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Introduction: Statistical shape analysis (SSA) with clustering is often used to
objectively define and categorise anatomical shape variations. However, studies
until now have often focused on simplified anatomical reconstructions, despite
the complexity of studied anatomies. This work aims to provide insights on the
anatomical detail preservation required for SSA of highly diverse and complex
anatomies, with particular focus on the left atrial appendage (LAA). This
anatomical region is clinically relevant as the location of almost all left atrial
thrombi forming during atrial fibrillation (AF). Moreover, its highly patient-specific
complex architecture makes its clinical classification especially subjective.

Methods: Preliminary LAA meshes were automatically detected after robust
image selection and wider left atrial segmentation. Following registration, four
additional LAA mesh datasets were created as reductions of the preliminary
dataset, with surface reconstruction based on reduced sample point densities.
Utilising SSA model parameters determined to optimally represent the
preliminary dataset, SSA model performance for the four simplified datasets
was calculated. A representative simplified dataset was selected, and
clustering analysis and performance were evaluated (compared to clinical
labels) between the original trabeculated LAA anatomy and the representative
simplification.

Results: As expected, simplified anatomies have better SSA evaluation scores
(compactness, specificity and generalisation), corresponding to simpler LAA
shape representation. However, oversimplification of shapes may noticeably
affect 3D model output due to differences in geometric correspondence.
Furthermore, even minor simplification may affect LAA shape clustering,
where the adjusted mutual information (AMI) score of the clustered
trabeculated dataset was 0.67, in comparison to 0.12 for the simplified dataset.
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Discussion: This study suggests that greater anatomical preservation for complex
and diverse LAA morphologies, currently neglected, may be more useful for shape
categorisation via clustering analyses.

KEYWORDS

statistical shape analysis, hierarchical clustering, left atrial appendage (LAA), atrial
fibrillation, principal component analysis -PCA, clustering performance evaluation,
segmentation (image processing)

1 Introduction

Shape is mathematically defined as “all the geometrical
information that remains when location, scale and rotational
effects are filtered out from an object” (Kendall, 1977). Shape
analysis refers to a wide variety of mathematical/computational
methods that may be used to identify the geometrical similarities
and differences within a cohort of shapes. In recent years, there has
been an adoption of statistical shape analysis (SSA) applications to
human organs and vessels; this type of analysis is considered to be a
step up from clinical morphometry due to greater objectivity and/or
the identification and quantification of subtle geometrical
information (Goparaju et al., 2022; Cerrolaza et al., 2019). Of the
many such studied anatomies, the left atrial appendage (LAA), a
natural closed-ended outgrowth of the left atrium (Figure 1A),
stands out for its morphological complexity (in terms of both
macro-shape and anatomical intricacy) and high diversity among
different subjects.

The LAA is considered the origin of up to 91% of all left atrial
thrombi during atrial fibrillation (AF) (Blackshear and Odell, 1996),
the most common cardiac arrhythmia, affecting 59 million people
worldwide and with increasing prevalence in older patients (about

20%–33% of risk above 45 years of age) (Linz et al., 2024). LAA
shape category for thrombosis risk assessment is typically
determined through clinical classification systems. The most used
classification system defines 4 LAA types–chicken wing, windsock,
cauliflower and cactus (Wang et al., 2010; Korhonen et al., 2015) (in
debatable order of lower to greater thrombosis risk (Musotto et al.,
2022; Bosi et al., 2018)) – that may be determined through
morphometric measurements of LAA length, bending angle and
number of lobes. However, this categorisation is commonly subject
to clinical disagreement, with a study revealing consensus among
three expert clinicians to be only reached in 28.9% of cases (Wu
et al., 2019). Instead, as labelled in Figure 1B, more recent clinical
(Yaghi et al., 2020) and SSA (Juhl et al., 2024; Ahmad et al., 2024)
studies suggest that LAA categorisation may be primarily
approached as chicken wing-like (characterized by high length
and bending angle), and non-chicken wing-like.

Conventional LAA anatomical nomenclature (Barbero and Ho,
2017) is also displayed in Figure 1B for these two shapes: divided into
ostium, neck, primary and secondary lobes, and trabeculae. The
ostium refers to the entry-point for blood flow, dividing the left
atrium from the LAA. The neck refers to the main body volume
above the ostium, which connects to both the primary lobe and tip,

FIGURE 1
(A) Location of the LAA on the left atria, with blood clot representation. (B) Visual display of two selected LAA cases, with anatomical nomenclature of
ostium, neck, primary and secondary lobes and trabeculae. Note how these example LAA anatomies differ considerably in both shape and detail, which
does not include the full breadth of LAA morphological variation.
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as well as secondary lobes along the LAA length. Trabeculae,
appearing as holes that pass fully through the LAA blood pool,
are devoid of blood flow due to pectinate muscle fibres connecting
opposing walls of the appendage chamber. As seen in Figure 1B,
LAA anatomies may differ considerably in both their macro-shape
and intricate anatomical detail, i.e., trabeculae.

