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Abstract 

This thesis proposes a multi hazard modelling framework to address the increasing risk of 

flood-related damages in the US Gulf Coast region due to climate change, urbanisation, 

and extreme weather events. This research develops a statistical per event-based 

catastrophe model on predicting the financial losses from flooding triggered by the heavy 

precipitation/rainfall from abnormal (high) windspeed via integrating statistical (Extreme 

Value Theory and Copula analysis) and machine learning methodologies (Generalised 

Linear Model). This study focuses on the US Gulf Coast, particularly the states of Texas, 

Louisiana and Mississippi. The proposed assessment is structured into two distinct yet 

complementary objectives: the hazard and vulnerability models. The hazard model aims 

to calculate the annual joint occurrence probability for wind-driven floods by capturing the 

complexities and dependencies of how floods will be driven and impacted by windspeed. 

The vulnerability model aims to predict potential losses for single buildings or a portfolio of 

properties under different building characteristics, and it is evaluated using cross-validation 

methods to examine its reliability and accuracy. The outcome is the financial losses from 

the specific intensity of natural disaster events and the exceedance probability for specific 

thresholds. The outcome shows the risk of extreme windspeed events across three states 

on the US Gulf Coast. It provides valuable insights for understanding, predicting, and 

managing risks associated with wind-related hazard and their cascading effect, 

contributing to urban planning, disaster management, and the insurance and reinsurance 

industry. Also, this research contributes to developing a multi-hazard flood risk assessment 

framework and offers a solid foundation of non-commercial tools for researchers and 

policymakers to better manage coastal flood risks. 
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1. Introduction  

1.1. Background  

The rapid increase in global population and the ongoing trend of urbanisation are leading 

to a higher number of people being exposed to flood risks. As of November 2022, the 

global population exceeded 8 billion and continues to grow (United Nations Department of 

Economic and Social Affairs, Population Division, 2022 By 2050, it is expected that over 

two-thirds of the world's population will live in urban areas, significantly raising the number 

of individuals vulnerable to urban flooding (Gu, 2019; Tellman et al., 2021). The impacts 

of climate change are intensifying these flood risks by increasing the frequency and 

severity of extreme weather events, driven by an unprecedented rate of global warming 

due to human activities. Each additional 0.5°C of warming results in notably higher intensity 

and frequency of such extreme events. The Intergovernmental Panel on Climate Change 

(IPCC) reports that since the early 20th century, the global average sea level has risen by 

approximately 20 centimetres, with projections suggesting a possible rise of up to 1 meter 

by 2100 under high-emission scenarios (IPCC, 2021). These changes pose significant 

threats to regions such as the Gulf Coast, where even minor increases in sea level can 

lead to substantial increases in both the intensity and possibility of floods. 

Additionally, climate change is expected to intensify the hydrological cycle, resulting in 

more extreme precipitation events. This trend is evident in the increasing incidence of 

heavy rainfall and flash flooding on the Gulf Coast. Studies indicate that the intensity of 

extreme precipitation events in the southeastern United States has increased by 

approximately 27% over the last 50 years, largely due to warmer air temperatures that 

enhance the moisture-holding capacity of the atmosphere (US Global Change Research 

Program, 2017).  

Environmental degradation, including the loss of wetlands and deforestation, further 

aggravates flood risks in the Gulf Coast. Wetlands act as natural buffers, absorbing excess 

rainfall and reducing the impact of storm surges. However, the Gulf Coast has lost 

substantial wetlands due to urban development, industrial activities, and rising sea levels. 

According to the US Geological Survey, the region loses an average of 80 square 
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kilometres of wetlands each year, diminishing its natural flood mitigation capacity (US 

Geological Survey, 2020). In addition, deforestation and land degradation in the Gulf 

Coast's watershed areas contribute to increased runoff and sedimentation in rivers, leading 

to reduced channel capacity and higher flood risks. Effective flood risk management in the 

Gulf Coast thus requires integrated approaches that address both environmental 

conservation and sustainable urban development. 

In the US, 41 million people were exposed to floodplain risks in 2018, and this number 

could grow to 60 million by 2050 due to population growth and climate change (Wing et al., 

2018). The economic costs of urban flooding are projected to increase dramatically in the 

coming decades, with annual global losses from coastal urban flooding that could reach 

$1 trillion by 2050 (Hallegatte et al., 2013). 

 

Figure 1.1: Total Loss Amount by Year in the US Gulf Coast Region 

Figure 1.1 highlights the temporal trends in flood insurance claims due to rain damage in 

the US Gulf Coast states. The logarithmic scale on the y-axis shows significant variability 

in annual losses, with notable spikes in certain years indicating major flood events such as 

Tropical Storm Allison, 2001; Hurricane Katrina & Hurricane Rita, 2005; Hurricane Harvey, 
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2017. The dashed trend line indicates an overall increasing trend in the total loss amount, 

reflecting either an increase in the frequency or severity of flood events or changes in the 

insured value of properties. By adjusting for inflation, Figure 2.1 provides a clearer picture 

of the economic impact of flood losses over time, allowing for better comparison across 

different years. 

 

1.2. Problem Statement 

The devastation caused by Hurricane Harvey in 2017 resulted in unprecedented rainfall 

and flooding in Texas and Louisiana, underscores the increasing threat of such extreme 

weather events (Blake & Zelinsky, 2018). Over the past decade, the Gulf Coast has 

witnessed a compound annual growth rate of approximately 4% in exposure, and this 

growth rate is expected to increase the likelihood of both the intensity and frequency of 

severe hurricanes (Categories 4 and 5 on the Saffir-Simpson Scale) in the future 

(Sousounis & Little, 2017). According to recent NOAA predictions, the 2024 Atlantic 

hurricane season is expected to be above normal due to near-record warm ocean 

temperatures and La Niña conditions, with 17 to 25 named storms, 8 to 13 becoming 

hurricanes, and 4 to 7 major hurricanes (NOAA, 2024). The Gulf Coast's unique 

geographical and meteorological conditions, influenced significantly by the Gulf of Mexico, 

necessitate a focused study on predicting and mitigating flood losses driven by wind and 

rainfall (Keim & Muller, 2009). 
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Figure 1.2:Number of Losses by State in the US Gulf Coast Region 

Figure 1.2 highlights the spatial distribution of flood insurance claims due to rain damage 

across the US Gulf Coast states between January 1978 to February 2024. The colour 

gradient indicates the frequency of losses, with darker shades representing higher 

numbers of claims. In these states, Louisiana (LA) has the highest number of claims 

(262,427), followed by Texas (TX) with 217,133 claims. The figures for other states are as 

follows: Florida (FL) with 170,376 claims, Mississippi (MS) with 25,747 claims, and 

Alabama (AL) with 16,466 claims. 

Insurance and reinsurance play crucial roles in managing and mitigating flood risks by 

providing financial protection and reducing premiums for risk reduction measures 

(Kunreuther & Michel-Kerjan, 2009; Surminski & Oramas-Dorta, 2014). However, the 

effectiveness of these financial instruments depends on the accuracy of flood risk 

assessments and the integration of comprehensive vulnerability data (Botzen et al., 2009). 

There is a need for improved flood insurance schemes that account for the changing risk 

landscape due to climate change and urban development (Lamond & Penning-Rowsell, 

2014). 
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Furthermore, while there is a variety body of research on physical flood hazards, there is 

less emphasis on the vulnerability of specific populations and infrastructure. Vulnerability 

assessments often lack the granularity needed to accurately identify at-risk buildings and 

communities. This deficiency hampers the development of targeted mitigation and 

adaptation strategies that could significantly reduce the impacts of flooding (Mechler et al., 

2014). 

Despite the catastrophe models used by the insurance industry, which are still not perfect, 

they are improving and have been used to manage trillions of euros in coverage globally 

(Michel-Kerjan, 2012). According to de Ruig et al. (2022), utilising these models typically 

requires substantial annual fees, which can be prohibitive for many stakeholders, including 

smaller municipalities and independent researchers. Additionally, the technical complexity 

of these models poses challenges for those without specialised expertise in flood risk 

modelling, limiting their accessibility and practical utility. Mechler and Bouwer (2015) argue 

that adequate funding is essential for implementing comprehensive disaster risk reduction 

measures, which can significantly reduce vulnerability and enhance resilience. 

 

1.3. Research Aim and Objectives  

To address these challenges, this research seeks to create a non-commercial financial 

flood loss prediction model for researchers, focusing on two main objectives: firstly, 

developing a hazard model to quantify the impact of windstorms and heavy rainfall, and 

secondly, constructing a machine learning-based vulnerability model for precise loss 

estimation at the level of individual buildings. The development of a non-commercial model 

for researchers to assess resilient strategies for managing coastal risks has become 

increasingly vital. The study areas examined in this paper are Texas, Louisiana, and 

Mississippi. 
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1.4. Thesis Structure 

The structure of this study is as follows: Section 2 provides a review of existing literature 

to identify gaps in multi-hazard flood modelling. Section 3 outlines the methodology, 

detailing the data sources used for model evaluation, dataset visualisation, and model 

development techniques. Section 4 presents the results of the model. Section 5 discusses 

the implications of our findings for urban planning and disaster management, highlights 

potential limitations of the model, and offers directions for future research and 

recommendations. Finally, Section 6 is the conclusion.  
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2. Literature Review 

2.1. Climate Change and Flood Predictions 

Scaife et al. (2017) indicate that the predictability of storminess is at the seasonal scale, 

from a month to three months. However, winter wind speed and rainfall are trending to 

increase in the second half of the 21st century due to projections of increased frequency 

of storm activities (UKCP18, Lowe et al., 2018). Furthermore, Fung et al. (2018), go on to 

point out that the rainfall pattern would be seasonal, which means the rainfall would be 

more in winter and less in summer; however, in general, there is a trend of increase in 

intensity and frequency of extreme rainfall events (Met Office, 2018; 2019a). According to 

McDonald (2011), future models (CMIP6) should take up a multi-model scenario to bring 

down uncertainties with regard to the prediction of storms under climatic change. These 

predictions are expected because global warming will induce changes in the hydrological 

cycle, with floods and extreme precipitation likely to increase (Tabari, H. 2020; Madsen et 

al., 2014).  

Recent research indicates the growing frequency and intensity of natural hazards due to 

climate change and urbanisation, especially in highly populated areas. The traditional 

single-hazard model is less able to deal with the complex coupling of multiple hazards, 

such as the co-occurrence of floods, landslides, and storm surges. Gallina et al. (2016) 

emphasise that multi-hazard risk assessment is critically necessary, pointing to significant 

gaps in existing methodologies that often do not consider the cumulative and cascading 

effects of multiple hazards. For example, Johnson et al. (2016) illustrate the challenges of 

assessing multi-hazard risks in urban areas, noting that different hazards, like heat waves, 

typhoons, and landslides, may interact in complex ways, particularly in socio-economically 

diverse districts like those in Hong Kong. Similarly, Kappes et al. (2012) discuss how the 

interconnected nature of urban vulnerabilities, such as those driven by socioeconomic 

disparities, exacerbates the impacts of overlapping hazards, necessitating integrated 

approaches that consider both the spatial and temporal dimensions of risk. Collectively, 

this body of work identifies a critical research gap: the lack of comprehensive models that 

can integrate multiple hazards under an adaptive framework, particularly in the context of 
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climate change. Addressing this gap is essential for developing more effective risk 

mitigation strategies in urban areas. 

The increasing complexity of natural hazards due to climate change necessitates the 

development of multi-hazard models that can account for the interdependencies between 

various risks. Traditional risk assessment approaches, such as Probabilistic Risk 

Assessment (PRA) and Deterministic Risk Assessment (DRA), have been foundational in 

evaluating individual hazards, but they fall short when applied to interconnected and 

cascading risks. Recent literature highlights the shift towards integrated frameworks that 

combine these approaches within a multi-hazard context. For instance, Jongman et al. 

(2014) propose a multi-risk assessment framework, emphasising the importance of 

considering the dependencies across different hazards and socioeconomic factors. This 

framework advocates for a system-of-systems approach, where risks are evaluated not 

only individually but also in relation to their potential to trigger cascading failures across 

sectors and regions. Additionally, Johnson et al. (2016) discuss the application of PRA and 

DRA in urban environments, where the interaction between multiple hazards, such as 

flooding and landslides, requires a more dynamic and comprehensive assessment 

methodology. These frameworks guide the development of multi-hazard models that are 

better equipped to manage the complexities of contemporary risk landscapes, offering a 

more holistic approach to disaster risk reduction. 

 

2.2. Multivariate Flood Hazard Modelling 

Eilander et al. (2023) present a framework for compound flood hazard modelling that has 

global applicability, emphasising the need to consider multiple drivers of flooding, such as 

extreme rainfall, river discharge, and coastal water levels. This study underscores the 

importance of understanding interactions between different flood drivers for effective risk 

management. Wahl et al. (2015) discuss the combined effects of sea-level rise, storm 

surges, and extreme precipitation on flood hazards, highlighting the need for 

comprehensive flood risk models that incorporate multiple interacting drivers. 
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In terms of multivariate flood hazard modelling, two major categories are Dynamical 

Models and Statistical Models. Dynamical models focus on detailed physical simulations 

and capture the complexity of the physical environment. These models require high-quality 

data, proper model setup, and parameterisation to ensure reliable dynamic flood 

simulations (Nkwunonwo et al., 2020). On the other hand, statistical models aim to 

understand and quantify the relationship between flood hazards and different drivers, using 

physical data to produce flood maps or non-physical data, such as rainfall and sea levels, 

to estimate occurrence probabilities (Khosravi et al., 2016; Towe et al., 2016). 

The Weather Research and Forecasting (WRF) model is one of the most commonly 

utilised dynamical models for rainfall flood forecasting in both research and practical 

applications (Jiyang et al., 2017). However, while simulating winds, surges and extreme 

rainfall using the WRF model from Hurricane Isabel (2003), the simulations failed to 

capture the outer rainbands accurately, which were critical in contributing to wind damage 

and urban flooding (Lin et al., 2010). Furthermore, the WRF model underestimates 50% to 

60% of simulated rainfall events (Moya-Álvarez et al., 2018). To address this issue, 

Couasnon et al. (2020) explore the statistical dependencies between different flood drivers 

to predict the likelihood of compound flooding events, providing insight into how extreme 

weather conditions can converge to heighten flood risks. Friederichs et al. (2018) illustrate 

that employing separate post-processing techniques on the tail distribution of heavy 

precipitation, specifically using Extreme Value Theory (EVT), is effective in generating 

reliable and accurate forecasts for extreme precipitation events, particularly during the 

summer when such events are frequently produced by mesoscale convective systems. In 

the application of RVT, Tabari (2021) observed that while both the Block-Maxima (BM) and 

Peak-Over-Threshold (POT) methods of EVT reflect a shift in intensity over time, they differ 

in the extent of this change, with the disparity increasing as the extremity of events rises. 

