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A B S T R A C T

Colonic drug delivery offers numerous pharmaceutical opportunities, including direct access to local therapeutic
targets and drug bioavailability benefits arising from the colonic epithelium’s reduced abundance of cytochrome
P450 enzymes and particular efflux transporters. Current workflows for developing colonic drug delivery systems
involve time-consuming, low throughput in vitro and in vivo screening methods, which hinder the identification
of suitable enabling materials. Polysaccharides are useful materials for colonic targeting, as they can be utilised
as dosage form coatings that are selectively digested by the colonic microbiota. However, polysaccharides are a
heterogeneous family of molecules with varying suitability for this purpose. To address the need for high-
throughput material selection tools for colonic drug delivery, we leveraged machine learning (ML) and pub-
licly accessible experimental data to predict the release of the drug 5-aminosalicylic acid from polysaccharide-
based coatings in simulated human, rat, and dog colonic environments. For the first time, Raman spectra
alone were used to characterise polysaccharides for input as ML features. Models were validated on 8 unseen
drug release profiles from new polysaccharide coatings, demonstrating the generalisability and reliability of the
method. Further, model analysis facilitated an understanding of the chemical features that influence a poly-
saccharide’s suitability for colonic drug delivery. This work represents a major step in employing spectral data
for forecasting drug release from pharmaceutical formulations and marks a significant advancement in the field
of colonic drug delivery. It offers a powerful tool for the efficient, sustainable, and successful development and
pre-ranking of colon-targeted formulation coatings, paving the way for future more effective and targeted drug
delivery strategies.

1. Introduction

Currently, most medicines on the market are formulated as oral solid
dosage forms that release drugs within the stomach and small intestine.
Patients and healthcare providers widely prefer oral administration due
to its ease, lack of invasiveness, and lower cost than other administration
routes [1]. Though immediate-release dosage forms are typically the
default choice during formulation, some drugs may benefit from tar-
geted delivery to the colon. Although the colon has a lower surface area
for absorption than the small intestine, and a thicker epithelial mucus
layer, it may still provide pharmacokinetic, safety, and therapeutic
benefits [2–4]. This is partly due to its reduced expression of the drug-

metabolising enzyme cytochrome P450 3A4 (CYP3A4) [5] and the
efflux transporter permeability-glycoprotein (P-gp) compared to the
small intestine [6]. Colonic drug delivery is also attractive for treating
local diseases, such as inflammatory bowel disease (IBD) and colorectal
cancer [7–9]. Similarly, targeting the colon can provide access to local
therapeutic targets related to systemic diseases, such as the colonic
microbiome and nutrient-sensing receptors [10,11]. Delivering drugs to
their target site can improve therapeutic efficacy and reduce response
variability, dose requirements, and adverse effects [12].

The design and development of the targeted dosage form is a critical
aspect of colonic drug delivery. Solid oral dosage forms can be tuned for
colonic release by coating them with materials that are sensitive to
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gastrointestinal (GI) physiology, namely by utilising pH-dependent,
time-dependent, and/or microbiota-dependent trigger mechanisms
[2,13]. These mechanisms may also be combined to enhance the reli-
ability of formulations’ colonic drug release [14]. Identifying materials
that reliably enable colonic drug release can be challenging and time-
consuming, frequently relying on low throughput in vitro and in vivo
screening programs [15,16]. As such, there is a need for tools that can
increase the throughput of material selection for colonic drug delivery.

Polysaccharides hold great promise as materials for enabling drug
delivery to the colon. With the aid of a structuring agent to prevent
swelling, such as ethyl cellulose or an enteric polymer, polysaccharide-
based coatings should be stable during transit through the proximal GI
tract and only allow drug release when they are digested by the
microbiota in the colon [17,18]. Currently, only one commercial
formulation, OPTICORE®, utilises polysaccharides for colonic drug de-
livery [14]. As part of its dual trigger mechanism, OPTICORE® employs
high amylose starch as the polysaccharide that is digested by patients’
colonic microbiota, facilitating 5-ASA delivery for the treatment of ul-
cerative colitis. This technology demonstrates the potential of poly-
saccharides and encourages the development of new polysaccharide-
based formulations for colonic drug targeting. However, a major chal-
lenge with using polysaccharides for this purpose is that they are a
highly chemically diverse family of molecules with varying suitability
for inclusion into dosage forms. This means the digestibility and,
therefore, drug release is extremely hard to predict. Hence, a major
bottleneck in designing these materials is the time and effort required to
study and validate dosage forms.