The inclusion of intricate anatomical details, such as LAA
trabeculae, may further improve thrombosis risk assessment of
LAA shape. In a normally functioning human heart, blood passes
through the complex anatomy of the LAA in atrial diastole and
washes out thoroughly during atrial systole. In AF conditions, the
presence of these fine LAA morphological features has a much
greater impact on the fluid mechanics–with greater thrombosis
risk around trabeculae and towards the tips of lobes (Musotto
et al., 2022). Furthermore, a recent computational study of LAA
morphological parameters (Martorana et al.) suggests that the
quantification of trabeculae may also be useful for shape analysis.

To better evaluate LAA shape than current clinical classification
systems, studies have suggested various approaches towards in-
depth LAA morphological understandings. Multivariate
morphometric LAA shape analyses, to which haemodynamic
measurements may also be combined (Pons et al., 2022), are
useful to represent thrombosis risk with respect to simple shape
measurements. More in-depth approaches, i.e., LAA SSA, have the
additional advantage of preserving LAA anatomical variation in 3D
mesh formats and outputting novel LAA categorical shapes
(Goparaju et al., 2022; Juhl et al., 2024; Ahmad et al., 2024). SSA
is based on the geometric correspondence of entire shapes (Kendall,
1977), where similarly shaped objects have greater correspondence
(and vice versa), that is defined by the particular SSA
implementation. LAA SSA representation for categorisation has
been defined both explicitly with point correspondence (Goparaju
et al., 2022; Juhl et al., 2024) and with implicit techniques (Goparaju
et al., 2022; Ahmad et al., 2024). Building upon these SSA
frameworks, such studies may then propose a computational
categorisation of their LAA shape representations. This
categorisation may be defined by hard (Ahmad et al., 2024;
Goparaju et al., 2018) and soft (Juhl et al., 2024; Slipsager et al.,
2019) clustering approaches, as well as non-clustering
dimensionality reduction (Goparaju et al., 2022).

Despite multiple advances in LAA SSA (Goparaju et al., 2022;
Juhl et al., 2024; Ahmad et al., 2024; Goparaju et al., 2018; Slipsager
et al., 2019; Bhalodia et al., 2010; Bieging et al., 2021; Adams et al.,
2023; Adams et al., 2022; Cates et al., 2015), no study has yet
investigated the impact of intricate LAA morphological features
such as trabeculae, surface roughness and tertiary lobe structure on
LAA shape category definition. As key morphological components
for the assessment of thrombosis risk, this study proposes that these
features may also provide morphological information suitable for
LAA shape categorisation (focussing on LAA SSA for clustering
analysis). Therefore, this study compares LAA shape categorisation
determined via hard clustering of LAA SSA models from fully
trabeculated versus simplified datasets, suggesting that intricate
anatomical detail (that includes trabeculations) provides
additional analytical value for clustering LAA shape. This study
does not aim to develop a new LAA classification scheme, but rather
focus on the importance of preserving these anatomical details for
clustering purposes.

2 Materials and methods

2.1 Image and mesh processing

85 clinical computerised tomography (CT) scans were used
with informed consent by University College London Hospital
(UCLH), consisting of non-AF patients examined for moderate
coronary disease. The average participant age was 61.5 years, with
48 of the 85 of male sex. As this dataset is composed of control
cases, not associated with thromboembolic risk, this study focuses
on anatomical detail. Images are 512 × 512 pixels, with a pixel
spacing of 0.488 mm × 0.488 mm, and a slice thickness of
0.625 mm acquired with the GE Discovery STE scanner. The
manual segmentation protocol of full left atria was adapted
from previous studies (Bosi et al., 2018; Capelli et al., 2012) to
include measurements of contrast-to-noise ratio (CNR) and
signal-to-noise ratio (SNR), following clinically recommended
protocols (Marques et al., 2018), to ensure image (and hence
later LAA shape) viability (Figure 2A). To summarise this
process briefly, following calculation of CNR and SNR,
85 segmentation masks were generated in Mimics 24.0
(Materialise, Belgium) from the dye contrast threshold. These
masks were manually processed by a segmentation expert to select
only left atrial structures, including the LAA, pulmonary vein trunks
and a mitral plane. After segmentation, each of the 85 left atria was
evaluated by an expert cardiac anatomist to focus on chickenwing and
non-chicken wing labels only. 21 LAAs were categorised as chicken
wing and the remaining 64 as non-chicken wing.

