
Neural Time Series Forecasting With
Latent Dynamics

Zexuan Yin

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

September 19, 2024

2

I, Zexuan Yin, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indi-

cated in the work.

Abstract

This thesis investigates the use of neural network models for time series forecasting

with an emphasis on modelling latent dynamics (unobservable time series).

Time series forecasting is of great research interest to both industry and

academia. It describes the task of predicting the future values of one or more time

series conditioned on past information. With growth in the availability of data, re-

searchers have started developing machine learning - more specifically neural net-

works - to model more complex temporal dynamics. Neural networks excel at mod-

elling non-linearity and requires fewer assumptions on the underlying process.

To contribute to the area of deep learning for time series forecasting, I focus

specifically on the fact that not all time series can be observed. Financial markets

for example, contain unobservable market regimes which drive observed time series

such as stock returns and prices. Being able to model these latent dynamics provide

us with a useful tool to study what is happening beneath the surface. To achieve this,

I bring topics together from other areas of machine learning such as representation

learning and Bayesian inference.

This thesis is broken down into four experiments. In the first experiment, I

develop a stochastic variant of the recurrent neural network which can be used to

perform multi-step-ahead time series forecasting, and generate confidence intervals

for the predictions.

In the second experiment, I study the concept of Granger causality in the pres-

ence of a potential confounder. I develop a neural network architecture to model

the confounder and show that by taking this into account, one can obtain better

forecasting accuracy on the target time series.

Abstract 4

The third and fourth experiments are concerned with the application of latent

variable modelling in financial markets. In experiment three, I bring together deep

learning and GARCH models from the field of econometrics and propose a neural

architecture for volatility (variance/covariance) forecasting in a low dimensional

setting (<5 assets). Finally, in the fourth experiment, I build on my work in the third

experiment to propose a model capable of forecasting the volatility of an investment

portfolio in higher dimensional settings.

Impact Statement

The findings and models proposed in this thesis have many potential applications in

both industry and academia.

The stochastic recurrent neural network proposed in experiment one is a gen-

erative model for time series capable of generating a distribution of future states

conditioned on past information. This model is currently being adopted by the AI

Research team at JP Morgan investment bank to study limit order book dynamics

and market micro-structure in global equity markets. This brings potential value

in the electronic trading business as the bank can use this model to output a distri-

bution of future order book states and test their strategies for optimal order place-

ment, potentially with reinforcement learning. In addition to this, several hedge

fund managers have confirmed that this architecture could potentially be used to

develop systematic trading strategies.

Granger causality is a commonly used concept in fields such as neuroscience

and finance to study the predictability of a target time series conditioned on other

time series. However, only observed times series are being used as predictors, and

the reliability of the test suffers in the presence of a latent confounder. In experiment

two, I demonstrate that by directly accounting for confounding, one can obtain bet-

ter forecasting of the target time series than using observed time series alone. This

finding could help industry professionals and academic researchers to better un-

derstand potentially non-linear relationships between different time series such as

neural activities inside the brain, and the effect of macroeconomic variables on the

stock market.

In financial markets, the concept of volatility is of critical importance as it is

Impact Statement 6

closely linked to risk management practices. When developing a trading strategy,

the risk adjusted return is a key parameter to consider after taking volatility into

account. Since volatility is an unobserved variable, it is often inferred and predicted

using observed time series such as stock returns. The volatility models developed in

experiments three and four can accommodate more complex relationships between

historical returns and risk. The covariance matrix predictions made by the model

can be used by commodity traders to compute the Value-at-risk (VAR) of their po-

sitions, and asset managers can use these predictions to perform dynamic portfolio

optimisation.

Acknowledgements

I would like to express my deepest gratitude towards my principle supervisor Prof

Paolo Barucca for his utmost support and patience throughout my PhD journey. It is

through his mentorship that I have acquired the research and problem solving skills

which will better prepare me for my future career.

I would like to thank my secondary supervisor Prof Fabio Caccioli for always

being there for me whenever I needed advice on improving my work. The feed-

back I gained from him has contributed greatly to my research confidence and work

quality.

I am grateful to my examiners: Prof Tomaso Aste and Prof Joerg Osterrieder

for taking the time to review my work and provide constructive feedback. It is with

their help that I am able to finish my PhD journey on a high note.

I would also like to acknowledge Prof Brooks Paige and Prof Denise Gorse for

giving me invaluable advice on my research and providing supervision during my

previous vivas.

Last but not least, I thank my family for their continuous support throughout

the years and for being my source of motivation.

Contents

1 Introduction 16

1.1 Research objectives . 17

1.2 Scientific contributions . 18

1.3 Thesis outline . 19

1.4 Thesis structure . 21

2 Background Literature 22

2.1 Time series forecasting . 22

2.1.1 Deep learning for time series 23

2.2 Learning latent temporal dynamics with deep learning 25

3 Methodology and algorithms 29

3.1 Multilayer perceptron . 29

3.2 Recurrent neural network . 31

3.2.1 Long short term memory unit 32

3.2.2 Gated recurrent unit . 33

3.3 Variational autoencoder . 34

3.3.1 Variational inference . 34

3.3.2 Amortised variational inference 36

3.4 Developing deep latent variable models for time series forecasting . 36

4 Designing deep latent models for time series forecasting 38

4.0.1 Introduction and motivation 38

4.0.2 Existing literature on RNNs and VRNNs 40

Contents 9

4.0.3 Problem formulation and model architecture 41

4.0.4 Stochastic GRU cell . 41

4.0.5 The generative model . 42

4.0.6 The inference Model . 43

4.0.7 Training the VRNN time series model 44

4.0.8 Model prediction . 45

4.0.9 Description of experiments 45

4.0.10 Conclusion . 51

5 Investigation of inter-time series relationships learnt by the deep latent

variable model 53

5.1 Introduction and motivation . 53

5.2 Existing literature on linear and nonlinear Granger causality 56

5.3 Designing a deep latent variable for Granger causality 59

5.4 Inferring confounded Granger causality in synthetic and real-world

datasets . 64

5.4.1 Dataset 1 . 64

5.4.2 Dataset 2 . 64

5.4.3 River discharge dataset . 65

5.4.4 Neural network parameters 65

5.4.5 Statistical testing . 66

5.5 Conclusion . 68

6 Designing deep latent conditional volatility models- part 1 70

6.1 Introduction and motivation . 70

6.2 Existing literature on GARCH models 71

6.2.1 Univariate GARCH models 73

6.2.2 BEKK model . 74

6.3 Designing a neural GARCH model 75

6.3.1 Generative model . 76

6.3.2 Inference model . 77

Contents 10

6.3.3 Optimising a neural GARCH model 78

6.3.4 Obtaining neural GARCH predictions 79

6.4 Performance of neural GARCH on financial time series 79

6.5 Conclusion . 85

7 Designing deep latent conditional volatility models- part 2 87

7.1 Introduction and motivation . 87

7.2 Stochastic volatility models and existing deep learning attempts . . 88

7.2.1 Recap on GARCH models 91

7.2.2 Stochastic volatility as an alternative to GARCH models . . 93

7.3 Designing a purely data-driven deep conditional volatility model . . 95

7.3.1 Covariance matrix parameterisation 95

7.3.2 Generative model . 96

7.3.3 Inference model . 97

7.3.4 Model optimisation and prediction 98

7.4 Performance of VHVM on multivariate FX datasets 99

7.5 Conclusion . 103

8 General Conclusions 105

8.1 Summary . 105

8.1.1 Designing deep latent models for time series forecasting . . 106

8.1.2 Investigation of inter-time series relationships learnt by the

deep latent variable model 107

8.1.3 Designing deep latent conditional volatility models- part 1 . 108

8.1.4 Designing deep latent conditional volatility models- part 2 . 108

8.2 Future work . 109

Appendices 110

A VHVM Neural network hyperparameters 110

Bibliography 113

List of Figures

2.1 A hidden process model with latent variable z and observational

variable y. 25

3.1 A multilayer perceptron with single input, hidden and output layers. 30

3.2 An long short-term memory cell. 32

3.3 A gated recurrent unit cell. 33

3.4 Setup of latent variable model. 34

3.5 Setup of latent variable model. 36

4.1 Proposed generative and inference models 43

4.2 MSFT call option, strike 190, expiry 17/09/2021 49

4.3 MSFT put option, strike 315, expiry 16/07/2021 49

4.4 AMZN put option, strike 3345, expiry 22/01/2021 50

4.5 PM2.5 concentration forecasts up to 30 steps ahead 50

4.6 Traffic volume forecasts up to 30 steps ahead 51

4.7 Hungarian chickenpox cases forecasts up to 30 steps ahead 51

5.1 Causal graph showing the relationship between effect variable Y ,

cause variable X , latent confounder Z and proxy variable U 56

5.2 Proposed architecture for the restricted model parameterised by

multiple recurrent neural networks. qφ is the inference distribution

of Z conditioned on the proxy time series, from which samples of

the substitute confounder Ẑ can be obtained and used to parame-

terise the predictive distribution of Y 62

List of Figures 12

5.3 Proposed dual-decoder setup where Ŷ res
t+1 is a prediction sam-

ple drawn from the restricted-model distribution P(Yt+1|Y1:t ,Z1:t)

shown in Figure 6.2. 63

6.1 Generative model of neural GARCH. The generative MLP takes as

input {γ t−1,ht−1} and outputs the estimated means and variances

of the elements in γ t . 78

6.2 Inference model of neural GARCH. The inference MLP outputs the

posterior estimate of γ t conditioned on available information up to

time t. 79

6.3 Critical difference diagram of the univariate experiments. A hor-

izontal bold line indicates no significant difference amongst the

group of models. Neural-GARCH(1,1)-Student’s t is the best per-

former in the univariate experiments. 83

6.4 Critical difference diagram showing the average rankings of

GARCH(1,1) and Neural-GARCH(1,1) with normal and Student’s

t innovations on all time series experiments. Neural-GARCH(1,1)-

Student’s t is the best-performing model with an average rank of

1.4324. 83

6.5 Plots of Neural-GARCH(1,1) coefficients against GARCH(1,1)

coefficients. The blue line represents the Neural-GARCH(1,1)

αt(left), βt(middle) and ωt(right), and the orange line shows the

GARCH(1,1) coefficients. 84

6.6 Zoomed-in plots of the Neural-GARCH(1,1) coefficients shown in

Figure 6.5 for USDCHF. 85

7.1 Generative model of VHVM. The generative MLP takes as input

{r1:t−1} and predicts the next-period latent factor zt , conditioned on

which one can obtain an estimate of the covariance matrix Σt 97

List of Figures 13

7.2 Inference model of VHVM. The Inference MLP takes as input

{r1:t} and paratermises the filter distribution over zt , conditioned

on which one can obtain the posterior estimate of the covariance

matrix Σt . 98

7.3 Critical difference diagram showing the comparison between

VHVM, NSVM, DCC-GARCH, and MCMC-SV in 5 dimensional

FX portfolios. 102

List of Tables

4.1 Model and training parameters . 47

4.2 nrmse for 30 steps-ahead options price predictions 48

4.3 nrmse for 30 steps-ahead PM2.5 concentration predictions 48

4.4 nrmse for 30 steps-ahead traffic volume predictions 48

4.5 nrmse for 30 steps-ahead Hungarian chickenpox predictions 48

4.6 nrmse of MLP benchmark and our proposed model for 30 steps-

ahead forecasts . 48

5.1 Table showing the prediction errors of the full and restricted models,

p-values of two-sample t-tests and the inferred Granger causal re-

lationship given by the proposed model, LPCMCI and SVAR-FCI.

The symbol × denotes that the model finds a Granger non-causal

relationship between X and Y . 67

5.2 Sensitivity analysis of model performance with varying signal-to-

noise ratio γ . 68

6.1 Description of asset log returns time series analysed in the experi-

ments. 80

6.2 Test log-likelihoods for commodity price time series. Best result

highlighed in bold, higher log-likelihood is better. 81

6.3 Test log-likelihoods for stock index time series. 81

6.4 Test log-likelihoods for univariate foreign exchange time series. . . 82

6.5 Test log-likelihoods for multivariate foreign exchange time series. . 82

List of Tables 15

7.1 Log likelihoods of 5 dimensional Euro-denominated portfolios. The

best performing model is highlighted in bold; higher log likelihood

is better. 101

7.2 Log likelihoods of 5 dimensional GBP-denominated portfolios. The

best performing model is highlighted in bold; higher log likelihood

is better. 101

7.3 Log likelihoods of 5 dimensional USD-denominated portfolios.

The best performing model is highlighted in bold; higher log likeli-

hood is better. 101

7.4 Log likelihoods of 5 dimensional CNY-denominated portfolios.

The best performing model is highlighted in bold; higher log likeli-

hood is better. 102

7.5 Log likelihoods of 5 dimensional mixed currency portfolios. The

best performing model is highlighted in bold; higher log likelihood

is better. 102

7.6 Log likelihoods of higher dimensional currency portfolios. The best

performing model is highlighted in bold; higher log likelihood is

better. 103

Chapter 1

Introduction

Time series forecasting is widely performed in many industries to predict the fu-

ture behaviour of variables of interest given historical information. In finance for

example, commercial banks use predictions of macroeconomic variables such as

unemployment rates and house prices to assess their potential impact on their loan

portfolios. In the power industry, since electricity cannot be easily stored, producers

attempt to forecast short-term demand and supply to better balance their portfolios.

Given the practical importance of time series forecasting, it is not surprising that

literature within this field is abundant and studies have focused on various subdo-

mains such as point forecasting, probabilistic forecasting, latent variable modelling,

and multistep forecasting etc.

In recent years, time series forecasting with deep neural networks has gained

popularity due to easier access to big data and advanced computational power. Neu-

ral networks are black-box function approximators capable of modelling non-linear

dynamics. Since most real world time series are complex, deep learning provides an

alternative way to analyse time series that requires fewer assumptions on the various

components of the underlying time series such as linearity, trend, and seasonality.

This approach is especially useful when one has little understanding of the pro-

cess being modelled and has hence decided to adopt a fully data-driven approach to

forecasting. The application of neural networks has achieved great success in areas

such as computational hydrodynamics, option pricing, astrophysics, and macroeco-

nomics.

1.1. Research objectives 17

Thusfar, the majority of the methods rely on using historical time series as

inputs to a neural network and outputting the prediction value(s) of the target time

series. This approach works well when all time series values can be observed and

acquired. In reality however, there are quantities of interest that are not directly

observable (latent) such as market regimes, market volatility, and common factors

that influence multiple time series.

How to forecast a time series that is unobserved? Latent variable time series

models are a feasible solution. These models consist of a transition dynamics for

the latent states, and an emission dynamics to map from the latent space to the

observation space. Given the recent success of neural networks in forecasting, it is

of interest to explore the intersection of deep learning and latent variable modelling.

In this thesis I attempt to address the following research questions: 1. can deep

learning and latent variable modelling be combined to achieve superior forecasting

performance, 2. can deep learning be used to infer relationships between latent and

observed time series, 3. how to successfully apply this framework to model real

world time series.

1.1 Research objectives

For the rest of this thesis, I refer to the time series being forecast as the ”target”, and

the input time series used to forecast the target as ”predictors”.

The main aim of this thesis is to leverage the modelling capabilities of neural

networks to propose state-of-the-art architectures to analyse latent time series con-

ditioned on observational time series. This then leads to two directions depending

on whether the target time series to be forecast is latent or observational. If the

target is latent, I propose models to predict future values of the latent process us-

ing the observational as input. On the other hand, if the target is observational, I

propose a methodology to project the input times series to a latent space and inves-

tigate whether learning the shared factors can help to achieve better forecasting on

the target time series .

Four experiments have been carried out to address the above objectives. For

1.2. Scientific contributions 18

direction 1 (target is latent): in experiments three and four, I propose neural network

architectures to forecast the volatility (covariance matrix) of an investment portfo-

lio. For direction 2 (observational target): in experiment one I demonstrate that

learning the shared factors of the predictors can improve forecasting performance;

in experiment two, I investigate Granger causality in the presence of a latent con-

founder.

1.2 Scientific contributions
This thesis advances existing research in the following areas:

• Time series generative modelling. I propose a neural network architecture to

learn a structured latent space that enables multistep time series forecasting

with confidence intervals. In addition to forecasting, this model can also be

used to generate synthetic time series for tasks such as backtesting trading

strategies. This methodology has been adopted by an investment bank and

has also attracted interests from various hedge funds.

• Granger causality in the presence of potential confounders. I propose a neural

network based Granger causality test capable of handling nonlinear temporal

dynamics and potential confounding effects between the target and the pre-

dictors.

• Volatility forecasting. I design methodologies to predict the covariance matrix

and returns distribution of an investment portfolio that are computationally

efficient and outperform existing methods used in industry as well as recent

machine learning based methods.

• The contents of chapter 3 was published as Zexuan Yin and Paolo Barucca.

Stochastic recurrent neural network for multistep time series forecasting. In

Neural Information Processing, pages 14–26, Cham, 2021. Springer Interna-

tional Publishing. ISBN 978-3-030-92185-9

• The contents of chapter 4 was published as Zexuan Yin and Paolo Barucca.

Deep recurrent modelling of granger causality with latent confounding. Ex-

1.3. Thesis outline 19

pert Systems with Applications, 207, 11 2022. ISSN 09574174. doi:

10.1016/j.eswa.2022.118036

• The contents of chapters 5 and 6 are currently under review

1.3 Thesis outline
The rest of the thesis is structured as follows:

• Chapter 2 presents relevant literature that is used as the foundation of the

new methodologies being introduced in subsequent chapters. It contains:

a summary of the popular neural network models currently being used for

time series forecasting and discusses their strengths and weaknesses, existing

methodologies used in the field of volatility forecasting and causal inference,

statistical concepts used to develop novel architectures, and evaluation met-

rics used to assess the effectiveness of different approaches.

• Chapter 3 introduces a novel architecture for multistep time series forecasting

designed using a recurrent neural network and the concept of variance infer-

ence. It demonstrates the advantages of learning shared temporal dynamics

of the covariates on the predictive performance of the target time series. The

new methodology is applied to forecast real world data from various fields to

showcase its performance. Potential applications of this framework in volatil-

ity forecasting and Granger causality analysis are explored in chapters 4, 5

and 6.

• Chapter 4 introduces a methodology for Granger causality analysis in the

presence of non-linear relationships and potential confounders. The new

methodology shows that directly accounting for confounders results in im-

proved prediction performance compared to existing methods which assume

the absence of confounding.

• Chapter 5 proposes a novel methodology to forecast the volatility (covari-

ance matrix) of a small investment portfolio (< 5 assets). This chapter serves

1.3. Thesis outline 20

as a proof-of-concept to demonstrate the effectiveness of deep learning for

volatility forecasting. It uses Generalised Autoregressive Conditional Het-

eroskedasticity (GARCH) models from econometrics as its building blocks

as I attempt to combine the interpretability of econometrics models with the

modelling capabilities of neural networks.

• Chapter 6 builds upon the finding from chapter 5 that deep learning can im-

prove forecasting performance of existing volatility models that suffer from

the curse of dimensionality. This chapter introduces a data-driven model

which generalises to higher dimensions to accommodate larger investment

portfolios. Comparison against an existing state-of-the-art deep volatility

model is made to highlight the superiority of the proposed architecture.

• Chapter 7 concludes the thesis and outlines future areas of research for other

researchers.

1.4. Thesis structure 21

1.4 Thesis structure
The thesis flowchart outlines the relationship between the four experiments from

inception and proof of concept to final application in a financial setting.

Chapter 2

Background Literature

In this chapter I present relevant background literature which serves as the founda-

tions for the theme of this thesis: time series forecasting with deep learning based

approaches, and learning relationships between observable and latent dynamics.

The surveying of relevant papers here provides motivation for extending and im-

proving existing works. Papers that are applicable to all four above-mentioned ex-

periments are included in this chapter, whilst others specific to each experiment are

discussed in their respective chapters.

2.1 Time series forecasting
Time series modelling has been an integral component within academic research

and industry, in disciplines such as finance (Malik, 2005), neuroscience (Wang et al.,

2018), and causal inference (Marinazzo et al., 2011). A univariate time series is a

collection of historical values of a variable of interest, such as the past prices of

a stock traded on an exchange. Analysis of historical values allows one to extract

important information through tasks such as anomaly detection (Choi et al., 2021),

clustering (Procacci and Aste, 2019), classification (Zheng et al., 2014), regime

identification (Mari and Mari, 2022), and forecasting (Yin and Barucca, 2021).

Time series forecasting describes the prediction of future value(s) conditioned

on historical observations. Traditional methods of forecasting often rely on para-

metric models informed by domain expertise (Lim and Zohren, 2020); examples

include autoregressive (AR) models (Ullrich, 2021), exponential smoothing (Gard-

2.1. Time series forecasting 23

ner, 2006), and structurual time series models (Harvey, 1990). The use of traditional

methods often requires strict assumptions on various time series properties such as

stationarity, trend, seasonality, cyclically, and linearity. This approach hence works

well when the user possesses detailed understanding about the series being pre-

dicted, for example, the forecast of electricity demand requires knowledge about

intraday and seasonal patterns.

Recent advancements in computational power and the availability of big data

have resulted in an increasing popularity of so-called ”data-driven” models, where

the key concept is to leverage the learning capabilities of a machine learning model

to approximate the relationships between variables of interest. In this thesis, I focus

on artificial neural networks, which due to their strengths in learning complex and

nonlinear representations, has achieved significant performance enhancements in

fields such as computer vision (Chai et al., 2021), content generation (Iliadis et al.,

2022), and natural language processing (Khurana et al., 2023).

2.1.1 Deep learning for time series

The use of deep neural networks (DNN) for time series forecasting has attracted

research interest for several reasons (Lim and Zohren, 2020):

• Complex relationships between variables are learnt implicitly during model

training. This alleviates the need for manual feature selection and engineer-

ing, and could potentially benefit users with insufficient domain expertise.

• A DNN can be constructed with various components and loss functions,

which gives the user much flexibility and allows the incorporation of do-

main expertise when needed. For example, when forecasting a time series

for which the inclusion of a longer history is known to improve forecasting

performance, one could experiment with a transformer model (Vaswani et al.,

2017) over an LSTM (Hochreiter and Schmidhuber, 1997).

• The availability of opensource backpropagation frameworks such as Tensor-

flow (Abadi et al., 2015) and Pytorch (Paszke et al., 2019) has enabled users

2.1. Time series forecasting 24

to train DNNs and experiment with various components in a time efficient

manner.

Many deep learning models have so far been applied to time series forecasting.

Examples include convolutional neural network (van den Oord et al., 2016; Ko-

prinska et al., 2018), recurrent neural network (Hewamalage et al., 2021; Hochre-

iter and Schmidhuber, 1997; Yunpeng et al., 2017; Salinas et al., 2017), multilayer

perceptrons (Tank et al., 2021; Liu et al., 2022), generative adversarial networks

(Goodfellow et al., 2014; Festag et al., 2022; Brophy et al., 2023), and most re-

cently transformers (Vaswani et al., 2017; Zhou et al., 2021). Each model has their

own merits and limitations and it relies on the user to select the optimal model by

considering factors such as ease of training and model complexity. In this thesis,

I focus mostly on recurrent neural networks (RNN) as I design models to learn

the relationship between observable and latent variables at each time step using the

hidden state of the RNN.

Time series forecasting can be done for one-step ahead (Zhong and Enke, 2019;

Dong et al., 2013) or multi-step ahead (Ferreira and da Cunha, 2020; Khan and

Maity, 2022), as well as deterministically (point forecast) (Shen and Shafiq, 2020;

Lachiheb and Gouider, 2018) or probabilistically (Hauser et al., 2017; Rangapuram

et al., 2018). For a deterministic one-step ahead prediction, a neural network is

used to output the prediction ŷt+1 = fθ (y1:t ,x1:t), where yt is the variable of interest

at time t, and xt represents other covariates to be included. The role of a neural

network is to approximate as close as possible the relationship f between y and

x by adjusting its parameters θ with an optimiser such as ADAM (Kingma and

Ba, 2014). For multi-steps ahead prediction, a neural network outputs a sequence

of future predictions ŷt+1:t+n = fθ (y1:t ,x1:t), where n is the number of prediction

steps.

Contrary to deterministic forecasting, which outputs a single point forecast

for every time step, probabilistic forecasting aims to estimate the distribution of

future values condition on past history. For one-step ahead forecasting, this in-

volves estimating the distribution P(yt+1|y1:t ,x1:t), and for multi-step prediction

2.2. Learning latent temporal dynamics with deep learning 25

P(yt+1:t+n|y1:t ,x1:t). In this thesis, I conduct experiments on all four types of fore-

casting.

2.2 Learning latent temporal dynamics with deep

learning
Applying deep learning to time series forecasting has achieved improved results,

with a large body of literature focusing on how best to predict future values of a

time series conditioned on its history and other relevant covariates. However, many

important time series in the real world are not directly observable. Market regime

for example, is a reflection of current market conditions, and predicting the next

state allows one to forecast potential market movements. Since these time series

are latent, they are often inferred using observational time series. Figure 2.1 shows

a hidden process model typically used to describe the relationship between a latent

variable z and observed time series y.

Figure 2.1: A hidden process model with latent variable z and observational variable y.

A hidden process model consists of a transition process describing the tempo-

ral evolution of z, and an emission/observation process describing the relationship

between z and y. Both transition and emission processes can be deterministic or

probabilistic. In the financial domain, the hidden markov model (HMM) has been

used extensively to study market regimes (Wang et al., 2020; Nguyen, 2018; Zhang

et al., 2019) where zt is a multinomial vector of size K (for K market states) with a

1 at the inferred state and 0s elsewhere. However, HMMs are often limited to use

cases where zt is known to be a discrete random variable and when its transition

process can be assumed to be markovian, i.e. P(zt |zt:t−1) = P(zt |zt−1).

2.2. Learning latent temporal dynamics with deep learning 26

Ultimately, the aim of any inference algorithm is to parameterise the the con-

ditional probability distributions of latent variable given historical values of the

observed variable, examples include the filtering distribution P(zt |y1:t) and the

smoothing distribution P(zt |y1:T) (Li et al., 2015).

