentiable or difficult to evaluate 

(computationally expensive). The optimization principle of adiabatic temperature 

change and hysteresis with BO method is presented in Fig. 2, which mainly comprises 

alloy composition boundary conditions, composition candidate search and score, 
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property prediction, and stop criteria. To validate the calculations, an optimal alloy 

candidate was synthesized and prepared using vacuum induction melting in a graphite 

crucible. A detailed fabrication process has been described in our previous work [42]. 

 

Fig. 2. Schematic of the computational workflow of Bayesian optimization. 

 

2.5 Model interpretation 

While the black-box model approach in Machine Learning has been extensively 

employed in material design, demonstrating accuracy in predicting material properties, 

it is often challenging to identify explicit correlations between input features and alloy 

properties. SHAP (SHapley Additive exPlanations) [83] is a game theory approach that 

elucidates the importance of each feature on the output of any machine learning model. 

This method involves calculating the marginal contribution of features to the overall 

output of the model and subsequently provides an indirect understanding of the "black 

box model" from both a global and local perspective. The importance of key features is 

calculated and the effects of key alloy features on adiabatic temperature change and 

hysteresis is determined by SHAP in this work. Another approach to understanding the 

relationship between inputs and output is using an interpretable white-box model such 

as SISSO [84] (Sure Independent Screening and Sparsifying Operator). SISSO is a data-

driven approach that combines symbolic regression and compressed sensing to identify 

models and descriptors in explicit mathematical expressions for materials science. 

Although symbolic regression can establish more easily interpretable analytical 

equations, discovering the optimal combination of mathematical operators from a large 

number of features is still a significant challenge. To mitigate the computational cost 
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associated with symbolic regression, we utilize the aforementioned feature selection 

method to obtain an optimal combination of features. Subsequently, we derive the 

explicit formulas for adiabatic temperature change and hysteresis by integrating the best 

feature group with the SISSO method. 

 

3. Results 

 

3.1 Feature selection and modeling 

Pearson product-moment correlation coefficient (R) quantifies the level of 

correlation between two variables. A high absolute value of R, close to 1, indicates a 

strong linear correlation between the variables. Thus, the correlation coefficient can be 

used to evaluate the linear relationship calculation between alloy features and target 

properties and to eliminate redundant features that exhibit highly linear correlations. 

The correlation coefficients of adiabatic temperature change and hysteresis are 

presented in Fig. 3, where a lighter color indicates a stronger linear relationship. Many 

alloy features exhibit weak linear correlations with adiabatic temperature change and 

hysteresis. The maximum absolute correlation coefficients (|R| values) are less than 0.6, 

suggesting the presence of a non-linear relationship between alloy features and these 

two properties. Furthermore, the maximum |R| values between alloy features are less 

than 0.95, which falls short of the threshold for feature elimination. 

 

Fig. 3. Feature processing based on the correlation coefficients. (a) Adiabatic temperature change. 

(b) Average stress hysteresis. 
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To reduce the complexity of the machine learning model, the recursive feature 

elimination with cross-validation (RFECV) method is employed to eliminate 

dimensions of alloy features. RFECV is to select features by recursively considering 

smaller and smaller sets of features and computing the cross-validated scores. This 

approach involves two steps: model selection and feature elimination. The selection of 

an appropriate model is of utmost importance when considering subsequent feature 

selection. As shown in Fig. 4, three models based on XGBT, SVR, and RF methods are 

used to predict the adiabatic temperature change and hysteresis. We use the training set 

with cross-validation to determine the best combination of model parameters, and then 

test the model performance. Fig. 4 (a)-(f) depict the comparisons between measured 

and predicted adiabatic temperature change. The cross-validations of the three models 

show similar results where several predictions deviate significantly from the 

experimental results. The training and testing results indicate the XGBT model 

performs better compared with the other models. Fig. 4 (g)-(l) presents the machine 

learning results of average stress hysteresis. There are subpar performances for the three 

models where most predictions are inconsistent with the measurements. However, the 

SVR model presents an adequate performance where the predictions mostly agree with 

experiments. We also calculate the RMSE and R values to demonstrate the performance 

of the three models. According to Fig. 5, It is evident that the XGBT-based adiabatic 

temperature change has the lowest RMSE of 1.39 K and the highest R of 0.98, while 

the SVR-based hysteresis has the lowest RMSE of 22.28 MPa and the highest R of 0.96. 

