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Exercise capacity is a strong independent predictor of cardiovascular and all-cause mortality. The 
utilization of well-established submaximal tests of exercise capacity such as the 6-min walk test 
(6MWT), 3-min step test (3MST) and 10-chair rise test (10CRT) in the community would improve 
patient care but requires remote monitoring technology. Consumer grade smartwatches provide such 
an opportunity, however, their accuracy in measuring physiological responses to these tests is unclear. 
The aim of this study was to determine the accuracy of consumer grade smartwatches in assessing 
exercise capacity to develop a framework for remote, unsupervised testing. 16 healthy adults (7 male 
(44%), age median 27 [interquartile range (IQR) 26,29] years) performed 6MWTs using two protocols: 
(1) standard—straight 30 m laps (6MWT-standard) and 2) continuous lap—circular 240 m laps around 
a park (6MWT-continuous lap), 3MSTs and 10CRTs. Each one of these four tests was performed 
three times across two clinic visits. Each participant was fitted with a Garmin Vivoactive4 and Fitbit 
Sense smartwatch to measure three parameters: distance, step counts and heart rate (HR) response. 
Reference measures were a meter-wheel, hand tally counter and ECG, respectively. Mean HR was 
measured at rest, peak exercise and recovery. Agreement was measured using Bland–Altman analysis 
for repeated measures and summarized as median absolute percentage errors (MAPE). Distance 
during 6MWT-continuous lap had better agreement than during 6MWT-standard for both Garmin 
(MAPE: 6.4% [3.0, 10.4%] versus 20.1% [13.9, 28.4%], p < 0.001) and Fitbit (8.0% [2.9, 10.1% versus 
18.8% [15.2, 28.1%], p < 0.001). Garmin measured step count more accurately than Fitbit (MAPE: 1.8% 
[0.9, 2.9%] versus 8.0% [2.6, 12.3%], p < 0.001). Irrespective of test, both devices showed excellent 
accuracy in measuring HR at rest and recovery (≤ 3%), while accuracy decreased during peak exercise 
(Fitbit: ~ 12% and Garmin: ~ 7%). In young adults without mobility difficulties, exercise capacity can be 
measured remotely using standardized tests and consumer grade smartwatches.

Exercise capacity, defined as the maximal or sub-maximal amount of physical exertion that an individual can 
sustain during a designated exercise test, is a strong independent predictor of cardiovascular and all-cause 
mortality and is a useful diagnostic and prognostic health indicator for patients in clinical and research settings 
alike1.

Well-established standardized tests include the 6-min walk test (6MWT), 3-min step test (3MST) and 
the 10-chair rise test (10CRT)2–4.The 6MWT is a useful, simple and easy to administer sub-maximal test that 
correlates with well-established indices of cardiorespiratory fitness (CRF) and is widely used to assess the 
responses to treatment interventions in patients with cardiovascular and pulmonary diseases2. Furthermore, the 
distance covered during a self-paced 6-min walk is an independent prognostic indicator5,6. The unsupervised 
use of this test in the community would be beneficial, however, a modified protocol allowing individuals to walk 
freely instead of along 30 m straight paths is required.

The Tecumseh 3MST combined with measurement of heart rate can be utilized to estimate indices of CRF 
with acceptable accuracy7–9 and precision10,11. Heart or pulse rate recovery measurements from the first 30–60 s 
post-exercise, have been shown to correlate with risk factors3,12.

The 10-chair rise test (10CRT) is a well-established functional assessment of exercise capacity which requires 
lower body strength and power in addition to balance and coordination and is routinely used in comprehensive 
geriatric assessments and research fields alike.
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These validated tests are usually conducted in a clinical setting supervised by trained personnel and require 
significant time investment. These constraints restrict the frequency at which they can be performed and their 
use for risk prediction at the population level and in very large epidemiological studies.

Novel wrist-worn wearable technologies use tri-axial accelerometers, photoplethysmography (PPG) sensors 
and proprietary algorithms to measure movement behaviours and associated physiological changes such as heart 
rate, distance, and step count. In the context of healthcare, these devices provide an opportunity to monitor such 
parameters outside of the clinical environment, at more frequent or regular intervals, at scale. This would enable 
the identification of trends over time, without increased staff/patient burden and associated costs13–15. Yet, there 
are very few studies validating the use of such technology to perform standardized tests of exercise capacity in 
the community setting using smartwatches.

