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Abstract

Parkinson’s disease (PD) is a progressive neurological condition that can be
measured using clinical scales. Features of PD progression include motor and
cognitive decline, as well as the emergence of motor fluctuations such as levodopa-
induced dyskinesias. Although some patients follow a common progression trend,
there is significant heterogeneity, with some patients progressing more quickly and
exhibiting distinct clinical features. This heterogeneity is also notable at disease onset.

| hypothesised that PD progression might be explained by common genetic variability.

During my PhD, | performed longitudinal genome-wide association studies (GWAS) to
understand the genetic basis of motor progression and the time to develop
dyskinesias, a motor fluctuation influenced by PD onset and chronic levodopa
treatment. Additionally, | conducted a large-scale disease severity analysis using 10
different clinical instruments. For this large-scale analysis | used long-gwas, an end-

to-end Nextflow pipeline to conduct cross-sectional and longitudinal GWAS.

Based on these GWAS approaches, | identified several loci significantly associated
with prognosis, severity and survival. Applying functional annotation analyses to
decode GWAS, | successfully nominated genes to be associated with the outcomes
at most GWAS significant loci. | nominated the ACP6 gene to be associated with the
progression of axial PD motor features, and MAD1L1 and SOX9 genes to be
associated with the severity of axial PD motor features. In addition, | nominated the
LRP8, XYLT1, and DNAJB4 genes as associated with the time to develop dyskinesias
in PD. Notably, | validated three novel loci (SERGEF, OTUD7A, SCN1A) associated
with the severity of hyposmia, alongside previously reported LRRK2 and GBAL genes,
involved in the autophagy-lysosomal pathway which may serve as surrogates for a-

synuclein pathology.

Finally, 1 conducted a cell-type enrichment analysis of PD progression and
susceptibility using publicly available longitudinal GWAS cell type expression data. We
found a significant association between genes implicated in PD motor progression
and microglia. Furthermore, we proposed a new framework for cell type enrichment

that efficiently incorporates information about cis-regulation of gene expression.



Impact Statement

During my PhD, | have contributed to understanding the common genetic variability
that influences clinical progression and presentation in Parkinson’s disease (PD).
Additionally, | have been involved in developing a pipeline that democratises this type
of analysis. | have explored multiple methods to interpret results from genetic
association studies and proposed novel ways to perform cell type enrichment

analyses.

| hope that the progress achieved during my PhD contributes to the long journey of
developing novel disease-modifying therapeutic avenues. We have identified several
genes associated with motor progression and severity, as well as the survival time of
levodopa-induced dyskinesias. We anticipate that these associations will be further
tested in mice and cell models by academic collaborators to explore their potential

impact on PD prognosis and to further characterise the involved pathways.

Some of my research outcomes have been used for the Aligning Science Across
Parkinson’s grant renewal. | have also presented my research findings at several

conferences through poster presentations

Based on a large-scale multi-ancestry disease severity genetic study, | have shed new
light on the genetic drivers of hyposmia, a feature that might be a surrogate for a-
synuclein pathology. | hope these novel markers will be further tested and understood
in relation to the LRRK2-GBA1 autophagy-lysosomal pathway. These new genes
could be widely used in clinical practice, either by improving current diagnostic tools
or by targeting the novel putative genes that might relate to a-synuclein pathology and

spread.

| hope that long-gwas, a freely available end-to-end open-access pipeline for genetic
association studies of severity and prognosis, will lead to a significant increase in
findings in population genetics and provides a resource for investigators in multiple
fields. With the automation of the most up-to-date approaches to account for
confounding sources and efficient quality control, | envision an increase in novel loci

proposed for further investigation in relation to disease modification strategies.



Finally, understanding which cell types are affected by genetic variants linked to traits
brings benefits both inside and outside academia. When testing new disease-
modifying therapeutics, it is crucial that the drug is delivered to the affected cell type
in a disease state. In my research, | have developed an analysis on cell type
enrichment of PD progression using relevant information. | have made my code
available, and | hope further research in my lab will focus on enhancing and utilising
these methods. This work will be relevant in building a cellular map to link cells and

traits in PD.
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1) Introduction

a) Parkinson’s disease

Parkinson’s disease (PD) is one of the conditions included under the term
“parkinsonism”. Although it is the primary form of parkinsonism, Drug Induced
Parkinsonism, Progressive Supranuclear Palsy, Dementia with Lewy Bodies, Multiple
System Atrophy, Corticobasal degeneration, and Vascular Parkinsonism are other
atypical forms of parkinsonism accounting for up to 15% of cases, and presenting with
variable patterns of progression, treatment, signs, and symptoms. PD is a progressive
neurodegenerative disorder that was first described by James Parkinson in 1817 [1].
It is the second most common neurodegenerative condition, thought to develop from
an interaction of environmental and genetic factors [2]. However, PD is highly
heterogeneous, with its symptoms and rate of progression varying between individuals
[3]. Growing evidence suggests that genetics can explain some of the variability in
progression [4]. Uncovering such genetic determinants would lead to further
understanding of the molecular mechanisms of the condition and would help in
identifying new targets for disease-modifying treatments.

1) Epidemiology

PD is a common condition affecting 6.1 million people worldwide (2016) [5]. The
disorder impacts our society and health system. The prevalence and incidence of

disease have increased in the past two decades [6].

Ageing is one of the strongest associations with PD risk [7,8]. Nevertheless, it is
unclear if age-related cell death is the result of the chronic exposure to environmental
toxins or instead a result of biological ageing [9]. It is possible that the complex
interaction between environmental exposures, genetic changes and ageing lead to the
underlying neurodegenerative condition [10]. Among PD patients, men have a higher
incidence, prevalence and risk of mortality than women by a ratio of 1.4:1 [11], and
this lower risk seems to happen at all ages [9]. Some potential explanations include
men being more exposed to environmental risk factors or the protective role of female
hormones [9]. Socioeconomic status is also a determinant factor of disease risk, with

lower status associated with higher disease risk, reflecting a higher exposure to
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adverse experiences during the group's lifespan [9]. There are also disease risk
differences with respect to ethnicity, race, and geography, although according to Ben-
Shlomo, they are difficult to explore due to existing inequities across groups as well
as high quality data being limited to high-income regions [9]. The prevalence of PD is
estimated to be lower in Africa, similar or lower in Asia, and similar in Latin America
compared to Europe and North America [9]. The plausible reasons for differences in
prevalence across regional groups are diverse including differences in genetic
background or environmental exposures. A study on migrants has shown that PD
prevalence estimates are higher in African and Japanese migrants living in the USA,
than those living in their ancestral countries [12,13]. Multi-ethnic genetic studies have
reported that the frequency and penetrance of genetic risk variants for PD differs
across ethnic groups and geographical regions [9]. Nevertheless, differences in
prevalence might also reflect difficulties in some geographical regions to access health
care, complicating more extended diagnosis [9].

i) Clinical and pathological aspects

From a clinical perspective, there are four cardinal features of Parkinson’s:
Bradykinesia, postural instability, rest tremor, and rigidity. Postural disturbance and
gait freezing are recognised as motor parkinsonian symptoms related to advanced
Parkinson’s [14]. PD is not only a motor disorder. Before the syndrome is first
diagnosed, rapid eye movement sleep behaviour disorder (RBD), olfactory problems,
constipation, and depression can occur, and the correlation between PD and some of
these early non-motor PD symptoms has been widely reported [15]. About a third of
patients with RBD will develop PD within a decade [16,17]. In addition, as the course
of the disease progresses, cognitive impairment becomes a prominent feature.
Aarsland and colleagues performed a systematic review of studies that focused on the
prevalence of dementia in PD [18]. They concluded that dementia affected 24 to 31%
of all PD patients. Longitudinal studies support the increasing prevalence of dementia
over time, and most Parkinson's patients with long disease duration will develop
dementia [18]. These non-motor features, which are determinants of morbidity and
poor quality of life, have been included by the Movement Disorder Society in the

clinical diagnostic criteria for PD [19,20].
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One pathological feature of PD is the loss of dopaminergic neurons in the substantia
nigra pars compacta (SNpc) [21]. Clinico-pathological studies have shown a
correlation between the loss of dopaminergic neurons at the SNpc and motor features
such as bradykinesia and rigidity in the advanced stage of the disease [22]. Another
prominent pathological feature is Lewy pathology, that is the aggregation of the
abnormally folded a-synuclein protein. When a-synuclein misfolds, it becomes
insoluble and accumulates to create intracellular inclusions known as Lewy bodies
within the cell body and Lewy neurites within neuronal processes [23]. Another feature
of PD pathology is neuroinflammation through the development of an active

inflammatory response mediated by astrocytes and microglia [24].

Iii) Molecular and immune mechanisms

PD develops as a result of synaptic dysfunction and neurodegeneration, with a-
synuclein as the main protein accumulating and leading to the deposition of oligomers
and fibrils, and the formation of Lewy bodies and Lewy neurites [25]. From a molecular
perspective, this a-synuclein accumulation in different forms and shapes may relate to
impaired mitochondrial and lysosomal function [19]. Mitochondria are organelles
implicated in survival cell signalling and energy production. Mitochondrial dysfunction
happens in the early stages of PD. Alterations of mitochondrial structure and dynamics
lead to abnormal intracellular calcium levels, reduced ATP production and an increase
in reactive oxygen species [19]. Both genetic and environmental factors which have a
direct impact on mitochondrial homeostasis have been linked to PD and Parkinsonian
disorders [26,27]. Moreover, there are processes involved in mitochondrial
homeostasis that may have a key role in PD pathogenesis. Mitophagy is the process
of selectively removing damaged or redundant mitochondria through their signalling
for lysosomal degradation. For instance PRKN and PINK1 are PD causing genes
involved in mitochondrial quality control which regulate mitophagy mechanisms [28].
These mitochondrial health processes are central in neurons, cells with high energy
requirements [19]. Lysosomes, another type of organelles, are involved in mitophagy
In addition, they are important in processing protein aggregates. Therefore, a
malfunctioning lysosome can lead to an increased a-synuclein oligomer accumulation

as well as impaired mitochondrial activity. The genetic evidence that PD risk is related
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to lysosomal activity is mainly centred on the GBAl gene, which encodes the

lysosomal enzyme acid B-glucocerebrosidase [19].
iv) Clinical progression

PD progression can be described on the basis of Kalia and Lang's description [21].
PD has a premotor or prodromal phase with prominent non-motor features such as
RBD and olfactory dysfunction. PD diagnosis coincides with the onset of the classical
motor symptoms. Then, progression follows the trend of worsening motor features
over time and the prescription of symptomatic treatment, which as a side effect will
end up leading to a characteristic trend of complications in the long term, including
non-motor fluctuations, dyskinesias, and psychosis. The late stage of the disorder is
characterised by motor and non-motor features resistant to treatment such as freezing
of gait, falls, dysphagia and speech dysfunction. Autonomic symptoms are also
prominent during the late disease stages. In addition, dementia is also characteristic
of the late disease stage, affecting 83% of patients with PD who have had 20 years of

disease duration [21].

Our ability to understand disease progression comes from long term outcomes
reported from observational studies such as the Sydney Multicenter Study of levodopa
naive, short disease duration idiopathic PD patients [29]. 15 years from study initiation,
48% of patients experienced dementia, 36% had mild cognitive impairment, 94% had
experienced dyskinesias, 56% had developed dystonia. In addition, 81% had
experienced falls, hallucinations and depression were experienced by 50%, choking
was experienced in 50%, symptomatic postural hypotension in 35%, urinary
incontinence in 41%, and 65% of the cohorts had died [30]. After 20 years, the main
problems were related to non-levodopa responsive features characteristic of some PD
patients. Dementia was present in 83% of patients, and 74% of patients had died [31].
This suggests that most patients follow this progressive decline in the clinical motor

and non-motor hallmarks of the condition.

However, disease progression is heterogeneous and not all patients develop all the
features in a uniform way. Presentation at disease onset and progression of motor
features vary widely between patients. PD empirical subtypes have been proposed

according to the motor symptoms. The two main subtypes are tremor-dominant PD
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(prominent tremor related impairment) and non-tremor-dominant PD (phenotypes
such as akinetic-rigid syndrome and postural instability gait disorder - PIGD) [32].
There is also an intermediate phenotype with prominent tremor and non-tremor related
motor symptoms. The prognosis and the progression varies across patients divided in
these groups. Tremor-dominant PD patients display on average a slower rate of
progression and the functional disability is not as severe as compared with non-tremor
PD (PIGD) [21]. But these are not the only proposed PD subtypes with distinct
progression patterns. In the past two decades, PD cluster analyses have aimed to
subgroup patients using data-driven approaches [33-39]. Marras and Lang
commented that PD cluster analyses should take into account the effect of disease
duration on defined subtypes. If disease duration is not taken into account, an
identified PD subtype could simply be a variable stage over the PD course [40]. For
instance Graham and Sagar, who identified several clusters based on cognition and
motor performance, realised that there were differences in the average disease
duration, proposing that their three short disease duration clusters would evolve into
two motor only impairment and cognitive and motor impairment long disease duration
clusters [33]. PD subtypes may reflect differences in underlying biological
mechanisms, which could further refine our understanding of disease heterogeneity
[41].

The progression of PD is likely to mirror the underlying neuropathology, as suggested
by the correlation between clinical and neuropathological features. When PD is
diagnosed there are prominent motor symptoms, reflecting substantial dopaminergic
neuronal loss in the substantia nigra [42]. A more updated view by Marras and
colleagues proposes that the onset of disease occurs when a substantial proportion
of dopaminergic terminals in the basal ganglia are lost [43]. The most influential view
of PD progression based on neuropathology came in 2002, when Braak and
colleagues proposed a progression staging scheme based on the a-synuclein
pathological inclusions and its differential distribution in the brain [44,45]. They
hypothesised damage in some brain areas to explain some of the progression
hallmarks in PD. For instance, they proposed that Braak stages 5 and 6 (Lewy body
pathological spread affecting limbic and neocortical structures) might explain impaired
cognition among PD patients. Years later, Braak and colleagues found a correlation

between the cognitive decline and the stage of Lewy Body pathology according to the
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staging system [44,45]. Dementia in PD cases has been found to correlate with cortical
Lewy bodies [46,47]. However, some other studies have not been able to replicate
these findings [48]. Similarly, the neuropathological assessment in the Sydney
Multicentre Study, revealed that some young onset PD cases with Lewy body
pathology fit Braak staging, whereas some other rapidly progressive patients showed
diffuse Lewy body disease [49]. These findings further support the heterogeneity of
PD progression. Patterns of clinical progression not matching these proposed
pathological stages might be a surrogate for yet unknown pathological hallmarks of

PD not involving Lewy Body spread in the brain.

It is clear that a-synuclein aggregation is a hallmark of the main form of PD and its
progression and spread. However, since the discovery of SNCA, other PD-associated
loci have been discovered, which might explain pathogenic processes in forms of PD
which lack Lewy bodies and Lewy neurites at autopsy [23]. In general terms,
progression might relate to intrinsic cellular factors such as mitochondrial and
lysosomal function or factors related to spread of a toxic protein.

b) Genetics of Parkinson’s disease

PD aetiology can be understood in part through genetics. Even though there is no
consensus on the quantification of the heritable component of the disorder and how
this inheritance happens when PD causing and risk associated variants segregate
together, the most updated estimates range between 22% and 40% [19]. Concordance
rates in twin studies suggest the heritability of PD is 30% [50]. Heritability estimates
based on PD common genetic variability exclusively, suggests the heritable
component of idiopathic PD is 22%, of which only a fraction (16-36%) is explained by
the largest PD risk genome-wide study [51].

PD genetics is complex, and it is likely that we have only uncovered a fraction of it. In
addition, environmental and behavioural factors play a role on PD aetiology, and some
of these factors may well interact with genetics (for example directly regulating gene
expression, or shaping the epigenome), therefore making the PD genetic puzzle

harder to complete as a result of the multidimensional spectrum causing the condition

9.
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Regarding the genetics of Parkinson’s, there are rare mutations that segregate in
families and are known to cause PD [52,53]. These mutations are defined as rare as
their frequency is very low in the general population (frequency < 1%). Nevertheless,
taking them all together, the number of cases with a reported PD causing rare mutation
is relatively common. Up to 15% of PD patients have a positive PD family history and
5-10% of these familial cases may have Mendelian inheritance [54]. However, PD
genetics does not only span rare mutations causing disease. In addition, there are PD
associated common genetic variants, that is genetic variants that have a frequency >
1% in the general population, which can be either protective or disease-causing [51].
Even though they are not disease causing mutations, when some individuals carry
some of these common variants, they may develop Parkinson’s related to a polygenic
effect. PD risk variants have different magnitudes of effect, directionality, frequency,
deleteriousness, and penetrance [4]. The vast majority of patients with PD are
diagnosed as sporadic without a clear genetic (familial) cause [51].

1) Mendelian mutations in PD

The past few decades have witnessed the discovery of recessively and dominantly
inherited genes responsible for rare monogenic forms of PD. Well-known, highly
penetrant autosomal dominant mutations causing PD are found within the SNCA,
LRRK2 and VPS35 genes, and autosomal recessive disease causing mutations are
found in the PRKN, DJ-1, and PINK1 genes [55].

According to Blauwendraat and colleagues, the term monogenic for PD is an
oversimplification. Some carriers of any of these highly penetrant PD mutations may
not develop PD (known as incomplete penetrance), which suggest that other genetic
and environmental factors influence disease aetiology together with the well

characterised highly penetrant mutations [4].

The first mutations in PD families was described by Polymeropoulus and colleagues.
They found a mutation (p.A53T) in the fourth exon of SNCA, a gene located on
chromosome 4, in a large Italian family, and replicated their findings in 3 unrelated
Greek families with PD [56]. Subsequently, Singleton and colleagues examined a large
family with autosomal dominant PD, and carried out quantitative real-time PCR

amplification of SNCA exons to find an increase in gene dosage consistent with a gene
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triplication [57]. Similarly, duplications of the a-synuclein gene have been found to
cause PD [58].

Interestingly, as described earlier SNCA is the major component of Lewy bodies, and
a reduction in the solubility of a-synuclein leads to the formation of filaments from
insoluble alpha synuclein that aggregate into cytoplasmic inclusions, which contribute
to the death or dysfunction of glial cells and neurons [59]. Although its neuronal
function is unknown, it may have a role in synaptic vesicle dynamics, mitochondrial
function, intracellular trafficking and might be a potential chaperone. a-synuclein
acquires neurotoxic properties when it aggregates into insoluble a-synuclein fibrils
characteristic of Lewy pathology [60]. a-synuclein may aggregate due to its
overproduction as a result of the gene duplications and triplications that Singleton and
colleagues, and Ibanez and colleagues described as mutations causing autosomal
dominant PD. Another reason could be mutations in domains that lead to protein
misfolding and oligomerization or alteration on the molecular pathways in which a-

synuclein takes part [19,61].

Based on frequency, specific rare variants in LRRK2 are the most important Mendelian
cause of late-onset autosomal dominant PD, with a mutation frequency ranging from
2-40% depending on the population [55], which may reflect genetic diversity among
different ethnic groups and geographical regions, as well as variability in sample sizes,
study designs or mutation screening techniques of genetic studies. LRRK2 G2019S is
the most well characterised LRRK2 disease causing mutation in PD [62—66]. The
G2019S mutation occurs most commonly in European, North African, and Jewish
families. G2019S is estimated to account for up to 30% of inherited PD cases in certain
populations [67]. However, there are other pathogenic mutations at the LRRK2 gene
more frequent in Asian populations, such as the N1437D mutation in Chinese families,
and 12020T in Japanese families [19,68]. In addition, G2019S mutation penetrance
varies across age stratified groups, increasing up to 85% at 70 years old [67].
Interestingly, this variation in penetrance seems to be independent of the individual's

ancestry at a fixed age of 80 years [69].

Different LRRK2 missense mutations have been reported as disease-segregating
mutations, and patients that harbour mutations have dopaminergic degeneration

according to findings from LRRK2-autopsy cases [70]. The LRRK2 encoded protein is
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involved in autophagy (the process through which cells transports cytoplasmic
components to the lysosome for their degradation and recycling), lysosomal function,
and vesicular trafficking [71]. LRRK2 protein pathogenic mutations concentrate around
the kinase and GTPase domains, and disease-causing mutations in these regions
increase protein kinase activity. A study using a rodent model expressing the human
G2019S LRRK2 sequence in neurons, has shown that dopaminergic neurons are
progressively lost in the substantia nigra, which is associated with the level of LRRK2
kinase activity [72]. Several groups have tried to explain the molecular mechanisms of
pathogenic LRRK2 mutations. Zimprich and colleagues firstly hypothesised that
LRRK2 may phosphorylate a-synuclein and tau proteins, leading to the accumulation
followed by aggregation of unfolded a-synuclein and tau proteins in dying neurons
[73]. LRRK2 has several putative protein-protein interaction domains so it is plausible
that mutations that alter these domains affect the contact with other proteins. In
addition, dysfunction through mutations in the LRRK2 kinase domain would also lead
to changes on the proteins LRRK2 might interact with and phosphorylate such as a-

synuclein and tau proteins [55].

A more recent hypothesis by Alessi and Sammler based on data from recent years
holds that LRRK2 does regulate autophagy. This process seems to also be controlled
by a subgroup of RAB family proteins, that are phosphorylated by LRRK2 kinase,
which ensure homeostasis and unaltered autophagy [71]. In addition, inflammation is
also regulated by LRRK2 and there are high levels of expression in immune cells such
as macrophages and monocytes. Mouse models expressing the G20192 LRRK2
mutation have been found to be protected from infection. In contrast, mice lacking
LRRK2 or expressing LRRK2 inhibitors, have been found to be unable to clear out
infections [74]. Understanding the protective role of LRRK2 against infectious
diseases, and more specifically, knowing if an antagonistic pleiotropy event occurs
between LRRK2 pathogenic mutations and PD and immunity, might be transferable
knowledge to shed new light into PD disease aetiology. Whether LRRK2 inhibitors
have disease modifying effects on PD patients carrying pathogenic LRRK2 mutations

or in sporadic PD is under active investigation in ongoing drug trials [71].

Two other genes, PARKIN and PINK1 have been found to cause early onset

autosomal recessive PD [75,76]. PARKIN encodes an E3 ubiquitin ligase with an

28



amino-terminal ubiquitin-like domain and carboxyl-terminal ubiquitin ligase domain
and resides in the cell’s cytosol. PINK1 encodes a serine-threonine protein kinase that
localises to mitochondria. Both proteins work in the same pathway and participate in
maintaining mitochondrial homeostasis [77], an organelle that as we already
mentioned, is thought to play a central role in PD aetiology. First evidence of the link
between mitochondrial dysfunction and PD was based on evidence from people
developing the disease after illicitly using methyl-4-phenyl-1,2,5,6-tetrahydropyridine
(MPTP) [78]. MPTP was found to oxidise to 1-Methyl-4-phenylpyridinium (MPP+),
which causes the inhibition of complex | in the mitochondrial respiratory chain after its
selective uptake in dopaminergic neurons [79].

1) Common variation in PD

Genome wide association studies (GWAS) have been a powerful tool to better
understand how genetic variability contributes to the development of disease. GWAS
usually focuses on genetic variants with a minor allele frequency (MAF) higher than 1
or 5%. Therefore GWAS allows us to understand the common genetic architecture of
complex diseases such as PD. In the past decades, several large association studies
gathering samples of European ancestry have been conducted revealing genetic
variants increasing the risk for PD [51,80,81]. In 2019, Nalls and colleagues conducted
the largest GWAS to date totalling 37,000 cases, 18,600 UK Biobank proxy-cases
(where the individual had a parent affected by PD), and 1,400,000 controls of
European ancestry, and 7,800,000 single nucleotide polymorphisms (SNPs). This
large scale study revealed 90 independent SNPs significantly increasing the risk of
developing PD. They estimated based on a PD polygenic risk score (PRS) that the
total SNP based heritability uncovered from their analysis, is about one third of the
total SNP heritability of the condition [51]. This estimate suggests there is still a high
percentage of the common heritability yet to be discovered. In addition, they performed
several pathway, tissue, and cellular enrichment analyses across genes near the PD
risk variants and found that genes were enriched in the brain. Interestingly, the
expression of the selected PD genes were enriched in neuronal cells. Some of the 90
independent PD risk variants fell close to monogenic Parkinson’s genes such as
SNCA, LRRK2, GBA1, and VPS13C. The strongest associations found by Nalls and
colleagues were at the SNCA and MAPT loci. This large PD case-control GWAS meta-
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analysis has been recently expanded by Kim and colleagues incorporating several
diverse ancestry populations. They identified 12 potentially novel risk loci, 9 that were
shared across all ancestries and three that had heterogeneous effects across the
different ancestry groups, hence were ancestry-specific. Based on fine-mapping they

nominated 6 putative causal variants at 6 loci previously linked to PD [82].

Another large GWAS in PD patients of Asian ancestry, gathering 6,724 patients 24,851
healthy controls, identified 11 GWAS loci, reaching genome wide significance 9 of
which overlapped with the Nalls and colleagues' European ancestry GWAS. Of the 78
SNPs nominated from the European GWAS, and that were polymorphic in the Asian
GWAS, 63 (80.8%) were found to have the same directionality of association and 15
(19.2%) had an opposite direction. This suggests that there is an overlap in the
common variability between the two different ancestry groups as well as consistent
effect sizes, but also some differences such as 2 PD genetic risk factors reaching
genome-wide significant only in the Asian ancestry specific cohort, as well as
differences in LD haplotypes and allele frequency (AF) [83]. The presence of non-
overlapping risk variants across ancestries is also shown in an analysis that gathered
samples of Chinese ancestry. They genotyped several variants at four loci that have
been reported to modulate the risk for PD (SNCA, PARK16, LRRK2, BST1). They
found consistent effects of SNCA, and LRRK2 variants and the risk for PD. However,
they found PARK16 variants to be associated with a lower PD risk. They did not find

any effect between variants within the BST1 locus and the risk for PD [84].

More recently, the largest GWAS in patients of African ancestry revealed a variant
within GBAL, as the most significant genetic risk factor for PD in African and African
admixed populations. They identified changes in GBA1 expression which lead to
decreased glucocerebrosidase activity (the protein encoded by GBA1l), hence
suggesting those expression changes as the potential disease mechanism increasing
the risk in PD in African and African admixed populations. In a separate analysis, they
further characterised the functional effect of the GBA1 non-coding risk variant. They
found that this variant, which is a key intronic branchpoint, alters the splicing of

functional GBAL transcripts, reducing the levels of the protein, hence the activity [85]

GBA1 encodes the lysosomal enzyme glucocerebrosidase, and its dysfunction is

linked to Gaucher’s disease (GD). GD is an autosomal recessive disorder and more
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than 300 mutations, including insertion, deletion, point and missense mutations have
been reported to cause the condition [86]. Moreover, some GBA1l mutations both

biallelic and single mutations, are a risk factor for PD.

Different studies conducted in PD cohorts have found heterogeneity in the clinical
presentation of patients carrying GBAL1 mutations. There is evidence suggesting that
GBAL1 pathogenic mutation carriers have a distinct clinical presentation compared to
non-carriers. A well-powered study in a large UK observational cohort with 2.5% GBA1
GD causing pathogenic mutation carriers, and 6.2% GBA1 non-synonymous PD
variants, with L444P being the most common pathogenic mutation, suggested that
patients with GBA1 mutations were 5 years younger at PD AAO compared to non-
carriers. Moreover, GBA1 mutation carriers more commonly had a greater risk of
cognitive impairment, poorer response to dopaminergic treatment, lower a-synuclein
levels as well as increased disease severity (higher Hoehn and Yahr -HY- score, a
measure of disease severity) [87]. Other studies in non-European populations have
reported consistent findings for age at onset, showing that GBA1 mutation carriers are
younger at PD onset [88,89]. However, there are discrepancies in the motor and
cognitive presentations linked to GBAL carriers. A large multicentre study did not find
differences in motor presentations between GBA1 pathogenic mutation carriers and
non-carriers [90]. Similarly, other well-powered studies have found an association
between GBA1 mutation carriers and development of dementia as well as cognitive
decline [91,92].

The penetrance of GBAL1 PD genetic variants were estimated to range from 7.6% at
50 years to 29.7% at 80 years, based on the kin-method, an approach that leverages
family data to calculate the probability that an individual with a certain genotype will
show a particular phenotype, helping to assess the degree of penetrance. The
penetrance of GBA1-PD variants is higher than that estimated on GBA1-GD patients
and their relatives [93]. Blauwendraat and colleagues investigated genetic modifiers
of GBA1l-associated PD penetrance, using case-control GWAS based on GBAl
mutation carrier status. Among the 90 independent variants found on the Nalls 2019
cc-GWAS meta-analysis, they found a strong association between the rs356219
polymorphism that passed Bonferroni correction and SNCA locus [94]. This SNCA-
GBAL link and risk for PD is also plausible given that there is also a biological link
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between glucocerebrosidase and a-synuclein, as they have been shown to interact in
vitro as well as to influence the intracellular levels and processing of each other
[95,96].

We have previously highlighted mutations at the LRRK2 and SNCA genes that
segregate in families and cause PD. In addition, common genetic variation at the
LRRK2 and SNCA loci has been associated with the risk of developing sporadic PD
in [51]. Mutations that increase PD risk are located in the protein-coding gene and also
in non-coding regions [67,97]. These non-coding variants are likely to have a biological

effect based on the modulation of gene splicing and/or expression [98].

Iii) The genetic architecture of PD progression

When studying PD genetics, there is an additional layer of complexity. Apart from the
known disease causing Mendelian mutations [4,55] as well as common genetic
variants that increase the risk of developing sporadic PD [51], it is possible that
unknown common and rare genetic variants contribute to the high heterogeneity in
progression trajectories. One key reason to make such a hypothesis is that some
candidate PD genes analyses have successfully been associated with distinct
progression trends. For instance, prospective studies looking at differences between
LRRK2 mutation carriers and non-carriers have found that patients carrying the
G2019S mutation showed a slower motor decline [99]. Another study comparing GBA1
mutation carriers versus non carriers showed the cohort carrying the mutation to have
a more severe cognitive and motor decline [100]. It is clear that there are PD mutations
that correlate with specific longitudinal PD traits.