Thus, the XGBT and SVR models are used to eliminate the alloy features for adiabatic 

temperature change and hysteresis, respectively. 
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Fig. 4. Comparison between predicted values from different machine learning models and the 

observed values. (a)-(c) Cross-validation on train set of adiabatic temperature change. (d)-(f) Train 

and test set of adiabatic temperature change. (g)-(i) Cross-validation on train set of average stress 

hysteresis. (j)-(l) Train and test set of average stress hysteresis. 

 

Fig. 5. Performance of different models on our test set. (a) Adiabatic temperature change. (b) 



13 

 

Average stress hysteresis.  

Fig. 6 (a) and (b) depict the recursive feature elimination (RFE) process for 

adiabatic temperature change and stress hysteresis, respectively. The objective of 

recursive feature elimination is to adjust the number of features by systematically 

eliminating them based on their importance. In the figures, it is evident that as the 

number of features increases, the model's error initially decreases and then exhibits a 

tendency to increase. The optimal number of features for adiabatic temperature change 

is identified as 9, whereas for hysteresis, it is determined to be 13. The details of 

reserved features are listed in the supplementary information. To further reduce the 

number of features, an exhaustive search elimination (ESE)method is employed to 

identify the best combinations of features by using all the combinations of the 

remaining alloy factors from the RFE process. The results of feature selection using the 

exhaustive search elimination method for adiabatic temperature change are presented 

in Fig. 6 (c). The model's error initially decreases and then rises with the feature number 

increasing. The minimum error is achieved when the number of features is 7. The 

corresponding feature combination is as follows: APE (Atomic Packing Efficiency), 

CE (Configuration Entropy), VEC (Mean Valence Electron Concentration), SMM 

(Shear Modulus Mean), T (Test Temperature), ST (Stress), SR (Strain rate). As shown 

in Fig. 6 (d), When the number of features is 7, the model achieves the minimum error. 

The corresponding feature combination is as follows: YD (Yang Delta), RLM (Radii 

Local Mismatch), CE (Configuration Entropy), AWM (Mean Atomic Weight), ED 

(Electronegativity Delta), SMD (Shear Modulus Delta), SMSM (Shear Modulus 

Strength Model). 
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Fig. 6. Feature elimination to find the key features from the feature pool with recursive feature 

elimination and exhaustive search elimination. (a)-(b) Adiabatic temperature change. (c)-(d) 

Average stress hysteresis. 

After the feature selection procedure, we employ the XGBT algorithm for 

constructing the prediction model of adiabatic temperature change, and the Support 

Vector Regression (SVR) algorithm for constructing the prediction model of hysteresis. 

The performance of the machine learning model of adiabatic temperature change 

utilizing the XGBT algorithm is illustrated in Fig. 7 (a) and (b). Notably, the training 

and testing data exhibit a close alignment along the diagonal (dashed line). The root 

mean squared error (RMSE) values for the training and testing data are reported as 0.32 

K and 1.38 K, respectively, while the calculated R values are determined to be 0.99 and 

0.97, respectively. These outcomes are indicative of a strong concordance between the 

model predictions and experimental observations. Fig. 7 (c) and (d) illustrate the 

distribution of data points evenly on both sides of the diagonal line for hysteresis. The 

RMSE values for the training and testing data are reported as 16.71 MPa and 9.23 MPa, 

respectively. Additionally, the R values are determined to be 0.99 and 0.96, respectively, 
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indicating good agreement between the predictions and experimental results within a 

reasonable error range. Considering the concern of overfitting, we employ cross-

validation as a method to evaluate the model's generalization ability. Indeed, the cross-

validation method with leave-one-out (LOOCV) is a recommended procedure for 

preventing overfitting. The cross-validation results for adiabatic temperature change 

and hysteresis are illustrated in Fig. 7 (b) and (d). While there are a few data points that 

deviate from the diagonal line, the majority of predictions exhibit strong agreement 

with the experimental results. The RMSE of adiabatic temperature change and 

hysteresis are 1.75 K and 23.40 MPa, respectively, and the R values of adiabatic 

temperature change and hysteresis are 0.9352 and 0.9234, respectively. These scores 

indicate a favorable generalization ability of the model introduced in this study. 