Machine learning (ML) methods hold great promise for many areas
of pharmaceutical research. ML models can be trained to predict an
output based on relationships between input features and have been
shown to accurately predict material properties in pharmaceutics before
[19–22], including controlled release drug delivery systems, such as
long acting injectables [23,24]. An advantage of ML methods over
traditional statistical tools is that they do not assume linearity and,
therefore, typically have high predictive power for complex and multi-
dimensional data at the risk of a loss of interpretability compared to
traditional statistical methods.

Here, we show how Raman spectra can be used to predict drug
release from polysaccharide-based coatings. We trained an ML model on
publicly available data composed of novel polysaccharide-based coat-
ings that were investigated for colonic drug delivery for the first time
[25]. Drug release for untested polysaccharides coatings was then pre-
dicted and validated by generating new experimental data composed of
8 unseen release profiles. Interpreting these models demonstrated that
Raman peaks identifying glycosidic linkages were essential for predict-
ing drug release. All models and the code for generating them have been
made freely available in the GitHub repository for this article (https:
//github.com/y-babdalla/coating_release).

2. Materials and methods

2.1. Materials

The data used to train the ML models in this study have been pub-
lished by Ferraro et al. [25]. In this work, pellets were loaded with 5-
aminosalicylic acid (5-ASA) and coated with polysaccharide-based ma-
terials. The full manufacturing method used for coating production is
presented in the original publication by Ferraro et al. [25] (Section 2.5).
Briefly, aqueous ethylcellulose dispersion was plasticized with dibutyl
sebacate (DBS). A solution/dispersion of a second polysaccharide aim-
ing at colon targeting was added. The blend was stirred for 1 h and
subsequently used to coat 5-ASA loaded pellets in a fluidised bed coater.

It should be appreciated that the polysaccharide-based coatings
developed in the study by Ferraro et al. [25] contained DBS and ethyl-
cellulose, ethylcellulose avoided the dissolution and/or substantial
swelling of the “colon targeting” polysaccharide in the upper gastro

intestinal tract. DBS is a plasticizer for ethylcellulose, assuring appro-
priate mechanical properties of the film coatings. As the ratio of DBS and
ethylcellulose was maintained as a constant in every coating (“colon
targeting” polysaccharide: ethylcellulose = 2:3 w/w), the identity of the
“colon–targeting” polysaccharide can be viewed as the independent
variable for ML purposes. The “colon–targeting” polysaccharides used
were Abelmoscus esculentus extract (Specialty Natural Products Co.
Ltd., Chon Buri, Thailand), Coix lacryma esculentus extract (Specialty
Natural Products Co. Ltd., Chon Buri, Thailand), maize maltodextrin
(Roquette Freres, Lestrem, France), raffinose (Alfa Aesar, Kendel, Ger-
many), pregelatinized starch (Starch 1500; Colorcon, Kent, UK), cook-
up maize starch (Roquette Freres, Lestrem, France), xylan (Tokyo
Chemical industry, Zwijndrecht, Belgium), inulin (Orafti Synergy 1;
Beneo-Orafti, Oreye, Belgium), resistant maize starch (Novelose 240;
Ingredion, Hamburg, Germany), inulin (Orafti HIS; Beneo-Orafti, Oreye,
Belgium), rice starch (Specialty Natural Products Co. Ltd., Chon Buri,
Thailand), goji berry extract (Specialty Natural Products Co. Ltd., Chon
Buri, Thailand), isomaltulose (Beneo-Orafti, Oreye, Belgium), maltitol
(Roquette Freres, Lestrem, France), and inulin (Orafti HP; Beneo-Orafti,
Oreye, Belgium). These coatings, composed of different polysaccharides,
were tested for their colon-targeting potential by incubating them in
faecal material sourced from humans diagnosed with inflammatory
bowel disease (IBD); rats with 2,4,6-trinitrobenzene sulfonic acid
(TNBS)-stimulated colitis; and healthy dogs. A faeces-free medium was
also utilised as a microbiota-free control. The release of 5-ASA from the
polysaccharide-based coatings in the four incubation media was
measured using high-performance liquid chromatography. The
polysaccharide-based coatings that were efficiently digested by the
faecal microbiota, enabling 5-ASA release, were deemed potential can-
didates for new formulations designed to deliver drugs to the colon
following oral administration.