This research implies that although the WRF model might underestimate precipitation 

levels when EVT is applied, the correlation between flooding and rainfall remains 

consistent. 
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Johansson et al. (2003) developed a regression model to study the impact of wind and 

topography on precipitation distribution in Sweden and combined it with statistical analysis. 

The primary goal was to determine whether statistical relationships could describe the 

relationship between precipitation, airflow, and topography. However, they also indicate 

that the model could be enhanced by incorporating wind direction as a variable. Although 

machine learning has made significant improvements in weather forecasting, accurately 

predicting such events remains difficult due to the complexity of their interrelationships 

(Maina et al., 2023). As floods are influenced by multiple drivers that are often statistically 

interdependent, not counting these dependencies can result in the underestimation of flood 

risk and the inadequate design of flood control structures (Jane et al., 2020). Thorsten 

(2006) suggests that copulas can describe or model the interdependencies between 

random variables, making them a critical tool in modelling dependencies between different 

hazards in multi-hazard risk assessment. 

Traditional multivariate probability distributions often require all marginal distributions to be 

of the same type (e.g., Gaussian), which may not always be appropriate for the data at 

hand, thus limiting the model's flexibility and accuracy. For example, Loganathan et al. 

(1987) assumed the marginal distributions between extreme tides and the freshwater flows 

they led were from Gaussian distribution and applied a bivariate Gaussian distribution to 

model these variables. They found that this traditional assumption of statistical 

independence between streamflow and tidal heights could lead to underestimation of flow 

and tidal values. 

Copula theory, which allows for modelling dependencies between multiple variables, has 

been widely applied in risk modelling for both natural and financial risks and is increasingly 

used in multi-hazard scenarios. In the financial sector, Low et al. (2013) applied a family 

of copula models (Clayton canonical vine copula) to forecast the return on investment 

portfolios, finding that copulas work reasonably when dealing with portfolios with higher 

dimensions. In natural hazard modelling, a copula-based approach for flood risk analysis 

has been developed to assess the probabilistic risk of floods by analysing the relationship 

between volume, duration of the flood hydrograph, and peak flow (Ganguli et al., 2012). 
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Ming et al. (2022) describe using Copula functions, particularly the Clayton copula, to 

quantify the joint probability distributions of compound flooding events involving rainfall, 

river flow, and storm surges, offering a more nuanced understanding of how these hazards 

interact, leading to more accurate risk assessments. Similarly, Ming's study highlights the 

application of Monte Carlo simulations to generate stochastic multi-hazard events based 

on these copula-derived joint distributions, further supporting the probabilistic nature of 

multi-hazard modelling. 

Shiau and Modarres (2009) use copulas to analyse the relationships between these factors 

within a drought model and conclude that frequency, duration, and severity are three 

relevant factors contributing to every drought event.  On the issue correlated to extreme 

value dependence, t copula analysis is particularly useful in this situation (Demarta et al., 

2007). In the exploration of advanced statistical methods for weather prediction, the latest 

approach has been presented using D-vine copula-based post-processing for wind speed 

forecasts, offering a refined technique for enhancing the accuracy of wind speed 

predictions. As a result, copula analysis can significantly model dependency structures 

between flood levels, wind speed, and rainfall to improve flood prediction (Jobst et al., 

2023). 

Building on this, numerical models like hydrodynamic models allow for simulating flood 

dynamics under varying multi-hazard conditions. These models, integrated with copula-

based joint probability distributions, are essential for capturing the dynamic processes of 

hazards, particularly in urban areas where interactions between different hazards can 

significantly exacerbate impacts. Li et al. (2019) extend this approach by exploring the use 

of t-copulas and other types of copulas to model the dependency structures in water 

accessibility, demonstrating how different copula types can be applied depending on the 

environment's nature and the required dependency level. 

Additionally, Bachner et al. (2023) emphasise the combined use of statistical models and 

simulations, advocating for an approach that integrates probabilistic assessments with 

dynamic simulations to address the complexities of cascading hazards, such as those 

observed in Austria, where socioeconomic factors compound flood risks. Finally, 
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Zscheischler et al. (2018) discuss the application of joint probability approaches, which are 

crucial for assessing the risk of concurrent hazards like storm surge and extreme rainfall, 

further supporting the necessity of combining copula theory with advanced simulation 

techniques for comprehensive multi-hazard risk assessments. 

In the hazard model proposed in this paper, we will employ an EVT distribution to model 

wind speed, rainfall, and flood data for each variable. The parameters calculated from 

these distributions will then be used as marginal distributions in copula analysis to 

determine the most suitable copula types. After obtaining the best fitting copulas for our 

data, the model can be interpreted by inputting wind speed or rainfall levels to estimate the 

joint annual exceedance probability and corresponding flood levels. 

 

2.3. Vulnerability Modelling 

Vulnerability in the context of flood risk is a multidimensional concept that reflects the 

potential for loss due to the interplay of physical and social factors. According to Cutter 

(1996) and Cutter et al. (2003), vulnerability is determined by natural exposure, referred to 

as physical and socio-demographic characteristics or social vulnerability. Physical 

vulnerability involves the geographical location and environmental conditions that make 

certain areas susceptible to flood hazards, indicating where a hazard is likely to occur and 

which assets are exposed (Cutter et al., 2003; Hufschmidt, 2011). On the other hand, 

social vulnerability arises from societal factors that influence a community's capacity to 

prepare for, respond to, and recover from flood events. These factors include unequal 

access to resources, varying levels of power and influence, settlement patterns, and the 

broader social order (Morrow, 1999). For example, residents in flood-prone areas may 

suffer significant economic losses; however, those with higher income levels or adequate 

insurance coverage are better equipped to recover from such events. 

Turner et al. (2003) further elaborate on this dual nature of vulnerability by integrating these 

physical and social dimensions into a broader framework for vulnerability assessment. This 

framework highlights the interaction between human and environmental systems, 
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emphasising that vulnerability is shaped not only by exposure to hazards but also by the 

underlying social structures and processes that influence how communities experience 

and respond to such risks. Several statistical methodologies have been employed in 

vulnerability assessments to manage the complexity of the data and ensure that the indices 

or models developed are robust and reliable. Poudyal et al. (2012) and subsequent studies 

by Mentzafou et al. (2016) have applied various techniques to develop these models. 

Common methods include normalizing indicators and analysing inter-indicator correlations 

to identify relationships between different vulnerability indicators. 

Jongman et al. (2015) developed a global model to assess flood vulnerability by integrating 

socioeconomic factors and infrastructure data. Their model highlighted the varying levels 

of vulnerability across different regions, underscoring the need for localised risk 

assessments. Thieken et al. (2016) proposed a vulnerability model that accounts for 

building characteristics, flood depth, and duration, enabling detailed loss estimation at the 

building level and providing valuable information for risk management and insurance 

purposes. Merz et al. (2021) focused on the use of multi-variable models in flood 

vulnerability assessments, comparing these models to traditional single-variable 

approaches. They demonstrated that multi-variable models, which include parameters 

such as water velocity, building type, and occupancy, significantly outperform single-

variable models. This study reinforced the importance of comprehensive data integration 

for accurate flood damage prediction. 

Traditional vulnerability models often do not account for financial losses, although 

Bakkensen et al. (2016) and Sharifi (2016) summarise and normalise socioeconomic 

indicators such as language, disability, minority status, and other factors that influence a 

community's vulnerability to natural hazards, resulting in a single score to guide 

policymakers and flood planners. These researches proposes a flood vulnerability model 

that primarily focuses on financial losses to provide flood emergency planners with 

sufficient resources for rebuilding the community. Current approaches to estimating flood 

vulnerability recognise the critical role of financial losses as a key vulnerability indicator. 

Financial losses directly impact a community's ability to recover from flood events. Floods 
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can disrupt essential facilities and services, which are crucial for maintaining a community's 

quality of life and economic well-being (Scheuer et al., 2010). 

In general insurance pricing, machine learning algorithms such as Generalised Linear 

Models (GLM) are used in severity modelling (Goldburd et al., 2020; Pietro Parodi, 2015). 

In the application of machine learning algorithms, they involve selecting model complexity 

through cross-validation and controlling it with one or more hyperparameters. Unlike linear 

and parametric methods, it is non-linear and non-parametric, offering flexibility that often 

results in strong predictive performance, though these models are generally less 

interpretable (Molnar et al., 2020). Therefore, the proposed model uses a GLM to address 

the gap in incorporating the financial component into vulnerability modelling. Additionally, 

the random components (probability distribution of the target variable) are assumed to 

belong to a member of the exponential family of distributions, such as the gamma 

distribution (Anderson et al., 2007). 

Beyond the financial sector, machine learning techniques have been applied to flood risk 

analysis. A machine learning based flood hazard assessment and risk mapping framework 

is presented via optical remote sensing and GIS data. The framework employs explainable 

machine learning techniques, particularly Random Forest, to assess flood hazard levels 

dynamically. By integrating satellite imagery with machine learning, this approach provides 

a comprehensive method for flood mapping, establishing a precedent for similar 

applications in flood vulnerability analysis (Antzoulatos et al., 2022). However, there is a 

need for more comprehensive models that integrate all components of risks and 

vulnerability factors, as existing models often lack detailed vulnerability assessments 

(Aerts et al., 2018). 

It is undeniable that advanced machine learning or deep learning algorithms statistically 

outperform GLM in predictive accuracy. However, Molnar et al. (2020) caution that several 

pitfalls can arise in the interpretation of advanced machine learning models, particularly 

when they are applied inappropriately. These include misapplying the model to the wrong 

context, overlooking dependencies between features, disregarding uncertainty in 

estimates, and misunderstanding causality when using illustrative graphs. Such issues can 
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lead to significant errors, especially when users mistakenly assume that a single machine 

learning model can provide consistent interpretations across all contexts. The challenge 

lies in selecting an interpretation method that offers accurate predictions while effectively 

translating detailed model results into comprehensible explanations. Birkland (2006) also 

discusses how policymakers often operate with bounded rationality and limited information, 

making it difficult for them to fully understand and utilise complex catastrophe models. 

Therefore, using GLM for vulnerability modelling in this paper strikes a balance between 

complexity and interpretability. 

Notably, companies such as Verisk have developed commercially used wind-related flood 

hazard models to provide their clients, particularly those in the insurance and reinsurance 

industries, with hurricane risk solutions (Grenier et al., 2020). However, these companies 

charge high annual premiums for their services, and finding an open-access or 

academically used catastrophe model that combines hazard and vulnerability models with 

financial losses is rare. This paper aims to construct a model that integrates modules from 

sections 2.2 and 2.3 to develop an extreme wind-related flood hazard framework, allowing 

users to predict financial losses by inputting rainfall level or windspeed data. 
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3. Methodology 

3.1. Research Design 

The primary objective of this research is to develop a catastrophe model framework that 

integrates a hazard model and a vulnerability model to estimate the financial impact of 

extreme weather events, specifically focusing on flood-related damages in the US Golf 

Coastal. The research follows a quantitative, model-based approach, utilising statistical 

methods to capture the relationships between extreme environmental conditions and the 

resulting damage to building infrastructure. 

This model aims to address the need for reliable predictive tools in disaster risk 

management by integrating two key components: a hazard model and a vulnerability model. 

Hazard Model Objective: The hazard model is designed to simulate the intensity 

and joint occurrence of extreme weather events, such as rainfall, wind speed, and flood 

depth. By applying advanced statistical methods, particularly Extreme Value Theory (EVT) 

and copula analysis, the model generates a range of potential future hazard scenarios for 

the region. These scenarios are crucial for understanding the potential severity and 

frequency of extreme events in the target area. EVT and copula analysis are selected for 

this research because EVT provides a robust framework for modelling the tail behaviour 

of probability distributions, which is essential for analysing rare and extreme events such 

as severe floods and hurricanes. Copula functions are employed to model the dependency 

structure between multiple variables, such as rainfall, wind speed, and flood depth. 

Traditional statistical methods often struggle to accurately capture the distribution of 

extreme values, leading to an underestimation of risk. EVT addresses this issue by 

focusing on the tail behaviour of probability distributions, allowing for a more precise 

estimation of the intensity and likelihood of extreme weather events. Copula analysis 

complements EVT by modelling the joint distribution of multiple variables, even when they 

exhibit non-linear or tail dependencies, providing a nuanced and realistic assessment of 
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multivariate risks. This approach is essential in multivariate extreme value analysis, where 

understanding the simultaneous occurrence of multiple hazards enhances the accuracy of 

risk assessment. Copulas enable the model to capture complex dependencies that 

traditional correlation measures might overlook, thereby offering a more detailed and 

realistic representation of the risk. 

Vulnerability Model Objective: The vulnerability model aims to quantify the 

relationship between the simulated hazard scenarios and the resulting building damages. 

This component of the research utilises a Generalised Linear Model (GLM) approach, 

incorporating various building and environmental characteristics that influence the extent 

of damage. The goal is to develop a model that can accurately predict the financial losses 

associated with specific hazard scenarios. The GLM framework is well-suited for modelling 

the relationship between hazard scenarios and building damages due to its ability to 

accommodate different types of response variables (e.g., continuous, categorical, binary) 

and error distributions (e.g., Gamma, log-normal). This flexibility is crucial given the diverse 

nature of the data involved, which includes financial losses, building characteristics, and 

environmental factors. Additionally, GLM allows for  including both linear and non-linear 

relationships, making it ideal for capturing the complex interactions between the predictors 

and the response variable, in this case, the extent of building damage. The forward 

selection method employed in this research ensures that only the most significant 

predictors are included in the final model, thereby enhancing its predictive accuracy. 

The integration of the hazard and vulnerability models is central to the research design, 

enabling the simulation of potential losses under various extreme weather scenarios. The 

combined model is then evaluated using cross-validation techniques to ensure its reliability 

and predictive accuracy. The research design is iterative, with feedback from model 

evaluations used to refine both the hazard and vulnerability components. 

To achieve these objectives, the research will proceed through the following key steps: 

• Data Collection and Preprocessing (3.2): Collect and preprocess data from the 

National Flood Insurance Program (NFIP) and meteorological records, ensuring the 

datasets are suitable for the development of both hazard and vulnerability models. 
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• Hazard Model Development (3.4): Implement the hazard model using EVT and copula 

analysis to simulate extreme weather scenarios that could affect the US Gulf Coastal 

region. 

• Vulnerability Model Development and Validation (3.5): Develop the vulnerability 

model using GLM to estimate the financial impact of the simulated scenarios on building 

infrastructure. Apply cross-validation techniques to assess the reliability and predictive 

accuracy of the integrated model, refining the model as necessary based on the 

validation results. 