A recent study used the Apple smartwatch and iPhone to compare data collected during supervised 6MWTs 
performed in clinic and 6MWTs performed at home to assess “frailty” (defined as walking < 300 m on an in-
clinic 6MWT)16. The study reported the home-based 6MWT to be 83% sensitive and 60% specific in assessing 
“frailty” with stronger associations reported using step count rather than GPS distance, but the study did not 
assess agreement between the smartwatch and a reference measurement outside of the clinic16.

The utilization of state-of-the-art consumer grade smartwatches in conjunction with well-established clinic-
based tests provides an exciting opportunity for remote monitoring of exercise capacity at an unprecedented 
scale. However, the accuracy of such devices in this context is yet to be fully addressed. Therefore, the aim of this 
study was to assess the accuracy of consumer-grade smartwatches in the remote assessment of exercise capacity 
and heart rate (HR) response to exercise, across a range of tests. This pilot of procedures in a young and healthy 
population could be used to develop a framework for community-based, unsupervised, testing. A preliminary 
version of this work has been reported17.

Methods
Study participants
16 healthy adults (male 7(44%), age 27[26,29] years) were recruited from staff and students at University College 
London (UCL). Indoor and outdoor research procedures took place at the Bloomsbury Centre for Clinical 
Phenotyping (BCCP), UCL and Tavistock Square Gardens, London, respectively. The study was performed 
in accordance with the principles of the declaration of Helsinki and approved by the UCL Research Ethics 
Committee (21,787.001). All participants gave written informed consent.

Participant characteristics and anthropometrics
Participant age, sex, ethnicity, Fitzpatrick skin type and Physical Activity Readiness-Questionnaire (PAR-Q) 
were recorded. Height was measured using a stadiometer (Seca217, Seca, Germany) to the closest centimetre. 
Weight was measured in kilograms using digital scales (Salter, UK).

Study protocol
Each participant was fitted with a Garmin Vivoactive4 and Fitbit Sense wrist-worn wearable to measure the 
following parameters: distance, step count and HR response. Allocation of each device to left or right wrist was 
randomized. Reference measures used to assess smartwatch accuracy were a meter-wheel for distance, hand tally 
counter (rounded to the closest 10 steps) for the number of steps, and ECG (Faros 180, Bittium) for heart rate. 
Each of the four tests (i.e. 6MWT-standard, 6MWT-continuous lap, 3MST and 10CRT) was repeated three times 
(a total of 12 tests per participant) across two clinic visits with an interval of at least 24 h between visits. The study 
protocol and typical results are shown in Fig. 1.

Clinical tests of exercise capacity
6MWTs were conducted outdoors in Tavistock Square Gardens, London, after connecting the devices to GPS 
and starting a ‘walk’ smartwatch activity recording. Participants were instructed to cover as much distance 
as possible without running using two protocols: (1) a standard test (6MWT-standard) using straight 30  m 
laps. This mimics a clinical test which is usually conducted along a corridor. During this test study participants 
were directed to walk up and down a 30-m flat stretch marked by cones and (2) a non-standard test (6MWT-
continuous lap), in which study participants were directed to walk freely around a park (240-m laps). This 
mimics a walk conducted in the community. On termination of the exercise phase, participants were asked to 
stand for a 3-min recovery phase.

3MSTs and 10CRTs were conducted indoors after starting a ‘cardio’ smartwatch activity recording which does 
not use the GPS. For the 3MST, following a 1-min standing resting phase, participants were invited to step up 
and down onto a single 20 cm step at a rate of 24 steps per minute using a metronome for 3-min. On termination 
of the exercise phase, participants were asked to stand for a 3-min recovery phase.

For the 10CRT, participants were instructed to sit centred on a chair with hands placed on the opposite 
shoulder with arms crossed. After a 1-min seated resting phase, participants were then asked to stand to full 
upright position and then sit back down again as quickly as possible for a total of 10 times. On termination of 
the exercise phase, participants were asked to sit for a 3-min recovery phase.