Whether known PD risk genetics is also associated with PD progression is not fully
understood yet. lwaki and colleagues looked at the association of 31 PD risk SNPs
with PD progression. Those 31 SNPs were nominated from three major PD risk studies
showing variants that were significantly associated with PD risk [101-103]. Then, they
looked at the association of these independent SNPs with PD clinical features. They
used data from a total of 23,423 visits by 4,307 patients of European ancestry from
13 longitudinal cohorts. Variants in the GBAL gene were linked to daytime sleepiness
and potential RBD changes. Furthermore, researchers identified a connection

between the GBALl variant p.N370S and treatment-related challenges such as
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wearing-off and dyskinesia. They also confirmed links between GBA1 variants and
declines in motor and cognitive functions. Additionally, genotype-phenotype
associations were observed, including an intergenic variant near LRRK2, which was
associated with accelerated motor symptom progression, and an intronic variant in
PMVK associated with the emergence of wearing-off effects, which refer to the gradual
return of motor and non-motor symptoms as the effectiveness of levodopa or other
dopaminergic medications diminishes [104]. Therefore, the overlap between the
common genetics of PD risk and progression is only partial and some common genetic
variants influencing disease course might be unknown. However, a major limitation of
this study is that it did not use the most up to date results from 90 independent risk

loci associated with PD from the study conducted by Nalls and colleagues [51,80,81].

In the past years, there have been a number of GWASSs performed to explore the effect
of genetic variation on disease presentation and progression. The largest GWAS of
PD AAO on 28,000 patients with PD showed that not all 90 PD risk variants are
associated with AAO [105]. They found two genome-wide significant signals related to
younger disease onset at the known PD risk loci SNCA, and the protein-coding gene
TMEML175. In spite of the smaller sample size compared to the largest PD risk GWAS,
which decreases the power of the study to reveal the complete PD AAO genetic
heritability, the authors found a significant effect in only 6 loci based on a targeted
analysis looking at the 44 SNPs that were genome-wide significant in the Chang and
colleagues PD GWAS meta-analysis [106]. According to Blauwendraat and
colleagues, based on AAO GWAS results, the mechanism that lead to early PD onset
could be related to SNCA pathology, since TMEM175 has been associated with
increased a-synuclein aggregation and an increase in a-synuclein expression might
also lead to an increase in a-synuclein aggregation [4]. A more recent study, led by
the COURAGE-PD Consortium, added to the previous PD AAO meta-analysis a PD
cohort of 8,535 PD patients of predominantly European ancestry, which led to the
validation of the previously reported SNCA locus as well as the discovery of a novel
locus, BST1, significantly associated with an earlier AAO [107]. This is a clear example
showing that the genetic make-up of sporadic PD cases not only involve genetic
variants that confer risk of disease but also the non-overlapping genetic determinants

leading to differences on PD presentation as determined by the age at disease onset.
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Liu and colleagues investigated whether genetics contributes to cognitive decline in
PD. They accessed data from 15 different cohorts making up a total of 4,872 patients
covering 36,123 study visits and carried out a longitudinal genome-wide survival study
(GWSS) approach. They used Cox proportional hazard models (CPH) with covariate
adjustment to investigate the influence of common and low-frequency genetic variants
on cognitive decline by measuring the time to reach a Parkinson's disease with
dementia (PDD) outcome from disease onset. They found a genome-wide significant
association signal at the RIMS2 locus with progression to PDD with a HR = 4.74. They
further validated the association signal using a linear mixed effect model (LMM) and a
different measure of global cognitive function in PD, the Mini Mental State Exam. They
found patients carrying the lead RIMS2 variant to decline more rapidly over time
compared to non-carriers. RIMS2 encodes the regulating synaptic membrane
exocytosis 2 protein, a RIM family member, which is involved in docking and priming
of presynaptic vesicles. In addition, they defined sub-threshold P-Values to investigate
the overlap between PD susceptibility variants and the variants nominally associated
with progression to PDD end point. They examined 505 variants, and none of them
were significantly associated with susceptibility to PD, which suggests that there is
little overlap between the genetic determinants of PD susceptibility and progression to
PDD. Finally, they looked at the effects of GBA1 and APOE on risk of dementia in
patients with PDD. They found that patients carrying the APOE €4 or a GBA1l
pathogenic mutation for Gaucher’s disease or protein-coding variants associated with
PD showed a faster cognitive decline compared to non-carriers. Finally they derived a
polygenic hazard score (PHS) using the lead variant from each of the three prognosis
loci they found to reach significance (including RIMS2 lead variant), as well as with the
inclusion of GBA1 and APOE [108]. However, the analysis performed by Liu and
colleagues has not been replicated [109], suggesting the association they found in
their analysis could be driven by just one subset of the data (ie one large cohort with
different inclusion criteria than the rest could lead to a more homogeneous profile
compared to the rest of the cohorts), and not representative of the more general PD
population. Nevertheless, it is worth highlighting they managed to derive a GHS
comprising significant associations and develop predictive models that performed well

in external cohorts that were not part of the meta-analysis.
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Real and colleagues designed a study with a similar power than Liu’s and colleagues
in terms of sample size. They made use of the same definition of cognition to explore
genetic variants that influence progression to PDD through a GWSS using CPH
models and data from four longitudinal PD cohorts. They found three genome-wide
significant loci, and the most significant SNP was the APOE ¢4 allele-tagging SNP.
APOE stands out as the primary genetic risk for Alzheimer as well as an earlier age of
onset of disease [110]. Numerous studies have additionally demonstrated its
involvement in cognitive deterioration and dementia among individuals with
Parkinson's disease [111-113]. lIn addition, they found a novel association at the
LRP1B locus, a receptor for APOE-carrying lipoproteins which is highly expressed in
the adult human brain. Based on APOE and LRP1B interaction analyses, they found
that carriers of both APOE €4 and LRP1B rs80306347 risk alleles had a higher hazard
of progression to PDD (HR = 8.08, 95% CIl = 4.64-14.1, P = 1.55 x 10-13) compared
to carriers of LRP1B s80306347 (HR = 2.33, 95% CI =1.34-4.05, P = 0.00273) and
APOE ¢4 alleles separately. However, they did not find a significant interaction effect
between the two alleles in a separate regression model, suggesting that the
relationship between each allele and the outcome is likely independent, meaning the
variables do not interact in a meaningful way in explaining the variation in the
progression to dementia in PD. Moreover, a survival analysis was conducted
controlling for APOE status. The findings revealed an elevated hazard of progressing
to PDD among carriers of the LRP1B rs80306347 variant, which confirms that the
impact of rs80306347 is independent of the influence of APOE. Finally, they could
validate the effect of GBAL variants in PDD through a candidate gene analysis, which

supports the idea of GBAL increasing the risk of progression to dementia [109].

Other analyses with different study designs have also investigated PD progression
and how it is associated with genetics more exhaustively. Iwaki and colleagues studied
the genetic impact on the trajectory of PD-related phenotypes using longitudinal data
from 12 longitudinal cohorts in a total of 4,093 patients with and carried out GWAS for
25 cross-sectional and longitudinal phenotypes. They divided the analyses based on
whether the PD progression outcomes were gathered under a continuous or binomial
category. For continuous outcomes, they assessed progression through the
longitudinal quantitative or ordinal scores of Hoehn and Yahr (HY), total and sub-

scores of Movement Disorders Society Unified Parkinson’s Disease Rating Scale
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(MDS-UPDRS), Mini-Mental State Examination (MMSE), Montreal Cognitive
Assessment (MoCA), and Schwab and England Activities of Daily Living (SEADL).
They used LMMs to evaluate the association of variants for each of these continuous
traits. For binomial outcomes, they assessed progression based on constipation,
cognitive impairment, depression, daytime sleepiness, HY stage > 2, hyposmia,
insomnia, motor fluctuation, RBD, restless legs syndrome, and a SEADL < 70. They
used a combination of logistic regression and Cox proportional hazard models for
binomial outcomes depending on outcome development rate at baseline to assess the
influence of variants for each of the binomial outcomes. They found two variants
reaching genome wide significance. An SLC44AL1 intronic variant was associated with
reaching HY>2 more quickly. They also found an intergenic variant in chromosome 10
to be associated with a lower prevalence of insomnia at baseline. This variant is a
significant expression quantitative trait loci (eQTL) for the a-2A adrenergic receptor. In
candidate gene analysis, they replicated previous reports of GBA1 coding variants
(rs2230288: p.E365K; rs75548401: p.T408M) being associated with greater motor and
cognitive decline over time, and an APOE €4 tagging variant (rs429358) being
associated with greater cognitive deficits in patients [114].

Tan and colleagues also explored the progression of Parkinson’s using data from 3
deeply phenotyped longitudinal cohorts, totalling 3,364 patients with 12,144
observations (mean follow-up 4.2 years). Instead of looking at individual clinical
assessments, they made use of principal component analysis (PCA) to derive the
outcomes that would be later used in GWAS. They came up with a composite measure
(PCA gathering motor and cognitive assessments in PD), as well as a motor and a
cognitive score for each patient at each time point. They came up with the residual
slopes of the PCA derived scores to remove the variance of progression trajectories
explained by confounders using linear mixed effect models. Finally, they conducted a
GWAS on the residual slopes through a multiple regression analysis. They managed
to replicate previous findings regarding the association of APOE ¢4 with a worse
dementia progression pattern. In addition, they identified a novel signal in ATP8B2
associated with motor progression based on a MAGMA gene-based analysis [115].
This gene encodes an ATPase phospholipid transporter (type 8B, member 2) and had
never been reported to be associated with PD before. In addition, based on targeted

analysis of PD risk variants, they found GBA1 p.E326K to be nominally associated

36



with composite and cognitive progression, consistent with what Iwaki and colleagues
found [116]. Unfortunately, they could not replicate the finding for the SLC44A1 variant

that was associated with progression to HY>2 in the Iwaki GWAS.

There are also other studies that have attempted to look at the progression of PD but
with limited power due to small sample size. Ju Chunk and colleagues undertook
survival analyses using Cox proportional hazard models. They found two associations
that did not reach significance after Bonferroni correction, one with survival to cognitive
decline (CLRN3; HR = 2.03, 95% CI 1.47-2.79, p = 4.08e-6 ), and the other with
survival to motor decline (C8orf4; HR = 1.81; 95% CIl = 1.42-2.31; p = 1.51e-6) [117].
None of these associations were replicated by the larger longitudinal GWASs |

previously described.

In addition, other studies have focused on assessing genetic variants linked to
candidate genes to understand how they influence progression. With respect to genes
that influence motor decline, GBA1 and LRRK2 are not the only genes listed as
potentially disease modifying targets. Stoker and colleagues accessed data from the
CamPalGN cohort (n=142) to explore concomitant genetic risk factors that could
influence the progression of GBA1-PD. They found the rs356219 polymorphism at the
SNCA locus significantly modulated the progression trajectory in GBA1-PD. Based on
CPH models and Kaplan-Meier (KM) curves, they found that in particular the G/G
genotype was associated with a worse cognitive decline. This effect occurred in
GBA1-PD patients [118]. Another recent study explored the influence of several SNCA
PD variants, independently of GBAL. They did find a minor effect of the known PD-
risk variants rs356219 on motor progression as defined by UPDRS Il score. In
particular, they found that the G/G genotype was associated with a higher UPDRS 1l
score. However, this association was not found in relation to UPDRS 1l rate of
progression. They concluded that SNCA variants might have some effect on modifying
disease progression but are not a major determinant of the PD clinical heterogeneity
[119]. Rim and colleagues undertook a longitudinal study on 363 population-based
incident PD cases diagnosed less than 3 years from baseline assessment to
investigate the effect of SNCA on disease progression. They concluded that SNCA is
a predictor of faster motor symptom decline in idiopathic PD based on their finding of

a 4-fold increase in risk of carriers of the SNCA-Repl 263 base pair repeat allele, a
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promoter variant located in the SNCA-Repl microsatellite, which is among the most
frequently investigated variants in SNCA [120]. Another study of 296 Chinese patients
found that SNCA variants significantly contributed to the survival and severity of motor
dysfunction [117]. Nevertheless, the impact of SNCA polymorphisms on disease
progression is somewhat inconclusive as many studies have not been able to reach

the sample conclusion [121,122].

Similarly, APOE is not the only genetic factor that has been associated with cognitive
decline in PD. COMT, BDNF, MTHFR, and SORL1 can also influence cognitive
decline [123]. Another gene that has been implicated in cognitive decline is MAPT.
Goris and colleagues found that development of PD dementia and cognitive decline
were strongly associated with the inversion polymorphism containing MAPT. They also
found a synergistic interaction between the MAPT inversion polymorphism and the
single nucleotide polymorphism rs356219 from the 3’ region of SNCA [124]. Later on,
Set6-Salvia and colleagues found that MAPT H1 was associated with PD and has a
strong influence on the risk of dementia in PD patients [125]. Similarly to PD motor
decline and the possible role of SNCA, there is controversy regarding MAPT impact
on cognitive decline and progression to dementia, as many other well-powered studies
were unable to replicate the findings [121,126].

2) Methods

a) Strategies and sources to capture disease progression

1) Longitudinal cohorts

In longitudinal studies, the first challenge is data collection. One of the most powerful
data sources are biobanks, large repositories that contain biological data such as
genotypic data, and store it associated with phenotypic data, so that it can be used in
research [127]. When electronic health records (EHR) are available, multiple genetic
research questions become feasible due to the large and deeply phenotyped samples
available from biobanks [128]. In essence, biobanks enable the identification of loci
and, subsequently, genes associated with various incident diseases, as well as those

influencing drug efficacy or adverse reactions in an unbiased population sample. They
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offer valuable insights into molecular targets, supporting the evidence-based creation
of new drugs or diagnostic tools. Additionally, biobanks allow investigation of the
interplay between genetics and treatment factors in disease progression, providing
crucial medical information applicable to personalised medicine. An advantage worth
highlighting relates to the removal of recall bias, in studying incident as opposed to
prevalent cases and disadvantages include the lack of disease specific measures. A
good example and widely used resource is the UK Biobank (UKBB), a prospective
study gathering extensive genotypic and phenotypic data (including longitudinal
follow-up) of over 500,000 participants aged 40-69 at recruitment [129]. Others include
the Million Veteran Program, the BioBank Japan, All of Us Research Program, and
FinnGen [130-133].

Cohort studies are another data source that enable us to assess how a condition
evolves. Rothman and Greenland stated that in the field of epidemiology, 'cohort’ is
more often used to refer to those people that share a common experience or condition
[134]. Cohorts are characterised as individuals from the general population with a
shared attribute such as experiencing a specific health event. In such cases, the cohort
design provides more information about health conditions measured by clinical
assessments after the disease onset. This data assembly under cohorts enables the
research community to investigate associations between multiple exposures and

outcomes in a more specific way compared to a random sample [134].

There are two main types of cohort study. Prospective studies are those in which an
exposure is assessed at baseline and study participants are followed up to record the
development and progression of disease and mortality. Retrospective studies refer to
those in which study participants are identified based on an inclusion criteria and
exposures are assessed at baseline. Then outcomes of interest are studied during the
historical observation period for those targeted samples [135]. Cohort studies can be
used to determine the natural history and the prevalence of a condition. Normally, a
study population free of disease / disease complication or an outcome is selected
according to an exposure of interest and then followed up until the occurrence of the
outcome of interest [136]. Cohort studies are particularly useful as they enable us to
investigate single exposure, multiple outcomes associations, building up more
insightful answers to hypotheses [137]. In addition, cohort studies are particularly

appealing as opposed to case-control and cross-sectional study settings, in which
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associations cannot efficiently separate causes and consequences [137].
Nevertheless, cohort studies also have their disadvantages. They suffer from selection
bias. This normally occurs as the groups studied on a cohort should represent the
underlying population and have the same exposures. In practice, this is usually not the
case. In addition, losses to follow-up can cause difficulty, and high differences in follow
up between recruitment groups on a cohort can bias results [137].

To study PD in particular, there are an increasing number of cohorts set up with
different aims. Some PD cohorts aim to understand the natural history of PD. A good
example of such cohorts is the Cambridgeshire Parkinson’s Incidence from GP to
Neurologist (CamPalGN), a well-designed prospective study of PD evolution during
10 years on a population-representative incident cohort focusing on three milestones:
postural instability (measured by HY 3), dementia and death [138]. A review from
Heunzel and colleagues conducted in 2017 identified a total of 44 PD cohort studies
with a published follow-up time of at least one year by using a PubMed search
(“longitudinal” AND “Parkinson disease” AND “clinical”). All cohorts together made up
a total of 14,666 participants, (cohorts’ median: 138; range: 23—3.090), a median 1.5-
year follow-up interval (0.5—4 years) and a median (planned) observational period of
5 years (1-20 years) were indicated. All 44 cohorts assessed motor functions, using
UPDRS-III in 93% of studies. Similarly, cognitive function was measured in all cohorts
identified [139].

Biobanks and observational studies are the primary data source for gene discovery in
bioinformatics PD research. Target identification guides the time-consuming and
dedicated phase of developing drugs modulating the disease related genes and
ultimately the design of new Randomised Clinical Trials (RCT) for disease
modification. For example, a Crohn’ disease GWAS nominated the IL-12/IL-23
pathway to be associated with the development of disease [140]. This led to the design

of clinical trials targeting that pathway [141].

RCTs are a type of prospective studies intended to measure the effectiveness and/or
the safety of one or more interventions. An intervention such as treatment is allocated
to two or more groups and the outcomes of interest are recorded so that comparisons
can be made between the control and the treated groups. Each participant that is part

of the RCT should have the same chance to be included in the intervention group
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[142]. The randomisation incorporated in the clinical trial experiment is known to
reduce bias when one wants to study cause-effect relationship thanks to the balancing
of characteristics between groups in which a drug is being tested and compared
against one another [143]. As a result, any differences observed between groups for
the outcome of interest, can be attributed to the treatment. To further minimise bias,
patient allocation in groups is anonymised (concealment), and participants, doctors,
nurses and researchers are often blinded so that they do not know what treatment
each participant is receiving. As with any experiment design, RCTs have their
limitations, such as loss to follow up, time, high cost, and problems with generalisability
(lack of representation of the intended population for which the RCTs was designed)
[143].

In PD, clinical trials are intended to find drugs that can be proposed as either
symptomatic treatments (ST; Improves or reduces symptoms of the condition) or
disease modifying treatments (DMT; Delays or slows the progression of the condition
by addressing the underlying biology of PD). In 1970 the U.S Federal Drug Agency
(FDA) approved levodopa as the primary ST for PD [144]. In addition, monoamine
oxidase type B (MAO-B) inhibitors, amantadine, apomorphine and dopamine agonists
were tested before levodopa was approved [145-147]. However, all the currently
approved drugs to treat PD target ST and none of them work directly in the underlying
pathological biology, hence they have no impact in the progression of the disorder.
However, thanks to the PD genetic research efforts, we have more knowledge of the
possible biological pathways that either govern or influence the progressive
neurodegeneration of Parkinson’s. As a result, in the past years there has been a
notable increase in clinical trials based on the understanding of potentially disease-

relevant mechanisms of action [148].

During my PhD, | have mostly accessed PD patients data from Cohort studies and
RCTs, based on data availability in the lab. Now, | will introduce in more detail 3 PD
cohorts, 1 RCT, as well as 1 PD data source from a program called AMP-PD that has
harmonised multiple PD cohorts and RCTs into one unified biobank [149].

Tracking Parkinson’s [150]: The Tracking Parkinson's study is a multi-centre
observational research initiative that enlisted patients from 72 centres throughout the

UK. The recruitment criteria involve patients clinically diagnosed with PD who met the
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UK Brain Bank diagnostic standards. Ethics approval was granted by the West of
Scotland Research Ethics Service. The study adhered to the Declaration of Helsinki
and is registered under NCT02881099 at ClinicalTrials.gov. This PD cohort study
primarily recruited patients with recent onset, enrolling patients whose diagnosis was
within 3.5 years. All participants underwent comprehensive clinical assessments
recorded every 18 months, including motor, cognitive, and other non-motor
evaluations. A second young onset PD group was established consisting of individuals
diagnosed at the age of 50 or younger with a time from diagnosis exceeding 3.5 years.
However, their assessments were conducted only at baseline, without longitudinal

follow-up.

Oxford Discovery [151]: The Oxford Discovery study, officially known as the Oxford
Parkinson's Disease Centre Discovery study, represents another observational
multicentre investigation in the United Kingdom. Patients with PD were enlisted from
neurology clinics located in the Thames Valley area. Eligible participants for the study
were those who met the UK Brain Bank diagnostic criteria for PD and had received a
diagnosis within the last three years. Ethical approval for the study was obtained from
the Berkshire Regional Ethics Committee. Exclusions from participation were applied
to individuals with non-idiopathic parkinsonism, dementia preceding PD by one year,
or cognitive impairment hindering the acquisition of informed consent. Participants

underwent standardised clinical assessments every 18 months.

Drug Interaction with Genes in Parkinson’s Disease (DIGPD) [152]: DIGPD is a
multi-centre longitudinal cohort study of PD patients. Patients were recruited based on
the UK PD Society Brain Bank criteria that had a disease duration of less or equal than
5 years from disease duration at recruitment. Data was collected over 5 years by
specialists in movement disorders. At every visit, specialists checked if patients met
the UK PD BB criteria and filled out the standardised questionnaires. The cohort was
approved by French regulatory authorities and an ethics committee, and conducted
according to good clinical practices. All patients gave written informed consent
(ClinicalTrials.gov NCT01564992). This study was set up to identify disease modifier
genes as well as gene modifiers of treatment response and adverse events of

parkinsonism drugs.
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Simvastatin as a neuroprotective treatment for PD (PD-STAT) [153]: Carroll and
colleagues set up a double-blind, randomised, placebo-controlled, multi-centre clinical
trial to assess the possibility that statins might confer neuroprotection against PD.
They did so as there is evidence from epidemiological and pre-clinical studies
supporting the protective role of statins. In addition, simvastatin, a widely used
cholesterol lowering drug with a well-established safety profile, has shown in various
toxin and genetic cell culture and rodent PD models to influence several biological
pathways that have been linked to PD such as neuroinflammation. Therefore, the PD-
STAT experiment aims to define whether simvastatin could be used as
neuroprotective therapy in PD. For that, they aimed to measure the futility of the drug
in terms of prevention of the motor decline in PD patients, the validation the safety and
tolerability of the drug in PD patients, the impact of simvastatin on activities of daily
living and to distinguish symptomatic and disease modifying effects from simvastatin
uptake [153]. The final results of the study showed that simvastatin was futile as a

disease-modifying therapy in patients with PD of moderate severity [154].

The Accelerating Medicine Partnership in Parkinson’s Disease (AMP PD) [149]:
AMP program is a partnership between multiple biopharmaceutical and life sciences

companies, the National Institute of Health (NIH), and non-profit organisations.

This initiative was set up to undertake a deep molecular characterisation and
longitudinal clinical profiling of PD patient data and biosamples. The collection of such
data is intended to enable researchers to identify and validate biomarkers of PD
progression, prognostic and diagnostic. AMP-PD gathered data from well
characterised cohorts with clinical data and biosamples available that were collected
based on similar protocols and using common data elements. Among cohorts included
in the latest release (release number 3) available when | last accessed AMP-PD data
(20/01/2024), are: The MJFF and NINDS BioFIND study, Harvard Biomarkers Study
(HBS), the NINDS Parkinson's Disease Biomarkers Program (PDBP), the LRRK2
cohort consortium (LCC), NIA International Lewy Body Dementia Genetics
Consortium Genome Sequencing in Lewy body dementia case-control cohort (LBD),
the study of Isradipine as disease modifying agent (STEADY-PD3), the study of Urate
elevation in PD (SURE-PD3), and MJFF Parkinson’s Progression Marker Initiative
(PPMI). In addition, more recently, the Global Parkinson’s Genetics Program (GP2)
has joined the AMP-PD portal to provide a rich dataset [155].
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PPMI is a multi-centre, international observational study [156]. PPMI is one of the most
deeply phenotyped cohorts made publicly available to the community, with the primary
objective of identifying and validating biomarkers that can aid in tracking the
progression of Parkinson's disease. This initiative involves the recruitment of patients
with Parkinson's disease at multiple centres across Europe, America, and Australia,
adhering to the following selection criteria:

- Asymmetric resting tremor or asymmetric bradykinesia or two of bradykinesia,
resting tremor, and rigidity

- Diagnosis within 2 years

- Hoehn and Yahr Stage | or Il at baseline

- Untreated for PD, and not expected to require PD medication within 6 months
at baseline

- Dopamine transporter (DAT) imaging showing DAT deficit

- 30 years or older at time of PD diagnosis

Throughout the study, participants underwent assessments every 3 months during the
first year, followed by assessments every 6 months until the conclusion of the fifth
year, and subsequently, assessments were conducted annually. Cognitive evaluations
occurred exclusively during yearly visits. Motor assessments during annual visits were
conducted in the "practically defined off" state, where participants refrained from taking
PD medications since the night before the visit and for at least 12 hours prior. Since
cognitive and "practically defined off" motor assessments were carried out annually,

only data from annual visits were included in the analysis.
i) Clinical instruments

The serial measures of clinical phenotype with questionnaires and structured clinical
examinations are a reliable and accepted indicator of progression, and the baseline
phenotype may predict future progression. For example, the extent of tremor in PD
patients can be quantified using clinical scales such as MDS-UPDRS [157]. Several
studies have reported an association between tremor dominant PD and a benign
disease course [158-161]. Such indicators of progression are a valuable resource as
there may be an association between the underlying pathophysiology and the
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phenotype. In the study of Eggers and colleagues they linked the more benign disease
course in tremor dominant patients with a less pronounced dopaminergic deficit [158].

Understanding the heterogeneity in PD progression is a primary aim of many
observational cohort studies [150,156,162,163]. These longitudinal studies focus on
gathering clinical assessments sensitive to changes. Measuring and modelling
progression is central to developing effective disease modifying treatments and to
understanding the underlying disease biology. Within the GP2 program [155] we have
surveyed the use of Parkinson's assessments across global studies and selected the
best established ones as we move towards one of our goals of creating the largest
deeply phenotyped PD federated longitudinal cohort available. | summarise these
clinical instruments in Table 1. They have been used widely across global clinics and

are considered good definitions of different aspects of PD progression and severity.

Table 1. Summary of PD clinical measures and scales.

Clinical measure Description

Hoehn and Yahr [164] Motor progression based on symmetry, postural stability and gait

Rankin Scale [165] Degree of disability or dependence in the daily activities of people
who have suffered a stroke or other causes of neurological

disability

MDS-UPDRS Part | [157] Non motor experiences of daily living

MDS-UPDRS Part Il [157] Motor experiences of daily living

MDS-UPDRS Part lll [157] Motor signs

MDS-UPDRS Part IV [157] PD motor complications

MoCA [166] Cognitive assessment

SDM [167] Shared Decision-Making assessment between a professional and

a patient to evaluate psychometric speed

SCOPA-COG [168] Scale sensitive to cognitive deficits in PD

RBD Screening Questionnaire

[169] Instrument to diagnose rapid eye movement sleep behaviour

disorder (RBD) based on sleep behaviour measures

Epworth Sleepiness Scale [170]

Daytime sleepiness measure

Geriatric Depression Scale [171]

Clinical severity of depression among the elderly

Schwab England ADL [172]

ADL scale to determine dependence

UPSIT Olfactory test [173]

Sensibility of individuals to detector smells

PDQ-8 [174]

Quality of life in PD patients

King's PD pain scale [175]

Instrument to measure pain specifically in the PD population
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Clinical measure Description

MMSE [176] Cognitive impairment measure

UPDRS Part | [177] Mentation, behaviour and mood

UPDRS Part Il [177] Activities of daily living

UPDRS Part Il [177] Motor examination

UPDRS Part IV [177] Complications of therapy

PD RFQ-U [178] Instrument to measure the exposure to: caffeine, tobacco, alcohol,
physical activity, head injury, residential and occupational
histories, NSAID and hormonal medications, body habitus and
pesticide exposure

Short description of all valid PD clinical scales summarised within the GP2 Cohort Integration Working
Group.

Some of these scales are disease specific and some are used across conditions. Even
though they may be considered good markers of different aspects of PD progression,
there is no gold standard as to which test to use when studying clinical progression.
Each assessment has its strengths and weaknesses to quantify progression.

When it comes to assessing PD motor progression, MDS-UPDRS I1ll (PD motor
examination) can be used to measure both response to levodopa treatment
(symptomatic treatment) and the rate of change over time (progression) as exemplified
by its widespread use in observational studies and RCTs. PPMI's original cohort
consisted of de novo PD patients followed up during the course of 5 years, and the
MDS-UPDRS scale was employed as one of the clinical assessments to measure
motor and non-motor symptom severity in PD. A study using PPMI de novo PD
patients was designed to characterise the progression pattern in untreated patients.
They used the MDS-UPDRS scale to measure progression. They showed a linear
increase of 2.4 (95% CI, 0.210-2.70 points per year) points per year in MDS-UPDRS
part Ill total score (off medication), 0.92 points (95% CI, 0.80-1.05 points per year) for
Part | (on medication), and 0.99 points (95% CI, 0.86—1.13 points per year) for Part I
(on medication). Most of the changes in the MDS-UPDRS total score (a composite
score made up by gathering each MDS-UPDRS subscale’s score) were driven by the
changes from MDS-UPDRS part Il (estimated to account for 51% of MDS-UPDRS
total score progression). Moreover, this study showed that the linear increase on the
MDS UPDRS part Il total score occurred in subgroups according to medication status.
In the medicated group (patients that started taking dopamine medication at their 12-
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months visit) a slower, linear increase was seen (1.8 points per year) as compared to
a faster linear increase seen in the unmedicated group (progression of 4 points per
year) [179].

In spite of the linear increase trend per year in the MDS-UPDRS scale reported on the
PPMI de novo PD patients, whether the MDS-UPDRS scale is able to accurately
capture disease progression during the early stages of the disease, is still uncertain.
Regnault and colleagues used longitudinal MDS-UPDRS part Il and Il data in patients
from the PPMI cohort, whose disease duration from diagnosis was <2 years, to
investigate how well they explain the progression of early PD motor signs. They found
both scales to have psychometric limitations which suggests a limited precision in
measuring early motor signs. Limitation in the precision to measure early motor signs
can decrease the sensitivity to detect differences in clinical change during the early
stages of the disease. Particularly for MDS-UPDRS I, in spite of lacking single items
to better measure changes in early PD, they found a clinically meaningful hierarchy
explained by the scale, which makes it possible to be seen as a single metric across
the severity continuum, hence MDS-UPDRS Il could still be used as a basic measure
to capture the basis of motor progression. On the other hand, MDS-UPDRS Il was
found to have more psychometric limitations, as the scale was not conceptually clear,
even after an attempt of an scale reconceptualization, which may make the MDS-
UPDRS I less appropriate for measuring motor symptoms in early PD as well as in

studying disease severity across time [180].