The classical Kalman filter (Kalman, 1960; Li et al., 2015) is well-known algo-

rithm for handling inference in a state space model when zt is a continuous random

variable. The transition and emission processes are assumed to be linear and Gaus-

sian. defined by the following equations:

zt = Atzt−1 +Btut + εt (2.1)

yt = Ctzt +wt (2.2)

where yt is the observed quantity, At is the state transition model, ut is a control

vector, Bt is the control model, Ct is the observation model, and εt ∼N (0,Et) and

wt ∼N (0,Wt) are noise vectors with covariance matrices Et and Wt .

In a nonlinear scenario, the above equations become:

zt = f (zt−1,ut)+ εt (2.3)

yt = g(zt)+wt (2.4)

where f and g are known nonlinear functions. Algorithms such as the extended

Kalman filter (Li et al., 2015) and particle filters (Godsill, 2019) have been devel-

oped to handle non-linear and non-Gaussian transition and emission processes.

There has been an increasing interest to investigate the application of artifi-

cial neural networks (ANN) to learn the relationship between latent and observed

variables (Rangapuram et al., 2018; Zheng et al., 2017; Krishnan et al., 2015). The

motivation stems from the fact that ANNs excel at approximating nonlinear func-

tions and hence provide a natural solution when f and g are complex or unknown.

The use of a data-driven method to obtain f and g reduces the need for expertise in

the underlying time series. Furthermore, ANNs capable of maintaining a memory

of past values, such as an RNN, allows one to bypass the markovian assumption in

2.2. Learning latent temporal dynamics with deep learning 27

the transition process and investigate the benefit of including of more lagged values.

In fact, the memory of an RNN provides a straightforward way to parameterise the

filtering (or smoothing) distribution since it maintains a constant-size hidden state

ht at every time step. The filtering distribution P(zt |y1:t) = P(zt |ht) can be obtained

by using the RNN hidden state as input, as opposed to the raw values y1:t , which

grows linearly in time. More details on the technical workings of RNNs and the

inference mechanism will be given in subsequent chapters.

In a static setting, Kingma and Welling (2014) proposed the variational au-

toencoder (VAE) to learn the relationship between z and y. The idea is to use neural

networks to approximate the emission distribution P(y|z) and the inference distri-

bution q(z|y), where q(z|y) is an approximation of the true posterior P(z|y). The

two neural networks are then trained simultaneously by maximising an evidence

lower bound of the log likelihood.

Learning the system described in Eqn 2.3 involves two stages: 1. learning

the non-linear functions f and g; 2: inference of zt through parameterisation of

the posterior distribution P(zt |y1:t). There are currently two approaches in exist-

ing literature where the transition and observation processes are either coupled or

decoupled.

For the coupled approach (Chung et al., 2015; Bayer and Osendorfer, 2014;

Fabius and van Amersfoort, 2015; Fraccaro et al., 2016; Karl et al., 2017), a sim-

pler distribution (e.g. Gaussian) is used to approximate the true posterior (varia-

tional inference). A VAE is often combined with an RNN to perform sequential

inference, with two neural networks parameterising P(yt |z1:t) and q(zt |y1:t) respec-

tively. The advantage is that all model components can be trained simultaneously,

resulting in an end-to-end model for which no human intervention is required be-

tween input(history and covariates) and output(predictions). The main drawback is

that q(zt |y1:t) is only an approximation of the true posterior P(zt |y1:t) and hence

model performance depends largely on its distribution choice.

For the decoupled approach (Rangapuram et al., 2018; Zheng et al., 2017; Kr-

ishnan et al., 2015; Seeger et al., 2017), the true posterior is obtained analytically, or

2.2. Learning latent temporal dynamics with deep learning 28

through sampling. An assumption, such as linearity, is placed on the transition dy-

namics f (or estimated with a neural network). A classical filtering algorithm such

as the Kalman filter or particle filter can be used to infer the posterior distribution

P(zt |y1:t). The main advantage is that the posterior tends to be better approximated

by sampling compared to variational inference from the coupled approach. How-

ever, this approach is more time consuming since sampling can be computationally

demanding, and more expertise is required to choose the optimal filtering algorithm,

as well as assumptions on the transition function f .

In this thesis I focus on investigating the coupled approach in the field of time

series forecasting, aiming to develop end-to-end and easy to use neural network

models to learn the relationships between latent and observable time series. The

models serve as powerful tools for forecasting latent variables of interest, e.g. mar-

ket volatility (experiments 1 and 2), or using learnt relationships between latent and

observed variables to better forecast an observable time series (experiments 3 and

4).

Chapter 3

Methodology and algorithms

This section provides an overview of the statistical methods and various neural net-

works used to make the scientific contributions in this thesis. The three impor-

tant neural networks of interest are: 1. the multilayer perceptron (MLP) used to

learn nonlinear mappings between various features, 2. the recurrent neural network

(RNN) used to model temporal dynamics, and 3.the variational autoencoder (VAE)

used for the inference and prediction of latent variables.

3.1 Multilayer perceptron

The multilayer perceptron is a feedforward neural network consisting of an input

layer, one or many hidden layers and an output layer (Rosenblatt, 1958; ichi Amari,

1993), with several nodes forming each layer of the network. A graphical repre-

sentation of an MLP with one input layer, one hidden layer and one output layer is

shown in Figure 6.2 (figure reference: Bento (2021)).

To illustrate the underlying mechanism of an MLP, we adapt the notations of

Ramchoun et al. (2016). Consider an MLP with ni input features x1,x2, ...,xni , H

hidden layers with nh nodes in each layer, and 1 output feature y. The relationship

between the input layer and the first hidden layer is given by

h j
1 = f (

ni

∑
i=1

wi, j
0xi +b j

1) (3.1)

3.1. Multilayer perceptron 30

Figure 3.1: A multilayer perceptron with single input, hidden and output layers.

where h j
1 is the value at the jth node of the first hidden layer (j ∈ [1,2, ...,nh]), wi, j

0

represents the weight connecting feature xi to node j in the first hidden layer, and

b j is the bias at node j of the first hidden layer.

A nonlinear activation function f is applied to the sum in Eqn 3.1 before

outputting to the subsequent layer. Common choices for f include the recti-

fied linear (ReLU) f (x) = max(0,x), hyperbolic tangent f (x) = tanh(x), sigmoid

f (x) = 1
1+e−x , and many more (Nanni et al., 2022). The choice of the activation

function often relies on domain expertise. When the output is a probability for

example, the sigmoid function is often used to keep the output between 0 and 1.

The relationship between the hidden layers is described by

h j
l = f (

nh

∑
i=1

wi, j
l−1hi

l−1 +b j
l) (3.2)

where h j
l is the value at the jth node of the lth layer and hi

l−1 represents the

value at the ith node from the previous layer l−1. Lastly, the relationship between

the final hidden layer and the output layer is

y = f (
nh

∑
i=1

wi
Hhi

H +bo) (3.3)

Supervised training of an MLP involves learning the weights w and biases b

such that a chosen loss function such as the mean squared error is minimised. A

forward pass using data from the training set outputs predicted values from which

3.2. Recurrent neural network 31

the loss function can be calculated, the derivatives of the loss function with respect

to all parameters are computed through backpropagation, and the parameters are

subsequently updated through stochastic gradient descent (Popescu et al., 2009)

wi, j = wi, j−η
∂L

∂wi, j
(3.4)

where η is the step size for parameter updates which is chosen during hyper-

parameter tuning, ∂L
∂wi, j

is the partial derivative of the loss function L with respect to

the parameter wi, j.

3.2 Recurrent neural network
The recurrent neural network is a architecture designed to model sequential data

and has achieved tremendous success in areas such as natrual language processing

(Khurana et al., 2023).

Similar to multilayer perceptrons, an RNN consists of input, hidden, and output

layers. The main difference between an MLP and an RNN is in the way information

propagates through the network (Schmidt, 2019). In an MLP, input xt is mapped to

the hidden layer then the output layer. In the context of sequence modelling, this

means the MLP does not maintain a memory of past information unless they are

passed in at the input layer in the form of lagged values xt−1,xt−2 etc. An RNN

on the other hand maintains a hidden state ht at every time steps, which stores past

information and is propagated to the next step: ht+1 = f (ht ,xt). The update function

f is nonlinear and varies depending on the architecture chosen. In this seciton, the

long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated

recurrent unit (Cho et al., 2014) are presented. RNNs are preferred over MLPs for

time series modelling as more historical information can be incorporated without

having to increase the dimension of the input at every time step.

The training of an RNN is similar in nature to training an MLP. The weights

and biases are updated each time as to minimise a chosen loss function. The under-

lying algorithm is known as backpropagation through time (Schmidt, 2019), which

3.2. Recurrent neural network 32

is an adaptation of the classical backpropagation algorithm to compute the partial

derivatives of the loss function with respect to the parameters taking into account

the error contributions from each time step. The calculation of partial derivatives

of the loss function with the chain rule potentially involves matrix multiplications

over long sequences. This gives rise to the vanishing/exploding gradient problem

in earlier RNNs, which causes the gradient to approach 0 or diverge and lead to

unstable parameter updates.

3.2.1 Long short term memory unit

To overcome the vanishing gradient problem, Hochreiter and Schmidhuber (1997)

introduced the long short-term memory units an additive gradient structure and var-

ious gates to regulate the flow of information and update the cell state. Figure 5.3

shows a graphical representation of an lstm cell with cell state ct fro storing infor-

mation, input it output ot and forget ft gates to regulate information, and lstm output

ht (figure reference: (Rahuljha, 2020)).

Figure 3.2: An long short-term memory cell.

The update equations for an lstm cell with input xt , weight matrices W and

biases b are given below, where σ represents the sigma function. We adapt the

notations in Rahuljha (2020).

3.2. Recurrent neural network 33

ft = σ(Wf · [ht−1,xt]+b f) (3.5)

it = σ(Wi · [ht−1,xt]+bi) (3.6)

C̃t = tanh(WC · [ht−1,xt]+bC) (3.7)

Ct = ft ∗Ct−1 + it ∗C̃t (3.8)

ot = σ(Wo[ht−1,xt]+bo) (3.9)

ht = ot ∗ tanh(Ct) (3.10)

3.2.2 Gated recurrent unit

The gated recurrent unit proposed by Cho et al. (2014) is another RNN variant with

fewer parameters than the LSTM, consisting of update and reset gates. There has

been evidence to show that the GRU offers comparable performance to the LSTM in

many sequence modelling tasks (Chung et al., 2014) and hence many studies have

opted to use the GRU over the LSTM for faster convergence and reduced overfitting.

A graphical representation of a GRU cell is given in Figure 4.3 (figure ref-

erence: Chen (2021)) with input xt , update gate zt , reset gate rt , and cell output

ht .

Figure 3.3: A gated recurrent unit cell.

3.3. Variational autoencoder 34

The update equations for a GRU cell is given by

zt = σ(Wz · xt +Uz ·ht−1 +bz) (3.11)

rt = σ(Wr · xt +Ur ·ht−1 +br) (3.12)

h̃t = tanh(Wh · xt + rt ∗Uh ·ht−1 +bz) (3.13)

ht = zt ∗ht−1 +(1− zt)∗ h̃t (3.14)

where W and U are weight matrices, b is the bias vector, and σ is the sigmoid

function.

3.3 Variational autoencoder

3.3.1 Variational inference

Consider a latent variable model consisting of a continuous latent random vari-

able z and observed variable x depicted in Figure 4.4 (figure reference: Kingma

and Welling (2014)), we are interested in learning the joint distribution P(x,z) =

P(x|z)p(z) = p(z|x)p(x). The first part P(x|z)p(z) describes the generative process,

given a sample of z from the prior distribution P(z), one can obtain a sample of x

from the distribution P(x|z). For the rest of this thesis, P(x|z) is referred to as the

decoder.

Figure 3.4: Setup of latent variable model.

The distribution p(z|x) is known as the posterior distribution as it describes

3.3. Variational autoencoder 35

an estimate of the distribution of the latent variable conditioned on observing the

corresponding x value. The posterior distribution is potentially intractable, so one

cannot evaluate or differentiate it (Kingma and Welling, 2014). Variational infer-

ence is a form of approximate inference where a simpler distribution q(z|x) is used

to approximate the true posterior P(z|x).

In this thesis we follow the notations in Kingma and Welling (2014). The

generative distribution Pθ (x|z) has parameters θ , the variational posterior (or ap-

proximate posterior) qφ (z|x) has parameters φ . The aim of variational inference is

to seek optimal values of φ such that qφ (z|x) most closely approximates P(z|x).

To learn the parameters θ of the decoder Pθ (x|z), the aim is to maximise the

marginal likelihood Pθ (x) =
∫

Pθ (x|z)Pθ (z)dz, which is intractable when the likeli-

hood function Pθ (x|z) is complex, e.g. when it is parameterised by a neural network

(Kingma and Welling, 2014).

To overcome the intractability of the marginal likelihood Pθ (x), it can be

rewritten as the sum of an evidence lowerbound and the KL divergence (a statis-

tical distance between two distributions) between the approximate posterior qφ (z|x)

and the true posterior Pθ (x|z):

logPθ (x) = L(θ ,φ)+DKL(qφ (z|x)||Pθ (z|x)) (3.15)

where the evidence lowerbound is given by:

L(θ ,φ) = Ez∼q(z|x)[logPθ (x|z)]−KL(qφ (z|x)||Pθ (z)) (3.16)

L(θ ,φ) is referred to as an lowerbound since logPθ (x)≥ L(θ ,φ) and they are

equal if the DKL equals 0, i.e. if the apprixmate posterior exactly equals the true

posterior.

Since the marginal likelihood logPθ (x) does not depend on φ , by maximising

the lowerbound L(θ ,φ) we simultaneously minimise the KL divergence between

the apprixmate and true posterior distributions; this means that θ and φ are learned

jointly during model training.

3.4. Developing deep latent variable models for time series forecasting 36

3.3.2 Amortised variational inference

Kingma and Welling (2014) proposed amortised variational inference, which is the

use of neural networks to parameterise the generative distribution Pθ (x|z) and the

approximate posterior qφ (z|x).

A graphical representation of a variational autoencoder is given in Figure 4.5

(figure reference: Wikipedia). In this setup, an encoder neural network such as an

MLP maps input x to the distribution parameters of the latent space z (qφ (z|x)),

a sample of z is then mapped back to the observation space by a decoder neural

network (Pθ (x|z)). The loss function for this setup is the evidence lower bound

given in Eqn 3.16.

Since the sampling operation is not differentiable, they introduced the repa-

rameterisation trick to express the sampled z as a differentiable transformation

z̃ = gφ (ε,x). For location-scale family of distributions such as Gaussian, this means

letting g = location+ scale · ε . This differentiable transformation allows θ and φ

to be learned jointly using stochastic gradient descent.

Figure 3.5: Setup of latent variable model.

3.4 Developing deep latent variable models for time

series forecasting
In this thesis, a deep latent time series model is developed using the above-

mentioned deep learning architectures for various time series modelling tasks.

The model consists of a latent space and an observation space. The mapping

to (and from) the latent space to the observation space is done using a variational

3.4. Developing deep latent variable models for time series forecasting 37

autoencoder. The transition dynamics of the latent space is modelled with a re-

current neural network. The VAE learns meaningful features about the input time

series, and its probabilistic nature facilitates downstream tasks such as generative

modelling.

In chapter 4 I develop a VAE-RNN hybrid model suitable for probabilistic time

series forecasting with relevant covariates. This section serves as a proof-of-concept

chapter to demonstrate the effectiveness of said model on multistep predictions.

In chapter 5, I investigate how a deep latent variable model can be used to

learn meaningful relationships between two observed time series. To achieve this,

I study the case where the two time series are potentially influenced by a shared

confounder. I develop a latent time series model to infer a proxy of the confounder

given other relevant time series. Through explicit modelling of the confounder, I

study how this can improve the forecasting of one time series given the other.

In chapters 6 and 7 I collect relevant insight from the firs two experiments and

design a deep latent variable model to perform conditional volatility forecasting.

The first model is constructed by combining a deep latent time series model with

traditional GARCH models from the field of econometrics. This model allows the

end user with expertise in the matter to pre-select a version of the GARCH model

suitable for certain styles effects. The second model is a data-driven model inspired

by the proposed architecture in chapter 4, which can be applied to model the returns

of higher dimensional portfolios.

Chapter 4

Designing deep latent models for time

series forecasting

4.0.1 Introduction and motivation

The aim of this chapter is to explore the VAE-RNN hybrid model in a time series

forecasting context. I introduce and test a stochastic variant of the recurrent neural

network (RNN) for multistep time series forecasting. The stochasticity is introduced

through the combination of a VAE and and an RNN, with linkages between the

covariates and the target time series across different time steps. Through a range

of experiments I explore the feasibility of the proposed model and its performance

against relevant benchmarks.

This chapter is based on the paper Zexuan Yin and Paolo Barucca. Stochastic

recurrent neural network for multistep time series forecasting. In Neural Infor-

mation Processing, pages 14–26, Cham, 2021. Springer International Publishing.

ISBN 978-3-030-92185-9.

In contrast to many existing forecasting models which learn a relation-

ship between a time series and its lagged values i.e. learning the distribution

P(y1:t+1,x1:t) ∝ P(yt+1|y1:t ,x1:t), where xt are the covariates, I look to extend the la-

tent variable model framework in a deep learning context. This involves performing

inference on the latent variable z1:t using observed time series y1:t then modelling

the distribution P(y1:t+1,x1:t ,z1:t) ∝ P(yt+1|y1:t ,x1:t ,z1:t).

Exploring a deep latent variable model for time series brings many benefits and

39

provides an extra dimension for future work in many domains. I will provide two

examples here. Firstly, suppose yt = rt is the daily log returns of a stock and zt = σ2
t

is the volatility of the stock returns (latent variable). In many cases, it has been es-

tablished in industry that volatility is easier to predict than the return itself since

volatility possesses many well documented stylised facts (such as volatility cluster-

ing) (Marra, 2015). In this case, attemping to forecast future returns rt+1 = f (r1:t)

may reveal very little information. However, we could try to analyse the volatility

since rt is often assumed to follow a distribution defined partially by the volatility,

for example, in the Gaussian case, one could assume that rt ∼ N (0, σ2
t). Since

volatility is easier to predict than returns, we could obtain valuable information

about future returns rt+1 by forecasting future volatility instead, using past returns:

σ2
t+1 = g(r1:t ,σ

2
1:t), where g is a function to be learnt. This prediction parameterises

the distribution P(rt+1|r1:t) = N (0, σ2
t+1) under the Gaussian assumption and al-

lows one to gauge one step-ahead potential market movements. We explore volatilty

forecasting and deep learning further in Chapter 6.

Another advantage of exploring latent variable time series models is regarding

generative modelling. The variational autoencoder introduced in Chapter 3 is an

example of a generative model. Since the model learns a distribution over the latent

variable z, one can generate more samples of x by first sampling from P(z) and pass-

ing it into the decoder P(x|z). The ability to generate samples similar to the original

data has many advantages. For example, a bank may want to publish research work

on a model trained on client data, however since client data is confidential it would

be against the law to release it along with the paper for reproduciblility purposes. A

potential solution is to perform the research on AI generated data, which itself can

be made open-source along with the paper. The findings in this paper has helped a

major investment bank to develop a generative time series model to be used in their

electronic trading research.

In this work, I develop a model which uses an RNN (Chung et al., 2014) for

temporal modelling and a VAE (Kingma and Welling, 2014) for the inference of as-

sociated latent states. I perform forecasting experiments on time series from a wide

40

range of domains to show the effectiveness of the model against chosen bench-

marks.

4.0.2 Existing literature on RNNs and VRNNs

Many existing studies have successfully applied recurrent neural networks to model

nonlinear temporal dynamics in time series from many domains (Bandara et al.,

2019; McNally et al., 2018; Hu et al., 2021). When comparing an RNN to a la-

tent variable time series model (LVM) such as the one introduced in Figure 2.1, the

similarities are that both the RNN and LVM are consisted of a transition function

and an observation function. The main difference though, is that in an RNN, the

transition function (and sometimes the observation function also) is entirely deter-

ministic whereas in an LVM both transition and observation dynamics are stochastic

(probabilistic).

Since weights are shared between time steps in an RNN, it applies the same

update function to lagged values when forecasting future ones. Chung et al. (2015)

argued that this deterministic nature of the RNN means it may not perform as well

on time series with high variability. They propose to combine a variational autoen-

coder (VAE) to an RNN to transform it into a latent variable model. This involves

the injection of a latent variable zt into the update functions of an RNN such that the

RNN hidden state ht is not only a function of historical values of the time series, but

also the latent variable. The hidden state ht after the injection of zt is now stochastic

since zt is a random variable that is sampled from a learned distribution. This setup

combines the benefits of applying an RNN to sequential data and the probabilistic

nature of LVMs. The role of the VAE is to perform inference on the injected zts

given observed data.

The VAE-RNN(VRNN) model consists of a generative model and an inference

model. The generative model describes the transition process of the latent time

series model and the mapping from the latent space to the observation space. The

inference model is responsible for the inference of the latent space conditioned on

observed time series.

VRNNs have been shown to perform well on many types such sequential data

41

such as speech, music, and hand writing recognition Chung et al. (2015); Bayer

and Osendorfer (2014); Fraccaro et al. (2016); Karl et al. (2017); Fabius and van

Amersfoort (2015).

To contribute to existing literature, I explore the VRNN framework specifically

on time series forecasting by developing a stochastic gated recurrent unit cell and

investigate its performance on multistep forecasting using a wide range of datasets.

This will serve as a proof of concept study to see whether the use of the variational

autoencoder can learn meaningful relationships between input covariate time series

through representation learning. I will also investigate the generative modelling

performance of said model through probabilistic forecasting.

4.0.3 Problem formulation and model architecture

For a multivariate dataset comprised of N + 1 time series, the covariates x1:T+τ =

{x1,x2, ...xT+τ} ∈ RN×(T+τ) and the target variable y1:T ∈ R1×T . I refer to the

period {T +1,T +2, ...T +τ} as the prediction period, where τ ∈Z+ is the number

of prediction steps and the aim is to model the conditional distribution

P(yT+1:T+τ |y1:T ,x1:T+τ), (4.1)

which is achieved through the factorisation of the joint distribution into a product

of distributions, and the parameters of the factored distributions are learned using

neural networks.

4.0.4 Stochastic GRU cell

Here I introduce the update equations of the stochastic GRU cell, which describes

the flow of information through the model:

ut = σ(W u · xt +Cu · zt +Mu ·ht−1 +bu) (4.2)

rt = σ(W r · xt +Cr · zt +Mr ·ht−1 +br) (4.3)

h̃t = tanh(W h · xt +Ch · zt + rt⊙Mh ·ht−1 +bh) (4.4)

ht = ut⊙ht−1 +(1−ut)⊙ h̃t , (4.5)

42

where σ is the sigmoid activation function, zt is a latent random variable which

captures the stochasticity of the temporal process, ut and rt represent the update

and reset gates, W , C and M are weight matrices, b is the bias matrix, ht is the

GRU hidden state and ⊙ is the element-wise Hadamard product. This stochastic

adaptation can be seen as a generalisation of the regular GRU, i.e. when C = 0, it is

equivalent to a regular GRU cell (Chung et al., 2014).

4.0.5 The generative model

The role of the generative model is to establish probabilistic relationships between

the target variable yt , the intermediate variables of interest (ht ,zt), and the input

covariates xt . In this experiment I use neural networks to describe the non-linear

transition and emission processes, and I preserve the architectural workings of an

RNN - all relevant information at any given time step is encoded in the hidden

states that evolve with time. To perform an estimation of the target variable, a

mapping is performed to the observation space just like a regular RNN. A graphical

representation of the generative model is shown in Fig 4.1. It can be seen that with

the inclusion of the random variable zt , the evolution of the hidden state ht is no

longer deterministic since it depends on the value of zt which is sampled from a

probability distribution. The joint probability distribution of the generative model

can be factorised as follows:

pθ (y1:T ,z1:T ,h1:T |x1:T) =
T

∏
t=1

pθ1(yt |ht)pθ2(ht |ht−1,zt ,xt)pθ3(zt |ht−1) (4.6)

where

pθ3(zt |ht−1) = N(µ(ht−1),σ
2(ht−1)I) (4.7)

ht = GRU(ht−1,zt ,xt) (4.8)

yt ∼ pθ1(yt |ht) = N(µ(ht),σ
2(ht)), (4.9)

where GRU is the stochastic GRU update function given by (4.2)–(4.5). (4.7) de-

fines the prior distribution of zt , which is assumed to have an isotropic Gaussian

43

prior (covariance matrix is diagonal) parameterised by a multi-layer perceptron. To

generate a prediction for yt , I follow the three equations in order. First, a value of zt

is sampled from pθ3(zt |ht−1), which flows through the stochastic GRU cell to obtain

ht . A multilayer perceptron is then used to perform the mapping from ht to yt . I re-

fer to the collection of neural network parameters of the generative model as θ , i.e.

θ = {θ1,θ2,θ3}. I refer to (4.9) as the generative distribution since it describes the

process by which the target variable is generated conditioned on the latent variable.

This distribution is also parameterised by a multilayer perceptron.

(a) Generative model (b) Inference model

Figure 4.1: Proposed generative and inference models

4.0.6 The inference Model

For model traning the aim is to maximise the marginal log-likelihood function

log pθ (y1:T |x1:T), however the random variable zt of the non-linear state space

model cannot be analytically integrated out. Instead, one needs to maximise the

variational lower bound (ELBO) with respect to the generative model parameters

θ and inference model parameters φ Kingma and Welling (2014). The variational

approximation of the true posterior p(z1:T |y1:T) can be factorised as follows:

qφ (z1:T |y1:T) =
T

∏
t=1

qφ (zt |gt)qφ (gt |gt−1), (4.10)

where gt represents the hidden state of another recurrent neural network used in the

inference model, as seen in Fig 4.1. Details on variational inference and approxi-

mating posterior distributions has been given in chapter 3.3.

