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Abstract

Background Despite the growing interest in the use of human genomic data for drug target
identification and validation, the extent to which the spectrum of human disease has been
addressed by genome-wide association studies (GWAS), or by drug development, and the
degree to which these efforts overlap remain unclear.
Methods In this studywe harmonize and integrate different data sources to create a sample
space of all the human drug targets and diseases and identify points of convergence or
divergence of GWAS and drug development efforts.
ResultsWe show that only 612 of 11,158 diseases listed in Human Disease Ontology have
an approved drug treatment in at least one region of theworld. Of the 1414 diseases that are
the subject of preclinical or clinical phase drug development, only 666 have been
investigated in GWAS. Conversely, of the 1914 human diseases that have been the subject
of GWAS, 1121 have yet to be investigated in drug development.
ConclusionsWeproduce target-disease indication lists to help the pharmaceutical industry
to prioritize future drug development efforts based on genetic evidence, academia to
prioritize future GWAS for diseases without effective treatments, and both sectors to
harness genetic evidence to expand the indications for licensed drugs or to identify
repurposing opportunities for clinical candidates that failed in their originally intended
indication.

Pre-clinical, cell and animal model-based approaches for drug target
identification and validation have been poorly predictive of human efficacy,
contributing to the high failure rate in clinical phase drug development1–3

due to lack of benefit or unanticipated adverse effects4,5.

Human genetics may help improve drug development efficiency by (i)
helping to map drug targets to diseases more accurately and systematically
through genome-wide association studies (GWAS) (target identification);
and (ii) using DNA sequence variants in a gene encoding a drug target, that
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Plain language summary

The pharma industry has shown growing
interest in the use of human genomic data to
support drug development and reduce the
riskofclinical-stage failure.We investigate the
extent to which human diseases have been
the subject of genetic studies, of pharma-
ceutical research and development, or both.
We show that only a small proportion of all
human diseases have an approved drug
treatment and that less than half of all the
diseases that are the subject of preclinical or
clinical phase drug development have been
investigated in genetic studies. In addition,
approximately two-thirds of the diseases
covered in genetic studies have yet to be
investigated in drug development. These
findings could help prioritize drug develop-
ment efforts or genetic studies for diseases
without effective treatments.
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influence its expression or function, to anticipate the full range of beneficial
and harmful mechanism-based effects of a drug acting on the encoded
protein (target validation), using drug target Mendelian randomisation6–10.
Several lines of empirical evidence support this concept: (a) Many GWAS
have rediscovered established drug targets for the corresponding
diseases11–13; (b) Target–disease pairings with genetic support are enriched
among successful drug development programmes14–18; (c) Comparative
studies have shown that the effect of licensed drugs on biomarkers and
disease endpoints coincide with the observed associations of variants in the
genes encoding the corresponding target19–21; and (d) Several drugs have
now been successfully developed or repurposed on the basis of human
genetic evidence (e.g., maraviroc for treatment of HIV infection22,23; PCSK9
inhibitors for hypercholesterolaemia and coronary disease prevention20,24

and tocilizumab for treatment of pro-inflammatory adverse outcomes of
SARS-CoV-2 infection25,26). For these reasons, the pharmaceutical industry
has shown a growing interest in the use of human genomic data to help
prioritise drug development programmes and reduce the risk of clinical-
stage failure.

Pharma partnerships have provided substantial investment for
sequencing, genotyping or molecular phenotyping of large national bio-
banks, which are linked to routinely collected primary and secondary care
electronic health records (e.g., in the UK27 and Finland28). Some have
engaged in partnerships with healthcare providers (e.g., Regeneron with
Geisinger Healthcare in the US). Others have partnered with consumer
genetic testing companies (e.g., GSK with 23andMe29). Several pharma-
ceutical companies have also invested in Open Targets, a partnership with
the European Bioinformatics Institute and the Welcome Trust Sanger
Institute that seeks to harness summary-level genetic association data from
GWAS to inform therapeutic hypotheses13.

However, until recently, genetic studies of human diseases and
pharmaceutical research and development have largely proceeded inde-
pendently. Thus, the extent to which the causes of human disease have
been addressed by genetic analyses, or by drug development, and the
degree to which these efforts overlap, has not been investigated system-
atically. Filling this gap in knowledge could have several applications.
First, a survey of this type would help understand where future drug
development programmes could be directed if they are seeking to exploit
existing genetic evidence on therapeutic targets. Second, it could also help
prioritise new, large-scale GWAS or sequencing studies to help stimulate
drug development for diseases currently without effective treatments.
Finally, it could help quantify and inform opportunities to expand the
indications for licensed drugs or identify repurposing opportunities for
themany safe drugs that failed in clinical trials because of lackof efficacy in
the originally intended indication. To address this gap in knowledge, we
connected disparate sources of data to evaluate disease coverage and the
overlap ofGWASandpharmaceutical research anddevelopment.Wefind
that only 5% of the diseases have an approved drug treatment in at least
one region of the world and that less than half of the diseases that phar-
maceutical companies are currently attempting to develop drugs for have
been investigated by GWAS. In addition, approximately two-thirds of the
diseases investigated using genetic studies have yet to be investigated in
drug development.We produce drug target-disease indication lists to help
prioritize drug development efforts or genetic studies for diseases without
effective treatments.

