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Abstract
A ring � has stably free cancellation when every stably free �-module is free. Let
G = Cp � Cq be a finite metacyclic group where p is an odd prime and q is
a positive integral divisor of p − 1. We show that the group ring R[G] has stably
free cancellation when R = Z[t1, t−1

1 , . . . tm, t−1
m , x1, . . . xn] is a ring of mixed

polynomials and Laurent polynomials over the integers. As a consequence, whenC (m)∞
is the free abelian group of rank m then the integral group ring Z[G(p, q) × C (m)∞ ]
has stably free cancellation.

Keywords Stably free module · Locally free module · Milnor square

Mathematics Subject Classification 13C05 · 13C10 · 19A13

A module S over a ring � is stably free when S ⊕ �m ∼= �n for integers m ≤ n. By
saying a stably free module is nontrivial we mean it is not free. The ring � has stably
free cancellation when any stably free module is free; that is:

SFC: S ⊕ �m ∼= �n �⇒ S ∼= �n−m .
In this paper we study the question of stably free cancellation for group algebras

R[G] where R is a ring of generalized integral polynomials

R = Z[t1, t−1
1 , . . . tm, t−1

m , x1, . . . xn] (∗)

and G = G(p, q) is a finite metacyclic group of the form

G(p, q) = Cp � Cq (∗∗)

where p is an odd prime, q is a positive integral divisor of p − 1 and Cq acts via
the canonical imbedding Cq ↪→ Aut(Cp). It is known that the integral group ring
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Z[G(p, q)] has stably free cancellation; this is proved explicitly in (8.4) below. We
extend this to group rings with more general coefficients by proving:

Theorem I R[G(p, q)] has stably free cancellation when R is a ring of generalized
integral polynomials.

When n = 0 we may identify R[G(p, q)] with the group ring Z[G(p, q) ×C (m)∞ ]
where C (m)∞ = C∞ × · · · × C∞

︸ ︷︷ ︸

m

is the free abelian group of rank m. Hence we

have:

Corollary II Z[G(p, q) × C (m)∞ ] has stably free cancellation for all m ≥ 1.

In Evans (2017) claimed a proof of Corollary II for all m ≥ 1 when q is prime.
Unfortunately Evans’ original argument was fallacious. In a retraction and partial
correction (Evans 2018) the cancellation property, for q prime, was established for
stably free modules of rank ≥ 3. However the case of stably free modules of rank 2
remained problematic. In this paper we give, ab initio, a complete proof, when q is an
arbitrary integral divisor of p − 1, of the more general Theorem I.

The problem of stably free cancellation arises naturally within the context of non-
simply connected topology. If G is a finitely presented group the existence of stably
free modules which are not free greatly complicates the homotopy theory of spaces
with fundamental group G. This becomes apparent when, for example, one attempts
to solve the D(2) problem of C.T.C. Wall (Johnson 2003a, b, 2021; Wall 1965) for
the fundamental group G. When G is finite the question of whether the integral group
ring Z[G] admits nontrivial stably free modules is determined almost entirely by the
structure of the real group ring R[G]. With the convention that Mn(R) = 0 when
n = 0, the Wedderburn-Maschke structure theorem shows that R[G] decomposes as
a product of matrix algebras

R[G] ∼=
a

∏

i=1

Mdi (R) ×
b

∏

j=1

Mej (C) ×
c

∏

k=1

M fk (H)

where H is the division ring of Hamiltonian quaternions. By adapting the cancellation
theorem of Jacobinski (1968), Swan showed in Swan (1983) that Z[G] has stably free
cancellation provided that, in the quaternionic matrix factors, no fk takes the value 1.
This is the celebrated ‘Eichler condition’ (Eichler 1938; Swan 1970). The extent to
which the converse holds is studied in the paper of Nicholson (2021).

For infinite groups the situation is much less well understood. In Bass (1964) Bass
showed that Z[F] has stably free cancellation when F is a nonabelian free group.
As an addendum to the Quillen-Suslin solution (Lam 2006) of the Serre Conjecture,
Swan showed in Swan (1978) that Z[C (m)∞ ] has stably free cancellation where C (m)∞
is the free abelian group of rank m. However, these examples apart, it would seem
that the existence of nontrivial stably free modules is a relatively common occurence
(Artamonov 1981; Berridge and Dunwoody 1979). The simplest examples known to
the author are those of O’Shea (O’ Shea 2012), see also (Johnson 2011, p. 180) who
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showed that if F is a nonabelian free group and � is a group of order pn , where p is
prime and n ≥ 2, then Z[F × �] has infinitely many isomorphically distinct stably
free modules.