The raw data from the work by Ferraro et al. [25], subsequently
utilised in this study as an ML dataset, are presented in the GitHub re-
pository (https://github.com/y-babdalla/coating_release). Here, the
names of the polysaccharides utilised in the coatings are arranged
alongside their incubation medium and 5-ASA release percentage at
either 2, 8, or 24 h. 5-ASA release at these three incubation time points
was included in the dataset to enable the ML models to predict drug
release at a range of times rather than providing a single snapshot, as
this could better predict the drug release profiles from different poly-
saccharides. We also captured the Raman spectra for all the poly-
saccharide coatings and each polysaccharide was paired with its Raman
spectrum to capture its unique chemical structure, which was used as an
input for ML.

2.2. Raman spectroscopy

Raman spectra were captured using a Renishaw InVia Raman spec-
trometer (Renishaw plc, Wottonunder-Edge, Gloucestershire, UK)
composed of a single-grating spectrograph coupled with an optical Leica
microscope. The 785 nm line of a Cobolt diode laser was used for
excitation. Focusing the laser beam via a × 50 long-working distance
objective, a volume of about 400 mm3 of each raw polysaccharide
powder was analysed. The scattered light was collected in backscat-
tering geometry, with an acquisition time of 120 s and a resolution of
around 2 cm− 1 in the 150–1500 cm− 1 spectral range to cover the mo-
lecular fingerprint region.

2.3. Data analysis and statistics

2.3.1. Machine learning models
Five distinct ML models were employed in this study. These included

3 tree-based ensembles: Extreme Gradient Boosting (XGBoost) [26],
Light Gradient-Boosting Machine (LightGBM) [27], and Random Forest
(RF) [28], along with a kernel-based method, Support Vector Machine
(SVM) [29] and a memory-based learning algorithm, K-nearest
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neighbours (KNN) [30]. Additionally, K-means clustering was used to
cluster the Raman spectra. The models were run on a Server (Operating
System: Ubuntu 20.04 LTS; Processor: AMD EPYC 7282 16-core 2.8GHz;
RAM Memory: 512GB, GPU: RTX 3090 24GB). Python (Version 3.10.4)
was used to run the ML models (Python Software Foundation). All ML
models were trained using the Scikit-learn (Version 1.1.3) Python
package [31], except for XGBoost (Xgboost Version 1.6.2) and
LightGBM (lightgbm Version 4.1.0), which were trained through their
respective libraries. The complete code is available in the GitHub re-
pository (https://github.com/y-babdalla/coating_release).

2.3.2. Unsupervised learning
Uniform Manifold Approximation and Projection (UMAP) [32] is a

dimensionality reduction technique, it was used to visualise the Raman
spectra into a single point in 2-dimensional space. UMAP maps a high-
dimensional graph as a low-dimensional graph whilst trying to main-
tain structural similarity between the two graphs. A fuzzy simplicial
complex is generated, which is a connected graph representing the to-
pological representation of the high-dimensional data; the edge weights
show the likelihood that points are connected. UMAP optimizes a low-
dimensional embedding of the data while preserving the local and
global structures of the data.

2.3.3. Feature processing
Before being input into the machine learning models, the incubation

media (IBD human (patient), IBD rat (rat), healthy dog (dog), or control)
were label encoded. The Raman spectra were uniformly processed using
the Savitzky-Golay filter for noise elimination from the spectra [33].
This was followed by a baseline adjustment to diminish the background
signal and improve peak discernibility [9]. Downsampling was then
performed on the spectra to reduce their dimensionality while preser-
ving their structure; downsampling between 1 and 40 was trialled, and
the effect on the produced spectrum and model performance was eval-
uated. Finally, all data was normalised within a range of 0–1.

2.3.4. Hyperparameter optimisation
The nested cross-validation method utilised by Bannigan et al. [23]

was followed to optimise the models’ hyperparameters. This approach
included an inner loop that employed 5-fold cross-validation within a
random search of 100 different hyperparameter combinations. The
outer loop was structured into 5 cycles, within which the data was
randomly split into a training set for hyperparameter tuning and a
testing set for validation of the model selected through this tuning
process.