Methods
Human diseases
To estimate the total number of human diseases, we retrieved information
fromwidely used disease classification systems and ontologies (Table 1). As
of 29 September 2022, the Human Disease Ontology (DO)30 had 11,158
disease terms. Since the number of terms in the DO is curated and updated
regularly, the rationale described in previous studies31 was followed, and a
figure of 11,158 was proposed as a reasonable estimate of the number of
common human diseases with genetic susceptibility.

Drug and target data
Compound, target and drug indication data (where relevant)were extracted
fromChEMBLversion 31 (v31). ChEMBL includes compounds under both
preclinical and clinical development. Information inChEMBL is itself based
on several resources, including United States Adopted Name (USAN)
applications, ClinicalTrials.gov; the FDAOrange Book database, the British
National Formulary, and the ATC classification for compounds with a
license. ChEMBL was selected as the data source for compound, target and
indication information for the following reasons: (i) it is publicly available,
(ii) it is manually curated, (iii) it contains information on drugs that have
been approved for the treatment of a specific disease/diagnosis (an indica-
tion) within any region of the world. Pharmaprojects32 or Patsnap33 are
private resources and, thus, were not considered for this analysis. ChEMBL
was selectedoverDrugBankas the latter only contains informationonFDA-
approved drugs34. Since proteins are themajor category of drug targets, drug
targetsweremapped to the correspondingUniProt identifiers, and thence to
gene identifiers in Ensembl version 95 (GRCh37) through the updated
druggable genome11. Compounds flagged as withdrawn or not intended for
human use were excluded from the analysis. Diseases with an approved
treatment and/or a treatment under clinical or preclinical developmentwere
sourced from ChEMBL v3135, which provided standardised indication
terms based on MeSH. MeSH terms in ChEMBL v31 were mapped to
Unified Medical Language System (UMLS)36 concepts using the
MRCONSO table in the UMLS2022AA.

GWAS data
The collection of traits studied by GWAS was obtained from the GWAS
Catalog v1.0.3, which represented the most complete source of publicly
available GWAS37. The dataset was expanded with GWAS summary sta-
tistics from UK Biobank (Neale data, GWAS Round 2, Results shared 1st
August 2018)38 to include diseases thatwere not covered by established case/
control cohorts.

The GWAS Catalog v1.0.3 comprised 5580 unique traits for 6041
PubMed publications, including diseases, biomarkers, molecular measure-
ments, drug responses and anthropometric measurements. Most trait
descriptions (reported traits) in the GWAS Catalog are mapped to terms
from the Experimental Factor Ontology (EFO), however, the mapping also
includes other ontologies: ‘GO’, ‘MONDO’, ‘HP’, ‘Orphanet’, ‘PATO’,
‘NCBITaxon’, ‘MP’, ‘NCIT’, ‘UBERON’, ‘OBA’, ‘HANCESTRO’. To filter
human diseases from the 5580 traits in the GWAS Catalog, terms were
mapped toUMLS concepts using several complementary approaches. First,
1440 traits were mapped to 1440 UMLS concepts using direct string
matching to MeSH terms and the MRCONSO table in the UMLS version
2022AA (UMLS2022AA). Next, 994 traits were mapped to 1357 UMLS
concepts using BatchMetaMap, which usedUMLS version 2020AB38,39. For
traitsmapping tomultipleUMLS concepts, those resulting in a directmatch
were selected (n = 620), followed by those with a UMLS semantic type of
disease or syndrome40 (ntraits = 121, nUMLS concepts = 133), neoplastic process
(ntraits = 48, nUMLS concepts = 62), Mental or Behavioral Dysfunction
(ntraits = 21, nUMLS concepts = 24), Congenital Abnormality (ntraits = 2,
nUMLS concepts = 2), Sign or Symptom (ntraits = 9, nUMLS concepts = 10),
Finding (ntraits = 27, nUMLS concepts = 30), Laboratory Procedure (ntraits = 77,
nUMLS concepts = 75), Injury or Poisoning (ntraits = 5, nUMLS concepts = 4),
Individual behaviour (ntraits = 4, nUMLS concepts = 6), diagnostic procedure
(ntraits = 9, nUMLS concepts = 9). The remaining 44 traits were mapped to 71
UMLS concepts. Therefore, the final mapping of the 994 traits resulted in
1050UMLS concepts. Then, 146 traits weremapped to 163UMLS concepts
using the UMLS mappings in DisGeNET41, 136 traits were mapped to 355
UMLS concepts using cross-mapping between ontologies in DisGeNET41,
and 942 were mapped to 833 UMLS concepts using the UMLS
Metathesaurus42. The remaining 1922 traits were mapped to UMLS con-
cepts using the MeSH terms associated with the PubMed publications.
Because multiple MeSH terms can be associated with the study and do not
represent the trait, to identify the MeSH term that corresponded to the
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mapped trait, MeSH terms indicated as major terms were selected and
manually curated against the mapped trait.

