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ABSTRACT
We study a non-compact version of the carrying simplex for the pla-
nar Leslie–Gower and planar Ricker maps when they are written in
logarithmic variables. We show that for both of thesemodels there is
a convex (unbounded) invariant set X∞, and all orbits are attracted to
X∞. For the Leslie–Gowermap,which is injective, theboundaryofX∞
globally attracts all orbits and we identify it with a non-compact car-
rying simplex. As the Rickermap is not invertible, the boundary of X∞
may not be invariant. We establish conditions on the parameters of
the Ricker map which guarantee that there is a convex non-compact
carrying simplex when r, s< 1 which maps into a compact carrying
simplex in the standard untransformed coordinates.
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1. Introduction

Let R+ = [0,∞), R++ = (0,∞) and F : R
2+ → R

2+ be a continuous function. Consider
the following planar difference equation:

x0 ∈ R
2+,

xn+1 := F(xn) = Fn+1(x0), n ∈ N := {0, 1, 2, . . .}. (1)

In this article we are interested in a special invariant curve of (1) known as the carrying
simplex. Hirsch’s definition [9] of a carrying simplex, when applied to the above system, is
as follows.

Definition 1.1: We call � ⊂ R
2+ − {0} a carrying simplex if

(CS1) � is compact and invariant.
(CS2) For any x ∈ R

2+ − {0} there exists y ∈ � such that limn→∞ | Fn(x) − Fn(y) | = 0.
(asymptotic completeness)

(CS3) � is unordered. (i.e. for (x1, y1), (x2, y2) ∈ �, if x1 < x2, then y2 < y1, and if y1 <

y2, then x2 < x1)

When it exists, the carrying simplex � is thus a compact and invariant manifold for (1)
that attracts R

2+ − {0} and that has the special property that � is the graph of a decreasing
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and continuous function. To date, and to the best of the authors’ knowledge, planar carry-
ing simplices for discrete dynamics have been studied exclusively in the context of retrotone
systems (e.g. [9,11,17,18]).

This paper explores the pros and cons of working in alternative coordinates where
compactness of the carrying simplex is lost.

Definition 1.2: Amap F = (F1, F2) : R
2+ → R

2+ is retrotone (e.g. [9,18]) in a subset D ⊂
R
2+ if for x, y ∈ D such that F1(x) ≥ F1(y) and F2(x) ≥ F2(y) but F(x) �= F(y) we have

x1 > y1 provided y1 > 0 and x2 > y2 provided y2 > 0.

A retrotone map is sometimes also called a competitive map (see, for example, [19]).
In the planar case a map satisfying Definition 1.2 has the special property that it maps the
graph of a decreasing function on D to the graph of a new decreasing function on D [2,5].

The Leslie–Gower map from ecology [15] that we study in Section 3.1 is retrotone for
all biologically realistic parameter values, and it is well-known that it has a unique carrying
simplex [13]. On the other hand, the Rickermap is not retrotone everywhere inR

2+ (see for
example [9,11,18]), and so existence of a carrying simplex in the standard coordinates of
population densities, by means of retronicity, is only known for a limited set of parameter
values.

Herewewill extend the notion of the carrying simplex applied to planar systems to allow
it to be non-compact, and we will call a set � ⊂ R

2 a non-compact carrying simplex if it
satisfies (CS1) without compactness and (CS3), but (CS2) is replaced by the lesser require-
ment that � globally attracts R

2. The issue of asymptotic completeness will be addressed
elsewhere.

In working with non-compact carrying simplices we may work in alternative coordi-
nate systems for which the systems (1) that we consider here have at most one (finite)
fixed point, but in so doing we lose compactness of the global attractor and asymptotic
completeness. We have found that by using logarithmically transformed coordinates, we
are sometimes able to obtain stronger geometrical properties for the non-compact car-
rying simplex, namely that it is the graph of a concave decreasing function. While the
corresponding compact carrying simplices are also known to be graphs of decreasing func-
tions, whether or not those functions are convex or concave is not generally known (for
results on convexity of carrying simplices see [1,3,4,21]). Here, we will also discuss the
convexity of the boundary of the basin of repulsion of infinity in the logarithmically scaled
Leslie–Gower and Ricker models. When all the parameters are positive, then the maps in
the logarithmically scaled versions of both models are concave (i.e. each component of the
map is a concave function [14]). We take advantage of this fact to prove that the basin
of repulsion of infinity is an invariant convex set. We establish a relationship between the
convexity and the strict decreasingness of themembers of a sequence of sets that converges
to the boundary of the basin of repulsion of infinity. Then, it becomes straightforward to
show that this boundary satisfies (CS3).

2. Preliminary results

In this section, we prove three lemmas that play pivotal roles. The first lemmawill enable us
to prove that the boundary of each of the sets we are discussing is the graph of a continuous
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strictly decreasing function. The second lemma shows that for given a set in a certain class
of subsets of R

2 whose members have boundary that is the graph of a continuous strictly
decreasing function, that set must be convex.

Lemma2.1: Let X ⊂ R
2 and a, b ∈ R be given. Suppose there exist two continuous functions

A : (−∞, a) → R and B : (−∞, b) → R such that

{x | (x, c) ∈ X} =
{

(−∞,A(c)], c ∈ (−∞, a)
∅, otherwise

(2)

{y | (d, y) ∈ X} =
{

(−∞,B(d)], d ∈ (−∞, b)
∅, otherwise.

(3)

Then X ⊂ (−∞, b) × (−∞, a), both A and B are strictly decreasing functions, and

∂X = {(A(c), c) | c ∈ (−∞, a)} (4)

= {(d,B(d)) | d ∈ (−∞, b)} . (5)

In other words, the boundary of X is the graph of a strictly decreasing function and X is the
set of all points on or under the graph of that function.

Proof: It is clear that we have

{(A(c), c) | c ∈ (−∞, a)} ⊆ ∂X

{(d,B(d)) | d ∈ (−∞, b)} ⊆ ∂X.

To prove (4), we observe that for each (x, y) ∈ ∂X there exist {(xn, yn)}∞n=1 ⊆ X and
{(x′

n, y′
n)}∞n=1 ⊆ (−∞, b) × (−∞, a) − X such that

lim
n→∞(xn, yn) = lim

n→∞(x′
n, y

′
n) = (x, y).

For each n ∈ N we have xn ≤ A(yn) and x′
n > A(y′

n). It follows that since A is continuous
we have

x = lim
n→∞ xn ≤ lim

n→∞A(yn) = A(y) = lim
n→∞A(y′

n) ≤ lim
n→∞ x′

n = x.