 

Fig. 7. The performance of the machine learning model with SVR algorithm on training, testing 

set, and LOOCV of all data. (a)-(b) Adiabatic temperature change. (c)-(d) Average stress 

hysteresis. 

 

3.2 Alloy design and validation 

The objective of our alloy design approach using a machine learning model is to 
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discover optimized alloy compositions that can achieve a balance between adiabatic 

temperature change and average stress hysteresis. It is well known that the hysteresis 

of SMAs can be adjusted by the addition of elements such as Fe, Pd, Co, and Cu [29, 

37, 39, 40]. The incorporation of Cu into TiNi shape memory alloys (SMAs) has been 

extensively demonstrated to result in a reduced lattice mismatch and enhanced middle 

eigenvalue (λ2). The middle eigenvalue of the transformation stretch tensor between the 

parent and product phases, λ2, is a crucial parameter to assess the crystallographical 

compatibility of these phases. Small lattice mismatch and a λ2 value closer to 1 usually 

indicate low stress hysteresis [85]. Thus, Cu is the first alloying element in our design 

criteria, other elements comprising Co, Fe, and Pd will be randomly selected by BO 

optimization. It is worth noting that small additions of third elements such as V, Zr, and 

Al are used to improve the mechanical properties of alloys [42, 86, 87]. The boundary 

condition is then set as TiaNi100-a-b-c-dAbBcCd, where A is Cu, B can be Fe, Pd, Co, and 

C can be V, Zr, Hf, Al. As for their compositional range, a lies between 49.2 and 50, b 

lies between 1 and 10, c lies between 1 and 3, and d is within 0.1-1. 

 

 

Fig. 8. The evolution of Bayesian optimization for adiabatic temperature change and average 

stress hysteresis. Red point represents the best composition. 
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Fig. 9. Measurements of the newly designed alloy. (a) Tensile test results at different temperatures. 

(b) Transformation temperature changes with time at 293 K. (c) adiabatic temperature change at 

different testing temperatures. 

Fig. 8 illustrates the iterative process of Bayesian optimization, where the 

development of the optimal composition is conducted through continuous observation 

and updating of the estimate for the objective function. Based on the optimization result, 

Ti49.3Ni45.9Cu3.7Co1.0Zr0.1 is identified as the optimal alloy composition. Subsequently, 

this composition is synthesized and prepared to validate the predictions made by our 

models. The fully recovered superelastic curves at temperatures from 278 K to 303 K 

are shown in Fig. 9 (a). It is evident that the applied stress gradually increases as the 

testing temperature increases. The stress-strain curves exhibit small hysteresis loops, 

with stress hysteresis values of 76 MPa at 278 K, 65 MPa at 283 K, 74 MPa at 293 K, 

and 66 MPa at 303 K. Thus, the average stress hysteresis is 70.3 MPa. Fig. 9 (c) shows 

the adiabatic temperate change at temperatures from 278 K to 303 K. The adiabatic 

temperature change exhibits an initial increase followed by a subsequent decrease as 
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the temperature rises. It reaches its peak value of 15.2 K at 293 K, as illustrated in the 

Fig. 9 (b). 