The 633 ICD-10diagnoses inNeale datawere automaticallymapped to
UMLS concepts using the UMLS2020AA MRCONSO table. In total, 983
unique diseases were identified and manually curated. The diseases were
mapped to disease areas according to ICD10 chapters. Diseases classified in
the chapters: “Animal diseases”, “Findings, not elsewhere classified”, and
“Pregnancy, childbirth and the puerperium” were excluded, resulting in a
total of 953 unique disease terms (Supplementary Data 5).

Mapping between GWAS and drug data
To facilitate further mappings and estimate the coverage, overlap and
divergence of human GWAS and diseases investigated in pharmaceutical
research and development, disease UMLS concepts from GWAS data and
indications UMLS concepts from ChEMBL were overlapped. The UMLS
was selected as the anchoring coding system as it integrates several medical
vocabularies to enable interoperability between data sources and facilitate
the link between terms from different coding systems.

Statistics and reproducibility
Analyses were conducted using Python v3.7.3 and Jupyter notebooks.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Protein-coding genes and genes encoding drug targets (‘drug-
gable genome’)
Wefirst obtained estimates of the total number of protein-coding genes and,
from this, we identified the subset of protein-coding genes considered to be
most amenable to targeting by drugs, a subset of the protein-coding genome
known as the ‘druggable genome’11. At the time of the study, the total
number of protein-coding genes in the human genome is estimated at
19,813 as annotated in Ensembl v.108; of which 4729 encode proteins
estimated to be amenable to targeting by small molecule drugs or bio-
therapeutics11. Of all human genes encoding druggable targets, 755 (16%)
are already the targets of approveddrugs, 1218 (26%) are the targets of drugs
in clinical development, 418 (9%) are targets of drugs in preclinical

development, with 3495 (73.9%) being currently ‘undrugged’ (Fig. 1, Sup-
plementary Data 1). Data on drugs in preclinical development may be
incomplete as information on many withdrawn targets is not publicly
available.

Human diseases evaluated in drug development and in GWAS
Producing plausible estimates for the total number of human diseases (the
‘disease-ome’) is challenging due to the hierarchical nature of biomedical
vocabularies, duplications and descriptive terms beyond diagnoses present
in clinical terminologies and disease classification systems. In 2019, a figure
of 10,000 was proposed as a reasonable estimate of the number of common
human diseaseswith genetic heritability31. Here, an updatedfigure of 11,158
diseaseswas used, which corresponded to the number of terms overall levels
in theDiseaseOntology (DO)30, anopen-source ontology of humandiseases
that is updated regularly, coordinated by the University of Maryland
Institute for Genome Sciences. This is likely to be a slight overestimation
given that parent terms are included, however, it circumvents the need to
decide on the granularity of the disease term.We focusedon 11,158 diseases
in the DO as the denominator, as this set encompasses diseases more likely
to be studied using a GWAS design.We could have alternatively used ICD-
10orHumanPhenotypeOntology (HPO) toperform the calculation,which
would not have impacted thefindings, as they include a very similar number
of diseases compared to DO.

ChEMBL is anopen-accessdrugdatabase that contains informationon
drugs that have been approved for the treatment of a specific disease/
diagnosis (an indication) within a region of the world and clinical candidate
drugs that are being or have been investigated for an indication. By sourcing
data from the ChEMBL v3135, we found that only 1549 unique diseases
(estimated as 13.9% of the total number of human diseases in DO) have an
approveddrug and/or a drugunder clinical or preclinical development. This
comprises 612 diseases that are the indication of approved drugs (Supple-
mentary Data 2), 1401 diseases that are or have been the indication of drugs
in clinical development (SupplementaryData 3) and 210 diseases that are or
have been indications for drugs in preclinical development (Supplementary
Data 4), as shown in Fig. 2. Note that somediseases can appear inmore than
one category if several compounds are studied for the same indication and
are in different stages of the drug development process.