Since the purpose of the inference model is to infer the filtering distribution

44

qφ (zt |y1:t), and that an RNN hidden state contains a representation of current and

past inputs, the hidden state gt is therefore a proxy for the full history y1:t . The

update equation for gt and the mapping to the posterior estimate of zt are given by:

gt = GRU(gt−1,yt) (4.11)

zt ∼ qφ (zt |y1:t) = N(µ(gt),σ
2(gt)I). (4.12)

4.0.7 Training the VRNN time series model

The objective function of the stochastic RNN is the ELBO L(θ ,φ) given by:

L(θ ,φ) =
∫ ∫

qφ log
pθ

qφ

dz1:T dh1:T

=
T

∑
t=1

Eqφ
[log pθ (yt |ht)]−KL(qφ (zt |gt)||pθ (zt |ht−1)), (4.13)

where pθ and qφ are the generative and inference distributions given in (4.6) and

(4.10) respectively. It can be seen that this loss function is simply the VAE objective

function adapted in a time series context as it is a sum of the losses across all time

steps. log pθ (yt |ht) represents the output of the generative model and the KL diver-

gence describes the statistical distance between the prior and posterior distributions

of zt .

During training, the posterior network (4.12) is used to infer the latent variable

zt used for reconstructing yt . During testing, the prior network (4.7) is used to

forecast one-step-ahead zt+1 before being used to forecast yt+1. The training process

seeks to optimise the ELBO with respect to decoder parameters θ and encoder

parameters φ jointly:

(θ ∗,φ∗) = argmax
θ ,φ

L(θ ,φ). (4.14)

Since back-propagation is tricky when the model contains a sampling operation, I

apply the reparameterisation trick (Kingma and Welling, 2014) to write

z = µ +σ ⊙ ε, (4.15)

45

where ε ∼ N(0, I) and I sample from ε instead. The KL divergence term in (4.13)

can be analytically computed since the prior and posterior of zt are both assumed to

be normally distributed.

4.0.8 Model prediction

Given the last available GRU hidden state hlast , prediction window τ and covariates

xT+1:T+τ , the model generates predicted target values in an autoregressive manner.

Assuming that at every time step the hidden state of the GRU ht contains all relevant

information up to time t. The prediction algorithm of the stochastic GRU is given

by Algorithm 1.

Input: τ,hlast ,xT+1:T+τ

Output: yT+1:T+τ

for t← 1 to τ do
zt ∼ pθ3(zt |hlast)
ht ← GRU(hlast ,zt ,xt)
yt ∼ pθ1(yt |ht)
hlast ← ht

end
Algorithm 1: Prediction algorithm for stochastic GRU

4.0.9 Description of experiments

The performance of the proposed model is demonstrated on the following 6 publicly

available datasets. For all datasets, checks were done on missing values and vari-

ables with more than 20% missing were removed. I performed outlier filtering on

datapoints that were beyond 1.5 times the interquartile range. Before model training

I performed standardisation on the variables to ensure 0 mean and unit variance.

1. Equity options trading price time series available from the Chicago Board

Options Exchange (CBOE) datashop. This dataset describes the minute-level

traded prices of an option throughout the day. I study 3 traded options with

Microsoft and Amazon stocks as the underlyings where xt = underlying stock

price and yt = traded option price

2. The Beijing PM2.5 multivariate dataset describes hourly PM2.5 (a type of air

pollution) concentrations of the US Embassy in Beijing, and is freely avail-

46

able from the UCI Machine Learning Repository. The covariates I use are xt =

temperature, pressure, cumulated wind speed, Dew point, cumulated hours of

rainfall and cumulated hours of snow, and yt = PM2.5 concentration. For this

experiment I use data from 01/11/2014 onwards

3. The Metro Interstate Traffic Volume dataset describes the hourly interstate

94 Westbound traffic volume for MN DoT ATR station 301, roughly midway

between Minneapolis and ST Paul, MN. This dataset is available on the UCI

Machine Learning Repository. The covariates I use in this experiment are

xt = temperature, mm of rainfall in the hour, mm of snow in the hour, and

percentage of cloud cover, and yt = hourly traffic volume. I use data from

02/10/2012 9AM onwards

4. The Hungarian Chickenpox dataset describes weekly chickenpox cases

(childhood disease) in different Hungarian counties. This dataset is also

available on the UCI Machine Learning Repository. For this experiment, yt =

number of chickenpox cases in the Hungarian capital city Budapest, xt =

number of chickenpox cases in Pest, Bacs, Komarom and Heves, which are 4

nearby counties. I use data from 03/01/2005 onwards

To perform probabilistic forecasting with the stochastic recurrent neural network, I

generated 500 Monte-Carlo simulations (sampling zt 500 times) to obtain the pre-

dicted confidence intervals, and I took the mean predictions as the point forecasts.

I tested the number of simulations from 100 to 1000 and found that above 500,

the performance improvements were marginal, and with fewer than 500 it was not

possible to obtain realistic confidence intervals for some time series. I compare the

model performance against an AR(1) model assuming the prediction is the same as

the last observed value (yT+τ = yT), a standard LSTM model and a standard GRU

model. For the performance metric, I normalise the root-mean-squared-error (rmse)

to enable comparison between time series:

nrmse =

√
∑

N
i=1(yi−ŷi)2

N

ȳ
, (4.16)

47

where ȳ =mean(y), ŷi is the mean predicted value of yi, and N is the prediction size.

For hyperparameter optimisation, a grid search was performed to select the

optimal parameter sets. The sequence length was chosen from {10,20,30,40,50},

the latent space size from {10,20,30,40,50,60}, the RNN hidden space size from

{8,16,24,32,48,64,128,256}, mlp layers from {2,3,4,5}, and the learning rate

from {0.1,0.01,0.001,0.0001}.

For replication purposes, in Table 4.1 I provide (in order): number of train-

ing, validation and conditioning steps, (non-overlapping) sequence lengths used for

training, number of prediction steps, dimensions of zt , ht and gt , details about the

MLPs corresponding to (4.7)(zt prior) and (4.12)(zt post) in the form of (n layers,

n hidden units per layer), and lastly the size of the hidden states of the benchmark

RNNs (LSTM and GRU). I use the ADAM optimiser with a learning rate of 0.001.

Table 4.1: Model and training parameters

dataset train val cond seq length pred zt ht gt zt prior zt post RNN hid
Options 300 30 10 10 30 50 64 64 (4,64) (4,64) 64
PM2.5 1200 200 10 10 30 50 64 64 (4,64) (4,64) 64
Traffic volume 1000 200 20 20 30 30 128 128 (4,128) (4,128) 128
Hungarian chickenpox 300 150 10 10 30 50 128 128 (4,128) (4,128) 128

48

Table 4.2: nrmse for 30 steps-ahead options price predictions

Option Description Ours AR(1) LSTM GRU
MSFT call strike 190, expiry 17/09/2021 0.0010 0.0109 0.0015 0.0015
MSFT put strike 315, expiry 16/07/2021 0.0004 0.0049 0.0006 0.0007
AMZN put strike 3345, expiry 22/01/2021 0.0032 0.0120 0.0038 0.0038

Table 4.3: nrmse for 30 steps-ahead PM2.5 concentration predictions

steps 5 10 15 20 25 30
Ours 0.1879 0.2474 0.4238 0.4588 0.6373 0.6523
AR(1) 0.3092 1.0957 0.7330 0.6846 1.0045 1.1289
LSTM 0.4797 0.6579 0.4728 0.4638 0.8324 0.8318
GRU 0.4846 0.5553 0.4789 0.4919 0.6872 0.6902

Table 4.4: nrmse for 30 steps-ahead traffic volume predictions

steps 5 10 15 20 25 30
Ours 0.4284 0.2444 0.2262 0.2508 0.2867 0.2605
AR(1) 1.2039 1.0541 1.0194 1.0283 1.1179 1.0910
LSTM 0.8649 0.5936 0.4416 0.4362 0.5591 0.5446
GRU 0.8425 0.5872 0.4457 0.4376 0.5510 0.5519

Table 4.5: nrmse for 30 steps-ahead Hungarian chickenpox predictions

steps 5 10 15 20 25 30
Ours 0.6585 0.6213 0.5795 0.5905 0.6548 0.5541
AR(1) 0.7366 0.7108 0.9126 0.9809 1.0494 1.0315
LSTM 0.7215 0.6687 0.9057 1.0717 0.8471 0.7757
GRU 0.6795 0.6379 0.6825 0.6196 0.6355 0.6739

Table 4.6: nrmse of MLP benchmark and our proposed model for 30 steps-ahead forecasts

MSFT call MSFT put AMZN put PM2.5 Metro Chickenpox
Ours 0.0010 0.0004 0.0032 0.6523 0.2605 0.5541
MLP 0.0024 0.0005 0.0141 0.7058 0.6059 0.5746

49

Figure 4.2: MSFT call option, strike 190, expiry 17/09/2021

Figure 4.3: MSFT put option, strike 315, expiry 16/07/2021

In Table 4.2–4.5 it can be seen that the nrmse of the stochastic GRU is lower

than its deterministic counterpart for all datasets investigated and across all predic-

tion steps. This shows that the proposed method can better capture both long and

short-term dynamics of the time series. This approach provides an additional de-

gree of freedom facilitated by the latent random variable which needs to be inferred

using the inference network; this allows the stochastic GRU to better capture the

stochasticity of the time series at every time step. In Fig 4.6 for example, it can be

seen that the model captures well the long-term cyclicity of the traffic volume, and

in Fig 4.5 where the time series is much more erratic, the model can still accurately

predict the general shape of the time series in the prediction period.

To investigate the effectiveness of the temporal model, I compare the prediction

50

Figure 4.4: AMZN put option, strike 3345, expiry 22/01/2021

Figure 4.5: PM2.5 concentration forecasts up to 30 steps ahead

errors against a model without a temporal component, which is constructed using

a 3-layer MLP with 5 hidden nodes and ReLU activation functions. Since future

covariates are being used for prediction (4.1), I aim to verify that the proposed

model can outperform a simple regression-type benchmark which approximates a

function of the form yt = fψ(xt); I use the MLP to parameterise the function fψ .

It can be seen in Table 4.6 that the proposed model outperforms a regression-type

benchmark for all the experiments, which shows the effectiveness of the temporal

model. It is also worth noting that in the experiments I used the actual values of

the future covariates. In a real forecasting setting, the future covariates themselves

could be outputs of other mathematical models, or they could be estimated using

expert judgement.

51

Figure 4.6: Traffic volume forecasts up to 30 steps ahead

Figure 4.7: Hungarian chickenpox cases forecasts up to 30 steps ahead

4.0.10 Conclusion

In this chapter I presented a stochastic adaptation of the Gated Recurrent Unit which

is trained with stochastic gradient variational Bayes. The model design preserves

the architectural workings of an RNN, which encapsulates all relevant information

into the hidden state, however the adaptation takes inspiration from the stochas-

tic transition functions of state space models by injecting a latent random variable

into the update functions of the GRU, which allows the GRU to be more expres-

sive at modelling highly variable transition dynamics compared to a regular RNN

with deterministic transition functions. I tested the performance of our model on

different publicly available datasets and results demonstrate the effectiveness of the

design. Given that GRUs are now popular building blocks for much more complex

52

deep architectures, the stochastic GRU could prove useful as an improved compo-

nent which can be integrated into sophisticated deep learning models for sequential

modelling.

Chapter 5

Investigation of inter-time series

relationships learnt by the deep

latent variable model

5.1 Introduction and motivation

I have demonstrated in the last chapter that the VAE-RNN setup and the nonlinear

latent variable model can be applied successfully in a forecasting setup as it is able

to learn complex relationships between the latent and observable spaces. However,

the exact relationship the model has learned is unknown since it merely performs a

non-linear mapping from one space to another.

One way to check that a deep latent variabel model is indeed capable of learn-

ing meaningful relationships in the latent space is to investigate a setting where the

latent space is known.

In this chapter, I study the problem of Granger casuality with latent confound-

ing. Since the latent confounder cannot be directly measured, It is of interest to

see how well a deep latent variable can approximate the confounder given other

observed time series. The advantage of this setup is that the latent space (the con-

founder) is potentially explainable since they could have practical meaning in the

real world.

The content of this chapter is published as Zexuan Yin and Paolo Barucca.

5.1. Introduction and motivation 54

Deep recurrent modelling of granger causality with latent confounding. Expert

Systems with Applications, 207, 11 2022. ISSN 09574174. doi: 10.1016/j.eswa.

2022.118036

Originally proposed in Granger (1969), the Granger causality test is a statistical

test used to assess whether a time series contains useful information in predicting

future values of another time series (formal definition given in 5.2). This is a pop-

ular test adopted by practitioners from fields such as finance (Hiemstra and Jones,

1994) and climate science (Stips et al., 2016) to confirm their hypotheses on the

predictability of a time series of interest using another that is readily available to

them.

The original formulation of the Granger causality test (Granger, 1969) ac-

counts for linear relationships between time series and the assumption that the cause

precedes the effect in time. It is worth noting that X Granger causes Y does not nec-

essarily imply true causality, it merely states that the lagged values of X contains

useful information that can be used to predict future values of Y that cannot be found

in either lagged values of Y or any other time series.

Traditionally, linear-model based Granger causality has been tested mostly on

linear dynamics in the form of a vector autoregressive model (VAR) (Yuan and

Shou, 2020), where one regresses the target series against the lagged values of the

covariates and assess whether the coefficients are statistically different from zero,

and if so, one concludes the absence of a predictive relationship.

Since real world temporal dynamics are rarely linear, several adaptations to

model nonlinear Granger causality have been made using for example polynomial

autoregression models (Bezruchko et al., 2008) and kernel-based methods (Mari-

nazzo et al., 2011). Model-free approaches such as transfer entropy (Vicente et al.,

2011) are able to detect nonlinear dependencies between time series, however they

suffer from high variance and require large amounts of data for reliable estimation

(Tank et al., 2021). In this work, I follow a recent trend that uses neural networks to

infer complex nonlinear predictive dependencies in time series data (Rahimi et al.,

2020; Khanna and Tan, 2020; Nauta et al., 2019; Tank et al., 2021; Bussmann et al.,

5.1. Introduction and motivation 55

2020; Trifunov et al., 2019; Brouwer et al., 2020; Marcinkevičs and Vogt, 2021;

Moraffah et al., 2021).

An important consideration for causal inference from observational time series

is confounding bias. A confounder variable affects both cause and effect and there-

fore must be accounted for to avoid spurious conclusions. Granger causality relies

on the causal sufficiency (no latent confounding) assumption (Spirtes and Zhang,

2016) and is known to be biased in the presence of confounding (Peters et al., 2017).

Consider the case where the confounder Z affects the cause variable X with lag 2

and the effect variable Y with lag 4, assuming causal sufficiency would lead to the

biased conclusion that X Granger causes Y . When all confounders are identified and

observed, the multivariate conditional Granger causality tests can be applied (Chen

et al., 2006), which relies on the fact that all variables that could have influenced

the target time series have been considered in the analysis (Marinazzo et al., 2011).

In reality however, it is rarely possible to identify, let alone measure all the

confounders. Nevertheless, one may have access to noisy measurements of proxies

for the confounders (Louizos et al., 2017; Pearl, 2010). With access to these ”prox-

ies”, could they be used as substitutes for the confounders in the analysis, or is it

possible to learn something about the underlying confoudners using these proxies

are the main research questions of this chapter.

Since the majority of existing works on neural network-based approaches to

Granger causality assume causal sufficiency, how best to account for latent con-

founders is still an open question. In this work, I apply neural networks to infer

representations of the latent confounder from the available proxies, which can be

used in the subsequent Granger causality tests. The setup I adopt is given in Fig5.1,

which is consistent with Louizos et al. (2017). My aim is to establish whether

Granger causality exists between X and Y (both influenced by Z) conditioned on

the proxies U .

I contribute to nonlinear Granger causality identification by using multilayer

perceptrons to infer representations (or substitutes) of the confounder Z from avail-

able proxy variables U . With the learned representations and the covariate X as

5.2. Existing literature on linear and nonlinear Granger causality 56

Figure 5.1: Causal graph showing the relationship between effect variable Y , cause variable
X , latent confounder Z and proxy variable U .

inputs, I apply a recurrent neural network (RNN) to predict Y . By analysing the

performance of this predictive task, one can assess whether the inclusion of X im-

proves the prediction of Y given that the potential effects of the confounder has been

accounted for.

5.2 Existing literature on linear and nonlinear

Granger causality

The original definition of Granger causality (Granger, 1969) involves linear dy-

namics studied using a VAR model. For a collection of k time series X ∈ Rk×T and

X t ∈ Rk a VAR model is defined:

X t =
L

∑
l=1

A(l)X t−l + εt , (5.1)

where L is the maximum lag considered, A(l) is a k× k matrix of coefficients and εt

is a noise term with zero mean. In the linear regime, time series j does not Granger-

cause series i if for all l A(l)
i j = 0. Tank et al. (2021) generalise the definition of

Granger causality for nonlinear autoregressive models:

Xti = gi(X1:t,1, ...,X1:t,k)+ εti, (5.2)

5.2. Existing literature on linear and nonlinear Granger causality 57

where X1:t,i = (...,X(t−2)i,X(t−1)i) denotes the history of time series i, and gi is

a nonlinear function mapping the lagged values of other k time series to series

i. Granger non-causality is concluded between time series i and j if substituting

X1:t, j with another series X
′
1:t, j (X

′
1:t, j ̸= X1:t, j) does not affect the prediction of Xti:

gi(X1:t,1, ...X1:t, j, ...,Xtk) = gi(X1:t,1, ...X
′
1:t, j, ...,Xtk), implying that gi does not de-

pend on the values of X1:t, j.

In Tank et al. (2021) the function gi is parameterised by a multilayer percep-

tron (MLP) regularised by group lasso penalties and trained with proximal gradient

descent to shrink the input weights of lagged values of non-causal time series to

zero. Bussmann et al. (2020) propose a neural additive VAR model with each time

series expressed as a sum of nonlinear functions of the other time series. The non-

linear functions are parameterised by MLPs and the additive structure allows the

contribution of each time series to be analysed separately.

Nauta et al. (2019) propose an attention based convolutional neural network.

The attention mechanism learns which time series are attended to during predic-

tion, and interventions on potential causal time series are performed in the vali-

dation phase. Khanna and Tan (2020) infer Granger causal relations from a struc-

tured sparse estimate of internal parameters of statistical recurrent units (Oliva et al.,

2017) trained for time series prediction.

A popular class of methods involves training two neural network time series

prediction models and comparing their performances. One model would accept the

past values of the target and exogenous variables as inputs, and the other accepts

only the past target values. A statistically significant reduction in prediction error is

a sign of Granger causality since this implies that the covariates are adding useful

information into the prediction. In existing literature, these prediction models are

often different variants of RNNs (Wang et al., 2018; Duggento et al., 2019; Abbas-

vandi and Nasrabadi, 2019) or MLPs (Orjuela-Canon et al., 2020). The proposed

approach in this study falls within this class of methods however training two sepa-

rate neural networks is inefficient and spurious conclusions could be reached due to

differences in neural network hyperparameters. For this reason, I propose to train

5.2. Existing literature on linear and nonlinear Granger causality 58

a single model with two decoders representing P(Yt |X1:t−1,Y1:t−1) and P(Yt |X1:t−1)

respectively. These decoders are two separate neural networks trained simultane-

ously along with the rest of the model.

With the exception of Nauta et al. (2019), all above-mentioned literature as-

sumes causal sufficiency. How best to account for an unobserved confounder in

Granger causal analysis is an open question. In Nauta et al. (2019), the model can

only detect a latent confounder if it affects cause and effect with equal time lags.

In this paper I consider scenarios involving different lags in the causal mechanisms

(as given in the example above). I follow a popular approach involving the use of

neural networks to infer representations of the latent confounder (a substitute con-

founder). Louizos et al. (2017) propose a variational autoencoder to recover the

joint distribution of the observed and latent variables which they use to estimate the

average treatment effect (ATE) in a static setting. Trifunov et al. (2019) adapt the

architecture in Louizos et al. (2017) to a time series setting for the estimation of

ATE. Bica et al. (2020) propose a recurrent neural network architecture to build a

factor model and estimate ATE using the inferred substitute confounders.

Outside of the deep learning domain, different methods can accommodate hid-

den confounders to different extents. Chu and Glymour (2008) propose additive

nonlinear time series model (ANLTSM) which can only deal with hidden con-

founders that are linear and instantaneous (a lag of 0). Conditional independence

based approaches LPCMCI (Gerhardus and Runge, 2020) and SVARFCI(Malinsky

and Spirtes, 2018) detect hidden confounders by inferring a special edge type in the

partial ancestral graph.

To contribute to existing Granger causality literature, where the approaches

mostly assume causal sufficiency, I study the benefit of explicitly modelling the

latent confounder through other (related) measurable time series. I demonstrate

that information extracted from related time series can serve as a proxy for the

confounder which can then be used as an input to better forecast the variable of

interest than simply assuming causal sufficiency.

5.3. Designing a deep latent variable for Granger causality 59

5.3 Designing a deep latent variable for Granger

causality
Consider the causal graph in Fig. 5.1 involving a exogenous variable X ∈ R1×T ,

a target variable Y ∈ R1×T , a latent confounder Z ∈ R1×T and proxies of the con-

founder U ∈ Rn×T , where T is the length of the time series and n is the number of

proxies available. The aim is to infer the Granger causal relationship between the

confounded pair X and Y .

The proposed approach is a maximum likelihood based latent variable model

to learn useful information about the confounder Z from available proxies U , and to

model the relationship between Z, X and Y . In practice, the proxy variables are often

chosen using expert judgement. Consider a situation where the latent confounder is

the socio-economic status of a patient, one could use the zip code or job type of the

patient as proxy variables (Louizos et al., 2017).

The learned representation of Z does not contain extra information that is not

already found in the time series set U . It is simply extracting relevant informa-

tion from a potentially large and noisy time series dataset. When there are many

proxies to choose from, the mapping from U to Z performs representation learn-

ing/dimensionality reduction to learn relevant factors about these proxy variables.

More formally, I follow the assumption in Louizos et al. (2017) that the joint

distribution P(Y,X ,Z,U) can be approximately recovered from the observations

(Y,X ,U), which could turn out to be impossible if the confounder has no relation

to the observed variables. In this work I adopt the following assumptions: 1. proxy

variables are available in abundance to allow recovery of the joint distribution, 2.

expert judgement is in place to select appropriate proxies, and 3. (Y,X ,U) are po-

tentially complex but learnable functions of Z which we approximate with neural

networks. This scenario is termed a ”surrogate-rich setting” in Louizos et al. (2017).

Consider the following nonlinear autoregressive (NAR) model for time series

i regressed on the histories of k other time series:

Xti = gi(X1:t,1, ...,X1:t,k)+ εti, (5.3)

5.3. Designing a deep latent variable for Granger causality 60

with nonlinear function gi and white noise error term εti ∼N (0,σ2
t). Since rela-

tionships between real world time series are often nonlinear, the definition of non-

linear Granger causality presented by Tank et al. (2021) is adopted in this study.

More formally, time series j does not Granger cause series i if for all

(X1:t,1, ...,X1:t,k) and all X
′
1:t, j ̸=X1:t, j, gi(X1:t,1, ...X1:t, j, ...,Xtk)= gi(X1:t,1, ...X

′
1:t, j, ...,Xtk).

This implies that the prediction model gi does not depend on the history of j (X1:t, j),

since substituting it with a different time series (X
′
1:t, j) does not affect the prediction

of Xti. On the other hand, if series j does Granger cause series i, and j′ does not,

then the model with X1:t, j as input would lead to a lower prediction error of Xti than

using X
′
1:t, j: (Xti−gi(X1:t,1, ...X1:t, j, ...,Xtk))

2 < (Xti−gi(X1:t,1, ...X
′
1:t, j, ...,Xtk))

2.

The nonlinear function gi can be modelled using a recurrent neural network

as it can capture long range dependencies and complex temporal dynamics. The

main challenge however is that the definition of Tank et al. (2021) assumes causal

sufficiency (no confounding): all k time series are observed. In the presence of

confounding, one observes only a subset of k: (X1:t,1,X1:t,2...) ⊆ (X1:t,1, ...,X1:t,k);

the use of traditional Granger causality tests in this case is known to be biased, as

mentioned previously (Peters et al., 2017).

With access to proxy variables U , one can obtain representations of the latent

confouder by approximating a function such that Ẑ = f (U) ≈ Z; since f is likely

to be a nonlinear function, neural networks could be used for this task. Note that

Ẑ and U do not need to have the same dimensions, since two proxies could result

from the same confounder. Instead, the dimension of Ẑ is a hyperparameter that is

tuned during model selection.

It is worth mentioning that since Granger causality only accounts for direct

causal links (Eichler, 2013), one cannot simply use the proxies in a Granger causal-

ity test in place of the latent confounder (Louizos et al., 2017) since it is seen in Fig.

6.1 that there is no direct edge linking U and Y . The sole purpose of U is to learn

the properties of Z which can help to better assess the relationship between X and

Y . Therefore, one must work backwards along the link U → Z to find a substitute

confounder Ẑ that can be used in place of Z.

5.3. Designing a deep latent variable for Granger causality 61

Probabilistically, the output of the nonlinear autoregressive model given by

(5.3) can be written as:

Xti ∼N (gi(X1:t,1, ...,X1:t,k),σ
2
t) = P(Xti|X1:t,1, ...,X1:t,k), (5.4)

which is referred to as the predictive distribution of series i at time t conditioned on

the histories of itself and other available time series. In this paper, neural networks

are used to output the mean (gi) and variance (σ2
t).

The proposed approach makes use of multiple recurrent neural networks to

parameterise predictive distributions. I introduce two types of prediction mod-

els: 1. the full model (with exogenous variables) and 2. the restricted model

(without exogenous variables). The full model predictive distribution is de-

fined as P(Yt+1|Y1:t ,X1:t ,Z1:t). The restricted model distribution is defined as

P(Yt+1|Y1:t ,Z1:t). Parameterising the two predictive distributions enables compar-

ison of the predictive performances of two time series prediction models and a

statistically significant reduction in prediction error from the restricted model to

the full model is a sign of Granger causality X → Y , or more formally: (Yt+1−

g(Y1:t ,X1:t ,Z1:t))
2 < (Yt+1−g(Y1:t ,Z1:t))

2.

To parameterise the full-model and restricted-model distributions, recurrent

neural networks are used. The proposed model uses gated recurrent units (GRU)

(Cho et al., 2014). The architecture of the restricted model is given in Fig. 5.2. Each

GRU is characterised by a sequence of hidden states h(i)t which contains information

of time series i up to time t. These hidden states are used as inputs to the multilayer

perceptrons (MLPs), which output the distribution parameters of the predictive and

inference distributions.