• Model Integration (3.6): Integrate the hazard and vulnerability models to form a unified 

catastrophe model capable of predicting potential losses under extreme weather 

conditions and various building characteristics. 

 

3.2. Data Collection and Description 

3.2.1. Data Sources 

The data source for this research is the Federal Emergency Management Agency (FEMA) 

National Flood Insurance Program (NFIP) claims dataset and National Centers for 

Environmental Information (NCEI) data. NFIP dataset from FEMA contains detailed 

records of insurance claims made by policyholders affected by flood events across the 

United States, including Texas, Louisiana and Mississippi. The dataset contains a variety 

of variables, including the cause of damage, state, date of loss, building damage amount, 

flood event names, and other related information. These records will be used in developing 

the vulnerability model. 

In addition to the NFIP claims data, meteorological data was collected from the National 

Centers for Environmental Information (NCEI). The weather station data, provides daily 

measurements of rainfall level (precipitation) and windspeed. These data points will be 

used to build the hazard model. 

After filtering the database, the available data are as follows: 
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• Hazard Model: Texas: 9,170 observations from 1998-2024;  

• Louisiana: 9,956 observations from 1996-2023;  

• Mississippi: 9,137 observations from 1998-2023. 

 

Vulnerability Model:  

• Texas: 13,261 observations from 1998-2019;  

• Louisiana: 4,430 observations from 1997-2021;  

• Mississippi: 254 observations from 1998-2016. 

 

Table A1 shows the variables extracted from the flood insurance claims data and 

meteorological data and their descriptions in detail. These variables will construct the 

dataset we use in the model-building process. 

 

3.3. Data Preprocessing and Visualisation 

Once we obtain and collect data from flood insurance claims and meteorological data, we 

calculate the water depth from the insurance claim database by getting the averages for a 

single day. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑡𝑒𝑟 𝐷𝑒𝑝𝑡ℎ (𝑓𝑙𝑜𝑜𝑑 𝑙𝑒𝑣𝑒𝑙) =
𝑠𝑢𝑚 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑝𝑡ℎ 𝑖𝑛 𝑜𝑛𝑒 𝑑𝑎𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑖𝑚𝑠 𝑜𝑛 𝑡ℎ𝑎𝑡 𝑑𝑎𝑦
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Figure 3.1: Distribution and Normality Assessment of Rainfall Level (Texas) 

 

Figure 3.2: Distribution and Normality Assessment of Rainfall Level (Louisiana) 
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Figure 3.3: Distribution and Normality Assessment of Rainfall Level (Mississippi) 

Figures 3.1, Figure 3.2, and Figure 3.3 show the distribution and normality of rainfall levels 

in Texas, Louisiana and Mississippi. Across all three states, the rainfall data is highly right-

skewed, with a significant number of observations clustered near zero and a long tail 

extending towards higher values. This indicates that most recorded rainfall events are low, 

but there are occasional extreme events. The Q-Q plots confirm this right skewness, 

showing a significant departure from normality, particularly in the upper quantiles where 

the data deviates sharply from the expected normal distribution line.  
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Figure 3.4: Distribution and Normality Assessment of Windspeed (Texas) 

 

Figure 3.5: Distribution and Normality Assessment of Windspeed (Louisiana) 
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Figure 3.6: Distribution and Normality Assessment of Windspeed (Mississippi) 

Windspeed data across Texas, Louisiana, and Mississippi (Figures 3.4, 3.5, and 3.6) is 

also right-skewed, although the skewness is less extreme than that observed in the rainfall 

data. The histograms show that most windspeed observations are lower, with fewer 

instances of high wind speeds. The Q-Q plots for windspeed suggest a moderate deviation 

from normality, particularly in the upper tail, which is characteristic of right-skewed data. 

However, this deviation is less obverse than in the rainfall data. 
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Figure 3.7: Distribution and Normality Assessment of Flood Level (Texas) 

 

Figure 3.8: Distribution and Normality Assessment of Flood Level (Louisiana) 
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Figure 3.9: Distribution and Normality Assessment of Flood Level (Mississippi) 

Similar to rainfall, the flood level data (Figures 3.7, 3.8, and 3.9) show a right-skewed 

distribution, with most observations at lower flood depths and fewer instances of higher 

flood levels. The Q-Q plots again demonstrate a significant deviation from normality, 

particularly in the upper quantiles, indicating that the data contains some extreme flood 

events. 

 

All nine figures consistently demonstrate that the rainfall, windspeed, and flood level data 

are not normally distributed and exhibit right skewness. This non-normality suggests that 

traditional statistical methods that assume normality may not be appropriate without data 

transformation or the use of alternative modelling techniques. Given the skewness and the 

presence of extreme values, these data are well-suited for modelling using the Generalised 

Extreme Value (GEV) distribution and the Generalised Pareto Distribution (GPD), which 

are designed to handle extreme events and heavy-tailed distributions. 
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In addition, the consistency of distribution patterns across Texas, Louisiana, and 

Mississippi indicates that these variables (rainfall, windspeed, flood levels) exhibit similar 

characteristics across different geographic regions. This consistency likely reflects 

underlying environmental factors common to these states, such as climate patterns or 

geographic features associated with the US Gulf Coastal Region. 

 

 

Figure 3.10: Gamma Fit Diagnostics for Building Loss Amount (Texas) 
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Figure 3.11: Gamma Fit Diagnostics for Building Loss Amount (Louisiana) 

 

Figure 3.11: Gamma Fit Diagnostics for Building Loss Amount (Mississippi) 
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Figures 3.9, Figure 3.10, and Figure 3.11 are the Gamma fit diagnostic plots for the building 

loss amounts in Texas, Louisiana, and Mississippi. These diagnostic plots suggest that 

while the Gamma distribution provides a reasonable fit for the building loss amount data 

across all three states, there might be potential limitations in capturing the extreme values, 

especially in Texas. The tails in Q-Q and P-P plots show this potential underestimation, 

where deviations from the theoretical line occur at higher quantiles and probabilities. 

Although these differences suggest that extreme losses might not follow a Gamma 

distribution, overall, the Gamma distribution is an acceptable fit for flood loss data. 

 

3.4. Hazard Model Development  

3.4.1. Extreme Value Theory 

3.4.1.1 Block Maxima Approach 

The block maxima approach is designed to model extreme values, and it can be used to 

model extreme values (events) using environmental data. This approach divides the 

complete dataset into non-overlapping blocks of a fixed size by a unit of time length (such 

as years) and extracts the maximum value in each block. These extracting values 

(maximum values in each block) are then used to estimate the parameters in extreme 

value distribution. This approach is widely used in estimating the parameters for 

Generalised Extreme Value (GEV) distribution. Also, in this study, we use the Maximum 

Likelihood (ML) method to estimate the distribution parameters since, compared to the 

probability Weighted Moments (PWM) method, the ML method is more flexible in 

parameterisation. (Coles & Casson, 1998; Davison & Smith, 1990) 

 

3.4.1.2 Generalised Extreme Value Distribution (GEV) 

The GEV distribution is a family of continuous probability distributions used to model the 

maximum (or minimum) of a set of independent, identically distributed random variables.  
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The cumulative distribution function (CDF) and the probability density function (PDF) of the 

GEV distribution are expressed as follows: 

𝐹(𝑦) = exp {− [1 + ξ (
𝑦−μ

σ
)]

−
1

ξ
} ,  for 1 + ξ (

𝑦−μ

σ
) > 0; Equation 3.1 

𝑓(𝑦) =
1

σ
[1 + ξ (

𝑦−μ

σ
)]

−
1

ξ
−1

exp (− [1 + ξ (
𝑦−μ

σ
)]

−
1

ξ
) ,  for 1 + ξ (

𝑦−μ

σ
) > 0; Equation 3.2 

Where: 

μ is the location parameter, which represents the location of the distribution.  

σ is the scale parameter, which determines the spread of the distribution.  

ξ is the shape parameter, which determines the shape of the distribution. When ξ = 0, the 

GEV distribution becomes the Gumbel distribution; when ξ > 0, it represents the maximum 

distribution; when ξ < 0, it represents the minimum distribution. 

 

3.4.1.3 Peak over Threshold Approach 

The peak over threshold approach is like the block maxima approach. However, instead 

of getting the maximum value in each block, the peak over threshold approach sets a 

threshold value and exacts all values above this threshold. The data is modelled using the 

Generalised Pareto Distribution (GPD) beyond the threshold. The GPD is used to estimate 

the tail behaviour of the dataset with heavy tails, and the parameters of the distribution are 

estimated using the maximum likelihood method. 

 

3.4.1.4 Generalised Pareto Distribution 

The GPD is another distribution commonly used in extreme value analysis, particularly in 

the threshold approach. The GPD is a continuous probability distribution that can be used 

to model the excesses over a threshold of a random variable. 
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The cumulative distribution function (CDF) and the probability density function (PDF) of the 

GPD distribution are represented by: 

𝐻(𝑦) = 1 − (1 + ξ
𝑦

σ
)

−
1

ξ
,  for 𝑦 > 0 and (1 + ξ

𝑦

σ
) > 0; Equation 3.3 

 

ℎ(𝑦) =
1

σ
(1 + ξ

𝑦

σ
)

−
1

ξ
−1

,  for 𝑦 > 0 and (1 + ξ
𝑦

σ
) > 0; Equation 3.4 

Where: 

μ is the location parameter, which represents the threshold.  

σ is the scale parameter, which determines the spread of the distribution.  

ξ is the shape parameter, which determines the shape of the distribution. When ξ > 0, it 

represents a heavy-tailed distribution, and when ξ = 0, it represents an exponential 

distribution. 

 

3.4.2. Copula Analysis  

In the context of multivariate hazard modelling, it is important to understand the 

dependency structure between different variables when understanding the relationship of 

the hazards, which may occur simultaneously or be influenced by common underlying 

factors. To understand this relationship, copula functions provide a framework for 

modelling the dependency structure between variables, allowing for an accurate 

representation of dependencies. In this study, it provides the correlations between the 

extreme values of the variables. 

The copula function is a type of multivariate probability distribution function that links the 

marginal distributions of variables to a multivariate distribution, with each marginal being 

uniform over the interval [0,1] (Nelsen, 2006). This approach is particularly useful in 

statistical modelling as it allows for the independent capture of the dependency structure 

between variables, regardless of their marginal distributions. 
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Any multivariate joint distribution can be represented using its marginal distributions and a 

copula that captures the dependency structure between the variables by Sklar's Theorem. 

Specifically, for a pair of random variables X and Y with a joint distribution function H(x,y) 

and marginal distributions F(x) and H(y), there exists a copula C(u,v) such that: 

H(x,y)=C(F(x),H(y)). In extending this concept to higher dimensions, consider a set of 

random variables X1, X2, …, Xd with corresponding marginal distribution functions Fi(xi), 

i=1,…,d. The joint distribution function for these variables is denoted by J(x1, …, xd). 

According to Sklar’s theorem (Sklar, 1959), a copula C: [0,1]d → [0,1] exists such that: 

𝐹(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)) 

When the marginal distributions Fi(xi) are all continuous, the d-dimensional copula C is 

unique and can be expressed as: 

𝐶(𝑢1, … , 𝑢𝑑) = 𝐹(𝐹1
−1(𝑢1), … , 𝐹𝑑

−1(𝑢𝑑)) 

where 𝐹𝑖
−1(𝑢𝑖) denotes the inverse of the marginal distribution function 𝐹𝑖(𝑥𝑖) 

Copula functions used in this paper are following (Nelsen, 2011; Bezak et al., 2014): 

t Copula Function: 

𝐶𝜈,𝑃(𝑢1, 𝑢2, … , 𝑢𝑑) = 𝑡𝜈,P(𝑡𝜈
−1(𝑢1), 𝑡𝜈

−1(𝑢2), … , 𝑡𝜈
−1(𝑢𝑑))  Equation 3.5 

Gumbel Copula Function: 

𝐶𝜃(𝑢1, 𝑢2, … , 𝑢𝑑) = exp [−(∑ (− log 𝑢𝑖)𝜃𝑑
𝑖=1 )

1

𝜃]; Equation 3.6 

Frank Copula Function: 

𝐶θ(𝑢1, 𝑢2, … , 𝑢𝑑) = −
1

θ
log [1 +

∏ (𝑒−θ𝑢𝑖−1)𝑑
𝑖=1

(𝑒−θ−1)
𝑑−1 ]; Equation 3.7 

 

Clayton Copula Function: 

𝐶𝜃(𝑢1, 𝑢2, … , 𝑢𝑑) = [∑ 𝑢𝑖
−𝜃𝑑

𝑖=1 − (𝑑 − 1)]
−

1

𝜃; Equation 3.8 
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The probabilistic density function of the copula C, often referred to as the copula density, 

can be denoted as c(u). This copula density function c(u) plays a crucial role in capturing 

the strength and nature of dependencies between the random variables, particularly in 

fields where understanding joint behaviour can be calculated by the partial derivative of 

the copula function. 

Copula density function: 

𝑐(𝑢1, 𝑢2, … , 𝑢𝑑) =
∂𝑑𝐶(𝑢1,𝑢2,…,𝑢𝑑)

∂𝑢1 ∂𝑢2…∂𝑢𝑑
; Equation 3.9 

 

In this paper, we are using three copulas from the Archimedean family (Gumbel, Frank 

and Clayton) and one from the elliptical copula family (t copula). We used the Maximum 

Pseudo-Likelihood (MPL) method to estimate the copula parameters. It fits the copula 

model by maximising the log pseudo-likelihood function (Genest et al., 1995), which is 

defined as follows: 

Log Pseudo-likelihood function: 

𝑙𝑜𝑔 𝐿(𝜃; 𝑢1, 𝑢2, … , 𝑢𝑛) =  ∑ log 𝑐𝜃
𝑛
{𝑖=1} (𝒖𝒊)  Equation 3.10 

For each copula function, we first apply Equation 3.9 to derive the copula density function. 

After we get the copula density function, we use Equation 3.10 to maximise the log pseudo-

likelihood function, allowing us to estimate the copula parameters. 

 

3.5. Vulnerability Model Development  

3.5.1. Machine Learning Approach (Generalised Linear Model)  

Nelder and Wedderburn (1972) introduced the Generalised Linear Model (GLM), a 

significant advancement in statistical modelling that extends the traditional linear 

regression framework to accommodate various types of response variables and error 

distributions. The GLM framework enhances flexibility by allowing the model to handle 

different data types, making it suitable for a broad range of applications. 
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A Generalised Linear Model (GLM) is composed of three primary components: 

• Random Component: This denotes the probability distribution of the response variable, 

which is part of the exponential family of distributions (e.g., Poisson, Gamma). 