Equally, estimating the proportion of diseases covered by GWAS is
difficult because some diseases could have been studied through a validated

Table 1 | The number of terms within common disease classification systems and ontologies as of 29 November 2022

Coding scheme Type Number
of terms

Coverage

ICD-10a Disease classification 12,318 Clinical disease classification is mainly according to appearance rather
than cause

Human Disease
Ontology (DO)b

Ontology 11,158 Biomedical resource of standardised disease concepts organised by
disease aetiology

Human Phenotype
Ontology (HPO)a

Ontology 16,601 Phenotypic abnormalities and clinical observations

Experimental Factor
Ontology (EFO)c

Ontology 40,133 Experimental variables from the cellular to disease level in the European
Bioinformatics Institute (EBI) databases

Medical Subject
Headings (MeSH)a

Clinical terminology designed for indexing
and cataloguing biomedical literature

348,733 Anatomy, organisms, diseases, chemicals and drugs, techniques and
equipment, biological science, psychiatry and psychology, physical
sciences, anthropology, education, sociology and social phenomena,
technology and food and beverages, humanities, information science,
health care

SNOMED CTa Clinical terminology designed for recording
clinical data in electronic health
records (EHRs)

498,686 Clinical findings, symptoms, diagnoses, procedures, body structures,
organisms and other etiologies, substances, pharmaceuticals, devices
and specimens

Unified Medical Language
System (UMLS)a

Biomedical vocabularies repository 3,619,007 Biomedical and health-related concepts by multiple source
vocabularies

ahttps://www.nlm.nih.gov/pubs/techbull/mj22/mj22_umls_2022aa_release.html.
bhttps://github.com/DiseaseOntology/HumanDiseaseOntology/tree/master/src/ontology.
chttps://github.com/EBISPOT/efo/blob/master/ExFactor%20Ontology%20release%20notes.txt.
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Fig. 1 | Total count of genes encoding druggable targets, with subsets and
intersection of genes encoding the targets of approved drugs, and drugs in
clinical or preclinical development. The figure shows the intersections of a set as a
matrix, where each row represents a set, the bar charts on the left are the size of the

set, and the bar charts on the top are the size of the intersection. Each column
indicates a possible intersection, where the filled-in cells showwhich set is part of the
intersection. The lines connecting the filled-in cells indicate the direction the plot
should be interpreted.

Fig. 2 | Intersection between diseases with current approved treatment, with a
treatment that is or has been under clinical development, with a treatment that is
or has been under preclinical development, or investigated via GWAS. The figure
shows the intersections of a set as a matrix, where each row represents a set, the bar
charts on the left the size of the set and the bar charts on the top the size of the
intersection. Each column indicates a possible intersection, where the filled-in cells

show which set is part of the intersection. The lines connecting the filled-in cells
indicate the direction the plot should be read. Subsets, including diseases studied by
GWAS, are indicated in red. Data sources: ChEMBL v31 (approved, clinical and
preclinical development), GWAS Catalog v1.0.3 (GWAS studies) and UK Biobank
through Neale data (GWAS studies).
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clinical biomarker (e.g., LDL cholesterol for coronary heart disease) as well
as directly with the disease endpoint. There may also be inconsistencies in
the annotation of clinical endpoints to a coding system (e.g., non-small cell
lung cancer and non-small cell lung carcinoma have different codes in the
unified medical language system, UMLS). Nevertheless, with these caveats,
we identified 1914 diseases covered byGWAS (17.2%of the total number of
common human diseases) based on the mapping and manual curation of
phenotype terms in the GWAS Catalog43 and UK Biobank38 to UMLS
concepts (Supplementary Data 5).

Of the 1549 diseases with an approved treatment and/or a treatment
that is or has been investigated in clinical or preclinical development, 703
had also been investigated byGWAS(Fig. 2, SupplementaryData 6), leaving
1211 diseases that have been the subject of investigation in GWAS, but
which have yet to be investigated in drug development (Supplemen-
tary Data 5).

Important subcategories of drug target-disease indication
pairings
Based on the previous mappings, we generated sample spaces based on
different sub-categories of drug target–disease indication pairings to help
inform future genomic and drug development efforts.

Sample space bounded by all protein-coding genes and diseases.
As a denominator, we generated a sample space bounded by 19,813
protein-coding genes annotated in Ensembl v.108 and 11,158 diseases,
which produces ~221 million protein-disease indication pairings
(221,073,454; labelled A in Fig. 3).

Sample space bounded by the druggable genome and all human
diseases. Since not all proteins are readily targeted by small molecule
drugs ormonoclonal antibodies or peptide therapeutics, the sample space
more relevant to drug development is bounded by 4729 genes encoding
druggable targets11 and the 11,158 human diseases, which produces ~52.8
million (52,766,182) drug target-disease indication pairings thatmight be
the subject of drug development. This space is labelled B in Fig. 3.

Sample space bounded by target-indication pairings under clinical
investigation. Having defined these key denominator values, we iden-
tified a sample space bounded by the indications and the targets that have

been the subject of clinical investigation but within which some, but not
all target–indication pairings have been explored in drug development.
This space, labelled ‘C’ in Fig. 3, is bounded by 1218 genes encoding the
targets of drugs (Fig. 1) and 1401 diseases forwhich these targets are being
or have been investigated in clinical phase drug development (Fig. 2),
giving around 1.7 million (1,706,418) target-indication parings. Within
this bounded space of ~1.7 million target indication pairings within
sample space ‘C’, only 42,199 unique target-indication pairings (2.5%)
have been explored in drug development. Sample spaceC represents only
about 3.2% of the ~52.8 million drug target–indication pairings that
could be studied (sample space B), and 0.8% of all ~221 million
protein–disease pairings (sample space A).