Table. 1. Comparison of ML predictions and the experimentally measured adiabatic temperature 

change (in K) and average stress hysteresis (in MPa) for the designed synthesized samples.  
Alloys Property Experiment Calculation Error 

Ti49.3Ni45.9Cu3.7Co1.0Zr0.1 
△Tad 15.2 16.8 1.6 

△σhy 70.3 83.1 12.8 

A comparison of the predicted and measured adiabatic temperature change and 

hysteresis for the designed alloy is listed in Table. 1. The predicted adiabatic 

temperature change and hysteresis are 16.8 K and 83.1 MPa, respectively, which is 

consistent with the measured results. The absolute errors, amounting to 1.6 K and 12.8 

MPa, fall within the acceptable range for model error. We also compare our designed 

alloy data with other results reported in the literature. As shown in Fig. 10, our new 

alloy exhibits large adiabatic temperature change and small hysteresis, achieving a good 

balance of the two competing properties. This result corroborates the effectiveness of 

our computational approach in designing novel elastocaloric shape memory alloys. In 

future research, we can adopt an iterative approach to improve our model and optimize 

the alloy composition cyclically for pushing the boundaries of performance and 

achieving superior performance characterized by exceedingly high adiabatic 

temperature change and extremely low hysteresis. 
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Fig. 10. Comparison of the adiabatic temperature change and stress hysteresis of our 

designed alloy with other reported bulk elastocaloric alloys [9, 22, 26, 29, 64, 68, 70, 88-91]. The 

red dashed line represents an optimal combination in alloy performance. 

 

4. Discussion 

 

4.1 Relationship between inputs and outputs using the SHAP method 

The majority of machine learning models are based on a “black-box” approach 

that builds complex implicit relationships between inputs and outputs. This in turn 

hinders any physical insights into the phenomena under examination [84, 92]. it is 

imperative to employ alternative methods that aid in interpreting the black-box model 

to gain a deeper understanding of potential physical mechanisms involved in the 

transformation processes and to enhance the design of SMAs. In this work, SVR and 

XGBT models are regarded as black-box models owing to their ability to capture 

complex and implicit relationships between inputs and outputs. The inherent 

complexities of these models involve highly intricate relationships that are difficult to 

comprehend directly. Recently, Lundberg et al. [93] proposed a black-box 
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interpretability method known as SHAP (SHapley Additive exPlanations), which offers 

the capability to explain the outputs of any machine learning model, regardless of its 

complexity or black-box nature. SHAP provides valuable insights into the contributions 

of individual features in the model's output. It has been widely used to interpret the 

effect of relevant material features or alloy compositions on targeted properties. For 

example, He et al. [78] grasped the key features that influence the transformation 

temperature of high-entropy shape memory alloys and investigated the impact rule of 

electronegativity and atomic radius differences on the phase transition temperature. 

 

Fig. 11. Global interpretation of our model by SHAP values. (a) SHAP feature importance for 

adiabatic temperature change. (b) SHAP feature importance for average stress hysteresis. (c) The 

SHAP values with samples for adiabatic temperature change. (d) The SHAP values with samples 

for average stress hysteresis. 

Fig. 11 provides a visual representation of the distribution of SHAP values across 

the samples. The magnitude of the absolute SHAP value indicates the impact of a 

feature on the output. A larger absolute value gives rise to a stronger influence on the 

outputs. Additionally, positive SHAP values tend to increase the output, while negative 

SHAP values indicate a tendency to lower the values of the output. From Fig. 11 (a), 
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the feature with the most significant impact on adiabatic temperature change is SR, 

while the least influential is T. The ranking of feature importance for the adiabatic 

temperature change is SR > ST > APE > VEC > CE > SMM > T. According to Fig. 11 

(b), CE is the most significant feature affecting the stress hysteresis, whereas SMSM is 

the least influential feature. The ranking of feature importance for stress hysteresis is 

CE > RLM > YD > AWM > ED > SMD > SMSM. As shown in Fig. 11 (c) and Fig. 11 

(d), the abscissa describes the feature values of the sample numbers, while the ordinate 

depicts the corresponding SHAP values. A common color code is used, with blue 

typically denoting lower feature values and red indicating higher feature values. 