Data analysis
Smartwatch data was exported from the Garmin Connect and Fitbit online portals using their respective 
application programming interface. ECG recordings were sampled at 1000 Hz and Garmin and Fitbit devices 
provided HR data every 1-s. Heart rate data was measured by ECG using bespoke software18. Mean HR was 
measured during three intervals in each test: (1) at rest (30 s prior to the onset of exercise); (2) at peak exercise 
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(during the last minute of exercise in 6MWTs, and 3MSTs and from 60 to 105 s after the onset of 10CRTs) and 
(3) during recovery (from 30 s post exercise and for 1 min for 6WWT and 3MST and 45 s for 10CRT).

Statistical analysis
Statistical analyses were performed using MATLAB 2022a, STATA 17.0 and R. Sample characteristics and 
reference measures are described using median [interquartile range, IQR] for continuous variables and 
frequency (percentage) for categorical variables. Concordance was assessed using Lin’s concordance correlation 
coefficient (CCC). Agreement was assessed using Bland–Altman analysis19 and results are presented as mean 
differences (limits of agreement [LoA]) accounting for repeated measures. Differences from reference values 
and absolute percentage error (APE) are reported as median [IQR]. Outliers were defined as measurements 
for which APE > 20%. Missing data were dealt with via listwise deletion, which is valid under the assumption 
of missing completely at random. Comparisons between device accuracy were conducted using two-way 
ANOVA tests. For HR, the effect of using Fitbit vs Garmin on APE was assessed pooling all data together 
and considering participants, test types (6MTW, 3MST and 10CRT), and test phases (rest, peak exercise, and 
recovery) as nested random effects. Comparisons for each test type and phase were also conducted using 2-way 
ANOVA, considering participants as random effects. APE of HR and steps were log-transformed to reduce 
right skewness. The association between absolute errors and participant characteristics was assessed using linear 
mixed-effect models to identify possible sources of inaccuracies. For HR, the models used the absolute errors in 
HR as the independent variable; participant sex, height, weight, and skin tone (Fitzpatrick scale) as fixed effects; 
participants IDs, test type (6MWT, 3MST and 10CRT) and test phases (rest, peak exercise, and recovery) as 
random effects. For steps and distance, which are only measured during 6MWT, random effects only included 
participant IDs. Continuous independent variables were normalized before entering the model.

Results
Participant characteristics
The characteristics of the 16 study participants are summarized in Table 1. Of the 16 adults recruited, 15 adults 
completed both study visits resulting in the following number of observations: 6MWT-standard n = 45, 6MWT-
continuous lap n = 45, 3MST n = 45 and 10CRT n = 48. All 10CRT were completed in full, that is that a full chair 
rise was performed 10 times in total in serial in each test. Similarly, in all 3MST, 24 steps (up and down) were 

Fig. 1.  A schematic illustration of the study protocol including representative heart rate traces and GPS 
distance paths from one participant. 6MWT (6-min walk test), 6MWT-S (6MWT-standard), 6MWT-CL 
(6MWT- continuous lap), 3MST (3-min step test) and 10CRT (10 chair rise test).
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completed for a total of 3-min (72 steps in total). A summary of the number of participants, observations for 
each test and median [IQR] for the reference measure of each of the parameters assessed is provided in Table 2.

6-min walk tests
Distance
Participants walked further during the 6MWT-continuous lap compared to the 6MWT-standard (6MWT-
standard: 649 m [604, 694 m]; 6MWT-continuous lap: 679 m [638, 746 m], p < 0.001) (Table 2). Distance covered 
during the 6MWT-continuous lap was measured more accurately than during 6MWT-standard for both Garmin 
(6MWT-continuous lap: MAPE = 6.4% [3.0, 10.4%]; 6MWT-standard: MAPE = 20.1% [13.9, 28.4%], p < 0.001) 
and Fitbit (6MWT-continuous lap: MAPE = 8.0% [2.9, 10.1%]; 6MWT-standard: MAPE = 18.8% [15.2, 28.1%], 
p < 0.001), indicating that the 6MWT-continuous lap protocol is more suitable for remote monitoring (Table 
3). MAPE for distance was not different between Garmin and Fitbit in either 6MWT-standard (20.1% [13.9, 
28.4%] versus 18.8% [15.2, 28.1%], p = 0.935) or 6MWT-continuous lap (6.4% [3.0, 10.4%] versus 8.0% [2.9, 
10.1%], p = 0.678) protocol, respectively. Bland–Altman plots showed that both Garmin and Fitbit smartwatches 
underestimated the distance walked in the walk tests, although this bias was greater for the 6MWT-standard 
than 6MWT-continuous lap (Fig. 2).