Hence, x = A(y) and (x, y) ∈ {(A(c), c) | c ∈ (−∞, a)}. This proves (4). Proving (5) is sim-
ilar. It is clear that (4) and (5) imply that A and B are inverse of each other and they are
both bijective. Hence, by using the fact that they are continuous functions, we deduce that
A and B are strictly decreasing functions (These functions cannot be strictly increasing
since X ⊂ (−∞, b) × (−∞, a) and the boundary of X is equal to each of the graphs of A
and B). �

Before stating Lemma 2.2, we have to define the relation ‘� ’ between some members
of R

2. Let (x1, y1), (x2, y2) ∈ R
2, we write (x1, y1) � (x2, y2) if x1 < x2 and y1 < y2.
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Lemma 2.2: Let X ⊂ (−∞, b) × (−∞, a) be the set of points on or under the graph of
the continuous strictly decreasing function B : (−∞, b) → (−∞, a). Assume that for every
x, y ∈ X and 0 < λ < 1 there exists at least one z ∈ X such that

λx + (1 − λ)y � z. (6)

Then X is convex.

Proof: Assume that X is not convex. Then there exist x, y ∈ X and 0 < λ < 1 such that

λx + (1 − λ)y /∈ X.

Assume that z is as stated in the theorem. Since z1 > λx1 + (1 − λ)y1 and B is strictly
decreasing, we have

B(z1) < B(λx1 + (1 − λ)y1)

and since λx + (1 − λ)y /∈ X and z ∈ X, we have

z2 ≤ B(z1)

B(λx1 + (1 − λ)y1) < λx2 + (1 − λ)y2.

Hence,

z2 < λx2 + (1 − λ)y2.

which contradicts (6). �

Lemma 2.3: Let x0 ∈ R be given and suppose that p : R × R → R, q : R × R → R and
K : (−∞, x0) → R are continuous functions and p satisfies

lim
x→−∞ sup{p(x, y) | y ∈ R} = −∞. (7)

Suppose also that there exists G : (−∞, y�) → R defined by

G(c) := sup p
({

(x, q(x, c)) | x ∈ (−∞,K(c)]
})

.

Then G is continuous and

�c := p
({

(x, q(x, c)) | x ∈ (−∞,K(c)]
}) = (−∞,G(c)], c ∈ (−∞, y�).

Proof: Fix c ∈ (−∞, y�). Since the continuous image of a connected set is connected, we
deduce that �c is connected. Equation (7) implies that

lim
x→−∞ p(x, q(x, c)) = −∞,

and hence �c is unbounded below and there exists L ∈ (−∞,K(c)) such that for every
x<L we have p(x, q(x, c)) < G(c) − 1. Therefore, by compactness of Yc := [L,K(c)] we
deduce that

G(c) = sup�c ∈ p
({

(x, q(x, c)) | x ∈ Yc
}) ⊂ �c. (8)
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Connectedness of �c along with the fact that it is unbounded below and G(c) = sup�c ∈
�c proves �c = (−∞,G(c)].

We now prove continuity of G by contradiction. Suppose that G is not continuous at
some c0 ∈ (−∞, x0). Then there exist a sequence {an} which converges to c0 and ε > 0
such that for every n ∈ N we have |G(c0) − G(an)| ≥ ε. By (8) we know that G(c0) ∈
�c0 . Hence there exists wc0 ∈ Yc0 such that p(wc0 , q(wc0 , c0)) = G(c0). Similarly, for every
n ∈ N there exists wan ∈ Yan such that p(wan , q(wan , an)) = G(an). Since K is continu-
ous, we can find a sequence {vn} which converges to wc0 and for every n ∈ N we have
vn ∈ (−∞,K(an)]. By continuity of p and q we have

lim
n→∞ p(vn, q(vn, an)) = p(wc0 , q(wc0 , c0)) = G(c0).

For every n ∈ N we have

p(vn, q(vn, an)) ≤ sup p
({

(x, q(x, an)) | x ∈ (−∞,K(an)]
}) = G(an).

Thus

G(c0) ≤ lim inf
n→∞ G(an). (9)

Inequality (9) along with |G(c0) − G(an)| ≥ ε implies that there exists M>0 such that
for every n>M we have G(c0) + ε

2 < G(an) = p(wan , q(wan , an)). From (7), there exists
x1 ∈ R such that for every x < x1 and y ∈ Rwe have p(x, y) < G(c0) + ε

2 . Hence for every
n>M we have x1 ≤ wan ≤ K(an). This along with the fact that K is continuous, implies
that there existsM′ > 0 such that for every n > M′ we have x1 ≤ wan ≤ K(c0) + 1. Thus
{wan} is bounded and has a convergent subsequence {wamn }. By the continuity of p and q
we have

G(c0) + ε

2
≤ lim

n→∞G(amn) = lim
n→∞ p(wamn , q(wamn , amn)) = p(b, q(b, c0)), (10)

where b = limn→∞ wamn . But it is clear that we also have

p(b, q(b, c0)) ≤ sup p
({

(x, q(x, c0)) | x ∈ (−∞,K(c0)]
}) = G(c0)

which contradicts (10). Therefore, G is continuous at c0. Since c0 ∈ (−∞, x0) is arbitrary
we see that G is continuous on (−∞, x0). �

Wewill now combine Lemmas 2.1, 2.2 and 2.3 to show that two well-knownmaps from
theoretical ecology have globally attracting and invariant 1-dimensional manifolds, and
also determine when they are the invariant boundary of an invariant convex set.

3. Applications to ecological models

In this section, we use the above theory to prove the convexity of a unique non-compact
carrying simplex in logarithmically scaled versions of the Leslie–Gower Model and Ricker
models from theoretical ecology.
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3.1. The Leslie–Gowermodel

The planar Leslie–Gower model [7,15] is defined by the Leslie–Gower map

F(u, v) :=
(

ru
1 + u + αv

,
sv

1 + v + βu

)
. (11)

When r, s<1 and α,β > 0, then (0, 0) is globally asymptotically stable on R
2+ (see [7]).

Hence, the system has no carrying simplex when r, s<1 and α,β > 0 since no� ⊂ R
2+ −

{0} can satisfy (CS2).
When r, s>1 the Leslie–Gower map has fixed points

(0, 0), (r − 1, 0), (0, s − 1) and, if positive,
(

α(s − 1) − r + 1
αβ − 1

,
β(r − 1) − s + 1

αβ − 1

)
.