Then, the full left atria, as surface models, were meshed using
triangular elements of 0.5 mm edge length for subsequent LAA
definition. To keep the process as objective as possible and preserve
all anatomical details, the following approaches were taken. To
ensure an objective definition of LAA ostial planes
(conventionally defined through subjective manual assessment
(Hołda et al., 2017)), a fully automatic LAA detection algorithm
(Martorana et al.) was applied to all 85 segmented anatomies
(Figure 2B). Briefly, this LAA detection method is based of
distance analysis of computationally skeletonised left atria to
automatically identify the LAA ostial plane, thus allowing LAA
detection (Martorana et al.). To ensure normalisation across all
detected LAAs, each mesh was then scaled to the same arbitrary
volume (6,000 mm3, close to the average mesh volume). Global
registration of the detected LAAs was performed via the Super4PCS
algorithm (Mellado et al., 2014) to a single case, followed by local
iterative closest point (ICP) (Rusinkiewicz and Levoy, 2001) and
multiview registration (Pulli, 1999) across the full dataset
(Figure 2C). Local ICP and multiview registration were repeated
until all possible pairs fell within alignment distance. For
2000 sample points describing each anatomy chosen at each ICP
iteration, the chosen minimal starting distance was 10 mm, reduced
iteratively so that 80% of the samples would lie at a distance lower
than 0.5 mm. Up to this point, no LAA structural definition was lost
(i.e., shapes are fully inclusive of objectively defined LAA ostia, full
surface structure, bending and anatomical lobes and trabeculae),
ensuring that LAA shapes match ‘all the geometrical information
that remains when location, scale and rotational effects are filtered
out from an object, as per Kendall’s definition of shape
(Kendall, 1977).
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FIGURE 2
(A) LAA mesh acquisition and processing prior to SSA and clustering. The upper far left shows an example slice of the CT image stack to achieve the
lower left atrial segmentation. (B) The LAA position determined through a fully automatic detection algorithm (Martorana et al.). (C) Two examples of LAA
point clouds before and after alignment through Super4PCS registration, followed by ICP & multiview registration of all possible pairs.

FIGURE 3
The simplified meshes (left to right) for two examples of LAA chicken wing and non-chicken wing morphologies from original trabeculated
reconstruction, until full sample reduction. Note the visual loss in LAA trabeculae by 4-times sample reduction, and visual lobar definition loss by 8-times
sample reduction. The data flow for the subsequent SSA and clustering methodology is also displayed in the bottom half of the figure–with SSA of all five
datasets to determine SSA performance with greater sample reduction, followed by clustering comparison between the trabeculated dataset and
one simplified dataset (4-times sample reduction).
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2.2 Simplified dataset generation

Based on the surface mesh generated for the 85 LAAs,
simplified datasets of the registered LAA meshes were
generated in MeshLab (Cignoni et al., 2008). Poisson surface
reconstruction creates watertight surfaces from point sets with
oriented surface normals, with set reconstruction depths
corresponding to effective voxel resolutions (Kazhdan and
Hoppe, 2013). To simplify the intricate meshes, a reduction
factor of 2-times, 4-times, 8-times and 16-times was first
applied to the point sets of LAA meshes in the original
trabeculated dataset, with preservation of the original surface
normals. To sequentially reduce intricate features such as
trabeculae for surface reconstruction, the minimum sampling
density was set as the reduction factor for each simplified
dataset. To ensure less reconstruction bias due to the reduced
number of points, the surface reconstruction depth d (which
corresponds to solving on a voxel grid whose resolution is no
larger than (2d)3 (Kazhdan and Hoppe, 2013)) was specified for
each simplification as equal to 8, 7, 6 and 5. The simplified
variations of the intricate dataset are shown in Figure 3: LAA
surface reconstruction with 4-times reduction results in fully
removed trabeculae; further reductions may lead to greater loss
in lobar definition.