Step count
Participants did a similar number of steps during the 6MWT-continuous lap compared to the 6MWT-standard 
(6MWT-standard: 800 steps [760, 840 steps]; 6MWT-continuous lap: 800 steps [760, 840 steps], p = 0.83) (Table 
2). Differences were not observed in errors for step count between the two protocols (p > 0.9). Compared to the 
Fitbit, the Garmin device showed smaller errors for step count for both 6MWT-standard (Garmin: MAPE = 1.8% 
[0.9, 2.9%] and Fitbit: MAPE = 6.8% [3.2, 12.9%], p < 0.001) and 6MWT-continuous lap (Garmin: MAPE = 0.9% 
[0.4, 2.2%] and Fitbit: MAPE = 8.0% [2.6, 12.3%], p < 0.001) despite the same number of steps being performed 
(Tables 2 and 3). Bland–Altman plots for smartwatch step count and hand tally counter are shown in Fig. 3 and 
illustrate the better agreement for Garmin.

Test Parameter n Obs Median [IQR]

6MWT-standard
Distance 16 45 649 [604, 694]

Step Count 16 45 800 [760, 840]

6MWT-continuous lap
Distance 16 45 679 [638, 746]

Step Count 16 45 800 [760, 840]

6MWT all

Rest. HR 16 90 88 [80,102]

Ex. HR 16 90 128 [115, 152]

Rec. HR 16 90 103 [94, 125]

3MST

Rest. HR 16 45 81 [74, 96]

Ex. HR 16 45 114 [102, 123]

Rec. HR 16 45 96 [85, 110]

10CRT

Rest. HR 16 48 76 [65, 85]

Ex. HR 16 48 99 [88, 107]

Rec. HR 16 48 78 [70, 84]

Table 2.  A summary of the number of participants, observations, and reference results for pooled 6-min walk 
tests (6MWT all), 6-min walk test—standard (6MWT-standard), 6-min walk test continuous lap (6MWT-
continuous lap), 3-min step tests (3MST) and 10 chair rise tests (10CRT). Heart rate (HR) is measured in beats 
per minute, and distance is measured in metres. Results are presented as n or median [interquartile range]. 
resting (Rest.), peak exercise (Ex.) and 1-min recovery (Rec.).

 

Median [IQR] or n (%) n = 16

Sex (male) 7 (44%)

Age (years) 27 [26, 29]

Height (cm) 170.5 [161.1,174.8]

Weight (kg) 67.3 [63.4,77.0]

BMI (kg/m2) 23.9 [22.4,25.7]

Fitzpatrick scale 2 [2,4] 

Table 1.  Study participant characteristics. Data expressed as median [interquartile range, IQR] or frequency 
(%). BMI (body mass index).
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Heart rate
HR results are presented as a pooled analysis for 6MWT protocols (Tables 2 and 4). Both devices showed 
small median errors when measuring HR at rest (Garmin: MAPE = 3.1% [1.1, 6.1%] and Fitbit: MAPE = 2.3% 
[1.4, 5.3%], p = 0.180), peak exercise (Garmin: MAPE = 0.8% [0.3, 6.0%] and Fitbit: MAPE = 2.5% [1.1, 7.3%], 
p = 0.003 and recovery (Garmin: MAPE = 3.1% [1.1, 5.6%] and Fitbit: MAPE = 3.2% [1.3, 5.3%], p = 0.503). 
Bland–Altman plots are shown in Fig. 4. These showed little evidence of bias under any condition, but the LOA 
increased noticeably during peak exercise.

Fig. 2.  Bland–Altman plots demonstrating levels of agreement between smartwatch GPS distance and meter-
wheel distance during 6-min walk test standard (6MWT-S) and 6-min walk test continuous lap (6MWT-CL).

