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Floating solar panels installed on water reservoirs will be an increasingly popular renew-
able energy scenario. However, a significant current flow will occur when the reservoir gate
is open to release water. Such a current flow can cause complex fluid-structure interaction
at the edge of the solar panels, reversely analogized to a ship advancing through calm water,
signifying the generation of a stern wave. This wave can damage the solar panels, which
needs to be investigated to ensure operational safety. In this context, the present paper
analyzes a mixed boundary problem of a uniform flow passing through a two-dimensional
semi-infinite elastic plate using an analytical approach—the Wiener-Hopf technique. The
mathematical model is based on the linearized velocity potential for fluid flow and the
Kirchhoff-Love plate theory for an elastic plate. Three different edge conditions are consid-
ered here, namely, clamped, simply supported, and free. Extensive results and discussions
are provided for the amplitudes of the propagation wave, and principal strain in the elastic
thin plate. In particular, significant “resonance” fluid-structure interactions are found when
the current speed is at certain special magnitudes. To support straightforward industrial
applications, these special flow rates are given as a water depth Froude number. Overall,
this study can provide valuable insights for floating solar projects on water reservoirs to
control the water-release rate, thus minimizing the potential structural problems.

DOI: 10.1103/PhysRevFluids.9.094804

I. INTRODUCTION

Solar photovoltaics is widely acknowledged as a pivotal technology for mitigating global carbon
emissions. In contrast to other energy power plants, solar photovoltaic power generation is propor-
tional to its surface coverage, necessitating a considerably large area to deploy an industrial-scale
power plant [1]. One of the popular scenarios is to develop floating photovoltaics (FPV) on
hydropower reservoirs, as shown in Fig. 1. On the one hand, such a configuration can utilize the
water space [3], saving scarce land space for human activities, transportation, agriculture, natural
reservation, etc. On the other hand, the proximity to the hydropower infrastructure allows solar
farms to benefit from the existing power transmission and distribution networks, leading to cost
savings. Almeida et al. [4] estimated that covering 10% of the world’s hydropower reservoirs with
FPV can bring about power generation equivalent to the sum of all current fossil fuel plants in the
world, which attracts significant commercial and research interests.

Nevertheless, installing floating solar farms in hydropower reservoirs also entails a concern,
which is related to a strong current flow underneath the solar panels when water is released from a
reservoir. The flow can induce a wake at the solar farm edge, i.e., between covered and open water
regions, which can cause a significant load and deformation on the solar panels [5], as shown in
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FIG. 1. Schematic of a hybrid FPV-hydropower system [2].

the sketch in Fig. 2. Hence, it is essential to investigate the interaction between such a flow and a
floating solar farm.

In this context, the present work aims to establish an analytical model to explore the fluid-
structure interaction of submerged water flow exiting from the edge of a floating solar power plant.
Typically, a solar farm occupies a vast horizontal expanse, allowing the associated issues to be
effectively addressed in a two-dimensional context [6]. The present article primarily focuses on the

FIG. 2. Schematic of the case of the interaction between a semi-infinite elastic plate with an incoming
current: (a) before the current coming into the system and (b) a steady state after the fluid and structural
domains are coupled.
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WAVES AND STRUCTURAL STRAIN INDUCED …

stern waves generated by the current at the floating platform’s edge and the associated structural
strain. In such a case, a semi-infinite elastic plate is employed as a viable model for simulating
the solar farm. The potential flow theory is employed to predict the fluid field, and the structural
deformation is modeled by the Kirchhoff-Love plate coupled with the fluid [7–9].

II. LITERATURE REVIEW

For solar photovoltaics covering a large horizontal area of the water surface, the motion and
elasticity of the entire structure cannot be ignored when considering the influence of hydrodynamic
loads [10–12]. In such a case, the thin elastic plate model for floating structures and linearized
velocity potential theory for fluids are usually employed as one option to investigate such types of
problems [13–16]. The present study modeled the solar farm as a semi-infinite elastic thin plate
with an initial draft, and tried to understand its interaction with a uniform current, as a typical
hydrodynamic problem for FPV on hydropower reservoirs. In the past decades, the theoretical model
of a semi-infinite elastic plate was applied to the field of wave and sea ice interaction. For example,
the problem of wave transmission and reflection by a semi-infinite ice sheet was solved by Fox
and Squire [17] and Sahoo et al. [18] through the matched eigenfunction expansion (MEE), as well
as by Balmforth and Craster [19] and Tkacheva [20] based on the Wiener-Hopf technique [21].
In their work [17–20], the plate was assumed to meet the water surface with zero draft, and edge
conditions such as free were imposed on the edge of the plate. Later, Andrianov and Hermans [22]
further considered a semi-infinite elastic plate with a finite draft, where the impermeable boundary
condition was applied at the wetted surface of the plate edge. The nature of the works listed above is
to understand how water waves propagate in elastic plates; because of the transition in the conditions
at the plate edge, a key feature there is that the wave elevation and slope at this position may
not be continuous. By contrast, the hydrodynamic load in the present study is a steady uniform
current rather than an incident wave, which makes the problem steady instead of periodic and further
leads to differences in the boundary conditions. In such a case, the former established methods in
the literature may not be applied directly to the present problem. Besides, the steady wave profile
here is generated by the incoming current being disturbed by the elastic plate. The flow separates
from the side edge of the plate edge [23,24], and additional conditions may need to be applied
to ensure the flow separation effects, which is quite different from the treatment in the previous
periodic problems.

Apart from the works with a semi-infinite elastic plate, this study is also related to hydroelastic
waves generated by a moving load or an incoming current. For example, Davys et al. [25] and
Milinazzo et al. [26] investigated the linearized problem of waves generated by a steadily moving
object on a floating elastic plate by using the Fourier transform method. Guyenne and Parau [27]
further considered the nonlinear elastic plate condition and solved it via a boundary integral equation
based on Cauchy’s integral formula. Besides, Li et al. [28] considered steady waves due to a
uniform current disturbed by a circular cylinder submerged below an elastic plate, based on the
Green’s function approach. Lustri [29] studied the nonlinear hydroelastic waves generated by flow
over submerged obstacles, where an exponential asymptotic analysis was employed to derive the
solution. In these works, the elastic plate is perfect and assumed to be infinitely extended; the present
work aims to understand how steady waves present in a semi-infinite elastic plate, and to illustrate
the influence of the plate edge.

The study in this paper is also related to stern waves due to a current passing underneath
a rigid floating structure. Over the past few decades, numerous studies have been conducted to
understand the characteristics of stern waves of floating rigid bodies. Haussling [23] and Schmidt
[24] investigated the stern waves of a two-dimensional semi-infinite extended rigid plate of infinite
water depth, where Haussling [23] studied the cases both with linear and nonlinear free surface
boundary conditions numerically, and Schmidt [24] addressed the linearized problem for a series
of distinctive shapes of the rigid plate. Later, McCue and Stump [30] solved the problem of linear
stern waves of finite water depth analytically based on the Wiener-Hopf technique, and pointed
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out that a nonsingular solution only exists when the water-depth-based Froude number is less than
1. Subsequently, Maleewong and Grimshaw [31] extended the problem to nonlinear free surface
boundary conditions and considered a wide range of drafts by using a boundary integral method;
they indicated that the results of the linear and nonlinear approaches were in good agreement when
the draft of the rigid plate was much less than the mean water depth. Binder [32] considered stern
waves of a curved rigid plate with a specific shape, and a weakly nonlinear solution based on
a Korteweg–De Vries (KdV) equation was derived analytically. Later, Ogilat et al. [33] further
extended it to more general shapes of curved rigid plates. In their work, an approach that combined
the Wiener-Hopf technique and conformal mapping was proposed to solve the linear problem, and
a nonlinear analysis based on the KdV equation [32] was provided. The works discussed here are
all for stern waves behind a semi-infinite rigid plate. However, on occasions when the horizontal
dimension of the floating structure is significant, like the present floating solar farm, the model of
a rigid plate may not be reasonable, because considerable deformations and strain of the structure
induced by hydrodynamic loads should be considered. Hence, the model of a semi-infinite elastic
plate will be employed in this article to extend the previous research about a rigid plate. Since
the elasticity of the plate is considered as an additional factor, the induced structural deformation
may make the characteristic of stern waves quite different from that of a rigid plate. Through the
enhanced solution, the present work aims to shed some light on this fluid-structural physics problem
as well as the industrial application of floating solar farms on water reservoirs.