Positive SHAP values denote the positive impact of the feature value on output, while 

negative values indicate the opposite. A SHAP value of zero suggests that the 

corresponding feature does not influence the sample. Comparing the SHAP values and 

feature values offers a promising approach to understanding the effect of each feature 

on adiabatic temperature change and hysteresis. 

As shown in Fig. 12, the vertical axis describes the values of each feature, whereas 

the horizontal axis describes the corresponding SHAP value. The pink color indicates a 

low feature value, and the yellow color indicates a high feature. SR and ST are 

important parameters for testing adiabatic temperature changes, which represent strain 

rate and applied maximum stress. From Fig.12 (a) and (b), as the feature values of SR 

and ST increase, the corresponding SHAP values of SR and ST continuously increase. 

High strain rates and stress values play a pivotal role in promoting the elastocaloric 

effect, while their reduction can suppress this effect. This is attributed to the fact that 

high strain rates facilitate the creation of adiabatic environments, where heat transfer is 

minimized, while elevated stress levels enable a complete martensitic phase 

transformation. Our results align with the previous studies conducted by Schmidt et al. 

[94] and Tušek et al. [95]. The Atomic packing efficiency, APE, compares the ratio of 

the radii of the central atom to neighboring atoms with the ideal radii ratio of an 

optimally-packed cluster containing the same number of atoms. [96]. As the difference 

between the ratios increases, APE rises as well. Remarkably, our findings in Fig. 12 (c) 
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reveal that negative APE contributes to an increase in the adiabatic temperature change, 

whereas a positive APE value leads to a decrease in the adiabatic temperature change. 

Based on this observation, we deduce that an increase in APE results in an elevated 

ratio of inner atomic radius to outer atomic radius. This will increase the unoccupied 

space within the clusters, which may result in lower lattice compatibility and higher 

plastic strain accumulation. Consequently, it affects adiabatic capacity negatively. 

VEC refers to valence electron concentration, which serves as a significant 

parameter in first-principles band calculations for phase selection rules [97, 98]. The 

influence of VEC on the structural transformation and mechanical properties of alloys 

has been extensively studied and documented. For instance, it has been observed that 

both the martensite start temperature (Ms) and austenite finish temperature (Af) decrease 

as the valence electron concentration increases [98]. Fig. 12 (d) illustrates a declining 

trend in the SHAP values with increasing VEC. Furthermore, VEC values below 9 

positively impact the adiabatic temperature change, whereas they exhibit a negative 

influence when the VEC exceeds 9. This result bears resemblance to the phase selection 

rules commonly observed in high-entropy alloys, where VEC values below 6.87 favor 

the stability of the BCC phase [99]. CE is the configurational entropy, which is a very 

important thermodynamic parameter that describes the degree of disorder in the state 

of a mixed system [100-102]. In general, high CE values contribute to the extent of 

disorder in an alloy system and lower the tendency of ordering and segregation of alloy 

elements. In other words, high CE values stabilize the formation of the solid-solution 

phase, while low CE enables intermetallic compounds/secondary phases to form more 

easily. As depicted in Fig. 12 (e), there is a decreasing trend in the SHAP values with 

increasing CE. This can be attributed to the fact that high mixing entropy leads to higher 

lattice distortions and modifications to the Thermodynamic driving force, thereby 

influencing the inverse martensitic phase transformation. Plastic strain that accumulates 

due to high local lattice distortions, causes energy dissipation, thus, lower adiabatic 

temperature change. The shear mean modulus (SMM) is associated with the interaction 

forces between atoms [103]. In general, elevated shear modulus values indicate robust 
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chemical bonds and significant resistance to shape alterations. As shown in Fig. 12 (f), 

with SMM increase, its influence on adiabatic temperature change shifts from 

promotion to inhibition, possibly due to stringing bonding delaying the phase 

transformation. Lastly, it can be observed from Fig .12 (g) that high test temperature 

(T) tends to have a positive effect on adiabatic temperature changes, although data 

slightly deviates from this trend. 