(12)

A number of authors [1,9,11,12] have shown that for r, s>1 and α,β > 0, the model (11)
has a unique carrying simplex. In our approach, we use an alternative set of coordinates to
those in (11): We scale (11) as follows

u = ex, v = ey, (13)

to obtain the following log-scaled version of the model:

f (x, y) := (
ln(r) + x − ln(1 + ex + αey), ln(s) + y − ln(1 + ey + βex)

)
. (14)

The only finite fixed point of the log-scale Leslie–Gower map is(
ln

(
α(s − 1) − r + 1

αβ − 1

)
, ln

(
β(r − 1) − s + 1

αβ − 1

))
, (15)

when the expressions are real.
We wish to study the invariant subsets of f : R

2 → R
2, and to this end we define

X0 := R
2,

Xn := f (Xn−1), n = 1, 2, 3, . . .

and finally

X∞ :=
∞⋂
n=0

Xn. (16)

We recall that for a non-empty set A ⊂ R
d, the ω-limit set of A for a (continuous) map

T : R
d → R

d is defined to be ωT(A) := ⋂∞
n=0

⋃∞
m=n Tm(A), (e.g. [20]). In this context

X∞ is actually ωf (R
2) for f given by (14), but we do not have compactness of any f n(R2)

to apply standard results (e.g. [20, Theorem 2.11]) for ω-limit sets to conclude that X∞ is
non-empty and invariant. Instead we prove these facts directly in a series of lemmas below.

The first lemma is needed because standard theorems on non-empty intersections of
decreasing sequences of compact sets cannot be applied here as our setsXn are not compact.
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Lemma 3.1: When r, s>1 we have X∞ �= ∅.

Proof: Suppose that ζx,y and ηx,y are defined as follows:

ζx,y :=
1 − αy

y−s

r − x + αβxy
y−s

,

ηx,y :=
1 − βx

x−r

s − y + αβxy
x−r

.

Since lim(x,y)→(0,0)(ζx,y, ηx,y) = ( 1r ,
1
s ) � (1, 1), there exists x′, y′ ∈ R++ such that for

every (0, 0) ≤ (x, y) ≤ (x′, y′) we have ζx,y < 1, ηx,y < 1. Hence if S = (0, x′] × (0, y′],
for every (x, y) ≤ (x′, y′) we have (xζx,y, yηx,y) ∈ S. It can also be easily verified that
F(xζx,y, yηx,y) = (x, y). Thus S ⊂ F(S) and if we define S∗ := {(ln(x), ln(y))|(x, y) ∈ S},
then S∗ ⊂ f (S∗). It means that for n = 0, 1, 2, . . . we have S∗ ⊂ Xn. Therefore we have
∅ �= S∗ ⊂ X∞. �

In the following, we rely strongly on the fact that f in (14) is invertible.

Lemma 3.2: For the log Leslie–Gower map (14) the sets X∞ = ωf (R
2) and ∂X∞ are non-

empty and invariant.

Proof: It is well-known (e.g. [20]) that, for a givenA ⊂ R
2 and a continuous map f : A →

R
2, the omega-limit setω(A) is closed and forward-invariant under f. Therefore, f (X∞) =

f (ωf (R
2)) ⊂ ωf (R

2) = X∞.
To prove X∞ ⊂ f (X∞), suppose for the sake of contradiction that there exists x ∈ X∞

such that x /∈ f (X∞). For every m = 0, 1, 2, . . . we have x ∈ Xm+1 = f (Xm) so that for
everym = 0, 1, 2, . . . there exists sequence {y(m)

n } ⊂ Xm such that limn→∞ f (y(m)
n ) = x.

It can be easily proven thatX1 = f (R2) ⊂ (−∞, ln(r)) × (−∞, ln(s)). Hence, for every
m = 1, 2, . . . we have {y(m)

n } ⊂ Xm ⊂ (−∞, ln(r)) × (−∞, ln(s)).
There must be a, b ∈ R such that {y(m)

n } ⊂ (a, ln(r)) × (b, ln(s)), because otherwise
{f (y(m)

n )} would not be bounded below which is a contradiction to the fact that {f (y(m)
n )}

is convergent.
Now from the fact that {y(m)

n } is bounded, we deduce that it has a limit point y. Since
{y(m)

n } ⊂ Xm andXm is closed, we have y ∈ Xm. And from limn→∞ f (y(m)
n ) = x, we deduce

f (y) = x. Now, since f is invertible, y is the only pointwhose value of f is equal to x. Itmeans
that for everym = 1, 2, . . . we would have the same y for that x. Therefore, for everym =
1, 2, . . ., we have y ∈ Xm, thus y ∈ X∞ and x = f (y) ∈ f (X∞). This proves X∞ ⊂ f (X∞).
And along with the fact that X∞ is forward invariant, we have X∞ = f (X∞) and X∞ is
invariant.

As f is a diffeomorphism, both f and f−1 map the interior of X∞ into itself. Hence the
interior of X∞ is invariant. As X∞ is also invariant, ∂X∞ must be invariant. �

Lemma 3.3: For any r, s,α,β > 0, x, y ∈ R
2, x �= y and 0 < λ < 1 we have

f (λx + (1 − λ)y) � λf (x) + (1 − λ)f (y). (17)
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Proof: Define ξ1 : [0, 1] → R as follows

ξ1(λ) := f1(λx + (1 − λ)y)

If x = (x1, x2) and y = (y1, y2), then we have

ξ ′′
1 (λ) = − (x1 − y1)2eλx1+(1−λ)y1 + α(x2 − y2)2eλx2+(1−λ)y2

(1 + eλx1+(1−λ)y1 + αeλx2+(1−λ)y2)2

− α(x1 − y1 − x2 + y2)2eλx1+(1−λ)y1eλx2+(1−λ)y2

(1 + eλx1+(1−λ)y1 + αeλx2+(1−λ)y2)2
< 0.

Hence ξ1 is strictly concave. Similarly ξ2 : [0, 1] → R defined by ξ2(λ) := f2(λx + (1 −
λ)y) is also strictly concave. The inequality (17) is now a direct result of the strict concavity
of ξ1 and ξ2 and the following facts:

ξi(0) = fi(y), ξi(1) = fi(x), i = 1, 2.

�

Lemma 3.4: (a) Let X ⊂ R
2 be the set of all points on or under the graph of a continuous

strictly decreasing function B : (−∞, b) → R. Then for the log-scaled Leslie–Gowermap f =
(f1, f2) in (14) we have

{x | (x, c) ∈ f (X)} =
{
f1

({(x, g(x) + h(c)
) | x ∈ (−∞,K(c))}) , c ∈ (−∞, y�)

∅, otherwise

where y� = sup{f2(x, y) | (x, y) ∈ f (X)}, and

g(x) = ln(1 + βex)

h(c) = c − ln(s − ec)

K(c) = H−1(c − ln(s − ec))

and H is the invertible continuous function defined by

H(x) = B(x) − ln(1 + βex).