The rest of the paper is organized as follows. In Sec. III, the mathematical model of the problem
is established based on the linearized velocity potential theory and Kirchhoff-Love plate theory. The
solution procedure of the Wiener-Hopf technique is given in Sec. IV. Systematic result analyses in
different boundary and flow conditions are presented in Sec. V, followed by the conclusions in
Sec. VI.

III. PROBLEM DESCRIPTION

We may consider the interaction between a uniform current and a two-dimensional semi-infinite
elastic plate with an initial draft, as sketched in Fig. 2. In Fig. 2(a), a Cartesian coordinate system
O-xz is defined with the x axis along the undisturbed surface, and the z axis pointing upwards. The
elastic plate covers the region at x < 0 and its lower surface is along z = −d , while the region at
x > 0 is with the free surface boundary condition. The bottom of the fluid is along z = −H . At
one time point, there is a uniform current coming from x = −∞ to x = +∞; we may assume that
the current speed far downstream is denoted by U . Since the mean water depth at x < 0 has been
narrowed as H−d because of the existence of the plate, based on the conservation of mass, the speed
of the current far upstream should be UH/(H−d ). The semi-infinite elastic plate will be disturbed
by the current and experience an oscillation. After a sufficiently long time, a steady state of the flow
field will be reestablished, where a steady wave profile may be generated along the water surface,
as shown in Fig. 2(b).

In the present problem, the fluid is assumed to be inviscid and incompressible and its motion is
irrotational. Since the problem is steady and independent of time, a velocity potential �(x, z) will
be introduced to describe the motion of the fluid. We may split � into a summation of the steady
current component and the disturbed component, which provides

�(x, z) = UH

H − d
x + φ(x, z), (1)

where φ(x, z) is governed by the Laplace equation in the entire fluid domain as

∂2φ

∂x2
+ ∂2φ

∂z2
= 0. (2)
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The dynamic and kinematic boundary conditions on the elastic plate can be written as [28,34]

L
d4W

dx4
= p, at x < 0, z = −d + W (x), (3a)

∂�

∂z
= ∂�

∂x

dW

dx
, at x < 0, z = −d + W (x), (3b)

where the terms of temporal derivatives in Eqs. (3) are omitted because the problem is steady, L
denotes the flexural rigidity of the elastic plate, W (x) represents the wave elevation measured from
the initial undisturbed lower surface of the plate, or z = −d at x < 0, and it is measured from the
undisturbed water surface, or z = 0 at x > 0. p(x) denotes the hydrodynamic pressure, which can
be calculated from the Bernoulli equation as

p(x) = −ρ

[
1

2

(
∇� · ∇� − U 2H2

(H − d )2

)
+ gW

]
, x < 0, (4)

where ρ is the density of the fluid and g denotes the acceleration due to gravity. The dynamic free
surface boundary condition at x > 0 can be expressed as [30]

1
2 (∇� · ∇� − U 2) + gW = 0 at x > 0, z = W (x). (5)

Besides, the kinematic boundary condition in Eq. (3b) should also be satisfied at x > 0 and
z = W (x). The impermeable condition at the bottom of the fluid gives

∂φ

∂z
= 0, z = −H. (6)

At the edge of the elastic plate, suitable edge conditions should be imposed, with the aim to
simulate the physical constraints at the edge of the floating solar farm [35]. Here, three commonly
used theoretical types are considered. In particular, the clamped edge is to let the deflection and
slope of the plate be zero, which can be used to model the edge of the floating solar farm that is
fully fixed. The simply supported edge is to let the deflection and bending moment be zero. The free
edge is to let the shear force and bending moment be zero, or no external constraint is applied to the
edge of the solar panel. From Timoshenko and Woinowsky-Krieger [36], we obtain

W (0−) = 0 and
dW

dx
(0−) = 0, clamped, (7a)

W (0−) = 0 and
d2W

dx2
(0−) = 0, simply supported, (7b)

d2W

dx2
(0−) = 0 and

d3W

dx3
(0−) = 0, free. (7c)

Based on the discussion in Refs. [37,38], we may further assume that the flow at the sharp edge
of the plate separates smoothly and tangentially, which is used to require the velocity at the edge to
be finite. In such a case, apart from the structural edge conditions in Eqs. (7), the Kutta condition
should also be imposed to ensure the continuity of the wave elevation and slope. Hence, we have

−d + W (0−) = W (0+), (8a)

dW (0−)

dx
= dW (0+)

dx
. (8b)

It should be noted again that the use of the Kutta condition is valid when the current speed is not
very low. As discussed in Ref. [39], the flow will separate from the lower edge point of the plate
when the draft-based Froude number FT = U/

√
gd is greater than a critical value, which is around

2. When U → 0 or is very small, the separation point is located at the side edge, and the flow may
be unstable. In such a case, Eqs. (8) may be invalid. Normally, when a dam releases water, the speed
of the flow, U , can be more than 10 m/s [40], for a typical solar panel with a draft d of 0.1 m [3],
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which gives a transom-draft Froude number FT of more than 10, and the Kutta condition can be
applied to the present problem.

The far-field condition should also be applied at x → ±∞, which gives

∂φ

∂x
→ w±(x, z) as x → ±∞, (9)

where w±(x, z) denote wavy functions oscillatory with x at x → ±∞, and its expression depends on
the group velocity of the propagating waves at infinity. If the group velocity of the wave component
is larger or smaller than the current speed U , the waves will show in the downstream (x = −∞) or
upstream (x = +∞) region correspondingly.

Before analyzing this boundary value problem, a series of nondimensional variables is defined
based on the density of the fluid, ρ, the acceleration due to gravity, g, as well as the mean water depth
H . In particular, x′ = x/H , z′ = z/H , �′ = �/H

√
gH , W ′ = W/H , and ε = d/H and the water-

depth-based Froude number is F = U/
√

gH . In the following text, the prime in these variables will
be omitted and all the parameters are presented in a nondimensional form. In such a case, Eqs. (1),
(3a), (4), (5), and (8) can be reexpressed as

�(x, z) = F

1 − ε
x + φ(x, z), (10)

D
d4W

dx4
= p at x < 0, z = −ε + W (x), (11)

where D = L/ρgH4, and

p(x) = −
[

1

2

(
∇� · ∇� − F 2

(1 − ε)2

)
+ W

]
, x < 0. (12)

1

2
(∇� · ∇� − F 2) + W = 0 at x > 0, z = W (x). (13)

−ε + W (0−) = W (0+) (14a)

dW (0−)

dx
= dW (0+)

dx
. (14b)

Additionally, Eqs. (2), (7), and (9) remain in the same formats; Eq. (3b) should be revised to be
satisfied at x < 0 and z = −ε + W (x) and at x > 0 and z = W (x); and Eq. (6) should be satisfied
along z = −1.