 

Fig. 12. Feature independence plots for adiabatic temperature change showing the SHAP values as 

a function of a pair of the seven features. The color bars represent the values of features. (a) Strain 

rate. (b) Stress. (c) Atomic packing efficiency. (d) Valance electron concentration. (e) 

Configuration entropy. (f) Shear modulus mean. (g) Test temperature. 

The SHAP values of feature dependence for hysteresis are presented in Fig. 13. 

As the CE increases, the overall tendency of SHAP values shifts from negative to 

positive. High CE facilitates the formation of solid solution phases and results in greater 
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lattice disorder. Crystal defects have the potential to disrupt the crystal structure of B2 

and lead to incompatible martensitic phase transformations. Subsequently, 

incompatibility can decrease middle eigenvalue λ2 and increase energy loss leading to 

a rise in stress hysteresis in Fig. 13 (a). The RLM, or radii local mismatch, quantifies 

the disparities in atomic sizes [101]. It is well known that the lattice distortion and 

diffusion of atoms in the matrix are affected by the atomic size differences. Large radii 

differences increase the local strain energy and free energy in the alloy system, but also 

decrease the diffusion rate in the matrix and could result in local atom segregation. 

According to Fig. 13 (b), Our calculations indicate that while a low RLM negatively 

affects the hysteresis of the alloy, and a high RLM generally has a positive effect on the 

hysteresis, the impact of RLM is not linear. This may suggest that lattice distortion due 

to RLM can obstruct dislocation movements and create lattice incompatibility. These 

two outcomes have opposite impacts on hysteresis; therefore, an optimal value of RLM 

exists [104]. The YD is an important phase formation parameter, which describes the 

comprehensive effect of the atomic size difference in the n-element alloy. As shown in 

Fig. 13 (c), the SHAP value of YD is similar to the RLM in this work. AWM is the 

mean atomic weight. It is interesting to see from Fig. 13 (d) that the SHAP values 

decrease with AWM. This suggests that the addition of heavy elements can significantly 

reduce the stress hysteresis in the alloy. ED is the difference of electronegativity [101], 

which is associated with elemental segregation [55, 99]. ED has been used to determine 

the phase selection in high entropy alloys. As depicted in Fig. 13 (e), ED shows no 

significant effect on stress hysteresis. The SMD represents the difference in shear 

modulus, which reflects the elastic interaction between atoms [105]. It is interesting to 

see from Fig. 13 (f) that high SMD tends to decrease stress hysteresis. SMSM, or 

modulus mismatch in the strengthening model, is utilized to forecast the hardness in 

high entropy alloys. In Fig. 13 (g), with the SMSM increase, the SHAP value first 

increases and then decreases. This suggests high modulus mismatch between elements 

tend to reduce phase compatibility during the martensitic transformation. In addition, 

feature dependence plots of adiabatic temperature change and stress hysteresis are 
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showed in Supplementary information. 

 

Fig. 13. Feature independence plots for average stress hysteresis showing the SHAP values as a 

function of a pair of the seven features. The color bars represent the values of features. (a) 

Configuration entropy. (b) Radii local mismatch. (c) Yang delta. (d) Mean atomic weight. (e) 

Electronegativity delta. (f) Shear modulus delta. (g) Shear modulus strength model 

4.2 Interpreting the machine learning model by SISSO 

The SHAP method facilitates the analysis of the relationship between selected 

features and alloy properties. However, it does not provide an explicit expression for 

this relationship. SISSO is a symbolic regression method, which defines appropriate 

combinations of mathematical operators that analytically relate the selected features 

with the outputs using an optimization method. Compared with the black-box model, 

in this “white-box” model based on SISSO, it is easy to interpret the relationships 

between inputs and outputs and accelerate the development of novel materials. 
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However, when dealing with an extensive array of variables, SISSO demands 

significant computational resources and becomes challenging to identify pivotal 

features and associated mathematical expressions. We propose a combined strategy that 

uses the key feature combination from our black-box model and is merged with SISSO 

to achieve an interpretable ML model. Cross-validation with “leave-one-out” is used to 

evaluate the performance of SISSO. We use operators Θ = (+, －, ×, ÷, exp, ln, √, -1, -2, 