Evers and colleagues used a linear Gaussian state space model in a large
observational cohort. With this type of statistical model, one can describe within-
subject changes over time, and quantify estimates for the variance introduced by noise
(measurement error and short-term effects), as well as the variance due to differences
between individuals' progression results. The authors showed that the within-subject
reliability, that is the rate of change per individual, across all parts of MDS-UPDRS
was low. However, the within subjects reliability was favourable for parts Il and 11l on
the OFF state, as compared with part | and Ill on the ON state, with the scores
measuring mobility, gait and posture, and rest tremor having the most consistent
behaviour, outperforming scores quantifying bradykinesia, rigidity, and kinetic/postural
tremor. Therefore, as previously suggested by authors of the MDS-UPDRS scale,
analyses based on the subscales rather than on the composite MDS-UPDRS score
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are preferred. In addition, because mobility and gait scores are most reliable in
measuring individual subject changes, this knowledge could help to further split MDS-

UPDRS subscales to more efficiently measure motor progression [181].

Although MDS-UPDRS part Il is widely used in drug trials, other measures may
outperform MDS-UPDRS part Il or capture other important aspects of progression.
Schrag and colleagues conducted a thorough comparison of clinical instruments in a
community-based sample and a clinic-based sample, assessing the response to
change over time of different scales measuring quality of life, disability, and
impairment. This study showed that scales reflecting activity of daily living and
functioning (SE, and UPDRS ADL part) were the most responsive to change over time,
likely because overall function accounts for non-motor features as well as medication-
driven motor components. Moreover, HY was slightly more responsive to change over

1 year than the UPDRS motor part lll, for the clinic-based sample only [182].

Conventionally, clinical trials and observational studies have relied on face to face
assessments at study centres at 1-6 monthly intervals. The advent of data collection
from smartphones and wearable sensors could overcome widespread MDS-UPDRS
scale limitations as they provide continuous and rater-independent measures of the
patient's clinical state [181,183]. Despite the development of ambulatory devices to
objectively measure progression, (MDS-)UPDRS, and HY, are still the most commonly
used instruments to measure progression, and these scales are, to some extent,
sensitive to change, with apparent differences according to disease duration (faster
motor dysfunction in the first 5 years of the disease), and medication status (patients

under PD medication show a decreased deterioration of motor signs) (Figure 1) [183].
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Figure 1. Overview of motor progression across patients included in the placebo
arms of treatment studies.
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Thicker lines indicate more than 200 patients at study entry. The start of the line
indicates the mean disease duration at the study inclusion. Figure reproduced from
Maetzlet and colleagues [183].

When it comes to measuring global cognition in PD patients, MoCA and MMSE are
widely used screening instruments. However, it is not clear whether such instruments
are sensitive to changes over time. A study was designed to compare MMSE, MoCA,
and SCOPA-Cog in PD patients without dementia at study enrolment across 6 North
American movement disorders centres. Data for the instruments was collected yearly.
They compared the assessments in terms of responsiveness over time, which can be
understood as a way of quantifying the ability of an outcome to detect meaningful
changes in a patient’s health status over time. To measure the responsiveness over
time, the authors used receiver operating characteristics (ROC) curves. They
measured the area under the ROC curves (AUC) for MoCA (0.55 (95% ClI 0.48-0.62)),
MMSE (0.56 (0.48-0.63)) and SCOPA-Cog (0.63 (0.55-0.70)), with a larger AUC
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meaning greater responsiveness to change. They did not find significant differences
across the AUCs. Based on these results, they concluded that the sensitivity to detect
decline in non-demented PD patients is poor. They hypothesise this might have an
impact in clinical practice due to the lack of stable scores that capture cognitive decline
[184].

Another study found that MMSE scores, as opposed to MoCA, declined significantly,
which suggests that the MMSE may be more sensitive to cognitive decline [185]. In
the OPDC cohort, Hu and colleagues found that MoCA was more sensitive in detecting
changes than the MMSE, as they found that the MoCA declined significantly during
study [186]. There is discrepancy between the studies that attempt to define a gold
standard for measuring cognitive decline in PD. Other studies have also compared the
sensitivity of the score to detect cognitive decline in a cohort of 102 Chinese idiopathic
PD patients followed up for 30 months. Chen and colleagues found that cognitive
performance significantly declined at 30 months as measured by both MoCA and
MMSE. The annual decline was 0.82 for MMSE, and 1.02 for MoCA, suggesting that
the MoCA scale might capture more cognitive decline compared to the MMSE scale
[187].

Kim and colleagues investigated the capability of three clinical assessments, MoCA,
DRS-2 and MMSE to predict disease progression on a group of nondemented PD
patients with at least two clinical assessments over time. They found MoCA as the
only outcome significantly associated with progression to PD with dementia (PDD) and
faster time to dementia [188]. These results suggest that MoCA-based statistical and
prediction modelling might be powerful to predict future progression to dementia and
might be more powerful to capture dementia than the other two clinical instruments
they compared (DRS-2 and MMSE).

lii) Statistical methods

There are several statistical methods that can be used to explore the impact of genetic
variation on disease phenotype and progression. The goal is to be able to define the
average impact of genetics on the rate of progression in a well-powered and bias free

manner. In this section, | summarise the different statistical models | used in my thesis.
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Linear regression

A linear regression is a type of statistical model which estimates the linear relationship
between a quantitative outcome (dependent variable) and one or more explanatory
variables (independent variables). We can distinguish between simple linear
regression (only one independent variable) or multiple linear regression (more than
one independent variable). Linear regression models make use of the linear function
to estimate the model parameters for each explanatory variable (the so called
regression coefficients, weights or “betas”) that can be used to predict the outcome of
a dependent variable. To estimate the model parameters, linear regression models
make use of “cost functions” on an optimization problem so the goal is to minimise
such functions. The most widely used cost function in linear regression is the least
squares approach, in which the goal is to minimise the sum of the squares of the
residuals (the difference between the observed value and the value estimated by the

model).

We can use these models to determine the amount of variation in the dependent
variables attributed to the explanatory variables, as well as to determine the strength
of their relationship. By using linear models in genetic studies, | can characterise the
relationship between genetic variation and an outcome of interest such as a
guantitative measure of PD severity based on a cross sectional clinical outcome or PD
progression based on an average rate of change of a longitudinal assessment.

Logistic regression

Logistic regression is a powerful statistical modelling technique used to estimate the
probability of a binary outcome based on one or more explanatory variables. At its
core, this method employs the logit function—the natural logarithm of the odds—to
transform probabilities from the bounded interval (0,1) to the entire real number line (-
« +). This transformation allows for linear modelling of the relationship between

predictors and the log-odds of the event of interest.

The model's foundation lies in the sigmoid curve, also known as the logistic function,
which maps real-valued inputs to probabilities. The inverse of this function, the logit,

serves as the link function in logistic regression, enabling the estimation of log-odds.
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In binary logistic regression, the response variable is dichotomous, typically coded as
0 or 1. The model estimates the log-odds of the event (coded as 1) occurring, given a
set of predictor variables that may be continuous, categorical, or a mixture of both.

The relationship between these predictors and the log-odds is assumed to be linear.

Parameter estimation in logistic regression is commonly achieved through maximum
likelihood estimation. This method identifies the values of the model parameters that
maximise the likelihood of observing the given data under the assumed model.

In my research, | applied logistic regression to both traditional case-control studies
and within-case genetic analyses. These applications allowed me to quantify the
association between genetic variants and disease occurrence by estimating the log-
odds of disease presence conditional on genetic markers. This approach provides
valuable insights into the genetic basis of diseases and can inform risk prediction and
personalised medicine strategies.

Generalised linear model (GLM)

GLM is a generalisation of linear regression. GLM can model dependent variables with
any type of distribution (as opposed to simply normal distributions required in linear
regression). They make use of a link function of the response variable which varies
linearly with the predictors. Likewise GLMs unify various models such as linear
regression and logistic regression. In case control studies, in which there is a binary
response (disease or healthy condition), or in other words, a Bernoulli variable, a linear
regression model is not suitable as probabilities are bounded on both ends. The log-
odds function serves as a link function between the probability and the linear
regression expression. This is because the log-odds function ranges between
(—,+=), as | said earlier, so that linear regression can be applied, and once
coefficients are estimated through linear regression, the log-odds can be easily

converted back into probabilities.

Linear mixed effect model (LMM)

LMM is an extension of the ordinary least-squares (OLS) regression. LMM is used to
incorporate hierarchical data such as serial measures. In longitudinal data, the OLS
model assumption of observations sampled independently and randomly from the

population is not met, as patient level observations are sampled from the same group

52



repeatedly, so there is non-independency in the data within groups. LMMs mitigate
this assumption by taking into account the correlated nature of observations within
groups. There are two sources of variance within hierarchical data, that is within
groups (i.e. individual level serial observations), or between groups (i.e. patients with
or without a candidate predictor variable, in this case a single nucleotide variant across

patients).

LMMs incorporate fixed and random effects. Fixed effects match those from OLS or
multiple linear regression, as it is a parameter associated with each covariate that is
non-random and considered to be constant for the population being studied. Fixed
effects are consistent at the group level (i.e. individuals). An example is the overall
effect of the SNP under investigation that is consistent across individuals. This
parameter is an estimation of the true coefficient in the population based on our data.
Random effects are parameters that account for unexplained sources of variance (i.e.
differences between individuals). Random variability can be included at two levels, the
intercept and the slope. With a random intercept we allow for differences in the
intercept between the population average and each individual intercept. With a random
slope, we allow for differences between the population average slope and the
individual slope. Therefore, in LMMs, the parameters are no longer fixed, but have a
variation around their average values, and this usually provides a better fit and

explains more variation than strategies based on OLS.

LMMs are able to account for unbalanced data, allocate individuals with incomplete
records (individuals missing any time point during study duration), and are more
informative as they capture the heterogeneity of complex traits over time, resulting in
an increase of power to detect significant associations and reduction of false positive

rates, as opposed to aggregated strategies.

Cox proportional hazard model (CPH)

Survival is a term used to refer to the time from a start point to the occurrence of an
event (i.e, death, progression to a clinical milestone). Therefore, survival analysis
refers to those statistical strategies to investigate the time for the occurrence of an
event. When we want to use observational studies to perform a survival analysis on
an event of interest, right-censoring might occur (study finishes and a patient has not

experienced the event yet; a patient is lost to follow up). Right-censoring is efficiently
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handled on survival analysis. Based on the observed survival times from observation
studies, the survival probability can be estimated using the Kaplan-Meier
nonparametric method. CPHs is a type of survival model to measure the association
between the survival probability and multiple factors that may influence the survival
time. The interpretation of the outcome-factor relationship is based on the hazard rate,
which is the event rate at a time point (t) conditioning on surviving at least until that
time point (t). A covariate coefficient greater than zero equals a hazard ratio greater
than one, which indicates that the value of that covariate increases, the event hazard

increases, therefore the survival time decreases as well.

Cox models are widely used in medical research to test treatment assignment, so that
one can test the hazards of taking a medication against being untreated to assess the
effectiveness of a drug on an outcome such as disease progression. Cox models are
also used in genetic association studies to assess the impact of patients carrying a
certain genotype, and the impact on the survival time while adjusting for confounding
variables such as age (if we were assessing time to mortality, and one of the groups
were older, that group would be more likely to die earlier due to the unaccounted effect

of ageing on mortality).

There is one assumption for Cox models to generate unbiased effect estimates, and
is that the hazards must be proportional during the study length. If the hazards of a
given genotype on the subject are not constant over time, then conclusions about the
survival time and outcome relationship through Cox models would not be valid and the
model should be rejected. To check if this assumption is met, there are several
statistical tests and graphical diagnostics that can be used. In my Thesis, | normally
plotted the Kaplan-Meyer curves that enable to visually inspect the proportional
hazards hold true. | also used the scaled Schoenfeld residuals (time-independent

residuals) to correlate them with time and test for residuals-time independency.
iv) Algorithms

The standard approach to conduct genetic association studies is to apply the statistical
models previously described at a genome-wide scale, which is testing genetic variants

genome-wide against an outcome of interest. | can apply the same idea to explore
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how a specific phenotype progresses over time, so use repeated measures during a
study length and evaluate the impact of genetics on those progression trends.

Even though LMM makes possible the modelling of hierarchical data, they become
computationally expensive when performed at a genome-wide scale, that is when
performing ~6,000,000 independent tests. Recent studies have focused on finding
more efficient approaches around LMM to shorten the compute time, making such
type of large scale analysis possible. In 2012, Sikorska and colleagues explored
several methods to decrease the compute time of longitudinal GWAS while producing
accurate estimates. They compared the methods and found a conditional two step
approach was the best performing method. This method was based on the idea of
conditional inference. They estimated the longitudinal effects on the baseline
characteristics omitting SNP information. In the case the reduced model is mis-
specified by the effect of SNP cross-sectionally or longitudinally, the subject-specific
slopes would contain information about the evolution of the outcome of interest for the
different SNP alleles. Therefore, on a second step the best linear unbiased predictors
of the subject-specific slope can be regressed on the SNP using a simple OLS [189].
Ning and colleagues developed the GMA method, which is composed of GMA-fixed
based on a fixed regression strategy with eigenvalue decomposition, and GMA-trans,
which applies a linear transformation of genomic estimation values for unbalanced
(individuals may be recorded at different time points) and balanced (all individuals are
measured at the same time points) longitudinal traits [190]. TrajGWAS is a method
that scales linearly with the number of individuals. It allows us to assess the
contribution of genetics to the mean level of biomarker trajectories or their fluctuations
(or individual variability or within-subject variability), which are both a form of
longitudinal trajectories [191]. Another approach, HiGwas, is based on a function-
values approach to select significant SNPs based on lasso penalty and estimate their

time-varying genetic effects that follow biologically interpretable functions [192].

There are two other novel algorithms that | have incorporated in my genetic
association studies due to their very efficient reduction in computational time as well

as the very accurate approximations to LMMs.
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Simultaneous correction for empirical Bayesian estimates (SCEBE)

SCEBE is an algorithm adapted to explore genome-wide associations with longitudinal
outcomes through mixed-effect modelling. With SCEBE, we fit a base mixed-effects
model and used the predictors of random effects from the base model as phenotypes
for GWAS through a linear regression model. Because the predictors of random
effects are affected by shrinkage to population mean, as they are the weighted sum of
the population and sample mean, using them as phenotypes would lead to biased
estimations of the SNP effect estimated P-values. Yuan and colleagues quantified the
bias in SCEBE and added it as a correction matrix, allowing us to generate unbiased
SNPs metrics [193].

Genome-wide Analysis of Large-scale Longitudinal Outcomes using
Penalization (GALLOP)

GALLORP is a high speed algorithm that enables the estimation of the cross-sectional
and longitudinal SNP effects and the P-value of the test-statistic. GALLOP relies on
the small SNP effects on outcomes on GWAS settings. We can estimate the variances
in a base LMM and make the assumption of the model variances not changing after
adding a given SNP due their very small effect sizes (the proportion of variance
explained by a SNP on a LMM will be very small). Using the equivalence between a
mixed model and penalised least squares, a system of many linear equations is set
up and the result is a very sparse system with only the last rows and columns changing
from SNP to SNP, which will result in a low memory use. This approach decreases the
computational time by three orders of magnitude compared to the use of pure LMMs
at the genome-wide scale [194].

v) Genetic approaches to disease progression

Here, | summarise some of the different approaches that research groups have used

to investigate the impact of genetic variants on longitudinal traits.

Gorski and colleagues made use of multiple cohorts, including UK Biobank, to define
for each individual the decline of estimated glomerular filtration rate (eGFR), which
can progress to overt kidney failure. They used the annual eGFR decline to define
genetic variants significantly associated with the annual decline [195]. Whereas these

approaches are accurate and they are efficient surrogates of progression, they might
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be underpowered as opposed to strategies that make use of all the repeated measures
as continuous outcomes [196].

A genetic association study of early childhood growth made use of longitudinal growth
traits from multiple cohorts based on a two-step approach. They used LMMs to derive
sex-specific individual postnatal growth velocity and BMI curves in children from data
collected from primary health care or clinical research visits. Then, they performed
GWAS on six harmonised early growth traits and found four variants at four
independent loci associated with three early growth traits, one of them, a newly
discovered variant at the LEPR/LEPROT locus [197]. Adkins and colleagues
investigated the common genetic variants predicting developmental trajectories of
alcohol consumption in three longitudinal community samples. They used a two-step
approach to first compute a subject-specific alcohol consumption trajectory adjusted
on age, and then regressed on additive SNP effects based on linear regression [198].
Tan and colleagues carried out a GWAS on the rate of change in forced expiratory
volume in the first second (FEV1) across 14 longitudinal, population-based cohort
studies. The study encompassed 27,249 adults of European ancestry and employed
a linear mixed-effects model for the analysis. They identified two novel genetic loci in
association with the rate of change in FEV1 that harbour candidate genes related to
lung function [199]. Allen and colleagues performed GWASs using LMMs with random
slope and intercept with an (Time x SNP) interaction term, to identify genetic variants
associated with declining lung capacity or declining gas transfer after diagnosis of IPF
[200]. Smith and colleagues used Cardiovascular disease (CVD) risk factors recorded
from childhood from the Bogalusa Heart Study, a longitudinal study focused on the
early natural history of CVD. They used LMMs to estimate e. SNP and SNP x AGE
interaction effects separately. They found genetic variants associated with CVD risk
factors in a time-dependent (SNP x time effects on risk factors) and time-independent
(SNP only effects on risk factors) fashion [201]. All these studies showed good power
to investigate genetic association with longitudinal outcomes. Previous research found
that efficient two-step approaches provide unbiased test-statistics and effect sizes of
SNPs as opposed to regressing longitudinal traits on SNPs on LMMs genome-wide
[193].

The algorithms we described in the previous section to investigate the genetic impact

on longitudinal traits in large scale analyses are largely underused. He and colleagues
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made use of the previously described tool, TrajGWAS to assess the influence of SNPs
on the bone mineral density (BMD) trajectory mean as well as on the within-subject
variability of BMD. They used data from 141,261 white participants from the UK
Biobank with heel BMD phenotype data [202]. Yang and colleagues also investigated
if during pregnancy and the postpartum period, genetic variants were associated with
the mean and variance of platelet counts [203]. Benchmarking on these proposed
methods to further prove the accurate approximation to LMMs and as well as to

nominate the better performing algorithm is still needed.

b) GWAS concepts and methods

1) Genotyping and whole genome sequencing

Whole genome-sequencing (WGS)

WGS is a process through which the entire DNA sequence of an organism from both
chromosomal and mitochondrial DNA is determined, although in practice WGS
coverage ranges between 90-95%. During the last years, WGS has become more
accessible thanks to the advent of new technologies such as next generation
sequencing which entails improvements in massively parallel analysis, high

throughput, and reduced costs.

Genotyping

Genotyping is a method to characterise the individual's DNA at certain genomic
positions. Genotyping is distinct from DNA sequencing, which is a method to
determine all nucleotides on a specific DNA fragment.

Microarrays are used to genotype thousands of different informative loci at a time,
thanks to the ability to deposit different DNA sequences on a small surface, normally
a glass slide. The microarray principle is based on complementary sequences binding
to each other. Oligonucleotides with certain DNA combinations (probes) bind to the
DNA of interest to detect sequence variants [204]. Therefore, when a sample
complementary DNA is washed in the microarray, fragments of the molecule hybridise
to a probe and the scanning software, called genotype calling, determine the genotype

found on each probe [205].
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Microarrays have evolved to include both common genetic variation and disease
specific variants. This is possible thanks to the knowledge of the heritable component
of multiple diseases. The NeuroBooster array (NBA) is a good example this type of
array. It is designed to boost the genetic coverage of loci linked to neurological
diseases. NBA contains a backbone of 1,914,934 genetic markers from the Infinium
Global Diversity Array-8 v1.0, complemented with custom content of 95,273 disease-

associated variants involved in a wide range of neurological conditions [206].

Genotyping data is commonly used in clinical and experimental studies. Its most
extended application is in GWAS, in which all genetic variants across the entire

genome are assessed for association with traits or diseases.
i) Linkage disequilibrium (LD)

LD is the term used in population genetics to refer to the non-random association of
alleles at two or more loci [207]. LD patterns are of importance in evolutionary biology
as it provides clues about past events. Throughout the genome, LD reflects the
breeding system, the population history and geographical subdivisions. At each
specific genome region, LD reflects natural selection, gene conversion, mutation and
other factors that influence the evolution of gene-frequency [208]. As an example, in
some genomic regions, LD patterns correlate with recombination hotspots, so LD can
be seen as a function of crossover distribution [209]. LD patterns are not constant, and
vary across genomic regions as a result of stochastic factors such as different gene
history across loci [210], and across populations [211].

For a pair of loci, the coefficient of LD is defined as the difference of the frequency of
gametes carrying a pair of alleles at two loci (A and B) (Pab) and the product of the
frequency of those two alleles (Pa x Pb). Linkage Equilibrium occurs when this
difference is equal to 0. For more than two loci, pairs of loci are normally grouped in
the so called haplotype blocks, which are non-overlapping loci in strong LD [208],
separated by regions of recombination events [209,212]. This suggests an
hypothetical division of the genome into regions of high LD separated by narrow
recombination hotspots [213]. The HapMap project confirmed the generality of
recombination hotspots in the genome, the large lengths of segments in high LD, and
the low haplotype diversity [211].

59



The block-like structure of the genome was a revolutionary discovery as they were of
practical use in case-control association studies, enabling the use of one SNP in each
block as an approximation of association of all the SNPs on that haplotype block [214].
The applications that arise from LD knowledge include mutation and gene mapping,
detecting natural selection, and estimating allele age [208]. The LD structure of the
genome has been used to develop widely used statistical frameworks to correct
genomic inflation in genetic association studies [215]. LD can also be used for

imputation [216].
i) Imputation

Imputation is a process used to infer missing genotypes from genotyping data.
Imputation techniques rely on reference panels of tens of thousands of complete
genomes from common ancestors and the LD structure of the genome. Likewise,
reference and target genotyped samples can be matched to identify the shared
patterns in DNA sequence, and the missing genotypes within the shared haplotypes
can be inferred. To accurately impute missing DNA sequences from SNP array data,
phasing is necessary since genotyping data is unordered [217]. Phasing is the process
of deducing haplotypes by separating or ‘phasing’ maternally and paternally derived
sequence information [218]. Imputation is usually performed as it increases the power
of genetic association studies by increasing the number of variants that are available

for hypothesis testing.

One of the major steps forward in imputation has been the efforts driven by large
projects such as HapMaP, 1000 Genomes, UK10K, and the Haplotype Reference
Consortium projects [219-222]. These large initiatives have been redefining and
improving methods for the characterization of DNA genome-wide across several
samples, reporting allele frequencies, types of DNA differences, as well as estimating
the correlatory structure of the genome, which is possible due to the inherent LD
structure of the genome, hence defining confident haplotype blocks. Based on the
knowledge that such reference panels provide us with, microarrays can lead to yet
confident and complete genomes in a very cost effective manner. The largest
reference panel to date is the Trans-Omics for Precision Medicine (TOPMed),
gathering 400,000,000 single-nucleotide and insertion or deletion variants across

130,000 samples at date of publication. Release 3 of the panel (the most up to date
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and currently available to the scientific community), includes 133,597 reference
samples and 445,600,184 genetic variants distributed across the 22 autosomes and

the X chromosome.

At the same time that massive reference panels are generated, web servers for
genetic data users are also available. This is a key point as increasing reference panel
size also increases the computations cost of imputation, which would prevent every
day users accessing and using them. The TopMed Imputation server, and the
Michigan Imputation servers are the most powerful and widely used by the research
community [223,224].

Similarly, this increase in computational cost has motivated the research community
to develop optimised computational methods in multiple ways. By 25-03-2024, the
most used imputation algorithms include IMPUTEZ2 [225], Minimac [226] and Beagle
[227,228]. Eagle [229,230], SHAPEIT2 [231], and Beagle 5.1 can be used for
imputation [232].

As part of this PhD, | individually imputed all the genotyped cohorts in the Michigan
Imputation Server (MIS) [226]. In order to prepare data for imputation in the MIS
specifically, | ran the Will Rayner tool for further quality checks according to the HRC
Panel [233]. Prior to imputation, | updated strand, position, and reference / alternate
allele assignment, as well removing A/T and G/C SNPs if MAF> 0.4, SNPs with > 0.2
allele frequency difference, and SNPs not present in the HRC Panel [234]. Then, |
imputed it in the MIS, using Minimac4 [235] as the genotype imputation software, HRC
as the Reference Panel for imputation, and Eagle v2.4 [236]. Similarly, | used TopMed

Imputation Server for imputation of some cohorts.
Iii) Quality control steps

Before and after data imputations, quality control is performed. Quality control is done

at different stages and levels:

Sample level QC: At the patient level, | removed samples with low genotyping rates
(<98%), sex mismatch between reported sex and the genotype derived sex,
heterozygosity outliers (I considered samples as heterozygosity outliers if they

deviated more than =3 standard deviations (SD) away from the mean cohort
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heterozygosity rate). To remove one of paired related individuals, using GCTA
software (version 1.93.0 beta for Linux) [237], | created a genomic relationship matrix
from pruned data between pairs of individuals, and | removed one of a pair of
individuals with estimated relatedness larger than 0.125, equivalent to second degree
relations. To deal with population stratification, | performed a principal component
analysis (PCA) over pruned genotype data of each independent cohort merged with
Utah residents with Northern and Western European ancestry (CEU), Han Chinese in
Beijing, China (CHB), Japanese in Tokyo, Japan (JPT), and Yoruba in Ibadan, Nigeria
(YRI) populations from the HapMap reference panel to identify non-European ancestry
sample [238]. At first, | visualised each cohort with CEU, CHB, JPT, and YRI
populations, so as to make a decision on the threshold of SD away from any of the
mean 10 first PCs from the CEU population to consider non-European ancestry
samples. Finally, a second filter was applied to further remove heterozygosity outliers,
as well as samples with low genotyping rate (<95%) based on recalculated relatedness

and missingness frequencies on the remaining samples.

Variant level QC: At a genotype level, | removed variants that had a missing rate
higher than 0.05, variants with a minor allele frequency (MAF) of less than 0.01 or
0.05, and variants whose missing calls were not randomly distributed by testing
whether missingness status could be predicted from genotype calls at the two adjacent
variants. Moreover, | excluded variants with extreme Hardy-Weinberg equilibrium
(HWE) deviations as they are indicative of sample contamination. (P Value<le-10)
[239].

Post-imputation QC: To only work with variants that were imputed with high
confidence, | removed those with an estimated value of the squared correlation
between imputed genotypes and true, unobserved genotypes (Rsquared or Rsq) <
0.8. Furthermore, | excluded variants with low genotyping rate (<95%), and MAF <

0.01, resulting in over 500000 SNPs available across cohorts.

Post-meta-analysis QC: Once the meta-analysis was complete, | removed variants
with MAF variability between cohorts higher than 15%, and also those variants
showing high between-study heterogeneity according to the Cochran’s Q-test (P <
0.05) and I? index (variants with an heterogeneity higher than 80%).
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iv) GWAS

GWAS is the core approach in PD genetics research and in the general population
genetics field, as it allows us to freely scan the genome in search of associations
between genetic variants and disease with disease (in the case-control studies) or the
severity of a phenotype and its progression. In GWAS, we can assess genetic variants
under three different assumptions that fit any statistical model. Normally, GWAS focus
on SNPs, usually those with MAF greater than 1% or 5%. A variant can be studied as
being additive, that is, the effect of the polymorphism is cumulative. Therefore, the
effect on the phenotype or trait will be higher if a variant is present as homozygous
than heterozygous. Genetic variants can also be studied under dominant or recessive
models. The dominant model assumes that a mutation in one allele is sufficient for the
development of the phenotype and there is no cumulative effect. On the other hand,
creating a recessive model assumes that a SNP must be present in the two alleles to
have an effect on the phenotype.

The power of GWAS to detect significant associations depends on the sample size,
the frequency of those variants associated with traits, the effect size of those variants,
the heterogeneity of the trait studied, as well as the LD structure. As the sample size
of the population studied, the effect of a disease-associated variant, and the allele
frequency increase, the power of GWAS increases. Interestingly, it is worth noting that
there is not much difference in power when doing GWAS based on imputed data from
SNP arrays or WGS except for ultra-rare variants (frequency less than 1e-5) (Figure
2) [240]. For the estimation of the imputation accuracy, Vissner and colleagues used
the average imputation Rsquared values reported by the HRC study in

Supplementary Figure 3 [222].
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Figure 2. Sample Size required to detect association from Imputed (red) and WGS
1010

(blue) data.
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On the Y axis, sample size, and on the X axis minor allele frequency. Each plot
represents the minimum sample size to detect an association of a SNP with a certain
MAF, for different effect sizes expressed in phenotypic standard deviation units. Figure
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Therefore, increasing the experimental sample size will lead to new insights into the
segregating variants significantly associated with complex PD phenotypes and derived
traits such as progression, superficially for those whose effect and AF is lower as they

can only be uncovered with larger sample sizes.

In a simple GWAS setting, | will test the same hypothesis for all SNPs that remain after
all QC procedures. Taking into account the LD structure of the human genome this is
thought to be equivalent to a million independent tests. Correction for multiple testing
is needed in order to decrease the False Positives Rate. Currently, a genome-wide
significance P-value threshold of 5e-8 is standard to report true common (MAF = 5%)

genetic associations, a stringent threshold adopted to avoid type | errors.

A crucial step after performing a GWAS is to check that there is no genomic inflation,
suggesting population stratification and a systematic underlying difference between
cases and controls. With Quantile-Quantile plots (QQ-plots) one can visualise the
observed P-values from the GWAS against the expected P-values from a theoretical
x2-distribution. A diagonal line indicates the overlap between the observed and
expected P-values so that an early departure from the diagonal indicates inflation,
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normally attributed to population structure [241]. Lastly, Manhattan plots are used to
graphically represent the results of all statistical tests conducted. The plot is named
after the skyline of Manhattan due its resemblance to the vertical arrangements of
buildings on the island. On a Manhattan plot, the X-axis represents the genomic
position of genetic markers along the chromosomes, and the Y-axis represents the
significance of association between each genetic variant and the trait or disease being
studied. This is often measured as the negative logarithm of the p-value obtained from
statistical tests. Therefore, in a Manhattan plot, each SNP is represented by a point

on the graph.
v) Meta-analysis

The power of genetic association studies is dependent on sample size, hence we are
limited by the sample size of each cohort. Meta-analysis is a statistical approach that
leverages results from different studies increasing overall study sample size, and, as
a result, decreases the standard error (SE) of the effects of variants on outcomes, as
there is a closer representation of the more general PD population. Meta-analysis
provides us with more reliable results for the association effect. If there are cohort-
specific false positive associations (type | errors), these will not be significant in the
meta-analysis as the results will not be supported by the other cohorts. Conversely,
as a result of increasing sample size, small effects remaining undetectable (type I
error) in small cohorts, may be picked up from meta-analyses [242]. Results derived
from meta-analysis are statistically as efficient as joint participant data analysis [243].
Therefore, meta-analysis improves joint cohort analyses and reduces the use of
resources [243].