To learn representations of the latent confounder Z using the available proxies

U I parameterise the filtering distribution:

qφ (Zt |U1:t) = qφ (Zt |h(U)
t). (5.5)

5.3. Designing a deep latent variable for Granger causality 62

The inferred representation Ẑt of Zt follows an isotropic Gaussian distribution:

Ẑt ∼ qφ (Zt |h(U)
t) = N (µ(h(U)

t),σ2(h(U)
t)I), (5.6)

where the covariance matrix is diagonal. The dimension of Ẑt is a tunable hyperpa-

rameter. The parameters of the filtering distribution are given by

(µ,σ) = f1(h
(U)
t), (5.7)

where f1 is a mapping function approximated by an MLP. Let the hidden state

h(U)
t ∈ RNhU and Zt ∈ RNZ , the MLP takes as input a vector of size NhU and outputs

a vector of size NZ × 2 (mean and variance). To ensure positivity of the standard

deviation a softplus activation function is applied on the MLP output.

Figure 5.2: Proposed architecture for the restricted model parameterised by multiple recur-
rent neural networks. qφ is the inference distribution of Z conditioned on the
proxy time series, from which samples of the substitute confounder Ẑ can be
obtained and used to parameterise the predictive distribution of Y .

To avoid the need to train two separate time series prediction models, I propose

a dual-decoder setup. The restricted-model distribution is Gaussian and is given as

P(Yt+1|Y1:t ,Z1:t) = f2(h
(Y)
t ,h(Z)t). (5.8)

5.3. Designing a deep latent variable for Granger causality 63

The full-model distribution is also normal and expressed as

P(Yt+1|Y1:t ,X1:t ,Z1:t) = f3(Ŷ res
t+1,h

(X)
t), (5.9)

where Ŷ res
t+1 ∼ P(Yt+1|Y1:t ,Z1:t) is the predicted value of Yt from the restricted model

and f2 and f3 are two MLP models which output the means and variances of the

predictive distributions. The proposed dual-decoder setup is shown in Fig. 5.3 and

Ŷ f ull
t+1 ∼ P(Yt+1|Y1:t ,X1:t ,Z1:t). A combination of Fig.5.2 and Fig.5.3 represents the

full architecture of the model where the output of the restricted-model serves as one

of the inputs to the full-model.

Figure 5.3: Proposed dual-decoder setup where Ŷ res
t+1 is a prediction sample drawn from the

restricted-model distribution P(Yt+1|Y1:t ,Z1:t) shown in Figure 6.2.

For model optimisation the following objective function is maximised:

L =
T

∑
t=1

EẐ∼qφ
[logPθ1(Yt |Y1:t−1,X1:t−1,Z1:t−1)+ logPθ2(Yt |Y1:t−1,Z1:t−1)], (5.10)

where the first and second terms correspond to the full and restricted model likeli-

hoods respectively, and θ1 and θ2 are neural network parameters to be optimised.

To infer the Granger causal relationship between X and Y in the presence of

a latent confounder, I assess whether the inclusion of X in the full-model results

in a statistically significant reduction in prediction error compared to the restricted

model. With access to substitute confounders Ẑ1:t , a two-sample t-test is performed

5.4. Inferring confounded Granger causality in synthetic and real-world datasets64

to establish whether Yt+1 ⊥⊥ X1:t |Ẑ1:t ,Y1:t (where ⊥⊥ denotes independence). The

mean-squared-error
1
n

∑
n
i=1(Yi− Ŷi)

2 was chosen as the error metric.

5.4 Inferring confounded Granger causality in syn-

thetic and real-world datasets

To demonstrate the performance of the proposed approach, I applied it firstly on two

arbitrary synthetic datasets with known data generating processes. The nonlinear

functions and noise levels have been set arbitrarily. The data generating processes

for the two datasets are given by (5.11) and (5.12) respectively. In total, 1000 sam-

ples were generated, of which 800 were used for training, 100 for validation and

100 for testing. The dataset was scaled to have 0 mean and unit variance before

model training.

5.4.1 Dataset 1

Zt = tanh(Zt−1)+N(0,0.012)

Ut = Z2
t +N(0,0.052)

Xt = σ(Zt−2)+N(0,0.012)

No Granger : Yt = σ(Zt−4)+N(0,0.012)

Granger : Yt = σ(Zt−4)+σ(Xt−2)+N(0,0.012)

(5.11)

where the hyperbolic tangent tanh and sigmoid σ functions are used to introduce

non-linearity into the system. The noise term is Gaussian of the form N(µ,std2).

5.4.2 Dataset 2

The data generating processes for Z, U and X remain the same as in (5.11). The

target series Y was generated using:

No Granger : Yt = Zt−3Zt−4 +N(0,0.52)

Granger : Yt = Zt−3Zt−4 +Xt−1Xt−2 +N(0,0.52)
(5.12)

5.4. Inferring confounded Granger causality in synthetic and real-world datasets65

5.4.3 River discharge dataset

To investigate the model performance on real-world time series, I use the river dis-

charge dataset provided in Gerhardus and Runge (2020). This dataset describes the

average daily discharges of rivers in the upper Danube basin. I consider measure-

ments from the Iller at Kempten as X , the Danube at Dillingen as Y , and the Isar

at Lenggries as the proxy variable. All three variables are potentially confounded

by rainfall or other weather conditions (Gerhardus and Runge, 2020). The Iller dis-

charges into the Danube within a day, implying an instantaneous causal link X→Y .

For the scope of Granger causality considered in this paper, the cause is required to

precede the effect in time (Eichler, 2012) so I do not take into account instantaneous

causal relationships. I therefore expect no Granger-causal relationship between X

and Y . The dataset contains roughly 1000 entries, of which 80% were used for

training, 10% for validation and 10% for testing.

Before model training, checks were done to ensure the missing value percent-

age was less than 20%, and outliers beyond 1.5 times the interquartile range were

removed. The data was then scaled to have 0 mean and unit variance before training

the neural networks.

5.4.4 Neural network parameters

For hyperparameter optimisation, a grid search approach was adopted. The

RNN hidden state dimension was chosen from {2,3,4,5,8,16,24,32}, the

MLP hidden layer and units were chosen from {1,2,3,5}, the dropout rate

was chosen from {0.1,0.2,0.3,0.4}, and the learning rate was chosen from

{0.1,0.01,0.001,0.0001}.

The GRU hidden states h(X)
t ,h(Y)t and h(Z)t have a dimension of 5, Ẑt has a

dimension of 1 for the synthetic datasets and 2 for the river discharge dataset, the

MLPs f1, f2 and f3 given in (5.7,5.8,5.9) respectively contain 1 hidden layer with

5 units for the synthetic datasets and 10 units for river discharge, a dropout rate

of 0.3 and ReLU activation functions are chosen. The ADAM optimiser is used

with a learning rate of 0.001. The neural networks were trained for 50 epochs. The

sequence length used for model training is 20 with a batch size of 10.

5.4. Inferring confounded Granger causality in synthetic and real-world datasets66

5.4.5 Statistical testing

By comparing the sample prediction errors of the full and restricted models, one

is able to infer whether a Granger causal relationship between X and Y exists. A

two-sample t-test could be used as an additional verification step. For dataset 1&2

(Granger) consider the following null and alternative hypothesis:

H0 : ε f ull = εrestricted

H1 : ε f ull < εrestricted,
(5.13)

where ε f ull and εrestricted are the mean prediction errors generated by the full and

restricted models respectively. For dataset 1&2 (no Granger) consider the following

alternative hypothesis:

H1 : ε f ull > εrestricted. (5.14)

The alternative hypothesis is chosen by comparing the sample mean prediction er-

rors computed by the full and restricted models, I.e. the alternative hypothesis in

(5.13) is chosen if the mean sample error of the full model is less than that of the

restricted model, and vice versa. In cases where the mean sample errors of the two

models differ significantly from one another, the statistical test is perhaps redun-

dant. To perform the two-sample t-test, I generate n = 50 prediction samples from

the restricted and full models and choose a significance level of α = 0.05.

In Table 6.1 I provide the prediction errors of the full and restricted models,

the p-values of the two-sample t-tests and the Granger causal relationship between

X and Y inferred by the proposed model, as well as those inferred by LPCMCI

(Gerhardus and Runge, 2020) with α = 0.05, maximum lag L= 5 and 4 preliminary

iterations, and SVAR-FCI (Malinsky and Spirtes, 2018) with α = 0.05 and L = 5.

These are graphical conditional independence based methods for inferring potential

causal relationships and are capable of handling latent confounders; thus I have

chosen these two models as benchmarks.

It is evident from Table 6.1 that the p value < 0.05 for all the statistical tests.

For dataset 1&2 (no Granger) and the river discharge dataset, I reject the null hy-

5.4. Inferring confounded Granger causality in synthetic and real-world datasets67

Table 5.1: Table showing the prediction errors of the full and restricted models, p-values of
two-sample t-tests and the inferred Granger causal relationship given by the pro-
posed model, LPCMCI and SVAR-FCI. The symbol × denotes that the model
finds a Granger non-causal relationship between X and Y .

Dataset Restricted-model error Full-model error p-value Ours LPCMCI SVAR-FCI
dataset 1 (Granger) 4.99×10−2±6.00×10−4 1.76×10−2±5.71×10−5 < 0.001 ✓ ✓ ✓

dataset 1 (no Granger) 2.03×10−2±4.00×10−4 3.54±2.00×10−4 < 0.001 × ✓ ✓
dataset 2 (Granger) 2.07×10−1±7.00×10−4 2.03×10−1±9.75×10−5 < 0.001 ✓ × ×

dataset 2 (no Granger) 1.56×10−1±1.85×10−4 1.60×10−1±5.73×10−6 < 0.001 × × ×
river discharge 4.85×10−2±1.50×10−3 6.10×10−2±1.12×10−3 < 0.001 × × ×

pothesis that the mean prediction errors of the restricted and full models are equal

and conclude that the inclusion of X to predict future values of Y results in a

higher prediction error and therefore X does not Granger-cause Y . For dataset 1&2

(Granger) I reject the null hypothesis and conclude that the inclusion of X reduces

the prediction errors of Y and therefore X Granger-causes Y . The proposed model

correctly identifies the correct Granger-causal relationship in all scenarios, whereas

LPCMCI and SVAR-FCI identify spurious relationships for dataset 1 (no Granger)

and dataset 2 (Granger).

Real-world time series can be highly nonlinear and have different noise levels.

The above analysis shows the proposed model is able to identify the Granger-causal

relationship for various nonlinear functions and arbitrary noise levels. I investigate

the robustness of the proposed approach by varying the signal-to-noise ratio defined

as:

γ =
1
T ∑

T
t=1 |st |
σ

, (5.15)

where |st | denotes the magnitude of the signal (Yt without the noise term) at t and

σ is the standard deviation of the noise term in the data generating process. For

dataset 1&2 (Granger) I find the critical γ below which the noise term becomes

dominant and the model fails to identify the Granger-causal link between X and Y ;

to do this I vary the standard deviation σ of the noise term in (5.11) and (5.12).

Starting with a rough range of γ = 10 to γ = 100, a bisection search strategy to find

the critical value γ∗. A p value < 0.05 denotes Granger causality inferred by the

proposed model. Results are shown in Table 5.2. For dataset 1 (Granger) it can be

seen that the critical value γ∗ is approximately 59.22 (highlighted in bold), i.e. the

5.5. Conclusion 68

Granger-causal link between X and Y for this set of stochastic time series can only

be identified if γ ≥ 59.22; for dataset 2(Granger) γ∗ ≈ 27.58.

Lastly, I test the sensitivity of the model output to the sequence length τ ∈

{4,6,8,10,12,14,16} used in training for dataset 1&2 (Granger). It is seen that

all p value < 0.001, which suggests that the proposed model is able to consistently

identify the Granger-causal link given short and long τ used in training. This is

desirable as it indicates that model results are not very sensitive to the choice of

hyperparameters.

Table 5.2: Sensitivity analysis of model performance with varying signal-to-noise ratio γ .

Dataset 1 (Granger) γ p value Dataset 2 (Granger) γ p value
10.00 1.00 10.00 1.00
55.00 9.99×10−1 21.25 9.99×10−1

57.81 9.41×10−1 26.88 5.44×10−2

58.51 4.10×10−1 27.58 4.73×10−3

59.22 1.93×10−2 28.28 < 1.00×10−3

60.63 < 1.00×10−3 29.69 < 1.00×10−3

66.25 < 1.00×10−3 32.50 < 1.00×10−3

77.50 < 1.00×10−3 55.00 < 1.00×10−3

100 < 1.00×10−3 100 < 1.00×10−3

5.5 Conclusion
In this chapter I proposed a deep-learning based approach to model nonlinear

Granger-causality with in the presence of a latent confounder. This is achieved

by first learning a representation of the confounder using available proxies, before

using these substitutes in place of the confounder for subsequent analysis.

The proposed approach involves the use of multiple recurrent neural networks

to parameterise a restricted-model distribution P(Yt+1|Y1:t ,Z1:t) and a full-model

distribution P(Yt+1|Y1:t ,X1:t ,Z1:t). I then generated prediction samples from the two

distributions and compared their prediction errors. A two-sample t-test was used

as an additional verification step to establish whether the inclusion of X helped to

predict future values of Y .

To enable efficient comparison and model training, I propose a dual-decoder

setup, which avoids the need to train two separate models (as presented in many

existing literature), and I believe this helps to reduce bias resulting from neural

network hyperparameter tuning. I demonstrate the effectiveness of the model on

5.5. Conclusion 69

both synthetic and real-world datasets, and recognise that a high enough signal-to-

noise ratio is required to correctly identify a Granger-causal link.

Chapter 6

Designing deep latent conditional

volatility models- part 1

6.1 Introduction and motivation

In chapter 4 I have established that one is able to learn the latent dynamics gov-

erning the observed time series using the VAE-RNN hybrid setup. I have shown

experimentally that this learned latent model can help to better predict the target

time series. This purely data-driven approach however, is a black-box one, and

therefore one cannot interpret what has been learned.

In chapter 5, I also attempt to learn a mapping from the observation space to

a latent space, however this time the learned latent variable is a representation of

the latent confounder. In this context, with access to time series X , Y , and proxies

U (and sufficient domain expertise), one can perhaps attempt to infer what it is that

the learned substitute is a representation of. For example, if the observational time

series are US tech stock prices, one might argue that the learned representations

could be a sentiment of the US technology sector, or any other factor known to

affect US tech stocks as a whole.

Given the insights generated from the first two experiments regarding the suit-

ability of deep latent time series models to perform forecasting, as well as the expe-

rience I have acquired training these types of models, I will attempt to extend this

setup to solve real-world forecasting problems.

6.2. Existing literature on GARCH models 71

For the remaining chapters, I focus on developing the VAE-RNN setup in the

financial domain. To accomplish this, I design models to perform market volatility

forecasting, drawing inspiration from the proposed model in chapter 4.

Volatility forecasting is an important topic that is of interest to the financial

industry. However, with market volatility being a latent variable, one could only

forecast it using observational time series such as financial returns. This setup offers

a compelling real world application of latent variable models and the findings from

the first two experiments.

This chapter contains details about the first of the two models, which is suit-

able for end users comfortable with generalised autoregressive conditional het-

eroskedasticity (GARCH) models, who may wish to enhance the performance of

their GARCH model of choice with deep learning.

6.2 Existing literature on GARCH models

Modelling conditional heteroskedasticity (time-varying volatility) in financial time

series such as energy prices (Chan and Grant, 2016), cryptocurrencies (Chu et al.,

2017), and foreign currency exchange rates (Malik, 2005) is of great importance

to financial practitioners as it allows better decision making with regards to portfo-

lio selection, asset pricing and risk management. In the univariate setting, popular

methods include Autoregressive Conditional Heteroskedastic models (ARCH) (En-

gle, 1982) and Generalised GARCH (GARCH) models (Bollerslev, 1986). ARCH

and GARCH models are regression-based models estimated using maximum likeli-

hood, and are capable of capturing stylised facts about financial time series such as

volatility clustering (Bauwens et al., 2006). The ARCH(p) model describes the

conditional volatility as a function of p lagged squared residuals, and similarly

the GARCH(p,q) model include contributions due to the last q conditional vari-

ances. Many variants of the GARCH model have been proposed to better capture

properties of financial time series, for example the EGARCH (Nelson, 1991) and

GJR-GARCH (Glosten et al., 1993) models were designed to capture the so-called

leverage effect, which describes the negative relationship between asset price and

6.2. Existing literature on GARCH models 72

volatility.

In a multivariate setting, instead of modelling only time-varying conditional

variances, for an n-dimensional system, one estimates the n× n time-varying

variance-covariance matrix. This allows investigation into the interactions between

the volatility of different time series and whether there is a transmission of volatil-

ity (spillover effect) between markets (Bauwens et al., 2006; Erten et al., 2012).

Popular multivariate GARCH models include the VEC model (Bollerslev et al.,

1988), the BEKK model (Engle and Kroner, 1995), the GO-GARCH model (Van

Der Weide, 2002) and DCC model (Christodoulakis and Satchell, 2002; Tse and

Tsui, 2002; Engle, 2002).

In this paper I focus specifically on GARCH(1,1) models in the univariate case

and the diagonal BEKK(1,1) model in the multivariate case to model daily financial

asset returns. I consider several assets classes such as foreign exchange rates, com-

modities and stock indices. GARCH(1,1) models work well in general practical

settings due to their simplicity and robustness to overfitting (Wu et al., 2013).

In traditional GARCH models, the estimated coefficients are constant which

imply a stationary returns process with a constant unconditional mean and variance

(Bollerslev, 1986). However, there is evidence in existing literature that relaxing

the stationary constraint on the returns time series can often lead to a better perfor-

mance as it allows the model to better capture time-varying market conditions. In

Stǎricǎ and Granger (2005) the authors modelled daily S&P 500 returns with locally

stationary models and found that most of the dynamics were concentrated in shifts

of the unconditional variance, and forecasts based on non-stationary unconditional

modelling yielded a better performance than a stationary GARCH(1,1) model. Sim-

ilarly, the authors in Wu et al. (2013) designed a GARCH(1,1) model with time-

varying coefficients that followed a random walk process, and they reported better

forecasting performances in the test dataset relative to the GARCH(1,1) model.

To this end, I propose univariate and multivariate GARCH models with time-

varying coefficients that are parameterised by a recurrent neural network. The pro-

posed method allows the simplicity and interpretability of GARCH models to be

6.2. Existing literature on GARCH models 73

combined with the expressive power of neural networks, and this approach follows

a trend in the literature that combines classical time series models with deep learn-

ing.

In Rangapuram et al. (2018) for example, the authors proposed to parameterise

the coefficients of a linear Gaussian state space model with a recurrent neural net-

work, and the latent states were then inferred using a Kalman filter. This approach

is advantageous as the neural network allows modelling of more complex relation-

ships between time steps whilst preserving the structural form of the state space

model.

Similarly, by preserving the structural form of the BEKK model, one can ob-

tain covariance matrices that are symmetric and positive definite (Engle and Kroner,

1995) without the need of implementing further constraints. I treat the time-varying

GARCH coefficients as latent variables to be inferred, and I construct the model

with the VAE-RNN setup (Chung et al., 2015; Bayer and Osendorfer, 2014; Kr-

ishnan et al., 2017; Fabius and van Amersfoort, 2015; Fraccaro et al., 2016; Karl

et al., 2017) to allow efficient structured inference over a sequence of latent random

variables.

To contribute to existing GARCH modelling literature, I construct a neural

network GARCH hybrid model. This takes advantage of both the explainability

of GARCH models and the advanced modelling capabilities of deep latent variable

models described in previous sectors. The GARCH coefficients serve as the latent

space of the latent variable model and are learned through variational inference.

6.2.1 Univariate GARCH models

The GARCH(p,q) model Bollerslev (1986) for a returns process rt is specified in

terms of the conditional mean equation:

rt ∼N (0,σ2
t), (6.1)

6.2. Existing literature on GARCH models 74

and the conditional variance equation:

σ
2
t = ω +

p

∑
i=1

αir2
t−i +

q

∑
j=1

β jσ
2
t− j. (6.2)

Under the GARCH(1,1) model, the returns process rt is covariance stationary with

a constant unconditional mean and variance given by E[rt] = 0 and E[r2
t] =

ω

1−α−β
,

where ω > 0, α ≥ 0 and β ≥ 0 to ensure that σ2
t > 0, and α+β < 1 to ensure a finite

unconditional variance. For parameter estimation assuming normal innovations, the

following log-likelihood function is maximised:

L =−
T

∑
t=1

(
1
2

log(σ2
t)+

r2
t

2σ2
t
) (6.3)

To model the leptokurtic (fat-tailed) behaviour of financial returns, the authors

in Bollerslev (1987) considered GARCH models with Student’s t innovations with

the following log-likelihood function to be maximised:

L =−
T

∑
t=1

(logΓ(
ν +1

2
)+logΓ(

ν

2
)+

1
2

log(ν−2)+
1
2

log(σ2
t)+

(ν +1)
2

log(1+
r2
t

(ν−2)σ2
t
)),

(6.4)

where ν > 2 is the degree of freedom and Γ is the gamma function.

6.2.2 BEKK model

The BEKK multivariate GARCH model Engle and Kroner (1995) parameterises an

n-dimensional multivariate returns process rt ∈ Rn×T :

rt ∼N (0,Σt), (6.5)

Σt = Ω
T

Ω+
p

∑
i=1

AT
i rt−irT

t−iAi +
q

∑
j=1

BT
j Σt− jB j, (6.6)

where Σt is the n× n symmetric and positive-definite covariance matrix, Ω is an

upper triangular matrix with n(n+1)
2 non-zero entries, A and B are n× n coefficient

matrices. In this experiment I consider only the diagonal-BEKK model where A

and B are diagonal matrices.

6.3. Designing a neural GARCH model 75

6.3 Designing a neural GARCH model

In this section I introduce the intuition and various components of Neural GARCH

models. I focus specifically on univariate and multivariate GARCH(1,1) models as

I would like to keep the GARCH model structure as simple as possible and delegate

the modelling of complex relationships between time steps to the underlying neural

network which outputs the coefficients of the GARCH models. For the rest of this

paper, I use the terms (multivariate)GARCH(1,1) and BEKK(1,1) interchangeably

when referring to multivariate systems.

In neural GARCH, the coefficients {ω , α , β} in the univariate case and {Ω,

A, B} in the multivariate case are allowed to vary freely with time. This approach

allows the model to capture the time-varying nature of market dynamics (Wu et al.,

2013). The GARCH(1,1) and BEKK(1,1) models thus become:

σ
2
t = ωt +αtr2

t−1 +βtσ
2
t−1, (6.7)

Σt = Ω
T
t Ωt +AT

t rt−1rT
t−1At +BT

t Σt−1Bt , (6.8)

For notation purposes I define the parameter set γ t = [ωt ,αt ,βt]
T for GARCH(1,1)

and γ t = [Ωt ,At ,Bt]
T for BEKK(1,1).

In the proposed framework, γ t is a multivariate normal latent random vari-

able with a diagonal covariance matrix to be estimated at every time step. For

GARCH(1,1) this involves an estimation of a vector of size 3 for a model with

normal innovations:

γ t =

ωt

αt

βt

∼N (µt ,Σγ,t), (6.9)

and the vector [σ2
ωt
,σ2

αt
,σ2

βt
]T represents the diagonal elements of the covariance

matrix Σγ,t . Here I have written the covariance matrix of the parameter set γ t as

Σγ,t in order to distinguish it from the covariance matrix of the asset returns Σt . For

neural GARCH(1,1) with Student’s t innovations, γ t is augmented with the degree

of freedom parameter νt such that γ t = [ωt ,αt ,βt ,νt]
T .

6.3. Designing a neural GARCH model 76

For the multivariate diagonal BEKK(1,1), I adopt a similar methodology. For

a system of n assets, γ t of a model with normal innovations is a vector of size

2n+ n(n+1)
2 (Engle and Kroner, 1995), and with Student’s t innovations γ t is of size

2n+ n(n+1)
2 +1. As an example, for a system of 2 assets (n = 2), the BEKK model

is given by:

Σt =

c11,t 0

c21,t c22,t

c11,t c12,t

0 c22,t

+
a11,t 0

0 a22,t

r1,t−1

r2,t−1

r1,t−1

r2,t−1

T a11,t 0

0 a22,t

+

b11,t 0

0 b22,t

σ2
11,t σ2

12,t

σ2
21,t σ2

22,t

b11,t 0

0 b22,t

 , (6.10)

where ai j,t is the i, jth element of the matrix At , the parameter set γ t , which also has

a multivariate normal distribution, is given by:

γ t = [a11,t ,a22,t ,b11,t ,b22,t ,c11,t ,c12,t ,c22,t]
T (6.11)

6.3.1 Generative model

The generative model distribution Pθ (r1:T ,Σ1:T ,γ1:T) of a general multivariate neu-

ral GARCH is presented in Figure 6.1 and given by (6.12). For the univariate case,

one simply replaces Σt in (6.12) with σ2
t .

Pθ (r1:T ,Σ1:T ,γ1:T)=P(γ0)P(Σ0)
T

∏
t=1

Pθ (rt |Σt)Pθ (Σt |γ t ,rt−1,Σt−1)Pθ (γ t |γ t−1,r1:t−1).

(6.12)

The initial priors were set to delta distributions, P(Σ0) was centered on the covari-

ance matrix estimated using the training dataset, and P(γ0) was centered on a vector

of 1s. The predictive distribution Pθ (γ t |γ t−1,r1:t−1) takes as input the information

set It−1 = {γ t−1,r1:t−1} and predicts the 1-step-ahead value γ t . For this parame-

terisation, I use a recurrent neural network to propagate r1:t−1 such that:

Pθ (γ t |γ t−1,r1:t−1) = Pθ (γ t |γ t−1,ht−1), (6.13)

6.3. Designing a neural GARCH model 77

where ht is the hidden state of the underlying RNN; in the proposed model I use a

gated recurrent unit (GRU) (Cho et al., 2014). I then apply a multilayer perceptron

which takes as input It−1 as maps it to the means and variances of the elements in

γ t . In the 2-dimensional example given in (6.11), the estimation is done using:

[µa11,t , ...,µc22,t ,σ
2
a11,t

, ...,σ2
c22,t

]T = MLPpred(γ t−1,ht−1), (6.14)

and I apply a sigmoid function on the neural network output to ensure that the esti-

mated variances of the elements in γ t and the GARCH coefficients are non-negative.