(b)We have

{x | (x, c) ∈ f (R2)} =

⎧⎪⎪⎨
⎪⎪⎩

(
−∞, ln

(
r

1 + ecαβ
s−ec

))
, c ∈ (−∞, ln(s))

∅, otherwise

where h and g are as defined in part (a).
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Proof: (a) For c ∈ (−∞, y�) we have

{x | (x, c) ∈ f (X)} = f1
(
X ∩ {

(x, y) ∈ R
2 | f2(x, y) = c

})
= f1

(
X ∩ {

(x, y) ∈ R
2 | y = c − ln(s − ec) + ln(1 + βex)

})
= f1

({
(x, y) ∈ R

2 | y = c − ln(s − ec) + ln(1 + βex), y ≤ B(x)
})

= f1
({(x, ln(1 + βex) + c − ln(s − ec)

) | c
− ln(s − ec) + ln(1 + βex) ≤ B(x)})

= f1
({(x, g(x) + h(c)

) | c − ln(s − ec) ≤ B(x) − ln(1 + βex)})
= f1

({(x, g(x) + h(c)
) | c − ln(s − ec) ≤ H(x)}) .

Since B is strictly decreasing, H is strictly decreasing and invertible. Hence,

{x | (x, c) ∈ f (X)} = f1
({(

x, g(x) + h(c)
) | x ∈ (−∞,H−1(c − ln(s − ec)))

})
.

(b) For c ∈ (−∞, ln(s)) we have

{x | (x, c) ∈ f (R2)} = f1
({

(x, y) ∈ R
2 | f2(x, y) = c

})
= f1

({
(x, y) ∈ R

2 | y = c − ln(s − ec) + ln(1 + βex)
})

= f1
({(x, ln(1 + βex) + c − ln(s − ec)

) | x ∈ R})
= f1

({(x, g(x) + h(c)
) | x ∈ R}) ,

= {f1
(
x, g(x) + h(c)

) | x ∈ R},
= {ln(r) + x − ln(1 + ex + αeg(x)+h(c)) | x ∈ R},
= {ln(r) + x − ln(1 + ex + αeln(1+βex)+c−ln(s−ec)) | x ∈ R},

=
{
ln(r) + x − ln

(
1 + αec

s − ec
+ ex

(
1 + ecαβ

s − ec

))
| x ∈ R

}
.

Since c ∈ (−∞, ln(s)), s − ec is positive. Hence, 1 + αec
s−ec > 0 and 1 + ecαβ

s−ec > 0 which
implies that the derivative of the functionw(x) = ln(r) + x − ln(1 + αec

s−ec + ex(1 + ecαβ
s−ec ))

is always positive. Thus{
ln(r) + x − ln

(
1 + αec

s − ec
+ ex

(
1 + ecαβ

s − ec

))
| x ∈ R

}
=

(
−∞, lim

x→+∞w(x)
)

=
(

−∞, ln

(
r

1 + ecαβ
s−ec

))
.

�

Combining the previous lemmas together we obtain.

Theorem 3.1: For any r, s>1 and α,β > 0, for the log-scaled Leslie–Gower map (14), the
set X∞ defined by (16) is convex and invariant. Moreover, ∂X∞ is invariant and attracts R

2.



1680 H.N. YEGANEH AND S. BAIGENT

Proof: It is clear that X0 is convex. We use induction to prove that for n = 1, 2, . . ., Xn is
convex, from which it follows that their intersection X∞ is convex. To prove convexity of
X1, first we observe that by Lemma 3.4(b) for every c ∈ (−∞, ln(s)) we have

{x | (x, c) ∈ X1} = {x | (x, c) ∈ f (R2)} =
(

−∞, ln

(
r

1 + ecαβ
s−ec

)]
.

Now A(c) := ln( r
1+ ecαβ

s−ec
) and X = X1 satisfy the conditions stated for A in Lemma 2.1.

So far, we have proven the existence ofAwhich satisfies the conditions of Lemma 2.1 for
X = X1. But to apply Lemma 1 we also need to prove the existence of the second function
B of that lemma. Indeed it is easy to check that B is given by B(c) = A−1(c) = ln( s

1+ ecαβ
r−ec

).

Hence by Lemma 2.1, X1 is the set of all points on or under the graph of a continuous
strictly decreasing function. It is obvious that for every x, y ∈ X1 and 0 < λ < 1 we have
f (λx + (1 − λ)y) ∈ f (R2) = X1.Moreover by Lemma 3.3 we haveλf (x) + (1 − λ)f (y) �
f (λx + (1 − λ)y). Therefore, for every x, y ∈ X1 and 0 < λ < 1 there exists z = f (λx +
(1 − λ)y) ∈ X1 such that λx + (1 − λ)y � z. Now since X1 satisfies the conditions of
Lemma 2.2, we deduce that X1 is convex.

Assume that for n ≥ 1, Xn is convex and that it is the set of all points on or under the
graph of a continuous strictly decreasing function B : (−∞, b) → R. By Lemma 3.4(a), for
every c ∈ (−∞, y�) we have

{x | (x, c) ∈ Xn+1} = {x | (x, c) ∈ f (Xn)} = f1
({(x, g(x) + h(c)

) | x ∈ (−∞,K(c))}) ,
where g, h and K are as defined in Lemma 3.4. The functions p(x, y) := f1(x, y), q(x, y) :=
g(x) + h(y) and K satisfy the conditions of Lemma 2.3, so that for every c ∈ (−∞, y�) we
have �c = (−∞,G(c)], where G : (−∞, y�) → R is continuous. Thus

Xn+1 =
⋃

c∈(−∞,y�)

�c =
⋃

c∈(−∞,y�)

(−∞,G(c)].

A: = G and X := Xn+1 satisfy the conditions stated for A in Lemma 2.1. Owing to the
symmetric structure of the definition of the log-scaled Leslie–Gower map we can prove
the existence of B which satisfies the conditions of Lemma 2.1 for X = Xn+1. Therefore,
Lemma 2.1 shows that Xn+1 is the set of all points on or under the graph of a continuous
strictly decreasing function.

Suppose that x, y ∈ Xn+1. Since the sequence {Xn} is decreasing, we have x, y ∈ Xn. Now
since Xn is convex, for every 0 < λ < 1 we have λx + (1 − λ)y ∈ Xn, thus f (λx + (1 −
λ)y) ∈ f (Xn) = Xn+1. By Lemma 3.3 we have λf (x) + (1 − λ)f (y) � f (λx + (1 − λ)y).
Therefore, for every x, y ∈ Xn+1 and 0 < λ < 1 there exists z = f (λx + (1 − λ)y) ∈ Xn+1
such that λx + (1 − λ)y � z. SinceXn+1 satisfies the conditions of Lemma 2.2, we deduce
that Xn+1 is convex. We conclude that X∞ is convex.