2.3 Statistical shape analysis

LAA SSA was applied with the explicit method in
ShapeWorks software, the most commonly studied “off-the-
shelf” software for LAA shape analysis (Goparaju et al., 2022;
Goparaju et al., 2018; Bhalodia et al., 2010; Bieging et al., 2021;
Adams et al., 2023; Adams et al., 2022). All analyses were run on

an AMD Ryzen 9 7950X3D 16-Core Processor, 4201 Mhz,
16 Core(s), 32 Logical Processor(s). The workflow for the SSA
is laid out in Figure 4 and described below. The SSA model was
run with 1,024 particles in multiscale from 128 (so that the
initialisation and optimisation of particle position is rerun for
each particle split), and principal component analysis (PCA) of
the final particle correspondences was computed. Parameter
selection (featuring a low initial weighting of particle position
with a very high iteration number per particle split, and a high
final optimised weighting (Cates et al., 2017)) was iteratively
adjusted to balance SSA model evaluation metrics of
compactness, generalisation and specificity (Davies, 2002) as
implemented by ShapeWorks (Shape Model Evaluation).
Briefly, compactness score C(nm), the degree to which a
model has captured the morphological variation within a
dataset, is defined as the sum of the eigenvalues λi up to the
selected number of PC modes nm, summarised as:
C(nm) � ∑nm

i�1λi. Generalisation score Ĝ(nm), a measure of a
SSA model’s ability to represent unseen shapes from a given
dataset, may be quantified with the approximation error
(Euclidean distance, in mm) between any held-out shape
instance xj and its corresponding SSA model reconstruction

~xj, summarised as Ĝ(nm) � 1
ns
∑ns

j�1‖xj − ~xj‖, where ns is the

number of samples. Specificity score Ŝ(nm), a measure of the
plausibility of SSA model-generated shapes, may be computed as
the approximation error (Euclidean distance, in mm) between
any randomly sampled shape yA and its nearest training sample

xi, summarised as Ŝ(nm)^ 1
M∑M

A�1 min
i

‖yA − xi‖ where M is the

number of random samples taken. Final parameters were chosen
to increase compactness i.e., the morphological variation
captured by SSA, as desirable for clustering, despite lowered
specificity and generalisation.

FIGURE 4
SSA workflow in ShapeWorks. (A) Refers to the input dataset and applied SSA parameters. (B) Refers to the SSA process, which is multiscale in the
initialisation and optimisation of particle placements, with increasing particles’ number (C) Refers to the outputs of the SSA (i.e., the PCA component
scores after particle optimisation, the average shape and its variations) and the model performance evaluation metrics.
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2.4 Hierarchical clustering

For clarity, clustering analyses are only presented between
the original trabeculated LAA surface versus the 4-times
reduced dataset. 4-times reduction was chosen as it presents
a clear reduction of fine anatomical detail loss, i.e., loss of
trabeculae, but largely preserves secondary lobe structure.
These two datasets are referred to as the “trabeculated
dataset” versus the “simplified dataset” in the results section.
Agglomerative hierarchical clustering was applied with
MATLAB functions. Complete linkage and correlation
distance were chosen; the former to ensure more compact
clustering (Ezugwu et al., 2022) and the latter so that anti-
correlated objects (i.e., chicken wing-like and non-chicken
wing-like shapes) are as far apart as possible (van Dongen
and Enright, 2012). The number of PCs accounting for 85%
of the total variance (Cangelosi and Goriely, 2007) in the
trabeculated dataset was retained for subsequent hierarchical
clustering analysis, and the optimal number of clusters was
calculated with the silhouette metric (Rousseeuw, 1987), to
determine the cut-off value on the dendrograms. Clustering

performance evaluation was performed with respect to the
previously defined clinical labels, using the adjusted mutual
information (AMI) score (Vinh et al., 2010) as the
assessment metric. AMI is a measure of similarity (mutual
information (MI)) between two labels of the same data,
adjusted for chance. For two clusterings U and V:

AMI U,V( ) � MI U,V( ) − E MI U,V( )( )
average H U( ), H V( )( ) − E MI U,V( )( )

3 Results

3.1 Statistical shape analysis

SSA took between 27.8 and 31.3 min to run for each dataset,
regardless of anatomical intricacy. The results are presented
in terms of visual geometric correspondence (Figure 5) and
model evaluation score differences between the trabeculated
and simplified datasets with increasing number of
PCs (Figure 6).