2.3.5. Uncertainty quantification
Conformal predictions [34] were used to identify confidence in-

tervals for the predictions made by the models. The training data was
divided into train (70 %) and calibration (30 %) sets. Models were
trained using the train set, and predictions were subsequently made on
the calibration set. The discrepancy between actual and predicted values
on this set was utilised to identify the models’ confidence. This confi-
dence was then used to compute the uncertainty interval for the pre-
dictions on the test data.

2.3.6. Explainability analysis
SHAPley additive explanations (SHAP), an algorithm based on Game

theory [35], was employed to investigate the features influencing the
best model’s decision-making. This analysis was conducted using the
Python SHAP package (Version 0.42.1). The most influential features
and their SHAP values were selected, representing their contribution to
the model’s final decision.

2.3.7. Determining model performance
The models’ performances were evaluated using 5-fold cross-

validation. In this method, the data was divided into five equal

segments. Each segment was used as the test set once, while the
remaining data was the training set. The models’ overall performances
were determined by calculating the mean of the results across the five
iterations. The regression metrics used were the coefficient of determi-
nation (R2), mean square error (MSE) and mean absolute error (MAE)
(Table 1).

2.4. Experimental validation

The Raman spectra of two polysaccharides – rice starch and Abel-
moscus esculentus extract - were acquired. Their spectra were then
inputted into models to predict their release in the incubation media.
Subsequently, 5-ASA-loaded pellets coated with these polysaccharides
were manufactured [25] and incubated in all four media types to
determine their release profiles. The predicted release profile was
compared to the actual release observed to validate the models.

3. Results and discussion

3.1. Exploratory data analysis

Since Raman spectra describe the chemistry and bonding of the
molecules involved in a drug coating, and as this chemistry should be
intrinsically linked to the ability of the microbiota to digest it and release
the drug, we surmised that these spectra may be suitable for predicting
drug release profiles. We turned to a recently published dataset of 60
drug release profiles, with associated Raman spectra and aimed to
generate predictive models that could take Raman spectra of coatings
with unknown release profiles as input.

The drug release characteristics of the 13 polysaccharide coatings in
the training dataset are presented in Fig. 1A. Variability of 5-ASA
release increased at the later timepoints, with the widest spread of
drug release measured at 24 h. The extent of drug release also increased
between all three timepoints (Fig. 1B). No statistical difference was
observed between any of the media at 2 h. At 8 h, drug release in the
control and dog media was significantly lower than in patients and rats
(ANOVA, p < 0.05). At 24 h, release in the control medium was signif-
icantly lower than in all other media (ANOVA, p< 0.05). This similarity
means that a single model can be employed to predict all release profiles
by label encoding the medium, rather than developing separate models
for each medium. Consequently, this approach provides the model with
more data to learn from, enhancing the accuracy of its predictions.
However, predicting drug release in dog media at 8 h remains particu-
larly challenging due to its distinct release trend compared to other
media.

To further understand the nature of the data used to train the model,
the Raman spectra of the polysaccharide coatings were analysed.
Analysis of the Raman spectra of the training dataset revealed that all
coatings had between 12 and 20 peaks in their spectra (Fig. 2A). Most of
the peaks were identified between 500 and 1200 cm− 1, corresponding to
aliphatic chains, ethers and aromatic rings, and 1200–1700 cm− 1

(Fig. 2B), corresponding to aromatic and hetero rings, methyl and ethyl
groups [36]. Furthermore, UMAP dimensionality reduction and K-
means clustering [37] using an n of 2 was carried out to cluster the

Table 1
Regression ML metrics. Abbreviations- N: population size, yi: actual value, y:
mean value, ŷi : predicted value.

Metric Focus Calculation

R2 Measures the goodness of fit of a regression model,
higher values indicate a better fit. 1 −

∑
i
(
yi − ŷi

)2

∑
i
(
yi − y

)2

MSE
Mean of the square of the difference between the
actual and predicted values

1
N
∑N

i=1

(
yi − ŷi

)2

MAE
Mean of the absolute difference between the actual
and predicted values

1
N
∑N

i=1

⃒
⃒yi − ŷi

⃒
⃒
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wavelengths (Fig. 2C). The two identified clusters represent inulins (and
similar structures) and other polysaccharides.