I have also tested other ways to ensure non-negativity such as using a softplus func-

tion, but found that applying a sigmoid function gave the best performance. For

neural GARCH with Student’s t innovations, it is required that ν > 2 in order to

have a well-defined covariance. Since appyling the sigmoid function ensures the

estimated coefficients are non-negative, I estimate ν ′ = ν−2 (instead of ν directly)

to ensure ν > 2.

The conditional distribution Pθ (Σt |γ t ,rt−1,Σt−1) is a delta distribution centered

on Eqn 6.7 in the univariate case and Eqn 6.8 in the multivariate case as one can

calculate the covariance matrix Σt deterministically given {γ t ,rt−1,Σt−1}. The dis-

tribution Pθ (rt |Σt) is the likelihood function and I have provided the formulas (in

the univariate case) in Eqn 6.3 for normal innovations and Eqn 6.4 for Student’s t

innovations.

6.3.2 Inference model

The inference model distribution qφ (Σ1:T ,γ1:T |r1:T) is presented in Figure 6.2 and

can be factorised as:

qφ (Σ1:T ,γ1:T |r1:T) = P(γ0)P(Σ0)
T

∏
t=1

qφ (Σt |γ t ,rt−1,Σt−1)qφ (γ t |γ t−1,r1:t), (6.15)

where P(γ0) and P(Σ0) are the same as in the generative model, qφ (Σt |γ t ,rt−1,Σt−1)

has the same functional form (a delta distribution) as Pθ (Σt |γ t ,rt−1,Σt−1), however

6.3. Designing a neural GARCH model 78

Figure 6.1: Generative model of neural GARCH. The generative MLP takes as input
{γ t−1,ht−1} and outputs the estimated means and variances of the elements
in γ t .

γ t is now drawn from the posterior distribution qφ (γ t |γ t−1,r1:t) where:

qφ (γ t |γ t−1,r1:t) = qφ (γ t |γ t−1,ht). (6.16)

It is worth noting that the generative and inference networks share the same un-

derlying recurrent neural network but uses information at different time steps. The

generative model predicts γ t using the information set It−1 and the inference model

infers γ t using It . The inference MLP (MLPin f) however is different to that of the

generative model (MLPpred) and it outputs the posterior estimates of the elements

of γ t :

[µa11,t , ...,µc22,t ,σ
2
a11,t

, ...,σ2
c22,t

]Tpost = MLPin f (γ t−1,ht). (6.17)

6.3.3 Optimising a neural GARCH model

For neural network training I optimise the generative and inference model param-

eters (θ and φ) jointly using stochastic gradient variational Bayes (Kingma and

Welling, 2014). The objective function is the ELBO defined as:

ELBO(θ ,φ) =
T

∑
n=1

Eγt∼qφ
[θ (rt |γ t)]−KL(qφ (γ t |γ t−1,r1:t)||Pθ (γ t |γ t−1,r1:t−1)),

(6.18)

6.4. Performance of neural GARCH on financial time series 79

Figure 6.2: Inference model of neural GARCH. The inference MLP outputs the posterior
estimate of γ t conditioned on available information up to time t.

and I seek:

{θ ∗,φ∗}= argmax
θ ,φ

ELBO(θ ,φ). (6.19)

6.3.4 Obtaining neural GARCH predictions

Neural GARCH produces 1-step-ahead conditional volatility predictions. Given

It = {γ t ,Σt ,rt:t}, I use Eqn 6.14 to obtain the prediction of the parameter set γ t+1

given by MLPpred . I then obtain the estimate of Σt+1 deterministically using Eqn

6.8. To estimate Σt+2, one should now have access to rt+1, and can therefore obtain

the posterior estimate of γ t+1 using Eqn 6.17 and predict Σt+2 using the posterior

estimate of Σt+1. This posterior update is crucial as it ensures all up-to-date infor-

mation is used to predict the next covariance matrix.

6.4 Performance of neural GARCH on financial time

series
I test neural GARCH on a range of daily asset log returns time series covering uni-

variate and multivariate foreign exchange rates (20 pairs), commodity prices (brent

crude, silver and gold) and stock indices (DAX, S&P, NASDAQ, FTSE100, Dow

Jones). These datasets have been made available at (Yin, 2021). I provide a brief

data description in Table 6.1. Analysis was done to ensure the datasets used con-

tained less than 20% missing values, as well as no outliers beyond 1.5 times in-

6.4. Performance of neural GARCH on financial time series 80

terquartile range. Standard scaling was then done to ensure the variables had 0

mean and unit variance.

Table 6.1: Description of asset log returns time series analysed in the experiments.

Dataset N Time Series Frequency Observations Date Range
Foreign exchange 20 daily 3128 05/08/2011 - 05/08/2021

Brent crude 1 daily 2065 05/08/2013 - 05/08/2021
Silver & gold 2 daily 3109 05/08/2011 - 05/08/2021
Stock indices 5 daily 2054 05/08/2013 - 05/08/2021

For model training, I split each time series such that 80% was used in train-

ing, 10% for validation and 10% for testing. The optimal parameters were se-

lected with a grid search approach. The RNN hidden state was chosen from

{8,16,24,32,64.128}, the MLP hidden layer number from {1,2,3,4,5}, and the

MLP hidden layer node from {8,16,32,64}.

The underyling recurrent neural network (GRU) has a hidden state size 64, the

generative and inference MLPs (MLPpred and MLPin f) are both 3-layer MLPs with

64 hidden nodes and ReLU activation functions.

For univariate time series, I compare the performance of six mod-

els: GARCH(1,1)-Normal, GARCH(1,1)-Student’s t, Neural-GARCH(1,1) and

Neural-GARCH(1,1)-Student’s t, EGARCH(1,1,1)-Normal and EGARCH(1,1,1)-

Student’s t. Although neural GARCH is an adaptation of the GARCH(1,1) model,

I include the EGARCH(1,1,1) model as a benchmark as it is capable of accounting

for the asymmetric leverage effect: negative shocks lead to larger volatilities than

positive shocks. I would like to investigate whether the data driven approach of neu-

ral GARCH allows it to model the leverage effect without the explicit dependence

on an asymmetric term as in an EGARCH model. For multivariate time series, I

compare the performance of multivariate GARCH(1,1) (BEKK(1,1)) with normal

and Student’s t innovations against their neural network adaptations. I evaluate the

model performance using the log-likelihood of the test dataset.

In Tables 6.2, 6.3, 6.4 and 6.5 I provide the log-likelihoods evaluated on the test

dataset for commodity prices, stock indices, and univariate and multivariate foreign

exchange time series. I have highlighted the best model for each time series in bold.

6.4. Performance of neural GARCH on financial time series 81

For commodity prices, I observe that EGARCH(1,1,1)-Student’s t is the best

performer on Brent crude, whilst Neural-GARCH(1,1)-Student’s t performs best on

silver and gold price returns.

For stock indices I observe that Neural-GARCH(1,1)-Student’s t performs best

on the DAX AND Dow Jones indices whilst EGARCH(1,1,1)-Student’s t performs

best on S&P500, NASDAQ and FTSE 100. The fact that the neural GARCH models

perform better than EGARCH on some datasets shows that the proposed data-driven

approach can learn to accommodate many but not all scenarios of the leverage ef-

fect, and therefore in cases where EGARCH outperforms, there are benefits associ-

ated with the direct modelling of the asymmetric effect.

For univariate foreign exchange time series, I observe that the Neural GARCH

variants outperform traditional GARCH models on 16 out of 20 time series, and

where neural GARCH outperforms, Neural-GARCH(1,1) with normal innovations

performs better on 5/16 time series and Neural-GARCH(1,1)-Student’s t performs

better on 11/16 time series.

Table 6.2: Test log-likelihoods for commodity price time series. Best result highlighed in
bold, higher log-likelihood is better.

Time series GARCH(1,1)-Normal GARCH(1,1)-Student’s t Neural-GARCH(1,1) Neural-GARCH(1,1)-Student’s t EGARCH(1,1,1)-Normal EGARCH(1,1,1)-Student’s t
BRENT -298.738 -298.689 -307.921 -295.895 -299.966 −292.798
SILVER -554.595 -551.936 -541.713 −514.476 -572.780 -581.834
GOLD -462.28 -450.752 -473.074 −421.566 -462.857 -468.509

Table 6.3: Test log-likelihoods for stock index time series.

Time series GARCH(1,1)-Normal GARCH(1,1)-Student’s t Neural-GARCH(1,1) Neural-GARCH(1,1)-Student’s t EGARCH(1,1,1)-Normal EGARCH(1,1,1)-Student’s t
DAX -261.275 -268.944 -259.321 −244.190 -257.767 -266.163
SNP -300.849 -298.614 -308.559 -295.934 -300.577 −284.841

NASDAQ -327.547 -326.401 -331.539 -320.387 -334.237 −312.366
FTSE -324.437 −314.480 -326.572 -315.606 -322.425 −311.135
DOW -298.406 -302.196 -315.164 −284.247 -292.974 -293.486

For multivariate foreign exchange time series, I observe that Neural-

BEKK(1,1)-Student’s t is the best performer on 8/9 time series considered. Across

different assets it is seen that the Student’s t version of Neural GARCH consistently

performs better than the traditional GARCH models as well as Neural GARCH

with normal innovations. This suggests that a model with Student’s t innovation

does indeed model the leptokurtic behaviour of financial time series returns better

than a model with normal innovations. This finding is in line with findings from

6.4. Performance of neural GARCH on financial time series 82

existing literature (for example Bollerslev (1987) and Heracleous (2007)).

Table 6.4: Test log-likelihoods for univariate foreign exchange time series.

Time series GARCH(1,1)-Normal GARCH(1,1)-Student’s t Neural-GARCH(1,1) Neural-GARCH(1,1)-Student’s t EGARCH(1,1,1)-Normal EGARCH(1,1,1)-Student’s t
AUDCAD −397.251 -402.582 -409.553 -398.645 -397.776 -473.302
AUDCHF -311.566 -308.029 −293.853 -294.010 -309.295 -312.965
AUDJPY -346.024 -350.401 -353.213 −335.945 -346.478 -354.095
AUDNZD -303.986 -318.345 -307.44 −301.514 -303.627 -322.777
AUDUSD -423.602 -424.594 -432.518 −422.753 -424.498 -425.807
CADJPY -351.749 -359.545 −349.209 -349.842 -350.460 -362.875
CHFJPY -238.566 -241.360 -215.536 −208.710 -230.120 -253.050
EURAUD -338.378 -344.922 -347.995 −336.604 -337.481 -347.259
EURCAD -347.177 -359.499 −345.989 -347.730 -346.547 -366.701
EURCHF -277.643 -153.502 -156.567 −142.963 -275.073 -321.051
EURGBP -366.187 -378.950 -373.515 −364.619 -364.727 -389.416
EURJPY -266.674 -278.327 -267.374 −256.341 -262.667 -290.897
EURUSD -332.917 -347.818 −330.471 -334.488 -334.178 -361.348
GBPAUD −335.530 -346.944 -353.800 -344.842 -335.812 -353.034
GBPJPY -330.030 -348.729 -337.981 −324.559 -329.013 -359.506
GBPUSD −418.593 -431.554 -423.460 -419.658 -420.534 -441.162
NZDUSD −415.648 -416.944 -425.841 -417.380 -416.094 -417.153
USDCAD -408.008 -416.483 −404.614 -413.507 -406.735 -419.863
USDCHF -315.963 -303.351 -276.461 −260.177 -282.682 -308.410
USDJPY -295.295 -304.539 -291.419 −277.477 -294.519 -318.100

Table 6.5: Test log-likelihoods for multivariate foreign exchange time series.

Time series GARCH(1,1)-Normal GARCH(1,1)-Student’s t Neural-GARCH(1,1) Neural-GARCH(1,1)-Student’s t
EURGBP,EURCHF -643.521 -558.275 -523.725 −513.214
GBPJPY GBPUSD -629.950 -656.198 -649.221 −605.305
AUDCHF AUDJPY -534.49 -522.934 -497.726 −477.992

EURGBP,EURUSD,EURJPY -920.085 -959.420 -985.156 −917.907
USDCAD,USDCHF,USDJPY -1008.821 -998.041 -990.601 −957.912
EURGBP,GBPJPY,USDJPY −916.957 -943.66 -1011.435 -966.806
GBPAUD,GBPJPY,GBPUSD -971.522 -991.8238 -1037.296 −967.500

EURCHF,EURGBP,EURJPY,EURUSD -1196.477 -1127.192 -1105.298 −1078.165
AUDJPY,AUDCHF,EURCHF,GBPJPY -1505.540 -862.995 -865.471 −783.955

In order to evaluate whether the models’ performances across different time

series are statistically significant, I plotted a critical difference (cd) diagram by fol-

lowing the approach of the authors in Ismail Fawaz et al. (2019) where a Friedman

test at α = 0.05 Friedman (1940) was first used to reject the null hypothesis that

the four models are equivalent and have equal rankings, and then a post-hoc test

was done using a Wilcoxon signed-rank test Wilcoxon (1945) at the 95% confi-

dence level. The critical diagram shows the average rankings of the models across

different datasets.

In Figure 6.3 I show the cd plot for univariate time series. A bold hori-

zontal line indicates no significant difference amongst the group of models that

are on the line. In the univariate experiments I observe no significant difference

amongst the group: EGARCH(1,1,1)-Student’s T, GARCH(1,1)-Student’s T and

Neural-GARCH(1,1); likewise, there is also no significant difference amongst the

group: GARCH(1,1)-Student’s T, Neural-GARCH(1,1), GARCH(1,1)-Normal and

EGARCH(1,1,1)-Normal. I also observe that on average, GARCH(1,1)-Normal

6.4. Performance of neural GARCH on financial time series 83

and EGARCH(1,1,1)-Normal perform significantly better than EGARCH(1,1,1)-

Student’s T. I establish that Neural-GARCH(1,1)-Student’s t is the best performer

overall on the univariate datasets, and it significantly outperforms the other models

with an average rank of 1.8929.

Figure 6.3: Critical difference diagram of the univariate experiments. A horizontal bold
line indicates no significant difference amongst the group of models. Neural-
GARCH(1,1)-Student’s t is the best performer in the univariate experiments.

Figure 6.4: Critical difference diagram showing the average rankings of GARCH(1,1) and
Neural-GARCH(1,1) with normal and Student’s t innovations on all time series
experiments. Neural-GARCH(1,1)-Student’s t is the best-performing model
with an average rank of 1.4324.

In Figure 6.4 I show the cd plot constructed using all the time series experi-

ments (univariate and multivariate). The aim is to compare the class of traditional

GARCH(1,1) models against their neural network adaptations. I observe that there

is no significant difference between GARCH(1,1)-Student’s t, Neural-GARCH(1,1)

and GARCH(1,1)-Normal, and it can be established that Neural-GARCH(1,1)-

Student’s t is the best performer overall with an average ranking of 1.4324.

For a GARCH(1,1) model, the returns process is often assumed to be stationary

with a constant unconditional mean and variance. Neural GARCH(1,1) relaxes this

stationary assumption. The unconditional variance of Neural-GARCH(1,1) in the

univariate case

σ
2
t = ωt +αtr2

t +βtσ
2
t−1 (6.20)

is obtained by taking the expectation of Eqn 6.20 (since rt = µt +σtε and assuming

6.4. Performance of neural GARCH on financial time series 84

µt = 0):

E[r2
t] = E[ωt +αtr2

t−1 +βtσ
2
t−1]

= ωt +αtE[r2
t−1]+βtE[σ2

t−1]

= ωt +(αt +βt)E[r2
t−1].

(6.21)

For a GARCH(1,1) model with constant coefficients {ω,α,β}, E[r2
t] = E[r2

t−1]

(constant unconditional variance) and therefore ω

1−α−β
. With Neural-GARCH(1,1),

E[r2
t] ̸= E[r2

t−1] however one can assume that the parameters {ωt ,αt ,βt} change

gradually with no sudden jumps and therefore E[r2
t] ≈ E[r2

t−1] (Bri, 2017) and ap-

proximate the time-varying unconditional variance of Neural-GARCH(1,1) with

E[r2
t]≈ ωt

1−αt−βt
with αt +βt < 1.

Results from the analysis of the Neural-GARCH(1,1) coefficients show a con-

sistent pattern when compared to GARCH(1,1) models. I provide an example for

the currency pair USDCHF in Figure 6.5, which shows the time-varying param-

eter set {ωt ,αt ,βt} of Neural-GARCH(1,1) against the constant set {ω,α,β} of

GARCH(1,1). It can be observed across that Neural-GARCH(1,1) consistently es-

timates a higher value for ω and α , and a lower value for β . In Figure 6.6 I show

the zoomed-in plots of the Neural-GARCH(1,1) coefficients shown in Figure 6.5

for the currency pair USDCHF. It can be seen that the coefficients follow well-

behaved time-varying behaviour and similar dynamics is observed across all three

parameters.

Figure 6.5: Plots of Neural-GARCH(1,1) coefficients against GARCH(1,1) coefficients.
The blue line represents the Neural-GARCH(1,1) αt(left), βt(middle) and
ωt(right), and the orange line shows the GARCH(1,1) coefficients.

Having time-varying coefficients allows one to model financial returns time

6.5. Conclusion 85

Figure 6.6: Zoomed-in plots of the Neural-GARCH(1,1) coefficients shown in Figure 6.5
for USDCHF.

series as a non-stationary process with a 0 unconditional mean but time-varying un-

conditional variance. Similarly, the authors in Stǎricǎ and Granger (2005) reported

that by relaxing the stationarity assumption on daily S&P 500 returns and using lo-

cally stationary linear models, a better forecasting performance was achieved, and

in their analysis they showed most of the dynamics of the returns time series to be

concentrated in shifts of the unconditional variance.

The proposed model provides a data-driven approach to modelling the returns

process. During model training no constraints were placed on the neural network

parameters, however it can be observed in Figure 6.6 that the model nonetheless

outputs time-varying coefficients that satisfy the condition αt + βt < 1, which is

required for the model to have a well-defined unconditional variance.

6.5 Conclusion
In this chapter I propose neural GARCH: a neural network adaptation of the uni-

variate GARCH(1,1) and multivariate diagonal BEKK(1,1) models to model condi-

tional heteroskedasticity in financial time series. The approach consists of a recur-

rent neural network that captures the temporal dynamics of the returns process and

a multilayer perceptron to predict the next-step-ahead GARCH coefficients, which

are then used to determine the conditional volatilities.

The generative model of neural GARCH makes predictions based on all avail-

able information, and the inference model makes updated posterior estimates of the

GARCH coefficients when new information becomes available.

This is a successful adaptation of the neural latent variable model in a finan-

6.5. Conclusion 86

cial setting. In this setup, the latent space is the coefficients of the chosen GARCH

model. Once the coefficients are obtained, the volatility can be calculated determin-

istically using the chosen GARCH model. This therefore makes the latent space in-

terpretable and allows one to combine domain knowledge and nonlinear modelling

to design more powerful volatility models.

However, neural GARCH models are still GARCH models by nature, and

therefore suffer from curse of dimensionality. This makes the model less ideal in

cases where the portfolio has higher dimensions. In the next experiment, I explore

an alternative setup to handle covariance matrix forecasting in higher dimensions.

Chapter 7

Designing deep latent conditional

volatility models- part 2

7.1 Introduction and motivation

In chapter 6 I introduced an approach to combine the explainability of traditional

GARCH models and deep learning models to forecast conditional volatility. This

approach has two limitations: 1. it is suitable for only experience professionals with

detailed knowledge of GARCH models; 2. it suffers from the curse of dimension-

ality and cannot be used for larger portfolios.

In this chapter, I design an alternative model for end users either with limited

knowledge on GARCH models and hence favor a data-driven approach, or those

who may wish to forecast the conditional volatility of a larger (n>5) portfolio.

The design of the proposed model draws inspiration of that introduced in chap-

ter 4; the covariance matrix of a portfolio is modelled as the latent space of the deep

latent time series model.

Financial time series is known to exhibit heteroskedastic behaviour - time-

varying conditional volatility (Engle and Patton, 2007; Poon and Granger, 2003).

Being able to model and predict this behaviour is of practical importance to profes-

sionals in finance for the purpose of risk management (Christoffersen and Diebold,

2000; Long et al., 2020), derivative pricing (J.Duan, 1995), and portfolio optimisa-

tion (Ranković et al., 2016; Escobar-Anel et al., 2022).

7.2. Stochastic volatility models and existing deep learning attempts 88

It is well documented in literature that (conditional) volatility is forecastable

on hourly or daily frequencies (Christoffersen and Diebold, 2000). On a univari-

ate level, this involves predicting time-varying variances of asset returns; this pre-

dictability can be attributed to the so-called volatility clustering phenomenon: large

(small) changes in asset price are often followed by further large(small) changes

(Engle and Patton, 2007; Fama, 1965; Schwert, 1989). On a multivariate level (in-

volving a portfolio of assets), volatility forecasting involves estimating conditional

covariances between asset pairs in addition to conditional variances of the assets.

One could argue that some of this predictability comes from the so-called spillover

effect: the transfer of shock between different financial markets (Jebran et al., 2017;

Hassan and Malik, 2007; Du et al., 2011). An effective multivariate volatility model

therefore needs to capture both intra and inter-time series dynamics.

The traditional way of performing volatility forecasting with GARCH models

works well in low dimensions (fewer than 5 assets) due to their simplistic paramet-

ric nature. When modelling a portfolio of assets however, it becomes difficult to

capture complex dependencies between the various assets that make up the portfo-

lio. Furthermore, the O(n5) computational complexity of GARCH models prevents

them from being easily applied in higher dimensions. To this end, I propose the

Variational Heteroskedastic Volatility Model (VHVM), which uses a neural net-

work structure (variational autoencoder + recurrent neural network) to simultane-

ously model the temporal and inter-asset relationships between the returns of the

portfolio instruments. The proposed model performs well relative to commonly

used multivariate volatility models, as well as the current state of the art neural

network volatility model, with a computational complexity of O(n2).

7.2 Stochastic volatility models and existing deep

learning attempts
Traditional volatility forecasting models can be divided into two main categories:

Generalised AutoRegressive Conditional Hertoscedasitcity (GARCH) (Bollerslev,

1986; Nelson, 1991; Glosten et al., 1993) and Stochastic Volatility (SV) (Jacouier

7.2. Stochastic volatility models and existing deep learning attempts 89

et al., 1994; Chan and Grant, 2016) models. The two competing classes of mod-

els rely on different underlying assumptions (Luo et al., 2018). GARCH mod-

els describe a deterministic relationship between future conditional volatility and

past conditional volatility and squared returns. SV models assume that conditional

volatility follows a latent autoregressive process. Although there is no general con-

sensus that GARCH is always superior to SV (or vice versa), there is some evi-

dence that SV models are more flexible in modelling the characteristics of asset

returns (Chan and Grant, 2016; Shapovalova, 2021). Nonetheless, the popularity of

GARCH models seems to surpass that of SV models due to several reasons. Firstly,

GARCH models are easier to fit than SV models. The parameters of GARCH are

obtained using maximum likelihood estimation, whereas for SV models one needs

to obtain samples from an intractible posterior distribution using methods such as

Markov chain Monte Carlo (MCMC), which works well when the number of pa-

rameters is small, however the convergence can be slow in larger models (Shapo-

valova, 2021). Secondly, there is an abundance of open-source software (packages)

for GARCH models, such as fGarch (Wuertz et al., 2017) and rugarch (Galanos and

Kley, 2022) in the programming language R, and arch (Sheppard et al., 2022) in

Python. For SV models however, there was no go-to package for model estimation

until the release of stochvol and factorstochvol (Hosszejni and Kastner, 2021) in R.

It is worth mentioning that GARCH models too suffer from the curse of di-

mensionality. For a portfolio of n assets, the computational complexity of GARCH

models scales with O(n5), which makes it impossible fit to beyond a portfolio of

roughly 5 assets (Wu et al., 2013).

In recent years, the application of deep learning models for time series fore-

casting has achieved state of the art performances in many domains (Bandara et al.,

2019; Böse et al., 2017; Li et al., 2018). In this experiment I specifically focus on

multivariate asset returns time series, a natural research direction would be to inves-

tigate whether deep learning models can capture complex dependencies between

different assets across time. There are two main obstacles in this task. Firstly, the

conditional volatility (covariance matrix) is a latent variable and must be inferred

7.2. Stochastic volatility models and existing deep learning attempts 90

using observational data (Luo et al., 2018). Secondly, for a matrix to be a valid

covariance matrix, it must be symmetric and positive definite (Engle and Kroner,

1995). How to impose these constraints on a neural network such that its outputs

are valid covariance matrices is a challenging task.

To tackle the first challenge, I adopt a recent trend that combines a variational

autoencoder (VAE) and a recurrent neural network (RNN) (a VRNN) to allow ef-

ficient structured inference over a sequence of continuous latent random variables

(Chung et al., 2015; Bayer and Osendorfer, 2014; Krishnan et al., 2017; Fabius and

van Amersfoort, 2015; Fraccaro et al., 2016; Karl et al., 2017). The use of a VAE

(and hence variational inference) translates posterior approximation into an opti-

misation task which can be solved using a neural network trained with stochastic

gradient descent. The use of an RNN allows information from previous steps to be

used in the modelling and forecasting of the latent variable in future steps. This

promising framework has been explored in the neural GARCH experiment as well

as in Luo et al. (2018). The authors in Luo et al. (2018) proposed a purely data

driven approach to volatility forecasting under the VRNN framework which I used

as a baseline model in the results section.

To tackle the second challenge, one possible approach is to combine traditional

econometrics models with deep learning models. Traditional econometrics models

have well understood statistical properties and neural networks can be used to en-

hance the predictive power of the model. In neural GARCH for example, I use

a neural network to parameterise the time-varying coefficients of the BEKK(1,1)

model, which is a multivariate GARCH model proposed by Engle and Kroner

(1995). The BEKK model produces symmetric and positive definite covariance

matrices by design and therefore no other constraints need to be applied to the neu-

ral network output. As mentioned previously however, many econometric models

suffer from curse of dimensionality. Instead, I follow the approach in Dorta et al.