∂X∞ is invariant by Lemma 3.2.We know that ∂X∞ is the graph of a concave and strictly
decreasing function A. By invariance, f1(A−1(y), y) = A−1(f2(A−1(y), y)), i.e. A−1(y) +
ln r − ln(1 + αeA−1(y) + ey) = A−1(y + ln s − ln(1 + ey + βeA−1(y))). As A−1 is strictly
decreasing and bounded above, limy→−∞ A−1(y) = x∗ and invariance yields x∗ + ln r −
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ln(1 + ex∗
) = x∗, so x∗ = ln(r − 1). A similar argument shows that limx→−∞ A(x) =

ln(s − 1).
To show that ∂X∞ attracts R

2, first we show that any finite fixed point of (14) must
belong to ∂X∞. As there can be atmost one finite fixed point, if P = (P1,P2) is a finite fixed
point not in ∂X∞ then ∂X∞ contains no finite fixed point and dynamics on ∂X∞ is mono-
tone. On ∂X∞ wemay consider the one-dimensional dynamics xn+1 = f1(xn,A−1(xn)) or
yn+1 = f2(A(yn), yn). Suppose xn → −∞ when n → ∞:

0 > xn+1 − xn = ln r − ln(1 + exn + αeA
−1(xn)) → ln r − ln(1 + α(s − 1))

so we need r − 1 < α(s − 1). On the other hand,

0 < yn+1 − yn = ln s − ln(1 + eyn + βeA(yn)) → ln s − ln(1 + β(r − 1))

so we also need s − 1 > β(r − 1). The pair of conditions r − 1 < α(s − 1) and s − 1 >

β(r − 1) are incompatible with existence of a finite fixed point (15) of (14). A similar con-
tradiction is obtainedwhen the dynamics ismonotone increasing in xn. Hencewe conclude
that whenever a finite fixed point exists for (14) it must belong to ∂X∞.

Next we recall (e.g. [7]) that all non-trivial dynamics for the unscaled Leslie–Gowermap
converge to a fixed point which can be (r − 1, 0), (0, s − 1), or (α(s−1)−r+1

αβ−1 , β(r−1)−s+1
αβ−1 )

when it is positive. Hence any orbit of (11) not convergent to the positive fixed point must
converge to (r − 1, 0) or (0, s − 1).

Now consider an orbit (xn, yn) of (14) that does not converge to a finite fixed point.
Then by convergence of Leslie–Gower orbits, (exn , eyn) tends to (r − 1, 0) or (0, s − 1) as
n → ∞. Suppose (exn , eyn) tends to (r − 1, 0) as n → ∞. Then xn → ln(r − 1), yn →
−∞ as n → ∞. On the other hand, A−1(yn) → ln(r − 1) as n → ∞. Thus ‖(xn, yn) −
(A−1(yn), yn)‖ = |xn − A−1(yn)| → 0 as n → ∞. Hence in this case we have (xn, yn) →
∂X∞ as n → ∞. The case (exn , eyn) tends to (0, s − 1) is similar.

Finally for the case that an orbit (xn, yn) of (14) converges a positive fixed point P, as we
showed in the previous paragraph P ∈ ∂X∞.

Thus we conclude that ∂X∞ is attracting. �

3.2. The Rickermodel

The planar Ricker model is defined by the non-invertible map

F(u, v) := (
uer−u−αv, ves−v−βu) , (u, v) ∈ R

2+ (18)

where α,β , r, s > 0.
With the coordinates stated in (13), we have the following log-scaled version of the

model:

f (x, y) := (
x + r − ex − αey, y + s − ey − βex

)
. (19)

For the time being we work with the Ricker map in these standard coordinates to see when
we can expect a carrying simplex to be unique when it exists. Log coordinates will be
introduced later. The following points are always fixed points of F:

c1 := (0, 0), c2 := (r, 0), c3 := (0, s). (20)
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When αβ �= 1 and c4 defined in (21) below is a member of R
2++, then F has exactly four

fixed points and the fourth fixed point is:

c4 :=
(
sα − r
αβ − 1

,
rβ − s
αβ − 1

)
. (21)

We will find it more convenient to now use the log-scaled version (19). We define

Y0 := R
2, X0 := Q3,

where Q3 = {(x, y) : x ≤ 0 and y ≤ 0} is the third quadrant. We let

Yn := f (Yn−1), Xn := f (Xn−1), n = 1, 2, . . .

and define the sets

Y∞ :=
∞⋂
n=0

Yn =
∞⋂
n=0

f n(R2), X∞ :=
∞⋂
n=0

Xn =
∞⋂
n=0

f n(Q3). (22)

Lemma 3.5: If s, r<1 then

Y∞ = X∞.

Proof: It is obvious that X∞ ⊆ Y∞. To prove that we also have Y∞ ⊆ X∞, it is sufficient
to prove that for any (x, y) ∈ R

2, there exists n ∈ N such that f n(x, y) ∈ Q3.
If x>0 then we have

f1(x, y) − x = r − ex − αey < r − 1 < 0,

and if y>0 then

f2(x, y) − y = s − ey − βey < s − 1 < 0.

Therefore, if we define n as follows,

n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x, y ≤ 0

1 +
⌊

x
1 − r

⌋
x > 0, y ≤ 0

1 +
⌊

y
1 − s

⌋
y > 0, x ≤ 0

1 + max
{⌊

x
1 − r

⌋
,
⌊

y
1 − s

⌋}
x, y > 0,

then f n(x, y) ∈ Q3. �

Lemma 3.6: When r, s>0 we have X∞ �= ∅.
Proof: x′, y′ < 0 can be found such that for every (x1, y1) ≤ (x′, y′) the following equations
have at least one solution with (x, y) � (x1, y1):

x + r − ex − αey = x1,

y + s − ey − βex = y1.
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Hence if S = (−∞, x′] × (−∞, y′] then S ⊂ f (S). Therefore for n = 0, 1, 2, . . . we have
S ⊂ Xn and ∅ �= S ⊂ X∞. �

Now we will show that X∞ is invariant. Since the log-scaled Ricker map f is not invert-
ible, to show invariance ofX∞ we need a property weaker than invertibility.We use the fact
that the log-scaled Rickermap f is a propermap (i.e. for every compact setX ⊂ R

2, f−1(X)

is compact). To see this, note that if {xn} is a sequence such that |xn| → ∞, then, accord-
ing to the terms in (19), |f (xn)| → ∞. Since f is continuous, we conclude that for every
closed and bounded set X, f−1(X) is closed and bounded. Therefore, for every compact set
X, f−1(X) is compact and we conclude that the log-scaled Ricker map f is proper.

Lemma 3.7: When 0< r, s<1 and f is the log-scaled Ricker map, X∞ defined by (22) is
invariant.