• Systematic Component: This component is the linear predictor, consisting of a linear 

combination of the explanatory variables x and their corresponding regression 

coefficients β. 

• Link Function: The link function serves to connect the random component with the 

systematic component, establishing a relationship between the expected value of the 

response variable (random component) and the linear predictor (systematic 

component). 

We are using forward search to identify the most effective covariates from all available 

options, aiming to construct the most efficient GLM model for estimating losses associated 

with a single building. 

 

In forward search: 

p represents the significance level that determines when to stop the forward selection 

process. In here, p = 0.05 

Step 1: Fit the model with no covariates (intercept only) 

Step 2:  Evaluate each potential predictor by adding it to the current model one at a 

time and fit the model. 

Step 3:  Add the selected predictor to the model and remove it from the list of potential 

predictors. 

Step 4:  Repeat Steps 2 to Step 4, adding one predictor at a time, until no remaining 

predictors have a p-value below p 

End 
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Once the most effective covariates have been identified, we construct GLM models using 

these selected variables and evaluate whether including interaction terms can enhance 

the model's accuracy. Following this, predictions are made based on the simulated 

scenario data. 

 

3.6. Integration of Hazard and Vulnerability Models  

Expected Loss for a single building is calculated by the formula: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑛𝑛𝑢𝑎𝑙 𝐿𝑜𝑠𝑠: 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦  Equation 3.11 

Expected Annual Loss is defined as the expected financial losses for a single type of 

building at certain windspeed, rainfall, and flood thresholds. 

Frequency is the exceedance probability of events exceeding certain thresholds of 

windspeed, rainfall, and flood levels. 

Vulnerability in this paper is defined as the expected financial losses for a single type of 

building when events exceed certain thresholds of windspeed, rainfall, and flood levels. 

 

3.7. Model Evaluation Techniques and Cross-Validation 

3.7.1  AIC and BIC 

The Akaike Information Criterion (AIC), introduced by Akaike in 1974, is a measure to 

evaluate the relative amount of information lost when a model is used to approximate the 

actual observed data. The AIC is calculated using the following formula:  

𝐴𝐼𝐶 = −2 log 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 + 2𝑘  

Where k is the number of estimated parameters in the model. 

 

The Bayesian Information Criterion (BIC) is a model selection criterion based on Bayesian 

probability, which assumes a uniform prior distribution over the model space to estimate 
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the posterior probability of a model. Wit, Van Den Heuvel, and Romeijn (2012) formally 

define BIC as follows: 

𝐵𝐼𝐶 = −2 log 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 + 𝑘 + 𝑙𝑛(𝑛)   

Where k represents the number of estimated parameters in the model, and n donates the 

number of data points in observed data. 

 

3.7.2  k-Fold Cross Validation 

The k-Fold cross validation technique divides the dataset into k folds (subsets) of the same 

size r (Picard & Cook, 1984). In this study, we use 10 fold cross validation which indicates 

that k=10.  

 

In k-Fold Cross Validation: 

Step 1: dividing the data into k folds where each fold contains the same number of 

sample sizes r 

Step 2:  fitting the model on remaining k-1 folds (total number of observations – r) 

Step 3:  use the fitted model to predict the response variable on the excluded fold 

observations 

Step 4:  calculate test Root Mean Square Error (RMSE) 

Step 5: repeat by excluding a different fold 

End 

After all folds are chosen randomly and have been used as the test set once, the RMSE 

values are approximated by the averaged across all folds to provide an overall 

performance measure. 
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4. Results  

4.1. Hazard Model Results  

4.1.1. Block Maxima 

4.1.1.1 GEV Parameter Estimation 

Rainfall: 

State TX LA MS 

Parameters Estimates SE Estimates SE Estimates SE 

Location 2.7224 0.2004 3.8615 0.2804 4.350 0.3447 

Scale 0.9068 0.1658 1.1220 0.2386 1.579 0.2506 

Shape 0.2686 0.1758 0.2635 0.2843 -0.311 0.1398 

Table 4.1: Rainfall GEV Parameters and Standard Errors 

From Table 4.1, Mississippi has the highest location parameter, suggesting that extreme 

rainfall events in Mississippi generally occur at higher rainfall levels than in Texas and 

Louisiana. Mississippi also exhibits the highest scale parameter, which suggests that 

extreme rainfall in Mississippi is more intense and variable than in Texas and Louisiana. 

The positive shape parameters for Texas and Louisiana suggest a heavy-tailed distribution, 

indicating that these states may experience more frequent extreme rainfall events with very 

high values. Conversely, Mississippi's negative shape parameter suggests an upper bound 

to the extreme rainfall values, implying less likelihood of exceptionally high extremes in this 

state compared to Texas and Louisiana.  

The results indicate that Mississippi experiences higher and more variable extreme rainfall 

events but with an upper limit to the extremity of these events (as suggested by the negative 

shape parameter). In contrast, Texas and Louisiana tend towards more frequent extreme 

rainfall events with no apparent upper bound, highlighting potential concerns for more 

severe weather events in these states. 
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Wind Speed: 

TX LA MS 

 Estimates SE Estimates SE Estimates SE 

Location 54.932 3.3944 54.17716 1.6502 51.0761 1.565 

Scale 15.721 4.7281 7.68311 1.2154 6.6287 1.427 

Shape 1.054 0.2486 0.02496 0.1509 0.4208 0.232 

Table 4.2: Windspeed GEV Parameters and Standard Errors 

From Table 4.2, the Location parameter is highest in Texas, suggesting that the threshold 

for extreme wind speeds is slightly higher in Texas compared to Louisiana and Mississippi. 

This implies that Texas generally experiences higher wind speeds before they are classified 

as extreme. Texas's significantly higher scale parameter indicates much greater variability 

in extreme wind speeds. This suggests that Texas experiences a wider range of extreme 

wind speeds than Louisiana and Mississippi, where the wind speed extremes are less 

variable. The positive shape parameter across all three states suggests a heavy-tailed 

distribution, meaning extreme wind speeds could reach high values. Notably, Texas has a 

significantly higher shape parameter, implying that the potential for extremely high wind 

speeds is greater in Texas than in Louisiana and Mississippi. Louisiana's near-zero shape 

parameter indicates a more moderate extreme tail, meaning less likelihood of very extreme 

wind speeds compared to Texas and Mississippi. 

Texas not only experiences higher thresholds for extreme wind speeds but also shows 

greater variability and a higher likelihood of extreme wind events. In contrast, Louisiana's 

extreme wind speeds are less variable and have a more moderate extreme tail, suggesting 

that very high wind speeds are less common. Mississippi falls between Texas and Louisiana, 

with moderate variability and a moderate tendency toward extreme wind speeds. 
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Flood Level: 

TX LA MS 

 Estimates SE Estimates SE Estimates SE 

Location 2.21514 0.11678 2.2146 0.07942 2.2246 0.07845 

Scale 0.55906 0.08276 0.3489 0.07326 0.3416 0.07120 

Shape 0.05922 0.10169 0.4514 0.22500 0.4223 0.20762 

Table 4.3: Flood Level GEV Parameters and Standard Errors 

From Table 4.3, the near-identical Location parameters across the three states suggest that 

the threshold for extreme flood levels is very similar in Texas, Louisiana, and Mississippi. 

This implies that these states experience similar base levels of flooding before the events 

are categorised as extreme. The higher scale parameter in Texas suggests greater 

variability in flood levels, meaning that extreme flooding events in Texas have a wider range 

of severity than in Louisiana and Mississippi. In contrast, the lower scale parameters in 

Louisiana and Mississippi indicate that the extreme flood levels in these states are more 

consistent and less variable. The positive shape parameters across all states suggest that 

the flood level distribution has a heavy tail, meaning there is a potential for very extreme 

flood events. Louisiana, with the highest shape parameter, indicates the greatest potential 

for extreme flooding, followed closely by Mississippi. Texas has a much lower shape 

parameter, suggesting that while there is still potential for extreme flood levels, it is less 

pronounced compared to the other two states. 

The positive shape parameters across all states suggest that the flood level distribution has 

a heavy tail, meaning there is a potential for very extreme flood events. Louisiana, with the 

highest shape parameter, indicates the greatest potential for extreme flooding, followed 

closely by Mississippi. Texas has a much lower shape parameter, suggesting that while 

there is still potential for extreme flood levels, it is less pronounced compared to the other 

two states. 
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4.1.1.2 GEV Diagnostic Plots 

Rainfall  

 

Figure 4.1: GEV Distribution Diagnostic Plots: Rainfall Level in Texas 
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Figure 4.2: GEV Distribution Diagnostic Plots: Rainfall Level in Louisiana 

 

Figure 4.3: GEV Distribution Diagnostic Plots: Rainfall Level in Mississippi 
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The GEV diagnostic plots (Figure 4.1, Figure 4.2, Figure 4.3) suggest that the GEV model 

is generally a good fit for the precipitation data in Texas, Louisiana, and Mississippi, 

capturing most of the distribution well. However, there are some areas of concern, 

particularly at the extreme upper quantiles and higher return periods, where the model 

underestimates the severity of extreme precipitation events. When making decisions using 

these GEV models, we should consider the potential limitation brought by the 

underestimation. 

 

Wind Speed 

 

Figure 4.4: GEV Distribution Diagnostic Plots: Wind Speed in Texas 
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Figure 4.5: GEV Distribution Diagnostic Plots: Wind Speed in Louisiana 

 

Figure 4.6: GEV Distribution Diagnostic Plots: Wind Speed in Mississippi 
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The GEV diagnostic plots (Figure 4.4, Figure 4.5, Figure 4.6) for wind speed suggest that 

the GEV model reasonably fits most of the wind speed distribution in Texas, Louisiana, 

and Mississippi. The model tends to overestimate the windspeed in the lower quantiles, 

particularly in Texas. However, there are concerns about the higher quantiles and longer 

return periods, where the model slightly underestimates extreme wind events. This 

underestimation is more pronounced in Texas and Mississippi, where the model's fit 

deviates significantly at the upper extremes. 

 

Flood Level 

 

Figure 4.7: GEV Distribution Diagnostic Plots: Flood Level in Texas 
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Figure 4.8: GEV Distribution Diagnostic Plots: Flood Level in Louisiana 

 

Figure 4.9: GEV Distribution Diagnostic Plots: Flood Level in Mississippi 
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The GEV diagnostic plots (Figure 4.7, Figure 4.8, Figure 4.9) for flood levels in Texas, 

Louisiana, and Mississippi indicate that while the GEV model generally fits the data well, 

there are some concerns regarding its ability to predict the most extreme flood levels 

accurately. Specifically, the model underestimates extreme events' severity, particularly at 

higher quantiles and longer return periods. This underestimation is consistent across all 

three states, though it appears slightly more pronounced in Texas. 

 

4.1.1.3 Return Level (GEV) 

 TX LA MS 

Rainfall Level (in) 8.974 11.508 7.919 

Wind Speed (mph) 952.352 85.665 116.690 

Flood Level (in) 4.669 5.940 5.619 

Table 4.4: 50-Year Return Levels for Rainfall, Wind Speed, and Flood Levels (GEV) 

The 50-year return level shown in Table 5.4 suggests that Louisiana is at the greatest risk 

for extreme rainfall and flood events, with the highest estimated values in these categories 

(11.508 inches rainfall and 5.940 inches level of flood). While less vulnerable to extreme 

rainfall, Mississippi shows a considerable risk from both wind and flood events. Despite 

showing a potential outlier in wind speed, Texas also faces significant risks. 
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4.1.1.4 Profile Log-likelihood Plots (GEV) 

Rainfall 

 

Figure 4.10: Profile Log-Likelihood Plots: Rainfall Level in Texas (GEV) 

 

Figure 4.11: Profile Log-Likelihood Plots: Rainfall Level in Louisiana (GEV) 
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Figure 4.12: Profile Log-Likelihood Plots: Rainfall Level in Mississippi (GEV) 

Confident Interval 

TX LA MS 

 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Location 2.329643 3.115107 3.311988 4.410961 3.67409 5.025187 

Scale 0.5818325 1.2316714 0.6543816 1.5896617 1.08831 2.07056 

Shape -0.076071 0.61321172 -0.293719 0.8206814 -0.5851 -0.03687 

Table 4.5: Confidence Intervals of Rainfall GEV Parameters 

Wind Speed 

 

Figure 4.13 Profile Log-Likelihood Plots: Windspeed in Texas (GEV) 
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Figure 4.14 Profile Log-Likelihood Plots: Windspeed in Louisiana (GEV) 

 

Figure 4.15 Profile Log-Likelihood Plots: Windspeed in Mississippi (GEV) 

Confident Interval 

TX LA MS 

 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Location 48.27947 61.58541 50.94279 57.41153 48.00850 54.14366 

Scale 6.454266 24.988010 5.301009 10.065210 3.832706 9.424710 

Shape 0.5670855 1.5415552 -0.27073 0.3206511 -0.03397 0.87559 

Table 4.6: Confidence Intervals of Windspeed GEV Parameters 
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Flood Level 

 

Figure 4.16 Profile Log-Likelihood Plots: Flood Level in Texas (GEV) 

 

Figure 4.17 Profile Log-Likelihood Plots: Flood Level in Louisiana (GEV) 
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Figure 4.18 Profile Log-Likelihood Plots: Flood Level in Mississippi (GEV) 

Confident Interval 

TX LA MS 

 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Location 1.986259 2.4440 2.058941 2.370246 2.070816 2.378353 

Scale 0.39685 0.7213 0.2052971 0.4924757 0.2020824 0.4811669 

Shape -0.14009 0.2585 0.01039515 0.89238266 0.0153925 0.8292368 

Table 4.7: Confidence Intervals of Flood Level GEV Parameters 

The profile log-likelihood plots show the likelihood of different values for each parameter 

(location, scale, and shape) while holding the other parameters fixed at their estimated 

values. The peak of each curve represents the maximum likelihood estimate for that 

parameter, and the curve's shape indicates the estimate's precision. Steeper slopes and 

narrower peaks generally indicate that the parameter estimates are more precise, meaning 

the model fits the data better around those parameter values. Flatter slopes and broader 

peaks suggest more uncertainty in the parameter estimates, indicating a more moderate 

fit.  

The lack of steep slopes and narrow peaks in the profile log-likelihood plots (Figure 4.10, 

Figure 4.11, Figure 4.12, Figure 4.13, Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17, 

Figure 4.18) suggests that while the model is likely capturing the general structure of the 

data, it may not be capturing all nuances with high precision. 