-3) merging with the selected features to generate enough descriptor spaces ψi∈N with 

specific complexity. Particle swarm optimization is employed to search for the optimal 

descriptor combination from a pool of millions of descriptors. The formula for adiabatic 

temperature change and average stress hysteresis are expressed as Eq (2) and Eq (3), 

respectively: 

∆𝑇𝑎𝑑 = −6.46
𝑆𝑅−1 − 𝑆𝑇

𝑉𝐸𝐶3
− 4.86𝐴𝑃𝐸(𝑆𝑀𝑀 − 𝑆𝑅)√𝑆𝑅 

+3514.68 (
𝐶𝐸

𝑙𝑛(𝑆𝑀𝑀)
−

1

𝑇
) 

+0.015
𝑇

𝑆𝑇(𝐴𝑃𝐸 ∗ 𝑉𝐸𝐶 − 𝐶𝐸)
+ 22.97(2) 

∆𝜎ℎ𝑦 = +20.58
𝐸𝐷

𝐶𝐸 ∙ 𝐴𝑊𝑀 + 𝑆𝑁𝐸 − 𝐶𝐸
+ 4.28

𝑆𝑀𝑆𝑀

𝐸𝐷2 + 𝐶𝐸 ∙ 𝑅𝐿𝑀
 

+34.58
𝐸𝐷

𝐸𝐷 + 𝑆𝑁𝐸 − 𝑅𝑀𝐿3
+ 12.09

𝑆𝑀𝑆𝑀

𝐶𝐸 ∙ 𝐴𝑊𝑀, +√𝐸𝐷
 

−16.59
𝑅𝐿𝑀

𝐸𝐷−1 − 𝑅𝐿𝑀3
+ 0.16

𝐸𝐷

𝑌𝐷 + 𝑆𝑀𝑆𝑀 −
𝑌𝐷

𝑅𝐿𝑀

+ 45.77  (3) 

Where the△Tad is the absolute value of adiabatic temperature change during the cooling 

process, the △σhy is the average stress hysteresis. The 
𝑆𝑅−1−𝑆𝑇

𝑉𝐸𝐶3  and 
𝐸𝐷

𝐶𝐸∙𝐴𝑊𝑀+𝑆𝑁𝐸−𝐶𝐸
 are 

the symbolic operators. 

As shown in Fig. 14, the data points are distributed in proximity to the diagonal 

line. For adiabatic temperature change, the RMSE is 2.13 with an R of 0.90, while for 

average stress hysteresis, the RMSE is 20.00 with an R of 0.94. The results suggest 

good agreement between predictions and experiments. 
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Fig. 14. The cross-validation for △Tad-SISSO and △σhy-SISSO model. (a) Adiabatic temperature 

change. (b) Average stress hysteresis. 

Table. 2. The representations for FTX and FHY. 

FTX Operators FHY Operators 

FT1 
𝑆𝑅−1 − 𝑆𝑇

𝑉𝐸𝐶3
 FH1 

𝐸𝐷

𝐶𝐸 ∙ 𝐴𝑊𝑀 + 𝑆𝑁𝐸 − 𝐶𝐸
 

FT2 
𝐴𝑃𝐸(𝑆𝑀𝑀 − 𝑆𝑅)√𝑆𝑅 FH2 

𝑆𝑀𝑆𝑀

𝐸𝐷2 + 𝐶𝐸 ∙ 𝑅𝐿𝑀
 

FT3 𝐶𝐸

𝑙𝑛(𝑆𝑀𝑀)
−

1

𝑇
 FH3 

𝐸𝐷

𝐸𝐷 + 𝑆𝑁𝐸 − 𝑅𝑀𝐿3
 

FT4 𝑇

𝑆𝑇(𝐴𝑃𝐸 ∗ 𝑉𝐸𝐶 − 𝐶𝐸)
 FH4 

𝑆𝑀𝑆𝑀

𝐶𝐸 ∙ 𝐴𝑊𝑀, +√𝐸𝐷
 

- 
- FH5 

𝑅𝐿𝑀

𝐸𝐷−1 − 𝑅𝐿𝑀3
 

- 
- FH6 

𝐸𝐷

𝑌𝐷 + 𝑆𝑀𝑆𝑀 −
𝑌𝐷

𝑅𝐿𝑀

 