(2018) and design a neural network such that it outputs the Cholesky decomposition

of the precision matrix (inverse of the covariance matrix) at every time step. I will

show later on how this guarantees symmetry and positive definiteness. (Engle and

7.2. Stochastic volatility models and existing deep learning attempts 91

Kroner, 1995)

For a financial asset with price St at time t, its log returns are computed as

rt = log(St)− log(St−1). The returns process rt can be assumed to have a con-

ditional mean E[rt |It−1] = 0 and a conditional variance E[rt
2|It−1] = σt

2, in other

words rt |It−1 ∼N (0,σ2
t). The information set It describes all relevant available at

time t: It = {r1:t ,σ1:t
2}. The time variation of conditional variance σ is known as

heteroscedasticity and the aim of volatility forecasting is to model this behaviour

(Engle and Kroner, 1995).

7.2.1 Recap on GARCH models

ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models have been dominat-

ing the field of volatility forecasting since the late 1900s due to their simple model

form, explainability, and ease of estimation. Many GARCH model variants have

since been proposed to account for well-known stylised facts about financial time

series such as volatility clustering and leverage effect (Engle and Patton, 2007). The

EGARCH (Nelson, 1991) and GJR-GARCH (Glosten et al., 1993) models for ex-

ample, were designed to specifically accommodate the leverage effect. The most

general GARCH(p,q) model proposed by Bollerslev (1986) describes a determinis-

tic relationship between future conditional volatility, past conditional volatility and

squared returns:

σ
2
t = ω +

p

∑
i=1

αir2
t−i +

q

∑
j=1

β jσ
2
t− j, (7.1)

where p and q are lag orders of the ARCH and GARCH terms, under which the

returns process rt has an unconditional mean E[rt] = 0 and unconditional variance

E[r2
t] =

ω

1−α−β
.

In total, there are many hundreds of GARCH model variants, however there

exists little consensus on when to use which GARCH models as their performances

tend to vary with the nature and behaviour of the time series being modelled,

for example, the leverage effect is frequently observed in stock returns but rarely

seen in foreign exchange currency returns (Engle and Patton, 2007). In Hansen

and Lunde (2005) the authors compared the performances of 330 GARCH vari-

7.2. Stochastic volatility models and existing deep learning attempts 92

ants on Deutsche Mark-US Dollar exchange rates and IBM returns and found that

the GARCH(1,1) was not outperformed by any other model in the foreign ex-

change analysis. In the IBM stock returns analysis however, the authors found

that GARCH(1,1) was inferior to models that explicitly accounted for the leverage

effect. It has thus become common practice to explore various GARCH variants for

the same task (Chan and Grant, 2016; Chu et al., 2017; Malik, 2005).

For a portfolio of assets, models tend to be multivariate generalisations of the

univariate GARCH model. In additional to modelling conditional variances for

each asset, one also needs to model time varying covariances between different

asset pairs. The output for a multivariate GARCH model is a time-varying covari-

ance matrix which describes the instantaneous intra and inter-asset relationships.

Notable examples of multivariate GARCH models include the VEC model (Boller-

slev et al., 1988), the BEKK model (Engle and Kroner, 1995), the GO-GARCH

model (Van Der Weide, 2002), and the DCC-GARCH model (Christodoulakis and

Satchell, 2002; Tse and Tsui, 2002; Engle, 2002).

For this experiment, I used the DCC-GARCH (dynamic conditional correla-

tion) model as a multivariate GARCH baseline. The key difference between DCC-

GARCH and BEKK (a popular multivariate GARCH) is that BEKK assumes con-

stant conditional correlation between assets, i.e. the change in the covariance be-

tween two assets with time is due to the changes in the two variances (but the con-

ditional correlation is constant) (Huang et al., 2010). The constant conditional cor-

relation (CCC) assumption is rather crude since during different market regimes

one would expect the correlation between assets to vary. The DCC-GARCH is a

generalisation of a CCC-GARCH that accounts for dynamic correlation. During

the estimation procedure, various univariate GARCH models are fit for the assets,

followed by estimations of the parameters for conditional correlation.

When fitting a multivariate GARCH model under the assumption of normal

innovations (rt ∼ N (0,Σt)), one seeks to maximise the multivariate normal log

likelihood function (Bauwens et al., 2006):

7.2. Stochastic volatility models and existing deep learning attempts 93

L (θ) =−1
2

T

∑
t=1

(log|Σt |+ rT
t Σ
−1
t rt), (7.2)

which becomes computationally expensive in higher dimensions since one is re-

quired (for a portfolio of n assets) to invert an n×n covariance matrix Σt for every

time step.

One solution to alleviate this burden is to directly work with the precision ma-

trix (inverse covariance matrix) instead: P = Σ
−1. Setting a neural network output

to be a precision matrix rather than a covariance matrix allows one to compute the

log likelihood straightaway; hence bypassing the expensive matrix inversion step

during model training. When the actual covariance matrix is required during the

testing phase, one could simply invert the precision matrix to obtain the covariance

matrix (Luo et al., 2018; Dorta et al., 2018).

7.2.2 Stochastic volatility as an alternative to GARCH models

Stochastic Volatility is an alternative class of models that rely on assumption that the

log conditional variance follows a non-deterministic autoregressive AR(p) (usually

p = 1) process (Shapovalova, 2021):

lnσ
2
t+1 = µ +φ lnσ

2
t +σηηt+1, (7.3)

where ηt ∼ N(0,1) describes the innovation of the log variance process. For

the rest of the section we refer the log volatility lnσ2
t as ht such that rt = exp(ht/2)εt

where εt ∼ N(0,1).

In a multivariate setting, one seeks to simultaneously model the volatility

movements of a group of assets (Platanioti et al., 2005). Related movements be-

tween different asset classes, financial markets or exchange rates are often observed

due to them being infuenced by common unobserved drivers (or factors) (Aydemir,

1998). Diebold and Nerlove (1989) investigated the behaviour of seven dollar ex-

change rates for a period of 12 years and found that the seven series showed similar-

ities in volatility behaviour in response to actions taken by the US government such

as intervention efforts. Since stochastic volatility models are defined in terms of the

7.2. Stochastic volatility models and existing deep learning attempts 94

log volatility process, it is harder to generalise a univariate model to its multivariate

counterpart than a GARCH model (Platanioti et al., 2005).

In this experiment I take as baseline the factor model independently proposed

by Pitt and Shephard (1999) and Aguilar and West (2000). An open-source package

(factorstochvol) was developed in the programming language R by Hosszejni and

Kastner (2021) which I used to run the baseline SV model in the analysis. The factor

volatility model (Hosszejni and Kastner, 2021) for a portfolio of n assets assumes

m latent common factors where m < n, it is given that:

rt | f t ∼N (Λ f t , Σ̄t),

f t ∼N (0, Σ̌t),
(7.4)

where f t = (ft1, ..., ftm)T is the vector of m factors, Λ ∈ Rn×m is a matrix of

factor loadings. The covariance matrices Σ̄t and Σ̌t are diagonal and are defined as:

Σ̄t = diag(exp(h̄t1), ...,exp(h̄tn)),

Σ̌t = diag(exp(ȟt1), ...,exp(ȟtm)),
(7.5)

where h̄ and ȟ are the log variances of the n assets and m latent factors defined

as follows (the AR(1) process given in (7.3)):

h̄ti ∼N (µ̄i + φ̄i(h̄t−1,i), σ̄
2
i), i = 1, ...,n,

ȟt j ∼N (µ̌ j + φ̄ j(ȟt−1, j), σ̌
2
j), j = 1, ...,m.

(7.6)

Given the above, the multivariate returns process follows a 0 mean multivari-

ate normal distribution with rt ∼N (0,Σt), where Σt = ΛΣ̌tΛ
T + Σ̄t . It can be seen

that the factor volatility model in (7.4) is by nature a state space model with a ran-

dom walk latent transition process and a linear emission process rt | f t . I will show

later on that the proposed end-to-end neural network architecture follows the same

theoretical framework: a neural network (an RNN) that models the non-linear la-

tent transition process f t | f t−1, a neural network (VAE) that infers the latent factors

from observational data f t |r1:t , and a neural work (multilayer perceptron (MLP))

that parameterises the emission distribution rt | f t .

7.3. Designing a purely data-driven deep conditional volatility model 95

7.3 Designing a purely data-driven deep conditional

volatility model

7.3.1 Covariance matrix parameterisation

A covariance matrix is required to be both symmetric and positive definite (Engle

and Kroner, 1995). Under the assumption that the returns time series follows a

multivariate normal distribution rt ∼N (0,Σt), the aim to evaluate the log deter-

minant log|Σt | and Mahalanobis distance rT
t Σ
−1
t rt from the log likelihood (7.2). I

follow the parameterisation scheme in Dorta et al. (2018) and perform a Cholesky

decomposition on the precision matrix:

Pt = Σ
−1
t = LtLT

t , (7.7)

which ensures Pt is symmetric by construction. To ensure positive definiteness, I

require that the diagonal entries of Lt to be strictly positive; this could achieved by

applying a Softplus function on top of the neural network output.

It can be seen from the log likelihood (7.2) that the covariance matrix needs

to be inverted before evaluating the Mahalanobis distance; this process is costly at

higher dimensions. Working with the precision matrix allows one to bypass this

inversion during model training as the Mahalanobis distance is simply rT
t LtLT

t rt .

To evaluate the log determinant, it is given that log|Σt | = −2∑
n
i=1 log(lii,t),

where lii,t is the ith element in the diagonal of Lt . Under this scheme, for a port-

folio of n assets, the output of the proposed neural network is simply a vector of

size n(n+1)
2 (denoted zt thereon). I convert the vector zt into a lower triangular ma-

trix in a deterministic way using the torch.tril indices() method in PyTorch (e.g.

f ([a,b,c]T) =

a 0

b c

).

I then apply a Softplus function to the diagonal elements of this matrix (to en-

sure positive definiteness) and the resulting matrix is the lower Cholesky matrix Lt .

This procedure is carried out at every time step to produce time-varying precision

matrices. When the actual covariance matrix is required, for example in the test set

7.3. Designing a purely data-driven deep conditional volatility model 96

to evaluate model performance, matrix Pt is inverted to obtain Σt

7.3.2 Generative model

The generative model defines the joint distribution Pθ (r1:T ,L1:T ,z1:T), where rt is

the multivariate returns process; Lt is the lower Cholesky decomposition of the

precision matrix Pt ; vector zt is the neural network output of size n(n+1)
2 , which is

the latent variable that is to be inferred using observational data. I factorise the joint

distribution as follows:

Pθ (r1:T ,L1:T ,z1:T) =
T

∏
t=1

Pθ (rt |Lt)Pθ (Lt |zt)Pθ (zt |r1:t−1), (7.8)

where Pθ (zt |r1:t−1) is a learned prior distribution which describes the transition

dynamics of the latent variable zt . Information about the sequence r1:t−1 is carried

by an RNN known as the gated recurrent unit (GRU) (Cho et al., 2014) with hidden

state ht such that:

Pθ (zt |r1:t−1) = Pθ (zt |ht−1) = N (µz,t ,Σz,t). (7.9)

The prior distribution is parameterised by a multilayer perceptron (MLP):

{µz,t ,Σz,t}prior = MLPGen(ht−1). (7.10)

Pθ (Lt |zt) is a delta distribution centered on the output of the deterministic func-

tion: torch.tril indices followed by a Softplus function on the diagonal elements,

which converts neural network output vector zt into Lt .

The emission distribution Pθ (rt |Lt) (the decoder) describes the 0 mean mul-

tivariate normal likelihood given in (7.2) since Pθ (rt |Lt) = Pθ (rt |(LtLT
t)
−1 = Σt).

A graphical presentation of the generative model is given in Fig 7.1. I refer to the

parameters of the generative model collectively as θ , and the parameters of the in-

ference model as φ , which are jointly optimised using stochastic gradient variational

Bayes.

There are various ways to design the prior distribution Pθ (zt |It−1), where

7.3. Designing a purely data-driven deep conditional volatility model 97

It−1 = {r1:t−1,z1:t−1,Σ1:t−1} represents all available information up to time t − 1.

I tested other design schemes such as Pθ (zt |r1:t−1,z1:t−1) and Pθ (zt |r1:t−1,Σ1:t−1),

and found that in general the temporal dynamics of the latent variable could be well

predicted using past returns alone; hence I decided on Pθ (zt |r1:t−1). Choosing the

prior this way keeps the number of neural network parameters lower than the other

two specifications, which reduces overfitting; also one does not need to evaluate the

covariance matrix during training.

Figure 7.1: Generative model of VHVM. The generative MLP takes as input {r1:t−1} and
predicts the next-period latent factor zt , conditioned on which one can obtain
an estimate of the covariance matrix Σt .

7.3.3 Inference model

The inference model defines the joint distribution qφ (L1:T ,z1:T |r1:T) which I fac-

torise as follows:

qφ (L1:T ,z1:T |r1:T) =
T

∏
t=1

qφ (Lt |zt)qφ (zt |r1:t), (7.11)

where the posterior distribution over latent variable qφ (zt |r1:t) is parameterised

by the encoder (MLP) of the VAE:

{µz,t ,Σz,t}post = MLPIn f (ht); (7.12)

this represents the filtering distribution, which is the inference of zt given the

most up-to-date observational data r1:t . Since qφ (zt |r1:t) is the variational approxi-

7.3. Designing a purely data-driven deep conditional volatility model 98

mation of the actual posterior Pθ (zt |r1:t), maximising the ELBO(θ ,φ) is equivalent

to minimising the KL divergence between the variational posterior and the actual

posterior. The deterministic function to obtain Lt given zt is the same as in the

generative model: i.e. qφ (Lt |zt) = Pθ (Lt |zt), since this simply torch.tril indices()

followed by Softplus.

To summarise, VHVM is consisted of three neural networks: (1) an MLP

(MLPGen) for the prior prediction model Pθ (zt |r1:t−1), also known as the decoder

of the VAE which models the transition of the latent variable; (2) an MLP (MLPIn f)

for the variational posterior qφ (zt |r1:t), which is the encoder the VAE; (3) a GRU

with hidden states ht to carry sequential information about the multivariate returns

process {r1:T} and is shared by the generative and inference models.

Figure 7.2: Inference model of VHVM. The Inference MLP takes as input {r1:t} and
paratermises the filter distribution over zt , conditioned on which one can ob-
tain the posterior estimate of the covariance matrix Σt .

7.3.4 Model optimisation and prediction

To perform variational inference I maximise the ELBO(θ ,φ) w.r.t. θ and φ jointly

(Kingma and Welling, 2014). The expression for the evidence lower bound is given

in (7.13). VHVM is designed to output one step-ahead volatility prediction. When

new observations become available, I update the hidden state ht of the GRU, which

serves as the input to the prediction network MLPGen to predict the next period lower

Cholesky matrix.

7.4. Performance of VHVM on multivariate FX datasets 99

ELBO(θ ,φ) =
T

∑
n=1

Ezt∼qφ
[logPθ (rt |zt)]−KL(qφ (zt |r1:t)||Pθ (zt |r1:t)), (7.13)

7.4 Performance of VHVM on multivariate FX

datasets

I test VHVM on foreign exchange data obtained from the Trading Academy website

(eatradingacademy.com). The datasets were checked to have less than 20% missing

values and were cleaned to remove outliers beyond 1.5 times interquartile range,

before being scaled to have 0 mean and unit variance.

I compute daily log returns using data from the period 24/01/2012 to

23/01/2022 (a total of 3653 observations), from which I remove weekend read-

ings where the change in asset price was 0. I constructed various portfolios using

the collection of FX series for n = 5, 10, 20, and 50 (exact portfolios given in the

appendix). For model construction, I used a train:validation:test ratio of 80:10:10

and training for 50 epoches.

For model benchmarking, I compared VHVM against three benchmarks: (1)

the DCC-GARCH model (Engle, 2002), (2) a factor SV model with MCMC sam-

pling (Hosszejni and Kastner, 2021), and (3) Neural Stochastic Volatility model

(Luo et al., 2018).

For hyperparameter optimisation, I adopted a grid search approach. The

RNN hidden state was chosen from {8,16,24,32,64,128}, the MLP hid-

den layer size from {1,2,5,8,16,32,64}, the MLP hidden layer number from

{1,2,3,5,10,15,25,35}, the latent space dimension from {1,2,3,5,10,15,25,35},

the learning rate was chosen from {0.1,0.01,0.001,0.0001}.

The three baselines are representative models from the current approaches to

volatility forecasting: GARCH models, SV models, and deep learning based mod-

els. I have chosen DCC-GARCH due to its ability to model dynamic conditional

correlation between assets; I implemented the model in R using the package ”rm-

7.4. Performance of VHVM on multivariate FX datasets 100

garch” (Galanos, 2022). For the factor SV model with MCMC sampler (MCMC-

SV), I used the recently developed ”factorstochvol” package in R (Hosszejni and

Kastner, 2021).

The Neural Stochastic Volatility model (NSVM) Luo et al. (2018) is perhaps

most relevant to this work since it was also designed under the VRNN framework.

NSVM uses four recurrent neural networks to model temporal dynamics: one for

the observed returns series rt and another for the latent factor zt in the generative

model; similarly for the inference model.

In the proposed model however, I attempted to keep the number of model pa-

rameters low by using only one RNN but inputting the hidden state at different time

steps to perform prediction and inference. Another key difference between NSVM

and VHVM is that the output of NSVM is a low-rank approximation of the time-

varying covariance matrix, whereas VHVM outputs the full covariance matrix. A

low rank approximation may offer faster computations for higher dimensional port-

folios, however I show that VHVM is consistently better in terms of performance.

For model evaluation,I perform one step-ahead covariance matrix forecasting

on the test set, and following Wu et al. (2013) and Luo et al. (2018), I use the log

likelihood (7.2) as the performance metric since it describes the likelihood of the

observed data falling under the estimated distribution.

In Table 7.1 to 7.5 I show the performance of VHVM against the three base-

line models: NSVM, DCC-GARCH, and MCMC-SV on various 5 dimensional FX

portfolios. For every time step I forecast a 5×5 covariance matrix and in the tables

I report the cumulative log likelihood of the test set. I have highlighted in bold the

best performing model in terms of log likelihood (higher is better).

It can be observed that VHVM performs best in 17 out of the 20 constructed

portfolios. The neural network baseline NSVM however performs best in only one

of the portfolios. As previously mentioned, the two key difference between VHVM

and NSVM are: (1) VHVM uses a single RNN to carry information about r1:t and

the hidden state at different time steps is used for forecasting (ht−1)/inference (ht),

whereas NSVM uses four separate RNNs to model zt and rt in generation and infer-

7.4. Performance of VHVM on multivariate FX datasets 101

ence; (2) NSVM outputs low rank approximations of the covariance matrix whereas

VHVM outputs estimates of the full covariance matrix.

The simpler structure (fewer parameters) of the proposed model has helped to

reduce overfitting. The computational complexity of the proposed model is O(n2)

since the neural network is outputting a vector whose size is proportional to the

number of terms in the covariance matrix. Whilst this is more computationally

expensive than the O(n) parameterisation in NSVM, I show experimentally that

this is justified as I compare the log-likelihoods of various financial portfolios using

the predicted covariance matrices.

Table 7.1: Log likelihoods of 5 dimensional Euro-denominated portfolios. The best per-
forming model is highlighted in bold; higher log likelihood is better.

FX pairs VHVM (proposed) NSVM DCC-GARCH MCMC-SV
EURAUD, EURHKD, EURCAD, EURCNY, EURDKK −1013.489 -1362.564 -1134.183 -1144.132
EURCNY, EURGBP, EURHKD, EURHUF, EURIDR −1189.944 -1456.841 -1235.496 -1279.841
EURGBP, EURJPY, EURKRW, EURMXN, EURNOK −1418.791 -1493.457 -1506.990 -1471.722
EURJPY, EURNZD, EURRUB, EURSGD, EURTHUB −1222.507 -1331.243 -1301.942 -1262.875

Table 7.2: Log likelihoods of 5 dimensional GBP-denominated portfolios. The best per-
forming model is highlighted in bold; higher log likelihood is better.

FX pairs VHVM NSVM DCC-GARCH MCMC-SV
GBPAUD, GBPBGN, GBPBRL, GBPCAD, GBPCHF −1156.903 -1564.931 -1328.515 -1300.182
GBPCHF, GBPCNY, GBPDKK, GBPHKD, GBPILS −898.588 -1571.065 -1047.304 -1076.312
GBPCNY, GBPINR, GBPJPY, GBPMXN, GBPKRW −1142.915 -1400.454 -1248.320 -1211.203
GBPRUB, GBPSEK, GBPTRY, GBPJPY, GBPCAD -1639.355 −1628.892 -2969.575 -2900.870

Table 7.3: Log likelihoods of 5 dimensional USD-denominated portfolios. The best per-
forming model is highlighted in bold; higher log likelihood is better.

FX pairs VHVM NSVM DCC-GARCH MCMC-SV
USDAUD, USDBGN, USDCAD, USDCHF, USDCNY −1309.623 -1663.140 -1491.194 -1333.658
USDCNY, USDEUR, USDGBP, USDHKD, USDNZD -1416.474 -1621.547 -1536.093 −1414.045
USDEUR, USDHUF, USDINR, USDJPY, USDNZD −1237.078 -1461.547 -1306.365 -1293.873

USDGBP, USDJPY, USDKRW, USDMXN, USDTRY −1609.177 1807.927 -3490.222 -3129.284

To better gauge the relative performances of the four models, I follow Ismail

Fawaz et al. (2019) and plot a critical difference (CD) diagram showing the average

ranking of the four model in Figure 7.3. Within a CD diagram, two models without

a statistically significant difference (s.s.d.) in average ranking are connected with a

horizontal line; the absence of such lines in Figure 7.3 indicates that the four models

are s.s.d. in performance across the 20 5 dimensional experiments.

7.4. Performance of VHVM on multivariate FX datasets 102

According to Figure 7.3 VHVM has the best overall average ranking (1.25),

followed by MCMC-SV(2.2), DCC-GARCH(3), and NSVM(3.55). The fact that

MCMC-SV performs slightly better than DCC-GARCH is in accordance with

claims that SV models are more flexible at modelling heteroscedastic behaviour

in financial time series (Shapovalova, 2021).

Table 7.4: Log likelihoods of 5 dimensional CNY-denominated portfolios. The best per-
forming model is highlighted in bold; higher log likelihood is better.

FX pairs VHVM NSVM DCC-GARCH MCMC-SV
CNYCAD, CNYEUR, CNYGBP, CNYIDR, CNYJPY −1171.234 -1447.516 -1304.421 -1272.866

CNYKRW, CNYMXN, CNYMYR, CNYRUB, CNYSEK −1270.803 -1346.751 -1384.705 -1335.663
CNYGBP, CNYJPY, CNYSEK, CNYSGD, CNYTHB −1236.308 -1427.729 -1307.665 -1283.031

CNYEUR, CNYMXN, CNYCAD, CNYUSD, CNYTHB -1604.544 -1592.762 −1535.586 -1541.026

Table 7.5: Log likelihoods of 5 dimensional mixed currency portfolios. The best perform-
ing model is highlighted in bold; higher log likelihood is better.

FX pairs VHVM NSVM DCC-GARCH MCMC-SV
EURAUD, GBPCAD, USDCHF, USDCNY, CNYGBP −1354.807 -1580.274 –1425.861 -1363.748
EURHKD, GBPJPY, USDCHF, CNYRUB, CNYCAD −1139.711 -1331.203 -1290.668 -1271.675
USDGBP, USDJPY, GBPCHF, CNYSGD, GBPMXN −1312.835 -1379.446 -1379.766 -1313.195
CNYEUR, CNYGBP, EURKRW, USDINR, GBPRUB −1041.155 -1247.187 -1172.433 -1146.655

Figure 7.3: Critical difference diagram showing the comparison between VHVM, NSVM,
DCC-GARCH, and MCMC-SV in 5 dimensional FX portfolios.

In Table 7.6 I show the experimental results for larger portfolios (10, 20, and 50

dimensions). In these experiments I only compare VHVM and NSVM since both

DCC-GARCH and MCMC-SV have difficulties scaling up to higher dimensions.

The list of currencies included in each portfolio is included in the Appendix. It can

be observed that VHVM performs better than NSVM across all higher dimensional

portfolios, consistent with what is seen in the 5 dimensional experiments.

7.5. Conclusion 103

Table 7.6: Log likelihoods of higher dimensional currency portfolios. The best performing
model is highlighted in bold; higher log likelihood is better.

FX pairs VHVM (ours) NSVM
10D1 −1302.786 -3038.413
10D2 −1804.729 -3117.545
10D3 −1472.019 -3114.550
10D4 −2831.592 -3174.692
20D1 789.993 -6061.243
20D2 −1334.264 -6312.093
50D −2073.592 -15180.516

7.5 Conclusion
In this experiment I have proposed Variational Heteroscedastic Volatility model

(VHVM): an end-to-end neural network architecture capable of forecasting one

step-ahead covariance matrices.

VHVM outputs the lower Cholesky decomposition of a time-varying condi-

tional precision matrix, which enforces two necessary constraints of a covariance

matrix: symmetry and postive definiteness. Furthermore, by setting the neural net-

work to output the precision matrix, one can bypass the computationally expensive

matrix inversion step in the evaluation of the multivariate normal log likelihood

function.

I demonstrated the effectiveness of VHVM against GARCH, SV, and deep

learning baseline models and we observed that VHVM consistently outperformed

its competitors.

For potential future extensions of this work, one could explore other types of

advanced neural network models such as the transformer to incorporate longer his-

tory into the forecasting process. One could also experiment combining natural

language processing techniques into volatility forecasting to better explore alterna-

tive datasets.

Another line of interesting research is the analysis of the predicted covariance

matrix. When the portfolio is of high dimensions, there could be many forecasted

correlations between asset pairs that could be attributed to noise. One potential

approach is to apply network filtering techniques such as TMFG (Massara et al.,

7.5. Conclusion 104

2016) to denoise the predictions before further analysis.

Chapter 8

General Conclusions

8.1 Summary

The purpose of this thesis is to explore nonlinear time series modelling in the context

of latent variable modelling for univariate/multivariate forecasting. This is achieved

by adopting the assumption that the underlying temporal dynamics of a time series

occur in a latent/unobservable space that is less noisy and contains the true struc-

ture of the time series, and an emission dynamics which is a mapping from the latent

space to the observation space. This thesis aims to model the transition and emis-

sion processes using neural networks to demonstrate the added value of nonlinear

modelling.