 

Parameter CCC Diff. [LoA] APE Outliers

Garmin

  6MWT- standard
Distance 0.18 − 144 [− 290, 2] 20.1 [13.9, 28.4] 23 (51.1)

Step Count 0.91 − 12 [− 66, 42] 1.8 [0.9, 2.9] 0 (0.0)

  6MWT- continuous lap
Distance 0.71 − 54 [− 140, 33] 6.4 [3.0, 10.4] 2 (4.4)

Step Count 0.88 − 11 [− 93, 71] 0.9 [0.4, 2.2] 1 (2.4)

Fitbit

  6MWT- standard
Distance 0.25 − 77 [− 205, 52] 18.8 [15.2, 28.1] 21 (46.7)

Step Count 0.40 − 142 [− 275, − 8] 6.8 [3.2, 12.9] 4 (8.9)

  6MWT- continuous lap
Distance 0.74 − 55 [− 145, 36] 8.0 [2.9, 10.1] 1 (2.3)

Step Count 0.46 − 75 [− 216, 66] 8.0 [2.6, 12.3] 6 (13.6)

Table 3.  Distance covered (metres) and step count (n) from the Garmin and Fitbit smartwatches during 
standard and non-standard 6-min walk tests (6MWT-standard & 6MWT-continuous lap) are compared to 
the reference measure values. Lin’s concordance correlation coefficient (CCC), mean difference [limits of 
agreement], absolute percentage error (APE) and number of outliers (%) are presented.
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3-min step tests
Both devices showed small errors in measuring HR at rest (Garmin: MAPE = 2.4% [1.1, 5.7%] and Fitbit: 
MAPE = 3.0% [1.2, 5.0%], p = 0.898) and recovery (Garmin: MAPE = 2.6% [1.1, 9.6%] and Fitbit: MAPE = 3.2% 
[1.7, 6.2%], p = 0.946). Error during peak exercise for Garmin was MAPE = 0.5% [0.2, 22.5%] and for Fitbit was 
MAPE = 10.3% [5.2, 15.5%], p < 0.001 (Table 4). The relevant Bland–Altman plots are shown in Fig. 5.

10-chair rise tests
Both devices showed small errors in measuring HR at rest (Garmin: MAPE = 1.9% [1.0, 3.9%] and Fitbit: 
MAPE = 2.1% [1.0, 4.0%], p = 0.533) and recovery (Garmin: MAPE = 1.4% [0.5, 3.8%] and Fitbit: MAPE = 2.2% 
[1.5, 3.6%], p value = 0.115). Median error during peak exercise for Garmin was MAPE = 7.1% [1.4, 12.6%] 
and for Fitbit was MAPE = 12.1% [9.1, 17.4%], p < 0.001 (Table 4). Bland–Altman plots illustrating the limits of 
agreement between smartwatch HR and ECG HR are shown in Fig. 6.

Lin’s CCC, Bland–Altman analysis results, APE and number of outliers results are summarized for HR 
measured in all tests in Table 4.

Comparison of HR inaccuracies across devices
After pooling together 1098 observations across two devices (Garmin and Fitbit), 15 participants, three test 
types (6MWT, 3MST, 10CRT), six repetitions for 6MWT, three repetitions for 3MST and 10CRT, three test 
phases (rest, peak exercise, 1-min recovery) and accounting for pseudo-replication using a two- way ANOVA 
model with nested random effects, Garmin was found have lower APE than Fitbit (p < 0.001), with differences 
driven by lower APE during peak exercise.

Sources of inaccuracy
We found no convincing evidence of associations between absolute errors in HR or distance and participant 
characteristics (Table 5). A weak association between height and step count errors for the Fitbit device may have 
been a chance finding given the number of comparisons examined.

Fig. 3.  Bland–Altman plots demonstrating levels of agreement between smartwatch step count and hand 
tally count during 6-min walk test standard (6MWT-standard) and 6-min walk test continuous lap (6MWT-
continuous lap).
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Discussion
The aim of this study was to establish the accuracy of two state-of-the-art consumer grade smartwatches for 
distance, step count and HR during three established sub-maximal clinical assessments of exercise capacity 
(6MWT, 3MST and 10CRT) in a young and healthy population. The standardized tests selected in this study are 
relatively easy to perform, do not require the provision of specialist equipment and could be performed without 
supervision, providing an opportunity to be able to monitor exercise capacity frequently and at scale.

The main results of the study were (1) Compared to the gold-standard meter-wheel reference, distance 
measured by both wrist-worn devices (Garmin & Fitbit) was accurate, with as little as 6–8% error, during a 
non-standard 6MWT protocol. However, error increased to 18–20% when a standard 30 m lap 6MWT protocol 
was used. (2) Step count was a more accurate measure of distance compared to GPS distance (MAPE: 0.9%[0.4, 
2.2%] and 6.8% [3.2, 12.9%] for Garmin and Fitbit, respectively), and did not substantially differ using a standard 
or a continuous lap 6MWT protocol. (3) Both devices demonstrated excellent accuracy in measuring HR at rest, 
and during recovery (MAPE ≤ 3%), but accuracy worsened during peak exercise. MAPE was similar to rest and 
recovery during peak exercise, however, the limits of agreement widened due to an increase in the number of 
outliers (~ 7% for Garmin and ~ 12% for Fitbit).