Here, we consider the case of the draft much less than the mean water depth, or ε � 1. In such
a case, the velocity potential φ(x, z) and wave elevation W (x) may be written in the following
perturbation form of ε:

φ(x, z) = εφ1(x, z) + O(ε2) (15a)

W (x) = εη1(x) + O(ε2), (15b)

where φ1(x, z) and η1(x) represent the first-order component of velocity potential and wave eleva-
tion, respectively. We substitute Eqs. (15) into Eqs. (3b), (11), and (12), and then apply the Taylor
series at z = 0, eliminating η1 from the obtained equations. The boundary condition for φ1 at x < 0
and z = 0 is obtained as(

D
∂4

∂x4
+ 1

)
∂φ1

∂z
+ F 2 ∂2φ1

∂x2
= 0, x < 0, z = 0. (16)

Similarly, the boundary conditions for φ1 at x > 0 and z = 0 provide

∂φ1

∂z
+ F 2 ∂2φ1

∂x2
= 0, x > 0, z = 0. (17)
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Following the procedure above, η1(x) can be expressed as

η1(x) =
{

−D
F

∂4φ1(x,0)
∂x3∂z − F ∂φ1(x,0)

∂x , x < 0

−F
[
F + ∂φ1(x,0)

∂x

]
, x > 0.

(18)

In such a case, the edge conditions in Eqs. (7) should be satisfied by η1(x). Besides, substituting
Eq. (15b) into Eq. (14), the Kutta condition provides

−1 + η1(0−) = η1(0+), (19a)

dη1(0−)

dx
= dη1(0+)

dx
. (19b)

The governing equation in Eq. (2), as well as the boundary conditions in Eqs. (16)–(19) and
(7) construct the boundary value problem for φ1. The Kutta condition in Eqs. (19) shows a key
difference with the problem of wave diffraction by a semi-infinite elastic plate [19,20], where
only two conditions at the plate edge can lead to a unique solution, and discontinuity on the wave
elevation and slope are allowed at the edge. By contrast, two additional conditions are needed here
to ensure the continuity of the flow due to flow separation.

IV. SOLUTION PROCEDURE

A. Derivation of the solution through the Wiener-Hopf technique

The boundary value problem for φ1 established in Sec. III can be solved by the Jones’ version of
the Wiener-Hopf technique [21]. The following Fourier transforms are defined with the complex-
valued variable α,

φ̂+(α, z) =
∫ +∞

0
φ1(x, z)eiαxdx, (20a)

φ̂−(α, z) =
∫ 0

−∞
φ1(x, z)eiαxdx, (20b)

φ̂(α, z) = φ̂+(α, z) + φ̂−(α, z). (21)

The functions φ̂+(α, z) and φ̂−(α, z) are defined in the upper (Im{α} > 0) and lower (Im{α} < 0)
complex planes of α, respectively, and they can be defined over the entire complex plane through
analytical continuation. In addition to a couple of singularities at the real axis of α, φ̂+(α, z) and
φ̂−(α, z) are analytical in the half-planes Im{α} > 0 and Im{α} < 0, respectively. It should be noted
that these poles at the real axis of α correspond to propagation waves at x = ±∞; the distributions
of these poles are related to the Froude number F , which will be given in detail later.

Applying Eqs. (20) and (21) to Eq. (2), together with the boundary condition in Eqs. (6), φ̂(α, z)
can be solved as

φ̂(α, z) = A(α)Z (z, α), (22)

where A(α) is an unknown function of α and

Z (z, α) = cosh α(z + 1). (23)

Substituting Eqs. (20) and (21) into Eqs. (16) and (17), we obtain

C+(α) + C−(α) = A(α)α2K1(α, F ), (24)

D+(α) + D−(α) = A(α)α2K2(α, F ), (25)

where C±(α) and D±(α) are obtained by applying a half-range Fourier transform in Eqs. (20a) and
(20b) to Eqs. (16) and (17), respectively. K1(α, F ) and K2(α, F ) denote the dispersion equations
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FIG. 3. Distribution of the roots of K1(α, F ) = 0 in the entire complex plane of α.

corresponding to cases fully covered by an elastic plate and without the elastic plate (free surface
case), respectively, where

K1(α, F ) = (Dα4 + 1)
sinh α

α
− F 2 cosh α, (26a)

K2(α, F ) = sinh α

α
− F 2 cosh α. (26b)

Notice that φ1(x, z) satisfies Eq. (16) at x < 0 and Eq. (17) at x > 0. In such a case, we have
C−(α) = D+(α) = 0. We may eliminate A(α) from Eqs. (24) and (25), which provides

C+(α)

D−(α)
= K1(α, F )

K2(α, F )
= K (α, F ). (27)

Following the general steps of the Wiener-Hopf technique, K (α, F ) needs to be factorized as

K (α, F ) = K+(α, F )K−(α, F ), (28)

where K±(α, F ) is analytical in the same domains as φ̂±(α, F ), respectively. To do that, the
distribution of the roots of K1(α, F ) = 0 and K2(α, F ) = 0 should be introduced first. Based on
the discussion in Ref. [41], K1(α, F ) = 0 has an infinite number of roots at α = ±κm (m = −1, 0,
1, . . .), and the distribution of these roots is related to the Froude number F . As shown in Fig. 3, there
is a critical Froude number Fc, at which K2(α, Fc) = 0 will have a double real root α = κc and satisfy
∂K2(κc,F2 )

∂α
= 0 [28]. When 0 < F < Fc, κ−1 and κ0 are two fully complex roots satisfying κ0 = −κ̄−1

where Re{κ−1} > 0, Im{κ−1} > 0, κm (m = 1, 2, 3, . . .) are purely positive imaginary roots, and
κm ∈ (mπ i, mπ i + π

2 i). When Fc < F < 1, κ−1 and κ0 become two purely positive real roots with
κ−1 > κ0, while κm (m = 1, 2, 3, . . .) remains to be an imaginary root. When F > 1, κ0 further
becomes a purely imaginary root and κ0 ∈ (0, π

2 i). By contrast, K2(α, F ) = 0 also has an infinite
number of roots at α = ±km (m = 0, 1, 2, . . .). As presented in Fig. 4, k0 denotes a purely positive
real root when 0 < F < 1. When F > 1, k0 becomes a purely imaginary root and k0 ∈ (0, π

2 i).
km (m = 1, 2, 3, . . .) are always purely positive imaginary roots with km ∈ (mπ i, mπ i + π

2 i).
Thus, based on the Weierstrass factorization, K (α, F ) can be written as

K (α, F ) = κ2
−1κ

2
0

(
k2

0 − α2
)

k2
0

(
κ2

−1 − α2
)(

κ2
0 − α2

) +∞∏
m=1

k2
m

(
κ2

m − α2
)

κ2
m

(
k2

m − α2
) . (29)

To factorize K (α, F ), it can be known that terms (α ± κm) and (α ± km) (m = 1, 2, 3, . . .) must
be in K±(α, F ), respectively, because K+(α, F ) and K−(α, F ) should be analytical in the upper
(Im{α} > 0) and lower (Im{α} < 0) complex planes of α and do not have zeros, respectively. Thus,
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FIG. 4. Distribution of the roots of K2(α, F ) = 0 in the entire complex plane of α.