There are two types of meta-analysis models, fixed effects, which makes the
consideration that genetic factors have similar effects on the outcome between cohorts
and that the observed variation happens by chance, and random effects, which
considers that there is diversity among studies relating to true underlying allelic-effect
heterogeneity [242]. To conduct meta-analyses | have used METAL software (version
released on the 2011-03-25) [244]. METAL enables meta-analysis based on two
different approaches. The first approach converts the effect directionality and P-value
of a model variable into a signed Z-score across studies. This Z-score is combined

across studies in a weighted sum, with the weight being proportional to the square-
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root of the sample size for each study. A second approach is based on weighting the
effect sizes of the model variable per study by their SE. The way | performed meta-
analyses was based on a fixed-effects model weighted by B coefficients and the
inverse of the SE [244,245]. | chose a meta-analysis over a merged analysis because
of the heterogeneity in the inclusion and exclusion criteria across the clinical cohorts,
and the differences in the genotyping approaches, as well as the statistical

equivalence [243].

To correct summary statistics for any population stratification or cryptic relatedness
bias, | applied genomic control correction to the cohort-specific summary statistics by

computing the inflation of the test statistic, and then applying a correction to the SE.
vi) Polygenic risk score (PRS)

Variants nominated in GWAS tend to have a small effect on the phenotype of interest,
and when they are assessed separately, their predictive capability is very limited.
However, when we combine the effects from all the independent variants associated
with an phenotype or trait, then this aggregated measure captures much of the
heritability of the trait [246]. PRS is a method that has been developed to capture the
aggregated effect of all those genome-wide variants associated with traits to increase
the power and accuracy to predict phenotypes based on genetic variability alone
[247,248]. More technically, PRS is calculated at the individual level as a sum of all
the genotypes as genetic markers for a trait, genome-wide. Normally, genotypes are
common (MAF > 0.01), biallelic SNPs, based on GWAS design. Those target
genotypes are then weighted by their effect size inferred from GWAS results [248].

| used PRSice software (version 2) to compute PRS. | set a threshold of P < 1e-6 to
include all independent nominal significant GWAS variants that make up the PRS
[249]. | selected independent SNPs by clumping within £250 Kb from the index SNPs
( the most significant SNP on a genomic window). | used the SNP betas as the
estimate to compute the PRS. Sex, standardised AAO, and the first 5 PCs were added
as covariates to the PRS estimation process. To compute the LD estimates, | used the
imputed cohorts from which | calculated the PRS, as they were large enough to provide
accurate LD estimates (N > 500). To validate the PRS as an instrument to distinguish

between PD patients with and without LiD, | derived time-dependent ROC curves,
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under the assumption that different PRS loads might cause changes to time-to-LiD
onset. | used the Inverse Probability of Censoring Weighting (IPCW) estimation of
Cumulative/Dynamic time-dependent ROC curve from the ‘timeROC’ R package
(version 0.4). To compute the weights, | used the Kaplan-Meier estimator of the

censoring distribution.

c) Functional annotation for decoding GWAS

Although many GWASSs have been conducted revealing novel associations with PD
risk and traits, the interpretation of nominated variants remains challenging. In
sporadic PD, as we depart from clear Mendelian inheritance patterns, the
interpretation of GWAS is confounded by the LD structure of the genome and is limited
to our functional understanding of the genome and available assays. In such “complex
traits”, there are many variants, hence genes, involved in disease, which can interact
in an additive or non-additive way [250]. This scenario complicates the understanding

of the underlying biological mechanism.

As stated by Francis Crick in the central dogma of molecular biology, genes are
transcribed into messenger RNA, and then translated to protein [251]. Therefore,
changes at the DNA level, that is mutations in protein coding genes, or mutations in
non-coding regions, could result in the translation of aberrant proteins due to a change
in the protein sequence, or a dysregulation in expression altering the RNA levels or

splicing.

The majority of the genome is made of non-coding regions, where many regulatory
elements exist and mediate the transcription of many genes, and this regulation can
happen in cis (regulatory regions close to genes up to 1Mb) and trans (distal
regulations that can happen even between loci in different chromosomes). Regulatory
elements in the non-coding genome are enriched for disease-associated variants
[252,253]. In addition, chromatin accessibility varies across the genome and cell types
and there are loci transcriptionally more active than others [254], which suggests the
non-coding genome activity is complex and genetic variation in the regulatory

elements are linked with disease in a cell type specific manner.
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Towards gaining novel insight into how regulatory elements control cell type specific
gene regulation, large consortium studies have successfully provided maps of
functional and regulatory elements [255,256]. Novel approaches have provided
updated predictions of regulatory maps that link enhancers to genes based on
extensive epigenetic assays at multiple tissues and cell types [257,258]. In addition,
eQTL are derived from the combination of RNA-seq studies and genotyping or whole-
genome sequencing studies. They provide insights into how loci are associated with
gene expression and which genes are regulated by loci across the genome in humans
[259,260]. eQTLs are enriched for trait association [261]. Nevertheless, none of these
approaches are able to nominate causal variants, and therefore, statistical fine-

mapping is needed to understand correlated structures due to LD.

In order to shed light into the underlying functional alterations linked to different PD
traits, | list here the approaches | have recurrently used throughout the PhD to decode
GWAS.

1) Fine-mapping

It is often the situation in which we nominate an LD block from a GWAS. In order to
statistically support inferences made about the potential SNPs nominated to cause a
specific trait, fine mapping tools are the gold standard approach to decode LD blocks
by finding the genetic variant or variants responsible for complex traits [262]. Fine-
mapping has been validated to confidently infer the causal variant or variants from
GWAS summary statistics [263].

The three main statistical approaches to perform fine-mapping are based on heuristic
methods, penalised regression models, and Bayesian methods. At a genomic level
these approaches can be based solely on the LD structure and association statistics,
or can incorporate functional data such data derived from expression and splicing
analysis. These methods make use of different parameters: number of causal SNPs
in a region as well as their effect size, the LD structure around the lead SNP, sample
size, the SNP density and whether the causal variant can be measured or not.
Bayesian methods are the most widely used, since simulation studies have shown fine
mapping Bayesian methods to perform best [262]. Bayesian methods create 2"m

models with SNPs as discrete variables, as causal (1) or non-causal (0). Based on this
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posterior inclusion probability (PIP) indicating the probability for each SNP being
causal, are computed. Moreover, a credible set (CS) can be derived through a
parameter (a). This CS is just a cumulative PIP containing the minimum set of SNPs
reaching the probability a. Moreover, some tools make use of a variety of functional

annotations to increase the resolution of PIPs [262].
i) GCTA-COJO

When interpreting a locus from GWAS results, usually the SNP showing the most
significant statistical evidence for association is considered as the “top” SNP and the
one that represents the locus. This top SNP might not be underlying causal SNP and
the association arises just as a result of the correlation with the phenotype-causing
SNP due the LD structure and background allele frequencies at the locus [264]. The
top SNP is assumed to capture the maximum variation in the locus under study, and
this is an assumption that may not hold true in two plausible scenarios: Despite the
presence of only one causal variant in the locus, the top SNP might only partially
capture the overall variation at the locus [264,265]. In the second scenario in which
there is more than one independent causal variant at the locus, a single SNP is unlikely

to capture all the LD structure between more than one unknown causal variant [264].

To efficiently annotate GWAS results at the locus level, it is necessary to uncover all
independent causal variants to account for the total variation and the causal effect on
the phenotype. GCTA-COJO is a tool that enables users to perform conditional and
joint analyses based on a stepwise selection procedure to select the SNPs based on
conditional P-values and likewise estimate the joint effects of all selected SNPs after
model optimization [264]. In addition, GCTA-COJO enables us to perform association
analysis conditioning on a given list of SNPs, to explore the conditional effects of all
SNPs at a locus.

iii) Coloc

Colocalization is a powerful method to evaluate whether two independent signals at
the same locus are consistent with a shared causal variant. Colocalization analysis
can be performed between any pair of traits such as different GWAS traits or a case-
control or phenotype GWAS vs a quantitative trait locus (QTL), which can represent

any locus that is associated with the variation of a phenotypic trait. A typical setting

69



application that | have explored include a nominated locus from a GWAS, and an eQTL
datasets containing loci associated with the variance in the levels of mMRNA expression
or splicing. When the two traits colocalize, it means they share one causal variant,
hence, it is likely they also share biological mechanisms (i.e. in this example a causal
variant from the nominated GWAS locus associated with the trait through the
regulation in expression of a gene A).

There are different approaches to perform colocalization analysis. During my PhD, |
have used coloc, an R package developed by Chris Wallace [266]. Coloc tests, under
a Bayesian Inference framework, five different hypothesis for two datasets with the

same allele frequency, and LD that is, samples from the same ethnic group:

- HO: No association with either trait

- H1: Association with trait 1, not with trait 2

- H2: Association with trait 2, not with trait 1

- H3: Association with trait 1 and trait 2, two independent SNPs

- H4: Association with trait 1 and trait 2, one shared SNP

For a region of Q variants, coloc constructs binary vectors for each trait of length Q,
with 0 meaning no association and 1 meaning association. Then, it integrates all
possible configurations, by using prior probabilities at the SNP level (prior probability
of SNP associated with trait 1, trait 2, not with both traits). The computed probability
of the data for each configuration together with the prior probabilities, can be used to
compute the posterior probabilities for each hypothesis H [266].

A high enough H4 probability supports under this Bayesian framework that the two
traits colocalize. Normally a PP H4 higher or equal to 0.8 is robust enough to be
confident in that the two traits colocalize, in other words that the association signal for
risk or the primary trait of interest, colocalizes with genetic risk for the second potential

causal trait.

Recently a new framework to run coloc that incorporates the Sum of Single Effects
(SUSIE) has been developed [267]. To assume that the single causal variant
assumption holds, the new coloc framework makes use of SuSIE to partition the

problem, so that in each loci-derived cluster, only one causal variant exists [268].
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| used coloc software to test colocalization for all genes within £1Mb from the GWASs
lead SNPs using the eQTLGen and MetaBrain Cortex tissue meta-analysis eQTL data
[269,270]. | used these two datasets as they are the largest blood and brain eQTL
studies respectively, providing us with the greatest power to perform statistical co-
localization tests. However, it is worth noting that the prior for H3 hypothesis
(association with both phenotypic and expression traits, but distinct causal variants)

is ~ n(n — 1)p1 p2, which scales with the square of n, resulting in H3 becoming more

likely than H4 as the number of overlapping SNPs in the region tested increases [271].
This affects the colocalization tests against MetaBrain and eQTLGen meta-analyses.
Therefore, | also performed two sensitivity analyses, adjusting the priors according to
the number of overlapping SNPs [272], and also performing co-localization against
PsychENCODE, which resulted in a considerable decrease in overlapping SNPs
compared to the overlap against eQTL meta-analyses (MetaBrain and eQTLGen).

iv) FUMA

FUMA is a web-based platform that enables the interpretation of GWAS results by
integrating a wide range of biological data. Using GWASSs as input, FUMA allows us
to gain insight into the biological implications of loci of interest. There are two separate
steps within the FUMA framework [273].

SNP2GENE: is used to annotate SNPs according to their consequences in biological
functionality, Combined Annotation Dependent Depletion (CADD) score, regulomeDB
score, the chromatin state, the effects on gene expression, and chromatin interactions

based on 3D structure chromatin data.

GENE2FUNC: provides the user with information regarding the putative biological
mechanisms of the nominated genes from SNP2GENE step. For the gene set
nominated for the phenotype or trait of interest, it gathers information about previous
diseases associated, existing genes drug targets as well as genes’ differential
expression across a wide range of tissues from GTEx data. Moreover, an enrichment
of the input genes (gene set enrichment analysis) in biological pathways and functional

categories is also carried out.
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v) echolocatoR

EcholocatoR is an R package that enables end-to-end statistical and functional fine-
mapping as well as enrichment and annotation of results. | used the ‘echolocatoR’ R
package (v 0.2.2) as a wrapper to perform fine-mapping based on ABF, FINEMAP,
SuSiE, PolyFun [263,274-277]. | produced the 95% Probability Credible Set (CSgs%).
| reported the consensus SNPs at each locus, i.e. those that were included in the 95
CSose Of at least two fine-mapping tools, therefore increasing the confidence in the
nominated causal SNPs. | reported the PP as the mean PP across all fine-mapping
tools. To account for SNP LD at each region, | used the precomputed LD matrix from
the UK Biobank [278].

| also used echolocatoR to overlay the GWAS nominated loci with annotations of
transcriptional activity using the assay for chromatin immunoprecipitation sequencing
(CHIP-seq) data, and chromatin accessibility using the Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) data, and other gene expression
regulatory information from transcription factor binding site marks assays. Primarily, |
used tissue and cell type or line -specific genome-wide annotations from Roadmap,
ENCODE, and FANTOMS [255,279,280]. In addition, | accessed brain cell type-
specific ChlP-seq data generated by quantifying H3K4me3 and H3K27ac epigenetic
modifications, ATAC-seq data, and Proximity Ligation-Assisted ChIP-Seq (PLAC-Seq)
data, which is a genomic assay that combines chromatin immunoprecipitation (ChIP)
with proximity ligation to map long-range chromatin interactions mediated by specific
proteins, such as transcription factors or histone modifications. This assay enables
the identification of chromatin loops and regulatory interactions at high resolution,
providing insights into the spatial organization of the genome and gene regulation
[281].

vi) Cell and tissue enrichment analyses

MAGMA

To perform cell type enrichment analysis with PD traits, | used MAGMA software [115].
| first mapped SNPs to genes to obtain gene-level summary statistics based on a
window size of 10kb upstream and 1.5kb downstream of each gene. Likewise, SNP

level P-values can be aggregated based on the gene window size into a gene-level P-
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value based on a SNP-wise mean association model, which uses a sum of squared
SNP Z-statistics. Then, we can use MAGMA to test for association of the gene-level
summary statistics of a trait with specificity matrices derived from tissue and cell -level
expression data for each gene (specificity is defined based on a given expression in a
cell type divided by the total expression of that gene based on its overall expression
from all tissues or cell types). Specificity measures are then grouped into bins so that
when testing for a positive association (one-sided test) between the bins and gene
level summary statistics, | am evaluating whether an increase in the specificity level of
a tissue or cell is associated with an an enrichment for common-variation for the
GWAS traits being assessed. Confounding factors are taken into account by adding
gene size, log(gene size), gene density and long(gene density) as covariates [115].
To perform enrichment analyses with MAGMA, | used the MAGMA.Celltyping R
package hosted on GitHub which eases the automatization of large-scale enrichment
analysis [282].

Stratified LD Score Regression (S-LDSC)

Linkage disequilibrium score regression (LDSC) was a tool developed to understand
the inflation in test statistics in GWAS driven by true polygenic effects and bias such
as cryptic relatedness and population structure [215]. The same year, another
implementation of LDSC, S-LDSC was developed based on the prior knowledge that
functional categories of the genome contribute disproportionately to the heritability of
complex diseases [283]. S-LDSC is applied for partitioning heritability from GWAS,
and it can be applied to perform cell type enrichment analyses based on S-LDSC
method [283]. To do so, | generated annotation files for each cell type compatible with
S-LDSC software with SNP level information. These annotation files contain
information with the SNPs mapped to genes that belong to the 10% most specific
genes for a given cell type. To derive the 10% most specific gene lists for each cell
type, | processed the expression data described above to scale it to a total of 1 million
Unique Molecular Identifiers (UMI) or 1 transcript per million (TPM) for each cell type
or tissue. | only analysed genes with at least 1 million UMI or TPM in the cell type
under study. The specificity measures were calculated by dividing the expression of a
gene in a cell type by the total expression of that gene in all cell types. The analysis
was limited to SNPs matching the Hapmap3 SNPs, as well as excluded the major
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histocompatibility complex (MHC) due to its complex LD structure and high gene
density (GitHub wiki) [284].

To map SNPs to genes, | extended gene ranges with 100Kb up and downstream to
capture regulatory elements. Then, | added the mapped SNPs to the S-LDSC baseline
model that consist of 53 functional annotations to take into account differences in
heritability across the genome based on the activity and function of the region. |
generated one annotation file per cell type.

S-LDSC computes the proportion of SNP heritability with each cell type from the
annotation file, while taking into account the 53 annotations, therefore weighting the
region’s heritability according to the functional activity of the specific locus. Then,
LDSC calculates an enrichment score and the coefficient Z-score P-value of the
enrichment. The significance threshold was set to a 5% false discovery rate. For this
analysis, | used custom scripts, mirroring the methods described by Bryois and

colleagues [285].
vii) Mendelian Randomization

Mendelian randomization (MR) is a method to test the causal relationship of an
exposure variable on an outcome driven by genetic variants. MR is normally based on
an instrumental variable (V) analysis, in which an instrument (i.e. genetic variant) is
only associated with the outcome through its association with the exposure. MR makes
the assumption that genetic variants provide a source of variation associated with the
exposure and that is unrelated to the outcome. Therefore, the design of an MR
analysis involves defining the association between a genetic variant (G) and an
outcome (Y) which is used to test and quantify if an exposure of interest (X) influences
the outcome, in the case in which the genetic variant is associated with the exposure

and has no other path of association with the outcome [286].

There are three main conditions that need to hold for IV analysis to have a valid
scenario in which | can test the null hypothesis that the exposure is not associated (or
have effect) with the outcome [286].

- Relevance: IV is associated with the exposure

- Exchangeability: The IV does not have other mechanisms that influence the

outcome other than through the exposure of interest.
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- Exclusion restriction: The IV does not affect any other trait that has an effect on
the outcome assessed.

d) Code availability

All the code for my analyses have been published on GitHub
(https://github.com/AMCalejandro)
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3) Genome-wide meta-analysis of Motor
Progression in Parkinson Disease

a) Introduction

The majority of PD genetic studies have focused on case-control GWAS to explore
the genetic factors contributing to the risk for PD [51]. However, little is known yet
about the non-overlapping genetic factors that contribute to PD onset and progression
across the multiple PD axes (cognitive decline, motor decline, non-motor and non-

cognitive features).

In this study, | focused on modelling the early stages of motor Parkinson's disease,
using the total score from the MDS-UPDRS part Ill. This validated scale is
recommended for clinical trials to assess both the response to levodopa treatment and
the rate of change over time [157]. Furthermore, | derived and explored axial and limb
motor stages from the MDS-UPDRS part Il scale, based on my hypothesis of a
potential connection between different modules of MDS-UPDRS part 11l and specific

pathological processes [287].

By using GWAS and meta-analysis, | aimed to identify genetic determinants
associated with variability in motor progression and severity in the early stages of PD.
This analysis led to findings significantly correlated with changes in the MDS-UPDRS
part Il scale. In addition, | performed functional annotation and fine-mapping analyses
to unravel how the nominated genetic variants are associated with the regulation of

gene expression and the fundamental biology underlying PD motor traits.

b) Methods

Code used in the analysis is available from github.com/AMCalejandro/EMPD
(https://doi.org/10.5281/zenodo.7258985).

1) Study Design and data Quality Control

| examined six observational and interventional longitudinal cohorts of Parkinson's
disease (PD), comprising a total of 4,971 patients with available genotyping or whole

genome sequencing (WGS) data (Table 2).
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Table 2. Study sample sizes and genotyping array.

— . Period of
Study Name Abbreviations N Genotyping array recruitment
Tracking Parkinson’s TPD 2000 lllumina Recruitment between
HumanCoreExome 2012 and 2014
array
Oxford Parkinson's OPDC 1082 lllumina Study onset 2010.
Disease Centre Discovery HumanCoreExome Recruitment is still
Cohort -12vl.lor ongoing.
lllumina Infinium
HumanCoreExome
-24v1.1
Drug Interaction With DIGPD 427 lllumina Infinium Recruitment between
Genes in Parkinson's Multi-Ethnic Global 2009 and 2013
Disease (MEGA)

Parkinson's Progression PPMI 415 WGS Recruitment between
Markers Initiative 2010 and 2012
Advancing Parkinson’s PDBP 873 WGS Recruitment between
Disease Biomarkers 2012 and 2014

Discovery
Simvastatin as a PD-STAT 174 Neurochip Recruitment between
neuroprotective treatment 2016 and 2018
for Parkinson’s disease

| selected cohorts based on the availability of longitudinal assessments using the
Movement Disorder Society—Unified Parkinson's Disease Rating Scale part Il (MDS-
UPDRS). We kept individuals with matching clinical and genotyping data, removed
duplicated samples, (Figure 3)
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Figure 3. Quality Control flowchart.
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mishap

HWE < le-10

Genotype rate

R"2>0.8

Genotyping missing
rate >0.05

MAF >0.01

Total SNPs post-imputation

oy

1824

1819

1780

1767
I

1717

1700

1699

266152

266152

265622
|
265622
|
265622

0.999

6864740

6754740

6754740

6754740

3

1082

872

870

845

831
I

803

797

797

557018

513158

257801
|
257193
|
257159

6727127

6219170

6219170

6219170

415

413

412

404

396
1

287

287

287

61715058

58129433

11370163
I
11335953
|
11182129

0.999

11182129

11182129

11182129

11182129

174

128

128

126

124
I

124

124

124

476011

431276

431276
|
223371
|
223371

0.999

6429450

5036951

5036951

5036951

427

423

423

382

|

382
I

376

374

374

1778953

1762893

835782
|
835416
|
835286

0.999

11440561

11440561

7335865

7335865

PDBP

873

360

360

360

360
1
360

I

360

360

158715874

158546878

11723465
|
11723465
I
11203502

11203502

11203502

11203502

11203502

Each row shows a different QC step at different levels ( Clinical QC, Sample level QC,
Variant level QC, Post-Imputation QC) across each cohort displayed as a column. In
addition, a metric of the genotyping rate prior imputation is shown in Pre-imputation.
The resulting number of SNPs available for the study in each cohort is shown in

TOTAL.
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| defined limb and axial phenotypes based on established criteria using the MDS-
UPDRS part Il scale [288]. Additionally, the MDS-UPDRS llI total score served as an

overall measure of PD motor signs (Table 3).

Table 3. Limb, total, and axial PD motor measures derived from MDS-UPDRS.

Motor Score Scores from MDS-UPDRS Il

Speech (3.1) , Facial expression (3.2), Rigidity (3.3), Finger tapping (3.4), Hand
movement (3.5), Pronation-supination movements of hands (3.6) , toe tapping (3.7),
MDS-UPDRS |leg agility (3.8), Arising from chair (3.9), Gait (3.10), freezing of gait (3.11), postural
part lll - Total |stability (3.12), Posture (3.13) global spontaneity of movement body (Body
bradykinesia) (3.14), postural tremor of the hands ( 3.15), kinetic tremor of the hands
(3.16), rest tremor amplitude (3.17), constancy of rest tremor (3.18)

Rigidity (3.3), postural tremor of the hands (3.15), kinetic tremor of the hands (3.16),
MDS-UPDRS |rest tremor amplitude (3.17) Finger tapping (3.4), Hand movement (3.5),

part Il - Limb [Pronation-supination movements of hands (3.6) , toe tapping (3.7), leg agility (3.8),
constancy of tremor (3.18)

MDS-UPDRS |Speech (3.1) , Facial expression (3.2), Arising from chair (3.9), Gait (3.10), freezing
part IIl - Axial of gait (3.11), postural stability (3.12), Posture (3.13), global spontaneity of
movement body (Body bradykinesia) (3.14)

In this study, I included longitudinal data from all data sources up to 36 months from
the baseline visit, with the aim of gathering a subset of data with low missingness rate
(< 50% missingness). Over 36 months, | found cohorts to have a missingness
percentage higher than 50%. | used imputation techniques to address missing motor
outcomes. For participants with incomplete MDS-UPDRS part Il data | scaled up the
limb, axial, and total scores. For each patient’s time specific MDS-UPDRS part 1lI
measures, when no more than 20% of the total scores from each motor sub score
(total, limb, axial) were missing at random, | scaled up the score summing the total
score across motor sub scores, divided by the number of non-missing sub scores,
multiplied by the total number of scores on each motor sub score. If more than 20% of
the total scores per motor subscale were missing, | set the motor subscale as missing,
and excluded that data point. On the other hand, if there were items in the MDS-
UPDRS part lll scale consistently missing (missing not at random), | scaled up the

total motor score only when there were up to 3 measures missing not at random [289].

| conducted genetic QC at both the sample and variant levels, followed by imputation
using the MIS, and post-imputation QC. | applied standard sample QC steps across
cohorts using plink v1.9 [290] (Figure 3). A more detailed explanation on the QC steps
is in the Chapter 2 — Methods.
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Earlier research has indicated that levodopa enhances motor state examination and
may potentially decelerate the progression of the disease [291]. Given that the
observable motor improvement occurs a few hours after treatment and influences the
Movement Disorder Society—Unified Parkinson's Disease Rating Scale (MDS-
UPDRS) measure, | conducted comparisons among individuals within cohorts in the
same state during each assessment. If cohorts had data available in the "OFF" state,
| utilised longitudinal "OFF" vs "OFF" MDS-UPDRS part Il scores; otherwise, |
conducted "ON" vs "ON" comparisons. Additionally, | conducted sensitivity analyses
by adjusting the motor scores based on levodopa dosage. To take into account the
effect of dopaminergic treatment and doses on the motor scores derived from MDS-
UPDRS part Ill, | performed a sensitivity analysis with the adjusted total, limb, and
axial motor scores, using a correction factor according to the effect of levodopa dose
on the MDS-UPDRS scale. It is well known that levodopa treatment improves MDS-
UPDRS scores in the majority of PD patients [291]. To figure out whether any genetic
association with the motor states was masked due to levodopa dosage, | used an
equation that best predicted the effect of levodopa dose on MDS-UPDRS part Il total
over time to correct the motor scores by levodopa usage, provided by Dr Michael
Lawton that best predicted the MDS-UPDRS Il trend based on levodopa uptake. |
used data from Tracking Parkinson’s Levodopa challenge with motor subscores
recorded at baseline before and after treatment in order to weight the effect of
levodopa usage on the limb and axial motor states. | found that over the average
difference in the MDS-UPDRS part Il total score pre and post dose at baseline (9.9
points difference in average), 7.7 point change was explained by the limb composite
score and 2.2 change due to the axial score. | used such weights on the equation that
best predicted what | would expect to happen long term with levodopa usage, and |
derived the adjusted longitudinal outcomes across cohorts.

1) Statistical approaches

To assess the impact of genetics on both motor progression and baseline variability, |
employed LMMs, a statistical model introduced in Chapter 2 - Methods. | explored
changes in limb and axial motor severity and progression associated with genetic

variants, focusing on an additive genetic effect.
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Model 1: Disease Progression

OUTCOMEU = By + ﬂlTIMEgj + BQSNPij + 55(TIME X SNP);‘_J' + 54GENDERL‘J—,‘ +
65AGE_DIAGNOSIS.STDU + 66PClg‘j + }87P02ij + ,88PC31'j + 5913041:]- —
ﬁ10PC51‘j + (’U;m + uliTIMEij) + €ij

Where:

e [ is the fixed intercept.

o 34, Bs, Bs, B4, Bs, Be, B, Bsy Bo, Big are the fixed effect coefficients.

® wy; is the random intercept for subject 1.
e uq; is the random slope for TIME for subject 1.

* ¢;; is the residual error for subject ¢ at time j.

Model 2: Disease Severity

OUTCOME;; = f + BiSNP;; + S,GENDER,; + ;AGE_DIAGNOSIS.STD,, +
BiPClL; + BsPC2y + BsPC3y5 + 57PC4y; + BsP G55 + wpi + €5

Where:

By is the fixed intercept.

B1, B2, B3, B4, Bs, Be, Br, Bs are the fixed effect coefficients.

Uyg; is the random intercept for subject 1.

€;; is the residual error for subject 7 at time j.

Disease progression model is a LMM with random variability at both the intercept
and the slope level. | allowed for individual's intercepts to deviate from the global
intercept as well as time individual’s slopes to deviate from the global average time
slope, while allowing correlation between the intercept deviations and time effect
deviations within individual levels. | selected the disease progression model under the
assumption that there are differences in patients’ progression that could be explained

from genetics.

Disease severity model is a LMM with random variability at the intercept level only. |
allowed the individual’s intercepts to deviate from the global intercept. It is adjusted by

the confounding variables only. This model assumes that there is variability around
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the motor stage patients were when the study began. In addition, the model assumes
the motor decline would remain constant without differences between subjects. |
selected the disease severity model under the assumption there is no unexplained

variability in Parkinson's disease progression.

In the disease severity model, | examined the additive genetic effect (either an
increase or a decrease) of SNPs on the average motor score while adjusting for the
rest of covariates, or in other words, the additive genetic effect on patients disease
severity. For the disease progression model, | investigated the genetic additive effect

of SNPs on the motor rate of change.

| evaluated the power of LMMs for investigating SNP effects on changes in PD motor
signs. The power of GWAS depends on the sample size, the frequency of those
variants associated with traits, their effect size, the heterogeneity of the trait studied,
and the LD structure. The power increases with sample size, variant effect size, and
allele frequency. To estimate the power of LMMs in GWAS, | performed a power
calculation across combinations of sample sizes, allele frequencies, and effect sizes
in R. | carried out 10000 simulations and tested the association of 1000 dummy SNPs
with different effect sizes (total MDS-UPDRS Il rate of decline), different AFs for those
SNPs, and for three different sample sizes. | reported the power as the number of
times a SNP was found to be significantly associated with the outcome accounting for

multiple testing (P = 0.05/ N SNPs), divided by the number of simulations.