Performing a remote 6MWT in the home environment may be limited due to the short track lengths available, 
therefore, we assessed walk tests outdoors in a park. 6MWT were performed in the traditional manner, i.e. back 
and forth along straight 30  m paths, and also using continuous circular laps which is more similar to ‘free-
range’ walking. Both devices had smaller errors of distance for the 6MWT-continuous lap protocol (median 
MAPE ≤ 8%) compared to the 6MWT-standard protocol (median MAPE ≤ 20%). Distance is measured by these 
devices through the activation of GPS and the greater errors seen in the 6MWT-standard are likely due to the 
use of short 30 m stretches which requires time spent turning and a frequent number of turns per test. All tests 
were performed in an inner city which in turn may contribute to underestimation of GPS-measured distance, 
however, this reflects realistic scenarios of remote monitoring.

Step count is measured by both devices using a composite of stride length (estimated by pre-programmed 
height) and tri-axial accelerometery data. In agreement with Rens and colleagues’ findings, we observed better 
accuracy in step count compared to GPS distance16. This finding likely also relates to the turning requirement 
in 6MWT-standard and the small pivot steps required to do so which may be underestimated by the devices. 
The Garmin device performed better than the Fitbit with a median APE of < 2% compared with ~ 8% for Fitbit.

Wearables also offer the opportunity to measure chronotropic responses to these exercise tests. Resting HR, 
HR at peak exercise and HR recovery following exercise are associated with mortality20–22. Irrespective of test, 
both devices demonstrated good HR accuracy and agreement at rest and recovery, with MAPE ≤ 3%. The number 
of outliers, defined as recordings showing an absolute percentage error > 20%, was small (< 5%) during rest, 
but it increased to 10–30% during peak exercise. This indicates that while the majority of measurements taken 
during peak exercise are accurate, the frequency of substantially incorrect measures increases. This increase may 

Parameter CCC Diff. [LoA] APE Outliers

Garmin

 6MWT all

Rest. HR 0.92 − 1 [− 12, 11] 3.1 [1.1, 6.1] 1 (1.1)

Ex. HR 0.74 − 8 [− 42, 27] 0.8 [0.3, 6.0] 12 (13.3)

Rec. HR 0.95 2 [− 9, 14] 3.1 [1.1, 5.6] 1 (1.1)

 3MST

Rest. HR 0.93 − 2 [− 12, 9] 2.4 [1.1, 5.7] 1 (2.2)

Ex. HR 0.38 11 [− 24, 46] 0.5 [0.2, 22.5] 13 (28.9)

Rec. HR 0.79 6 [− 15, 26] 2.6 [1.1, 9.6] 6 (13.3)

 10CRT

Rest. HR 0.96 − 1 [− 7, 5] 1.9 [1.0, 3.9] 0 (0.0)

Ex. HR 0.75 − 7 [− 20, 5] 7.1 [1.4, 12.6] 3 (6.2)

Rec. HR 0.95 1 [− 6, 9] 1.4 [0.5, 3.8] 0 (0.0)

Fitbit

 6MWT all

Rest. HR 0.93 − 2 [− 12, 9] 2.3 [1.4, 5.3] 2 (2.2)

Ex. HR 0.75 − 4 [− 34, 27] 2.5 [1.1, 7.3] 9 (10.0)

Rec. HR 0.91 2 [− 13, 17] 3.2 [1.3, 5.3] 3 (3.3)

 3MST

Rest. HR 0.96 0 [− 8, 9] 3.0 [1.2, 5.0] 1 (2.2)

Ex. HR 0.61 − 10 [− 39, 18] 10.3 [5.2, 15.5] 7 (15.6)

Rec. HR 0.94 0 [− 11, 12] 3.2 [1.7, 6.2] 0 (0.0)

 10CRT

Rest. HR 0.79 1 [− 12, 13] 2.1 [1.0, 4.0] 2 (4.2)