By contrast we show that the integral group ringsZ[C (m) ×G(p, q)] do have stably
free cancellation when G(p, q) is the semidirect product Cp � Cq where p is an odd
prime,q is a positive integal divisor of p−1 andwhereCq acts onCp via the imbedding
Cq ↪→ Cp−1 ∼= Aut(Cp). This is equivalent to studying the stably free cancellation
problem for the group rings R[G(p, q)] where R = Z[t1, t−1

1 , . . . , tm, t−1
m ] is the

ring of integral Laurent polynomials in m variables t1, . . . , tm .
The fact that Z[G(p, q)] has stably free cancellation is a direct consequence of

the theorem of Swan-Jacobinski (Swan 1970). However this powerful theorem does
not extend to more general coefficient rings. As both R[G(p, q)] and Z[G(p, q)]
can be described by means of Milnor squares (Milnor 1971), we proceed instead by
comparing their defining squares using the induction techniques introduced byQuillen
and Suslin (2006) and enhanced by Swan (1978). An essential feature is the remarkable
theorem of Suslin (1977) which allows us to lift sufficiently many invertible elements
through the ring homomorphisms of the Milnor squares.

We point out that such comparisons fail in general. If Q(8) is the quaternion group
of order 8 then, as an exception to the Swan-Jacobinski criterion, Z[Q(8)] has stably
free cancellation. HoweverR[Q(8)] has infinitelymany isomorphically distinct stably
free modules (Johnson 2011, Chapter 12, p. 208).

Finally we point out that when q is even the injectivity of the operator homomor-
phism Cq → Aut(Cp) would seem to be an essential requirement. The group

�4p = 〈x, y | x p = 1, y4 = 1, yxy−1 = x p−1〉

which is known both as the binary dihedral group and the quaternion group of order
4p is a metacyclic group of the formCp �C4 in which the operator homomorphism is
not injective. When p ≥ 5 is primeZ[�4p] fails to have stably free cancellation (Swan
1983). In this case again, R[�4p] has infinitely many nontrivial stably free modules
(Kamali 2010).

We wish to thank the referee for some suggestions which have helped to clarify the
exposition.

1 Locally freemodules

All modules in this paper should be understood to be right modules. By a fibre square
we shall mean a commutative diagram of ring homomorphisms

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

�
π−−→ �−

↓π+ ↓ ϕ−

�+
ϕ+−→ �0 .

(F)
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in which� ∼= lim← (ϕ+, ϕ−). Such a fibre square satisfiesMilnor’s patching condition

when at least one ofϕ+,ϕ− is surjective.Under this conditionMilnor, inMilnor (1971),
classified the projective modules over � in terms of projective modules over �+, �−
as follows: let P+, P− be projective modules over �+, �− respectively and suppose

α : P+ ⊗�+ �0
�−→ P− ⊗�− �0

is an isomorphism over �0. Then there is a well defined projective �-module
denoted by P = (P+, P−;α), with the property that P ⊗� �σ

∼= Pσ for
σ ∈ {+,−}; moreover, up to isomorphism, every projectivemodule over� is obtained
in this way. As a special case we may take Pσ = �

(k)
σ Pσ ⊗�σ �0 = �

(k)
0 so

that Pσ ⊗�σ �0 = �
(k)
0 and α ∈ GLk(�0). In this case we write

L(α) = (�
(k)
+ ,�

(k)
− ;α).

L(α) is then said to be locally free of rank k with respect to F or simply F-locally
free of rank k . At the referee’s suggestion we stress that local freeness in the sense
used here should not be confused with the notion of local freeness at a prime p which
occurs frequently elsewhere in the literature; for example, in (Swan (1983)).We define

GLk(F) = GLk(�+)\GLk(�0)/GLk(�−).

