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Ariel, the fourth medium-sized mission of ESA's "Cosmic

Vision" program, was officially adopted in 2020 to

comprehensively survey the atmospheres of a large

sample of known exoplanets[1,2]. This mission places

significant importance on critical components such as the

primary mirror (M1) and its associated Flexure Hinges

(FHs). FHs are not just passive mechanical-structural

devices but the lifeline of the primary mirror, designed to

isolate it from the mechanical and thermal effects of the

Ariel Telescope's Optical Bench (TOB), thereby

safeguarding its optical quality. Mechanical effects include

gravity, inertial, vibratory loadings, and potential stresses

resulting from integrating the primary mirror to maintain

proper alignment and ensure optimal optical performance

during assembly on the satellite. In this study, we

underscore the pivotal role of these flexure hinges in

connecting M1 to the TOB, detailing the challenges in

designing and fabricating this complex structural frame

and highlighting the importance of maintaining the

alignment of optomechanical elements under various

loads.

The manufacture of the FHs involved high-precision

machining techniques, from milling to Electrical Discharge

Machining (EDM) and Single-Point Diamond Turning (SPDT).

Milling was performed with a three-axis machine with

mechanical masking and precision-calibrated shims to avoid

plastic deformation during flexure machining. The complexity

of the flexure hinges stems from the need to provide multiple

degrees of freedom during installation to compensate for

manufacturing errors and the different spring parts capable of

mitigating stresses due to the vibration load levels. The more

flexible parts of FHs (flexors) are also needed to reduce

stresses at the interface with M1 and TOB due to the action

of gravity and thermomechanical stresses caused by

temperature gradients during the cooling phase[3]. In

particular, the flexural hinge stiffnesses of the parts are: 𝐾1,

cylindrical under HS, functions as an elastic spherical hinge

to help compensate for any jamming due to cone-sphere

contact during assembly (Fig.4). At the same time, 𝐾2 allows

the central body to translate, compensating for differential

contractions between TOB and M1[4].

Three FHs of two types support the M1 mirror on its back (see Fig.2). They are

mounted to form a triangular configuration with the centre of the mirror's centre of

mass.

An essential function of FHs is to mitigate distortion effects due to shrinkage at

cryogenic temperatures of 50 K. For this reason, the flexible hinges are made of

the same aluminium alloy as M1 and the TOB and have undergone the same

cryogenic treatments. Fig.1 shows an exploded view with all the components and

how the FHs are positioned on M1.

To minimize distortion of M1 due to mounting the flexible hinges on M1, the

manufacturing tolerances of the interface planes of both components were set at

2 μm flatness.

The mechanical coupling between the HS (see Fig.3) and the FH is achieved

through the interaction of a sphere and a conical-spherical housing surface

generated on the FH. When coupled with the sphere of the HS during the

assembly phase, this conical-spherical surface ensures optimal sliding of the

two parts. When the two surfaces are subjected to the load of the tightening

screws, the minimal clearance obtained through tolerances should enable the

best possible thermal contact.

Flexure Hinge  A (FH-A) 

and Hemispherical 

Support (HS)

Flexure Hinge  B (FH-B) 

and Hemispherical 

Support (HS)

Fig.2  - Assembly schema of FHs on M1 and TOB.

.

Milling machines process

Milling was performed with a three-axis

machine, using jigs and shims to avoid plastic

deformation during flexure machining.

Fig.6 – General phase of milling.

Fig.7 – Phase of EDM of the cylindrical flexor.  

Plunge Electrical Discharge Machining (EDM) process

Start at the end of the milling phase with 0.6 mm extra

material for rough machining at 15 A. Continue with 0.4 mm

extra material for semi-finishing at 9 A, then proceed with 0.2

mm extra material for finishing at 4 A. Finally, use 0.05 mm

extra material for high finishing at 1.5 A

Fig.4 – general Flexure Hinges schema and coupling between FH and HS component.

Fig.8 - Phase of SPDT a) is the interface between the FH and the Lathe spindle b) the FH-A mounted on the 

Lathe C) is the interface between HS and the Lathe spindle d) the HS mounted on the Lathe. 

Single-Point Diamond Turning (SPDT) 

process

SPDT was used to obtain the co-coplanarity 2

µm surfaces of the two interface pads with M1.

The cone-sphere surface was also made by

SPDT. The surface roughness of all machined

surfaces must be below 0.2 µm, and the form

tolerance is±4 µm.

a) b)

c)b)

The development of an FH prototype was aimed at verifying

the feasibility in terms of machining and compliance with the

project's stringent dimensional and shape tolerances.

Additionally, the construction of the Flexure Hinge type A

(FH-A) prototype allowed for verification of its actual

functionality once mounted on the M1 Structural Model (SM)

mirror, a mirror used for structural tests but with optical

properties.

Fig.9 – Mock-up of Flexor Hinges (FH) A: Images a) 

and b) show the surface quality achieved on the 

pads.

a) b)

Fig.10 – Mock-up of hemispherical support 

(HS): Image a) shows the quality of the 

spherical-conical surface of the HS housing 

made on the FH, b) shows the quality of the 

spherical surface of the HS, and c) shows 

the quality of the flat surface of the HS.

a)

b) c)

The tight tolerance of +/- 5 µm on

the fitting dimensions between

the FH housing and the HS (see

Fig.10) has been respected.

The performance of the M1 SM mirror was evaluated by

installing a prototype of the FH-A and measuring the

Surface Form Error (SFE) before and after assembly.
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The activities described in this paper are being developed under the

Implementation Agreement n. 2021-5-HH.2-2024 “Italian Participation to Ariel

mission phase B2/C” between the Italian Space Agency (ASI) and the National

Institute for Astrophysics (INAF) and under ASI contracts n. 2021-21-I.0 “ARIEL

TA Phase B Industrial Activities” and n. 2023-42-I.0 "ARIEL TA Phase C/D1

Industrial Activities".

The SFE of the mirror was

measured in two phases: first

without FH-A and then with

FH-A installed. The FH-A was

mounted using a precise

tightening sequence up to 10

Nm. The graph shows a

deformation of approximately

30 nm RMS between the

eighth and ninth orders of

Zernike polynomials due to the

installation of the FH-A. This

measurement also includes

the effect of the additional

mass of about 5 kg of the FH-A

attached to M1.
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The SPDT machining process of the two

pads of the FH (see Fig.9) has allowed

achieving a flatness of less than 2 µm,

while maintaining the design

specifications.

Modal Analysis

The finite element analysis (FEA) allowed the determination of the resonance frequencies

and the natural shape assumed by the FH-A prototype. The first mode is lateral bending

on the Z-axis and translation on the X-axis. With a higher frequency, the second mode is a

rotation around the X-axis and translation in the Z-axis. The third mode is a rotation

around the Y-axis. These first three resonance modes, illustrated in Fig.5, originate from

the three natural frequencies of the parallel spring guides. The modes generated by the

central cylindrical spring appear above 1000 Hz, demonstrating high bending and

torsional stiffness.

Fig.11 - M1 SM (1 m class) undergoing testing with only the FH-A mounted.

M1 with FH-A

M1 

M1 

M1 with FH-A

Fig.3 - Hemispherical Support (HS) with a sphere R 195 mm.

Fig.1 - Explode view of M1 and Flexure Hinges.

Fig.5 – Modal analysis of FH-A prototype.
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Fig.12 - SFE graph without and with the FH-A mounted on M1.

Fig.13 - SFE maps aberrations of the M1 mirror starting from the 

Zernike polynomial from 5 to 8 with FH-A mounted.