More specifically, the thesis makes use of two main components: 1. a recur-

rent neural network to perform nonlinear modelling in the temporal dimension, 2.

variational inference to obtain estimates of the latent variables. The combination of

the two allows information to propagate between past and present (values of a time

series), and between latent and observable spaces. The thesis is consisted of four

experiments, and the exact model being proposed in experiment aims to capture this

information flow the best way possible in order to learn the inherent structure in the

time series to be predicted.

In the introduction section I proposed three research questions for this thesis:

1. can deep learning and latent variable modelling be combined to achieve superior

forecasting performance, 2. can deep learning be used to infer relationships between

8.1. Summary 106

latent and observed time series, 3. how to successfully apply this framework to real

world time series. I have addressed these research questions in the following four

experiments.

8.1.1 Designing deep latent models for time series forecasting

This experiment proposes a novel architecture to perform probabilistic multistep-

ahead time series forecasting with covariates. The model combines a recurrent

neural network and a variational autoencoder to perform temporal modelling and

inference of latent variables.

The purpose of this experiment is to verify the assumption that univari-

ate/multivariate time series can be projected to a latent space which better describes

the temporal evolution of the time series and the relationships amongst a group of

time series. Hence, the latent space could be viewed as a set of features which de-

scribes the time series of interest and the experiments show that by inferring these

features and using them in the forecasting process alongside external covariates, one

can achieve better forecasting performance than simply applying an auto-regressive

model on the time series. The effectiveness of this setup is verified on a wide range

of time series from different domains.

The main advantage of the proposed VRNN model for time series forecasting

compared to a vanilla RNN benchmark is the advanced forecasting capability due to

representation learning, as well as its generative features and the ability to do prob-

abilistic forecasting. The main drawback is that the representation learning process

is a black box and hence the exact features learnt by the variational autoencoder is

unknown.

This experiment addresses research question 1 as the proposed neural network

latent variable model is able to output satisfactory prediction performance and real-

istic confidence intervals.

8.1. Summary 107

8.1.2 Investigation of inter-time series relationships learnt by

the deep latent variable model

This experiment proposes a new model to check for Granger causality between two

time series in the presence of a potential confounder. This improves upon most ex-

isting Granger causality methodologies which assume the absence of confounding.

From the first experiment I show that there is added benefit in explicitly mod-

elling the mapping from the observation to the latent space, which produces a set of

features that can be used for downstream tasks. In this experiment, these features

represent a proxy for the potential confounder. I show that for three time series X

,Y and Z, where Z is the confounder, one can obtain better predictions of Y using

a proxy for Z (learned by neural networks) than using X, which is the usual way to

check for Granger causality when assuming the absence of a confounder.

More specifically, when given X to predict Y, one can use the proposed model

to attempt to identify potential confounders, and the use of estimates of these con-

founders in the forecasting of Y could result in better performance than using X.

The main advantage of the proposed setup is in its explainability. By using

other relevant covariates to learn a representation of the confounder, one could use

this proxy to compare the forecasting performance of a target series with and with-

out it. This direct comparison allows one to account for the confounder directly,

rather than assuming its absence with the causal sufficiency assumption.

The main difficulty of the proposed method lies in determining which covari-

ates can be used to learn the proxy confounder from. At this moment in time, it

is assumed that expert judgement is in place to select the relevant time series. For

future work, one direction is to propose a more statistical/data driven way to select

the covariates.

This experiment addresses research question 2 by showing that nonlinear mod-

elling, through the use of neural networks, allows one to discover complex hidden

relationships between observed and unobserved time series. This allows the unob-

served to be accounted for explicitly in subsequent analysis.

8.1. Summary 108

8.1.3 Designing deep latent conditional volatility models- part 1

This chapter proposes a neural network extension to traditional GARCH models for

market volatility forecasting. In the first experiment I show that the autoencoder in

the VAE-RNN setup is able to learn useful features about the time series which can

be used for prediction, however those features tend to be unexplainable in nature.

In this experiment I set the features to be the coefficients of a GARCH model.

This essentially creates a GARCH model with time-varying coefficients and I show

experimentally that this improves upon traditional GARCH models with constant

coefficients and linear modelling.

The main advantage of the proposed approach is that it enhances the predictive

capabilities of traditional GARCH models with deep learning architectures, as seen

when comparing the performances of neural GARCH with its traditional counter-

parts. The main drawback is that since neural GARCH are still GARCH models by

nature, they suffer from the same problems as traditional GARCH models such as

curse of dimensionality and high computational complexity.

8.1.4 Designing deep latent conditional volatility models- part 2

This chapter extends the work of Neural GARCH modelling to higher dimensions.

It has been documented in literature that GARCH models can work up to a port-

folio of 5 assets. This chapter proposes the use of the VAE-RNN setup to model

and predict the covariance matrix of a portfolio up to 50 assets. I introduce a set of

constraints to ensure that the neural network outputs a valid covariance matrix and

I demonstrate the effectiveness of the proposed model against current SOTA neu-

ral network volatility models and traditional baselines such as stochastic volatility

models.

This experiment together with Neural GARCH address research question 3 by

demonstrating that one can successfully apply deep latent time series models in two

ways: 1. combining neural networks with existing econometrics/time models such

that their properties also apply to the new model, 2. through the use of external

constraints on the neural network output to ensure that their properties align with

domain knowledge.

8.2. Future work 109

The main advantage of the proposed approach over neural GARCH models is

its data driven nature. Since neural GARCH requires expertise in various types of

GARCH models, VHVM is an end to end model that leverages representation learn-

ing to forecast the covariance matrix given multidimensional returns time series.

8.2 Future work
In this thesis I have explored the use of nonlinear latent variable modelling for uni-

variate/multivariate time series forecasting. I have achieved this by proposing new

models which make use of a recurrent neural network and a variational autoencoder.

I have demonstrated the effectiveness of this setup on both observable and latent

time series prediction. This setup however is not unique, with more advanced se-

quential models such as the transformer, one can design more sophisticated linkage

between past/future and latent observed/latent spaces.

The main application of this thesis has been in the financial domain. It would

be interesting to explore similar methodologies in other fields where time series

structures are significantly different, such as neurological time series and atmo-

spheric/weather related time series.

Finally, the recent boom of large language models and enhanced generative

modelling give rise to potentially interesting intersections between natural language

processing and latent variable modelling.

Appendix A

VHVM Neural network

hyperparameters

In this section I provide the neural network hyperparameters for the 5D, 10D and

20D VHVM experiments in the following order: RNN hidden state size, multilayer

perceptron hidden layer (MLP) size, MLP number of layers, dimension of latent

state z, and dimension of portfolio.

FX pairs hyperparams
EURAUD,EURHKD,EURCAD,EURCNY,EURDKK 16,16,3,4,5
EURCNY,EURGBP,EURHKD,EURHUF,EURIDR 16,16,3,4,5
EURGBP,EURJPY,EURKRW,EURMXN,EURNOK 32,32,3,4,5
EURJPY,EURNZD,EURRUB,EURSGD,EURTHB 32,32,3,4,5

FX pairs hyperparams
GBPAUD,GBPBGN,GBPBRL,GBPCAD,GBPCHF 32,32,3,4,5
GBPCHF,GBPCNY,GBPDKK,GBPHKD,GBPILS 32,32,3,4,5
GBPCNY,GBPINR,GBPJPY,GBPMXN,GBPKRW 32,32,3,4,5
GBPRUB,GBPSEK,GBPTRY,GBPJPY,GBPCAD 32,32,3,4,5

FX pairs hyperparams
USDAUD,USDBGN,USDCAD,USDCHF,USDCNY 32,32,3,4,5
USDCNY,USDEUR,USDGBP,USDHKD,USDNZD 32,32,3,4,5
USDEUR,USDHUF,USDINR,USDJPY,USDNZD 32,32,3,4,5

USDGBP,USDJPY,USDKRW,USDMXN,USDTRY 32,32,3,4,5

111

FX pairs hyperparams
CNYCAD,CNYEUR,CNYGBP,CNYIDR,CNYJPY 32,32,3,4,5

CNYKRW,CNYMXN,CNYMYR,CNYRUB,CNYSEK 32,32,3,4,5
CNYGBP,CNYJPY,CNYSEK,CNYSGD,CNYTHB 32,32,3,4,5

CNYEUR,CNYMXN,CNYCAD,CNYUSD,CNYTHB 32,32,3,4,5

FX pairs hyperparams
EURAUD,GBPCAD,USDCHF,USDCNY,CNYGBP 32,32,3,4,5
EURHKD,GBPJPY,USDCHF,CNYRUB,CNYCAD 32,32,3,4,5
USDGBP,USDJPY,GBPCHF,CNYSGD,GBPMXN 32,32,3,4,5
CNYEUR,CNYGBP,EURKRW,USDINR,GBPRUB 32,32,3,4,5

FX pairs hyperparams
EURAUD,EURHKD,EURCAD,EURCNY,EURDKK 32,32,3,5,10
GBPAUD,GBPBGN,GBPBRL,GBPCAD,GBPCHF

FX pairs hyperparams
EURGBP,EURJPY,EURKRW,EURMXN,EURNOK 32,32,3,5,10
GBPCHF,GBPCNY,GBPDKK,GBPHKD,GBPILS

FX pairs hyperparams
USDAUD,USDBGN,USDCAD,USDCHF,USDCNY 32,32,3,5,10
CNYCAD,CNYEUR,CNYGBP,CNYIDR,CNYJPY

FX pairs hyperparams
USDEUR,USDHUF,USDINR,USDJPY,USDNZD 32,32,3,5,10

CNYEUR,CNYMXN,CNYCAD,CNYUSD,CNYTHB

FX pairs hyperparams
EURAUD,EURHKD,EURCAD,EURCNY,EURDKK 32,32,3,10,20
GBPAUD,GBPBGN,GBPBRL,GBPCAD,GBPCHF
USDAUD,USDBGN,USDCAD,USDCHF,USDCNY
CNYCAD,CNYTHB,CNYGBP,CNYIDR,CNYJPY

FX pairs hyperparams
EURGBP,EURJPY,EURKRW,EURMXN,EURNOK 32,32,3,10,20
GBPCHF,GBPCNY,GBPDKK,GBPHKD,GBPILS
USDEUR,USDHUF,USDINR,USDJPY,USDNZD

CNYEUR,CNYMXN,CNYCAD,CNYUSD,CNYTHB

112

FX pairs hyperparams
CNYAUD,CNYGBN,CNYCAD,CNYDKK,CNYEUR 64,64,3,25,50

CNYGBP,CNYIDR,CNYINR,CNYJPY,CNYKRW
CNYMXN,CNYMYR,CNYNOK,CNYRUB,CNYSEK
CNYSGD,CNYTHB,CNYTRY,CNYUSD,CNYZAR
EURAUD,EURBGN,EURCAD,EURDKK,EURGBP
EURHKD,EURHRK,EURHUF,EURIDR,EURJPY

EURKRW,EURMXN,EURMYR,EURNOK,EURNZD
GBPAUD,GBPBRL,GBPCAD,GBPCHF,GBPHKD
USDAUD,USDCHF,USDCAD,USDHKD,USDHRK
USDTRY,USDNZD,USDMXN,USDJPY,USDCZK

Bibliography

Changing dynamics: Time-varying autoregressive models using generalized addi-

tive modeling. Psychological Methods, 22(3):409–425, 2017. doi: 10.1037/

met0000085.

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan-

delion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

URL https://www.tensorflow.org/. Software available from tensor-

flow.org.

Zahra Abbasvandi and Ali Motie Nasrabadi. A self-organized recurrent neural

network for estimating the effective connectivity and its application to EEG

data. Computers in Biology and Medicine, 110(May):93–107, 2019. ISSN

18790534. doi: 10.1016/j.compbiomed.2019.05.012. URL https://doi.

org/10.1016/j.compbiomed.2019.05.012.

Omar Aguilar and Mike West. Bayesian dynamic factor models and portfolio allo-

cation. Journal of Business and Economic Statistics, 18(3):338–357, 2000. ISSN

15372707. doi: 10.1080/07350015.2000.10524875.

https://www.tensorflow.org/
https://doi.org/10.1016/j.compbiomed.2019.05.012
https://doi.org/10.1016/j.compbiomed.2019.05.012

BIBLIOGRAPHY 114

A.B. Aydemir. Volatility Modelling in Finance. Butterworth-Heinemann, Oxford,

1998.

Kasun Bandara, Peibei Shi, Christoph Bergmeir, Hansika Hewamalage, Quoc Tran,

and Brian Seaman. Sales demand forecast in e-commerce using a long short-term

memory neural network methodology. pages 462–474. Springer International

Publishing, 2019. ISBN 978-3-030-36718-3.

Luc Bauwens, Sébastien Laurent, and Jeroen V.K. Rombouts. Multivariate GARCH

models: A survey. Journal of Applied Econometrics, 21(1):79–109, 2006.

Justin Bayer and Christian Osendorfer. Learning stochastic recurrent networks.

arXiv preprint, pages 1–9, 2014. URL http://arxiv.org/abs/1411.

7610.

Carolina Bento. Multilayer perceptron explained with a real-life example and

python code: Sentiment analysis, 9 2021.

Boris P. Bezruchko, Vladimir I. Ponomarenko, Mikhail D. Prokhorov, Dmitrii A.

Smirnov, and Peter A. Tass. Modeling nonlinear oscillatory systems and di-

agnostics of coupling between them using chaotic time series analysis: ap-

plications in neurophysiology. Physics-Uspekhi, 51(3):304–310, 2008. doi:

10.1070/pu2008v051n03abeh006494. URL https://doi.org/10.1070/

pu2008v051n03abeh006494.

Ioana Bica, Ahmed M. Alaa, and Mihaela Van Der Schaar. Time series decon-

founder: Estimating treatment effects over time in the presence of hidden con-

founders. In 37th International Conference on Machine Learning, ICML 2020,

volume PartF16814, pages 861–872, 2020. ISBN 9781713821120.

Tim Bollerslev. Generalised Autoregressive Conditional Heteroskedasticity. Jour-

nal of Econometrics, 31:307–327, 1986.

Tim Bollerslev. A Conditionally Heteroskedastic Time Series Model for Speculative

http://arxiv.org/abs/1411.7610
http://arxiv.org/abs/1411.7610
https://doi.org/10.1070/pu2008v051n03abeh006494
https://doi.org/10.1070/pu2008v051n03abeh006494

BIBLIOGRAPHY 115

Prices and Rates of Return. The Review of Economics and Statistics, 69(3):542–

547, 1987.

Tim Bollerslev, Robert F Engle, and Jeffrey M Wooldridge. A Capital Asset Pricing

Model with Time-Varying Covariances. Journal of Political Economy, 96(1):

116–131, 1988.

Joos-Hendrik Böse, Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Dustin

Lange, David Salinas, Sebastian Schelter, Matthias Seeger, and Yuyang Wang.

Probabilistic demand forecasting at scale. Proc. VLDB Endow., 10(12):

1694–1705, aug 2017. doi: 10.14778/3137765.3137775.

Eoin Brophy, Zhengwei Wang, Qi She, and Tomás Ward. Generative adversarial

networks in time series: A systematic literature review. ACM Comput. Surv.,

55(10), feb 2023. ISSN 0360-0300. doi: 10.1145/3559540. URL https:

//doi.org/10.1145/3559540.

Edward De Brouwer, Adam Arany, Jaak Simm, and Yves Moreau. Inferring causal

dependencies between chaotic dynamical systems from sporadic time series.

2020.

Bart Bussmann, Jannes Nys, and Steven Latré. Neural Additive Vector Autoregres-

sion Models for Causal Discovery in Time Series Data. arXiv preprint, 2020.

URL http://arxiv.org/abs/2010.09429.

Junyi Chai, Hao Zeng, Anming Li, and Eric W.T. Ngai. Deep learn-

ing in computer vision: A critical review of emerging techniques and

application scenarios. Machine Learning with Applications, 6:100134,

2021. ISSN 2666-8270. doi: https://doi.org/10.1016/j.mlwa.2021.100134.

URL https://www.sciencedirect.com/science/article/pii/

S2666827021000670.

Joshua C.C. Chan and Angelia L. Grant. Modeling energy price dynamics: GARCH

versus stochastic volatility. Energy Economics, 54:182–189, 2016. doi: 10.1016/

j.eneco.2015.12.003.

https://doi.org/10.1145/3559540
https://doi.org/10.1145/3559540
http://arxiv.org/abs/2010.09429
https://www.sciencedirect.com/science/article/pii/S2666827021000670
https://www.sciencedirect.com/science/article/pii/S2666827021000670

BIBLIOGRAPHY 116

Kinder Chen. Introduction to lstm and gru, 4 2021.

Yonghong Chen, Steven L. Bressler, and Mingzhou Ding. Frequency decomposi-

tion of conditional Granger causality and application to multivariate neural field

potential data. Journal of Neuroscience Methods, 150(2):228–237, 2006. ISSN

01650270. doi: 10.1016/j.jneumeth.2005.06.011.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.

On the properties of neural machine translation: Encoder-decoder approaches,

2014.

Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep learning for

anomaly detection in time-series data: Review, analysis, and guidelines. IEEE

Access, 9:120043–120065, 2021. doi: 10.1109/ACCESS.2021.3107975.

George A. Christodoulakis and Stephen E. Satchell. Correlated ARCH (Cor-

rARCH): Modelling the time-varying conditional correlation between financial

asset returns. European Journal of Operational Research, 139(2):351–370, 2002.

doi: 10.1016/S0377-2217(01)00361-7.

Peter F Christoffersen and Francis X Diebold. How Relevant is Volatility Forecast-

ing for Financial Risk Management ? The Review of Economics and Statistics,

82(1):12–22, 2000.

Jeffrey Chu, Stephen Chan, Saralees Nadarajah, and Joerg Osterrieder. GARCH

Modelling of Cryptocurrencies. Journal of Risk and Financial Management, 10

(4):17, 2017. doi: 10.3390/jrfm10040017.

Tianjiao Chu and Clark Glymour. Search for additive nonlinear time series causal

models. Journal of Machine Learning Research, 9:967–991, 2008. ISSN

15324435.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical evaluation of gated recurrent neural networks on sequence modeling. 12

2014. URL http://arxiv.org/abs/1412.3555.

http://arxiv.org/abs/1412.3555

BIBLIOGRAPHY 117

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron Courville, and

Yoshua Bengio. A recurrent latent variable model for sequential data. volume

2015-Janua, pages 2980–2988, 2015.

Francis X. Diebold and Marc Nerlove. The dynamics of exchange rate volatility: A

multivariate latent factor ARCH model. Journal of Applied Econometrics, 4(1):

1–21, 1989. ISSN 10991255. doi: 10.1002/jae.3950040102.

Guanqun Dong, Kamaladdin Fataliyev, and Lipo Wang. One-step and multi-step

ahead stock prediction using backpropagation neural networks. pages 1–5, 12

2013. ISBN 978-1-4799-0434-1. doi: 10.1109/ICICS.2013.6782784.

Garoe Dorta, Sara Vicente, Lourdes Agapito, Neill D.F. Campbell, and Ivor Simp-

son. Structured Uncertainty Prediction Networks. Proceedings of the IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition, pages

5477–5485, 2018. doi: 10.1109/CVPR.2018.00574.

Xiaodong Du, Cindy L. Yu, and Dermot J. Hayes. Speculation and volatility

spillover in the crude oil and agricultural commodity markets: A Bayesian analy-

sis. Energy Economics, 33(3):497–503, 2011. doi: 10.1016/j.eneco.2010.12.015.

Andrea Duggento, Maria Guerrisi, and Nicola Toschi. Echo State Network models

for nonlinear Granger causality. bioRxiv, pages 1–7, 2019. doi: 10.1101/651679.

Michael Eichler. Causal inference in time series analysis. Causality: Wiley Series in

Probability and Statistics, pages 6–28, 2012. doi: 10.1002/9781119945710.ch22.

Michael Eichler. Causal inference with multiple time series: Principles and

problems. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 371(1997), 2013. ISSN 1364503X. doi:

10.1098/rsta.2011.0613.

Robert Engle. Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of United Kingdom Inflation. Econometrica, 50(4):987–1007, 1982.

BIBLIOGRAPHY 118

Robert Engle. Dynamic Conditional Correlation. Journal of Business and Economic

Statistics, 20(3):339–350, 2002.

Robert Engle and Kenneth Kroner. Multivariate Simultaneous Generalized Arch.

Econometric Theory, 11(1):122–150, 1995.

Robert F. Engle and Andrew J. Patton. What good is a volatility model? Fore-

casting Volatility in the Financial Markets, 1:47–63, 2007. doi: 10.1016/

B978-075066942-9.50004-2.

I. Erten, M.B. Murat, and N. Okay. Volatility Spillovers in Emerging Markets Dur-

ing the Global Financial Crisis : Diagonal BEKK Approach. Munich Personal

RePEc Archive, (56190):1–18, 2012.

Marcos Escobar-Anel, Maximilian Gollart, and Rudi Zagst. Closed-form portfo-

lio optimization under GARCH models. Operations Research Perspectives, 9:

100216, 2022. doi: 10.1016/j.orp.2021.100216.

Otto Fabius and Joost R. van Amersfoort. Variational recurrent auto-encoders.

pages 1–5, 2015.

Eugene F . Fama. The Behavior of Stock-Market Prices Author (s): Eugene F

. Fama Published by : The University of Chicago Press Stable. The Journal of

Business, 38(1):34–105, 1965.

Lucas Borges Ferreira and Fernando França da Cunha. Multi-step ahead forecasting

of daily reference evapotranspiration using deep learning. Computers and Elec-

tronics in Agriculture, 178:105728, 2020. ISSN 0168-1699. doi: https://doi.org/

10.1016/j.compag.2020.105728. URL https://www.sciencedirect.

com/science/article/pii/S0168169920314034.

Sven Festag, Joachim Denzler, and Cord Spreckelsen. Generative adversarial net-

works for biomedical time series forecasting and imputation. Journal of Biomed-

ical Informatics, 129:104058, 2022. ISSN 1532-0464. doi: https://doi.org/

https://www.sciencedirect.com/science/article/pii/S0168169920314034
https://www.sciencedirect.com/science/article/pii/S0168169920314034

BIBLIOGRAPHY 119

10.1016/j.jbi.2022.104058. URL https://www.sciencedirect.com/

science/article/pii/S1532046422000740.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential

neural models with stochastic layers. pages 2207–2215, 2016.

M Friedman. A comparison of alternative tests of significance for the problem of m

rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

Alexios Galanos. rmgarch: Multivariate GARCH models., 2022. R package version

1.3-9.

Alexios Galanos and Tobuias Kley. rugarch: Univariate GARCH Models, 2022.

URL https://CRAN.R-project.org/package=rugarch. R package

version 1.4-7.

Everette S. Gardner. Exponential smoothing: The state of the art—part

ii. International Journal of Forecasting, 22(4):637–666, 2006. ISSN

0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2006.03.005. URL

https://www.sciencedirect.com/science/article/pii/

S0169207006000392.

Andreas Gerhardus and Jakob Runge. High-recall causal discovery for autocorre-

lated time series with latent confounders. In 34th Conference on Neural Informa-

tion Processing Systems, number NeurIPS, 2020. URL http://arxiv.org/

abs/2007.01884.

Lawrence R. Glosten, Ravi Jagannathan, and David E. Runkle. On the Relation

between the Expected Value and the Volatility of the Nominal Excess Return

on Stocks. The Journal of Finance, 48(5):1779–1801, 1993. doi: 10.1111/j.

1540-6261.1993.tb05128.x.

Simon Godsill. Particle filtering: the first 25 years and beyond. In ICASSP 2019 -

2019 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 7760–7764, 2019. doi: 10.1109/ICASSP.2019.8683411.

https://www.sciencedirect.com/science/article/pii/S1532046422000740
https://www.sciencedirect.com/science/article/pii/S1532046422000740
https://CRAN.R-project.org/package=rugarch
https://www.sciencedirect.com/science/article/pii/S0169207006000392
https://www.sciencedirect.com/science/article/pii/S0169207006000392
http://arxiv.org/abs/2007.01884
http://arxiv.org/abs/2007.01884

BIBLIOGRAPHY 120

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gener-

ative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes,

N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Infor-

mation Processing Systems, volume 27. Curran Associates, Inc., 2014.

URL https://proceedings.neurips.cc/paper_files/paper/

2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Clive J. W. Granger. Investigating Causal Relations by Econometric Models and

Cross-spectral Methods. Econometrica, 37(3):424–438, 1969.

Peter R. Hansen and Asger Lunde. A forecast comparison of volatility models:

Does anything beat a GARCH(1,1)? Journal of Applied Econometrics, 20(7):

873–889, 2005. doi: 10.1002/jae.800.

Andrew C. Harvey. Forecasting, Structural Time Series Models and the Kalman

Filter. Cambridge University Press, 1990. doi: 10.1017/CBO9781107049994.

Syed Aun Hassan and Farooq Malik. Multivariate GARCH modeling of sector

volatility transmission. Quarterly Review of Economics and Finance, 47(3):470–

480, 2007. doi: 10.1016/j.qref.2006.05.006.

Michael Hauser, Yiwei Fu, Yue Li, Shashi Phoha, and Asok Ray. Probabilistic

forecasting of symbol sequences with deep neural networks. In 2017 American

Control Conference (ACC), pages 3147–3152, 2017. doi: 10.23919/ACC.2017.

7963431.

Maria Heracleous. Sample Kurtosis, GARCH-t and the Degrees of Freedom Issue.

EUR Working Papers, 2007.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recur-

rent neural networks for time series forecasting: Current status and fu-

ture directions. International Journal of Forecasting, 37(1):388–427,

2021. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2020.06.008.

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

BIBLIOGRAPHY 121

URL https://www.sciencedirect.com/science/article/pii/

S0169207020300996.

Craig Hiemstra and Jonathan Jones. Testing for linear and nonlinear Granger causal-

ity in the stock price-volume relation. The Journal of Finance, 49(5):1639–1664,

1994.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

put., 9(8):1735–1780, nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.

1735. URL https://doi.org/10.1162/neco.1997.9.8.1735.

Darjus Hosszejni and Gregor Kastner. Modeling univariate and multivariate

stochastic volatility in R with stochvol and factorstochvol. Journal of Statisti-

cal Software, 100(12):1–34, 2021. doi: 10.18637/jss.v100.i12.