When F is a Milnor square, Milnor’s classification theorem (Milnor 1971, pp.
20–24; see also Lemma A4 of (Swan (1983)), Appendix A) gives a bijection:

{F − locally free modules of rank k} �←→ GLk(F). (1.1)

If S is a stably free module of rank k over � then Sσ = S ⊗� �σ is stably free
over �σ . Hence if �σ has property SFC then Sσ

∼= �
(k)
σ . Thus we have:

Let S be a stably free module of rank k over �; if �+ and �− both have

property SFC then S is locally free with respect to F. (1.2)

2 The ringsÄ0 andÄ

Throughout this paper m and n will denote fixed non-negative integers such that
m + n > 0. For any ring R, we adopt the notation that R[t, t−1] denotes the ring of
Laurent polynomials;
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R[t, t−1] = R[t1, t−1
1 , . . . , tm, t−1

m ] (2.1)

R[x] will denote the ring of ordinary polynomials;

R[x] = R[x1, . . . , xn] (2.2)

and R[t, t−1, x] will denote the ring of mixed polynomials

R[t, t−1, x] = R[t, t−1] ⊗R R[x] = R[t1, t−1
1 , . . . tm, t−1

m , x1, . . . xn]. (2.3)

There is an augmentation homomorphism ε : R[t, t−1, x] → R determined by

ε(ti ) = 1 for 1 ≤ i ≤ m ; ε(x j ) = 0 for 1 ≤ j ≤ n

ε is left inverse to the inclusion i : R ↪→ R[t, t−1, x]. In addition we fix the
following:

p : an odd prime ;

Fp : the field with p elements;

ζp = exp( 2π ip );

q : a positive integer which divides p − 1;

d = (p − 1)/q.

Then Cq imbeds as a subgroup of the Galois group Gal(Q(ζp)/Q) and we denote
by

A = Z(ζp)
Cq

the fixed ring under the Galois action of Cq . Then

A ⊗Z R
∼=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

R × · · · × R
︸ ︷︷ ︸

d

if q is even;

C × · · · × C
︸ ︷︷ ︸

d/2

if q is odd. (2.4)

It is known (cf (Birch 1967) p. 87; (Hasse (1962)), p. 220) that p ramifies completely
in A. We denote by p the unique prime in A over p so that
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p = u pd for some unit u ∈ A∗ (2.5)

Let � : Z → Fp and ν : A → A/p = Fp be the canonical homomorphisms and
denote by �0 the pullback ring in the following fibre square

�0
π−−→ A

↓π+ ↓ ν

Z

�−→ Fp .

(L0)

Noting that �0 ⊗Z R
∼= R × A ⊗Z R then:

�0 ⊗Z R
∼=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

R × · · · × R
︸ ︷︷ ︸

d+1

if q is even;

R × C × · · · × C
︸ ︷︷ ︸

d/2

if q is odd. (2.6)

Thus �0 satisfies the Eichler condition so by the Swan-Jacobinski theorem (Swan
1970)

�0 has property SFC . (2.7)

If R is a commutative ring we denote its Krull dimension (Eisenbud 2004, p. 227)
by Kdim(R).

Proposition 2.8 Kdim(�0) = 1.

Proof For a direct product we have Kdim(R1×R2) = max{Kdim(R1),Kdim(R2)}.
As A is a Dedekind domain then Kdim(A) = 1. Consequently Kdim(Z× A) = 1.
As �0 is a subring of Z × A then Kdim(�0) ≤ 1. However, �0 has a subring
isomorphic to Z so that 1 ≤ Kdim(�0), whence the conclusion. �

We define � = �0[t, t−1, x]. Tensoring L0 with Z[t, t−1, x] gives the fibre
square

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

�
π−−→ A[t, t−1, x]

↓π+ ↓ ν

Z[t, t−1, x] �−→ Fp[t, t−1, x] .

(L)
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As � and ν are both surjective then L is a Milnor square.

3 Almost surjectivity for k ≥ 3

In general, for any commutative ring A, GLk(A) is a semidirect product

GLk(A) = SLk(A) � A
∗ (3.1)

where A
∗ is imbedded in GLk(A) via the diagonal matrices

u �→

⎛

⎜

⎜

⎜

⎝

u
1

. . .

1

⎞

⎟

⎟

⎟

⎠

and SLk(A) = {X ∈ GLk(A) | det(X) = 1}. A ring homomorphism ψ : B →
A induces homomorphisms ψ∗ : GLk(B) → GLk(A) for each k ≥ 2. We shall say
that ψ is almost surjective for k when SLk(A) ⊂ Im(ψ∗ : GLk(B) → GLk(A)).