For the disease progression model, | made use of the ImerTest R package (v. 3.1-3)
and the Satterthwaite approach to approximate degrees of freedom, deriving p-values
using restricted maximum likelihood (REML) due to its acceptable type-1 error rates
[292]. Additionally, | employed the SCEBE [193] algorithm (v. 0.1.0) with REML and
the Ime4 R package (v. 1.1-30) to reduce computational costs by introducing
unexplained variability at the slope level in the disease severity model. | validated

SCEBE in two separate cohorts (Figure 4). All tests were two-tailed.
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Figure 4. SCEBE validation in two independent cohorts.
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Pearson correlation plots between P-values and Coefficients derived with SCEBE
approach (X-axis) and with ImeRTest using the Satterwhite approach to derive P-
values (Y-axis). The two top figures are the correlation plots of models fitted with
OPDC data. The two bottom figures are the correlation plots of models fitted using
DIGPD data. | used MDS-UPDRS 11l total as the outcome of the model. Each plot
shows the correlation value (R?), and the significance of the correlation (P).

For meta-analysis of genome-wide association summary statistics, | used the METAL
software (version released on 25/03/2011). The meta-analysis is based on a fixed-
effects model weighted by 3 coefficients and the inverse of standard errors [244,245].
Additionally, | applied quality control to the meta-analysis results as described in
Chapter 2 - Methods. Statistical significance was determined at the genome-wide

level (p = 5e-8).
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iii) Fine-Mapping and Functional Annotation

For each locus of interest, | implemented a conditional and stepwise model selection
procedure to identify independently associated SNPs for each GWAS nominated locus
[264]. Causal variant nominations were made through fine-mapping techniques
[263,267,274,276,293] as described in Chapter 2 — Methods. To gain deeper
insights into the regulatory mechanisms within these nominated loci, | cross-
referenced each locus with (1) cell type-specific and general genome enhancer marks,
(2) enhancer-transcription start site (TSS) interaction marks sourced from FANTOMS5,
and (3) transcriptional regulatory marks specific to brain cell types and distal enhancer-
promoter interactions, using ‘echolocatoR’ R package (v 0.2.2) [281,294].

To assess whether causal variants might be linked to motor phenotypes via gene
expression dysregulation, | conducted colocalization analyses using the coloc method
against cis-expression quantitative trait loci (eQTL) datasets [266,269,295,296].
Furthermore, | employed FUMA, a web-based platform integrating a diverse range of
functional annotation data (version 1.3.8) [273]. The LocusZoom tool (version 0.12)
[297] was used to visually represent the LD structure of a given locus in relation to the

lead SNP, along with the neighbouring protein coding genes and rRNAs.

c) Results

We explored the overall rate of change in MDS-UPDRS part Il total, limb and axial
scores explained in Table 4. There was variation across studies. We specifically
studied the amount of change for the motor measures in each study by comparing the
final score with the baseline score, divided by the baseline score, for MDS-UPDRS-
total, axial and limb. We found that the axial score rate of change was the highest in
TPD, OPDC, PD-STAT, and PDBP. The limb rate of change was the highest in PPMI
and DIGPD. PD-STAT and PDBP had a lower rate of changes, which may be due
either to longer disease duration, or to selection effects related to the inclusion of
“‘benign” PD in patients with longer disease duration. We assessed this by fitting a
LMM using data from TPD, and found a significant interaction between time and
disease duration related to MDS-UPDRS total progression (3 =-0.11, SE=0.04,P =
0.01). Longer disease duration was associated with a lower total rate of change in

MDS-UPDRS, which appears to be non-linear with extended disease durations.
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Overall, we confirmed that the MDS-UPDRS derived measures increased, reflecting
worsening motor impairment, from study entry up to 3 years (Figure 5). The MDS-
UPDRS part 1l total yearly rate of change ranged between 2.37 - 3.01 points/year,

which is consistent with previous reports[179].

Figure 5. MDS-UPDRS Ill Motor Scores Trajectories.
Average change in MDS-UPDRS Ill motor scores
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Trajectory of the MDS-UPDRS Ill-derived motor scores across cohorts. In the x-axis,
the time point at which the MDS-UPDRS Il assessment was measured. Each plot
shows the motor scores trajectories on each cohort highlighted in the label. The y-axis
represents the average scores for each of the motor states. The bars represent the
SD of the average motor scores.

85



Table 4. Cohort demographics and motor scores rate of change.

S patiI:nts Obser\ljations in:/ejrs\igl, Cre=r Nr?{a(l?) 5‘&?3 ArﬁeBe{r?l (i?l;s ra\t(:%rfl)é;%tnaée total rl;laézr? f(scdh)ange me rr'na(tazr? f(sc(;1)ange e r;aéznozscdf;ange
mo mean(sd) mean (sd)

TPD 1699 4349 18 ON (tsi(.)é) (igég) (i;:gcl)) 2.7 (+4.69) 0.48 (+0.92) 0.54 (+1.25) 0.71 (£1.37)
opbe o7 1978 18 ON (63%337) (ig:gg) (ig:g% 2.85 (+4.27) 0.50 (x0.77) 0.50 (+0.93) 1.02 (+1.76)
PPV 287 1653 34b&lz) OFF (6%1%1) (ié:%) (23133) 3.01 (+3.65) 0.84 (+0.94) 1.03 (x1.23) 0.67 (+1.05)

PDSTAT| 124 358 12 OFF (617-39) NA (Sg:g% 1.70 (+5.76) 0.06 (+0.41) 0.07 (+0.58) 0.27 (+0.61)
DIGPD | 305 1005 12 ON (6%)2.3;3) (ig:gg) (23133) 2.37 (£3.41) 0.56 (+0.87) 0.67 (+1.40) 0.52 (+0.95)
PDBP 360 2090 6 ON (621?57) (jg:go) (igzg) 1.05 (+4.11) 0.21 (£0.61) 0.30 (+0.90) 0.40 (+1.46)

Abbreviations = N, Number; AAD, Age at Diagnosis; AAB, Age at Baseline
Total rate of change per year: (Last visit score - Baseline score) +~ number of years
Total/Limb/Axial rate of change centred: (Last visit score - Baseline score) +
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My power calculation showed that the current LMM was well powered to detect high
effect sizes (B = 0.2) for a wide range of different MAFs, with a limit for variants with
an allele frequency = 1% (Figure 6). We performed a GWAS on each cohort to study
PD motor progression and meta-analysed results separately using a genomic control
to correct the test statistics of those cohorts that had genomic inflation (A > 1 & A <
1.2).

Figure 6. Power to detect genetic associations in LMMs.
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The Y axis shows the power (0 to 1). The X axis shows the MAF of the SNP tested
10000 times. The header of each plot represents the sample size. Different colours
represent the simulated effect size.
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| evaluated disease progression and disease severity models for total, limb and axial
progression. We did not find any significant genetic association with the PD limb motor
progression or severity. For axial motor progression, | found one haplotype block that
reached genome-wide significance (GJAS in chromosome 1) (Figure 7a; Figure 7c).
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Figure 7. GWAS meta-analysis of motor axial progression.
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Figure 7a.Manhattan plot of the rate of axial change GWAS meta-analysis. On the X
axis each of the 22 chromosomes, and each SNP P-value on the Y axis. The red
dashed line indicates the genome-wide significance threshold P-value = 5e-8. The LD
block that reached genome wide significance on chromosome 1 is on the GJA5 locus.
Each dot corresponds to the P-Value of the conditional likelihood interaction term
between SNP and time (SNP*time). There was no genomic inflation (A = 0.99). Figure
7b. Forest plots for proxy variant rs12037169 within GJA5 locus under the GWAS
meta-analysis using disease progression model for the axial outcome (12 = 40.1;
Cochran's Q test: x2 =9.64, df =5, P = 0.10), annotated by study, effect size, and the
corresponding 95% confidence interval. Figure 7c. GWAS locusZoom plot.
LocusZoom plot centred around the lead SNP at the GJAS5 locus. SNPs are coloured
according to the LD (r?) with the lead variant (purple). The corresponding degree of
LD for each colour, is given in the plot label.

This association was also found, at a lower significance level, for the MDS-UPDRS
part Il total. Given that there was no association with PD limb motor progression and
severity, this relates to the inclusion of axial components in the overall MDS-UPDRS-
lll total score. Although the lead variant in the GJAS5 locus was not captured in the
PPMI WGS data, | found proxy variants that were present in all cohorts. The lead proxy
variant was rs12037169 (B = -0.25, SE = 0.04, P = 3.93e19) (Table 5). The association
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test-statistic and directionality of each of these variants was consistent across cohorts
(Figure 7Db).

Table 5. Lead SNPs on the disease progression and severity GWASS.

NEAREST TYPE OF
SNP CHR Al MAF BETA SE P-value GENE VARIANT MODEL

rs6593808 1 A 10.23| -0.28 | 0.04 | 1.35e-10 GJA5S intergenic | progression

rs12037169 1 A 10.25| -0.25 | 0.04 | 3.93e-10 GJA5 intergenic | progression

rs4073509 2 C |0.02| 0.52 | 0.10 | 2.12e-07 | AC098872.3 | intergenic |progression

rs117239007| 13 | C [0.01| 0.68 | 0.14 | 4.71e-07 | LINC00544 | intergenic |progression

NcRNA_intr
rs36082764 | 17 | T [0.42| -0.62 | 0.11 | 6.34e-08 | LINCOO511 onic severity
rs4721411 7 T |10.40( 0.53 | 0.10 | 1.66e-07 MAD1L1 intronic severity
rs10939702 4 T 10.45( 0.57 | 0.12 | 8.10e-07 WDR1 intronic severity

To assess whether levodopa presented a substantial confounding factor in my motor
progression study, | adjusted patient motor scores as described in the Methods
section. This equation, designed to best estimate the impact of levodopa dose on
MDS-UPDRS Part Ill total scores over time (described in the Statistical approaches
of this Chapter), allowed us to correct the motor scores based on levodopa usage.
To account for the influence of levodopa on limb and axial motor states, | incorporated
data from the Tracking Parkinson's Levodopa challenge [298], which included MDS-
UPDRS Part Il scores recorded before and after treatment. | applied these weights to
correct motor scores with respect to levodopa usage. Notably, | observed no
significant alterations in the significance level or direction of effects for the tested
SNPs. Furthermore, rs120371169 maintained a significant association with axial

motor progression (Table 6).
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Table 6. Metrics per cohort of lead SNPs found on the disease severity and
progression GWASs meta-analysis.

Cohort rsiD i”gg MAF Beta se P-Value I:A\ec\i/jzcsi?g da Model
TPD rs12037169 A 0.24 -0.30 0.06 1.67e-06 No progression
OPDC rs12037169 A 0.25 -0.33 0.09 1.75e-04 No progression
PPMI rs12037169 A 0.27 -0.10 0.35 0.44 No progression
DIGPD rs12037169 A 0.24 -0.29 0.11 1.84e-03 No progression
PDSTAT | rs12037169 A 0.25 -0.33 0.25 0.18 No progression
PDBP rs12037169 A 0.23 0.07 0.18 0.59 No progression
TPD rs12037169 A 0.24 -0.30 0.07 8.41e-06 Yes progression
OPDC rs12037169 A 0.25 -0.35 0.09 6.20e-04 Yes progression
PPMI rs12037169 A 0.27 -0.21 0.39 0.6 Yes progression
DIGPD rs12037169 A 0.24 -0.28 0.11 1.84e-03 Yes progression
TPD rs36082764 T 0.44 -0.66 0.17 2.50e-04 No severity
OPDC rs36082764 NA NA NA NA NA No severity
PPMI rs36082764 T 0.46 -0.66 0.19 6.50e-04 No severity
DIGPD rs36082764 T 0.38 -0.26 0.36 0.44 No severity
PDBP rs36082764 T 0.43 -0.65 0.28 1.00e-02 No severity
PD-STAT | rs36082764 NA NA NA NA NA No severity
TPD rs4721411 T 0.42 0.62 0.18 6.00e-04 No severity
OPDC rs4721411 T 041 0.65 0.24 8.00e-03 No severity
PPMI rs4721411 T 0.38 0.43 0.19 2.00e-02 No severity
DIGPD rs4721411 T 0.43 0.42 0.36 0.2 No severity
PDBP rs4721411 T 0.40 0.70 0.27 9.00e-03 No severity
PD-STAT | rs4721411 T 0.42 -0.40 0.52 0.45 No severity
TPD rs36082764 T 0.44 -0.65 0.18 3.00e-04 Yes severity
OPDC rs36082764 NA NA NA NA NA Yes severity
PPMI rs36082764 T 0.46 -0.70 0.21 8.00e-04 Yes severity
DIGPD rs36082764 T 0.38 -0.32 0.36 0.38 Yes severity
TPD rs4721411 T 0.42 0.62 0.18 6.00e-04 Yes severity
OPDC rs4721411 T 0.41 0.65 0.24 8.00e-03 Yes severity
PPMI rs4721411 T 0.38 0.33 0.21 9.00e-02 Yes severity
DIGPD rs4721411 T 0.42 0.38 0.36 0.29 Yes severity
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Hoehn and Yahr (HY), a metric capturing a patient's disease severity, can also be
used over time to assess disease progression. As a way of validating the genome-
wide significant association linked to PD axial motor progression, | used a disease
progression statistical model incorporating HY as my longitudinal outcome to explore
the contribution of SNPs to motor changes over time. Within the GJAS locus, at the
same locus which was found significantly associated with axial motor progression, |
identified an LD block approaching genome-wide significance (Figure 8). The lead
variant in this block was rs36005900 (B = —-0.08, SE = 0.0078, p = 5.7e-7). Notably,
the directionality of the effects mirrored those observed in the axial motor progression
GWAS. Furthermore, rs36005900 was in LD with the lead variant reported in the same
locus for MDS-UPDRS Il axial motor progression (D’ = 0.8, R2 = 0.6).

Figure 8. Manhattan plot for disease progression GWAS meta-analysis using HY as
the outcome.
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| then investigated whether there were independently associated SNPs at the GJA5
locus. We did not find any signal other than the lead SNP in the selection procedure
under a conditional and stepwise selection approach using GCTA-COJO. Under a
single causal variant assumption, | then performed statistical fine mapping. | did not
find a consensus SNPs (a SNP nominated to be causal by 2 different fine-mapping
tools) at the GJAS locus. | found a total of 12 SNPs with support for causality of
changes in motor axial progression, nominated from at least one fine-mapping tool
(Table 7). 1 did not find an overlap between the GJAS locus haplotype block and
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regulatory marks from functional annotation datasets described in the Chapter 2 -
Methods.

Table 1. Fine-mapping results using ABF, FINEMAP, SUSIE, and POYFUN_SUSIE

LOCUS SNP P leadSNP ABF FIRIEM SUSIE E?SLJ;Lé Sup mean.PP
GJAS rs2353 1.3e-10| FALSE | 0.13 0 1 0 1 0.28
GJA5 rs12032789 |6.4e-10| FALSE | 0.03 0 1 0 1 0.26
GJAS rs1342711 |6.4e-10| FALSE | 0.03 0 1 0 1 0.25
GJAS rs2352870 |7.0e-10| FALSE | 0.03 1 0 0 1 0.25
GJAS rs10793706 (8.5e-10| FALSE | 0.02 0 0 1 1 0.25
GJAS rs10793707 (8.5e-10| FALSE | 0.02 0 0 1 1 0.25
GJAS rs12408247 |8.5e-10| FALSE 0.02 0 0 1 1 0.25
GJAS rs11552588 |(1.1e-09| FALSE | 0.02 0 0 1 1 0.25
GJAS rs35594137 |(1.1e-09| FALSE | 0.02 0 0 1 1 0.25
GJAS rs11576092 |8.7e-09| FALSE | 0.00 1 0 0 1 0.25
GJAS rs1573101 ([1.4e-05| FALSE |[2.5e-06 1 0 0 1 0.25
GJAS rs4443942 |(9.8e-05| FALSE (4.5e-07 1 0 0 1 0.25
MAD1L1 rs3778978 |4.5e-07| FALSE | 0.02 NA 1 1 2 0.50
LINCO0511| rs7213651 (3.7e-06| FALSE | 0.02 0.86 1 1 3 0.72
LINCO0511| rs7218929 |7.6e-06| FALSE | 0.01 0.07 1 3 0.52
LINC00511| rs12950478 |2.5e-05| FALSE | 0.01 NA 1 1 2 0.50

Abbreviation = N, Sample size to do fine-mapping; t_stat = test statistic; CS = Credible Set; PP =
Posterior Probability. mean.PP = the mean posterior probability from the four fine-mapping posterior
probability.

| also explored expression quantitative trait loci (eQTL) datasets through the FUMA
platform. We found that many of the GWAS significant SNPs within the GJA5 locus
were significant cis-eQTLs for ACP6, a gene located 105 kb from the lead SNP, in
PsychEncode, and eQTLGen. In particular, we found that the lead variant was a
significant eQTL in PsychEncode, and eQTLGen, and also rs12037169, the proxy
significant variant found in all cohorts, was a significant cis-eQTL in eQTLGen (Table
8). We then carried out a colocalization analysis to evaluate whether there was
colocalization between the GWAS axial progression results and eQTL GWAS for gene
expression at the GJAS locus. | used cis-eQTL data from eQTLGen and Metabrain

cortex tissue cis-eQTLs datasets and performed a colocalization test for any gene
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within £1Mb from the GJAS lead SNP. We did not find direct colocalization evidence
for any gene, including ACP6. We found PPH3 (indicating separate significant
associations for GWAS and eQTL analysis) to be the highest for the ACP6 gene using
default SNP priors (eQTLGen = 0.98, MetaBrain = 0.88). PPH3 was the highest for
these two genes (PPH3 > 0.8), after we adjusted the priors according to the number
of overlapping SNPs.

Table 2. GJAS5 locus significant SNPs that are ACP6 eQTLs across different studies.

SNP |CHR| pPos |mar|Nearest| Gwas P-1 oy giidy | symbol | €QTL P

Gene value value

rs6593808 | 1 |147219250|0.23| GJA5 |1.349e-10|PsychENCODE| ACP6 | 1.18e-07

rs6593808 | 1 |147219250|0.23| GJA5 |1.349e-10| eQTLGen | ACP6 | 1.68e-14

rs2353 1 |147222372|023| GJAS |1.349e-10| eQTLGen | ACP6 | 1.58e-14
RP11-

rs7551148 | 1 |147289707|0.25 | 314N2.2 | 1.815¢-10 | PsychENCODE | ACP6 | 1.23e-07
RP11-

rs7551148 | 1 |147289707|0.25|314N2.2 |1.815e-10| eQTLGen | ACP6 | 1.08e-07
RP11-

rs1495955 | 1 |147249285|0.25 |433322.3|2.992¢-10| PsychENCODE | ACP6 | 7.97e-05
RP11-

rs1495955 | 1 |147249285|0.25|433122.3|2.992e-10| eQTLGen | ACP6 | 6.52e-17

rs12037169 | 1 |147248057|0.25| GJA5 |3.93e-10| eQTLGen | ACP6 | 8.64e-17

rs1857213 | 1 |147219553|0.23| GJA5 |6.383e-10|PsychENCODE | ACP6 | 1.18e-07

rs1857213 | 1 |147219553|0.23| GJA5 |6.383e-10| eQTLGen | ACP6 | 1.73e-14

rs1342711 | 1 |147219835|0.23| GJA5 |6.383e-10|PsychENCODE | ACP6 | 1.20e-07

rs1342711 | 1 |147219835|0.23| GJA5 |6.383e-10| eQTLGen | ACP6 | 2.10e-14

rs12032789 | 1 |147220045|0.23| GJA5 |6.383e-10|PsychENCODE| ACP6 | 7.91e-09

rs12032789 | 1 |147220045|0.23| GJA5 |6.383e-10| eQTLGen | ACP6 | 1.55e-14

rs36005900 | 1 |147229662|0.23| GJA5 |6.964e-10| eQTLGen | ACP6 | 1.92e-13

rs2352870 | 1 |147206521|0.26 | GJA5 |7.019e-10|PsychENCODE| ACP6 | 1.18e-07

gwasP = P-value of a SNP in the GWAS study; eqtlP =P-value of a SNP in the eQTL study.

| then performed a colocalization analysis to evaluate whether there was colocalization
between the GWAS axial progression results and eQTL GWAS for gene expression
at the GJAS5 locus. No conclusive evidence of direct colocalization was identified for
any gene, including ACP6. The highest Posterior Probability of Colocalization (PPH3),
indicating distinct significant associations for GWAS and eQTL analyses, was
observed for the ACP6 gene with default SNP priors (eQTLGen = 0.98, MetaBrain =
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0.88). Even after adjusting the priors based on the number of overlapping SNPs as
described in Chapter 2 - Methods, PPH3 remained highest for these two genes
(PPH3 > 0.8).

In addition, | investigated the genome-wide association of SNPs on average changes
in limb and axial motor states using the disease severity model as highlighted in the
statistical approaches section in Chapter 2 — Methods. No haplotype block
reached genome-wide significance in this analysis. However, two distinct signals
approached genome-wide significance, correlating with changes in average axial
motor scores (MAD1L1 on chromosome 7 and LINCO0511 on chromosome 17)
(Figure 9a). The lead SNP in MAD1L1 was identified as rs4721411 (B = 0.54, SE =
0.11, p = 1.6e-7), and the lead variant in the long noncoding RNA LINC00511 was
rs36082764 (B = -0.62, SE = 0.11, p = 6.3e-8) (see Table 5). We found the
directionality and the effects of the lead SNPs to be consistent across the cohorts part

of the meta-analysis (Figure 9b and 9c).
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Figure 1. Motor severity GWAS Manhattan plot and lead variants forest plots.
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Figure 9a. Manhattan plot for the axial severity GWAS meta-analysis. The red dashed
line indicates the genome-wide significance threshold P-value = 5e-8. The two LD
blocks approaching genome wide significance are on the MAD1L1 locus in
chromosome 7 and LINC00511 locus on chromosome 17. There was no genomic
inflation (A = 1.00). Figure 9b. Forest plots for lead variant rs4721411-T found at the
MAD1L1 locus (right) under model A (12 = 0; Cochran's Q test: x2 = 4.01,df =5, P
=0.55) annotated by study, effect size, and the corresponding 95% confidence interval.
Figure 9c. Forest plots for lead variant rs36082764-T found at LINCO0511 locus
under the GWAS meta-analysis using model A (12 = 0; Cochran's Q test: x? = 1.07, df
= 3, P = 0.78) annotated by study, effect size, and the corresponding 95% confidence
interval.

Subsequent fine-mapping at both loci identified rs3778978 in the MAD1L1 locus as
the causal SNP and a list of three SNPs (rs7213651, rs7218929, rs12950478) in the
LINCOO0511 locus as potential trait-causing SNPs. This fine-mapping effort narrowed
down the spectrum of variants for further targeting in in vivo and in vitro analyses
(Table 7). Notably, the MAD1L1 fine-mapped causal variant and the lead SNP
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overlapped with an active enhancer mark, suggesting an influence of the GWAS-
nominated variants on the regulation of MAD1L1 expression (Figure 10a).

Figure 2. MAD1L1 and LINC00511 functional annotation.
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From top to bottom, transcripts plot, locus plot, the fine-mapping results, and the
functional annotations specific assay we overlaid the GWAS locus with. In the locus
plot, the SNPs are coloured in red as LD (given by R2) increases, and blue as the LD
decreases. In the fine-mapping track, | highlight the SNPs with the highest posterior
probabilities for each fine-mapping tool highlighted on the legend on the right hand
side. In addition, | highlight in yellow the Consensus SNP. Figure 10a. We mapped
the GWAS locus with FANTOMS5 enhancer marks from the FANTOM project. All data
from the FANTOMS5 project was scanned to plot out the 5 datasets with present
enhancer marks on the region of interest. From top to bottom, dendritic and monocytes
cell type specific enhancer marks, bulk enhancer transcription start site interaction
mark, and bulk enhancer permissive and robust marks. In the locus plot from the
middle, from the extensive and enhancer enhancers marks, we can see how they
overlap both the lead (red dashed vertical line), and the fine-mapped Consensus SNP
(vertical yellow line). This overlap is also notable on the row of Enhancers-TSS
interaction marks. Figure 10b. We mapped the GWAS locus with brain cell type
specific regulatory element marks, the first 4 rows are the density marks (y-axis) from
ATAC-seq assay (in pink), and CHIP-seq assays (H3K27ac in blue, and H3K4me3 in
cyan), in astrocytes, microglia, neurons, and oligodendrocytes. The next four rows are
the distal anchored chromatin loops (black curves) derived from the PLAC-seq assay.
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For LINC00511, an anchored chromatin loop was identified from the GWAS LD block
in LINC0O0511 to a region containing the active promoter of neuronal SOX9, indicating
that mutations in this distal regulatory region might alter SOX9 expression specifically

in neurons (Figure 10b).

| investigated eQTL databases through FUMA, discovering that both the lead variant
and the fine-mapped nominated causal variant in MAD1L1 were significant cis-eQTLs
in BIOS and eQTLGen (Table 9). Subsequently, | conducted a colocalization analysis
to assess the presence of a shared causal variant between the two traits as detailed
in Chapter 2 - Methods. Despite an examination within a 1 Mb range from the GWAS
lead SNPs, no direct colocalization evidence was found for any gene. Unfortunately,
there was no available cis-eQTL data for SOX9. In the MAD1L1 locus, the Posterior
Probability H3 (PPH3), indicating an association with both phenotypic and expression
traits with distinct causal variants, reached the highest values (PPH3 in MAD1L1:
eQTLGen = 0.97, MetaBrain = 0.98, PsychENCODE = 0.75).

Table 9. cis-eQTL values of the Model A MAD1L1 locus lead SNP rs4721411.

SNP CHR | MAF ”gae;eest gwasP | eQTL study | symbol eqtlP
rs4721411 | 7 039 |MADIL1| 1.657e-07 | eQTLGen | MADIL1 | 1.842e-57
rs4721411 | 7 039 |MADIL1|1.657e-07| BIOSI | MADIL1 | 1.215e-12
rs3778978 | 7 038 |MADIL1|5.976e-07 | eQTLGen | MADIL1 | 1.265e-59
rs3778978 | 7 038 |MADIL1|5.976e-07| BIOS | MADILL | 6.313e-12

gwasP = P-value of a SNP in the GWAS study; eqtlP =P-value of a SNP in the eQTL study.

Biological interpretation of nominated genes in relation to PD

ACP6 encodes Lysophosphatidic Acid Phosphatase Type 6, an enzyme that
regulates lipid metabolism in mitochondria [299]. Changes in ACP6 concentrations are
found in Gaucher Disease (GD), although there is no clear link between ACP6 levels
in and GD progression. ACP6 is highly expressed in astrocytes [300]. Mitochondrial

dysfunction has been widely associated with PD aetiology [301].

MAD1L1 encodes the mitosis arrest deficient-like 1 protein, a component of the
spindle-assembly checkpoint which prevents the onset of anaphase until
chromosomes are aligned at the metaphase plate [302]. Recent GWAS have identified
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MAD1L1 as a gene increasing the susceptibility for bipolar disorder and schizophrenia
[303,304]. This variant is in high LD with the fine-mapping MAD1L1 nominated variant
(D’ = 0.75) [305]. MAD1L1 expression is measurable in several brain tissues [306]. A
recent study investigated healthy adults carrying the MAD1L1 rs11764590 risk allele
[307]. Carriers showed alteration in the responsiveness and regulation of the
mesolimbic reward system. Adults carrying the risk alleles showed significant
hypoactivations of the ventral tegmental area (VTA), the bilateral striatum, and bilateral
frontal and parietal cortices. Regarding PD in patrticular, a study including PD patients
has shown that patients with more severe disease (measured in “OFF” and “ON "
state), showed a fall in activation in the anterior cingulate cortex associated with
reward expectancy [308]. A plausible explanation for this could be that MAD1L1 PD
mutation carriers, showing an impaired reward system, respond worse to

dopaminergic therapy, hence developing with more severe axial signs.

It is known that enhancers are found in intronic and intergenic regions, as well as that
introns act as gene regulators [309,310]. | have found evidence of the MAD1L1 intron
acting as an active enhancer and regulating and predicted to interact with a
transcription start site (TSS). This together with the overlap found between eQTL and
GWAS MADI1L1 regional plots, suggest that this intron may play an active role in

regulation in expression.

SOX9 is a SOX transcription factor (TFs) family member. The male sex determination
gene (Sry) gave birth to this SOX family. SOX TFs regulate diverse cellular processes
during development, as well as differentiation into tissues and organs. In addition, they
play a major role in central nervous system development and adult neurogenesis[311].
Studies of SOX9 gain and loss of function have demonstrated that SOX9 is required
for the formation of multipotent Neural stem cells (NSCs) and their maintenance in the
central nervous system during embryonic and adult phase[312]. Moreover, SOX9
regulates the transition from neurogenesis to gliogenesis during development, and it
has been shown that when SOX9 is not expressed, there was a reduction in astrocytes
and oligodendrocytes, and a transient increase in motor neurons[313,314]. This is
consistent with my findings suggesting when the distal regulation towards SOX9
expression is altered in neurons, PD patients show a lower motor axial impairment,

suggesting a connection between the CNS development and the adult neurogenesis.
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d) Discussion

To understand the biology of motor progression in PD, we carried out a large well
powered GWAS of PD motor progression. We have found one haplotype block at the
GJAS locus that is significantly associated with axial PD motor progression. This
association was consistent across individual cohorts included in my motor progression
GWAS meta-analysis and was replicated in an analysis of H/Y supporting my findings.
Further exploration of the GWAS significant signals in eQTL databases suggests that
the GWAS hits may control the expression of ACP6, an enzyme that regulates lipid

metabolism in mitochondria [299].

We used the MDS-UPDRS III (PD motor examination) scale, a sensitive measure of
motor progression over time which has been widely studied in observational and
interventional studies of PD. A study of untreated de novo PD patients in the PPMI
study, followed up for 5 years to assess the progression of MDS-UPDRS, showed a
linear increase of 2.4 points per year in MDS-UPDRS part Il total score [179]. In this
study, we observed a similar yearly rate of change for the total MDS-UPDRS score
across the studies | included in my analysis (2.3 points/year on average) (Table 4).
We have used linear mixed effect models to investigate the common genetic variability
associated with the severity and progression of distinct PD motor aspects. This
concept may be consistent with PD subtypes studies having a differential motor
severity and progression [35,315—-319]. Another aspect, of this differential approach to
PD symptomatology is that limb and axial PD motor components may have a different
cellular and pathophysiological basis, with axial and limb motor symptoms related to

cholinergic and dopaminergic dysfunction respectively [320,321].