FIGURE 5
Shape variation captured by the first and second PC. In (A) the average shape with increasing reduction factor is presented. In (B) moving between
2 standard deviations on PC1 away from the average (±2σ) corresponds to chicken wing-like and non-chicken wing-like shape; with greater cumulative
variance captured with increasing reduction with simpler shapes. In (C) moving between 2 standard deviations on PC2 away from the average (±2σ)
corresponds more to secondary lobe size. Highlighted in blue are the two datasets (fully trabeculated and 4-times reduction) used for clustering
comparisons.
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3.1.1 Geometric correspondence & PCA
For both trabeculated and simplified datasets, most

morphological variation (captured by PC1) is between chicken
wing-like and non-chicken wing-like shape changes, which
matches the observations of previous studies. As presented in
Figure 5, moving along the PC1 axis corresponds with shapes
more/less similar to the chicken-wing morphology. Moving down
PC2 corresponds with smaller/larger secondary lobes. As may be
expected, the anatomical detail present in SSA output shapes follows
the degree of input shape simplification, with the increase of
reduction factor corresponding to a loss in trabecular, surface
and lobar definition matching the input datasets. For example,
secondary lobes and trabeculae are no longer present by 8-times
and 16-times reduction; and even primary lobe morphology
is affected.

3.1.2 Shape model evaluation
As may be expected, utilising simpler input shapes translates to

easier shape model evaluation. Increasing the reduction factor
improves the associated compactness, specificity and
generalisation in SSA, as seen in Figure 6. Greater compactness is
preserved at lower PCs with increasing reduction factor, which also
means that compactness score plateaus earlier. This implies that
with simplified datasets, more morphological variation is captured

for less PCs. The difference between compactness scores with
reduction factor is non-linear; and increasing reduction factor
has less effect following 4-times reduction. Specificity error
decreases with increasing shape reduction and increases with the
number of PCs, implying that more plausible shapes corresponding
to each dataset may be generated with more simplified shapes. There
is a roughly linear decrease in specificity with increasing reduction
factor. Generalisation error (decreasing with the number of PCs)
similarly decreases with increasing shape reduction and plateaus
earlier, implying that the unseen shapes are better predicted with
more simplified datasets. There is a slight non-linear decrease with
increasing reduction factor, where greater reduction corresponds
with less generalisation decrease.

3.2 Hierarchical clusters

Hierarchical clustering results are presented between the
original “trabeculated” dataset, and the representative
“simplified” dataset of 4-times reduction, with dendrogram
results in Figure 7 and visualisation of the data distribution in
Figure 8. 10 PCs were found to account for 86.1% of the
cumulative variance for the trabeculated dataset, with the
optimal number of clusters determined as 2 from a silhouette

FIGURE 6
Difference in SSA model evaluation scores compared to the trabeculated dataset with increasing number of PCs. As shown, increasing shape
simplification (with increasing reduction factor) increases the amount of morphological variance captured at lower PCs (compactness), decreases the
Euclidean distance between a sample shape and its closest training sample (specificity) and improves unseen shape representation (generalisation).
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score of 0.7948. Following the increase in shape model
compactness with reduction factor, 10 PCs instead accounted
for 92.6% of the cumulative variance for the simplified dataset,
with the optimal number of clusters again determined as 2 from a
silhouette score of 0.7458. For both datasets, dendrograms with
the 2 optimal clusters are presented in Figure 7 and are
highlighted on the trabeculated PCA distribution (showing
PC1 against PC2) in Figure 8. Figure 8 also records the AMI
score of each dataset to the clinical labels.

3.2.1 Dendrogram analysis
Comparing hierarchical clustering of fully trabeculated versus

simplified morphologies, the dendrogram for the trabeculated
dataset is closer to the current gold standard, i.e., human expert
assessment, with 23 LAA morphologies being categorised into a
chicken wing-like cluster (with four differences to clinical labels).
While computed for 85% cumulative variance, the same clustering is
achieved with 90% and 95% cumulative variance. In contrast,
48 LAA morphologies were categorised into the chicken wing-

FIGURE 7
Dendrograms after hierarchical clustering of the trabeculated and simplified datasets. The dendrogram of trabeculated LAAmorphologies indicated
23 as chicken wing-like, while the dendrogram of simplified morphology indicated 48. If categorised by a human expert, 21 LAAs are defined as chicken
wing, suggesting that the trabeculated dendrogram is closer to human assessment.

FIGURE 8
The hierarchical cluster assignments are displayed on the trabeculated PCA distribution (PC1 on the horizontal axis against PC2 on the vertical axis),
with AMI according to earlier clinical labels. The graph of the trabeculated dataset shows clear cluster separation between chicken wing (PC1 in the
negative direction) and non-chicken wing cases, while the simplified dataset displays high overlap.
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like cluster for the simplified dataset dendrogram (with
29 differences from clinical labels).