Let ε(i, j) ∈ Mk(A) denote the basic matrix ε(i, j)r ,s = δi,rδ j,s . We denote
by Ek(A) (cf. (Suslin 1977)) the subgroup of GLk(A) generated by the elementary
transvections E(i, j; λ) = Ik + λε(i, j) where i �= j and λ ∈ A. Evidently we
have

Ek(A) ⊂ SLk(A). (3.2)

A theorem Suslin (1977) shows that:

For any field F, Ek(F[t, t−1, x]) = SLk(F[t, t−1, x]) when k ≥ 3. (3.3)

If ψ : B → A is a surjective ring homomorphism then the induced homomorphism
ψ : Ek(B) → Ek(A) is surjective for all k ≥ 2. As ν : A[t, t−1, x] → Fp[t, t−1, x]
is surjective and Fp is a field then, by (3.3):

ν : Ek(A[t, t−1, x]) → SLk(Fp[t, t−1, x]) is surjective for k ≥ 3. (3.4)

It now follows from (3.1) that:

ν : A[t, t−1, x] → Fp[t, t−1, x]is almost surjective for each k ≥ 3. (3.5)
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Let α ∈ SLk(Fp[t, t−1, x]) and consider the L-locally free module L(α) of rank
k obtained by glueing by α:

L(α)
π−−→ A[t, t−1, x](k)

↓π+ ↓ ν

Z[t, t−1, x](k) �−→ Fp[t, t−1, x](k).

(3.6)

By (3.5) α ∈ Im(ν∗ : GLk(A[t, t−1, x]) → GLk(Fp[t, t−1, x])) when k ≥ 3. It
now follows from Milnor’s classification (Milnor 1971) that:

If α ∈ SLk(Fp[t, t−1, x]) then L(α) ∼= �(k) for k ≥ 3. (3.7)

4 Almost surjectivity for k = 2

Now consider the case k = 2; if α ∈ SL2(Fp[t, t−1, x]) and Id ∈ GL1(Fp[t, t−1, x])
then α ⊕ Id ∈ SL3(Fp[t, t−1, x]) and L(α) ⊕ � ∼= L(α ⊕ Id); hence by (3.7):

L(α) ⊕ � ∼= �(3) if α ∈ SL2(Fp[t, t−1, x]) (4.1)

We improve on (4.1) as follows:

Theorem 4.2 If α ∈ SL2(Fp[t, t−1, x]) then L(α) ∼= �(2).

Proof L(α) is a projective module of rank 2 over � = �0[t, t−1, x]. By (2.8)
rk(L(α)) > Kdim(�0). Moreover, by (4.1), [L(α)] = 0 ∈ ˜K0(�). It now follows
from a theorem of Swan ((Swan 1978), Theorem 1.1) that L(α) is induced from �0;
that is, there exists a projective module Q over �0 such that L(α) ∼= i∗(Q) where
i : �0 ↪→ � is the canonical inclusion. Let ε : � → �0 be the ring homomorphism
uniquely specified by the assignments ε(ti ) = 1 and ε(x j ) = 0. Then ε◦i = Id�0 .
In particular, ε∗(�) = �0 and ε∗(L(α)) ∼= Q. Thus applying ε∗ to (4.1) we see that

Q ⊕ �0 ∼= �
(3)
0 .

It follows from (2.7) that Q ∼= �
(2)
0 and hence L(α) ∼= i∗(�(2)

0 ) = �(2). �

We arrive at the following:

Theorem 4.3 ν : A[t, t−1, x] → Fp[t, t−1, x] is almost surjective for k = 2.

Proof Let α ∈ SL2(Fp[t, t−1, x]). We claim that α ∈ Im(ν∗). Thus let L(α) be the
L-locally free �-module obtained by glueing via α
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L(α) −→ A[t, t−1, x])(2)

↓ ↓ ν

Z[t, t−1, x](2) �−→ Fp[t, t−1, x](2).

By (4.2), L(α) ∼= �(2). However, �(2) is the L-locally free module of rank 2 obtained
by glueing via I2 ∈ GL2(Fp[t, t−1, x]) thus:

L(I2) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

�(2) −→ A[t, t−1, x](2)

↓ ↓ ν

Z[t, t−1, x](2) �−→ Fp[t, t−1, x](2).