We corrected all models by AAO, and sex and PCs as confounding variables. We
performed a fixed effects meta-analysis as opposed to a pooled analysis to further
account for between cohorts heterogeneity, as cohorts we included had different
inclusion and exclusion criteria, and were either genotyped with different microarrays
or whole genome sequenced. My results are not confounded by levodopa response,
as defined in my sensitivity analysis. In this dataset we have identified common genetic

variability which determines axial, but not limb motor progression.
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The lack of association between common genomic variation and the MDS-UPDRS
limb subscale could be due to a combination of limited power and the levodopa effect
in early disease. Evers and colleagues reported that measures of mobility, tremor,
gait and posture, were consistent and reliable measures of PD progression [181].
Because these measures are well represented in the axial score (except for tremor),
this may be better powered to assess progression. Moreover, the limb signs may be
more sensitive to levodopa use than the axial signs, making it possible that true genetic
associations with limb motor progression were masked. Lastly, we found the individual
cohorts with the largest sample size had a higher axial rate of change compared to the
limb rate of change (Table 4). A separate GWAS meta-analysis assessing the PD
genetic contribution to the disease motor severity and subsequent functional
annotation, identified MAD1L1 and SOX9 as candidate genes associated with PD axial
motor severity. Nevertheless, these potential associations did not reach genome-wide
significance and further analysis in distinct PD cohorts are needed for validation.

Strengths of my study include the large sample size, and the consistency of my results
across cohorts and across different measures of axial motor progression. Potential
limitations of my identification of ACP6 as the relevant gene at the GJAS locus include
the lack of colocalization between the phenotype and expression GWAS although
these analyses are current limited by the sample size of eQTL datasets and the lack

of cell specific gene expression data.

We hypothesise that expression of ACP6 is important in the function in cell groups
relevant to axial progression in PD including the pedunculopontine nucleus, and that
therapies directed towards mitochondrial lipid metabolism may be relevant to the
disease modification. Further replication, in independent cohorts genotyped in the
global Parkinson’s genetics program (GP2.org) will help to determine the importance
of this region and further analysis of this biochemical pathway may provide new

insights into the pathogenesis of PD progression.
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4) Genetic meta-analysis of levodopa induced
dyskinesia in Parkinson’s disease

a) Introduction

The development of levodopa-induced dyskinesia (LiD) is a major clinical problem for
PD patients and multiple pharmacological and neurosurgical approaches have been
developed to try to prevent, attenuate or treat LiD. Dopamine is lost from the
nigrostriatal pathway, which manifests as bradykinesia, muscular rigidity, rest tremor
and postural instability [21,322]. There are several symptomatic treatments for PD
motor symptoms, with the metabolic precursor of dopamine, levodopa, being the “gold
standard” drug. Levodopa improves motor function as measured by UPDRS or the
more recent MDS-UPDRS, widely used standard clinical assessments to evaluate the
motor state in PD patients [291]. A comparison of an early levodopa treated group
against a delayed treated group showed no difference in the rate of motor progression,
suggesting that levodopa itself is not disease modifying or disease accelerating [323].
One of the major drawbacks of long-term levodopa treatment is that many PD patients
experience levodopa-related motor complications, such as wearing off, dystonia and
dyskinesia [324].

The prevalence of LiD varies across academic- and industry-led studies, averaging at
around 20-40% after four years of levodopa treatment. There are two major LiD
subtypes: peak-dose dyskinesia, which occur during the therapeutic window of
levodopa treatment, and diphasic dyskinesia, which present at the start and end of a

dose cycle [325].

Levodopa treatment is necessary for LiD development, but there are likely to be
several other mediating factors [325]. Based on research in animal models, it is
hypothesised that pulsatile delivery of oral levodopa, presynaptic nigrostriatal
degeneration and intact striatal neurons are needed for the development of LiD [325].
Major risk factors for the development of LiD include young age at onset (AAO), female
gender, low body weight, disease severity, disease duration and treatment duration
(from the initiation of levodopa) as well as the total dose of levodopa [326,327].
Disease duration and treatment duration are closely related and delayed start study
designs have evaluated the effect of delaying the initiation of levodopa, showing an
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association between longer delay and a decreased risk of LiD [328]. There is
increasing evidence that suggests genetics plays a role in the susceptibility to LiD.
Rare variants in genes such as PRKN, PINK1, and DJ-1 have been reported to be
associated with higher rates of dyskinesia [329—-331], although patients with autosomal
recessive PD usually have early onset disease, which is in itself a risk factor for LiD.
A study which corrected for age and disease duration variability did not replicate the

findings of a higher LiD susceptibility among PARK2 mutation carriers [332].

Common variation may also influence the risk of developing LiD. Variations at the
DRD2, COMT, MAOA, BDNF, SLC6A3 and ADORAZ2A loci have all been reported to
influence the risk of developing LiD [333—-342]. Recently, an exome-wide association
study of LiD in PD found that variants in MAD2L2 and MAP7 loci were associated with
LiD, and replicated the association of the opioid receptor gene OPRML1 [343]. Due to
the high heterogeneity in the genetic determinants that regulate LiD, validation in large

cohorts is needed.

Here, | investigated the genetic determinants of LiD by performing a meta-analysis of
genome-wide survival to the development of LiD in five different cohorts, and assessed
previously reported loci. | also performed functional genetic annotation to better
understand the nominated loci. Lastly, | have investigated the predictive power of a
PRS, and explored baseline clinical features that were significantly associated with the

development of LiD in PD using a stepwise regression approach.

b) Methods

The source code with all materials and methods are available on GitHub
(https://github.com/AMCalejandro/LID-

CPH.qit;https://doi.org/10.5281/zenodo.8139563). The README explains each step
of the workflow to conduct the analysis and a link to each relevant pipeline or protocol.

1) Patients data and LiD definition

| accessed clinical and genetic data from the Tracking Parkinson's (TPD) [150], Oxford
Parkinson's Disease Centre Discovery Cohort (OPDC) [344], Parkinson's Progression
Markers Initiative (PPMI) [156], Parkinson's Disease Biomarkers Program (PDBP)
[163], and simvastatin as a neuroprotective treatment for PD trial (PD-STAT) [153]
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studies (Table 10). Each subject provided written informed consent for participation
according to the Declaration of Helsinki and all cohort studies were approved by the

relevant ethics committee.

Table 10. Study sample sizes and genotyping array.

Study Name Abbreviations N Genotyping array
Tracking TPD 2000 lllumina HumanCoreExome array
Parkinson’s
Disease
Oxford Parkinson's OPDC 1082 [llumina HumanCoreExome-12 v1.1 or
Disease Centre lllumina Infinium HumanCoreExome-24
Discovery Cohort vl.1
Parkinson's PPMI 415 WGS

Progression
Markers Initiative

Advancing PDBP 873 WGS
Parkinson’s
Disease
Biomarkers
Discovery

Simvastatin as a PD-STAT 174 lllumina Neurochip
neuroprotective
treatment for
Parkinson’s
disease

WGS = Whole Genome Sequencing

| carried out clinical data QC on each cohort independently (Figure 11). Levodopa
is necessary for PD patients to develop LiD [325], therefore | excluded those who
were not exposed to levodopa. In addition, | removed patients who had a disease
duration at study entry of more than 10 years from disease onset, patients without
longitudinal data (patients with less than two clinical records available), and those

with missing genotype data.

| defined PD patients as having dyskinesia if they reached an MDS-UPDRS item 4.1
score equal to or higher than 2 which is equivalent to a range of 26%-50% of the
waking time with dyskinesia, and the first appearance of LiD was defined as the
event time. Patients were excluded if they had dyskinesia at study entry, as time to

the development of dyskinesia could not be established.
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Figure 11. Quality control flowchart. We highlight the number of samples remaining
after applying the multiple QC steps on each cohort we included in this study.

[ TPD ] [ OPDC] [PD-STAT] [ PPMI ] [ PDBP ]
n=2000 n=963 n=174 n=393 n=827

Alternative diagnosis—  ( n=1963 | [ =063 | [ n=174 | (=393 | [ n=827 |

Never took levodopa—] [n—1|839] ( n:é?!71 ] ( n:L’cl ) ( n:3|.46 ) ( n:7|’17 ]

Baseline disease duration > 10 years—] [n:1|799] ( n=8|71 ] ( n:|99 ) ( n:3|43 ) ( n:l19 |

Missing longitudinal data— [n=1|625] ( n:7|92 ] ( n:|99 ) ( n:3|39 ) ( n:l15 ]

Left censoring—| [n-1|609] ( n:7|84 ] ( n:|95 ) ( n:3|.39 ) ( n:3|.01 ]

Duplicates—| [n-1|609] ( n:7|84 ] ( n:|83 ) ( n:3|.36 | ( n:3|.01 ]

Unable to match ger;ztti;— [n—1|561] ( n:7|25 ] ( n:|79 ) ( n:3|,33 ) ( n:3|,00 ]

Failed genegé— [n=1|478] ( n:7|05 ] ( n:|77 ) ( n:2|83 ) ( nzldl ]

1) Genotype data quality control and imputation

To perform quality control (QC) at both the sample and genotype levels, | used
PLINK v1.9 [290]. Each quality control step and the imputation approach was
performed as described in Chapter 2 — Methods.

i) Whole-genome sequencing data

The PDBP and PPMI cohorts included in this study were whole-genome sequenced
using lllumina HiSeq X Ten Sequencer. More information can be found in

https://ida.loni.usc.edu/login.jsp. WGS data was QC’ed using the same pipeline as the

array-based data.
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Iv) Statistical analyses

| used the R programming language (version 4.3.0) to perform all the statistical
analysis [345]. | studied the association between genome-wide genetic variants and
time to develop dyskinesia from self-reported age at PD motor onset with Cox
proportional hazard (CPH) regression models under a genetic additive model, using
the ‘survival’ R (version 3.3-1). All tests were two-tailed. To investigate the power to
detect an association under a Cox regression model with the current sample size, as
well as to perform a simulation on the relationship between power and allele frequency
(AF), SNP hazard ratios (HR), and sample size, | used the R package survSNP
(version 0.25).

| ran time-to-LiD GWAS in each cohort separately, adjusting by AAO (or AAD in the
cohorts where AAO was not available), gender, and first 5 PCs, using as my outcome
the midpoint between the visit the threshold was met and the previous time point.
Multiple studies indicate that the risk of dyskinesia relates to disease severity. To
improve the power to detect a genetic association, | explored the goodness-of-fit of
the model in each cohort independently after adding the following baseline covariates,
which provide surrogate measures of disease severity and dopaminergic denervation
at baseline: levodopa or LEDD dose, disease duration from onset to baseline
assessment and baseline motor score as measured by MDS-UPDRS patrt Ill. For each
cohort, | selected the model which provided the most accurate prediction of LiD based
on the Akaike Information Criteria (AIC). | used the resulting model as the main model
in my analysis. | summarised the nominated set of covariates in each cohort (Table
11). | verified that the proportional hazards assumption held true by assessing the
independence between scaled Schoenfeld residuals and time through the cox.zph
function from the ‘survival’ package. Schoenfeld residuals are obtained by subtracting
the individuals’ covariate values at the time “t” and the corresponding risk-weighted
average of covariates among all those that are at risk at the time “t”. Then, they are
scaled by performing a variance-weighted transformation. A non-significant
relationship between the scaled residuals and time reveals proportionality of the

hazards in the model.
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Table 11. List of covariates added on both the basic and adjusted model across
cohorts

Covariates in

Study Name basic model

Covariates in the adjusted model

Tracking Parkinson’s AAO, GENDER, 5 AAO, GENDER, 5 PCs, BASELINE DISEASE
Disease PCs DURATION, BASELINE MDS-UPDRS-III total,
BASELINE L-DOPA DOSE

Oxford Parkinson's AAO, GENDER, 5 AAO, GENDER, 5 PCs, BASELINE MDS-
Disease Centre PCs UPDRS-III total, BASELINE LEDD
Discovery Cohort
Parkinson's Progression AAO, GENDER, 5 AAO, GENDER, 5 PCs, BASELINE MDS-
Markers Initiative PCs UPDRS-III total, BASELINE DISEASE
DURATION
Advancing Parkinson’s AAD, GENDER, 5 AAD, GENDER, 5 PCs, BASELINE MDS-
Disease Biomarkers PCs UPDRS Il total, BASELINE DISEASE
Discovery DURATION
Simvastatin as a AAO, GENDER, 5 AAO, GENDER, 5 PCs
neuroprotective PCs

treatment for
Parkinson’s disease

| performed a meta-analysis using METAL as described in Chapter 2 - Methods. |
applied a post meta-analysis QC step to remove genetic variants that were present in
less than 3 out of 5 cohorts, with less than 1000 variants, as well as variants with high
minor allele frequency (MAF) heterogeneity across the cohorts (MAF > 0.15). In
addition, | accounted for high heterogeneous variants by removing those with a

significant Cochran’s Q test as well as those with an 12 index higher than 80%.

Statistical significance was assessed at the conservative threshold of P =5 x 1078,
derived from a Bonferroni correction accounting for the number of independent tests

and the LD structure of the genome [346].

| proved that the model met the proportional hazard assumption after including
significant SNPs using the cox.zph function from the ‘survival’ package. | evaluated
whether signals were replicated across different cohorts with the R package ‘forestplot’
(version 2.0.1).
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v) Sensitivity analyses

To validate the genome-wide significance findings, | performed four sensitivity
analyses to assess if the best model described above led to an unbiased testing of the
null hypothesis of no association between all genome-wide SNPs and time-to-LiD. The
first sensitivity analysis was designed to compare the basic and adjusted models. |
tested whether high deviations in the SNP estimates and P-values arose after
accounting for disease severity and dopaminergic denervation at baseline by
measuring the correlation between the basic and adjusted GWAS meta-analyses.
Next, | performed two separate sensitivity analyses to test whether either levodopa
dose or the PD motor severity (as measured by MDS-UPDRS part Ill) at the time point
where LiD were first documented, were confounding my findings. | performed this
sensitivity analysis in Tracking Parkinson's, the largest dataset. | performed a CPH
GWAS on the Tracking Parkinson's cohort adjusting by: a) known confounders, b)
known confounders + motor severity (as measured by MDS-UPDRS patrt Il) c) known
confounders + levodopa dose. | compared the SNP metrics from the three models for
the lead SNPs on the loci that reached genome-wide significance on the time-to-LiD
GWAS meta-analysis. Lastly, because the PDBP cohort did not have age at onset
available and | used age at diagnosis (AAD) in the CPH model, | reran the time-to-LIiD
GWAS meta-analysis excluding PDBP to confirm that this cohort was not inflating the
SNP test-statistics.

vi) Post-GWAS analyses

| performed fine-mapping as described in Chapter 2 — Methods to nominate causal
variants at each locus that reached genome-wide significance. To evaluate the
potential effect of SNPs on candidate loci on the control of gene expression | also used
echolocatoR to map GWAS nominated loci with epigenetic marks form the brain cell
type -specific marks by Nott and colleagues, and Uniformed transcription factor
binding sites from ENCODE.

To investigate whether there were several independently associated SNPs at each
GWAS nominated locus, | performed a conditional and stepwise selection procedure
with GCTA-COJO (version 1.93.0 beta for Linux) [237]. | used the Accelerating
Medicines Partnership: Parkinson’s Disease (AMP-PD, v.2.5) data [347] (n =10,418)
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as the reference panel to estimate the correlation between SNPs. The reference
sample was subjected to the same QC steps as described above, needed to get
unbiased LD estimates [264].

| used the ‘coloc’ R package (version 5.1.0) to perform colocalization analysis between
loci significantly associated with progression to LID and SNPs defining gene
expression in the region. | used cis-eQTL data from MetaBrain cortex tissue [270] (N
= 6,601 individuals) and blood cis-eQTLs from eQTLGen (N = 31,684) [269]. The
strategy | followed to perform colocalization is explained in more detail in Chapter 2 -
Methods.

| used FUMA (version 1.3.8) to further characterise the nominated loci by querying
GWAS Catalogue to retrieve uncharacterised GWAS loci SNPs in my meta-analysis
and to get positional mapping information based on MAGMA [115]. | used a threshold
of P < 1e-6 to nominate tag SNPs. Additional SNPs that were in high LD with tag SNPs
were inferred using European samples 1Kg Phase3 reference panel (with r2 > 0.6 and

independent from each other with r2 < 0.6).

vii) Candidate gene analysis

In order to validate variants that have been reported in previous studies to be
associated with time-to-LiD or LiD risk, | accessed the LiDPD website (Date accessed:
12/01/2023) and downloaded a list of curated variants from the literature. | explored

these in my time-to-LiD GWAS meta-analysis [348].
viii) LiD prediction modelling

| used PRSice software (version 2) to compute a polygenic risk score (PRS) [349]. |
used the summary statistics of my time-to-LiD meta-analysis as base data and the
Tracking Parkinson's cohort as target data. | chose the Tracking Parkinson's cohort as
it is the single largest cohort, which reduces the SE of the PRS estimates, leading to
more confident estimates. | then replicated the association of the nominated SNPs
composing the PRS in the second largest cohort | had access to, OPDC, resembling
a discovery / replication study design, although in this case the OPDC data had
contributed to the LiD PRS. Further details on how we ran PRS for my analyses is

available in Chapter 2 — Methods.
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Next, | used a stepwise logistic regression model with a custom script using the ‘stats’
R base package (version 4.2.2) to find whether any baseline clinical variable was
significantly associated with LiD status. | used data from the Tracking Parkinson's
cohort, as it is deeply phenotypically characterised (number of baseline covariates =
702). After removing variables with high missingness rate ( missing rate > 10%) or
categorical variables with only one level, | defined a total of 502 baseline features
(including the PRS). Then, | created a base logistic regression model (adjusted for sex
the first 5 PCs and standardised AAO). At each step of the stepwise regression
approach, | refitted the base model with each of the baseline predictors individually,
and selected the model with the variable that decreased AIC the most. | ran the model
until no variable further decreased the AIC, or until the AIC score was equal to 1. Once
the model was fitted, | selected only those predictors that were significantly associated
with the binary outcome, applying the conservative Bonferroni correction accounting
for the number of predictors assessed. | set the significance threshold as 0.05 /502 =
le-4. To account for class imbalance in the evaluation of classifiers, | computed

precision recall curves using the ‘PRROC’ R package (version 1.3.1)

c) Results

1) Cohort clinical features and prevalence

Across all cohorts (n= 2,784 PD patients), the incidence of LiD was 14% (Table 12),
except in the PPMI cohort where it was 21%. This is consistent with the effect of age
at onset on LiD [350-352], given that PPMI is a de novo study that recruited younger

patients. | did not exclude any patient from the PPMI cohort due to left-censoring.
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Table 12. Cohorts summary statistics.

PD Follow Time to Disease duration at
patients No(%) No(%) left- No(%) . . AAO, years AAB, years baseline from MDS-UPDRS part lllat Levodopa dose at
COHORT , : midpoint event . .
Post-QC LiD censored male (mean £sd) (mean = sd) onset, years baseline (mean + sd) baseline (mean +sd)
years (mean % sd)
(n) (mean = sd)
TPD 1478 75 |177 (12) 16 (1) (2253) 7.47 (2.2) 64.43 (9.16) 67.29 (9) 2.86 (1.6) 22.36 (11.7) 217 (197)
OPDC 705 9.0 92 (13) 8(0.8) | 451 (64) 7.87 (2.9) 64.35 (9.47) 67.21 (9.3) 2.85(1.7) 26.27 (10.8) 280 (205)
PPMI 283 9.0 82 (21) 0 (0) 259 (66) 8.28 (2.3) 60.16 (9.93) 62.08 (9.8) 1.92 (1.3) 21.38 (9.1) 0 (0)
PD STAT 77 2.0 10 (13) 4 (4.9) 48 (62) 8.77 (2.8) 57.23 (8.7) 64.84 (9.2) 7.61 (1.7) 28.86 (11.6) NA
PDBP 241 5.0 33 (14) 16 (6) 149 (62) 5.93 (2.7) NA 64.58 (9.3) 2.85(2.5) 20.9 (11.1) 414 (207)
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| explored the effect of demographic and clinical factors previously reported to be
associated with LiD. | merged baseline clinical data from all the cohorts. | found that
patients with younger PD AAO (grouped as people with age at onset higher than 50
years and lower or equal than 50 years), had a higher probability of developing LiD
than older patients along the time interval from disease onset to study end (HR = 1.8,
SE = 0.14, P = 2e-5) (data excluding PDBP as AAO was not available). Female PD
patients showed a consistent increase in the probability of developing LiD during a
12.5 years’ time interval (Figure 12 a and b). Body mass index (BMI) was available in
PPMI and Tracking Parkinson’s, and smoking status data was available in the
Tracking Parkinson's cohort only. | did not find a significant increase in the probability
of developing dyskinesia either for PD patients with low baseline BMI nor for PD

smokers at baseline (Figure 12 ¢ and d).

Figure 12. LiD risk factors Kaplan-Meier curves.

a b
1.001 B ”\ T —
: . = 075
2 0.751 - =
1] =
3 T I
| 2
E-] £
e e
& 0.50 & 0.50-
g £
E E
0 0.2 @ 0251
p=0.007 p=2e-05
0.00 0.00
0 5 10 15 0 5 10 15
years years
Number at risk Number at risk.
1635 1447 261 12 2300 2006 357 15
907 769 150 4 233 210 74 1
Sex Male == Female AAD AAD > 50 == AAQ =50
c d
SMOKING groups KM curves BMI groups KM curves
1.004 d 1.004
2 0.751 \ 2 0754 N
3 -
g g
s 0.501 & 050
s E
Z z
-1 =3
@ 0.251 @ 025
p=0.21 p=0.13
0.001 0.004
0 4 8 12 16 0 4 8 12 186
years years
Number at risk Number at risk
64 58 25 2 o | 560 537 238 14 0
24 22 8 1 0
814 789 336 16 0 Obese | 367 349 166 " o
P=Previous | 551 523 220 16 1 Overweight | 769 741 326 26 1

AOKING SMOKING_GROUP=Current =+ SMOKING_GROUP=Never or passive == SMOKING_GROUP=Previo BMI Healthy == Underweight == Obese == Overweight

Kaplan-Meier curve for Survival probability (LID free probability) based on gender (A),
age at onset (AAO) (B), smoking status (C), and smoking status baseline body mass

111



index (BMI). The P-value (P) showing the significance of differences on the survival
probability is given on each plot. Number at risk represents the number of PD patients
remaining on the study at the different time points (0, 5, 10, 15 years). The colour
expansion on each curve represents the confidence interval (Cl).

i) Power analysis

| performed a power analysis to estimate the power to find a genetic association
between time-to-LiD and genome-wide SNPs with the current sample size and LiD
event rate, and to evaluate how this varied with a range of genotype hazard ratios
(GHRs) and AFs. | was well-powered (80% power) to detect genetic variants
associated with the development of LiD with a HR equal or higher than 2 and a MAF
as low as 0.01 (Figure 13a). In addition, | performed a simulation to show as the
sample size increases, the power to detect rarer associations improves. As | increased
the simulated sample size to 18000, | achieved 80% power for genetic variants with a
MAF lower than 0.01, and with a HR lower than 2 (Figure 13b).

Figure 13. Power calculation and simulation.
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Iii) Time-to-LiD GWAS

| ran time-to-LiD GWAS independently for each cohort, using the first appearance of
LiD as the outcome. | meta-analysed results controlling for genomic inflation. In
addition, | estimated genomic inflation on the time-to-LiD meta-analysis and did not
find significant genomic inflation (A = 1.02). | identified three loci significantly
associated with time-to-LiD onset in the meta-analysis of the adjusted model on

chromosome 1, chromosome 16 and chromosome 4 (Figure 14).

Figure 14. LiD CPH GWAS meta-analysis.
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The meta-analysis was conducted using a Cox proportional hazards model in each
cohort separately, and results were meta-analysed. Genome-wide significance was
set at 5e-8 and is indicated by the red dashed line.

The most significant SNPs at each loci were rs72673189, rs189093213, rs180924818.
rs72673189 (HR = 2.77 , SE = 0.18 , P = 1.53e-8) in chromosome 1, is a variant in
the third intron of the LRP8 gene. rs189093213 (HR = 3.06, SE = 0.19, P = 2.81e-9)
in chromosome 4 was found in the non-coding RNA LINC02353 (PCDH7 1.2Mb
downstream). rs180924818 (HR = 3,13, SE = 0.20, P = 6.27e-9) in chromosome 16
was found very close (0.15Mb upstream) to the 3'-UTR of the XYLT1 protein coding

gene in a non-coding region of the genome (Table 13).
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Table 13. Independent significant SNPs with a P-value lower than 1le-7.

SNP P-value in the SNP P-value in :
CHR BP SNP MAF BETA HR SE Adjusted model  the Basic model Number of SNPs Nearest gene Type of variant

4 32435284 | rs189093213| 0.02 1.12 3.06 0.19 1.673e-09 6.15e-08 3 LINC02353 ncRNA intergenic
16 17044975 |rs180924818| 0.03 1.14 3.13 0.2 6.265e-09 8.20e-08 3 XYLT1 intergenic

1 53778300 | rs72673189 | 0.03 1.02 2.77 0.18 1.527e-08 2.65e-08 2 LRP8 intronic

1 168645690 | rs79432789 | 0.05 0.77 2.16 0.14 7.037e-08 2.47e-06 4 DPT intergenic

1 39646765 | rs71642678 | 0.01 1.61 5 0.3 8.555e-08 1.89e-07 12 MACF1 intronic

1 80950480 | rs12133858 | 0.04 0.76 2.14 0.14 8.692e-08 1.01e-06 48 RP11-115A15 intergenic

9 22664277 | rs77115593 | 0.02 1.26 3.52 0.24 9.192e-08 4.37e-07 1 LINC02551 ncRNA intronic
14 22020490 |rs139943801| 0.03 1 2.72 0.19 9.522e-08 2.63e-07 1 RBBP4P5 intergenic
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The direction of the effects was consistent across the meta-analysed cohorts in which

the SNPs were present (Figure 15).

Figure 15. Forest plots of lead genetic associated variants.
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a, LRP8 rs72673189 variant (12=0; Q:x%=0.24, df=3, P=1.53e-08). b, LINC02353
rs189093213 variant (I>=21.4; Q:x?=5.09, df=4, P=1.67e-09). ¢, XYLT1 rs180924818
variant (I1?>=0; x?=0.77, df=2, P=6.27e-09). 12 = |12 Index of heterogeneity, HR = Hazard
ratio, P = P-value, Q = Cochran's Q test of heterogeneity, df = degrees of freedom.

To visually represent the survival probability of patients carrying the lead SNP on each

locus | found in my meta-analysis, | extracted each patient's genotypes and showed

the difference in the probability of LiD between carriers and non-carriers through

Kaplan-Meier curves (Figure 16).

Figure 16. Survival curves of candidate SNPs .
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a, Kaplan-Meier curve for Survival probability (LIiD free probability) based on
rs72673189 carrier status in PD patients. b, Kaplan-Meier curve for Survival probability
(LiD free probability) based on rs189093213 carrier status in PD patients. c, Kaplan-
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Meier curve for Survival probability (LiD free probability) based on rs180924818
carrier status in PD patients. The blue curve represents genetic variant carriers,
whereas the yellow curve represents non-carriers. p = p-value. Number at risk
represents the number of PD patients remaining on the study at the different time
points (0, 5, 10, 15 years). The colour expansion on each curve represents the
confidence interval (CI).

Iv) Sensitivity analysis

The three variants found to significantly increase LiD susceptibility in the adjusted
model approach remained associated in the basic model including only known
confounders (Table 14). | found the correlation of the SNP metrics between the basic
and the adjusted model to be high (SNP P-values Pearson correlation coefficient =
0.87; P-value < 2e-16) (SNP Effect size Pearson correlation coefficient = 0.97; P-
value < 2e-16). This indicated that adding additional predictors based on baseline
variation increased the power to detect SNP-outcome associations, presumably by
explaining other sources of variance in the model, and that there was no source of
confounding given by disease duration and severity measures (suggested by the high

correlation in the SNP metrics).

Table 14. Sensitivity analyses lead SNP P-values in the basic CPH model for the
TPD cohort

CHR Bp SNP Al A2 Basic model Levodopa MDS-UPDRS llI
P-value model P-value model P-value
1 53778300 | rs72673189 | A | G 1.96E-04 2.39E-04 2.50E-04
4 32435284 | rs189093213 | A | G 6.32E-03 1.89E-03 3.49E-03
16 17044975 | rs180924818 | G | A 1.69E-04 2.62E-04 1.21E-04

Using data from Tracking Parkinson’s only, | investigated whether these associations
could be confounded by levodopa dose or the disease stage at the LiD event time
point. For each of the genome-wide significant SNPs, | repeated the CPH analysis
adjusting for levodopa dose or disease stage as measured by MDS-UPDRS part Il at
the first visit when the LiD threshold was reached or at the last available visit for
patients who did not develop LiD during the study length. | did not find a change either
in the hazard ratio or the test-statistics that could suggest an unaccounted source of
confounding. Finally, excluding PDBP from the meta-analysis did not significantly

change the lead SNP’s hazard ratio and significance levels (Table 15).
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Table 15. Lead SNP P-values in the CPH model including and excluding PDBP
cohort in the basic and adjusted models.

CHR:POS SNP Al | A2 | MAF [ HR | SE | P-value N PDBP MODEL
4:32435284 (rs189093213( A | G | 0.02 | 3.08 |0.19|1.673e-09 |2687| YES | ADJUSTED
4:32435284 |rs189093213| A | G | 0.02 | 2.73 |0.18 | 6.154e-08 | 2784 | YES BASIC
4:32435284 (rs189093213( A | G | 0.02 | 3.29 |0.19| 6.24e-10 [(2446| NO ADJUSTED
4:32435284 (rs189093213( A | G | 0.02 | 2.88 |0.19]2.989e-08 [2543| NO BASIC
16:17044975 (rs180924818| A | G | 0.98 | 0.32 |0.20 | 6.265e-09 | 2687 | YES | ADJUSTED
16:17044975 |rs180924818| A | G | 0.98 [ 0.35 (0.19|8.197e-08 | 2784 | YES BASIC
16:17044975 (rs180924818| A [ G | 0.98 | 0.32 |0.20 | 6.265e-09 | 2446| NO ADJUSTED
16:17044975 |rs180924818| A | G | 0.98 | 0.35 [0.19(8.197e-08 [ 2543 NO BASIC
1:53778300 | rs72673189 | A | G | 0.02 | 2.76 |0.18|1.527e-08 | 2610| YES | ADJUSTED
1:53778300 | rs72673189 | A | G| 0.02 | 2.72 [0.18 | 2.654e-08 | 2707 | YES BASIC
1:53778300 | rs72673189 | A [ G | 0.02 | 2.93 [0.19|1.505e-08 |2369| NO ADJUSTED
1:53778300 | rs72673189 | A | G | 0.02 | 2.83 [0.19 | 4.214e-08 2466 NO BASIC

v) Functional annotation

| performed fine-mapping using ABF, SuSiE, FINEMAP, and Polyfun-SuSiE, and

found Consensus SNPs on each CPH GWAS nominated loci (Table 16).