From Table 4.5, Table 4.6 and Table 4.7, narrower confidence intervals (e.g., location 

parameters) suggest greater certainty in parameter estimates, while wider intervals (e.g., 

scale and shape parameters) reflect greater uncertainty. The shape parameters indicate 

whether the model predicts the possibility of very extreme events (heavy tails) or if such 

extremes are less likely (bounded tails). While there are different signs between the lower 

bond (2.5%) and the upper bond (97.5%), we need further consideration to examine the 

value of shape parameters to decide the tail behaviours. 
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5.1.1.5 Likelihood Ratio Test (GEV) 

Deviance difference TX LA MS 

Rainfall Level 3.16 0.94 3.18 

Windspeed 31.57 0.03 4.23 

Flood Level 0.38 7.45 7.66 

Table 4.8: Likelihood Ratio Test Results for Rainfall, Windspeed, and Flood Levels 

We conducted a Likelihood Ratio Test (LRT) for rainfall, windspeed, and flood levels 

across Texas, Louisiana, and Mississippi to evaluate whether the more complex GEV 

model provides a significantly better fit compared to a simpler alternative. The results are 

summarised in Table 4.8. 

Rainfall Level: 

In Texas and Mississippi, the LRT showed deviance differences of 3.16 and 3.18, 

respectively, suggesting that the more complex GEV model provides a better fit for extreme 

rainfall events in these states. In Louisiana, however, the deviance difference was only 

0.94, indicating that the simpler model might be acceptable for this state. 

Windspeed: 

The deviance difference for windspeed in Texas was 31.57, strongly favouring the more 

complex model. In Mississippi, the moderate deviance difference of 4.23 suggests some 

improvement in model fit. In contrast, Louisiana's deviance difference was negligible (0.03), 

implying that the simpler model also works for windspeed data in this state. 

Flood Level: 

For flood levels, Louisiana and Mississippi showed substantial deviance differences (7.45 

and 7.66, respectively), indicating that the more complex model significantly improves the 

fit. Texas, with a deviance difference of only 0.38, shows minimal improvement, suggesting 

that the simpler model might be sufficient. 
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The LRT results indicate that the more complex GEV model is generally justified for 

predicting windspeed in Texas and flood levels in Louisiana and Mississippi. However, for 

rainfall in Louisiana and flood levels in Texas, the simpler model might be adequate, 

suggesting that model complexity should be tailored to the specific variable and location. 

 

4.1.1.6 Goodness of Fit 

Rainfall Level: 

 TX LA MS 

Kolmogorov-Smirnov test 0.9801 0.54 0.9542 

Cramer-von Mises test 0.9709 0.66 0.9956 

Table 4.9: Goodness of Fit Results for Rainfall Level GEV Model 

 

Windspeed: 

 TX LA MS 

Kolmogorov-Smirnov test 0.834 0.8699 0.9765 

Cramer-von Mises test 0.8254 0.88 0.9507 

Table 4.10: Goodness of Fit Results for Windspeed GEV Model 

 

Flood Level: 

 TX LA MS 

Kolmogorov-Smirnov test 0.3373 0.5714 0.6434 

Cramer-von Mises test 0.3313 0.5603 0.5018 

Table 4.11: Goodness of Fit Results for Flood Level GEV Model 
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From Table 4.9, Table 4.10 and Table 4.11, across all variables and states, the test results 

for both Kolmogorov-Smirnov (K-S) and Cramer-von Mises (C-vM) tests indicate that we 

failed to reject the null hypothesis, suggesting that the data are likely to come from the 

fitted GEV distributions, confirming that the GEV models are generally appropriate for 

modelling extreme events across all variables and states. 

The GEV models for rainfall and windspeed show particularly strong fits in Texas and 

Mississippi, with high p-values indicating that the models accurately capture the distribution 

of extreme events in these states. Undeniably, the results indicate a more moderate fit for 

the GEV models in Louisiana, particularly for flood and rainfall levels. The lower p-values 

here, while still acceptable, suggest that the model may not capture all aspects of the data 

perfectly, indicating some limitations in modelling the extreme events in this state. 

 

4.1.2. Peak Over Threshold Approach 

4.1.2.1 GPD Threshold Analysis 

 

Figure 4.19 GPD Threshold Analysis Plots: Rainfall Level in Texas 
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Figure 4.20 GPD Threshold Analysis Plots: Rainfall Level in Louisiana 

 

Figure 4.21 GPD Threshold Analysis Plots: Rainfall Level in Mississippi 

 



 

Page 68 of 131 
 

 

Figure 4.22 GPD Threshold Analysis Plots: Windspeed in Texas 

 

Figure 4.23 GPD Threshold Analysis Plots: Windspeed in Louisiana 
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Figure 4.24 GPD Threshold Analysis Plots: Windspeed in Mississippi 

 

 

Figure 4.25 GPD Threshold Analysis Plots: Flood Level in Texas 
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Figure 4.26 GPD Threshold Analysis Plots: Flood Level in Louisiana 

 

Figure 4.27 GPD Threshold Analysis Plots: Flood Level in Mississippi 

Thresholds Selection: 

Threshold TX LA MS 

Rainfall Level (in) 1.6 1.5 1.3 

Windspeed (mph) 45 46 46 
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Flood Level (m) 1.5 1.3 1.2 

Table 4.12: Selected Thresholds for GPD 

Thresholds are selected via the trend in threshold analysis plots to become more stable. 

From Figure 4.19, Figure 4.20, Figure 4.21, Figure 4.22, Figure 4.23, Figure 4.24, Figure 

4.25, Figure 4.26, and Figure 4.27, the selected thresholds are in Table 4.12. 

 

5.1.2.2 GPD Parameter Estimation 

Rainfall: 

TX LA MS 

 Estimates SE Estimates SE Estimates SE 

Scale 0.6699 0.08448 0.8502 0.07235 1.01017 0.08944 

Shape 0.2077 0.09885 0.1296 0.06412 0.08633 0.06869 

Table 4.13: Rainfall GPD Parameters and Standard Errors 

From Table 4.13, the increasing scale parameter from Texas to Mississippi suggests that 

as one moves eastward, there is greater variability in the intensity of extreme rainfall events. 

Mississippi, in particular, may experience a wider range of extreme rainfall outcomes 

compared to Texas and Louisiana. The increasing scale parameter from Texas to 

Mississippi suggests that as one moves eastward, there is greater variability in the intensity 

of extreme rainfall events. Mississippi, in particular, may experience a wider range of 

extreme rainfall outcomes compared to Texas and Louisiana. 

Mississippi exhibits the greatest variability (as indicated by the scale parameter), while 

Texas has the most pronounced heavy-tail behaviour (as indicated by the shape 

parameter), suggesting a higher likelihood of extreme rainfall events in these states 

compared to Louisiana. 
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Wind Speed: 

TX LA MS 

 Estimates SE Estimates SE Estimates SE 

Scale 8.532 2.2480 5.6512 0.8734 2.7080 0.6671 

Shape 1.530 0.2904 0.1374 0.1210 0.6704 0.2330 

Table 4.14: Windspeed GPD Parameters and Standard Errors 

From Table 4.14, the variation in the scale parameter across the states suggests that Texas 

experiences the most variable extreme wind speeds, followed by Louisiana and then 

Mississippi. This indicates that extreme wind events in Texas could be much more severe 

and unpredictable compared to the other states. The shape parameter results indicate 

significant differences in the tail behaviour of extreme wind speeds across the states. Texas, 

with the highest shape parameter, is particularly vulnerable to very extreme wind events, 

whereas Louisiana’s wind speeds tend to be less extreme, with Mississippi falling 

somewhere in between. Texas shows both high variability and a strong tendency towards 

extremely high wind speeds, making it particularly susceptible to severe wind events. 

Louisiana, in contrast, exhibits lower variability and a much lighter tail, indicating fewer and 

less extreme wind events. Mississippi has moderate characteristics, with some potential for 

extreme events but less variability compared to Texas. 

 

Flood Level: 

TX LA MS 

 Estimates SE Estimates SE Estimates SE 

Scale 0.2699 0.02288 0.2315 0.01274 0.23883 0.01070 

Shape 0.1432 0.05882 0.1411 0.03972 0.09793 0.03083 

Table 4.15: Flood Level GPD Parameters and Standard Errors 
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From Table 4.15, the consistency of the scale parameters across the states suggests that 

the variability of extreme flood levels is relatively similar in Texas, Louisiana, and Mississippi. 

However, Texas exhibits slightly higher variability (higher scale parameter), which may 

indicate a broader range of extreme flood outcomes. Texas and Louisiana show a slightly 

higher propensity for very extreme flood events than Mississippi. The positive shape values 

across all states highlight the risk of significant outliers, particularly in flood-prone areas. 

The tail behaviour (as indicated by the shape parameter) suggests that all three states are 

prone to extreme flood events, with Texas and Louisiana having a slightly higher likelihood 

of experiencing more extreme events compared to Mississippi. 

 

4.1.2.3 GPD Diagnostic Plots 

Rainfall  

 

Figure 4.28: GPD Distribution Diagnostic Plots: Rainfall Level in Texas 
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Figure 4.29: GPD Distribution Diagnostic Plots: Rainfall Level in Louisiana 

 

Figure 4.30: GPD Distribution Diagnostic Plots: Rainfall Level in Mississippi 
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From the P-P and Q-Q plots in Figure 4.28, Figure 4.29 and Figure 30, the GPD model fits 

the rainfall level data well. However, in the density plot, there are areas where it 

underestimates the frequency of certain exceedance values. 

 

Wind Speed 

 

Figure 4.31 GPD Distribution Diagnostic Plots: Wind Speed in Texas 
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Figure 4.32 GPD Distribution Diagnostic Plots: Wind Speed in Louisiana 

 

Figure 4.33 GPD Distribution Diagnostic Plots: Wind Speed in Mississippi 
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Figure 4.30, Figure 4.31 and Figure 4.32 show that while the GPD model generally 

provides an acceptable fit to the data, there are significant concerns regarding its ability to 

accurately predict the most extreme wind speed events, although the model shows an 

underestimation of the severity of extreme events, particularly at higher quantiles and 

longer return periods. This underestimation is consistent across all three states but is 

notably pronounced in Texas, where the extreme values exhibit substantial deviation from 

the theoretical predictions.  

 

Flood Level 

 

Figure 4.34 GPD Distribution Diagnostic Plots: Flood Level in Texas 
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Figure 4.35: GPD Distribution Diagnostic Plots: Flood Level in Louisiana 

 

Figure 4.36: GPD Distribution Diagnostic Plots: Flood Level in Mississippi 
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Figure 4.34, Figure 4.35 and Figure 4.36 indicate that the GPD model generally provides 

a good fit to the data, but there are some differences when it comes to predicting the most 

extreme flood events. Specifically, the model shows a tendency to underestimate the 

severity of extreme flood levels at higher quantiles and longer return periods. This 

underestimation is consistent across all three states but appears to be slightly more 

pronounced in Texas. 

 

5.1.2.4 Return Level (GPD) 

Final 50-year Return Levels: 

 TX LA MS 

Rainfall Level (in) 8.996515 9.889784 10.02712 

Wind Speed (mph) 15682.18 89.72131 169.2415 

Flood Level (in) 4.235453 4.139623 3.862646 

Table 4.16: 50-Year Return Levels for Rainfall, Wind Speed, and Flood Levels (GPD) 

The 50-year return levels in Table 4.16 indicate that Mississippi is at the greatest risk for 

extreme rainfall and Texas is at the greatest risk for flooding, with the highest estimated 

values of 10.027 inches and 4.235 inches, respectively. Though slightly less vulnerable to 

rainfall, Louisiana shows significant risks for both wind and flood events. Texas and 

Mississippi, despite a potential outlier in wind speed, also face considerable risks, 

particularly in terms of flood levels. 
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5.1.2.5 Profile Log-likelihood Plots (GPD) 

Rainfall 

 

Figure 4.37: GPD Profile Log-Likelihood Plots: Rainfall Level in Texas 
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Figure 4.38: GPD Profile Log-Likelihood Plots: Rainfall Level in Louisiana 

 

Figure 4.39: GPD Profile Log-Likelihood Plots: Rainfall Level in Mississippi 

 

Confident Interval 

TX LA MS 

 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Scale 0.5042812 0.8354232 0.708411 0.9920075 0.8349 1.1855 

Shape 0.0139591

1 

0.4014292 0.003906 0.2552326 -0.04829 0.22096 

Table 4.17: Confidence Intervals of Rainfall GPD Parameters  
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Wind Speed 

 

Figure 4.40: GPD Profile Log-Likelihood Plots: Windspeed in Texas 

 

Figure 4.41: GPD Profile Log-Likelihood Plots: Windspeed in Louisiana 
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Figure 4.42: GPD Profile Log-Likelihood Plots: Windspeed in Mississippi 

Confident Interval 

TX LA MS 

 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Scale 4.125571 12.937477 3.939481 7.362963 1.40050 4.0154 

Shape 0.9609134 2.099315 -0.09964 0.374508 0.2137192 1.1270031 

Table 4.18: Confidence Intervals of Windspeed GPD Parameters 
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Flood Level 

 

Figure 4.43: GPD Profile Log-Likelihood Plots: Flood Level in Texas 

 

Figure 4.44: GPD Profile Log-Likelihood Plots: Flood Level in Louisiana 
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Figure 4.45: GPD Profile Log-Likelihood Plots: Flood Level in Mississippi 

Confident Interval: 

TX LA MS 

 2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 

Scale 0.2250979 0.3147815 0.2064852 0.2564390 0.21786 0.2598 

Shape 0.02790215 0.25846326 0.06328365 0.21896584 0.037509 0.1584 

Table 4.19: Confidence Intervals of Flood Level GPD Parameters 

The profile log-likelihood plots for rainfall, windspeed, and flood levels across Texas (TX), 

Louisiana (LA), and Mississippi (MS) exhibit concave shapes, indicating that the likelihood 

functions for the scale and shape parameters possess single maxima. This concavity 

strongly indicates that the estimated parameters are stable, with the optimisation process 

having successfully converged to a unique solution. The peaks of these plots represent 

the most likely values of the parameters under the fitted Generalised Pareto Distribution 

(GPD) models. 
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The absence of steep slopes and sharp peaks in the profile log-likelihood plots (Figure 

4.37, Figure 4.38, Figure 4.39, Figure 4.40, Figure 4.41, Figure 4.42, Figure 4.43, Figure 

4.44 and Figure 4.45) indicates that while the model appears to capture the overall 

structure of the data, it may not be capturing all the finer details with high accuracy. From 

Tables 4.17, Table 4.18 and Table 4.19, narrower confidence intervals, particularly for 

location parameters, suggest greater confidence in those estimates, whereas wider 

intervals for scale and shape parameters indicate higher uncertainty. The shape 

parameters determine whether the model anticipates the occurrence of very extreme 

events (heavy tails) or if such extremes are less likely (bounded tails). When the lower 

bound (2.5%) and upper bound (97.5%) have different signs, further analysis of the shape 

parameters is necessary to assess the tail behaviours. 