we may write

K±(α, F ) = g±(α, F )
+∞∏
m=1

[
km(κm ± α)

κm(km ± α)

]
, (30)

where g+(α, F )g−(α, F ) = κ2
−1κ

2
0 (k2

0−α2 )
k2

0(κ2
−1−α2 )(κ2

0 −α2 )
corresponds to terms of propagating waves. Physically,

the distribution of propagating waves should be based on their group velocities. As discussed in
Ref. [42] for the free surface case, when k0 is real, it corresponds to a propagation wave in the
downstream region (x = +∞) since its group velocity is less than the speed of the incoming flow.
By contrast, as demonstrated by Li et al. [28] for the case fully covered by an ice sheet, when κ−1

and κ0 are real, κ−1 corresponds to a propagation wave in the upstream region (x = −∞) since its
group velocity is larger than the speed of the incoming flow, whereas κ0 pertains to a propagation
wave in the downstream region (x = +∞). Mathematically, when performing the inverse Fourier
transform on φ̂, the integral path from α = −∞ to α = +∞ should pass over the poles at α = ±k0,
α = ±κ0 and pass under the poles at α = ±κ−1. Based on the above discussion, g±(α, F ) should
be factorized as

g+(α, F ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k2
0(κ−1+α)(κ0+α)
κ−1κ0(k2

0−α2 ) , 0 < F < Fc

k2
0(κ2

0 −α2 )
κ2

0 (k2
0−α2 ) , Fc < F < 1

k0(κ0+α)
κ0(k0+α) , F > 1,

(31)

g−(α, F ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(κ−1−α)(κ0−α)
κ−1κ0

, 0 < F < Fc

(κ2
−1−α2 )
κ2

−1
, Fc < F < 1

k0(κ2
−1−α2 )(κ0−α)

κ2
−1κ0(k0−α) , F > 1.

(32)

From the analysis above, we may define

γ =
⎧⎨
⎩

min {Im{κ−1}, |κ1|, |k1|}, 0 < F < Fc

min {|κ1|, |k1|}, Fc < F < 1
min {|κ0|, |k0|}, F > 1

(33)

and further introduce S± in the complex plane of α, where S+ denotes the plane with Im{α} > −γ

except for the points at α = ±κ0 and α = ±k0 when κ0 and k0 are real. S− represents the region
with Im{α} < γ except for the points at α = ±κ−1 when κ−1 is real. A sketch of regions S± at
different F is given in Fig. 5. From Eqs. (30)–(33), it can be known that φ̂±(α, z) and K±(α, F ) are
analytical in the regions S±, respectively. Once K±(α, F ) are obtained, substituting Eq. (28) into
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FIG. 5. A sketch of the domains of S+ and S−: (a) 0 < F < Fc, (b) Fc < F < 1, and (c) F > 1.

Eq. (27), we have

C+(α)

K+(α, F )
= D−(α)K−(α, F ). (34)

It can be found that the functions on the left- and right-hand sides of Eq. (34) are analytical in the
complex domains S+ and S−, respectively. Notice from Fig. 5 that S+ and S− have an overlapping
area in the complex plane of α. Based on the theorem of analytical continuation, the functions
on the left- and right-hand sides must be identical and analytical in the entire complex plane.
Furthermore, using the Liouville theorem, such a function can only be polynomial as 2πQ(α), which
gives

C+(α)

K+(α, F )
= 2πQ(α), (35a)

D−(α)K−(α, F ) = 2πQ(α). (35b)

Substituting Eq. (34) into Eqs. (24) and (25), A(α) can be written as

A(α) = 2πQ(α)K+(α, F )

α2K1(α, F )
= 2πQ(α)

α2K2(α, F )K−(α, F )
. (36)

Applying Eq. (36) to Eq. (22) provides

φ̂(α, z) = 2πQ(α)K+(α, F )Z (z, α)

α2K1(α, F )
. (37)

φ1(x, z) can be derived by performing the inverse Fourier transform to Eq. (37), which gives

φ1 (x, z) = 1

2π

∫ +∞

−∞
φ̂(α, z)e−iαxdα =

∫ +∞

−∞

Q(α)K+(α, F )Z (z, α)

α2K1(α, F )
e−iαxdα. (38)

It can be found from Eq. (37) that there will be a pole at α = 0 in φ̂(α, z) if Q(0) or Q′(0) is
nonzero. Based on the analysis in Ref. [30], there should be no mean wave elevation at the region
x < 0, which means the residue at α = 0 in Eq. (38) should be included in φ(x, z) only when x > 0.
Hence, the integral path from α = −∞ to α = +∞ in Eq. (38) should pass over the singularity
at α = 0. Besides, as mentioned above, the integral path should also pass over the poles at α =
±k0 when 0 < F < 1, and pass under the poles at α = ±κ−1 when F > Fc. Applying Eq. (38) to
Eqs. (18), η1(x) can be expressed as

η1(x) =
⎧⎨
⎩− i

F

∫ +∞
−∞

Q(α)K+(α,F )[Dα3 sinh α(z+1)−F 2 cosh α(z+1)]
αK1(α,F ) e−iαxdα, x < 0

iF
∫ +∞
−∞

Q(α) cosh α(z+1)
αK−(α,F )K2(α,F ) e

−iαxdα − F 2, x > 0,
z → 0−. (39a,b)
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We may further apply the theorem of residue to Eqs. (39) and, using the zeros of Eqs. (26), notice
K1(α, F )/K2(α, F ) = K+(α, F )K−(α, F ), which provides

η1(x) = −2π

F

∑
ζ∈R+

Q(ζ )K+(ζ , F ) sinh ζ

ζ 2K ′
1(ζ , F )

e−iζx x < 0 (40a)

η1(x) = 2π

F

∑
ζ∈Q−

Q(ζ ) sinh ζ

ζ 2K ′
2(ζ , F )K−(ζ , F )

e−iζx + 2πF

1 − F 2
Q(0) − F 2 x > 0, (40b)

where K
′
i (α, F ) (i = 1, 2) represents the derivative of Ki(α, F ) with respect to α. R+ and Q− are the

sets defined as

R+ =
⎧⎨
⎩

{κm|m = −1, 0, 1 . . .} 0 < F < Fc

{κm|m = 1, 2, 3 . . .} ∪ {±κ−1} Fc < F < 1
{κm|m = 0, 1, 2 . . .} ∪ {±κ−1} F > 1

, (41)

Q− =
{{−km|m = 1, 2, 3 . . .} ∪ {±k0} 0 < F < 1
{−km|m = 0, 1, 2 . . .} F > 1 . (42)

It should be noted that 2πF
1−F 2 Q(0) in Eq. (40b) is the term induced by the residue at α = 0. From

Eqs. (40), η1(x) can be further simplified as

η1(x) =
⎧⎨
⎩

i
F ∫+∞

−∞
Q(α)K+(α,F ) sinh α

α2K1(α,F ) e−iαxdα, x < 0

i
F ∫+∞

−∞
Q(α) sinh α

α2K2(α,F )K−(α,F ) e
−iαxdα − 2π

F Q(0) − F 2, x > 0.
(43a,b)

It should be noted that the integral path in Eq. (43) is the same as that in Eq. (38). Based on a sim-
ilar analysis in Ref. [41], it can be shown that |K+(α, F )| ∼ O(|α|0.5) and |K−(α, F )| ∼ O(|α|2.5)
as α → ±∞. To ensure the convergence of the integral in Eqs. (43), Q(α) should be at most a cubic
function as