Table 16. List of fine-mapped consensus SNPs on each locus.

FINE SU POLYF
SNP Locus CHR P Effect SE A1l leadSNP ABF MAP SIE UN_SU Sup
SIE

rs72673189 LRP8 1 |1.5e-08| 1.01 [0.18| A | TRUE 1 0 1 0 2
rs180924818| XYLT1 16 (6.2e-09|-1.14 |0.20| A | TRUE 1 1 1 1 4
rs137895239| XYLT1 16 |3.1e-05| 0.88 [0.21| A | FALSE 0 1 1 1 3
rs142441980| XYLT1 16 [1.4e-06| 0.88 (0.18| A | FALSE |0.01| 1 1 1 3
rs17207399 XYLT1 16 | 2e-04 | -0.47 |0.13| C | FALSE 1 1 1 1 3
rs189093213|LINC02353| 4 |1.7e-09| 1.12 (0.19( A | TRUE |[0.61|0.96| 1 1 3
rs10023843 |LINC02353| 4 0.1 0.55 |0.36| T | FALSE 0 0 1 1 2
rs139511855|LINC02353| 4 |4.5e-05|-1.09 (0.27| A | FALSE 0 0 1 1 2
rs147573196 | LINC02353| 4 |2.5e-06| 1.20 [0.25| A | FALSE 0 0 1 1 2
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FINE SU POLYF
SNP Locus CHR P Effect SE Al leadSNP ABF UN_SU Sup
MAP SIE SIE

rs28858724 |LINC02353 | 4 0.03 |-0.34|0.17| A | FALSE | O 0 1 1 2

leadSNP: Whether a given SNP is the locus lead SNP.

<tool>.CS: The posterior probability that a SNP is casual of the LiD phenotype.

Support: The number of fine-mapping tools that nominated the Consensus SNP

mean.PP: The mean SNP wise PP across fine mapping tools

mean.CS: If mean PP is greater than the 95% probability threshold (mean.PP > 0.95), then mean.CS
is 1, else 0.

| found the lead SNP at each locus to be Consensus SNPs, which are those selected
by at least two different fine-mapping tools. I plotted each locus found to have at least
one variant significantly associated with time to reach LiD against brain cell type-
specific epigenomic data. | found that the lead (and fine-mapped SNP) at the LRP8
locus belonged to a neuronal specific chromatin accessible region, which is a target
region for DNA-associated proteins, as measured with the ATAC-seq and CHIP-seq
(H3K27ac and H3K4me3) assays (Figure 17a). | also found this SNP to be part of a
neuronal specific enhancer-promoter interaction within LRP8, as defined by PLAC-seq
(Figure 17a). This implies that this specific LRP8 intronic signal is an active neuronal
enhancer of the LRP8 expression, forming an anchored chromatin loop recruiting the
transcription machinery to the LRP8 transcription start site (TSS). In addition, | found
suggestive evidence that the lead SNP lies in a transcription factor binding site (TFBS),
as defined by the ENCODE project (Figure 17b).
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Figure 17. LRP8 functional annotation.

LRP8 (n SNPs: 4053, zoom: 7x) LRP8 (n SNPs: 4053, zoom: 4x)
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From top to bottom, transcripts plot, locus plot, the fine-mapping results, and the
functional annotations specific assay we overlaid the GWAS locus with. In the locus
plot, the SNPs are coloured in red as LD (given by R2) increases, and blue as the LD
decreases. In the fine-mapping track, | highlight the SNPs with the highest posterior
probabilities for each fine-mapping tool highlighted on the legend on the right hand
side. In addition, | highlight in yellow the Consensus SNP. Figure 17a. The last track
contains cell type specific regulatory element marks, the first 4 rows are the density
marks (y-axis) from ATAC-seq assay (in pink), and CHIP-seq assays (H3K27ac in
blue, and H3K4me3 in cyan), in astrocytes, microglia, neurons, and oligodendrocytes.
The next four rows are the distal anchored chromatin loops (black curves). | see how,
only in neurons, there is a chromatin loop forming from the LRP8 GWS and the fine-
mapped consensus variant towards the LRP8 promoter (purple). Figure 17b. The
rows in the last track show the transcription factor binding sites (TFBS) densities (y-
axis) measured on different cell lines and laboratories. XGR finds the top 5
transcription factors (TF) with the highest binding activity in the track genomic window.
These top 5 TF are displayed in the Assay label.

Similarly, | found that some of the fine-mapped SNPs (including the lead SNP) in the
XYLT1 locus were forming chromatin loops towards the XYLT1 promoter, as
measured by the PLAC-seq assay, suggesting that regulation of this gene associated
with susceptibility to LiD (Figure 18). | did not find any functional regulatory marks at
the LINC02353 locus.
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Figure 18. XYLT1 locus fine-mapping and brain cell type specific regulatory marks.
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From top to bottom, transcript plot, locus plot, the fine-mapping nominated variants
across fine-mapping tools, brain cell type specific regulatory element marks. In the
locus plot, the SNPs are coloured in red as LD (given by R2) increases, and blue as
the LD decreases. In the fine-mapping track, I highlight the SNPs with the highest
posterior probabilities for each fine-mapping tool (ABF, FINEMAP, SUSIE,
POLYFUN_SUSIE). In addition, | highlight in yellow the Consensus SNP with the
highest mean Posterior Probability (mean). In the cell type specific regulatory element
marks, the first 4 rows are the density marks (y-axis) from ATAC-seq assay (in pink),
and CHIP-seq assays (H3K27ac in blue, and H3K4me3 in cyan), in astrocytes,
microglia, neurons, and oligodendrocytes. The next four rows are the distal anchored
chromatin loops (black curves). | see how, only in neurons, there is a chromatin loop
forming from the XYL71 GWS and the fine-mapped consensus variant towards the
LRP8 promoter (purple).

Next, | performed colocalization analysis in all genes within 1Mb from lead SNPs with
P < 1le-7. | found suggestive support for colocalization between the LiD GWAS meta-
analysis signals and ci-eQTL data from Metabrain Cortex (PP H4 > 0.7 on the
unadjusted colocalization analysis; PP H4 > 0.5 on the colocalization analysis after
adjusting the priors based on the number of overlapping SNPs in the locus of interest)
for the DNAJB4 gene on chromosome 1 (Table 17). | did not find evidence of
colocalization in the XYLT1, LRP8 nor the non-coding RNA loci
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Table 17. Colocalization hypotheses posterior probabilities

HGNC nSNPs  PP.HO PP.H1 PP.H2 PP.H3 PP.H4 ratio_ PPH4_PPH3
DNAJB4 4840 |[6.76E-05| 7.03E-05 0.23 0.24 0.52 2.17
ZNF697 2881 | 2.60E-18 | 2.62E-19 0.72 0.07 0.21 2.93

LORICRIN | 3572 |5.25E-02 | 4.97E-03 0.74 0.07 0.14 1.96

USP33 4552 | 4.54E-05| 4.72E-05 0.43 0.44 0.13 0.30
STXBP3 4434 | 1.07E-01 | 1.24E-02 0.72 0.08 0.08 0.92
CLCC1 4311 | 7.44E-10| 6.81E-11 0.85 0.08 0.07 0.92

nSNPs: Number of overlapping SNPs between for each locus between the eqtl and the GWAS traits
PP.<hypothesis>: The posterior probability for each coloc hypothesis
ratio PPH4_PPHS3: The ratio of the H4 and H3 posterior probabilities (ratio = H4/H3

A few loci approaching genome-wide significance (GWS) in chromosome 1, were in
proximity with DNAJB4. Therefore, | decided to investigate if the single causal variant
assumption holds in the DNAJB4 locus, necessary to validate the colocalization signal
in DNAJB4. | ran GCTA-COJO under stepwise and conditional model selection
procedures. | filtered all SNPs within the DNAJB4 locus that were used to perform the
colocalization analysis and that matched the AMP-PD reference panel (4590 out of
4840 SNPs included in the colocalization analysis). After performing the stepwise
selection procedure assuming complete LD between SNPs that are more than 10Mb
from each other, and setting a collinearity cutoff of 0.9, only the lead SNP in the locus
retained nominal significance (rs278853, MAF =0.26,3=0.40,se=0.08, P= 4.07e-
6). Similarly, running an association analysis on each of the 4590 SNPs conditioning
on the lead variant (rs278853) did not show any of these SNPs to be nominally
significantly associated, confirming the single causal variant assumption and that the
results obtained with coloc on the DNAJB4 locus were unbiased. Lastly, to understand
whether the DNAJB4 signal was independent of the GWS LRP8 locus signal, | ran an
analysis conditioning on the genome-wide significant LRP8 SNP (rs72673189). | found

that rs278853 remained nominally associated ( P = 4.40 x 10~°), indicating these two

signals were independently associated with the risk of developing LID.
vi) Candidate variant analysis

| determined whether previously reported variants in the LiD literature (from LiDPD)
had an impact on the time to LiD (Table 18). | found ANNK1 and BDNF variants to be
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nominally significantly associated (P < 0.05) with the time to dyskinesia. Nonetheless,

ANNK1 or BDNF variants did not reach the significance threshold after applying

Bonferroni correction according to the number of SNPs tested (P < 2e-3).

Table 18. Candidate variants analysis.

Gene SNP MAF BETA SE P-value Direction Publication
ANKK1 rs1800497| 0.21 0.24 0.09 | 8.89E-03 +++-- Rieck et al. 2012
ANKK1 rs2734849| 0.50 0.18 0.08 | 2.11E-02 +++++ Rieck et al. 2012

Foltynie et al.
2009
Kusters et al.

BDNF rs6265 0.18 0.19 0.10 | 4.95E-02 +++-+ 2018

DRD2 rs2283265( 0.17 0.16 0.10 | 1.06E-01 +4+-- Rieck et al. 2012

DRD2 rs6277 0.46 0.08 0.08 | 2.73E-01 —t Rieck et al. 2012

DRD2 rs1076560| 0.17 0.15 0.10 | 1.42E-01 +4+-- Rieck et al. 2012

Martin-Flores et
PRKCA rs4790904( 0.22 -0.14 0.10 | 1.43E-01 —++++ al. 2018
Martin-Flores et
RPS6KB1 |rs1292034| 0.42 -0.13 0.08 | 1.08E-01 |  ----- al. 2018
OPRM1 |rs1799971]| 0.12 -0.13 0.12 | 3.04E-01 +-+++ Strong et al. 2006
Martin-Flores et
EIFAEBP2 |rs1043098| 0.49 0.06 0.08 | 4.67E-01 +-t-- al. 2018
Kaplan et al.
2014
Purcaro et al.
SLC6A3 rs393795 | 0.20 0.07 0.10 | 4.72E-01 A+ 2018
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Gene SNP MAF BETA SE P-value Direction Publication
Martin-Flores et
RICTOR (rs2043112| 0.40 0.05 0.08 | 5.50E-01 +++-+ al. 2018
Martin-Flores et
HRAS rs12628 | 0.35 -0.04 0.08 | 5.89E-01 +ott- al. 2018
Martin-Flores et
RPS6KA2 |rs6456121| 0.30 0.04 0.08 | 6.29E-01 +4--+ al. 2018
Bialecka et al.
2004
de Lau et al.
2011
Hao et al. 2014
COMT rs4680 | 0.47 -0.03 0.08 | 6.65E-01 +4-- Cheshire al. 2014
Martin-Flores et
PRKN rs1801582( 0.16 -0.04 0.11 | 7.01E-01 -4+ al. 2018
Martin-Flores et
FCHSD1 | rs456998 | 0.49 -0.03 0.08 | 7.17E-01 +-+-+ al. 2018
DRD3 rs6280 | 0.33 0.02 0.08 | 7.63E-01 +-+-+ Lee et al. 2011
ADORA2A [rs3761422| 0.37 0.02 0.08 | 7.71E-01 +-++- Rieck et al. 2015
ADORAZ2A (rs2298383| 0.40 0.02 0.08 | 8.39E-01 -+ Rieck et al. 2015
Schumacher-
HOMER1 |rs4704559| 0.09 -0.03 0.13 | 8.31E-01 +++-- Schuh et al. 2014

Direction: Indicates the directionality of the effect of the variant across substudies included on each
study

LRP8, also known as Apolipoprotein E Receptor 2 (ApoER?2), is part of the low-density
lipoprotein receptor family [353]. In addition, using western blot analysis based LRP8

knockout mice models, have shown that LRP8 knockout increases the
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phosphorylation level of the microtubule-stabilising protein tau encoded by MAPT
[354]. A previous retrospective study including 855 Caucasian PD patients found a
suggestive association between the Hlb MAPT haplotype and a higher likelihood of
dyskinesia at an initial visit [355]. In the case of XYLT1, a previous study has found a
regulatory effect of a XYLT1 variant on the mRNA levels of GBAL in the substantia
nigra and cortex [356]. | investigated whether MAPT variants (rs1800547; rs242562;
rs3785883; rs2435207) were associated with the time to LiD. In addition, | explored
whether APOE and GBA1 variants increased the risk to develop LiD [357]. | did not
find an association between time to LiD and APOE variants rs429358 and rs7412, or
GBA1l rs2230288 variant (E326K), or MAPT rs1800547, rs242562, rs3785883,
rs2435207 variants. In addition, | explored genetic associations from PINK1, DJ-1, and
PRKN intergenic variants. Whereas | did not find any genetic variant associated with
time to LiD on the PINK1 locus, | found 26 DJ-1 intergenic variants on the with a P-
value < 0.05 (rs1641433611 lead SNP; HR = 1.84, SE = 0.2, P = 4e-4). Similarly, |
found 162 intergenic variants with a P-value < 0.05 in the PRKN locus ( lead SNP =
rs113276175; HR =1.84, SE = 0.2, P = 4e-4).

vii) PRS is capable of distinguishing patients that develop LiD.

| nominated a total of 67 independent SNPs to compute the PRS in the Tracking
Parkinson's cohort. | then validated the proposed SNP set on the OPDC cohort by
measuring the ability to distinguish LiD PD patients. | found that genetic data as
summarised by PRS, without any other clinical or demographic data, could accurately
distinguish PD patients that developed LiD at 10 years from disease onset in two
separate cohorts: Tracking Parkinson's (AUC 83.9) and OPDC (AUC 87.8). At 10
years after PD onset, | found that 16% of patients had LiD in the Tracking Parkinson’
cohort, and 18% of patients had LiD in the OPDC cohort. Class imbalance can lead
to inaccurate evaluation of classifiers. Therefore, | also computed precision recall
curves (PROC) as large class imbalance can lead to biassed ROC curves when
assessing the performance of a classifier. | found the PROC AUC to be lower in both
TPD (AUC = 54.49) and OPDC (AUC = 33.24) (Figure 19).
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Figure 19. PROC curves for PD and LiD patients PRS.
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a) PROC PRS in Tracking Parkinson’s and b) PROC PRS in OPDC. The color scale
on the right side of the plot gives an indication, which classification threshold results
in a certain point on the curve. PR = Precision recall. Precision = Positive predictive
value. Recall = Sensitivity.

viii) Baseline predictors of LiD development.

| used Tracking Parkinson's data at baseline in a stepwise regression approach using
a logistic model. | then filtered out from the final model predictors that were not

significantly associated after applying Bonferroni correction (P < 0.05 /502 = 1le-4).

In addition to the PRS, which was significantly associated with a increase of the odds
of LiD (OR = 10.01, SE = 0.57, P = 1.07e-30), | found that anxiety at baseline (as
measured by the Leeds Anxiety and Depression Scale [358]) was significantly
associated with a increase of the odds of LiD (OR = 1.14, SE = 0.03, P = 7.4e-5). |
also explored clinical features previously reported as being associated with an
increased or decreased LiD risk. Sex, AAO, and 5PCs were added in the base model
of the stepwise regression approach. Consistent with previous studies as well as with
my CPH model highlighted above, younger AAO increased the LiD odds (OR = 2.41,
SE =0.04, P = 4e-3). However, sex was not found to be significantly associated in my

final model including PRS and Leeds anxiety status.
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Neither smoking status nor BMI were selected on the stepwise regression approach,
consistent with what | found when | individually explored known LiD risk factors
(Figure 12). Interestingly, | also found that PD family history was selected in the
stepwise regression analysis, and was nominally significantly associated with an
increase in the odds of LiD (OR = 1.62, SE = 0.14, P = 6.9¢e-4).

Finally, | attempted to replicate the association between dyskinesia state and anxiety
using the State-Trait Anxiety Inventory [359] available in PPMI. | did not find the Trait
Anxiety Score to be significantly associated with LiD patients in PPMI (OR = -0.03, SE
=0.04, P = 0.44).

iv) Patients with LiD have an average higher cognitive scoring

| assessed the cognitive status of LiD patients because of the association between the
LRP8 nominated locus and APOE. | explored whether the cognitive state differed
between patients developing LiD and patients who did not develop LiD during the
study length using the Wilcoxon rank sum non-parametric test with continuity
correction, as | observed the data was not normally distributed. In addition, | also
looked into differences in the MDS-UPDRS part Ill scores between the two groups,
using the unpaired two samples t-test to compare the mean of two independent
groups. | compared the LiD group (N=172) against the non-LiD PD group (N=1318)
using data from Tracking Parkinson's alone as it is the largest deeply phenotyped
cohort | had available. | did not find differences in the average MDS-UPDRS patrt Il
total score, neither at baseline nor at the visit when patients first developed LiD (or the
last available visit in cases who did not develop LiD) (Table 19). However, PD patients
who did not develop LIiD through the study had a significantly lower MoCA score on

average at baseline, as well as at the final visit (Table 19).
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Table 19. MoCa and UPDRS score comparison between PD-LiD and PD groups

PD group PD-LID group

Variable method p.value statistic mean(sd) mean(sd)
Wilcoxon rank sum test 25.16(3.31) 26.09(3.56)
moca_bl with continuity correction | 2.1e-05 | 73754.5
Wilcoxon rank sum test 24.34(4.77) 25.35(4.11)

moca_visit with continuity correction 0.01 77249.5

22.2(11.6) 23.72(12.1)

updrs_IIl_bl Welch Two Sample t-test 0.15 -1.45

31.91(16.7) 30.42(14.0)

updrs_lll_visit | Welch Two Sample t-test 0.25 1.15

moca_bl = Moca average scores for the LiD and PD group at baseline

moca_visit = Moca average scores for the LiD and PD group at the time LiD was developed or at the
last visit available

updrslll_bl = MDS-UPDRS lll averages scores for the LiD and PD group at baseline

Updrs_iii_visit = MDS-UPDRS Il average scores for the LiD and PD group at the time LiD was
developed or at the last visit available

d) Discussion

| have performed an untargeted genome-wide study to define genetic variants
associated with the time-to-LiD in PD, using a CPH model under a genetic additive
effect and analysed the effect of genetic and baseline clinical variation on the
development of LiD. | found genome-wide significant associations with the time-to-
develop LiD at the LRP8, LINC02353 and XYLT1 loci. These associations were
consistent across all the cohorts included in the meta-analysis. | also performed a
candidate gene analysis, exploring genetic variants reported to be associated with LiD
risk in my large GWAS meta-analysis. | found that genetic variability in BDNF and
ANKK2, were nominally associated with LiD. | did not replicate any other variant

associated with LiD risk.

LRP8 expression is enriched in brain tissues such as the neocortex, cerebellum,
hippocampus and olfactory bulb [353]. LRP8, together with VLDLR, is a mediator of
the Reelin pathway, which contributes to development of the central nervous system
as well as to facilitate neuronal migration [360,361]. LiD develops in the context of
ongoing neuronal loss, and synaptic/signalling changes related to dopamine therapy.
My finding suggests the changes in the Reelin pathway and neural development /
plasticity may be important in the development of LiD.
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In addition, the LRP8 protein stabilises the microtubule-stabilising protein tau and it
has been shown that knocking out LRP8 in mice increases tau phosphorylation [354].
Post-hoc functional annotation analysis revealed a chromatin loop between an
enhancer at the third intron of LRP8 (where the lead variant was found) and the LRP8
promoter, thus providing functional support for LRP8 as the causal gene at this locus.
In addition, a colocalization analysis, looking at all genes within £1Mb from all GWAS
variants with P-value < 1le-7 revealed a second association in chromosome 1 with the
DNAJB4 gene. Conditional analysis further confirmed that both regions were in LD,
hence both LRP8 and DNAJB4 were independently associated with the time-to-LiD. |
also found a similar event of distal regulation in the XYLT1 locus, although the
chromatin loop did not perfectly match with the GWAS signals, making the functional
annotation analysis inconclusive. Moreover, | found that the two GWAS nominated
signals overlapped with Transcription Factor Binding Sites marks from the ENCODE
project, adding further support for the transcription machinery being recruited in the
GWAS loci and regulating both genes expression after forming the enhancer-promoter
distal chromatin loops. Nevertheless, whereas | found a chromatin loop suggesting
regulation of XYLT1 and LRP8 gene expression, | did not find statistical support for
gene regulation based on the colocalization Bayesian framework.

The three nominated protein coding genes have been previously reported to be
functionally associated with putative PD genes, which may provide an insight into the
development of LiD. LRP8 encodes the low-density lipoprotein receptor-related
protein 8, and it has been found to be associated with APOE. In addition, the LRP8
protein stabilises microtubule-stabilising protein tau and it has been shown that
knocking out LRP8 in mice increases tau phosphorylation [354]. DNAJB4 gene
encodes a molecular chaperone tumour suppressor, and member of the heat shock
protein-40 family. Mutations in the DNAJ family protein have been reported to cause
or increase the risk of several neurological disorders, including Parkinson's disease
[362]. XYLT1 encodes a xylosyltransferase enzyme which takes part in the
biosynthesis of glycosaminoglycan chains. A previous study has found a regulatory
effect of a XYLT1 variant on the mRNA levels of GBAL in the substantia nigra and
cortex [356]. | did not find support for colocalization with eQTLs nor evidence
suggestive of epigenetic regulation of genes in the LINC02353 locus. PCDH7, the

nearest gene coding protein gene, encodes a protein with an extracellular domain
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containing 7 cadherin repeats. This gene has been described as a potential PD
biomarker [363].

At an individual patient level, treatment strategies including levodopa and non-
levodopa therapies, and the use of deep brain stimulation (DBS) are determined by
the emergence of motor complications including LiD. The ability to develop a predictive
algorithm to enhance clinical care would improve the outlook for PD treatment. Here,
| have shown that both clinical and genetic variables have the potential to have a high
predictive value for the development of LiD. This will need to be validated in further
cohorts and | hypothesise that the integration of further ‘omics data (e.g. RNA and
proteomics), using machine learning may lead to the definition of an accurate

predictive model for defining PD patients at risk of developing dyskinesia.

| have analysed a large dataset with detailed clinical, drug exposure and genetic data.
| have carefully tested for confounding by PD age at onset, gender, population
structure and shown that my results are free of confounding effects as well as
demonstrating they are consistent across cohorts. Because the dose of levodopa may
be a major confounder in my study, | tested the effects of adjusting for levodopa dose
on a sensitivity analysis, and found that the lead SNPs on LRP8, LINC02353 and
XYLT1 loci remained significantly associated with the outcome, concluding that
levodopa treatment was not a confounder in my study design. Likewise, adjusting for
the MDS-UPDRS part Il total score at the time of LiD development did not change the
significance levels of the lead SNPs, suggesting that my findings were not confounded

by motor severity or progression.

Although this is a large study there are limitations based on sample size. According
to my sample calculation, | would be 80% powered to detect associations with the LiD
phenotype from variants with a MAF of 0.01 when | reached a sample size of 18000
patients. In addition, my results are limited to individuals of European ancestry and |
have not explored whether there is a shared common genetic variability associated
with changes in LiD survival across different ancestries. Expanding this analysis to PD
genetic datasets with deeply phenotypic data available from initiatives such as the
Global Parkinson's Genetic Program (GP2) will give us new insight into the genetics
of PD LiD patients as well as serve as a valuable resource for validation of findings
[155].
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MDS-UPDRS 4.1 is a simple but widely used measure which documents the
appearance of LiD. Potentially, more detailed scales such as the Unified Dyskinesia
Rating Scale[364] would provide a more accurate measure of the extent and impact

of LiD, which would improve future GWAS.

Overall, I have found new evidence of common genetic variability associated with the
time-to-LiD. | have been able to map genes at nearby risk loci, as well as provide fine
mapping support of potential causal variants for LiD traits. Likewise, | hope to help
design personalised medicine strategies that prevent PD patients developing
dyskinesia according to their genetic burden which could be tested with the proposed
PRS in this study. Similarly, | hope to help understand the molecular pathways that
lead to LID. Targeting nominated genes might allow the development of LiD treatment
strategies. Further investigation regarding the overlap between anxiety GWAS and my
GWAS might help understanding common causal pathways between the two
conditions. Understanding shared mechanisms will help us prevent medication

adverse events affecting non-targeted pathways and to fine-tune current treatments.
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5) Global large-scale analysis in Parkinson’s
disease using long-gwas provides new
Insights into the genetic determinants of
Parkinson’s disease phenotypes.

a) Introduction

Complex genetic diseases are thought to develop due to the effect of multiple common
genetic risk variants and environmental risk factors, rather than highly penetrant single
gene variants. Genome-wide association studies (GWAS) have been used to define
the genetics of complex traits and diseases [51,365,366]. Despite the upper limit of
genetic studies given by the heritability of the trait, and how much of it can be captured
by the study designs of trait-disease-specific GWAS and data availability, estimates of
variant effects can be used to predict the genetic predisposition to disease in
individuals who have not yet developed the condition [367]. Moreover, insights from
GWAS have proven to be transferable when developing clinically actionable strategies
to deal with the development and progression of disease. The PCSK9 gene
exemplifies the successful translation of GWAS knowledge into FDA-approved
disease-modifying treatments. After the discovery of PCSK9 mutations causing
autosomal dominant hypercholesterolemia [368], subsequent GWAS studies identified
genetic variants associated with low-density lipoproteins (LDL) cholesterol levels and
coronary heart disease risk [369]. PCSK9 controls LDL levels targeting LDL receptors
hence being associated with changes in LDL levels in plasma [370]. After promising
clinical trials results showing the efficacy of PCSK9 inhibition to control treat
hypercholesterolemia and reduce the risk of cardiovascular events [371], Alirocumab,

a PCSK9 inhibitor, was approved by the FDA to treat hypercholesterolemia [372].

In PD, the largest GWAS of European ancestry patients to date defined a total of 90
independent variants at 78 loci [51]. All risk variants together have been found to have
a high predictive capability for disease diagnosis alone (AUC: 70%) based on
machine-learning model training and optimization [373]. However, the risk variants
uncovered so far explain just a fraction (16-36%) of the total heritability component of
idiopathic PD estimated to be 22% [51]. Recent work expanding the largest PD genetic

study to more ancestry diverse populations, including PD samples from East Asian,
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Latino and African individuals, identified 12 novel loci [82]. Despite the unquestionable
progress uncovering the genetic architecture of PD, these well powered case-control
GWAS meta-analyses [4] have not contributed to the identification of novel disease
modifying treatments. An alternative approach is the identification of targets for
disease-modifying treatments based on phenotypic progression and severity GWASs
that can identify genetic loci associated with prognosis. Together with downstream
functional annotation to establish the nearest genes and their expression patterns
[285], this strategy might be particularly powerful in pinpointing actionable targets for

disease-modifying treatments.

In recent vyears, several progression and severity genetic studies have been
conducted in PD [108,109,114,374-376] using different genetic quality control and
modelling strategies. These have successfully identified genetic markers associated
with different PD outcomes, such as motor and cognitive performance. Here, |
introduce long-gwas, a Nextflow pipeline that makes longitudinal and severity disease-
specific GWAS accessible and scalable, and reproducible by decreasing the
introduction of user systematic errors. Here, | used long-gwas to conduct a large-
scale proof of concept disease severity analysis across multiple phenotypic outcomes
and ancestry groups. | describe putative loci for hyposmia, an established phenotypic
marker of a-synuclein, pathology, as well as other potential novel genetic markers that

capture diverse aspects of the PD symptomatology.

b) Methods
1) Long-gwas

The development of long-gwas has been part of a collaboration with Michael Ta at the
NIH. My participation can be found on GitHub in the commit history

(https://github.com/michael-ta/longitudinal-GWAS-pipeline/commits/main/) and the

pull requests from developmental branch | created in the process of improving and

adding new features to the tool (https://github.com/michael-ta/longitudinal-GWAS-

pipeline/pulls?g=is%3Apr+is%3Aclosed)

Here | summarise in brief, my main contributions to the software development:

- Rewrite of the software on DSL version 2
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- Developing a modularised version of long-gwas

- Developing configuration files for cloud and HPC based execution support

- Enabling of parallel executions of multiple GWAS outcomes

- Dealing with outcome missingness time points on the fly during pipeline
execution

- Enhancement of Manhattan and QQ plots

- Enhancement of results processing (merge all splits into one readable file)

- Improvement during runtime to only load modules needed for analysis (if GLM
analysis is needed, then | do not load other modules which speeds up the tool
and use less resources during runtime)

- Several bugs fixes for example wrong SNPs ordering between chromosome
splits before splits merging in plink, or overcome memory limitations when
merging chromosome files in plink

- Remove deprecated arguments no longer used in the new version

- Yaml file to more efficiently write parameters

- Enhance docker image to incorporate missing dependencies

- Add Nextflow scripts and tree structure needed to run lon-gwas from GitHub
without the need of manually download the workflow

- Update web based documentation supervising a research assistant in the lab

- Efficiently use the bin folder in the GitHub remote to allocate the custom scripts
| use in long-gwas that enable no longer needing to hard code those scripts in

the docker image, lighting up the image and making deployment faster

Long-gwas is a workflow developed using Nextflow domain-specific language version
2 (DSL2). Nextflow dataflow programming is inspired by the Unix philosophy, in the
sense that it is based on the use of pipes, and one can chain multiple simple operations
together. One Nextflow structure called channels enables multiple tasks to
communicate by piping the output of a task to the input of a downstream task.
Likewise, parallelization inherently happens based on how process outputs are
channelled into other processes, avoiding the use of complex parallelization definitions
[377,378]. Long-gwas exploits the parallelization capabilities of Nextflow to speed
up the process of running time-consuming end-to-end (longitudinal) GWAS analyses.
It ensures workflow portability and reproducibility of results based on the

containerization of the tool using the Docker software platform. In addition, long-gwas

133



configuration supports Google Cloud Batch execution, making scalability possible
when users intend to run long-gwas on heavy genomic data batches. The GitHub

integration of long-gwas enables users to constantly track software changes.