3.2.2 Cluster performance evaluation and data
distribution

To quantitatively evaluate clustering performance, the AMI
score was calculated for both the trabeculated and simplified
clusters. With an AMI of 0.6715, the clustering of the
trabeculated SSA model PCs is much closer to human assessment
than the clustering of simplified SSA model PCs with a score of
0.1214. To visually present the clustering performance, the obtained
hierarchical clusters are highlighted on their original PCA
distributions for two axes (PC1 against PC2) in Figure 8. As
shown, there is clearer cluster separation for the trabeculated
dataset, where the chicken wing-like cluster is more dispersed
than the non-chicken wing-like cluster. In contrast, the simplified
dataset presents a strong overlap relative to human assessment. This
overlap is mainly in the positive PC1 and PC2 directions,
corresponding to non-chicken wing-like shapes and to smaller
secondary lobes respectively, as presented in Figure 5C.

4 Discussion

4.1 Principal findings

With selected parameters for SSA and clustering, results suggest
that LAA shape categorisation via hierarchical clustering performs
better with preservation of full anatomical details (the “trabeculated
dataset”) than with trabecular detail loss (called the “simplified
dataset”). While greater LAA anatomical simplification directly
corresponds with better SSA model evaluation scores for
compactness, specificity and generalisation (Figure 6), it was
hypothesised that the loss of trabecular detail affects the
preservation of morphological variation pertinent for LAA shape
categorisation (Figures 3 and 5).

Between the trabeculated and simplified datasets, the
improvement to SSA evaluation with reduction at the 10 PCs
used for subsequent clustering is as follows:
+0.065 compactness, −0.47 mm specificity and −0.86 mm
generalisation (Figure 6). This is expected as the shape
simplification process has led to a decrease in anatomical
trabeculae and lobar definition that would have accounted for
greater morphological difference between shapes. This implies
that increasing anatomical simplification increases both the SSA
model’s ability to plausibly generate LAA shapes within simplified
datasets and how well the model may generally represent unseen
LAA shapes. However, as greater reduction by 8-times and 16-times
visually affects even LAA lobar structure (Figure 3), it is thought that
the greater anatomical simplification affects the geometric
correspondence between shapes (Figure 5). Therefore, reduction
by 4-times was selected as the simplified dataset for subsequent
clustering comparisons. For visual comparison between PC1 and
PC2 for these two datasets (Figure 5), PC1 captures chicken wing-
like and non-chicken wing-like bending angle. PC2 instead describes
LAA shapes with smaller or larger secondary lobes.

In contrast, increasing LAA reduction in SSA lowered clustering
performance. The simplified model clusters, with a low AMI score of

0.1214, are mainly overlapping in the +PC1 and +PC2 quadrant
(Figure 8), with 29 shapes being assigned differently to human
assessment. This suggests that while + PC2 is associated with
smaller secondary lobes, the inclusion of secondary lobe detail, e.g.,
trabeculae, better separates chicken wing-like shapes. On the
trabeculated model clusters of Figure 8, the higher AMI score
of 0.6715 corresponds with good cluster separation on the
trabeculated PCA distribution, with only four shapes assigned
differently to human assessment. This clustering is also more
stable, with the same clusters being achieved for 90% and 95%
cumulative variance. Therefore, these results may justify the
preservation of intricate anatomical details, particularly LAA
trabeculae, for shape categorisation with hierarchical clustering,
despite improvements to pure SSA evaluation scores. In terms of
computation time, SSA was less affected by the anatomical
differences between datasets rather than the parameters chosen,
taking between 27.8 and 31.3 min to run on the same AMD Ryzen
9 7950X3D 16-Core Processor, 4201 Mhz, 16 Core(s), 32 Logical
Processor(s).

4.2 Broader research context

4.2.1 Clinical LAA shape categorisation schemes
Despite its popularity, conventional LAA classification (into

four shape classes, chicken wing, cactus, cauliflower and
windsock) is highly subjective, with a clinical study suggesting
full shape category agreement between three observers was only
reached in 28.9% of 2,264 cases (Wu et al., 2019). Other studies
suggest the presence of 2–8 LAA classes depending on additional
study aims. Some studies with only 2 shape classes separate LAAs
into lower versus greater risk, based on the number of lobes (He
et al., 2020) or with/without chicken wing-like bending (Yaghi et al.,
2020). A clinical study suggests that LAA morphologies are instead
combinations of up to 8 qualitative lobe shapes, preferring visual
lobe classification instead of general shape categorisation (Beutler
et al., 2014). With special focus on quantitative anatomical
measurements not just of the LAA but of adjacent structures and
the body, LAA clinical classification may even extend to 7 shape
categories with 6 subtypes (Li et al., 2015). These studies highlight
the sheer diversity of LAA shape complexity even without
consideration of finer anatomical details, and the need for an
objective shape categorisation from clustering analysis of SSA
models, as employed here. As our study currently focusses on
chicken wing-like and non-chicken wing-like shape
categorisation, this is more similar to the simplified clinical
categorisation with/without chicken wing-like bending (Yaghi
et al., 2020), but without needing human intervention.