By Milnor’s classification (Milnor 1971) there exist β ∈ GL2(Z[t, t−1, x]) and
γ ∈ GL2(A[t, t−1, x]) such that α = �∗(β) · I2 · ν∗(γ ) = �∗(β) · ν∗(γ ). However,
if j : Z ↪→ A is the canonical inclusion then the following diagram commutes

�

�
�

��

�
�

��

Z A

Fp

j

� ν

and induces a commutative diagram of group homomorphisms

�

�
�

�
��

�
�

�
��

GL2(Z[t,t−1,x]) GL2(A[t,t−1,x])

GL2(Fp[t, t−1, x])

j∗

�∗ ν∗

In particular, �∗(β) = ν∗( j∗(β)), so α = ν∗( j∗(β) ·γ ) ∈ Im(ν∗) as claimed. �
Taking (3.5) and (4.3) together we see that:

ν : A[t, t−1, x] → Fp[t, t−1, x] is almost surjective for all k ≥ 2. (4.4)
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5 The quasi-triangular ring T q(A[t, t−1, x], p)
Wedenote by Tq(A, p) the subring of Mq(A) consisting of quasi-triangularmatri-
ces

Tq(A, p) = {X = (xrs)1≤r ,s≤q ∈ Mq(A) | xrs ∈ (p) if r > s}.

We identify A/p with Fp. There is then a Milnor fibre square

(T0)

�⊂

�⊂
� �

Tq(Fp) Mq(Fp).

Tq(A, p) Mq(A)

� ν

where

Tq(A/p) = {X = (xrs)1≤r ,s≤q ∈ Mq(A/p) | xrs = 0 if r > s}.

Tensoring (T0) with Z[t, t−1, x] gives another fibre square

(T)

�⊂

�⊂
� �

Tq(Fp[t,t−1,x]) Mq(Fp[t,t−1,x]).

Tq(A[t, t−1, x], p) Mq(A[t, t−1, x])

� ν

From (T0)we then have a commutative diagram of surjective ring homomorphisms

(5.1)

Tq(A, p)

Tq(A/p) = Tq(Fp)

F
(q)
p

�

τ

ϕ+

��

�
�

���

�
�

���

�
�

�
��

�
�

�
���
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where τ is the canonical ring homomorphism toF
(q)
p = Fp × · · · × Fp

︸ ︷︷ ︸

q

with kernel

the two-sided ideal of strictly upper triangular matrices. On taking mixed polynomials
we have a corresponding commutative diagram of surjections

(5.2)

Tq(A[t, t−1], p) contains the diagonal subring A[t, t−1](q) whichmaps surjectively
onto Fp[t, t−1](q) under ϕ+. We proceed to describe GLk(Fp[t, t−1, x](q)) in detail.
When k = 1, GL1(Fp[t, t−1, x]) = Fp[t, t−1, x]∗. We identify Fp[t, t−1] with the

group ring Fp[C (m)∞ ] so that Fp[t, t−1, x] ∼= R[C (m)∞ ] where R is the polynomial

ring Fp[x]. Hence Fp[t, t−1, x]∗ = R[C (m)∞ ]∗. For a = (a1, . . . , am) ∈ Z
m

we denote by ta the group element ta = ta11 . . . tamm . The group C (m)∞ satisfies
Higman’s ‘two unique products’ condition (Higman 1940). As R = Fp[x] is an
integral domain then, by Higman’s theorem, Fp[x][C (m)∞ ], and hence Fp[t, t−1, x],
has only trivial units; that is:

Fp[t, t−1, x]∗ = { u · ta | u ∈ F
∗
p, a ∈ Z

m} (5.3)

We now suppose that k ≥ 2. If α ∈ GLk(Fp[t, t−1, x]) then we may write
α = w · E where w ∈ Fp[t, t−1, x]∗ and E ∈ SLk(Fp[t, t−1, x]). Taking the above
description of the unit group Fp[t, t−1, x]∗ and writing w = u · ta when k ≥ 2 we
have:

GLk(Fp[t, t−1, x]) = { u · ta · E | u ∈ F
∗
p, a ∈ Z

m, E ∈ SLk(Fp[t, t−1, x])}
(5.4)

Now consider GLk(Fp[t, t−1, x](q))

= GLk(Fp[t, t−1, x]) × . . . · · · × GLk(Fp[t, t−1, x])
︸ ︷︷ ︸

q

. When k = 1 we have
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(Fp[t, t−1, x](q))∗ = { (u1 · ta1, . . . , uq · taq) | ui ∈ F
∗
p, ai ∈ Z

(m)}. We write this
expression in the form

(u1 · ta1, . . . , uq · taq) = u · T(a1, . . . aq) (5.5)

where u = (u1, . . . , uq) ∈ (F
(q)
p )∗ and T(a1, . . . aq) = (ta1, . . . , ·taq) ∈