Proof: If x ∈ f (X∞) then x ∈ f (Xn) ⊂ f (Xn) = Xn+1 for n ∈ N. Hence x ∈ ⋂∞
n=1 Xn and

since X0 = Q3, we have x ∈ ⋂∞
n=1 Xn = ⋂∞

n=0 Xn = X∞. This proves f (X∞) ⊂ X∞.
We prove that f (Xn) = f (Xn) for n ∈ N. It is sufficient to show that f (Xn) is closed if

Xn is closed. Suppose that x∗ is a limit point of f (Xn). There exists a sequence {ynm} ⊂ Xn
such that limm→∞ f (ynm) = x∗. {ynm} is bounded since, being proper, f maps unbounded
subsets of X0 into unbounded sets whereas {f (ynm)} is convergent, and hence bounded.
Boundedness of {ynm} ⊂ Xn and the fact that Xn is closed, imply that {ynm} has a limit point
y∗ ∈ Xn. Continuity of f implies f (y∗) = x∗. Thus x∗ ∈ f (Xn), which proves that f (Xn) is
closed and hence f (Xn) = f (Xn).

Now if x ∈ X∞, then x ∈ Xn+1 = f (Xn) = f (Xn) for n ∈ N. Hence for n ∈ N there
exists zn ∈ Xn such that f (zn) = x. Since f is proper, f−1({x}) is compact. Therefore, since
{zn} ⊂ f−1({x}), {zn} is bounded and has at least one limit point. Let z∗ be such a limit
point. z∗ is also a limit point of f−1({x}), and since f−1({x}) is closed, we have z∗ ∈ f−1(x).
Thus f (z∗) = x and since z∗ is a limit point of {zn}, and for n ∈ N we have zn ∈ Xn
where {Xn} is a decreasing sequence of closed sets, we conclude that z∗ ∈ X∞. This proves
X∞ ⊂ f (X∞). �

Lemma 3.8: Lemma 3.3 also holds for the log-scaled Ricker map f defined in (19).

Proof: We define χ1 : [0, 1] → R and χ2 : [0, 1] → R as follows

χ1(λ) := f1(λx + (1 − λ)y)

χ2(λ) := f2(λx + (1 − λ)y).

It is easy to show that both χ1 and χ2 are strictly concave (being the sum of linear minus
exponential terms), and the rest of the proof is straightforward. �

Lemma 3.9: (a) Let b ∈ R and X ⊂ Q3 be the set of all points on or under the graph of
a continuous strictly decreasing function B : (−∞, b) → R. Let f = (f1, f2) denote the log-
scaled Ricker map. Then we have

{x | (x, c) ∈ f (X)} =
{
f1 ({(x,P(c − s + βex)) | x ∈ (−∞,K(c)]}) , c ∈ (−∞, y�)

∅, otherwise
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where y� = sup{f2(x, y) | (x, y) ∈ f (X)},
P(x) := x − W0(−ex),

W0 is the principal branch of the Lambert W function (see, for example, [16]),

K(c) := G−1(c − s)

and G is the continuous invertible function defined by

G(x) := B(x) − eB(x) − βex.

(b)We have

{x | (x, c) ∈ f (Q3)} =
{
f1 ({(x,P(c − s + βex)) | x ∈ (−∞,K(c)]}) , c ∈ (−∞, y�)

∅, otherwise

where P is the function defined in part (a) and

y� = sup{f2(x, y)| (x, y) ∈ f (Q3)},

K(c) = min
{
0, ln

(−1 − c + s
β

)}
.

Proof: (a) For c ∈ (−∞, y�) we have

{x | (x, c) ∈ f (X)} = f1
(
X ∩ {

(x, y) ∈ Q3 | f2(x, y) = c
})

= f1
(
X ∩ {

(x, y) ∈ Q3 | y + s − ey − βex = c
})

= f1
(
X ∩ {

(x, y) ∈ Q3 | y − ey = c − s + βex
})

When t<0, t − et is strictly increasing. Hence, for every l ∈ R, t − et = l has at most one
solution for t ≤ 0. Since {t − et | t ≤ 0} = (−∞,−1], t − et = l has a unique solution for
t ≤ 0 and l ∈ (−∞,−1] and no solution when t ≤ 0 and l>−1. We claim that t = P(l) is
the unique solution for t − et = l when t ≤ 0 and l ∈ (−∞,−1]. To prove that, we have

P(l) − eP(l) = l − W0(−el) − el−W0(−el). (23)

By the properties of the LambertW functionW0 we haveW0(−el)eW0(−el) = −el. Hence
−el−W0(−el) = W0(−el). This along with (23) implies P(l) − eP(l) = l (since t = P(l)must
satisfy t<0, only the principal branch of the LambertW function can be used to provide
a solution). Now with l = c − s + βex and t = y we have

f1
(
X ∩ {

(x, y) ∈ Q3 | y − ey = c − s + βex
})

= f1
(
X ∩ {

(x, y) ∈ Q3 | y = P(c − s + βex)
})

= f1
({

(x, y) ∈ Q3 | y = P(c − s + βex), y ≤ B(x)
})

= f1
({(x,P(c − s + βex)

) | P(c − s + βex) ≤ B(x)}) .



JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS 1685

Since P(c − s + βex) ≤ 0, B(x) ≤ 0 in the above sets, and since when t<0, t − et is strictly
increasing, we have

P(c − s + βex) ≤ B(x) =⇒ c − s + βex = P(c − s + βex) − eP(c−s+βex) ≤ B(x) − eB(x).

Thus

f1
({(

x,P(c − s + βex)
) | P(c − s + βex) ≤ B(x)

})
= f1

({(
x,P(c − s + βex)

) | c − s + βex ≤ B(x) − eB(x)
})

= f1
({(

x,P(c − s + βex)
) | c − s ≤ B(x) − eB(x) − βex

})
= f1

({(
x,P(c − s + βex)

) | c − s ≤ G(x)
})

.

(b) For c ∈ (−∞, s − 1) we have

{x | (x, c) ∈ f (Q3)} = f1
({

(x, y) ∈ Q3 | f2(x, y) = c
})

= f1
({

(x, y) ∈ Q3 | y + s − ey − βex = c
})

= f1
({

(x, y) ∈ Q3 | y − ey = c − s + βex
})

= f1
({

(x, y) ∈ Q3 | y = P(c − s + βex)
})

= f1
({(

x,P(c − s + βex)
) | x ∈ (−∞, 0], P(c − s + βex) ∈ (−∞, 0]

})
= f1

({(
x,P(c − s + βex)

) | x ∈ (−∞, 0], P(c − s + βex)

− eP(c−s+βex) ≤ −1
})

= f1
({(

x,P(c − s + βex)
) | x ≤ 0, c − s + βex ≤ −1

})
= f1

({(
x,P(c − s + βex)

) | x ≤ 0, x ≤ ln
(−1 − c + s

β

)})

= f1
({(

x,P(c − s + βex)
) | x ≤ min

{
0, ln

(−1 − c + s
β

)}})
.