Sample space bounded by target-indication pairings for
approveddrugs.We identified 755 targets of approved drugs (Fig. 1) for
612 disease indications (Fig. 2), giving a sample space (labelled D in
Fig. 3) of 462,060 target indication pairs. Of these, the number of drug
target-disease indication hypotheses that have been explored and led to
approval within this bounded space is 5221 (1% of the maximum space,
Supplementary Data 1). As for target-indication pairings investigated in
clinical development, the coverage of targets and indications of approved
drugs is uneven. Some diseases havemany targets for approved drugs, for
example, there are 37 genes encoding approved drug targets for the
treatment of hypertension (27ChEMBL target IDs, of which seven are the
targets of adrenergic receptors blocking drugs), whereas other diseases
(e.g., pituitary dwarfism) have treatments directed at a single target. The
median number of drug targets per approved indication is two (first
quartile: 1, second quartile: 4). Similarly, several drug targets have been
approved for multiple indications, including different disease areas. For
example, the glucocorticoid receptor is employed as a drug target for the
treatment of around 111 diseases, including disorders of the blood,
immune, circulatory, respiratory systems, and different cancers (Fig. 4,
Supplementary Data 7).

Diseases and targets evaluated both in GWAS and drug develop-
ment. We identified 755 targets of currently approved drugs (16% of all
druggable targets) employed in the treatment of 612 diseases (5.5% of all
11,158 diseases). Of these diseases, 336 have also been studied in GWAS.
It is through this intersection that it has been possible to show thatGWAS

Fig. 3 | Illustration of the sample space and subsets
of human proteins and diseases. The complete
sample set (A) is bounded by the total number of
protein-coding genes (19,995) and the sum total of
common, complex human diseases (11,158). The
subset of all potentially druggable target–disease
indication pairings is indicated by subsetB, the drug
target–disease indication pairings studied in clinical
phase drug development by subsetC, and the target-
disease indication pairings of approved drugs by
subset D. The vertical lines represent diseases stu-
died by GWAS on the assumption that GWAS
interrogate all genes in the human genome (subsets
E and F). The presence of two GWAS subsets illus-
trates the point that only a subset of diseases studied
in GWAS have also been the subject of drug devel-
opment (E). See text for further explanation.
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have frequently rediscovered established drug targets for the corre-
sponding diseases11–13. The 1234 targets of drugs that are or have been the
subject of clinical investigation (which includes the targets of approved
drugs) have been or are being evaluated for the treatment of 1549
diseases.

Prior research has shown that drugs for which the target-indication
pairing has genetic support have higher rates of approval14–18. However, of
the 1401 disease indications being evaluated in clinical development, only
661 have previously been the subject of a GWAS. Of these 1401 disease
indications, 476 have already approved treatment, and of the remaining 925
diseases, 363 have been studied by a GWAS.

Discussion
Previous research has shown that human genetic evidence could support
drug development11,14,15,31. However, the extent to which genomic efforts,
specificallyGWAS, alignwith ongoing drug development efforts andunmet
needs has not been explored in detail. The current analysis shows: (1)Only a
small fraction of the 11,158 diseases curated in the human DO have been
investigated in drug development (14%; 1549 out of 11,158 diseases) or
GWAS (17%; 1914 out of 11,158 diseases); (2) Of diseases being pursued in
clinical phasedrugdevelopment, only 47%havebeen the subjectof aGWAS
(661 out of 1401); and (3) Even for the 661 diseases that are the subject of
ongoing clinical phase drug development and have been covered byGWAS,
it remains uncertain how many of the specific target-indication pairings
have genetic support. The construction of a sample space of disease and
targets, including subsets of target-disease pairings that have been covered
by GWAS (which interrogates all possible targets by design) and clinical
phase drug development, can help generate insights into how these com-
plementary efforts can be utilised in concert.

The results presented in this analysis represent the first systematic
surveyof the coverage, overlap anddivergenceof humangenetic studies and
diseases investigated in pharmaceutical research and development. One of
the strengths of this analysis is that the data usedwere available in the public
domain, which facilitates the revisiting of the estimates in the future.
Another is that the analysis was stratified to show how the overlap between
diseases with an approved treatment, a treatment that is or has been under
clinical development and studied by GWAS, also differs at the level of
individual disease. Standardisation of terms across data sources was

challenging because of the different coding systems in the drug and GWAS
databases and the lack of direct mapping across terminologies. By using the
UMLS as an anchoring ontology to standardise the diseases across data
sources and including a step of manual curation of the disease terms and
areas, the error due to inaccurate mapping cross-databases was reduced.