3.2. Raman Spectra successfully train machine learning models

We evaluated the ability of five different ML models - LightGBM,
XGBoost, RF, KNN and SVM - to predict 5-ASA release profiles given the
polysaccharides Raman Spectra as inputs. These models encompass a
range of algorithmic approaches, including tree-based, kernel-based,
and memory-based methodologies. Models were trained to predict the
percentage of 5-ASA release from polysaccharide-coated pellets, with
data describing polysaccharide-coating, incubation medium, and incu-
bation time used as input features. A 5-fold CV approach was utilised on
the training data, and the R2 was computed to assess model perfor-
mance. An initial examination was conducted to compare the impact of

spectrum processing on model accuracy: the raw Raman spectra, the
normalised, denoised spectrum and the normalised, denoised spectrum
reduced to 20 dimensions using partial least squares regression (PLSR)
(Fig. 3A). We found that all spectra performed similarly for tree-based
models. However, SVM and KNN performed better for the PLSR pro-
cessed spectrum, likely attributed to the greater simplicity of the data.
Furthermore, we observed that the spectrum processing reduced vari-
ability in XGBoost and LightGBM, consistent with the literature showing
the effect of noise reduction and normalisation on model performance
[38]. While PLSR is commonly used for spectrum pre-processing, and it
exhibited strong predictive performance, its performance was similar to
that of the processed spectrum, and it cannot be easily interpreted to
understand which components of the Raman spectrum are important for
release. Consequently, use of the processed Raman spectrumwas used in
further work.

Fig. 1. The 5-aminosalicylic acid (5-ASA) release from polysaccharide-based coatings in the original training dataset A) separated according to the timepoint and
incubation media (individual points overlayed) and B) separated by incubation time.

Fig. 2. Analysis of the polysaccharides coatings’ Raman spectra. A) The number of peaks in the Raman spectra of the coatings used in the training dataset. B) The
kernel density estimate (KDE) distribution of peaks in the Raman spectra of the coatings used in the training dataset. C) UMAP of the Raman spectra coloured by K-
means clusters.

Y. Abdalla et al. Journal of Controlled Release 374 (2024) 103–111 

106 



Having established that Raman spectra have predictive power for
drug release, the impact of downsampling the processed spectra was
assessed. Specifically, the effects of downsampling by selecting up to
every 40th wavenumber intensity reading were evaluated. Both the R2

(Fig. 3B) and MAE (Fig. 3C) scores were measured to determine the
impact of this process on model performance. We found that down-
sampling did not significantly affect the overall performance of the
models. However, this approach reduces computational requirements
while preserving the data’s original structure and therefore, down-
sampling is an effective dimensionality reduction method that maintains
data integrity and explainability. This method is notably simple and
requires minimal computational resources. In contrast, other dimen-
sionality reduction methods, such as principal component analysis
(PCA), which are frequently employed for similar purposes lead to a loss
in the data’s explainability, as interpretation of principal components
can be difficult [39]. Based on the findings, downsampling at a factor of
20 was deemed optimal and thus included in future models. This level of
downsampling effectively reduced the dimensions of the data while
conserving its original structure and characteristics (Fig. 3D).

3.3. Raman spectra accurately predict drug release profiles for
polysaccharide coatings

We next sought to understand and improve the generalisability of
our model through cross-validation. The nested cross-validation method
employed by Bannigan et al. [23] was used to tune the hyperparameters
of the five ML models and evaluate their performance. In this process,
for each iteration, a validation set was separated from the dataset, while
the remaining training data underwent a random search cross-validation

(n = 100) to identify the optimal hyperparameters for each model.
Subsequently, these tuned models were tested against the validation set.

As shown in Fig. 4, tree-based models outperformed their counter-
parts. This outcome aligns with the existing literature, suggesting that
tree-based models are particularly well-suited for handling tabular data
[40]. This was evident in the higher R2 scores and lower MAE and MSE,
indicating more accurate and reliable predictions. Among the models
tested, XGBoost and RF emerged as the top performers, achieving the
highest R2 of 0.81 and 0.80, respectively and the same lowest MAE score
of 0.08, underscoring their efficacy in this application. This is consistent
with literature highlighting the compatibility of these models with small
datasets [41]. Due to their superior performance over other models, we
progressed them both for further evaluation.