(Fp[t, t−1](q))∗.
Likewise, when k ≥ 2 an element α ∈ GLk(Fp[t, t−1](q)) takes the form

α = (u1 · ta1 · E1, . . . , uq · taq · Eq)

where ui ∈ F
∗
p, ai ∈ Z

m, Ei ∈ SLk(Fp([t, t−1, x])}. We write this expression
as

α = (u1 · ta1 · E1, . . . , uq · taq · Eq) = u · T(a1, . . . , aq) · E (5.6)

where E = (E1, . . . , Eq) ∈ SLk(Fp[t, t−1, x](q)). It follows from (4.4) that we
have inclusions for each k ≥ 2:

SLk(Fp[t, t−1, x](q)) ⊂ Im(� : GLk(A[t, t−1, x](q)) → GLk(Fp[t, t−1, x](q)))

(5.7)

Moreover GLk(A[t, t−1, x](q)) ⊂ GLk(Tq(A[t, t−1, x], p)). We obtain the fol-
lowing which is essential in the unit lifting arguments of §7:

� : Tq(A[t, t−1, x], p) → Fp[t, t−1, x](q) is almost surjective for all k ≥ 2 (5.8)

In the rest of this section we establish the SFC property for the relevant corner
rings in the Milnor square decomposition of Tq(A[t, t−1, x], p). As A is a Dedekind
domain, it follows from Swan’s addendum to the solution of the Serre Conjecture
(Swan 1978, Theorem 1.1; see also Lam 2006, p. 189) that:

A[t, t−1, x] has property SFC. (5.9)

and likewise

Fp[t, t−1, x] has property SFC. (5.10)

If the rings R1, . . . Rq all have property SFC it follows easily that the product ring
R1 × · · · × Rq also has property SFC . It now follows from (5.10) that:

Fp[t, t−1, x](q) has property SFC. (5.11)

If I is a nilpotent two sided ideal in R and R/I has property SFC it is a straight-
forward consequence of Nakayama’s Lemma (Magurn 2002) that R also has property

123



Beitr Algebra Geom

SFC . As the kernel of the canonical homomorphism τ : Tq(Fp[t, t−1, x]) →
Fp[t, t−1, x](q) is nilpotent it follows from (5.11) and Nakayama’s Lemma that:

Tq(Fp[t, t−1, x]) text has property SFC . (5.12)

If R has property SFC then by Morita’s Theorem(Magurn 2002) the matrix ring
Mq(R) also has property SFC . It now follows from (5.9) that:

Mq(A[t, t−1, x]) has property SFC. (5.13)

6 Stably freemodules over Tq(A[t, t−1, x], p)
For any ring R and any integers k ≥ 1, q ≥ 2 there is a ring isomorphism, ‘block
decomposition’, m

̂ : Mkq(R) → Mk(Mq(R))

defined as follows; if X = (xrs)1≤r ,s≤dq ∈ Mkq(R) and 1 ≤ i, j ≤ k then

̂X = (X(i, j))1≤i, j≤k

where X(i, j) ∈ Mq(R) is given by X(i, j)rs = xq(i−1)+r , q( j−1)+s . We denote
the inverse isomorphism by μ : Mk(Mq(R)) → Mkq(R) . Then μ and ̂ induce
mutually inverse isomorphisms

GLk(Mq(R))
μ→ GLkq(R)

̂→ GLk(Mq(R)).

Wenowspecialize to the casewhere R = Fp[t, t−1, x]. Ifα ∈ GLk(Mq(Fp[t, t−1,

x])) then we may write

μ(α) = � · E (6.1)

where E ∈ SLkq(Fp[t, t−1, x]) and � ∈ GLkq(Fp[t, t−1, x]) is given by

�rs =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

det(μ(α)) r = s = 1

1 r = s �= 1
0 r �= s

.
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Noting that GLk(Tq(Fp[t, t−1, x])) ⊂ GLk(Mq(Fp[t, t−1, x])) we see that

̂� ∈ GLk(Tq(Fp[t, t−1, x])) (6.2)

Moreover, as E ∈ SLkq(Fp[t, t−1, x]) then by (4.4) we may write E = ν(E)

where E ∈ GLkq(A[t, t−1, x]) and so

̂E = ν(̂E) (6.3)

where ̂E ∈ GLk(Mq(A[t, t−1, x])) . Applying ̂ to (6.1) we have shown:

If α ∈ GLk(Mq(Fp[t, t−1, x])) then α = ̂� · ̂E

where ̂� ∈ GLk(Tq(Fp[t, t−1, x]))
and ̂E ∈ Im[ν : GLk(Mq(A[t, t−1, x])) → GLk(Mq(Fp[t, t−1, x]))]

(6.4)

Theorem 6.5 Tq(A[t, t−1, x], p) has property SFC.