 

4.1.2.6 Goodness of Fit (GPD) 

Rainfall Level 

 TX LA MS 

Kolmogorov-Smirnov test 0.9542 0.9428 0.7248 

Cramer-von Mises test 0.9827 0.9596 0.6996 

Table 4.20: Goodness of Fit Results for Rainfall Level GPD Model 

Windspeed 

 TX LA MS 

Kolmogorov-Smirnov test 0.00028 0.3024 0.0004851 

Cramer-von Mises test 0.01654 0.4729 0.06386 

Table 4.21: Goodness of Fit Results for Windspeed GPD Model 

Flood Level 

 TX LA MS 
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Kolmogorov-Smirnov test 0.07293 0.1719 0.08383 

Cramer-von Mises test 0.119 0.4065 0.2623 

Table 4.22: Goodness of Fit Results for Flood Level GPD Model 

From Table 4.20, Table 4.21 and Table 4.22, the GPD models generally provide a good fit 

for modelling extreme rainfall across all states, but they are not that good in windspeed and 

flood level modelling. The fit is particularly strong for rainfall in Texas and Louisiana, while 

the fit for windspeed in Texas and Mississippi is less convincing, indicating potential 

limitations of the GPD model in capturing the full range of extreme windspeed events in 

these states. The moderate fit observed for flood levels across all states suggests that the 

GPD models are suitable, although they might perform weaker in capturing the tail 

behaviour of the distributions in these cases. 

 

4.1.3 Copula Analysis 

 The NAs in the table represent a failure to fit the specific type of copula model. 

4.1.3.1 Copula Analysis (Texas)  

GEV Parameters fitting: 

Copula AIC BIC Log-

Likelihood 

Kendall Tau Spearman Rho 

Gumbel 2.000000 3.295837 -1.91e-07 1.490116e-

08 

-0.001602055 

Clayton NA NA NA NA NA 

Frank NA NA NA NA NA 

t 7.836962 9.132799 -2.918481 -5.751845e-

02 

-0.226265417 

Table 4.23: GEV Copula Model Fit and Dependence Measures for Texas 
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In Table 5.23, the Gumbel copula shows the lowest AIC and BIC values, suggesting a 

slightly better fit compared to the t-copula. However, the log-likelihood values are close to 

zero, and the Kendall Tau and Spearman Rho values are nearly negligible, indicating a 

weak dependence between the variables under the GEV model. 

 

GPD Parameters fitting: 

Copula AIC BIC Log-

Likelihood 

Kendall Tau Spearman Rho 

Gumbel 2.0000002 4.499810 -

8.320793e-

08 

1.490116e-0 -0.001602055 

Clayton 1.592915 4.092725 2.035422e-

01 

3.051453e-

02 

0.045753552 

Frank 1.9935377 4.493347 3.231134e-

03 

3.199846e-

03 

0.004799756 

t -0.278926 2.220883 1.139463 1.261230e-

02 

NA 

Table 4.24: GPD Copula Model Fit and Dependence Measures for Texas 

Similarly, in Table 4.24, the GPD model results indicate that the t copula provides the best 

fit, with the lowest AIC and BIC values and the highest log-likelihood value. The t copula 

also shows the most substantial dependence, with Kendall Tau, although it shows NA in the 

Spearman Rho column, suggesting potential issues in estimating this measure.  

 

Best Fitting Copula in Texas 

Copula Type Estimate of 

Rho (ρ) 

Standard Error 

of Rho 

p-Value 
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t (GPD) 0.01981 0.078 0.9895 

Table 4.25: Best Fitting Copula for Texas  

In Table 4.25, the t copula is identified as the best fitting copula for modelling the 

dependence structure of extreme weather events in Texas. The estimated Rho (ρ), which 

measures the strength of dependence between the variables, is 0.01981, with a standard 

error of 0.078. Although this small value of Rho suggests a weak dependence between the 

variables, the p-value associated with the goodness-of-fit test is 0.9895, which is very high. 

This indicates that the t-copula with parameter ρ=0.01981 is a suitable model for the data. 

 

Figure 4.46: Empirical vs. Fitted Copula Contour Plots (Texas) 
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Figure 4.46 provides a comparison to visually assess how well the fitted copula model 

captures the dependence structure observed in the empirical data. 

Rain vs Wind: 

Empirical Plot: The contours suggest a complex dependence structure with multiple peaks 

and valleys, indicating higher and lower density areas where these variables co-occur. 

Fitted Copula Plot: The contours are smoother and somewhat align with the empirical plot's 

general shape, but there are differences in the fine structure, indicating that while the 

copula model captures the broad dependence, it may miss some of the more complex 

interactions seen in the empirical data. 

Rain vs Flood: 

Empirical Plot: The plot indicates several regions of high density, particularly in the mid-

range values, suggesting a moderate positive dependence between rainfall and flood 

levels. 

Fitted Copula Plot: The fitted plot captures the general trend of the empirical data but with 

smoother transitions and less pronounced peaks. This suggests that the copula model 

approximates the overall relationship but may not fully capture the more nuanced patterns 

in the data. 

Wind vs Flood: 

Empirical Plot: The contours are spread out, indicating a weaker and possibly more 

dispersed dependence structure between these variables. 

Fitted Copula Plot: The fitted model again smooths out the contours and captures the 

general shape of the empirical distribution. However, the copula model may miss some 

finer details and variability in the empirical data. 

The comparison of empirical and fitted copula contour plots in Texas reveals that the fitted 

copula models generally capture the broad trends and dependence structures seen in the 

empirical data. However, the models tend to smooth out the contours, potentially 

overlooking some more complex or subtle interactions in the empirical joint distributions. 
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This smoothing effect is particularly evident in the Rain vs Wind and Rain vs Flood 

comparisons, where the fitted copula models approximate the overall structure but lack the 

detailed peaks and troughs observed empirically. 

 

4.1.3.1 Copula Analysis (Louisiana) 

GEV Parameters fitting: 

Copula AIC BIC Log-

Likelihood 

Kendall Tau Spearman Rho 

Gumbel 2.000000 3.332205 -3.980e-09 1.4901e-08 -0.00160 

Clayton 2.000000 3.332205 0 0 -0.0000258 

Frank 1.962216 3.294420 1.8892e-02 1.1529e-02 0.017293596 

t 2.955009 4.287213 -4.775e-01 -1.9236e-02 0.346968367 

Table 4.26: GEV Copula Model Fit and Dependence Measures for Louisiana 

In Table 4.26, the Frank copula shows the lowest AIC (1.962) and BIC (3.294) values, 

indicating a slightly better fit compared to the other copulas under the GEV model for 

Louisiana. The log-likelihood value, although positive, is close to zero, reflecting a minimal 

improvement in fit. However, the Kendall Tau and Spearman Rho values are also very low, 

suggesting weak dependence between the variables. The Gumbel and Clayton copulas 

have identical AIC and BIC values (2.000 and 3.332, respectively) but show negligible 

dependence, as indicated by their near-zero Kendall Tau and Spearman Rho values. The t 

copula exhibits the highest AIC (2.955) and BIC (4.287) values, with a negative log-

likelihood, indicating the poorest fit among the copulas, despite showing a higher Spearman 

Rho value, which may suggest some level of dependence but with a more complex structure. 
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GPD Parameters fitting: 

Copula AIC BIC Log-

Likelihood 

Kendall Tau Spearman Rho 

Gumbel 2.000002 4.663441 -8.094816e-

07 

1.490116e-

08 

-0.001602055 

Clayton NA NA NA NA NA 

Frank NA NA NA NA NA 

t 22.396333 25.059772 -

1.0198e+01 

-2.229628e-

02 

NA 

Table 4.27: GPD Copula Model Fit and Dependence Measures for Louisiana 

Similarly, in Table 4.27, the GPD model results show that the Gumbel copula provides a 

better fit among the few copulas tested, with an AIC of 2.000 and a BIC of 4.663. The log-

likelihood is again nearly zero, indicating a marginal fit. The Kendall Tau is negligible, and 

Spearman Rho is negative, indicating very weak or potentially no meaningful dependence. 

The t-copula, with much higher AIC (22.396) and BIC (25.060) values and a significantly 

negative log-likelihood, suggests a poor fit for the GPD model. The Kendall Tau is slightly 

negative, and the Spearman Rho is not available (NA), pointing to potential issues in 

estimating this measure, similar to what was seen in the GEV model. 

 

Best Fitting Copula in Louisiana 

Copula Type Estimate of 

alpha (α) 

Standard Error 

of alpha 

p-Value 

Gumbel (GPD) 1 0.043 0.7847 

Table 4.28: Best Fitting Copula for Louisiana 

From Table 4.28, the estimate of alpha being 1, combined with a high p-value and a low 

standard error, indicates that the dependence between the variables is likely very weak or 
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negligible. This suggests that the Gumbel copula may not be capturing a meaningful 

dependence structure for the data in Louisiana. As a result, the Gumbel copula, while the 

best-fitting copula for this dataset, may not provide substantial insights into the relationships 

between the variables due to the apparent lack of significant dependence. 

 

 

Figure 4.47: Empirical vs. Fitted Copula Contour Plots (Louisiana) 
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Figure 4.47 This figure compares the empirical joint distributions (top row) and the fitted 

copula model distributions (bottom row) for three variables: Rain vs Wind, Rain vs Flood, 

and Wind vs Flood in Louisiana. 

Rain vs Wind: 

Empirical Plot: The contours display a fairly complex structure with multiple peaks and 

valleys, indicating areas where rain and wind tend to co-occur with varying intensities. 

Fitted Copula Plot: The fitted plot captures the general pattern of the empirical data, 

including the major peaks, but with smoother transitions and less pronounced variability. 

This suggests that while the fitted copula model approximates the overall dependence, it 

may miss some finer details in the empirical data. 

Rain vs Flood: 

Empirical Plot: The contours indicate multiple regions of high density, particularly in the 

mid to higher values, suggesting a moderate positive dependence between rainfall and 

flood levels. 

Fitted Copula Plot: The fitted plot closely follows the structure of the empirical contours, 

capturing the major trends and peaks, though with some smoothing. This indicates that 

the fitted copula model effectively captures the overall relationship between rain and flood, 

but again, with less detail than the empirical data might suggest. 

Wind vs Flood: 

Empirical Plot: The contours are spread out, suggesting a weaker and possibly more 

diffuse dependence between these variables. 

Fitted Copula Plot: The fitted model successfully captures the broad patterns seen in the 

empirical plot, including the general direction and shape of the contours. However, as with 

the other pairs, the fitted copula smooths out the details, potentially overlooking some of 

the complexity in the empirical data. 

The comparison of empirical and fitted copula contour plots in Louisiana reveals that the 

fitted copula models generally capture the main trends and dependence structures seen 
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in the empirical data. The fitted plots replicate the overall shapes and directions of the 

empirical contours, indicating that the models are reasonably good at approximating the 

joint distributions of the variables. However, the fitted copulas tend to smooth out the finer 

details, which may result in a less accurate representation of the more complex interactions 

between variables. This smoothing effect is consistent across all three variable pairs. It 

suggests that while the fitted copulas provide a useful approximation, they might not fully 

capture all nuances of the empirical relationships. 

 

4.1.3.1 Copula Analysis (Mississippi) 

GEV Parameters fitting: 

Copula AIC BIC Log-

Likelihood 

Kendall Tau Spearman Rho 

Gumbel 1.9175958 3.175692 0.0412021 0.02678382 0.03802938 

Clayton 0.8072453 2.065342 0.5963774 0.07193306 0.10762302 

Frank 1.3567732 2.614870 0.3216134 0.05938728 0.08899598 

t 3.2533759 4.511472 -0.626688 0.05973812 0.24678745 

Table 4.29: GEV Copula Model Fit and Dependence Measures for Mississippi 

In Table 4.29, the Clayton copula shows the lowest AIC (0.807) and BIC (2.065) values, 

suggesting it provides the best fit among the tested copulas under the GEV model for 

Mississippi. The log-likelihood for the Clayton copula is also the highest (0.596), further 

supporting its superior fit. Additionally, the Clayton copula displays the highest Kendall Tau 

(0.0719) and Spearman Rho (0.1076) values, indicating a modest level of dependence 

between the variables. 

 

GPD Parameters fitting: 
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Copula AIC BIC Log-

Likelihood 

Kendall Tau Spearman Rho 

Gumbel 2.000001 4.454349 -7.185e-07 1.490116e-

08 

-0.001602055 

Clayton NA NA NA NA NA 

Frank NA NA NA NA NA 

T 1.477225 3.931572 2.613877e-

01 

-6.068932e-

02 

NA 

Table 4.30: GPD Copula Model Fit and Dependence Measures for Mississippi 

In Table 4.30, the t copula provides the best fit for the GPD model in Mississippi, with an 

AIC of 1.477 and a BIC of 3.932. The log-likelihood (0.2614) is positive, indicating a 

reasonable fit. However, the Kendall Tau value (-0.0607) is negative, which could indicate 

an inverse or complex relationship between the variables. The Spearman Rho value is not 

available (NA), suggesting potential difficulties in estimating this measure, as seen in 

previous analyses. 

 

Best Fitting Copula in Mississippi  

Copula Type Estimate of 

Rho (ρ) 

Standard Error 

of Rho 

p-Value 

t (GPD) -0.09519 0.061 0.8307 

Table 4.31: Best Fitting Copula for Mississippi 

From the numbers in Table 4.31, the t copula is the best fitting copula for the data in 

Mississippi, but the estimated Rho value suggests a weak and potentially insignificant 

inverse relationship between the variables. The high p-value and small standard error imply 

that while the estimate is precise, the dependence it represents is not statistically significant. 
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This suggests that the dependence structure between these variables might belong to a 

more complex structure, and the variables may be largely independent in practical terms. 

 

Figure 4.48: Empirical vs. Fitted Copula Contour Plots (Mississippi) 

Figure 4.48 presents a comparison between the empirical joint distributions (top row) and 

the fitted copula model distributions (bottom row) for three variable pairs: Rain vs Wind, 

Rain vs Flood, and Wind vs Flood in Mississippi. 

Rain vs Wind: 
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Empirical Plot: The contours are tightly packed and show a complex, strong dependence 

structure with distinct areas of high density. This suggests a significant relationship 

between rain and wind in Mississippi. 

Fitted Copula Plot: The fitted contours generally follow the empirical pattern, but they are 

smoother and less complex. While the fitted copula captures the broad trends, it may 

oversimplify some of the intricacies observed in the empirical data. 