4.2.2 Applications of anatomical detail in
LAA meshes

While clinical categorisation schemes are useful for simplified
understandings of the connection between LAA morphology and
thrombosis risk, the subjectivity of such classifications (Wu et al.,
2019) may subsequently lead to inaccurate risk stratification.
Furthermore, clinical categorisation typically does not consider
the impact of intricate anatomical details, which may be difficult
to measure manually.
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A more in-depth comprehension of the LAA shape-
haemodynamic relationship requires 3D LAA meshes, which
provide 3D anatomical variation that is useful for computational
modelling. While many studies do not consider intricate anatomical
details, studies that do consider such impact (Musotto et al., 2022)
suggest that trabeculae play an important role in LAA
haemodynamics, by reducing LAA blood washout.

4.2.3 Other LAA SSA studies
Previous LAA SSA studies aim to objectively define LAA shape

categories beyond current clinical capabilities, although no study to
date is built from LAA morphology with full anatomical detail
preservation. Explicit LAA SSA is typically based on the point
distribution model (PDM) (Cootes et al., 1995), where
correspondence between shapes is defined by the automatic
placement of points across surfaces. The most studied
optimisation scheme for LAA explicit correspondence is the
entropy scheme used in ShapeWorks (Cates et al., 2017) (applied
on both the LAA only (Goparaju et al., 2022; Goparaju et al., 2018)
and for the conjoint left atria with LAA (Bieging et al., 2021; Adams
et al., 2023; Adams et al., 2022; Cates et al., 2015)), where increasing
particle correspondence may be iteratively initialised and optimised
with regularisation parameters. Alternatively, explicit LAA SSA
studies may determine initial point correspondence through
Markov Random Field regularisation (Juhl et al., 2024; Slipsager
et al., 2019) of the correspondence vector fields between source and
target shapes (Paulsen et al., 2003). LAA SSA may also be applied
implicitly on both the LAA only (Goparaju et al., 2022; Ahmad et al.,
2024; Goparaju et al., 2018) and for the conjoint left atria with LAA
(Corrado et al., 2020). Implicit approaches typically rely on the
optimisation of deformations in a Riemannian space to warp shapes
into others (Bône et al., 2018; Hartman et al., 2023). Established
frameworks, such as Deformetrica (Bône et al., 2018), have been
used (Goparaju et al., 2022; Goparaju et al., 2018), and recent works
have also experimented with dedicated frameworks (Hartman et al.,
2023) applied specifically to the LAA (Ahmad et al., 2024). However,
to our knowledge, such methods do not allow the high complexity of
the LAA surfaces to be considered. Of all the studies mentioned, the
most recent advances in LAA SSA (Juhl et al., 2024; Ahmad et al.,
2024) have focused mainly on chicken wing and non-chicken wing
shape classification, proposing that more in-depth shape
categorisation may fit within this overarching division.

Lower LAA morphological complexity may be a consequence of
lower image input resolution (Cates et al., 2015), or that images have
been intentionally “downsampled” to reduce noise (Juhl et al., 2024)
e.g., for deep learning segmentation (Juhl et al., 2024; Ahmad et al.,
2024). As discussed earlier, inclusion of fine LAA morphological
detail not only improves thrombosis risk assessment of AF patients
(Musotto et al., 2022) (the primary reason for LAA shape analysis)
but may also be discriminatory for shape categorisation (Martorana
et al.). Therefore, previous SSA studies may be limited in clinical
applicability.

4.2.4 Computational categorisation methods in
LAA SSA

Current shape categorisation methods in LAA SSA may utilise
hard and soft clustering approaches, as well as non-clustering
dimensionality reduction. Hard clustering on LAA SSA has been

approached with k-means (Goparaju et al., 2018) and hierarchical
clustering with additional multidimensional scaling (Ahmad et al.,
2024), in comparison to our study focussing on hierarchical
clustering only. A hard clustering approach may be more useful
for the analysis discussed in this study, where categorisation between
chicken wings and non-chicken wings should present less
overlap. Soft clustering of LAA SSA, where overlap may be
considered, has been approached with Gaussian Mixture
Modelling (Juhl et al., 2024; Slipsager et al., 2019). Alternatively,
another study suggests the use of t-stochastic Nearest Neighbour
Embedding for their LAA SSA (Goparaju et al., 2022), which may be
useful to display trends not visible with clustering methodologies.