Subsequent analysis of predictions revealed that the models had
higher performance when predicting 5-ASA release at lower values, as
illustrated in (Fig. 5A and B). This enhanced accuracy at lower release
levels can be attributed to the training data distribution, predominantly
composed of instances with less than 40 % drug release (Fig. 1A).
Consequently, the model was inherently more reliable in estimating
release percentages within this more frequently represented lower
range. However, the model could still predict higher release values and
thus could capture the range of values present in a complete drug release
profile, as shown in Fig. 5C.

3.4. Machine Learning of Raman spectra is generalisable

To fully validate the predictive power of our model, we chose two
additional polysaccharide coatings to experimentally characterise and
test against model predictions — Rice starch and Abelmoscus esculentus

Fig. 3. A) R2 scores for predictions made following different Raman spectrum pre-processing of the polysaccharides coating. The individual coloured points
represent the mean of the data along with the standard deviation, while the black points denote the individual data points. B) The effect of downsampling the Raman
spectra on R2 and C) MAE. D) Comparison of an example raw spectrum and its denoised, baseline shifted, downsampled spectrum.
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extract. Raman spectra from these coatings were fed into the final ML
model and predictions of release profiles in media compared to experi-
mentally measured equivalents. When comparing the Raman spectra of
polysaccharides in the new validation set to those in the original training
set, it was observed that they had a comparable number of peaks
(Fig. 6A) located at similar positions (Fig. 6B). Therefore, the model was
expected to perform well in predicting their release.

Both RF and XGBoost, the top-performing models, were evaluated.
There was a slight reduction in XGBoost performance when applied to
this new data, with the R2 dropping to 0.72 and no change to the MAE
and MSE. However, RF proved to be more robust, with only a minute
reduction in R2 to 0.79, and no change in MAE and MSE. This suggests
that RF was less overfit andmore generalisable, therefore this model was
chosen for further evaluation. Fig. 7 shows the RF predicted and actual
drug release profile, including a 90 % confidence interval determined
via conformal predictions. Overall, the model showed great predictive

performance, with very similar predicted and release profiles. Addi-
tionally, it was observed that the majority of the actual data points fell
within the model’s predicted confidence interval, suggesting a high
reliability in the model’s predictions. The model could predict drug
release in dog media at 8 h, although this had been projected to be the
most difficult to predict. Consistent with prior observations, the model
exhibited reduced prediction accuracy for higher drug release percent-
ages, as identified for prior observations, and as seen with the release
profile of both coatings in rat media. Incorporating more data points
representing these higher ranges can likely further enhance the model’s
performance. However, it is important to note that since the available
data was limited to 2, 8, and 24 h, model performance could only be
assessed at these specific intervals. Therefore, future work should
incorporate additional time points in model training and evaluation to
enable a more comprehensive assessment of model performance.
Furthermore, while the model demonstrated generalisability to the two

Fig. 4. Performance of the outer loop in the nested cross-validation. The individual coloured points represent the mean of the data along with the standard deviation,
while the black points denote the individual data points.

Fig. 5. A) Actual vs predicted release for XGBoost in the outer loop of the nested cv. B) Actual vs predicted release for RF in the outer loop of the nested cv. C)
Example release profile for Goji berry extract incubated in IBD dog medium.
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polysaccharides studied, additional data is required to fully evaluate its
generalisability and to test its limits. Nonetheless, the model is fit for
purpose specifically for predicting 5-ASA release from polysaccharide
coatings in the four media. More data would be necessary to expand the
remit of this model beyond its current scope.

3.5. Explainability analysis reveals glycosidic linkages as key predictors of
polysaccharide degradation

The model’s decision-making process was analysed using SHAP to
gain deeper insights into the factors influencing drug release predictions
(Fig. 8). Consistent with expectations, time and the incubation medium
were the most influential factors. Additionally, the analysis highlighted
several key wavenumbers, including 522 cm− 1, 620 cm− 1, 858 cm− 1,
927 cm− 1, and 1085 cm− 1. These wavenumbers align with the pre-
dominant peaks observed in the exploratory data analysis. They are
associated with molecular vibrations such as C–H bending, C–C
stretching, C–O stretching, and ethyl bending, respectively [36]. Most
notably, the 522 cm− 1, 858 cm− 1, 927 cm− 1 and 1085 cm− 1 peaks
correspond to regions where different glycosidic linkages are found

[42,43]. These bonds, which interlink sugar moieties, are metabolised
by bacteria during the degradation of polysaccharides [44,45]. Shifts in
the Raman peak can indicate factors such as the bond strength, molec-
ular interactions, polymorphism and the overall structure of the poly-
saccharide [46–49]. As well as influencing the solubility of the
polysaccharides in the GI tract, these factors impact the stability of the
glycosidic bond to hydrolysis and enzymatic degradation by intestinal
bacteria [50,51] and hence influence the release of the drug from the
coating. Consequently, the model accurately identified these crucial
areas in the spectrum as key indicators for predicting polysaccharide
degradation.