The intersection between targets of approved drugs and diseases stu-
died by GWAS can help identify new indications for existing approved
drugs (Fig. 5). On the other hand, the intersection between targets of drugs
that are or have been the subject of clinical investigation anddiseases studied
by GWAS can lead to potential repurposing opportunities of drugs that
proved safe but lacked efficacy for their intended indication, or for indica-
tion expansion of approved drugs (Fig. 5). Both indication expansion and
repurposing are attractive alternatives to denovo drug development,mainly
because such compounds have been proven to engage well-characterised
targets and themedicines have proven safe in clinical trials, which leads to a
reduction in costs and development timelines44. High failure rates in clinical
phase drug development have heightened interest in the therapeutic
repurposing of drugs that failed in their originally intended indication for
lack of efficacy. Previous modelling studies have suggested that any given
drug targetmight be useful in the treatment ofmultiple diseases31. There are
well-established examples of this. Beta-adrenoceptor antagonists are used in
the treatment of hypertension, coronary heart disease, heart failure, portal
hypertension, migraine, anxiety, tremors in thyrotoxicosis and infantile
haemangiomas. SGLT2 inhibitors developed for diabetes have now been
approved for use in heart failure (reduced and preserved ejection fraction)
and in chronic kidneydisease.GWAScanbeused as a source of evidence for
drug target identification.One route to expanding the indicationsof licensed
drugs or those in development or to repurpose investigational drugs that fail
in their intended indication, would be to systematically interrogate the
association of variants in the genes encoding the targets of these drugs in
GWAS data. Since GWAS have already investigated 1914 diseases, there is
already a large dataset that could be utilised for this purpose. For example,
the interleukin-6 receptor is the target of an approved drug (tocilizumab)
used in the treatment of rheumatoid arthritis. Encouragingly, the gene
encoding this receptor has also been identified using GWAS of coronary
heart disease, abdominal aortic aneurysmand atrialfibrillation, suggesting a
number of indication expansion opportunities21,45,46. Another example is the
interleukin-23 receptor inhibitor ustekinumab, which was originally

Fig. 4 |Disease indications with an approved treatment by drug target.Number of
disease indications by drug target and disease area, with the number of unique
diseases on the right, as one disease could be classified in multiple disease categories

(e.g., multiple myeloma in MeSH is classified as a disease of the circulatory system,
blood and immune and neoplasm). Only drug targets withmore than 25 indications
with an approved treatment are shown.
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intended to treat psoriasis and, after identifying a GWAS signal for Crohn’s
disease was investigated for such indication and eventually approved in
201747–49. In fact, in a recent analysis, Trajanoska et al., used data from the
Open Targets Platform to identify genetic evidence for approved drugs,
considering that a minimum of five years separates an original genetic
observation from the approval of a derived and found that 47 first-in-class
therapies for 40 targets had been genetically driven50.

In addition, the sample space of human targets and diseases could also
inform de novo drug development for druggable targets and disease indi-
cation pairings that have yet to be investigated. One way would be by
increasing the range of druggable targets (space B in Fig. 4). This is
becoming possible through technological developments. These include (1)
the growing use of monoclonal antibodies and the development of cyclic
peptides as therapeutics for protein targets that lack a binding pocket
amenable to targeting by conventional small molecule therapeutics47,49,51–53,
and (2) the targeting of RNAs rather than proteins using RNA silencing
approaches and the emergence of CRISPR-Case 9-based gene editing in
cases for proteins that remain difficult to drug54–56. A complementary
approach necessary to map the expanded range of druggable targets to the
correct diseases is to increase the range of diseases that have been studied in
GWAS. This is becoming possible by the greater deployment of genetic
studies within large national biobanks linked to healthcare data27,57–59, and
even in healthcare systems60–62.

There are groups of targets that could especially benefit from having
genetic support. For example, identifying soluble or secreted protein targets
with genetic evidence for a particular disease represents an attractive venture
since such proteins are readily targeted by monoclonal antibodies or pep-
tides, which typically exhibit higher selectivity and reduced development
timelines compared to small molecules63. Information on the set of human
secreted proteins (the ‘secretome’64) is available in the public domain, and
researchers and the pharmaceutical industry could use these resources to
identify high priority putative circulating protein targets. In addition to
therapeutics that exert their action at the protein level, novel therapies based

onRNAsilencingor interferenceprovide a solution todownregulateprotein
targets that are resistant to small or largemolecule therapeutics54.While this
technique is currently limited by the effective delivery of the RNA into the
target tissue, existing technologies support efficient targetingof the liverwith
RNA-based therapeutics65. Therefore, genetically supported targets with
elevated gene expression in the liver may be prioritised for RNA silencing
therapy.