Q(α) = c0 + c1α + c2α
2 + c3α

3. (44)

Substituting Eq. (44) into Eqs. (43), and noticing K1(α, F )/K2(α, F ) = K+(α, F )K−(α, F )
again, we have

η1(x) = c0I (x) + ic1I (1)(x) − c2I (2)(x) − ic3I (3)(x) − H (x)

(
2π

F
c0 + F 2

)
, (45)

where

I (x) = i

F

∫ +∞

−∞

K+(α, F ) sinh α

α2K1(α, F )
e−iαxdα, (46)

I (n)(x) denotes the nth derivatives of I (x) with respect to x, and H (x) denotes the Heaviside step
function. The computations of I (n)(0+) and I (n)(0−) are given in Appendix A. Applying the Kutta
conditions in Eqs. (19a) and (19b) to Eq. (45), as well as using I (n)(0−) = I (n)(0+) for n � 3 and
I (4)(0+) → ∞ obtained in Appendix A, provides

c0 = F (1 − F 2)

2π
, (47a)

c3 = 0. (47b)

Applying the edge conditions in Eqs. (7) to Eq. (45) and using Eqs. (47), the following results
can be obtained. For the clamped edge:

c1 = −F (1 − F 2)

2π i

I (1)(0−)I (2)(0−) − I (0−)I (3)(0−)

[I (2)(0−)]2 − I (1)(0−)I (3)(0−)
, (48a)
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c2 = −F (1 − F 2)

2π

[I (1)(0−)]
2 − I (0−)I (2)(0−)

[I (2)(0−)]2 − I (1)(0−)I (3)(0−)
. (48b)

For the simply supported edge:

c1 = −F (1 − F 2)

2π i

[I (2)(0−)]
2 − I (0−)I (4)(0−)

I (2)(0−)I (3)(0−) − I (1)(0−)I (4)(0−)
, (49a)

c2 = −F (1 − F 2)

2π

I (1)(0−)I (2)(0−) − I (0−)I (3)(0−)

I (2)(0−)I (3)(0−) − I (1)(0−)I (4)(0−)
. (49b)

For the free edge:

c1 = −F (1 − F 2)

2π i

I (3)(0−)I (4)(0−) − I (2)(0−)I (5)(0−)

[I (4)(0−)]2 − I (3)(0−)I (5)(0−)
, (50a)

c2 = −F (1 − F 2)

2π

[I (3)(0−)]
2 − I (2)(0−)I (4)(0−)

[I (4)(0−)]2 − I (3)(0−)I (5)(0−)
. (50b)

The value of I (n)(0−) can be referenced to Eqs. (A2a) and (A10). Once c0–c3 are fully de-
termined, the problem is fully solved. From Eq. (38), the horizontal velocity and hydrodynamic
pressure can be ensured to be continuous in the water column beneath the plate edge.

As mentioned in Sec. III, additional Kutta conditions are needed to be imposed at the plate edge
to ensure the uniqueness of the solution. This is in fact reflected by the cubic polynomial Q(α)
in Eq. (44). For the former wave diffraction problem of a semi-infinite elastic plate [19,20], Q(α)
is a linear function of α. Therefore, only two edge conditions can lead to a unique solution. This
property further indicates the difference between these two types of problems.

As discussed in Sec. II, for linear stern waves behind a semi-infinite rigid plate [30], nontrivial
solutions only exist for subcritical flows or F < 1. When F > 1, the vertical velocity at the plate
edge will be infinity, which leads to the Kutta condition in Eq. (19b) not being satisfied, by contrast,
since the elasticity of the plate is considered. It is interesting to see that a steady solution exists both
at F < 1 and F > 1. From a physical perspective, traveling waves only exist in the downstream
region (x = +∞) at F < 1 for the rigid plate case. Here, traveling waves always exist in the fluid
domain whether F < 1 or F > 1.

B. Far-field properties of the waves

To investigate the properties of waves at infinity, we may let |x| → +∞ in Eqs. (40), those terms
of attenuation waves will be zero, and only the propagation waves will exist in the far field, which
provides

η1(x) =
⎧⎨
⎩

−H (F − Fc) 2π
F

sinh κ−1[Q(κ−1 )K+(κ−1,F )e−iκ−1x+Q(−κ−1 )K+(−κ−1,F )eiκ−1x]
κ2

−1K ′
1(κ−1,F )

x → −∞
H (1 − F ) 2π

F
sinhk0

k2
0K ′

2(k0,F )

[Q(k0 )e−ik0x

K−(k0,F ) + Q(−k0 )eik0x
K−(−k0,F )

]
, x → +∞.

(51)

Notice from Eqs. (47)–(50) that c0 and c2 are real and c1 is imaginary, which gives Q(−α) =
Q̄(α). Equations (30)–(32) also give K±(−α, F ) = K±(α, F ). Thus, Eqs. (51) can be further written
as

η1(x) =
⎧⎨
⎩

−H (F − Fc) 4π
F

sinh κ−1

κ2
−1K

′
1 (κ−1,F )

Re{Q(κ−1)K+(κ−1, F )e−iκ−1x}, x → −∞
H (1 − F ) 4π

F
sinhk0

k2
0K

′
2 (k0,F )

Re
{ Q(k0 )

K−(k0,F ) e
−ik0x

}
, x → +∞.

. (52)

Equations (52) further illustrate the distribution of waves at infinity. When F < Fc, there is only
one wave component k0 at x = +∞. When Fc < F < 1, one extra wave component κ−1 presents
at x = −∞. When F > 1, the wave component k0 disappears from x = +∞, but the κ−1 remains
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FIG. 6. The amplitude of the wave at x = +∞ versus F (clamped edge condition).

at x = −∞. We may further define the amplitude A± of the periodic waves at x = ±∞, which is
similar to the wave reflection and transmission coefficients [19,20] in the periodic wave problem
and is used to reflect the wave energy at the far field. From Eqs. (52), we may define

A− = H (F − Fc)
4π

F

sinh κ−1

κ2
−1|K ′

1(κ−1, F )| |Q(κ−1)K+(κ−1, F )|, (53a)

A+ = H (1 − F )
4π

F

sinhk0

k2
0|K ′

2(k0, F )|
∣∣∣∣ Q(k0)

K−(k0, F )

∣∣∣∣. (53b)

It would be also interesting to see the asymptotic properties of A± at special values of F , or F →
0+, F → Fc + 0±, and F → 1. When F → 0+, we may apply the derived asymptotic expression in
Eqs. (B3a), (B6), and (B10) to Eq. (53b), and we obtain

A+ →
√

2, F → 0+, (54)

which is consistent with the case of a rigid plate in Ref. [24]. When F → Fc, as proved in Eq. (B14)
that I (n)(0−) is continuous at F = Fc, together with Eqs. (48)–(50), we obtain that c1 and c2 should
also be continuous at F = Fc. Furthermore, from Eqs. (44) and (53), it can be confirmed that A− is
bounded and A+ is continuous at F = Fc. When F → 1, we may substitute Eqs. (B15)–(B19) into
Eqs. (53), which provides

A− → 0, F → 1±, (55a)

A+ → 1, F → 1−. (55b)

V. RESULTS AND DISCUSSION

In the following computations, all results will be presented in nondimensionalized forms as given
in Sec. III. The results are obtained by truncating the infinite series in Eqs. (30) and (40) at m =
1000, which has been confirmed to be convergent.