�

Lemma 3.10: For any 0< r, s<1 and α,β > 0, and f is the log-scaled Ricker map, X∞
defined in (22) is invariant and convex.

Notice that Lemma 3.10 is not a complete analogue of Theorem 3.1 since we are not
claiming that ∂X∞ is necessarily invariant. We will address this after proving Lemma 3.10.

Lemma 3.10. Convexity of X∞ can be proved with a similar argument to that used for
the scaled Leslie–Gower model. So we explain the argument more briefly. It is obvious that
X0 is convex, and by using induction we can prove convexity of Xn for n = 1, 2, . . ., and
that implies convexity of X∞.

To prove convexity of X1, by Lemma 3.9(b) for c ∈ (−∞, y�) we have

{x | (x, c) ∈ f (X1)} = {x | (x, c) ∈ f (Q3)} = f1
({(

x,P(c − s + βex)
) | x ∈ (∞,K(c)]

})
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where P, K and y� are defined in that part of the lemma. Now it is easy to verify that
p = f1 and q : R

2 → R defined by q(x, y) = P(y − s + βex) and K satisfy the conditions
of Lemma 2.3. By Lemma 2.3 for every c ∈ (−∞, y�) we have �c = (−∞,G(c)], where
G : (−∞, y�) → R is continuous. Thus

X1 =
⋃

c∈(−∞,y�)

�c =
⋃

c∈(−∞,y�)

(−∞,G(c)].

Now A := G,X := X1 satisfy the conditions stated for A in Lemma 2.1.
Owing to the symmetric structure of the definition of the log-scaled Ricker map, we

can state similar lemmas to prove that there exists B such that it satisfies the conditions of
Lemma 2.1 forX = X1. Now since, by Lemma 2.1,X1 is the set of all points on or under the
graph of a continuous strictly decreasing function, we can use Lemma 2.2 and Lemma 3.8
with a similar argument to that used in Theorem 1 to prove that X1 is convex.

Assume that for n ≥ 1, Xn is convex and it is the set of all points on or under the graph
of a continuous strictly decreasing function B : (−∞, b) → R. By Lemma 3.9(a) for every
c ∈ (−∞, y�) we have

{x | (x, c) ∈ Xn+1} = {x | (x, c) ∈ f (Xn)} = f1
({(

x,P(c − s + βex)
) | x ∈ (−∞,K(c))

})
.

Then p := f1 and q : R
2 → R defined by q(x, y) := P(y − s + βex) satisfy the conditions

of Lemma 2.3 andG defined in that lemma is continuous. SoA: = G andX := Xn+1 satisfy
the conditions stated for A in Lemma 2.1. Again, owing to the symmetric structure of the
definition of the log-scaled Ricker map we can prove the existence of B which satisfies the
conditions of Lemma 2.1 for X = Xn+1. Therefore, by that lemma, Xn+1 is the set of all
points on or under the graph of a continuous strictly decreasing function. Now we can use
Lemmas 2.2 and 3.8 and a similar argument to that used in Theorem 3.1 to prove thatXn+1
is convex.

According to Lemma 3.7 X∞ is invariant, and as the intersection of convex sets it is
convex.

As the log-scaled Ricker map f is not invertible we cannot conclude that ∂X∞ is also
invariant. In order to prove that ∂X∞ ⊂ X1 is invariant, it is sufficient to show that the
restriction f |X1→f (X1) is invertible. If the Jacobian of f is non-vanishing throughout X1
then f is locally invertible at any point of X1. But as is well known, locally invertibility does
not always imply global invertibility. Ho [10] proved that a local homeomorphism between
a pathwise connected Hausdorff space and a simply connected Hausdorff space is a global
homeomorphism if and only if that map is proper. We have already established that the
log-scaled Ricker map f is proper (in the paragraph preceding Lemma 3.7). Hence, if we
prove that the Jacobian of f does not vanish anywhere inX1 for a given range of parameters,
then we can deduce that ∂X∞ ⊂ X1 is invariant for that same range of parameters.

Thus now we consider where the Jacobian vanishes.
Using [6] (which studies the unscaled Ricker map (18)) the Jacobian of the log-scaled

Ricker map f only vanishes on LC−1 defined by

LC−1 := {(x, y) ∈ Q3 : 1 − ex = ey(1 − (1 − αβ)ex)}. (24)

Set

q(t) = 1 − et

(αβ − 1)et + 1
.
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When αβ ≥ 1, then q(t) > 0 if and only if t<0. If αβ < 1, then q(t) > 0 if and only if t ∈
(−∞, 0) ∪ (− ln(1 − αβ),+∞). In this case, LC−1 is the union of two connected curves.
By Lemma 3.5, if r, s<1, then X∞ = Y∞ ⊂ Q3. So in this case we only need to consider

LC1−1 := {(ln(q(t)), t) | t < 0},
and investigate whether or not the Jacobian vanishes at some points on X∞.

According to [6], Y1 := f (R2) is bounded by the set of points on or under LC1
0 defined

by

LC1
0 :=

{(
ln

(
q(t)

) + r − q(t) − αet , t + s − et − βq(t)
) | t < 0

}
. (25)

Since X∞ ⊂ Y1, X∞ is a subset of the set of points on or under LC1
0. Hence, if r, s<1 and

LC1−1 does not intersect that space, then the Jacobian of f does not vanish anywhere in X∞
since LC−1 ∩ X∞ = ∅.

Lemma3.11: If r, s<1 then LC1−1 does not intersect the set of points on or under LC
1
0 . Hence,

if r, s<1 then ∂X∞ is invariant.

Proof: It is sufficient to show that if (x−1, y) ∈ LC1−1 and (x0, y) ∈ LC1
0, then x−1 > x0.

Since (x0, y) ∈ LC1
0, for some t<0 we have (x0, y) = (ln(q(t)) + r − q(t) − αet , t + s −

et − βq(t)). Since x−1 = ln(q(y)) and y = t + s − et − βq(t), we have

x−1 = ln(q(t + s − et − βq(t))).

We define R(t) := x−1 − x0 = ln(q(t + s − et − βq(t))) − (ln(q(t)) + r − q(t) − αet).
We have

q(t)
(
eR(t) − 1

)
= q(t + s − et − βq(t))e−r+q(t)+αet − q(t). (26)

It is easy to show that when h<0, then q(h) > 0. We use this fact multiple times in this
proof. From t<0 we have t − et < −1. This along with s<1 and q(t) > 0 implies t + s −
et − βq(t) < 0. Thus q(t + s − et − βq(t)) > 0. Now since e−r+q(t)+αet ≥ 1 − r + q(t) +
αet , we have

q(t + s − et − βq(t))e−r+q(t)+αet ≥ q(t + s − et − βq(t))(1 − r + q(t) + αet). (27)

Now (26) and (27) imply

q(t)
(
eR(t) − 1

)
≥ q

(
t + s − et − βq(t)

)
(1 − r + q(t) + αet) − q(t). (28)

For the sake of expressing equations in a simpler way, letT := et .We have 0<T<1, q(t) =
q(ln(T)) = 1−T

(αβ−1)T+1 and we can rewrite (28) as follows

q(t)
(
eR(t) − 1

)
≥ q

(
ln(T) + s − T − βq(ln(T))

)
(1 − r + q(ln(T)) + αT) − q(ln(T)).