Furthermore, the sample space of human protein targets and diseases
can be used to inform new drug development programs and research
(Fig. 6). For example, only 17% of human diseases have been investigated in
a GWAS, and over 8000 diseases exist without an approved treatment or
under clinical investigation. Prioritising diseases for genomic analysis with a
view to generating critical evidence for drug development is one of the
numerous applications of the current analysis. Large biobanks with genetic
data linked to routinely collected primary and secondary care health records
provide an opportunity to investigate targets with genetic support in con-
ditionswith unmetmedical needs or to increase the power in diseaseswhere
a GWAS is available, but the number of cases was not sufficient to reliably
identify genetic associations.

Some limitations are worthy of note. Our analysis used the number of
disease terms in the DO to estimate the sample space bounded by all
protein-coding genes and diseases. DO is updated regularly and includes
rare, commonand complex diseases, however, itmaybe incomplete andnot
capture all medical conditions. Nonetheless, our analysis mapped disease
indications studied by GWAS to disease indications investigated in drug
development to estimate the extent GWAS and pharmaceutical research
anddevelopment efforts overlap, and thus,DOwas simply used to provide a
denominator for the total number of diseases. We could have alternatively
used ICD-10 orHPO (Table 1) to perform the calculation, whichwould not
have impacted the findings, as ICD-10 andHPO include 12,318 and 16,601,
respectively, a very similar number to the diseases included in DO (11,158).
Our analysis focused on common polygenic human diseases, which are the
ones subjected to GWAS. Separately, rare loss-of-function variants causing

Fig. 5 | Exploiting existing opportunities for drug target identification. In each
subfigure, the complete sample set (A) is bounded by the total number of protein-
coding genes (19,995) and the sum total of common, complex human diseases
(11,158). The subset of all potentially druggable target-disease indication pairings is
indicated by subset B, the drug target-disease indication pairings studied in clinical
phase drug development by subset C, and the target-disease indication pairings of
approved drugs by subsetD. The vertical lines represent diseases studied by GWAS
on the assumption that GWAS interrogate all genes in the human genome (subset
E andF). The presence of twoGWAS subsets illustrates the point that only a subset of

diseases studied in GWAS have also been the subject of drug development (E). The
red area in subfigure I indicates de intersection between targets of approved drugs
and diseases studied by GWAS, where there could be potential for indication
expansion informed by GWAS. The red area in subfigure II indicates de intersection
between targets of drugs under clinical investigation and diseases studied by GWAS,
where there could be potential for repurposing informed by GWAS. The red area in
subfigure III indicates the intersection between targets of druggable targets other
than those for approved and investigational drugs and diseases studied by GWAS,
where there could be potential for de novo drug development informed by GWAS.
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monogenic disorders have correctly predicted the safety and phenotypic
effect of pharmacological inhibition, but these were outside the scope of the
present analysis66. We also relied on the trait and indication mappings
provided by the GWAS Catalog and ChEMBL, which may not include the
necessary granularity. For example, for some compounds, ChEMBL
includes general indications such as digestive system diseases or cardio-
vascular diseases. We used the UMLS to map across databases, however,
further efforts are needed to harmonise the disease ontologies used in
GWAS and drug development. Importantly, we sourced GWAS data from
the public domain, however, all the GWAS that may have been performed,
including additional diseases to those in the GWAS Catalog, may not have
been disseminated to the public which would underestimate the number of
existing diseases studied in GWAS.

Notably, the potential of GWAS for drug development relies on
assigning genetic associations from GWAS data to a causal gene, which
remains a challengebecause association signals fromvariants inhigh linkage
disequilibrium (LD) may span multiple genes. Several gold-standard data-
sets have been used to explore the best approach to assign GWAS signals to
genes. These ‘truth’ sets include genes whose perturbation causes a Men-
delian form of a common disease12, the set of expression, protein and
metaboliteQTLs67,68,manually curated target examples from the literature69,
and approved drug target-indication pairings where the indication has been
rediscovered by GWAS11,69. Numerous statistical and computational
approaches have been suggested to assignGWAS signals to genes, including
co-localisation70, and machine-learning techniques69. Yet, physical proxi-
mity remains the simplest and most widely used proxy to map association
signals to genes68,71. Although examples exist where the closest gene is not
the likely causal gene72,73, several studies using a set of genes with well-
validated causal relationships to disease have revealed the closest gene to a
GWAS signal to be the causal gene in about two-thirds of cases68, and have
shown that the relative distance to the gene is the best single predictor of a
causal gene69.