A. Steady waves generated by an incoming current

Here, we may first consider the property of wave amplitude at infinity. From Eqs. (53), it can be
known that A− = 0 when F < Fc and A+ = 0 when F > 1. The result of A+ versus F at different
values of D is given in Fig. 6, where the edge condition at x = 0 and z = 0 is clamped. It is found
that with the increase of the flexural rigidity, A+ gradually tends to that of a rigid plate [30], which
confirms that the present solution is consistent with the previous one when D → +∞.
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FIG. 7. The amplitude of the waves at x = ±∞ versus F (D = 0.001).

The results of A± versus F under different edge conditions are shown in Fig. 7, where D = 0.001.
In Fig. 7(b), it is observed that A+ → √

2 when F → 0+, which is consistent with the result in
Eqs. (54). As F increases, when F is small, the magnitudes of A+ under simply supported and
clamped edges are quite similar, while A+ under the free edge is significantly different. When F
gradually approaches Fc, a sudden increase can be observed on the curve corresponding to the
simply supported edge, and a very large peak is observed on A+ at F = 0.5582, which occurs before
Fc = 0.5585 but very close to it. The reason for such a peak is relevant and similar to the resonance
of the motion and deformation of the elastic plate [43], which in fact can be seen as a local maximum
response at a certain external excitation. In particular, at some values of F , the denominators of c1

and c2 in Eqs. (49a) and (49b) may be very small, and result in very large values of c1, c2, and A+.
For convenience, we may define such values of F as resonant Froude numbers, which are similar to
the resonant frequencies corresponding to the vibration of an elastic plate. Here, |c1| and |c2| versus

FIG. 8. Coefficients |c1| and |c2| versus F (D = 0.001, simply supported edge condition).
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FIG. 9. The amplitude of the waves at x = ±∞ versus F (D = 0.0001).

F are plotted in Fig. 8 to clearly show how they behave at this resonant Froude number, and very
large peaks are found at F = 0.5582 as expected.

When F continues to increase, there will be a sudden jump on A− making A− nonzero when F
exceeds Fc, especially in the case of the simply supported edge, as shown in Fig. 7(a). As proved
in Sec. IV B, A− is bounded and A+ is continuous at F = Fc, which is consistent with the results
shown in Fig. 7. Besides, since Fc = 0.5585 is quite close to the above resonant Froude number
F = 0.5582, as a result, A± at F = Fc under simply supported edges is much larger than that under
the other two edge conditions. As F continues to increase, A± gradually decreases. When F → 1,
it can be found that A− → 0 and A+ → 1 as predicted in Eqs. (55). After F > 1, A+ is zero due to
no propagation wave existing in the free surface region. By contrast, A− slowly increases with F .
Besides, at a fixed value of F , A− increases in the following sequence: free, simply supported, and
clamped.

In Fig. 7, the resonance behavior is only observed under the simply supported edge condition.
Next, we may consider whether such a phenomenon can occur under the other two types of edge
conditions. For the free-edge condition, the denominator of Eqs. (50) and (A11) give

[I (4)(0−)]
2 − I (3)(0−)I (5)(0−) = 4π2

F 2D2
, (56)

which means that no peak value occurs. In such a case, the resonance cannot happen at the free-
edge condition. To investigate the resonance phenomenon under the clamped edge condition, a
softer elastic plate with D = 0.0001 is considered, where A± versus F is shown in Fig. 9. It can be
found that very large peaks can be observed on A+ and A− at F = 0.8734 under the clamped edge
condition. Besides, a similar peak is also found in A+ at F = 0.4186 under the simply supported
edge condition. Figures 7 and 9 show that the resonance phenomenon can occur under both simply
supported and clamped edge conditions. The resonant Froude number for the simply supported edge
is normally slightly smaller than Fc. By contrast, the resonant Froude number for the clamped edge
is sensitive to the flexural rigidity D of the plate. In particular, the resonance is not observed here
in Fig. 7 for D = 0.001, while the resonant Froude number is between F = Fc and F = 1 in Fig. 9
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FIG. 10. Coefficients |c1| and |c2| versus F (D = 0.0001): (a) clamped edge and (b) simply supported edge.

for D = 0.0001. |c1| and |c2| versus F under clamped and simply supported edges are also given in
Fig. 10 to verify that these peaks in Fig. 9 are due to resonance.

We may also consider the steady wave profiles, which can be calculated from

η(x) =
{
η1(x) − 1, x < 0
η1(x), x > 0,

(57)

where η1(x) is given in Eqs. (40). η(x) near Fc = 0.4186 under the simply supported edge condition
is shown in Fig. 11. It can be observed that the amplitude of the wave varies very rapidly near the
resonant Froude number; only a small change in F can lead to an obvious change in the wave profile,
especially at x > 0. Similar phenomena can be also observed in the wave profile near Fc = 0.8734
under the clamped edge condition, as presented in Fig. 12. In addition to the wave amplitudes, rapid
changes are also observed in the wave phase, as given in Figs. 11 and 12. It should be noted that the
wave profiles obtained by the linearized velocity potential may not be accurate if the wave amplitude
is too large. However, the prediction of the resonant Froude number itself may still be accurate and
can be used to reflect the variation trend of the wave.

FIG. 11. The wave profile near the resonance Froude number under the simply supported edge (D =
0.0001).
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FIG. 12. The wave profile near the resonance Froude number under the clamped edge (D = 0.0001).

In order to clearly show how the edge conditions affect the steady wave profiles, we may consider
η(x) under F = 0.2, 0.6, and 1.2 here, as presented in Fig. 13. In Fig. 13(a) for F = 0.2 < Fc,
the waves decay very rapidly at x < 0 in all three cases, while the main difference is in the wave
amplitude at x > 0. In Fig. 13(b) for Fc < F = 0.6 < 1, the wave amplitude at x < 0 under the
free-edge condition is much smaller than that of the other two edge conditions. Besides, obvious
differences can be also observed in the wave phases. For the wave profile at F = 1.2 > 1 provided
in Fig. 13(c), it can be found that the wave profiles under clamped and simply supported edge
conditions only exhibit small differences, but that under the free-edge condition is quite distinct. In
particular, the wave amplitude is notably small at x < 0, resulting in the wave profiles appearing
almost as smooth curves.

B. Principal strain in the elastic thin plate

The principal strain in the elastic thin plate can be calculated from [36]

εxx(x) = −ξ

2

d2η1(x)

dx2
, (58)

where ξ denotes the nondimensionalized thickness of the plate (dimensionless by H). Substituting
Eq. (40a) into Eq. (58), we obtain

εxxx = −ξ
π

F

∑
ζ∈R+

Q(ζ )K+(ζ , F ) sinh ζ

K ′
1(ζ , F )

e−iζx, x < 0. (59)

|εxx|/ξ near a resonant Froude number under the clamped edge is shown in Fig. 14. Similar to the
wave profiles presented in Fig. 12, a very large value of strain can be observed, which may cause
significant damage to the structure of the floating elastic plate [44,45]. Besides, the rapid change
phenomenon can be also found in |εxx|/ξ . This point is of significant importance to engineering.
For example, for a reservoir of water depth 10 m, Fig. 14 indicates that the current speed should
be away from U = 8.65 m/s; otherwise a critical load will be on the FPV coverage, which guides
the choice of water-release rate for reservoirs partially covered by FPV. We may next consider the
principal strain under different edge conditions; an example is given in Fig. 15. For F = 0.2 < Fc

shown in Fig. 15(a), the strain is only concentrated near x = 0− because of no propagation wave at
x → −∞. The maximum strain occurs at x = 0 for the clamped edge. By contrast, the other two
cases occur at positions near x = 0 since the edge conditions require εxx(0) = 0. For F = 0.6 > Fc
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FIG. 13. Wave profiles at three different Froude numbers (D = 0.0001, Fc = 0.4189): (a) F = 0.2,
(b) F = 0.6, and (c) F = 1.2.

in Fig. 15(b), it can be found that the strain under the free edge is much smaller than that under the
other two edge conditions, which is similar to the wave elevation in Fig. 13(b).