Ex. HR 0.43 − 13 [− 26, 0] 12.1 [9.1, 17.4] 5 (10.4)

Rec. HR 0.96 0 [− 6, 6] 2.2 [1.5, 3.6] 0 (0.0)

Table 4.  Lin’s concordance correlation coefficient (CCC), Bland–Altman plots for repeated measures presented 
as mean difference [limits of agreement], absolute percentage error (APE) presented as median [interquartile 
range] and number of outliers (%) results for pooled 6-min walk tests (6MWT), 3-min step tests (3MST) and 
10 chair rises tests (10CRT) heart rate (HR) at rest (Rest.), peak exercise (Ex.) and 1-min recovery (Rec.).
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be due to reduced contact pressure between the device sensor and the wrist, sweating and/or increase in motion 
artifacts due to arm movements during walking23. Arm movements may also explain why the number of outliers 
was larger during the 3MST than the 6MWT despite a lower HR increase. It is possible that smartwatches may 
be more robust to the type of arm movement typically observed during walking, than during a step test.

In line with our findings, prior work has demonstrated that smartwatches can measure pulse rate accurately 
at rest, with reductions in accuracy reported during physical activity such as walking, treadmill exercise and 
cycling24–26. Furthermore, step count validity has previously been shown to be more accurate than GPS measured 
distance27. One limitation of our study is that the battery of tests investigated are all sub-maximal assessments 
of exercise capacity and therefore do not measure maximal cardiorespiratory fitness, which should be assessed 
using cardiopulmonary exercise testing (CPET). A comparison of these performance findings and heart rate 
responses to gold-standard CPET measured outcomes would be an interesting future direction.

Fig. 4.  Bland–Altman plots demonstrating levels of agreement between smartwatch heart rate (HR) and ECG 
HR during pooled 6-min walk tests (6MWT).
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Creagh and colleagues28 utilized Motorola 360 Sport smartwatches and Samsung Galaxy S7 smartphones 
to assess whether signal-based features extracted from a remote 2-min Walk Test could distinguish individuals 
with multiple sclerosis from healthy controls28. They reported that the two groups could be discriminated with 
an accuracy of 82 ± 2%, (sensitivity of 80 ± 4% and specificity of 87 ± 3%). We are unaware of previous studies 
that have validated the use of smartwatches in commonly used and standardized submaximal tests used clinically 
or in large epidemiological studies.

Limitations
One limitation of this study is its small sample size; however, participants were asked to repeat each test several 
times to obtain up to 90 comparisons per test. The age and healthy condition of participants may also be 
considered a limitation; the tests of exercise capacity investigated in this study are usually performed clinically 
in older populations with either cardiopulmonary or neuromuscular dysfunction, where slower movement may 

Fig. 5.  Bland–Altman plots demonstrating levels of agreement between smartwatch heart rate (HR) and ECG 
HR during 3-min step tests (3MST).

 

Scientific Reports |        (2024) 14:22994 9| https://doi.org/10.1038/s41598-024-74140-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


negatively impact the accuracy of distance tracking and step counting29. The step distances for the 6MWT-
standard and 6MWT-continuous lap were 649 and 679, respectively. These distances are known to drop into 
the mid 500 range for a 60 + year old population, therefore, replication of these analyses in the noted clinical 
populations would be an important next step. Furthermore, the younger population used in this study may have 
handled the turning radius and overall agility required to turn in a standard 6MWT more efficiently than the 
population that would typically be invited to perform this test. Therefore, the error noted in the standard 6MWT 
may be enhanced in an aged population.

Conclusions
In this study of young and healthy individuals, pulse rate dynamics during walk, steps and chair rise tests can 
be measured with acceptable accuracy using two consumer grade smartwatches. This method has the potential 
to be used to assess exercise capacity remotely in the community. The use of a continuous lap is preferred to the 
standard back and forth track when assessing the 6MWT using smartwatches. Generally, in this study, Garmin 

Fig. 6.  Bland–Altman plots demonstrating levels of agreement between smartwatch heart rate (HR) and ECG 
HR during 10 chair rises test (10CRT).
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Vivoactive 4 provided more accurate measures than Fitbit Sense. Further studies are required to evaluate remote 
assessment of exercise capacity in individuals with cardiorespiratory conditions or frailty.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the sensitive 
nature of the data collected but are available from the corresponding author on reasonable request.
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