The ML models presented in this study were developed to assist in
selecting suitable polysaccharides for colonic drug delivery coatings.
This predictive capability significantly reduces the time that would
otherwise be required for in vitro screening. The developed models were
robust and notably demonstrated a strong alignment with the drug
release data used for external validation, as evidenced by most data
points falling within the model’s 90 % confidence interval. This in-
dicates a reasonable degree of reliability and applicability in practical
scenarios. Though none of the polysaccharides in the training/testing

Fig. 6. Analysis of the polysaccharide coatings’ Raman spectra. A) The number of peaks in the Raman spectra of the coatings used in the validation dataset. B) The
KDE distribution of peaks in the Raman spectra of the coatings used in the training dataset.

Fig. 7. Predicted and actual release profile of 5-ASA from the coatings.
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dataset underwent pre-treatment prior to incorporation into the colon
targeting coatings (e.g., with heat), it should be noted that poly-
saccharide pre-treatment should be considered when generating pre-
dictions for new polysaccharides. For example, if a polysaccharide has
undergone heat pre-treatment then it is advised that the Raman spec-
trum of the treated polysaccharide sample is used for model predictions
rather than the raw starting material.

The RF model developed in this research can predict the 5-ASA
release profile from polysaccharide-based coatings designed for
colonic drug delivery. Notably, its robust performance on an external
validation set confirmed the model’s generalisability. Previous studies
have predicted drug release from various pharmaceutical formulations
via other methods. For instance, Barmpalexis et al. [52] successfully
employed an artificial neural network (ANN) to predict the release of
nimodipine from matrix tablet formulations, achieving an R2 of 0.90.
Similarly, Petrović et al. [53] modelled the dissolution profiles of
different matrix tablet types, achieving a Pearson’s correlation of 0.9991
between predicted and observed to optimise controlled drug release.
Salem et al. [54] used an ANN to predict drug release from polyethene
oxide-based promethazine tablets and obtained an R2 of 0.9381. The
features used to characterise the formulations in these models included
polymer composition, processing parameters and physical properties.
While these models exhibit superior performance metrics compared to
the one presented herein, it is essential to consider the differences in the
test environments. The previous models operated in more controlled
settings, contrasting with the complexities and variability inherent in
the gut microbiome. The microbiome presents a diverse and less pre-
dictable environment, which poses additional challenges for accurate
modelling. Furthermore, the model herein encompasses multiple media
types, adding to its complexity, whereas previous studies typically
focused on a single medium. Another distinction lies in using Raman
spectroscopy in our study, enhancing the model’s generalisability. The
Raman-based approach allows for a broader application across different
drug formulations and conditions, surpassing the specificity of previous
models. Consequently, despite the seemingly lower performance met-
rics, the model developed in this study demonstrates greater robustness
and a wider range of potential applications. This advancement holds
significant promise in accelerating the production of targeted drug
coatings, offering an alternative to the lengthy, expensive, and labour-
intensive in vitro methods currently in use.

4. Conclusion

This study marks a significant advance as the first to utilise spectral
data to predict drug release from pharmaceutical formulations. It in-
troduces an innovative approach to preparing Raman spectra for ML via
dimensionality reduction, successfully preserving the original data’s
explainability, structure, and integrity. The RF model developed in this
study provides a tool for the streamlined development of colon-targeted
formulation coatings, which can be employed to increase the efficiency,
sustainability, and success of future colonic drug delivery programmes.
A notable use case for this methodology is pre-ranking polysaccharide
coatings before experimental validation of top hits, significantly
reducing experimental requirements for developing new formulations.
Whilst this work has produced a seemingly robust model, we note that
the dataset is still small by ML standards and additionally performed
with only a single drug. Future work will involve expanding the range of
polysaccharide coatings studied and exploring the role of drug proper-
ties on release, particularly in light of previous work that has demon-
strated interactions between drugs and microbiota.
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