VI. CONCLUSIONS

To study the underneath current effect on the edge of a floating solar farm, the problem of an
incoming current interaction with a floating elastic thin plate of semi-infinite extent is analyzed.
The fluid flow is described by the linearized velocity potential theory, while the elastic plate is
modeled through a Kirchhoff-Love plate theory. The solution procedure is based on the Wiener-
Hopf technique. When deriving the solution, the Kutta condition is applied to ensure the flow
separates steadily from the lower edge of the plate, and the present analytical model is valid when the
draft-based Froude number FT is not low [39]. Letting the flexural rigidity of the plate D → +∞,
the obtained results are verified by comparing with the previous study about the rigid plate [30].

A water depth Froude number is used to enable a nondimensionalized investigation of the
problem. From the aspect of mathematics, when the elasticity of the plate is considered, nonsingular
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FIG. 14. The principal strain of the elastic plate near the resonance Froude number under the clamped edge
(D = 0.0001).

solutions exist in the entire range of F , which is quite different from the rigid plate case, where the
vertical velocity at the edge will be singular when F > 1.

The distribution of the propagation waves is analyzed in detail. When F < Fc, there is only a
propagation wave at the free surface region (x > 0). When F > Fc, an extra propagation hydroelas-
tic wave will show as the elastic plate deforms (x < 0). When F > 1, the propagation wave at x > 0
will disappear, while that at x < 0 remains. The behaviors of wave amplitudes A± at x = ±∞ are

FIG. 15. The principal strain of the elastic plate at two different Froude numbers (D = 0.0001, Fc =
0.4189): (a) F = 0.2 and (b) F = 0.6.
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also investigated. In particular, for A+, it is proved mathematically that A+ → √
2 when F → 0+

and A+ → 1 when F → 1− for all three types of edge conditions. This phenomenon is consistent
with the former rigid plate problem. It is also proved that A+ is continuous at the critical Froude
number Fc. Besides, A− is normally bounded at F = Fc, and A− → 0 when F → 1.

Moreover, we also observed another interesting phenomenon distinct from the rigid plate case.
There may exist “resonant Froude numbers” under the clamped and simply supported edge condi-
tions. In particular, near one of these Froude numbers, a phenomenon similar to wave resonance
may occur, which makes the wave elevation and principal strain in the elastic plate significantly
large. The physical mechanism can be elucidated through the examination of two coefficients related
to edge conditions. When F approaches these resonant Froude numbers, these two coefficients
exhibit significantly reduced denominators, consequently yielding significantly amplified results.
However, it is worth noting that such resonance does not occur under free-edge conditions. The
obtained results here provide valuable guidance for floating solar projects on water reservoirs to
select their water-release rate and boundary conditions. For future work, we recommend using
computational fluid dynamics and experiments to evaluate the accuracy of our results, as well
as further investigation of the advanced fluid and structural features (e.g., turbulence, complex
geometries) and nonlinear effects that are not covered by this analytic study.
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APPENDIX A: COMPUTATION OF WAVE ELEVATION AND ITS DERIVATIVES
AT THE PLATE EDGE

I (x) in Eq. (46) can be converted into a series form by using the theorem of residue, which gives

I (x) =
⎧⎨
⎩

− 2π
F

∑
ζ∈R+

K+(ζ ,F ) sinh ζ

ζ 2K
′
1 (ζ ,F )

e−iζx, x < 0

2π
F

∑
ζ∈Q−

sinh ζ

ζ 2K
′
2 (ζ ,F )K−(ζ ,F )

e−iζx + 2π
F

1
1−F 2 , x > 0

. (A1a,b)

The derivative of I (x) with respect to x at x → 0± gives

I (n)(0−) = −2π (−i)n

F

∑
ζ∈R+

ζ n−2K+(ζ , F ) sinh ζ

K ′
1(ζ , F )

, n � 0, (A2a)

I (n)(0+) = 2π (−i)n

F

∑
ζ∈Q−

ζ n−2 sinh ζ

K ′
2(ζ , F )K−(ζ , F )

+ δn0
2π

F

1

1 − F 2
, n � 0, (A2b)

where δn0 denotes the Dirac delta function. From Eqs. (26), through some algebra, we can obtain

K
′
1(km, F ) =

[
−F 2 +

(
1

F 2
− 1

)
1

k2
m

]
sinhkm, (A3a)

K
′
2(κm, F ) =

[
D2

F 2
κ6

m +
(

3D + 2D

F 2

)
κ2

m − F 2 +
(

1

F 2
− 1

)
1

κ2
m

]
sinh κm, (A3b)

which provides sinh κm

K
′
1 (κm,F )

∼ O(m6) and sinh(−km )
K

′
2 (−km,F )

∼ O(m0) as m → +∞. Besides, from Eqs. (30)–

(32), we have K+(κm, F ) ∼ O(m0.5) and K−(κm, F ) ∼ O(m2.5) as m → +∞. Thus, the summation
in I (n)(0−) can be convergent for n � 6, but I (n)(0+) only for n � 3. We may construct the following
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contour integral for n � 3:

J1 = (−i)n+1

F

∮
CR

ζ n−2K+(ζ , F ) sinh ζ

K1(ζ , F )
dζ , n � 3. (A4)

where CR is a circle of radius R → +∞. The integrand in Eq. (A4) is of |ζ |n−4.5 as |ζ | → +∞,
which means J1 = 0. Applying the residue theorem, we have

2π (−i)n

F

∑
ζ∈R+

ζ n−2K+(ζ , F ) sinh ζ

K ′
1(ζ , F )

+ 2π (−i)n

F

∑
ζ∈Q−

ζ n−2 sinh ζ

K ′
2(ζ , F )K−(ζ , F )

+ δn0
2π

F

1

1 − F 2

= 0, n � 3. (A5)

Hence, Eq. (A5) provides I (n)(0−) = I (n)(0+) for n � 3. In Eq. (A2a), the summation may
converge slowly, especially when n is large. An efficient way to work out the summation is to
use the residue calculus technique [46]. Notice that

sinh ζ = −K2(ζ , F )

Dζ 3
if ζ ∈ R+. (A6)

I (n)(0−) can be also expressed as

I (n)(0−) = 2π (−i)n

FD

∑
ζ∈R+

ζ n−5K+(ζ , F )K2(ζ , F )

K ′
1(ζ , F )

. (A7)

Constructing the following integral and using K2(ζ , F )/K1(ζ , F ) = K+(ζ , F )K−(ζ , F ) provides

J2 = 1

2π i

∮
CR

ζ n−5K+(ζ , F )K2(ζ , F )

K1(ζ , F )
dζ = 1

2π i

∮
CR

ζ n−5

K−(ζ , F )
dζ , n � 6. (A8)