To our knowledge, no other LAA SSA studies have presented the
numerical efficacy of their shape categorisation with respect to
human evaluation, so this is difficult to compare to other studies.
In this work, AMI was chosen to evaluate cluster performance over
rand-index scoring as unequal cluster sizes were expected (van der
Hoef and Warrens, 2019), with only 21 of the 85 segmented LAAs
having been expertly classified as chicken wing morphology earlier.
Furthermore, as an adjustment of the regular mutual information
metric, chance clustering assignments are accounted for.

4.3 Strengths and limitations of study

The applicability of the proposed LAA SSAmodel and clustering
is limited by the analysed number of anatomies in the original
dataset. This is particularly important for highly diverse anatomies
such as the LAA, where it is highly likely for morphologies to
demonstrate categorical variance beyond subjective clinical
classification, even without considering fine anatomical details. In
comparison with other LAA works, the number of LAAs utilised in
our study (85 in total) lies between other studies, which can vary
from 20 (Ahmad et al., 2024) to 130 (Goparaju et al., 2022).
However, no other SSA study to our knowledge has preserved
our level of LAA anatomical detail, which is the basis for this study.

Some limitations are related to operator-dependent steps in our
workflow. Firstly, the manual left atrial segmentation (prior to fully
automatic LAA detection) requires user definition of contrast
threshold (aided by the additional mathematical CNR
measurement protocol) and human effort and time to ensure
segmentation is not affected by unwanted imaging artefacts. The
second operator-dependent step is the clinical classification used to
obtain the clinical labels to which clustering is compared in AMI
scoring; clinical subjectivity was minimised in this study by focusing
clinical labels to chicken wing versus non-chicken which is known to
present the greatest morphological difference of bending angle
(Yaghi et al., 2020). Two of the aforementioned LAA SSA studies
have aimed to tackle the segmentation problem via deep learning
(Juhl et al., 2024; Ahmad et al., 2024); however, as already stated,
these works do not fully capture the same level of anatomical detail,
presenting very smooth meshes, i.e., without trabeculae.
Furthermore, the fully automatic LAA detection of the ostial
plane utilised in our study may be further advantageous over
both these studies that either cut the shape where it is narrowest
(Juhl et al., 2024) (which describes an anatomical region generally
different from the ostium definition) or perform manual clipping of
left atrial meshes (Ahmad et al., 2024).

Frontiers in Network Physiology frontiersin.org10

Lee et al. 10.3389/fnetp.2024.1467180

https://www.frontiersin.org/journals/network-physiology
https://www.frontiersin.org
https://doi.org/10.3389/fnetp.2024.1467180


Finally, it should be noted that while a pixel spacing of 0.488 mm
from CT is high for conventional clinical scans, even higher
resolutions exist for alternative ex-vivo imaging-based studies e.g.,
microCT, synchrotron-based or photon-counting CT imaging. This
study indicates that clustering of anatomies acquired with smaller
pixel spacing performs significantly better than lower resolutions,
which suggests that even higher resolution scan data could improve
the results further. To increase the reliability and statistical
significance of this work, it would be beneficial to incorporate
more LAA morphologies in the SSA performed; however, it was
not possible to include datasets acquired from publicly accessible
databases (Atria Segmentation Challenge 2018; Karim et al., 2018) as
they either did not match the imaging modality and/or the required
resolution.

5 Conclusion and future works

SSA studies for clustering analysis of highly diverse anatomies,
particularly the human LAA, may suffer from analytical disparities
and therefore clinical relevance due tomajor differences in anatomical
detail preservation. Following robust image and mesh processing, this
study applies SSA and clustering analysis to 5 LAA datasets (each
composed of 85 shapes), sequentially reduced in anatomical detail.
While evaluation scores of SSA metrics of compactness, specificity
and generalisation suggest lower resolutions may improve LAA shape
representation of such simplified anatomies, it should also be
recognised this better representation may not correlate with
improved LAA shape categorisation. The cluster performance
scores suggests that clustering for LAA shape categorisation
benefits from greater preservation of anatomical detail (beyond the
level conventionally preserved in LAA SSA). Future work could
improve upon binary categorisation (i.e., chicken wing-like vs.
non-chicken wing-like) by adjusting the dendrogram cut-off thus
leading to smaller morphological sub-groups. In preserving
trabeculae, this study advances towards connecting SSA anatomical
detail to thrombosis risk categorisation.
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