Zexin Hu, Yiqi Zhao, and Matloob Khushi. A survey of forex and stock price predic-

tion using deep learning. Applied System Innovation, 4, 2021. ISSN 2571-5577.

doi: 10.3390/asi4010009. URL https://www.mdpi.com/2571-5577/

4/1/9.

Yiyu Huang, Wenjing Su, and Xiang Li. Comparison of bekk garch and dcc garch

models: An empirical study. In Longbing Cao, Jiang Zhong, and Yong Feng, edi-

tors, Advanced Data Mining and Applications, pages 99–110, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg.

Shun ichi Amari. Backpropagation and stochastic gradient descent method.

Neurocomputing, 5:185–196, 1993. ISSN 0925-2312. doi: https://doi.org/

10.1016/0925-2312(93)90006-O. URL https://www.sciencedirect.

com/science/article/pii/092523129390006O.

Lazaros Alexios Iliadis, Sotirios P. Sotiroudis, Kostas Kokkinidis, Panagiotis Sa-

rigiannidis, Spiridon Nikolaidis, and Sotirios K. Goudos. Music deep learning:

A survey on deep learning methods for music processing. In 2022 11th Inter-

national Conference on Modern Circuits and Systems Technologies (MOCAST),

pages 1–4, 2022. doi: 10.1109/MOCAST54814.2022.9837541.

https://www.sciencedirect.com/science/article/pii/S0169207020300996
https://www.sciencedirect.com/science/article/pii/S0169207020300996
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.mdpi.com/2571-5577/4/1/9
https://www.mdpi.com/2571-5577/4/1/9
https://www.sciencedirect.com/science/article/pii/092523129390006O
https://www.sciencedirect.com/science/article/pii/092523129390006O

BIBLIOGRAPHY 122

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre Alain Muller. Deep learning for time series classification: a review.

Data Mining and Knowledge Discovery, 33(4):917–963, 2019. doi: 10.1007/

s10618-019-00619-1.

Eric Jacouier, Nicholas G. Polson, and Peter E. Rossl. Bayesian analysis of stochas-

tic volatility models. Journal of Business and Economic Statistics, 12(4):371–

389, 1994. doi: 10.1080/07350015.1994.10524553.

J.Duan. The GARCH option pricing model. Mathematical Finance, 5(1):13–32,

1995.

Khalil Jebran, Shihua Chen, Irfan Ullah, and Sultan Sikandar Mirza. Does volatility

spillover among stock markets varies from normal to turbulent periods? Evidence

from emerging markets of Asia. Journal of Finance and Data Science, 3(1-4):

20–30, 2017. doi: 10.1016/j.jfds.2017.06.001.

R. E. Kalman. A new approach to linear filtering and prediction problems. Journal

of Basic Engineering, 82:35–45, 3 1960. ISSN 0021-9223. doi: 10.1115/1.

3662552.

Maximilian Karl, Maximilian Soelch, Justin Bayer, and Patrick Van Der Smagt.

Deep variational bayes filters: Unsupervised learning of state space models from

raw data. pages 1–13, 2017.

Mohd Imran Khan and Rajib Maity. Hybrid deep learning approach for multi-

step-ahead prediction for daily maximum temperature and heatwaves. The-

oretical and Applied Climatology, 149:945–963, 2022. ISSN 1434-4483.

doi: 10.1007/s00704-022-04103-7. URL https://doi.org/10.1007/

s00704-022-04103-7.

Saurabh Khanna and Vincent Y. F. Tan. Economy Statistical Recurrent Units For In-

ferring Nonlinear Granger Causality. In 8th International Conference on Learn-

ing Representations, ICLR 2020, 2020. URL http://arxiv.org/abs/

1911.09879.

https://doi.org/10.1007/s00704-022-04103-7
https://doi.org/10.1007/s00704-022-04103-7
http://arxiv.org/abs/1911.09879
http://arxiv.org/abs/1911.09879

BIBLIOGRAPHY 123

Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. Natural

language processing: state of the art, current trends and challenges. Mul-

timedia Tools and Applications, 82:3713–3744, 2023. ISSN 1573-7721.

doi: 10.1007/s11042-022-13428-4. URL https://doi.org/10.1007/

s11042-022-13428-4.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

12 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. pages

1–14, 2014.

Irena Koprinska, Dengsong Wu, and Zheng Wang. Convolutional neural networks

for energy time series forecasting. In 2018 International Joint Conference on

Neural Networks (IJCNN), pages 1–8, 2018. doi: 10.1109/IJCNN.2018.8489399.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. 11 2015.

URL http://arxiv.org/abs/1511.05121.

Rahul G. Krishnan, Uri Shalit, and David Sontag. Structured inference networks for

nonlinear state space models. In 31st AAAI Conference on Artificial Intelligence,

AAAI 2017, pages 2101–2109, 2017.

Oussama Lachiheb and Mohamed Salah Gouider. A hierarchical deep neural net-

work design for stock returns prediction. Procedia Computer Science, 126:264–

272, 2018. ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2018.07.260.

URL https://www.sciencedirect.com/science/article/pii/

S1877050918312365. Knowledge-Based and Intelligent Information Engi-

neering Systems: Proceedings of the 22nd International Conference, KES-2018,

Belgrade, Serbia.

Qiang Li, Ranyang Li, Kaifan Ji, and Wei Dai. Kalman filter and its application. In

2015 8th International Conference on Intelligent Networks and Intelligent Sys-

tems (ICINIS), pages 74–77, 2015. doi: 10.1109/ICINIS.2015.35.

https://doi.org/10.1007/s11042-022-13428-4
https://doi.org/10.1007/s11042-022-13428-4
http://arxiv.org/abs/1511.05121
https://www.sciencedirect.com/science/article/pii/S1877050918312365
https://www.sciencedirect.com/science/article/pii/S1877050918312365

BIBLIOGRAPHY 124

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recur-

rent neural network: Data-driven traffic forecasting. In 6th International Con-

ference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April

30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018. URL

https://openreview.net/forum?id=SJiHXGWAZ.

Bryan Lim and Stefan Zohren. Time series forecasting with deep learning: A sur-

vey. 4 2020. doi: 10.1098/rsta.2020.0209. URL http://arxiv.org/abs/

2004.13408http://dx.doi.org/10.1098/rsta.2020.0209.

Yuntong Liu, Chunna Zhao, and Yaqun Huang. A combined model for multivariate

time series forecasting based on mlp-feedforward attention-lstm. IEEE Access,

10:88644–88654, 2022. doi: 10.1109/ACCESS.2022.3192430.

H. Viet Long, H. Bin Jebreen, I. Dassios, and D. Baleanu. On the statistical garch

model for managing the risk by employing a fat-tailed distribution in finance.

Symmetry, 12(10):1–15, 2020. doi: 10.3390/sym12101698.

Christos Louizos, Uri Shalit, Joris Mooij, David Sontag, Richard Zemel, and Max

Welling. Causal effect inference with deep latent-variable models. Advances

in Neural Information Processing Systems, 2017-December(Nips):6447–6457,

2017. ISSN 10495258.

Rui Luo, Weinan Zhang, Xiaojun Xu, and Jun Wang. A neural stochastic volatility

model. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pages

6401–6408, 2018.

Ali Khalil Malik. European exchange rate volatility dynamics: An empirical inves-

tigation. Journal of Empirical Finance, 12:187–215, 2005. ISSN 09275398. doi:

10.1016/j.jempfin.2003.09.004.

Daniel Malinsky and Peter Spirtes. Causal Structure Learning from Multivariate

Time Series in Settings with Unmeasured Confounding. In Proceedings of 2018

ACM SIGKDD Workshop on Causal Disocvery, number 2010, pages 1–25, 2018.

https://openreview.net/forum?id=SJiHXGWAZ
http://arxiv.org/abs/2004.13408 http://dx.doi.org/10.1098/rsta.2020.0209
http://arxiv.org/abs/2004.13408 http://dx.doi.org/10.1098/rsta.2020.0209

BIBLIOGRAPHY 125

Ričards Marcinkevičs and Julia E. Vogt. Interpretable Models for Granger Causal-

ity Using Self-explaining Neural Networks. In 9th International Conference on

Learning Representations, ICLR 2021, 2021. URL http://arxiv.org/

abs/2101.07600.

Carlo Mari and Emiliano Mari. Deep learning based regime-switching models of

energy commodity prices. Energy Systems, 2022. ISSN 18683975. doi: 10.1007/

s12667-022-00515-6.

Daniele Marinazzo, Wei Liao, Huafu Chen, and Sebastiano Stramaglia. Nonlin-

ear connectivity by granger causality. NeuroImage, 58:330–338, 2011. ISSN

10538119. doi: 10.1016/j.neuroimage.2010.01.099. URL http://dx.doi.

org/10.1016/j.neuroimage.2010.01.099.

Stephen Marra. Predicting volatility. 12 2015.

Guido Previde Massara, T. Di Matteo, and Tomaso Aste. Network Filtering for Big

Data: Triangulated Maximally Filtered Graph. Journal of Complex Networks, 5

(2):161–178, 06 2016. ISSN 2051-1310. doi: 10.1093/comnet/cnw015. URL

https://doi.org/10.1093/comnet/cnw015.

S McNally, J Roche, and S Caton. Predicting the price of bitcoin using machine

learning. pages 339–343, 2018. ISBN 2377-5750. doi: 10.1109/PDP2018.2018.

00060.

Raha Moraffah, Paras Sheth, Mansooreh Karami, Anchit Bhattacharya, Qianru

Wang, Anique Tahir, Adrienne Raglin, and Huan Liu. Causal Inference for Time

series Analysis: Problems, Methods and Evaluation. arXiv preprint, 2021. URL

http://arxiv.org/abs/2102.05829.

Loris Nanni, Sheryl Brahnam, Michelangelo Paci, and Stefano Ghidoni. Compar-

ison of different convolutional neural network activation functions and methods

for building ensembles for small to midsize medical data sets. Sensors, 22, 8

2022. ISSN 14248220. doi: 10.3390/s22166129.

http://arxiv.org/abs/2101.07600
http://arxiv.org/abs/2101.07600
http://dx.doi.org/10.1016/j.neuroimage.2010.01.099
http://dx.doi.org/10.1016/j.neuroimage.2010.01.099
https://doi.org/10.1093/comnet/cnw015
http://arxiv.org/abs/2102.05829

BIBLIOGRAPHY 126

Meike Nauta, Doina Bucur, and Christin Seifert. Causal Discovery with Attention-

Based Convolutional Neural Networks. Machine Learning and Knowledge Ex-

traction, 1(1):312–340, 2019. doi: 10.3390/make1010019.

Daniel Nelson. Conditional Heteroskedasticity in Asset Returns : A New Approach.

Econometrica, 59(2):347–370, 1991.

Nguyet Nguyen. Hidden markov model for stock trading. International Journal of

Financial Studies, 6(2), 2018. ISSN 2227-7072. URL https://www.mdpi.

com/2227-7072/6/2/36.

Junier B. Oliva, Barnabas Poczos, and Jeff Schneider. The statistical recurrent unit.

In 34th International Conference on Machine Learning, ICML 2017, volume 6,

pages 4098–4107, 2017. ISBN 9781510855144.

Alvaro D. Orjuela-Canon, Jan A. Freund, Andres Jutinico, and Alexander Cerquera.

Granger Causality Analysis based on Neural Networks Architectures for bivariate

cases. Proceedings of the International Joint Conference on Neural Networks,

pages 1–6, 2020. doi: 10.1109/IJCNN48605.2020.9206977.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-

perative style, high-performance deep learning library. In Advances in

Neural Information Processing Systems 32, pages 8024–8035. Curran As-

sociates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Judea Pearl. On measurement bias in causal inference. Proceedings of the 26th

Conference on Uncertainty in Artificial Intelligence, UAI 2010, pages 425–432,

2010.

https://www.mdpi.com/2227-7072/6/2/36
https://www.mdpi.com/2227-7072/6/2/36
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

BIBLIOGRAPHY 127

Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal In-

ference: Foundations and Learning Algorithms. The MIT Press, 2017. ISBN

0262037319.

Michael K. Pitt and Neil Shephard. Time varying covariances: a factor stochastic

volatility approach, pages 547–570. Oxford University Press, Oxford, (edited by

j.m. bernardo, j.o. berger, a.p. dawid and a.f.m smith) edition, 1999.

K. Platanioti, E.J. McCoy, and D.A. Stephens. A Review of Stochastic Volatility:

Univariate and Multivariate Models. 2005.

Ser-Huang Poon and Clive W. J. Granger. Forecasting Volatility in Financial Mar-

kets : A Review. Journal of Economic Literature, 41(2):478–539, 2003. URL

http://www.jstor.org/stable/3216966.

Marius-Constantin Popescu, Valentina Balas, Liliana Perescu-Popescu, and Nikos

Mastorakis. Multilayer perceptron and neural networks. WSEAS Transactions on

Circuits and Systems, 8, 7 2009.

Pier Francesco Procacci and Tomaso Aste. Forecasting market states. Quantitative

Finance, 19(9):1491–1498, 2019. doi: 10.1080/14697688.2019.1622313.

Masoomeh Rahimi, Raheleh Davoodi, and Mohammad Hassan Moradi. Deep fuzzy

model for non-linear effective connectivity estimation in the intuition of con-

sciousness correlates. Biomedical Signal Processing and Control, 57:101732,

2020. ISSN 17468108. doi: 10.1016/j.bspc.2019.101732. URL https:

//doi.org/10.1016/j.bspc.2019.101732.

Rahuljha. https://towardsdatascience.com/lstm-gradients-b3996e6a0296, 6 2020.

Hassan Ramchoun, Mohammed Amine, Janati Idrissi, Youssef Ghanou, and Mo-

hamed Ettaouil. Multilayer perceptron: Architecture optimization and training.

International Journal of Interactive Multimedia and Artificial Intelligence, 4:26,

2016. doi: 10.9781/ijimai.2016.415.

http://www.jstor.org/stable/3216966
https://doi.org/10.1016/j.bspc.2019.101732
https://doi.org/10.1016/j.bspc.2019.101732

BIBLIOGRAPHY 128

Syama Sundar Rangapuram, Matthias Seeger, Jan Gasthaus, Lorenzo Stella,

Yuyang Wang, and Tim Januschowski. Deep state space models for time series

forecasting. volume 2018-Decem, pages 7785–7794, 2018.

Vladimir Ranković, Mikica Drenovak, Branko Urosevic, and Ranko Jelic. Mean-

univariate GARCH VaR portfolio optimization: Actual portfolio approach. Com-

puters and Operations Research, 72:83–92, 2016. doi: 10.1016/j.cor.2016.01.

014.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65:386–408, 1958. ISSN 1939-

1471. doi: 10.1037/h0042519.

David Salinas, Valentin Flunkert, and Jan Gasthaus. Deepar: Probabilistic forecast-

ing with autoregressive recurrent networks. 4 2017. URL http://arxiv.

org/abs/1704.04110.

Robin M. Schmidt. Recurrent neural networks (rnns): A gentle introduction and

overview. 11 2019. URL http://arxiv.org/abs/1912.05911.

G.William Schwert. Why does stock market volatility change with time? The

Journal of Finance, 44(5):1115–1153, 1989.

Matthias Seeger, Syama Rangapuram, Yuyang Wang, David Salinas, Jan Gasthaus,

Tim Januschowski, and Valentin Flunkert. Approximate bayesian inference in

linear state space models for intermittent demand forecasting at scale. 9 2017.

URL http://arxiv.org/abs/1709.07638.

Yuliya Shapovalova. Exact and approximate methods for bayesian inference:

stochastic volatility case study. Entropy, 23(4), 2021. ISSN 10994300. doi:

10.3390/e23040466.

Jingyi Shen and M Omair Shafiq. Short-term stock market price trend prediction

using a comprehensive deep learning system. Journal of Big Data, 7:66, 2020.

http://arxiv.org/abs/1704.04110
http://arxiv.org/abs/1704.04110
http://arxiv.org/abs/1912.05911
http://arxiv.org/abs/1709.07638

BIBLIOGRAPHY 129

ISSN 2196-1115. doi: 10.1186/s40537-020-00333-6. URL https://doi.

org/10.1186/s40537-020-00333-6.

Kevin Sheppard, Stanislav Khrapov, Gábor Lipták, mikedeltalima, Rob Capellini,

alejandro cermeno, Hugle, esvhd, Snyk bot, Alex Fortin, JPN, Matt Judell, Weil-

iang Li, Austin Adams, jbrockmendel, M. Rabba, Michael E. Rose, Nikolay

Tretyak, Tom Rochette, UNO Leo, Xavier RENE-CORAIL, Xin Du, and syn-

coding. bashtage/arch: Release 5.2.0, March 2022. URL https://doi.org/

10.5281/zenodo.6400724.

Peter Spirtes and Kun Zhang. Causal discovery and inference: concepts and recent

methodological advances. Applied Informatics, 3(1), 2016. ISSN 2196-0089.

doi: 10.1186/s40535-016-0018-x.

Adolf Stips, Diego MacIas, Clare Coughlan, Elisa Garcia-Gorriz, and X. San Liang.

On the causal structure between CO2 and global temperature. Scientific Reports,

6(February):1–9, 2016. ISSN 20452322. doi: 10.1038/srep21691.

Cǎtǎlin Stǎricǎ and Clive Granger. Nonstationarities in stock returns. Review of Eco-

nomics and Statistics, 87(3):503–522, 2005. doi: 10.1162/0034653054638274.

Alex Tank, Ian Covert, Nicholas Foti, Ali Shojaie, and Emily B. Fox. Neural

granger causality. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, pages 1–14, 2021. ISSN 19393539. doi: 10.1109/TPAMI.2021.3065601.

Violeta Teodora Trifunov, Maha Shadaydeh, Jakob Runge, Veronika Eyring,

Markus Reichstein, and Joachim Denzler. Nonlinear Causal Link Estimation

Under Hidden Confounding with an Application to Time Series Anomaly Detec-

tion. In 41st DAGM German Conference on Pattern Recognition, DAGM GCPR

2019, volume 11824 LNCS, pages 261–273, 2019. ISBN 9783030336752. doi:

10.1007/978-3-030-33676-9 18.

Y. K. Tse and Albert K.C. Tsui. A multivariate generalized autoregressive

conditional heteroscedasticity model with time-varying correlations. Journal

https://doi.org/10.1186/s40537-020-00333-6
https://doi.org/10.1186/s40537-020-00333-6
https://doi.org/10.5281/zenodo.6400724
https://doi.org/10.5281/zenodo.6400724

BIBLIOGRAPHY 130

of Business and Economic Statistics, 20(3):351–362, 2002. doi: 10.1198/

073500102288618496.

Torsten Ullrich. On the autoregressive time series model using real and complex

analysis. Forecasting, 3:716–728, 12 2021. ISSN 25719394. doi: 10.3390/

forecast3040044.

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alexander Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.

Wavenet: A generative model for raw audio. In Arxiv, 2016. URL https:

//arxiv.org/abs/1609.03499.

Roy Van Der Weide. GO-GARCH: A multivariate generalized orthogonal GARCH

model. Journal of Applied Econometrics, 17(5):549–564, 2002. doi: 10.1002/

jae.688.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all

you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-

gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems, volume 30. Curran Associates, Inc., 2017.

URL https://proceedings.neurips.cc/paper_files/paper/

2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Raul Vicente, Michael Wibral, Michael Lindner, and Gordon Pipa. Transfer

entropy-a model-free measure of effective connectivity for the neurosciences.

Journal of Computational Neuroscience, 30(1):45–67, 2011. ISSN 09295313.

doi: 10.1007/s10827-010-0262-3.

Matthew Wang, Yi-Hong Lin, and Ilya Mikhelson. Regime-switching factor in-

vesting with hidden markov models. Journal of Risk and Financial Manage-

ment, 13(12), 2020. ISSN 1911-8074. doi: 10.3390/jrfm13120311. URL

https://www.mdpi.com/1911-8074/13/12/311.

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.mdpi.com/1911-8074/13/12/311

BIBLIOGRAPHY 131

Yueming Wang, Kang Lin, Yu Qi, Qi Lian, Shaozhe Feng, Zhaohui Wu, and Gang

Pan. Estimating brain connectivity with varying-length time lags using a recur-

rent neural network. IEEE Transactions on Biomedical Engineering, 65:1953–

1963, 2018. ISSN 15582531. doi: 10.1109/TBME.2018.2842769.

Wikipedia. Variational autoencoder.

F Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1

(6):80–83, 1945.

Yue Wu, José Miguel Hernández Lobato, and Zoubin Ghahramani. Dynamic co-

variance models for multivariate financial time series. In 30th International Con-

ference on Machine Learning, ICML 2013, volume 28, pages 1595–1603, 2013.

Diethelm Wuertz, Tobias Setz, Yohan Chalabi, Chris Boudt, Pierre Chausse,

and Michal Miklovac. fGarch: Autoregressive Conditional Heteroskedas-

tic Modelling, 2017. URL https://CRAN.R-project.org/package=

fGarch. R package version 3042.83.2.

Zexuan Yin. Neural garch datasets, Sep

2021. URL https://github.com/zy2514/

Neural-Generalised-Autoregressive-Conditional-Heteroskedasticity.

Zexuan Yin and Paolo Barucca. Stochastic recurrent neural network for multistep

time series forecasting. In Neural Information Processing, pages 14–26, Cham,

2021. Springer International Publishing. ISBN 978-3-030-92185-9.

Zexuan Yin and Paolo Barucca. Deep recurrent modelling of granger causality

with latent confounding. Expert Systems with Applications, 207, 11 2022. ISSN

09574174. doi: 10.1016/j.eswa.2022.118036.

Alex E. Yuan and Wenying Shou. Data-driven causal analysis of observational time

series: A synthesis. bioRxiv, 2020. ISSN 26928205. URL https://doi.

org/10.1101/2020.08.03.233692.

https://CRAN.R-project.org/package=fGarch
https://CRAN.R-project.org/package=fGarch
https://github.com/zy2514/Neural-Generalised-Autoregressive-Conditional-Heteroskedasticity
https://github.com/zy2514/Neural-Generalised-Autoregressive-Conditional-Heteroskedasticity
https://doi.org/10.1101/2020.08.03.233692
https://doi.org/10.1101/2020.08.03.233692

BIBLIOGRAPHY 132

Liu Yunpeng, Hou Di, Bao Junpeng, and Qi Yong. Multi-step ahead time series

forecasting for different data patterns based on lstm recurrent neural network. In

2017 14th Web Information Systems and Applications Conference (WISA), pages

305–310, 2017. doi: 10.1109/WISA.2017.25.

Mengqi Zhang, Xin Jiang, Zehua Fang, Yue Zeng, and Ke Xu. High-

order hidden markov model for trend prediction in financial time se-

ries. Physica A: Statistical Mechanics and its Applications, 517:1–12,

2019. ISSN 0378-4371. doi: https://doi.org/10.1016/j.physa.2018.10.053.

URL https://www.sciencedirect.com/science/article/pii/

S0378437118314018.

Xun Zheng, Manzil Zaheer, Amr Ahmed, Yuan Wang, Eric P Xing, and Alexander J

Smola. State space lstm models with particle mcmc inference. 11 2017. URL

http://arxiv.org/abs/1711.11179.

Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J. Leon Zhao. Time series classi-

fication using multi-channels deep convolutional neural networks. In Feifei Li,

Guoliang Li, Seung-won Hwang, Bin Yao, and Zhenjie Zhang, editors, Web-Age

Information Management, pages 298–310, Cham, 2014. Springer International

Publishing.

Xiao Zhong and David Enke. Predicting the daily return direction of the stock

market using hybrid machine learning algorithms. Financial Innovation, 5:24,

2019. ISSN 2199-4730. doi: 10.1186/s40854-019-0138-0. URL https://

doi.org/10.1186/s40854-019-0138-0.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,

and Wancai Zhang. Informer: Beyond efficient transformer for long sequence

time-series forecasting, 2021. URL www.aaai.org.

https://www.sciencedirect.com/science/article/pii/S0378437118314018
https://www.sciencedirect.com/science/article/pii/S0378437118314018
http://arxiv.org/abs/1711.11179
https://doi.org/10.1186/s40854-019-0138-0
https://doi.org/10.1186/s40854-019-0138-0
www.aaai.org

	Introduction
	Research objectives
	Scientific contributions
	Thesis outline
	Thesis structure

	Background Literature
	Time series forecasting
	Deep learning for time series

	Learning latent temporal dynamics with deep learning

	Methodology and algorithms
	Multilayer perceptron
	Recurrent neural network
	Long short term memory unit
	Gated recurrent unit

	Variational autoencoder
	Variational inference
	Amortised variational inference

	Developing deep latent variable models for time series forecasting

	Designing deep latent models for time series forecasting
	Introduction and motivation
	Existing literature on RNNs and VRNNs
	Problem formulation and model architecture
	Stochastic GRU cell
	The generative model
	The inference Model
	Training the VRNN time series model
	Model prediction
	Description of experiments
	Conclusion

	Investigation of inter-time series relationships learnt by the deep latent variable model
	Introduction and motivation
	Existing literature on linear and nonlinear Granger causality
	Designing a deep latent variable for Granger causality
	Inferring confounded Granger causality in synthetic and real-world datasets
	Dataset 1
	Dataset 2
	River discharge dataset
	Neural network parameters
	Statistical testing

	Conclusion

	Designing deep latent conditional volatility models- part 1
	Introduction and motivation
	Existing literature on GARCH models
	Univariate GARCH models
	BEKK model

	Designing a neural GARCH model
	Generative model
	Inference model
	Optimising a neural GARCH model
	Obtaining neural GARCH predictions

	Performance of neural GARCH on financial time series
	Conclusion

	Designing deep latent conditional volatility models- part 2
	Introduction and motivation
	Stochastic volatility models and existing deep learning attempts
	Recap on GARCH models
	Stochastic volatility as an alternative to GARCH models

	Designing a purely data-driven deep conditional volatility model
	Covariance matrix parameterisation
	Generative model
	Inference model
	Model optimisation and prediction

	Performance of VHVM on multivariate FX datasets
	Conclusion

	General Conclusions
	Summary
	Designing deep latent models for time series forecasting
	Investigation of inter-time series relationships learnt by the deep latent variable model
	Designing deep latent conditional volatility models- part 1
	Designing deep latent conditional volatility models- part 2

	Future work

	Appendices
	VHVM Neural network hyperparameters
	Bibliography