According to Eq (2) and (3), the adiabatic temperature change demonstrates an 

increasing trend with ST and SR, while it exhibits a decreasing trend with APE. The 

average stress hysteresis showcases a reduction with AWM, aligning with the findings 

derived from the SHAP method. These discoveries reinforce the concurrence of results 

from the SHAP method. Eq (3) also indicates that the additions of heavy elements 

contribute to obtaining small stress hysteresis. As shown in Table 2, the operators are 

marked as new features FTX and FHY (X, Y are 1 2 3, …) for adiabatic temperature 

change and average stress hysteresis, respectively. We also use Pearson correlation to 

analyze the importance of these operators. Fig. 15 (a) shows the correlation coefficient 

between FTX and △Tad. The operator most strongly correlated with adiabatic 

temperature change is FT1, with a correlation coefficient exceeding 0.7. Conversely, 

FT3 exhibits the weakest correlation, with a coefficient below 0.1. As shown in Fig. 15 
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(b), FH1 demonstrates the most robust correlation with average stress hysteresis, 

exhibiting a correlation coefficient exceeding 0.6. In contrast, FH4 displays the weakest 

correlation, with a coefficient falling close to 0. Furthermore, there is no discernible 

correlation among the operators for FHX and FHY. In summary, the utilization of 

analytical expressions enhances the understanding of how material features affect their 

transformation behavior. 

 

 

Fig. 15. Correlation matrix between operators and properties. (a) Adiabatic temperature change. 

(b) Average stress hysteresis. 

5. Conclusion 

In this work, we presented a machine learning framework for efficiently evaluating 

the adiabatic temperature change and average stress hysteresis in shape memory alloys 

that accelerate the development of alloys with large elastocaloric effects and low stress 

hysteresis. More specifically, the conclusions from our work are as follows:  

(1) The key features for each property were identified by using recursive feature 

elimination and exhaustive search elimination. The ranking of feature importance for 

the adiabatic temperature change is SR > ST > APE > VEC > CE > SMM > T. The 

ranking of feature importance for stress hysteresis is CE > RLM > YD > AWM > ED > 

SMD > SMSM. 

(2) The XGBT model yields the best performance for predicting adiabatic 

temperature change, achieving an RMSE of 1.75 K. Meanwhile, for predicting stress 
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hysteresis, the SVR model exhibits good performance with an RMSE of 23.4 MPa. 

(3) Leveraging our trained machine learning model in conjunction with a Bayesian 

optimization algorithm, a novel alloy Ti49.3Ni45.9Cu3.7Co1.0Zr0.1 has been developed with 

large adiabatic temperature change and low average stress hysteresis (△Tad = 15.2 K, 

△σhy = 70.3 MPa). These measurements are consistent with our predictions (△Tad = 

16.8 K, △σhy = 83.1 MPa), corroborating the accuracy of our model. 

(4) The SHAP method was used to interpret the implicit relationship between the 

input key features and properties. Except for the features representing specific 

experimental conditions, like strain rate, the most crucial alloy features APE, CE, and 

RLM are attributed to changes in lattice compatibility, local lattice distortion and 

chemical driving force in the alloy. 

(5) Based on the selected key feature group, the operators generated by the SISSO 

method were used to construct analytical expressions for the adiabatic temperature 

change and average stress hysteresis using key features as variables. The new descriptor 

agreed well with the results from the SHAP method.  

In summary, the present computational framework serves as a starting platform for 

high-throughput material discovery and optimization, and it holds the potential to play 

a pivotal role in the systematic design of novel elastocaloric alloys with desired 

properties. This in turn will facilitate the fast development of non-vapor compression 

machines that will help to realize carbon-neutral refrigeration technologies. 
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