Rain vs Flood: 

Empirical Plot: The contours show regions of high density, especially at moderate to high 

levels of rain and flood, suggesting a strong positive dependence between these variables. 

Fitted Copula Plot: The contours align reasonably well with the empirical data, capturing 

the main density regions. However, the fitted model smooths out some detailed variations, 

indicating that while the copula model captures the general dependence, it may not fully 

reflect all the subtleties of the empirical relationship. 

Wind vs Flood: 

Empirical Plot: The contours suggest a more diffuse, weaker dependence structure, with 

areas of moderate density indicating some relationship between wind and flood levels. 

Fitted Copula Plot: The fitted contours capture the general shape and direction of the 

empirical contours but with smoother transitions and less distinct peaks. This suggests that 

the fitted copula model can approximate the overall dependence but may miss some finer 

details in the empirical data. 

The comparison between the empirical and fitted copula contour plots for Mississippi 

reveals that the fitted copula models generally capture the main trends and dependence 

structures observed in the empirical data. However, the fitted copulas tend to smooth out 

the contours, potentially missing some of the more complex or subtle interactions in the 

empirical data. This effect is particularly noticeable in the Rain vs Wind and Rain vs Flood 

comparisons, where the fitted copula models approximate the overall patterns but with less 

detail. Overall, the fitted copulas provide a reasonable approximation of the joint 
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distributions, though they may not fully capture all the nuances of the empirical 

relationships in Mississippi. 

 

4.1.4 Prediction 

Texas 

Windspeed = 50 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.336892 2.086110 0.9141347 1.626033 4.505272 

Flood Level 1.785189 1.686074 0.3176210 1.509635 2.611602 

Table 4.32: Statistics for Rainfall and Flood Levels at 50 mph Windspeed in Texas 

Windspeed = 100 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.385260 2.091460 0.9102006 1.615186 4.822277 

Flood Level 1.800821 1.697857 0.3467885 1.510655 2.606777 

Table 4.33: Statistics for Rainfall and Flood Levels at 100 mph Windspeed in Texas 

Windspeed = 150 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.421805 2.095086 0.9819626 1.622791 5.140716 

Flood Level 1.829890 1.700297 0.3716445 1.506994 2.847258 

Table 4.34: Statistics for Rainfall and Flood Levels at 150 mph Windspeed in Texas 
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Figure 4.49: Mean Rainfall vs. Wind Speed in Texas 

 

Figure 4.50: Mean Flood Level vs. Wind Speed in Texas 
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Table 4.32, Table 4.33 and Table 4.34 present the estimated rainfall level and flood level 

in Texas under windspeed 50 mph, 100 mph and 150 mph, respectively. Figure 4.49 and 

Figure 4.50 present the relationship between wind speed and both rainfall and flood levels 

in Texas, with higher wind speeds associated with slightly greater mean values and 

increased variability in rainfall and flood levels. 

 

Louisiana 

Windspeed = 50 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.354263 1.981946 1.3582859 1.533312 4.305792 

Flood Level 1.553796 1.478658 0.2564752 1.309148 2.253055 

Table 4.35: Statistics for Rainfall and Flood Levels at 50 mph Windspeed in Louisiana 

Windspeed = 100 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.460493 2.150972 0.9672123 1.524437 5.443626 

Flood Level 1.479474 1.412385 0.1819847 1.310474 1.949256 

Table 4.36: Statistics for Rainfall and Flood Levels at 100 mph Windspeed in Louisiana 

Windspeed = 150 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.250214 2.160442 0.6506854 1.525330 3.961199 

Flood Level 1.646784 1.548682 0.3081647 1.339864 2.135181 

Table 4.37: Statistics for Rainfall and Flood Levels at 150 mph Windspeed in Louisiana 
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Figure 4.51: Mean Flood Level vs. Wind Speed in Louisiana 

 

Figure 4.52: Mean Flood Level vs. Wind Speed in Louisiana 
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Table 4.35, Table 4.36 and Table 4.37 display the estimated rainfall and flood levels in 

Louisiana at wind speeds of 50 mph, 100 mph, and 150 mph, respectively. Figure 4.51 

and Figure 4.52 show the relationship between wind speed and both rainfall and flood 

levels in Louisiana, showing that as wind speeds increase from 50 mph to 150 mph, there 

is a slightly increase trend in mean values and greater variability in both rainfall and flood 

levels experience. 

 

Mississippi 

Windspeed = 50 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.275670 2.002273 0.9737421 1.334465 4.907456 

Flood Level 1.436571 1.363909 0.2375550 1.205374 2.089311 

Table 4.38: Statistics for Rainfall and Flood Levels at 50 mph Windspeed in Mississippi 

Windspeed = 100 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.534261 1.822176 1.6738161 1.304676 7.149946 

Flood Level 1.501591 1.324046 0.4405419 1.201695 2.771513 

Table 4.39: Statistics for Rainfall and Flood Levels at 100 mph Windspeed in Mississippi 

Windspeed = 150 mph 

Variable Mean Median SD Lower CI Upper CI 

Rainfall 2.645477 1.715083 2.0388688 1.302468 8.250842 

Flood Level 1.518626 1.305266 0.4616781 1.200609 2.878321 

Table 4.40: Statistics for Rainfall and Flood Levels at 150 mph Windspeed in Mississippi 
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Figure 4.53: Mean Flood Level vs. Wind Speed in Mississippi 

 

Figure 4.54: Mean Flood Level vs. Wind Speed in Mississippi 
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Table 4.38, Table 4.39 and Table 4.40 show the estimated rainfall and flood levels in 

Mississippi at wind speeds of 50 mph, 100 mph, and 150 mph, respectively. Figure 4.53 

and Figure 4.54 illustrate the relationship between wind speed and both rainfall and flood 

levels in Mississippi, demonstrating that as wind speeds increase from 50 mph to 150 mph, 

there is a slight rise in mean values along with greater variability in both rainfall and flood 

levels. 

 

4.1.5 Annual Joint Probability 

Rainfall Level (in) Windspeed (mph) Flood Level (in) 

3 80 1.8 

Table 4.41: Selected Threshold Scenario for Rainfall, Windspeed, and Flood Level 

Table 4.41 presents the selected threshold scenario for calculating the annual joint 

exceedance probability of extreme weather events. Under this scenario, the probabilities of 

exceeding these thresholds for Texas, Louisiana and Mississippi are in Table 5.42. 

Texas Louisiana Mississippi 

0.0220 8e-04 0.0017 

Table 4.42: Annual Joint Exceeding Probability 

 

4.2. Vulnerability Model Results  

4.2.1. Forward Selection Results 

Texas (13,261 observations) 

Selected variables:  

elevatedBuildingIndicator, WSF5, numberOfFloorsInTheInsuredBuilding, PRCP, 

buildingAgeAtLoss, basementEnclosureCrawlspaceType, waterDepth 
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Fitted model 

 Estimate Pr(>|t|) 

(Intercept)   10.2259916 < 2e-16 

elevatedBuildingIndicator1 -0.4352655 < 2e-16 

numberOfFloorsInTheInsuredBuilding -0.0523679 2.28e-05 

buildingAgeAtLoss 0.0025395 1.00e-10 

basementEnclosureCrawlspaceType1 -0.3117258 < 2e-16 

basementEnclosureCrawlspaceType2 -0.4244367 < 2e-16 

basementEnclosureCrawlspaceType4 -0.3850033 2.28e-07 

waterDepth 0.0015744 2.10e-05 

WSF5 0.0090403 < 2e-16 

PRCP 0.0191977 5.89e-08 

Table 4.43: Parameters and p-values for selected covariates (Texas) 

 

Louisiana (4,430 observations) 

Selected variables:  

elevatedBuildingIndicator, numberOfFloorsInTheInsuredBuilding, buildingAgeAtLoss, 

basementEnclosureCrawlspaceType, waterDepth, PRCP, WSF5 

Fitted model 

 Estimate Pr(>|t|) 

(Intercept)   10.8454166 < 2e-16 

elevatedBuildingIndicator1 -0.4388428 < 2e-16 

numberOfFloorsInTheInsuredBuilding -0.1189752 1.04e-09 
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buildingAgeAtLoss -0.0013453 0.0510 

basementEnclosureCrawlspaceType1 -0.6276191 < 2e-16 

basementEnclosureCrawlspaceType2 -0.4821771 < 2e-16 

basementEnclosureCrawlspaceType4 -0.3478725 0.0115 

waterDepth 0.0119847 < 2e-16 

WSF5 0.0003836 0.7273 

PRCP -0.0615763 < 2e-16 

Table 4.44: Parameters and p-values for selected covariates (Louisiana) 

 

Mississippi (254 observations) 

Selected variables:  

elevatedBuildingIndicator, WSF5, basementEnclosureCrawlspaceType, PRCP, 

occupancyType 

Fitted model 

 Estimate Pr(>|t|) 

(Intercept)   11.286321 < 2e-16 

basementEnclosureCrawlspaceType1 -0.681720 0.002604 

basementEnclosureCrawlspaceType2 -0.778948 0.000211 

basementEnclosureCrawlspaceType4 -1.499902 0.012714 

elevatedBuildingIndicator1 -0.118845 0.526583 

waterDepth 0.004901 0.206897 

WSF5 0.030761 0.357330 

PRCP -0.026803 2.16e-06 
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Table 4.45: Parameters and p-values for selected covariates (Mississippi) 

Table 4.43, Table 4.44 and Table 4.45 present the parameter estimates and p-values for 

variables selected through forward selection in Texas, Louisiana, and Mississippi, 

respectively. 

 

4.2.2. Model Validation 

The Root Mean Square Error (RMSE) for the flood prediction model GLM is 27,115.63 for 

Texas, 26,488.38 for Louisiana, and 23,065.48 for Mississippi. 

 

4.2.3. Loss Estimation  

Texas 

 Building 1 Building 2 Building 3 

elevatedBuildingIndicator 0 0 0 

numberOfFloorsInTheInsuredBuilding 2 3 2 

buildingAgeAtLoss 20 15 10 

basementEnclosureCrawlspaceType 1 0 0 

waterDepth 1.8 1.8 1.8 

WSF5 80 80 80 

PRCP 3 3 3 

Table 4.46: Input Scenarios for GLM Predictions for Buildings in Texas 

 

Louisiana 

 Building 1 Building 2 Building 3 



 

Page 109 of 131 
 

elevatedBuildingIndicator 0 0 0 

numberOfFloorsInTheInsuredBuilding 2 3 2 

buildingAgeAtLoss 20 15 10 

basementEnclosureCrawlspaceType 1 0 0 

waterDepth 1.8 1.8 1.8 

WSF5 80 80 80 

PRCP 3 3 3 

Table 4.47: Input Scenarios for GLM Predictions for Buildings in Louisiana 

 

Mississippi 

 Building 1 Building 2 Building 3 

elevatedBuildingIndicator 0 0 0 

basementEnclosureCrawlspaceType 1 0 0 

waterDepth 1.8 1.8 1.8 

WSF5 80 80 80 

PRCP 3 3 3 

Table 4.48: Input Scenarios for GLM Predictions for Buildings in Mississippi 

 

States Building 1 Building 2 Building 3 Average 

Texas 41,642.53 58,322.23 57,457.08 52,473.95 

Louisiana 18,406.67 30,817.53 34,945.35 28,056.52 

Mississippi 5,226.345 10,333.926 10,333.926 8,631.40 

Table 4.49: Predicted Losses for Buildings 
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Table 4.46, Table 4. 47 and Table 4. 48 indicate the building characteristics and Table 4.49 

are their loss estimation. 

4.3. Annual Expected Losses Calculation  

Frequencies are from Table 4.42, and we use the average predicted losses for buildings 

are from Table 4.49. Combining these, using Equation 3.11, the estimated annual 

expected losses for wind-related flood events are shown in Table 4.50. This table provides 

an estimation of the financial impact that wind-related flood events are likely to have on 

buildings in different states on an annual basis. 

 Frequency Average Predicted Loss Expected Loss 

Texas 0.0220 52473.95 1154.427 

Louisiana 0.0008 28056.52 22.445 

Mississippi 0.0017 8,631.40 14.673 

Table 4.50: Annual Expected Loss 
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5. Discussion 

5.1. Interpretation of Key Findings  

The thesis focuses on developing a catastrophe model using statistical and machine 

learning methodologies, particularly the Generalised Linear Model (GLM), to predict losses 

from extreme wind and flood events. The study is centred on the US Gulf Coast, 

encompassing Texas, Louisiana, and Mississippi. The key findings are as follows. 

 

5.1.1   Hazard Model Results 

The Extreme Value Theory and copula analysis reveal that the Gulf Coast states 

experience significant variability in extreme weather events, particularly rainfall, wind 

speed, and flood levels. 

Both GEV and GPD analyses show a similar pattern in each variable between these three 

states. 

GEV or GPD analysis shows that the scale parameter increases as one moves from Texas 

to Mississippi, suggesting greater variability in the intensity of extreme rainfall events. 

Mississippi has the highest variability, and Texas shows a pronounced heavy-tail 

behaviour, indicating a higher likelihood of extreme rainfall events. 

Texas has the most variable extreme wind speeds and the highest shape parameter, 

indicating a strong vulnerability to extreme wind events. Louisiana has lower variability and 

a lighter tail, with Mississippi falling between Texas and Louisiana regarding the potential 

for extreme wind events. 

Extreme flood levels across the states, with Texas showing slightly higher variability. All 

states have moderately heavy-tailed distributions, with Texas and Louisiana having a 

slightly higher likelihood of experiencing very extreme flood events compared to 

Mississippi. 

Texas exhibits the highest variability and the strongest tendency towards extreme wind 

speeds, as seen in its consistently high scale and shape parameters across both GEV and 
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GPD analyses. This suggests a higher susceptibility to severe wind events. Mississippi 

generally experiences high variable and intense extreme rainfall events, as indicated by 

its high-scale parameters in both GEV and GPD analyses. However, its negative shape 

parameter in the GEV analysis for rainfall suggests a limit to how extreme these events 

can get. Louisiana shows less variability in rainfall and wind speed extremes than Texas 

and Mississippi, with a more moderate tail behaviour, meaning less frequent and less 

severe extreme events. 

All three states exhibit heavy-tailed distributions for flood levels, but Louisiana and Texas 

show a slightly higher propensity for extreme flood events than Mississippi. 

 

5.1.2 Vulnerability Model Results: 

The GLM-based vulnerability model highlighted the role of building characteristics and 

environmental factors in determining the extent of flood damage. The model is able to 

predict financial losses associated with specific hazard scenarios. Integrating financial loss 

data into the vulnerability model marks a critical advancement over traditional models, 

which often focus solely on physical vulnerability. From the GLM parameters, windspeed 

and flood levels positively correlate with the final losses. However, the parameters for 

rainfall levels in Louisiana and Mississippi show a negative relationship with that. This 

might be because the observation to train the vulnerability model in Louisiana and 

Mississippi is less than in Texas, leading to an estimated error. 