Our approach was based on the current ‘druggable genome’ (the set of
genes encoding proteins that are ormay be readily drugged by small or large
molecule drugs). However, this concept is an evolving entity. Whenever a
new protein is drugged, this opens the possibility of drugging structurally
similar proteins, thereby expanding the bounds of the druggable genome.
Where proteins remain difficult to drug, RNA silencing or gene editing now
offer alternative therapeutic approaches74–76. Our analysis was also based on
semantic mapping, but several commercial and academic efforts are
employing artificial intelligence for target identification and drug
discovery77,78. The application of artificial intelligence, and computer
modelling have predicted protein structures and revealed previously
unknown protein motifs potentially turning undruggable protein targets
into druggable ones79. The available information on drugs in development
may be incomplete or inaccessible for commercial reasons, whichmay lead
to an underestimation of the number of diseases studied in drug develop-
ment, particularly for the preclinical candidates which did not progress to
clinical trials. Regarding the number of diseases investigated by GWAS,
some diseases could have been studied through a validated clinical bio-
markerwhichmay not have beenwell captured by the approachwe used. In
addition, this analysis did not consider disease prevalence which is an
important factor for the design, interpretability, and future direction of
GWAS, as well as for the evaluation of diseases with unmet clinical needs.
Equally, mortality or morbidity are also important variables to consider
when contextualising the findings and defining research and pharmaceu-
tical strategies. Many diseases are not tractable by therapeutic agents (i.e.,
congenital malformations) and require surgical or device-based treatments.
For those diseases, GWAS can provide insights into the molecular basis of
the disease, but genetic associations with causal genes may not be used to
inform drug development. In other cases, key targetable mechanisms (e.g.,
autoimmunity)may trigger the development of a disease butmay no longer
be usefully targeted by the time the disease is manifest (e.g. type 1 diabetes).
Finally, not all human diseases may need to be treated with a therapeutic

Fig. 6 | Creating new opportunities for drug target identification. In each sub-
figure, the complete sample set (A) is bounded by the total number of protein-coding
genes (19,813) and the sum total of common, complex human diseases (11,158). The
subset of all potentially druggable target-disease indication pairings is indicated by
subset B, the drug target-disease indication pairings studied in clinical phase drug
development by subset C, and the target-disease indication pairings of approved
drugs by subset D. The vertical lines represent diseases studied by GWAS on the

assumption that GWAS interrogate all genes in the human genome (subset E and F).
The presence of twoGWAS subsets illustrates the point that only a subset of diseases
studied in GWAS have also been the subject of drug development (E). The red
arrows in Subfigure I illustrate the expansion of the subsets E and F by expanding the
scope of GWAS and data sources. The red arrow in Subfigure II illustrates the
expansion of subset B by expanding the genes encoding druggable targets.
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intervention, particularly if the medicinal product has a risk of harm and
may instead be best prevented through public health interventions.

In conclusion, we have systematically mapped drug development and
genomic discovery efforts in common diseases to produce target-disease
indication lists. These lists could help the pharmaceutical industry to
prioritize future drug development efforts based on genetic evidence, aca-
demia to prioritize future GWAS for diseases without effective treatments,
and both sectors to harness genetic evidence to expand the indications for
licensed drugs or to identify repurposing opportunities for clinical candi-
dates that failed in their originally intended indication.

Data availability
The Human Disease Ontology (DO)30 is publicly available and can be
accessed at https://github.com/DiseaseOntology/HumanDiseaseOntology/
tree/master/src/ontology. Data on approved drugs and compounds under
development is publicly available at ChEMBL v3135 and can be accessed at
https://chembl.gitbook.io/chembl-interface-documentation/downloads.
All sourceGWASdata used throughout the paper are publicly available and
were obtained from the GWAS Catalog v1.0.337 (https://www.ebi.ac.uk/
gwas/downloads) and from Neale data, UK biobank GWAS Round 2,
Results shared 1st August 201838 (https://www.nealelab.is/uk-biobank).
SupplementaryData 1 lists all human genes encoding druggable targets and
the maximum clinical phase reached by indication. Supplementary Data 2
includes diseases that are the indication of approved drugs. Supplementary
Data 3 includes diseases that are or have been the indication of drugs in
clinical development. Supplementary Data 4 includes diseases that are or
have been indications for drugs in preclinical development. Supplementary
Data 5 includes diseases subjected to GWAS and deposited in the GWAS
Catalog or studied by Neale lab. Supplementary Data 6 shows diseases
subjected toGWASanddeposited in theGWASCatalogor studied byNeale
lab and subjected to drug development (preclinical, clinical or approved).
Supplementary Data 7 includes compounds and their targets for drug tar-
gets withmore than 25 indications with an approved treatment. The source
data for Fig. 1 is in Supplementary Data 1. The source data for Fig. 1 is in
Supplementary Data 2–6. The number of diseases in Figs. 3, 5 and 6 was
sourced from the Human Disease Ontology (DO)30 (https://github.com/
DiseaseOntology/HumanDiseaseOntology/tree/master/src/ontology) on
29 September 2022, and the total number of protein-coding genes in the
human genome from Ensembl v.108 (https://ftp.ensembl.org/pub/). The
source data for Fig. 4 is in Supplementary Data 7.

Code availability
The code to perform the analyses and underlying each figure has been
deposited in the UCL Research Data Repository under accession code
https://doi.org/10.5522/04/25541392.v180.
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