Proof Let S be a stably free module of rank k over Tq(A[t, t−1, x], p). We claim
that S ∼= Tq(A[t, t−1, x], p)(k). By (5.12) and (5.13), both Tq(Fp[t, t−1, x]) and
Mq(A[t, t−1, x]) have property SFC . It follows that S is locally free with respect to

(6.6)

Hence S ∼= L(α) for some α ∈ GLk(Mq(Fp[t, t−1])). By (6.4) there exist

(i) ̂� ∈ GLk(Tq(Fp[t, t−1, x])),
(ii) ̂E ∈ Im(ν : GLk(Mq(A[t, t−1, x])) → GLk(Mq(Fp[t, t−1, x])))

such that α = ̂� · ̂E . As ν is surjective then (6.6) satisfies Milnor’s patching
condition. By Milnor’s isomorphism criterion ((Milnor 1971) we see that L(α) ∼=
L(Idk). Hence, as claimed, S ∼= L(Idk) = Tq(A[t, t−1, x], p)(k). �

7 An induction theorem for locally freemodules

We now consider the metacyclic group G(p, q) = Cp � Cq where p is an odd
prime, q is a positive integral divisor of p−1 andCq acts via the canonical imbedding
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Cq ↪→ Aut(Cp). We observe that Z[G(p, q)] occurs in a Milnor fibre square of the
following form (see, for example. p.187 of (Johnson (2021))):

(7.1)

�

�

� �

Z[G(p, q)] Tq(A, p)

Z[Cq ] Fp[Cq ].

� �

Put � = Z[G(p, q)]. As Cq ⊂ F
∗
p, the polynomial yq − 1 factorizes into linear

factors over Fp so that Fp[Cq ] ∼= F
(q)
p and we may rewrite (7.1) as

(S0)

�

�

� �

� Tq(A, p)

Z[Cq ] F
(q)
p .

� �

As in (1.1), S0-locally free modules of rank k are classified by

GLk(S0) = GLk(Z[Cq ])\GLk(F
(q)
p )/GLk(Tq(A, p)).

Tensoring (S0) with Z[t, t−1, x] gives the following fibre square which again
satisfies Milnor’s patching condition.

(S)

�

�

� �

�[t, t−1, x] Tq(A[t, t−1x], p)

Z[t, t−1, x][Cq ] Fp[t, t−1, x](q)

� �

Likewise, S-locally free modules of rank k are classified by

GLk(S[t, t−1, x]) = GLk(Z[t, t−1, x][Cq ])\GLk(F
(q)
p [t, t−1, x])/

GLk(Tq(A[t, t−1, x], p))

Let ι : � → �[t, t−1, x] denote the canonical inclusion; then ι has a canonical
left inverse ε : �[t, t−1, x] → � defined by ε(ti ) = 1 and ε(x j ) = 0. Moreover ι

induces a mapping of squares ι : S0 → S:
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�

�

�

�

�
���

�
���

�
���

�
���

�

� �

�

Tq(A, p)

�

F
(q)
p

Tq(A[t, t−1x], p)

�[t, t−1, x]

Z[Cq ]

Fp[t, t−1, x](q)

Z[t, t−1, x][Cq ]

and hence a mapping ι∗ : GLk(S0) → GLk(S). Recall that, in the notation of
§5,

Fp[t, t−1, x]∗ = { u · ta | u ∈ F
∗
p, a ∈ Z

m} (7.2)

(u1 · ta1, . . . , uq · taq) = u · T(a1, . . . aq) (7.3)

where u = (u1, . . . , uq) ∈ (F
(q)
p )∗ and T(a1, . . . aq) = (ta1, . . . , ·taq) ∈

(Fp[t, t−1](q))∗. The expression T(a1, . . . aq) can be equally be regarded as an

element of Tq(A[t, t−1], p)∗. Consequently the canonical map ι : (F
(q)
p )∗ →

GL1(Fp[t, t−1, x](q))/GL1(Tq(A[t, t−1], p)) is surjective. It follows immediately
that:

ι : GL1(S0) −→ GL1(S) is surjective. (7.4)

Likewise, when k ≥ 2 an element α ∈ GLk(Fp[t, t−1, x](q)) takes the form

α = (u1 · ta1 · E1, . . . , uq · taq · Eq) = u · T(a1, . . . , aq) · E (7.5)

where E = (E1, . . . , Eq) ∈ SLk(Fp[t, t−1](q)) so when k ≥ 2 it fol-
lows from (5.8) that any element T(a1, . . . , aq) · E ∈ GLk(Fp[t, t−1, x](q))

lifts to GLk(Tq(A[t, t−1], p)). Hence the canonical map ψ : (F
(q)
p )∗ →

GLk(Fp[t, t−1, x](q)) /GLk(Tq(A[t, t−1], p)) is surjective for all k ≥ 2, fromwhich,
in conjunction with (7.4), it follows that:

ι : GLk(S0) −→ GLk(S) is surjective for all k ≥ 1 (7.6)

Hence we obtain:
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Theorem 7.7 Let P be a locally free module with respect toS; then there is a module
P0, locally free with respect to S0, such that P = ι∗(P0).

8 Stably free cancellation forG(p,q) × C(m)∞

An easy calculation from (7.1) shows that R[G(p, q)] ∼= R[Cq ] × Mq(A ⊗Z R).

Moreover,

R[Cq ] ∼=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

R × R × C × · · · × C
︸ ︷︷ ︸

(q−2)/2

q even;

R × C × · · · × C
︸ ︷︷ ︸

(q−1)/2

q odd.
(8.1)

Recalling that d = (p − 1)/q then

Mq(A ⊗Z R) ∼=

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

Mq(R) × · · · × Mq(R)
︸ ︷︷ ︸

d

if q is even;

Mq(C) × · · · × Mq(C)
︸ ︷︷ ︸

d/2

if q is odd.
(8.2)

In any case, R[G(p, q)] has no quaternionic factor so that:

Z[G(p, q)] satisfies the Eichler condition. (8.3)

In consequence of (8.3) and the theorem of Swan-Jacobinski (Swan 1970) we see
that:

Z[G(p, q)] has the SFC property. (8.4)

We note also that:

Z[t, t−1, x][Cq ] has property SFC . (8.5)

In the case n = 0, (8.5) follows from themain theorem of (Johnson 2014). However
the argument given there continues to hold, with the same justification, on replacing
Z[t, t−1] by Z[t, t−1, x] as the theorem of Swan in (Swan 1978) applies equally in
either case.
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Theorem 8.6 �[t, t−1, x] has property SFC.

Proof Let S be a stably free module of rank k over �[t, t−1, x]. We claim that S ∼=
�[t, t−1, x](k). It follows from (1.2), (6.5) and (8.5) that S is locally free with respect
to S. By (7.7), there exists a module S0, locally free with respect to S0, such that
S ∼= ι∗(S0). Let ε : �[t, t−1, x] → � be the canonical left inverse to ι. As S is
stably free, then S0 = ε∗(S) is also stably free. By (8.4) S0 ∼= �(k) and hence
S ∼= ι∗(�(k)) = �[t, t−1, x](k). �

Noting that�[t, t−1, x] = R[G(p, q)]whereR = Z[t, t−1, x]we see that (8.6)
proves Theorem I of the Introduction. In the special case where the purely polynomial
variables x j are absent we have:

Z[G(p, q) × C (m)∞ ] ∼= �[t, t−1] (8.7)

As a consequence we obtain the following which is Corollary II of the Introduction:

Corollary 8.8 Z[G(p, q) × C (m)∞ ] has property SFC.

In conclusion we point out that when q = 2 the proof of (8.8) is somewhat simpler
than the general case. Then G(p, 2) is simply the dihedral group

D2p = 〈x, y | x p = y2 = 1, yxy−1 = x−1〉

and A = Z[ζp + ζ−1
p ] is the real subring of the cyclotomic integers Z[ζp]. In this

case we are aided by the well known fact (Birch 1967; Hasse 1962) that the induced
map on unit groups ν : Z[ζp + ζ−1

p ]∗ → F
∗
p is surjective. In consequence, when

q = 2, the homomorphism ν : GLk(A[t, t−1]) → GLk(Fp[t, t−1]) is surjective for
k ≥ 1 which is a stronger statement than (4.4).
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