The integrand in Eq. (A8) is of |ζ |n−7.5 as |ζ | → +∞, which means J2 = 0. Applying the
theorem of residue to Eq. (A8) again, we obtain

∑
ζ∈R+

ζ n−5K+(ζ , F )K2(ζ , F )

K ′
1(ζ , F )

= −Res

{
ζ n−5

K−(ζ , F )
; ζ = 0

}
. (A9)

In such a case, the summation is converted into the residue of a function at ζ = 0. Applying
Eq. (A9) to Eq. (A7), we have

I (n)(0−) = −2π (−i)n

FD
Res

{
ζ n−5

K−(ζ , F )
; ζ = 0

}
. (A10)

When n = 0, 1, 2, the residue in Eq. (A10) is hard to work out analytically. Alternatively, we
may use Eq. (A2a). By contrast, it is relatively straightforward to determine I (3)(0−), I (4)(0−), and
I (5)(0−) through Eq. (A10) as

I (3)(0−) = 2π i

FD

K
′
−(0, F )

K2−(0, F )
= 2π i

FD
K

′
−(0, F ) (A11a)

I (4)(0−) = − 2π

FD

1

K−(0, F )
= − 2π

FD
(A11b)

I (5)(0−) = 0. (A11c)
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APPENDIX B: BEHAVIORS OF SOME FUNCTIONS NEAR SPECIAL VALUES OF F

We may first consider the case when F → 0+. Equations (26) provide

K1(α, F ) = 0 ⇒ (Dα4 + 1)
tanh α

α
= F 2 → 0+, (B1a)

K2(α, F ) = 0 ⇒ tanh α

α
= F 2 → 0+. (B1b)

The roots of Eqs. (B1) when F → 0+ can be solved as follows: κ−1 = −κ̄0 → D− 1
4 ei π

4 , k0 →
1

F 2 → +∞, and κm ≈ km → mπ i (m � 1). In such a case, K
′
i (κm, F ) (i = 1, 2) can be expressed

as

K
′
1(κm, F ) → 4Dκ2

m sinh κm, m = −1, 0, F → 0+ (B2a)

K
′
1(κm, F ) → (

Dκ4
m + 1

)cosh κm

κm
, m � 1, F → 0+. (B2b)

K
′
2(k0, F ) → − sinhk0

k2
0

, F → 0+ (B3a)

K
′
2(κm, F ) → coshkm

km

m � 1, F → 0+. (B3b)

Using the asymptotic behaviors of κm (m � −1) and km (m � 0), K±(α, F ) in Eq. (30) can be
written as

K−(α, F ) → (κ−1 − α)(κ0 − α)

κ−1κ0
, F → 0+ (B4a)

K+(α, F ) → k2
0(κ−1 − α)(κ0 − α)

κ−1κ0
(
k2

0 − α2
) , F → 0+. (B4b)

Notice from Eqs. (30)–(32) we have

K+(α, F ) = k2
0

k2
0 − α2

K−(−α, F ), F < Fc. (B5)

Substitute Eq. (B5) into Eq. (28), and notice K±(−α, F ) = K̄±(α, F ), which provides

|K−(k0, F )| = lim
α→k0

√
K−(−α, F )K−(α, F ) = lim

α→k0

√
k2

0 − α2

k2
0

K1(α, F )

K2(α, F )
=

√
2Dk2

0. (B6)

We may consider the following formulas and invoke Eqs. (B2):

κn−2
m K+(κm, F ) sinh κm

K ′
1(κm, F )

→ κn−4
m K+(κm, F )

4D
, m = −1, 0

κn−2
m K+(κm, F ) sinh κm

K ′
1(κm, F )

→ κn−1
m K+(κm, F ) tanh κm(

Dκ4
m + 1

) → 0
, m � 1,

, n � 5, F → 0+. (B7)

Substituting Eqs. (B4) and (B7) into Eq. (A2a), as well as using the asymptotic be-
havior of κm (m � −1), only the leading-order terms in I (n)(0−) should be kept, which
provides

I (n)(0−) → −π (−i)n

2DF

[
κn−4

−1 K+(κ−1, F ) + κn−4
0 K+(κ0, F )

]

→ π (−i)nD− n
4

2F

[
ei (n−1)π

4 + ei (3n+1)π
4

]
, n � 5, F → 0+. (B8)
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Applying Eq. (B8) to Eqs. (48)–(50), we have

c1 → −
√

2F

2π i
D

1
4 as F → 0+ (B9a)

c2 → − F

2π
D

1
2 as F → 0+, (B9b)

and together with Eq. (44), we further obtain

Q(k0) → − F

2π
k2

0D
1
2 . (B10)

Next, we may consider the situation when F → Fc, which provides κ−1 → κc and κ0 → κc,
where κc denotes the unique positive real root of K1(α, Fc) = 0 as mentioned in Sec. IV A. Applying
the Taylor series to K1(α, F ) = 0 at α = κc and F = Fc, κ−1 and κ0 can be expressed in the
following asymptotic way:

κ−1 = κc + iσ, κ0 = −κc + iσ, F → Fc + 0− (B11a)

κ−1 = κc + σ, κ0 = κc − σ , F → Fc + 0+, (B11b)

where

σ = 2

√
Fc cosh αc

K ′′
1 (κc, Fc)

|F − Fc| → 0+, (B12)

and From Eqs. (26a) and (B11), we have K
′
1(κ−1, F ) as

K ′
1(κ−1, F ) = K

′′
1 (κc, Fc)iσ F → Fc + 0− (B13a)

K ′
1(κ−1, F ) = K

′′
1 (κc, Fc)σ F → Fc + 0+ (B13b)

Substituting Eqs. (B11) and (B13) into Eq. (A2a), after some algebra, we obtain

I (n)(0−) = −2π (−i)n

Fc

{
4k2

0κ
n−3
c sinh κc(

k2
0 − κ2

c

)
K ′′

1 (κc, Fc)

[+∞∏
m=1

[
km(κm − κc)

κm(km − κc)

]

−
+∞∏
m=1

[
km(κm + κc)

κm(km + κc)

]]
+

+∞∑
m=1

κn−2
m K+(κm, F ) sinh κm

K ′
1(κm, F )

}
, F → Fc + 0±, (B14)

which proves that I (n)(0−) is continuous at F = Fc.
We may finally consider the case when F → 1, which provides k0 → 0 and κ0 → 0. Applying

the Taylor series to Ki(α, F ) = 0 (i = 1, 2) at α = 0 and F = 1, we obtain

k2
0 → 3(1 − F 2), F → 1. (B15a)

κ2
0 → 3(1 − F 2), F → 1 (B15b)

K
′
2(k0, F ) → − 2

3k0, F → 1. (B16)

Substituting Eqs. (B15) into Eqs. (30)–(32), we have

K−(k0, F ) → 1 (B17a)

K+(κ−1, F ) →
+∞∏
m=1

[
km(κm + κ−1)

κm(km + κ−1)

]
. (B17b)
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Equation (A2a) confirms that I (n)(0−) is bounded when F → 1; furthermore, from Eqs. (48)–(50)
we obtain

ci = O((1 − F 2)), i = 0 ∼ 2, F → 1. (B18)

In such a case, applying Eqs. (B15a) and (B18) to Eq. (44), we may write

Q(k0) = F (1 − F 2)

2π
+ O((1 − F 2)3/2)

Q(κ−1) = O((1 − F 2)),
, F → 1. (B19)
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