Integrating the hazard and vulnerability models provided a tool for predicting potential 

losses under various extreme weather scenarios. The combined model, validated through 

cross-validation techniques, demonstrated predictive accuracy, particularly in assessing 

the financial impact on building infrastructure. 
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5.1.3 Comparison with Existing Information 

The findings align with established theories and research in several ways: 

The study's results corroborate existing literature on the intensification of extreme weather 

events due to climate change. For example, the increase in extreme rainfall and wind 

speeds in the Gulf Coast states is consistent with the Intergovernmental Panel on Climate 

Change (IPCC) findings, which have documented the increasing frequency and intensity 

of such events globally. The heavy-tailed distribution of flood levels further supports the 

notion that climate change leads to more severe and unpredictable natural disasters. 

Also, it is noticeable that the average flood insurance cost in Texas is $678. Comparing 

this number with the annual expected losses in this paper in Texas $1154)(Fitzpatrick, 

2022), the expected flood loss is higher than the insurance cost. However, this is the 

average cost without mentioning the structure of the insurance product. The higher cost in 

real life, while lower in the proposed model's prediction, which might cause by the number 

that comes from the proposed model is the average loss from hurricane-related events, 

but the insurance policy might only cover the floods from rainfall events and not include 

heavy rainfall bring by hurricanes in their products. 

 

5.2. Implications for Flood Risk Assessment  

One of the most significant contributions of this thesis is integrating financial loss data into 

the vulnerability model. Traditional models often focus on physical damage without 

adequately considering the financial implications. Incorporating financial losses with the 

generalised linear model (GLM) in vulnerability assessment, particularly its application to 

predicting financial losses, showcases originality in applying machine learning techniques 

in flood risk analysis. The thesis provides a comprehensive tool for disaster risk 

management, offering valuable insights for the insurance and reinsurance industries. This 

approach reflects a growing recognition in the field that economic resilience is as crucial 

as physical resilience in mitigating the impacts of natural disasters. 
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The proposed catastrophe modelling framework incorporates both hazard and vulnerability 

models, with the final output—annual expected loss—being derived as the product of the 

results from these models. Notably, these two components within the framework can 

operate independently. For instance, the model can calculate the probability of exceeding 

a certain threshold annually if users are interested in the joint exceedance probability, or it 

can estimate the potential loss for a specific building or portfolio of buildings given a 

particular event intensity. 

This research shows an example of how knowledge is created and interpreted within the 

field of disaster risk management. It proposes a catastrophe modelling framework that 

builds on existing theories and models and pushes the boundaries by integrating advanced 

statistical methods and machine learning techniques. This approach addresses the 

complexities inherent in multi-hazard scenarios, offering a more nuanced and powerful tool 

for managing disaster risk. 

 

5.3. Research Limitations, Future Directions and Recommendations 

The thesis is limited to the US Gulf Coast (Texas, Louisiana and Mississippi), so the 

findings may not directly apply to other regions with different geographic or climatic 

conditions. This limits the generalisability of the model. Future research could expand the 

model to other regions with different climatic and geographic conditions. This would test 

the model's adaptability and robustness across various environments. 

After this, this catastrophe framework also has the limitation that the codes might only 

apply to one geographical location because of the complexity of the copula fitting process 

and the variation between choosing different types of copula in prediction. This limit 

requires users to modify the codes while analysing other geographical locations. For 

example, models between Texas, Louisiana and Mississippi use the main framework and 

methodology but slightly different codes to choose the best fit copula and give the joint 

probability. This indicates that further research could find out as many variations as 

possible when analysing/fitting more data from different geographical locations. This can 
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make the model run more smoothly and be user-friendly. Also, this proposed catastrophe 

modelling framework is only limited to fit four types of copula (Gumbel, Clayton, Frank and 

t copula). Continuing fitting the copula model to the data can increase the accuracy of 

probability estimations, although this work has the potential to lead the model to become 

more complex since it includes more variations and makes the process automatic. 

The model may simplify the interactions between different hazards (e.g., wind and flood), 

which could lead to underestimating risks in scenarios where these interactions are more 

complex. This underestimation is particularly shown in calculating the annual joint 

probability in Louisiana. One of the reasons for this might be using the 3-dimensional 

copula analysis. Further research can include fitting the variables pairwise in a 2-

dimensional copula. This might increase the computational complexity but can increase 

the accuracy of analysing the dependency structure between each pair of variables. 

In addition, while this thesis focuses on wind-related flood hazards, future research could 

extend the model to include other types of natural hazards, such as earthquakes or 

tsunamis, and examine the interactions between multiple hazards (e.g., how an 

earthquake might exacerbate flooding). 

Another limitation of this model is that while fitting the GPD, the user is required to 

estimate/select the thresholds manually. This process might require the user to have 

statistical modelling experience, extreme value theory knowledge, and an understanding 

of the local environment. One possible recommendation is to conduct workshops and 

training sessions for stakeholders, including government agencies, local authorities, 

insurance companies, and urban planners, to educate them on the use and interpretation 

of the model. This helps ensure that the model is applied effectively in decision-making 

processes. 

A further limitation in the research is that while we fitted the data to GEV and GPD, we did 

not check if a non-stationary GEV or GPD would perform better. Further research can 

include fitting the non-stationary GEV and GPD to examine this. Because of climate 

change, the distribution parameters will likely change over time. If indeed the non-

stationary model fitted performs better, using copula analysis will become more complex. 
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The complexity can come from modelling and accounting for non-stationarity, such as 

transforming the data to achieve stationarity before applying the copula analysis or using 

dynamic copulas that can handle non-stationary dependencies. However, integrating 

climate change adaptation strategies into the model's framework can help users respond 

to current risks and prepare for future changes in hazard patterns. 

Regarding the data limitation in this research, the meteorology data used in this study are 

data from airport recodes, which are far from the coastal line and it is rare to measure flood 

levels in this area. If we use the observation data from inland, it is very likely to 

underestimate the intensity of the extreme events, particularly in measuring and modelling 

the windspeed. This might be the second reason that explains why annual joint probability 

in Louisiana is very low. Although the water depth (flood level) data calculated from the 

insurance claims records fit the distributions in extreme value theory well, it is not recorded 

from direct measurement in the natural environment. Also, the vulnerability model in 

Mississippi shows a potential underestimation of the financial losses. This might be 

because there are only 254 observations to train the model.  

The model's accuracy and reliability heavily depend on the quality and availability of data. 

If possible, further research can use direct flood level data from the environmental agent 

to obtain more reliable results. The model's predictions may be less accurate in regions 

where data is scarce or less reliable. For instance, the flood level data used in this paper 

is a calculated average water depth from the insurance record, not observation data from 

the local authority. To address data limitations, one of the recommendations for continuing 

to work on the observation data is for governmental and private/commercial organisations 

to collaborate to improve the collection and sharing of high-quality meteorological data. 

This can also include efforts to standardise data collection methods across different 

regions. Also, engage with the insurance and reinsurance industries to refine the model 

further based on their needs and feedback. This collaboration also provides opportunities 

for real-world testing and validation of the model in live environments. Collaboration with 

industry would be beneficial in increasing the accuracy of estimating financial losses, which 

can lead to preparing the funding/reserve for flood recovery precisely. On the other hand, 
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it is also worth using the model-simulated data generated by climate models, such as data 

generated in Coupled Model Intercomparison Project Phase 6 (CMIP6), to fit the proposed 

multi-hazard framework. Using climate model simulated data can solve the data limitations 

in the hazard model. For example, it does not constrain the location, and the data points 

can be more precise than the observation data point. 

One notable point is the increasing popularity and precision of advanced machine learning 

algorithms across various quantitative fields globally. The vulnerability component 

discussed in this paper could potentially achieve better statistical performance by using 

these algorithms to train the same dataset. Future research could explore the 

enhancement of vulnerability models by incorporating ensemble learning algorithms, such 

as the Gradient Boosting Machine (GBM), alongside the Generalised Linear Model (GLM) 

to facilitate a comprehensive comparison. While deep learning algorithms undeniably have 

the potential to perform better in prediction statistically, the need for explainability and the 

consideration of the model's users suggest that explainable and supervised machine 

learning algorithms like GLM and GBM might offer a more balanced and effective overall 

performance. 
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6. Conclusion 

This study has successfully developed a flood risk assessment model tailored to the unique 

challenges of the US Gulf Coast, with a specific focus on Texas, Louisiana, and Mississippi. 

Given the increasing flood risks due to climate change and urbanisation, accurately 

predicting the frequency of extreme flood events and the expected financial losses from 

these events is crucial. Misleading or inaccurate models can have serious consequences, 

leading policymakers and authorities to make less ideal decisions that exacerbate the 

impact of catastrophic flooding events. Therefore, the reliability and clarity of flood 

catastrophe modelling tools are essential. 

The potential application of this model extends beyond financial loss predictions. For 

policymakers and urban planners in Texas, the hazard model offers a valuable tool for 

long-term disaster risk reduction strategies by advising authorities on the exceedance 

probability of flood events. By providing clear and reliable predictions, the complete model 

can inform infrastructure investments, emergency preparedness plans, and insurance 

policies, ultimately contributing to the resilience of communities against future flood events. 

In addition, the hazard model is able to calculate the level of return and probability of 

overruns at different thresholds, which provides decision-makers with the data they need 

to make informed decisions on resource allocation and flood prevention efforts. 

To ensure the model's practical application in managing flood risks, it is recommended that 

workshops and training sessions be conducted for stakeholders, including government 

agencies, local authorities, and insurance companies, because of the model's complexity, 

particularly in the manual selection of thresholds for the Generalised Pareto Distribution 

(GPD). These sessions would ensure that the model is applied effectively in decision-

making processes and that users fully understand its limitations and capabilities. 

In conclusion, this research contributes to non-commercial flood risk modelling for the US 

Gulf Coast, with the potential for broader applications. By addressing the identified 

limitations and incorporating future advancements, the proposed modelling framework 

could become a powerful tool for global flood risk assessment, helping communities and 

policymakers worldwide to better prepare for and respond to extreme weather events. 
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Appendix: 

Name Title Description 

causeOfDamag
e 

Cause Of Damage Categorical variable indicating the cause of damage, 
with "4" denoting rain-related flood damage. 

buildingDamage
Amount 

Building Damage 
Amount 

The actual cash value amount of damage to a main 
property in whole dollars. 

basementEnclo
sure 

CrawlspaceTyp
e 

Basement 
Enclosure 

Crawlspace Type 

Categorical - Specifies the type of basement or 

crawlspace, with values ranging from 0 to 4； 

0 - None; 1 - Finished Basement/Enclosure; 2 - 
Unfinished Basement/Enclosure; 3 - Crawlspace; 4 - 

Subgrade Crawlspace; 

dateOfLoss Date of Loss Categorical - The date when water first entered the 
insured building. 

elevatedBuilding
Indicator 

Elevated Building 
Indicator 

Binary - Indicates whether the building is elevated 
(Yes = 'true' or '1'; No = 'false' or '0'). 

ratedFloodZone Rated Flood Zone Categorical - The NFIP Flood Zone as per the Flood 
Insurance Rate Map (FIRM). 

locationOfConte
nts 

Location of 
Contents 

Categorical - Location code of contents: 1- 
Basement/Enclosure/Crawlspace/Subgrade 

Crawlspace only; 2 - 
Basement/Enclosure/Crawlspace/Subgrade 

Crawlspace and above; 3 - Lowest floor only above 
ground level (no 

basement/enclosure/crawlspace/subgrade 
crawlspace); 4 - Lowest floor above ground level and 

higher floors (no 
basement/enclosure/crawlspace/subgrade 

crawlspace); 5 - Above ground level more than one 
full floor; 6 - Manufactured (mobile) home or travel 
trailer on foundation; 7 - Enclosure/Crawlspace and 

above; 

numberOfFloors
InThe 

InsuredBuilding 

Number of Floors 
in the Insured 

Building 

Categorical - Indicates the number of floors in the 
insured building, ranging from 1 to 6. 

1 = One floor; 2= Two floors; 3 = Three or more floors; 
4 = Split-level; 5 = Manufactured (mobile) home or 

travel trailer on foundation; 6 = Townhouse/Rowhouse 
with three or more floors (RCBAP Low-rise only); 
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nonProfitIndicat
or 

Non-Profit Indicator Binary - Indicates if the building is reported as non-
profit (Yes = 'true' or '1'; No = 'false' or '0'). 

occupancyType Occupancy Type Categorical - Code indicating the use and occupancy 
of the insured structure, like single-family residence or 
non-residential building. 1=single family residence; 2 = 
2 to 4 unit residential building; 3 = residential building 
with more than 4 units; 4 = Non-residential building; 6 

= Non Residential - Business; 11 = Single-family 
residential building with the exception of a mobile 
home or a single residential unit within a multi unit 

building; 12 = A residential non-condo building with 2, 
3, or 4 units seeking insurance on all units; 13 = A 
residential non-condo building with 5 or more units 

seeking insurance on all units; 14 = Residential 
mobile/manufactured home; 15 = Residential condo 
association seeking coverage on a building with one 

or more units; 16 = Single residential unit within a 
multi-unit building; 17 = Non-residential 

mobile/manufactured home; 18 = A non-residential 
building; 19 = a non-residential unit within a multi-unit 

building; 

originalConstruc
tionDate 

Original 
Construction Date 

Categorical - The original date of the construction of 
the building. 

floodWaterDurat
ion 

Flood Water 
Duration 

Continuous - Number of hours flood water remained in 
the insured building 

floodproofedIndi
cator 

Floodproofed 
Indicator 

Binary - Indicates if the structure is floodproofed (Yes 
= 'true' or '1'; No = 'false' or '0'). 

numberOfUnits Number of Units Continuous - The number of residential and non-
residential units covered by the policy. 

stateOwnedIndi
cator 

State-Owned 
Indicator 

Binary - Indicates if the property is state-owned (Yes = 
'true' or '1'; No = 'false' or '0'). 

waterDepth Water Depth Continuous - Depth of flood water inches (in). 

state state Categorical - The two-character abbreviation of the 
state where the property is located. 

buildingAgeAtLo
ss 

Building Age At 
Loss 

Continuous - The age of the building at the time of 
loss. 

DATE DATE Categorical - The specific date of recorded weather 
data. 

PRCP Rainfall Level Continuous - Daily precipitation levels in inches (in). 
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WSF5 Windspeed Continuous - The fastest 5-second windspeed 
recorded on that day in Miles Per Hour (mph). 

Table A1: Variable Definitions for Assessment Database 

 