(29)
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We have

q
(
ln(T) + s − T − βq(ln(T))

) = 1 − eln(T)+s−T−βq(ln(T))

(αβ − 1)eln(T)+s−T−βq(ln(T)) + 1

= 1 − Tes−T−β 1−T
(αβ−1)T+1

(αβ − 1)Tes−T−β 1−T
(αβ−1)T+1 + 1

= 1

− αβTes−T−β 1−T
(αβ−1)T+1

(αβ − 1)Tes−T−β 1−T
(αβ−1)T+1 + 1

= 1 − αβT

(αβ − 1)T + e−s+T+β 1−T
(αβ−1)T+1

. (30)

As we mentioned before, ln(T) + s − T − βq(ln(T)) = t + s − et − βq(t) < 0. Hence,
from αβ − 1 > −1, we deduce

(αβ − 1)Tes−T−β 1−T
(αβ−1)T+1 + 1 = (αβ − 1)eln(T)+s−T−βq(ln(T)) + 1 > 0,

thus

(αβ − 1)T + e−s+T+β 1−T
(αβ−1)T+1 = e−s+T+β 1−T

(αβ−1)T+1
(
(αβ − 1)Tes−T−β 1−T

(αβ−1)T+1 + 1
)

> 0.

(31)

From T>0, s<1 and q(t) > 0 we have

(αβ − 1)T + 1 +
(

−s + T + β
1 − T

(αβ − 1)T + 1

)
= αβT + 1 − s + βq(t) > 0. (32)

Since eh > 1 + h for h ∈ R, we have

(αβ − 1)T + e−s+T+β 1−T
(αβ−1)T+1 ≥ (αβ − 1)T + 1 +

(
−s + T + β

1 − T
(αβ − 1)T + 1

)
.

(33)

Now (31), (32) and (33) imply

1 − αβT

(αβ − 1)T + e−s+T+β 1−T
(αβ−1)T+1

≥ 1 − αβT
αβT + 1 − s + β 1−T

(αβ−1)T+1
.

This along with (29) and (30) implies

q(t)
(
eR(t) − 1

)
≥

(
1 − αβT

αβT + 1 − s + β 1−T
(αβ−1)T+1

)

× (
1 − r + q(ln(T)) + αT

) − q(ln(T))

=
(
1 − αβT((αβ − 1)T + 1)

(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

)
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×
(
1 − r + 1 − T

(αβ − 1)T + 1
+ αT

)

− 1 − T
(αβ − 1)T + 1

= (1 − s)((αβ − 1)T + 1) + β(1 − T)

(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

×
(
1 − r + 1 − T

(αβ − 1)T + 1
+ αT

)
− 1 − T

(αβ − 1)T + 1

= E(T)

(αβ − 1)T + 1
,

where

E(T) := (1 − s)((αβ − 1)T + 1) + β(1 − T)

(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

× ((1 − r + αT)((αβ − 1)T + 1) + 1 − T)

− (1 − T)

= (1 − s)((αβ − 1)T + 1) + β(1 − T)

(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

× ((1 − r + αT)((αβ − 1)T + 1) + 1 − T)

− (αβT + 1 − s)((αβ − 1)T + 1)(1 − T) + β(1 − T)2

(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

=
(1 − s)((αβ − 1)T + 1)(1 − r + αT)((αβ − 1)T + 1)

+β(1 − T)(1 − r + αT)((αβ − 1)T + 1)
(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

+ (1 − s)((αβ − 1)T + 1)(1 − T) − (αβT + 1 − s)((αβ − 1)T + 1)(1 − T)

(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)
.

Now by the above inequalities we have

q(t)
(
eR(t) − 1

)
≥ (1 − s)(1 − r + αT)((αβ − 1)T + 1) + β(1 − T)(1 − r + αT)

(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

+ (1 − s)(1 − T) − (αβT + 1 − s)(1 − T)

(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

= (1 − s)(1 − r + αT)((αβ − 1)T + 1) + β(1 − T)(1 − r)
(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

.

From s<1, r<1, αβ − 1 > −1 and 0<T<1 we can deduce that

(1 − s)(1 − r + αT)((αβ − 1)T + 1) + β(1 − T)(1 − r)
(αβT + 1 − s)((αβ − 1)T + 1) + β(1 − T)

> 0.

Therefore, q(t)(eR(t) − 1) > 0. Now since q(t) > 0, we deduce that eR(t) − 1 > 0, which
implies x−1 − x0 = R(t) > 0. This proves x−1 > x0. Now since X∞ is a subset of the set of
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points on or under LC1
0, LC

1−1 does not intersectX∞ and by the argument we stated before,
we deduce that ∂X∞ is invariant. �

Wemay now put together Lemmas 3.10 and 3.11 to obtain the analogue of Theorem 3.1
for the Ricker map:

Theorem 3.2: For any 0< r, s<1 and α,β > 0 and f is the log-scaled Ricker map, X∞
defined in (22) is invariant and convex, ∂X∞ is invariant and attracts R

2.

Proof: All that is left to do is show that ∂X∞ is attracting. It is proven that if r, s<2, then
every non-trivial orbit converges to one of the non-zero fixed points (see [5]). The possible
non-zero fixed points on the x or y axis are the same as for the Leslie–Gower model with
r−1 replaced by r and s−1 replaced by s. So we may use the same method as used for the
log-scaled Leslie–Gower map to show attraction to ∂X∞. �

From this we obtain the following improvement on the known conditions

r + s < 1 + rs(1 − αβ) < 2,

(e.g. [8,9,17,18]) for the existence of a carrying simplex for the Ricker model. These
inequalities fail for some α,β > 0, when r, s<1, namely those α,β that satisfy r, s<1
and αβ ≥ (1 − 1/r)(1 − 1/s). However, Lemma 3.11 also shows that the unscaled Ricker
map is retrotone on [0, r] × [0, s] when r, s<1 so we obtain

Corollary 3.1: When r, s<1 and α,β > 0 the Ricker map (x, y) ∈ R
2+ �→

(xer−x−αy, yes−y−βx) has a (compact) carrying simplex.

Proof: In the absence of asymptotic completeness in Theorem 3.2, we apply standard
results on retrotone systems (e.g. [9,11,17,18]). �
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