Long-gwas covers all the steps that are necessary to perform a (longitudinal) Genome-
Wide Association Analysis. Based on our experience performing this type of analysis,
we have integrated the tools that are required to achieve the different goals at each
step of the workflow. In addition, we automatically deal with common pitfalls when

performing this type of analysis.

Long-gwas is intentionally developed so that anyone with basic understanding of the
command line can perform their analyses. Nextflow, and for instance long-gwas is
supported in the main operating systems (Linux, Mac OS, and Windows through
WSL2). Whereas we have hard coded on the long-gwas configuration file the amount
of resources (CPUs and RAM) that tasks need to run, Long-gwas implements an
efficient caching approach so that very time consuming sections only need to be run
once when variations of a task need to be executed for the same input genetic data.
For instance, when working with input data for a given study, if the number of genetic
variants in the input is very high, the operation of loading the data and performing initial
genetic data QC is time consuming. As this step is highly generalisable across any
GWAS, we save the arranged output of this process on a cache directory so that any
subsequent run will skip this first step. Therefore, we can rapidly re-execute parts of
the workflow of interest. Each step is encapsulated on a container via Docker or
Singularity. Because we acknowledge many users might not have access to an HPC
or a cloud based platform, we provide a Nextflow configuration in long-gwas to support
local (HPC or personal desktop) or Cloud-based executions of the workflow. This
configuration file can be further customised by the user to exploit the job schedulers

and cloud platforms that Nextflow supports for the workflow deployment.

i.i) Inputs and outputs

Long-gwas inputs are handled through a yaml file. We provide a thorough description
of each long-gwas input file and argument on the web-based documentation page
[379].

We can group the workflow inputs in four main types:
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Data files. Chromosome level genetic VCF input files, a covariates file, and a
phenotype file are the data files needed to run a long GWAS following multiple steps.

Quality control arguments. Even though the data QC is fully automated in long-
gwas, we grant users full control of parameters to make decisions on data quality at
both the sample and the genetic level. For instance, users can specify the r-squared
threshold to filter out genetic variants with low imputation confidence, the minor allele
frequency and count of variants to retain for analysis, the kinship parameter to decide
the accepted relatedness between each pair of samples from the input, the ancestry
from which we want to keep individuals from the input data to account for population
structure, and the assembly of the input genetic data to infer whether genetic data
liftover is necessary or not. Finally, we also provide a variable to enable users to decide
how to create the chunks of genetic files at the chromosome level. Based on this
variable, chromosome level data is split into chunks of N genetic variants enabling

Nextflow to create a parallelization backend to run the genetic quality control.

GWAS model parameters. In a generalisable way across all the models, we allow
users to specify the covariates, phenotypes, as well as the ability to perform a separate
GWAS for each study code based on a study grouping variable. Long-gwas supports
the running of one model at a time. We provide boolean (True or False) variables to
specify whether to use the gallop powered linear mixed effect (LMM) model, the Cox
Proportional Hazard (CPH) model, or the Generalised Linear Model (GLM) model.
More specifically, for the LMM models, which are meant to be hierarchical and grouped
at the individual level, we provide a time variable to specify the time point each record
was taken for each sample ID. Similarly, for the CPH model this time variable is used
to specify the time for individuals to reach the outcome. We also provide a variable to
customise the GWAS results output name.

Cache and results directory. The dataset argument is used in long-gwas to create a
folder in which we save the multiple outputs of the long-gwas workflow, as well as a
cache directory where we save intermediary output files that could be reused in other

analyses with the same input genetic data files.

Once the long-gwas workflow is completed, a results directory is generated that
contains the following output files:
- Diagnostic plots (Q-Q plot, PCs scree plot, 2-D PCs plots).

135



- GWAS results (Manhattan plot, and a tsv file with all GWAS SNP-level results).
- Operation logs (log file for merging operations after preprocessing step and log

file for the PC inference).

i.ii) Genetic association models
Long-gwas is intentionally developed to support three main types of statistical models
to perform GWAS: GLM, LMM powered by GALLOP and CPH. More information on

each type of the model is available in Chapter 2 — Methods.

I.1i)) Workflow description

Long-gwas can be divided into three main sub workflows summarised in Figure 20.

The preprocessing step is the first sub workflow run using the long-gwas tool, in
which data is prepared for the downstream analysis. Genetic data is processed to
retain highly confidently imputed genotypes. We left-align and normalise indels, and
also split multiallelic sites into biallelic records using bcftools. We generate plink2
genetic binary files on the output. Long-gwas standardises genetic data into build
hg38. Therefore, if input files are provided in hg19 or other build, long-gwas performs
the liftover of genetic files using the LiftOver tool from UCSC [380], In addition, we
ensure consistent representation of variants in the input VCFs, by normalising genetic
variants using vt normalise [381] and the FASTQ hg38 reference panel as reference
for the alignment. Lastly, genetic data is processed to remove singletons, duplicate
variants, as well as to keep only those genotypes with high call rates. We accelerate
this time-consuming first step by splitting the input genetic data at the chromosome
level in multiple chunks of a defined number of SNPs, each based on the chunk_flags

long-gwas argument.

Once the QC is complete for each data subset, we merge the chunks back into one
chromosome file, and those into one unique genetic file containing all genetic variants
for all chromosomes of all samples in the study. We generate bed and pgen output file

formats using plink2 software.

The second step of the workflow is to perform quality control that guarantees we
only retain high quality samples and genetic data for analysis. For that, samples with
high genotyping missingness rate are removed, heterozygosity and ancestry outliers

are pruned and one individual of each pair of related individuals at the first degree
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relative level are removed. Genetic variants that are not in Hardy-Weinberg equilibrium
are excluded, as well as variants with a minimum allele count <20 (rare variants
exclusion). For interpretability, we provide descriptive plots highlighting the data
processing during QC. For instance, we provide a scree plot showing the number of
PCs that were included to decide which samples were selected as ancestry outliers,
as well as a 3D plot showing the PCs distribution against a reference panel. We

provide the sample list that passed all QC steps on an h5 file.

The third step of the workflow is to run a GWAS analysis on the resulting QC data.
The covariates and phenotype data are filtered to match samples that passed the QC
stage using the h5 file from the QC step. In addition, new PCs are calculated on the
final QC subset of data, and these are merged with the covariates file. Users can
specify PCs as covariates, in which case the model will be fitted accordingly. For each
outcome, we remove missing outcome data points that would make the model fit falil,
and report any sample excluded for this reason. Currently, three types of analyses are
available in long-gwas. GLMs can be deployed to evaluate the effect of variants either
on disease risk (case-control GWAS) or on disease severity measured by quantitative
cross-sectional clinical instruments. CPH models [382] can be used to determine the
impact of genome-wide variants on survival based on a predefined outcome relevant
to the disease under study. LMMs powered by GALLOP [194], in which we can
evaluate the impact of genetics on both disease progression (slope-term) and severity
(intercept-term), allowing for random sources of variation to account for unexplained
heterogeneity at both disease presentation and progression. We exploit the Nextflow
parallelization capabilities by splitting the data into multiple chunks and running a
GWAS on each chunk in parallel. In addition, long-gwas can be run simultaneously on
many outcomes, by parallelizing the GWAS analysis of all outcomes specified on the
long-gwas pheno_name argument. Finally, we merge all data into one file per
outcome, and we generate the Manhattan and diagnostic plots (QQ plots) for all

results.
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Figure 20. Long-gwas pipeline schematic overview.
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i) Study design and participants

In my initial work with the long-gwas tool | have used four data sources: the Unified
cohorts from the Accelerating Medicines Partnership Program in Parkinson’s Disease

(AMP-PD Unified, (https://amp-pd.org/unified-cohorts), which gathers common clinical

and genomic data in an harmonised format from eight different cohorts (BioFIND,
HBS, LBD, LCC, PDBP, PPMI (genetically enriched and sporadic PD patients),
STEADY-PDR, SURE-PD3) with whole genome sequencing; the federated cohorts
provided by the Global Parkinson’s Genetics Program (AMP-PD GP2), genotyped with
NBA [155,347,383]; the Tracking Parkinson’s cohort; and the Oxford Discovery
cohorts [150,151]. Based on participant longitudinal data, we excluded any participant
whose latest diagnosis was not PD. If longitudinal data was not available, we used
the latest diagnostic information. We carried out clinical data quality control by

excluding: PD patients without clinical or demographic records at baseline, patients
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with unmatched clinical and genetic data and patients with long disease duration at
baseline (>20 years). In addition, we found the case of negative values calculating
disease duration at baseline (diagnosis before reported symptom onset). We excluded

these from analysis.

For each cohort, we selected the following clinical assessments: MDS-UPDRS Part |
(non-motor aspects or experiences of daily living), Part Il (motor aspects or
experiences of daily living), Part Ill (motor examination; recorded in the on-state for
treated participants), HY stage, MoCA, MMSE, SEADL (a scale to assess the
capabilities of people with impaired mobility), RBD questionnaire, University of
Pennsylvania Smell Identification test (UPSIT), the Epworth Sleepiness Scale (ESS),
and the Parkinson’s Disease Questionnaire (PDQ-8). In addition, we accessed the a-

synuclein amplification assay from AMP-PD PPMI study participants.

We matched clinical and genetic data in the remaining participants after QC, resulting
in deeply phenotyped PD records for two ancestry groups: Ashkenazi Jewish and
Europeans. Data availability for the rest of the ancestry groups was lower than 100
samples. We considered a genetic association study on less than 100 samples to be

under-powered so we excluded these samples from the study.

Iii) Genetic data quality control

To assign ancestry labels to patients that passed the sample quality control stage, we
used GenoTools, a python module to perform data quality control and genetic
analyses [17]. To do quality control based on the available genetic data, we used the
long-gwas arguments to perform the automated quality control steps in the workflow,
based on our input parameters. During the data preparation step, we excluded non-
autosomal or singleton genetic variants. For Tracking Parkinson’s and Oxford
Discovery cohorts for which data was in hg19, we lifted over the data using long-gwas,
by setting the assembly argument (--assembly=hg19). When using imputed genetic
data, we filtered out variants with a R squared value <0.7 (--rsthres=0.7). In addition,
we only Kkept genetic variants with minor allele frequency >5% (--
minor_allele_freq=0.05), and variants with a minor allele count of at least 20 (--
minor_allele_ct=20). We filtered one patient out of a pair of closely related individuals

by generating a kinship square matrix and setting a kinship argument threshold (--
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kinship=0.177). To account for any possible population stratification, we ran the
ancestry outlier detection long-gwas utility, which uses 1000 Genomes as a reference
panel [220] . For instance, if the input genetic data was from an AJ subset inferred by
ancestry tool, then we set up the ancestry argument to Ashkenazi Jewish (--
ancestry=AJ) or European (--ancestry=EUR) ancestry. In addition, we derive genetic
principal components (PCs) that we use to adjust the genetic model for population

stratification.

On average, a total of 6,500,000 variants remained available for each independent
ancestry cohort level data subset. For each genetic analysis on the subset of SNPs,
we generated Q-Q plots for a graphical check, as well as estimated genomic inflation
factors to guarantee the GWAS test-statistics were a unique function of genetic
variability and were not inflated due to cryptic-relatedness and/or population
stratification. To do so, we set the long-gwas arguments mh_plot to true (--

mh_plot=true).

A further description of all the arguments we have used to conduct data quality control

can be found on the long-gwas web-based documentation [384].

Iv) Genome-wide disease severity model and meta-analysis

| performed multiple genome-wide association studies across the range of quantitative
outcomes. | used clinical baseline measures (cross-sectional data points). Data
availability for each outcome is described in detail in Table 20. | studied the impact of
genetic variants on disease severity using GLMs, with sex, cohort, age at baseline

(AAB) and the first three genetic PCs as covariates.

Table 20. Overview of data availability for each clinical outcome across ancestry
groups in the four PD data sources.

AMP-PD AMP-PD
Federated (GP2)  Unified ClERlE FRQIBAND N ol

Ancestry EU A |eu| At | BU |A| BU | AT EU AJ

MDS-UPDRS

| : - |2128| 345 | 787 | 4 | 1619 | 10 | 4534 | 359

MDS-UPDRS

I : - |2127| 345 | 787 | 4 | 1622 | 10 | 4536 | 350

MDS-UPDRS

i 1052 | 141 |2170| 344 | 786 | 4 | 1589 | 9 | 5597 | 497
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Federated (5P2) Unified  OPDC  PROBAND N total
HY 1470 165 | 2763 | 421 | 797 4 1699 11 6729 601
MOCA 1669 | 244 | 788 4 1578 10 4065 258
MMSE 1497 249 - - 792 4 - - 2289 253
SEADL 425 - 2167 | 398 - - 1694 11 4286 411
UPSIT - - 1575 320 - - 1089 8 2664 328
RBD - - 1306 | 335 - - 1600 10 2906 345
ESS - - - - - 1636 10 1636 10
PDQ8 - - - - - - 1634 10 1634 10

| used METAL software (version released on 25/03/2011) to meta-analyse results of
multiple GWASs at the cohort level for matched ancestry groups. | applied a fixed-
effect model based on the sum of the B coefficients for each SNP i and study j,
weighted by the inverse of the variance of the estimated effect of the jth variant in the
ith study (1 / [Var(Bij)]). Upon meta-analysis, | applied a genomic control correction to
the cohort-specific summary statistics by computing the inflation of the test statistic,
and then applying the genomic control correction to the standard errors. Similarly, |
used the METAL software fixed-effect model to perform a meta-analysis across
ancestries to investigate the homogeneous allelic effects between ancestry groups for

a targeted clinical outcome, the UPSIT Olfactory Test.

To ensure the consistency of allelic effects across the multiple genetic studies included
in the meta-analyses, | filtered out heterogeneous variants based on the Cochran’s
statistic (test of heterogeneity of allelic effects) and 12 (a quantification of the extent of
heterogeneity in allelic effects across GWASSs). SNP level estimates were excluded if
the P-value for the Cochran's Q-test for heterogeneity was <0.05 and the 12 statistic
was <80%. In addition, | filtered meta-analysis results to only include genetic variants

that were available for at least 40% of the total genetic markers.

v) Proteome and transcriptome differential abundance and

expression analysis

To find transcriptomic and proteomic based biomarkers based on LRRK2 G2019S and

GBA1 N370S status, | accessed blood whole-transcriptome counts and Data-
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Independent Acquisition mass spectrometry-based (“‘untargeted”) proteomics from
cerebrospinal fluid (CSF) Untargeted protein abundance measures from AMP-PD
release v3. A more detailed overview on the transcriptomic data preparation is

available at (https://amp-pd.org/transcriptomics-data#workflows). A more detailed

overview on Non Targeted Proteomic data preparation is available at (https://amp-

pd.org/data/untargeted-proteomics-data).

For our differential expression transcriptome analysis, | used the limma R package. |
transformed count features to log2-counts per million (logCPM), estimated the mean-
variance relationship and used this to compute appropriate observational-level
weights. | then computed a linear model fit for each gene adjusting by sex, the plate
number, age and neutrophils and lymphocytes percentages. Finally, I computed
moderated t-statistics, moderated F-statistic, and log-odds of differential expression

by empirical Bayes moderation of the standard errors towards a common value.

For the analysis of differential abundant protein analysis, | used a custom function in
Python. | transformed protein abundance to log2-counts, and removed the variance
on measures driven by age and sex. Then, | ran a t-test to get the significance of the

mean difference between two groups (mutation carriers versus non carriers).
vi) Functional annotation of genetic association results

To annotate results from genetic studies, | used the Functional Mapping and
Annotation (FUMA) v1.3.8 web platform. FUMA defines genomic risk loci based on
linkage disequilibrium (LD) blocks composed of independent significant SNPs at Rsq
> 0.6. To define LD blocks, | set up a distance of 500kb between different LD blocks
edges. For each LD block, a subset of lead SNPs is defined by finding the independent
significant SNPs that are independent of each other at Rsq 0.1. Then, these SNPs are
merged into LD blocks separated 250Kb from one another. Each locus is represented
by the top lead SNP (minimum P-value) in the locus. To calculate the Rsq, | used the

1000 Genome Reference panel with all ancestries.

Independent significant SNPs are mapped to genes based on a window size of 10kb
using ANNOVAR. To know the functional consequences of SNPs using ANNOVAR in
FUMA. | also queried several eQTL sources to map SNPs to genes which likely affect
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expression of those genes. | only used cis-eQTL data (up to 1Mb) from eQTLGen,
PsychEncode, and GTEx V8 data sources [269,385,386].

Finally, | determined the tissue specificity of our PD phenotypes meta-analysis based
on an enrichment analysis against all differentially expressed genes by performing a
two-sided t-test for any label against all others for all GTEXx V8 tissues. Then based on
the sign of t-statistics, up-regulated and down-regulated DEGs were also computed.
To test input genes derived from the meta-analysis summary statistics against each
DEG set for each tissue, the hypergeometric test was used. Significant enrichment at

Bonferroni corrected P-value are coloured in red.

c) Results

1) Summary of clinical and demographic data available for analysis

In this analysis, | included 8,458 European and 963 Ashkenazi Jewish PD cases
(Table 21). The GP2 European cohort had the longest mean disease duration from
diagnosis. GP2 European cases were also younger at baseline on average. For AJ
ancestry cases, average disease duration was also longer in the GP2 cohort. AAB
was similar among the AJ cases from the different data sources. The male:female ratio
was very similar across the studies for the European ancestry samples. However, the
proportion of males among AJ cases varied between 58% and 100% in the different

cohorts

Mean motor and cognitive scores at study entry, as measured by MDS-UPDRS part
[l and MoCA respectively, were similar across cohorts. Interestingly, the Oxford
discovery cohort showed the lowest proportion of patients in a more advanced disease
stage, as measured by the Hoehn and Yahr scale, as well as the highest average
score of MDS-UPDRS part lll. UPSIT and RBD assessments are used to quantify the
olfactory impairment and REM sleep behaviour disorder, and they were available for
the AMP-PD Unified and Tracking Parkinson’s cohorts. There were no differences in
the average scores for these two assessments across cohorts. | did not find clear
differences in the average outcomes capturing PD non-motor features or the motor

and cognitive states between European and AJ groups.
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Table 21. Summary of clinical and demographic features at baseline across European and Ashkenazi Jewish groups

AMP-PD Federated (GP2) AMP-PD Unified OPDC PROBAND
Ancestry EU Al EU AJ EU Al EU AJ
N 3492 429 2470 519 797 4 1699 11
Age at baseline 63-1 (21-0to 93-0) 64-2 (30-0 to 90-0) 66.85 (32-0 to 67-3 (32:2t0 90-5) 67-5 (31-1to 90-4) 64.7 (49-5 to
66.3 (40-0 to 91-0) 90-0) 67.9 (58-2 to 81-6) 75-6)
Disease duration, 1.3 (0to 3-5)
4.4 (0to 19-0) 6.1 (0-0to 19-0) 3:6 (0 to 19-0) 4.8 (0to 19-0) 0.7 (0-3t0 1-2) 1.2 (0to 3-4) 15(0-1t0 30
Male sex 2134 (63%) 306 (71%) 1545 (63%) 302 (58%) 513 (64%) 4 (100%) 1104 (65%) 7 (64%)
Female sex 1307 (37%) 123 (29%) 925 (37%) 217 (42%) 284 (36%) 0 (0%) 595 (35%) 4 (36%)
MDS-UPDRS | ) ) 7-7 (0-0 to 37-0) 8.6 (0-0 to 37-0) 8-7 (0-0 to 33-0) 8.2 (5.0 to 12-0) 9-2(0-0t034-0) |11 (4-0 0 21.0)
MDS-UPDRS I - - 8-2 (0-0 to 46-0) 8.7 (0-0 to 39-0) 8-8 (0-0 to 33:-0) 6.0 (4-0to 10-0) 9-8 (0-0t0 48:0) | 7.9 (1-0to 20-0)
MDS-UPDRS Il | 21-1 (0-0to 100-0) | 20-7 (2-:0to 64-0) | 23-2 (0-0t0 83-0) | 24.4 (0-0t0 83:0) | 26-6 (5-0to 77-0) 24.5 (14-0 to 35-0) 22:9(1-0to 76-0) |13.6 (3-0to 26-0)
Hoehn and Yahr
stage, 3-5 544 (16%) 65 (14%) 409 (17%) 73 (14%) 65 (8%) 0 (0%) 331 (19%) 0 (0%)
26.7 (22-0to
MOCA total - - 26-1(3-0t0 30-0) | 25.7 (8:0t0 30-0) | 24-5(12-:0to 30-0) | 23.7 (20-0to 27-0) 24-9 (9-0to 30-0) 30-0)
MMSE total 30-0 (0-0to 30-0) |28.9 (21-0to 30-0) - - 27-4 (18-0to0 30-0) | 27.0 (24-0to 30-0) - -
91-5(60-0to 91.2 (70-0 to 87.5(10-0to 88:2 (20-0to 92.2 (80-0to
SEADL 100-0) 100-0) 89-1 (0-0to 100-0) 100-0) - - 100-0) 100-0
UPSIT total - - 21-4 (0-0to 40-0) | 22.6 (0-0to 40-0 - - 19-7 (3:0to 37-0) |21.3(15-:0t0 31-0
RBD total - - 4-4 (0-0to 13-0) 4.0 (0-0t0 13-0 - - 4.7 (1-0to 13:0) 41(20to7-0
ESS total - - - - - - 6-8(0-0to24-0) | 5.3(0-0t012-0
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Ii) Large-scale disease severity meta-analysis across multiple PD

clinical outcomes

| conducted a large-scale European and Ashkenazi Jewish genetic association
analysis across all Parkinson’s clinical outcomes available capturing motor features
(MDS-UPDRS part Il, MDS-UPDRS part Ill), cognitive features (MMSE, MoCA),
disability (SEADL), disease severity (H&Y), and non-motor features (MDS-UPDRS
part I, UPSIT, RBD) using GLM for baseline data. Subsequently, | meta-analysed
genetic variant summary statistics for each clinical outcome. The meta-analysis was
performed for each ancestry group independently. The sample size for each GWAS
depended on data availability across clinical outcomes (Table 20). | did not detect

significant genomic inflation for any of the genetic-association studies.

For the European ancestry meta-analyses, | found statistically significant genetic
associations with non-motor features (MDS-UPDRS part I, UPSIT), motor features
(MDS-UPDRS part Il), and disability (SEADL) (Figure 21) (Table 22). All significant

associations were intragenic.

Figure 21. Manhattan plots of the GWAS meta-analyses with significant
associations.

UPSIT meta-analysis

S&E meta-analysis

Chromosor me

UPDRS Il meta-analysis

Meta-analysis for a) Upsit score b) SEADL, c) UPDRS-I, d) UPDRS-II. The x-axis
represents the chromosome, and the position of each variant in the meta-analysis.
The y-axis shows the two-sided P-value in the -log10 scale. Genome-wide significance
is set at a P-value of 5e-08, and is represented by the red line on the Manhattan plots.

145



Table 22. Table of the lead SNP for each significant LD block part of the meta-
analysis, including variants with at least 30% availability across the multiple cohorts

rsiD chr A1 MAF beta se  P-value Gene func outcome
rs6702348 1 G | 0.012 | -11.76 | 1.81 | 9.25e-11 |GPR137B |intronic SEADL
rs34637584 | 12 T 0.09 496 | 0.64 | 2.08e-10 | LRRK2 | exonic UPSIT
rs76763715 1 C | 0.002 | -449 | 0.76 | 3.89e-09 GBAl | exonic UPSIT
rs142137167 | 2 G | 0.008 6.52 | 1.12 | 5.72e-09 | HECW?2 |intronic UPDRS I
rs181145947 | 9 T 0.005 6.16 | 1.11 | 3.20e-08 |AGTPBPL1 |intronic UPDRS |
rs11764231 7 G | 0.005 7.34 | 1.33 | 3.65e-08 | WDRS86 |[intronic UPDRS I

For each lead SNP, | provide which is the closest gene. Because all lead SNPs were
intragenic, | mapped each SNP falling on each gene boundary. P-value, two-sided P-

value of association from meta-analysis.

In addition, | have made available a list of all the lead SNPs that reached nominal

significance on each locus (P-value < le-6) and the genes that they were mapped

onto for each individual clinical outcome Table 23.

Table 23. All nominal and significant associations from multi GLM GWAS.

chr Al MAF beta se gwasP nearestGene  dist func study
5 G 0.11 2.26 0.46 | 1.90E-07| ACO008565.1 |83226| intergenic UPSIT
1 G 0.08 0.11 0.02 |4.98E-07 ADH5P2 80069 | intergenic HY

2 T 0.27 0.08 0.02 | 2.64E-07 ATIC 0 intronic HY

4 G 0.03 0.18 | 0.04 |5.92E-07 SLC9B2 0 intronic HY
10 T 0.01| -3.24 |0.60 |5.07E-08 RPL39P25 10649 | intergenic MOCA
13 A 0.01| -3.77 |0.71|9.75E-08 XPO4 0 intronic MOCA
20 G |0.09| -3.53 |[0.65|5.47E-08 NTSR1 0 intronic SCHWAB
13 A 0.02 3.53 0.65 |5.16E-08 NALCN 0 intronic UPDRS_|
2 G 0.01 6.53 1.12 |5.72E-09 HECW2 0 intronic UPDRS _I
3 G 0.13 1.72 0.33 |1.52E-07 TSC22D2 10385 | intergenic | UPDRS_lII
3 C 0.22 1.36 0.27 |4.28E-07 TSC22D2 14022 | intergenic | UPDRS Il
10 A 0.01 8.54 1.72 | 7.22E-07 ZNF438 16990 | intergenic | UPDRS I
16 G 0.23 | -1.37 | 0.26 |1.55E-07 TEKTS5 0 intronic UPDRS_III
20 A 0.45 1.11 0.22 | 7.64E-07 |RP11-137F15.1| 16380 | intergenic | UPDRS_III
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The number of participants of Ashkenazi Jewish ancestry was sufficiently large in the
AMP-PD Unified and GP2 cohorts to perform a large-scale GWAS. However, for the
Ashkenazi Jewish samples, | only performed a meta-analysis for the Hoehn and Yahr
and MDS-UPDRS part [l GWASSs due to clinical data availability (Table 20). | did not
find any statistically significant association in the AJ HY and MDS-UPDRS meta-
analyses. Interestingly, | found a nominally significant LD block for the Hoehn and Yahr
disease severity meta-analysis (Figure 22). The lead SNP (rs510791; B = 0.25; SE =
0.05; P-value = 4.74e-07), is an intronic variant at the PACRG gene, a gene next to
the PARKIN gene, which is associated with autosomal recessive juvenile PD. PACRG
and PARKIN are co-regulated in multiple tissues and share a bi-directional promoter.
In addition, the PARKIN co-regulated protein is a component of Lewy bodies in PD
patients [387,388]. This variant was not associated with the HY stage in Europeans
(rs510791; B = 0.0036; SE = 0.0123 ; P-value = 0.7728), which suggests that some
genetic determinants of disease severity might be ancestry-specific.

Figure 22. AJ Hoehn and Yahr meta-analysis

-log10 P-value

1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16 17 18 19202122 23
Chromosome

The x-axis represents the chromosome, and the position of each variant in the meta-
analysis. The y-axis shows the two-sided P-value in the -log10 scale.

Finally, to estimate to what extent genetic determinants might contribute to disease
severity outcomes in PD, we derived Pearson correlation coefficients for the SNP
effect sizes between the AJ and EUR ancestry meta-analyses of the Hoehn and Yahr
and the MDS-UPDRS part Il outcomes, which were available for both ancestry groups
(Figure 23). Overall, the correlation results suggest that the genetic makeup that

contributes to PD severity as measured by multiple clinical outcomes, is ancestry-
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specific. However, the correlation result across ancestries suggests that

homogeneous effects exist.

Figure 23. Pearson correlation of Effect sizes between AJ and EUR MDS-UPDRS llI
(left) and H&Y (right) meta-analyses.
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i) LRRK2 G2019S and GBAl1l N370S are the main genetic
determinants of the olfactory impairment that arise in PD patients of

European ancestry

The two significant LD blocks in the disease severity meta-analysis for the olfaction
UPSIT assessment corresponded to the GBA1 locus on chromosome 1 and the
LRRK2 locus on chromosome 12, respectively (Table 22). The lead variant at the
GBAL1 locus (rs76763715, also known as N370S), was associated with a decrease in
the average UPSIT score (B =-4.49, SE =0.76 , P-value = 3.89e-09). The lead SNP
at the LRRK2 locus (rs184460887) was associated with an increase in the average
UPSIT score B = 4.96; SE = 0.77; P-value = 1.06e-10). Similarly, the second most
significant association (rs34637584, also known as G2019S) was associated with an
increase in the average UPSIT score (B =4.07 , SE = 0.64 , P-value = 2.08e-10).

To further understand the pathway associated with the smell impairment involving
LRRK2 and GBA1, | adjusted the UPSIT total score GWAS, adding G2019S, N370S
and G2019S or N370S mutation carrier status as mediators in the genome-wide scale
multiple regression model on the meta-analysis results from the European-based
UPSIT meta-analysis. | did not find any novel genetic association with the UPSIT

outcome (Figure 24).
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Figure 24. Association between genetic variants at the LRRK2 locus and Hoehn and
Yahr outcome.
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a) Manhattan without any covariate b) Manhattan with GBA1 N370S as covariate c)
Manhattan with LRRK2 G209S as covariate.

N307S remained significantly associated after adjusting on G2019S, as well as
G2019S remained significant after adjusting on N307S. However, the LRRK2 locus
spans more than 1Mb away from the top lead SNP, and the variance captured by this
locus on the UPSIT score seems to be more complex than just by the effect of one
single pathogenic mutation. For instance, on our G2019S conditional GWAS, the top
lead SNP in chromosome 12 (rs185993818), remained nominally associated with the
UPSIT outcome (B = 3.5 ; SE = 0.94; P-value = 2e-4). Finally, adjusting the UPSIT
GWAS on both N370S and G2019S removed all the significance from all variants at
both the GBA1 and the large LRRK2 loci (Table 24).
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Table 24. G2019S and N370S, conditional GWAS.

SNP CHR Position Condition MAF Effect SE P-value
rs34637584 | 12 | 40340400 N370S 0.09 | 3.20 | 0.68 2.52E-06
rs76763715 1 |[155235843 N370S 0.04 | -8.00 | 4.00 4.00E-02

rs185993818 | 12 | 41691672 N370S 0.06 | 393 | 0.81 1.37E-06
rs34637584 | 12 | 40340400 G2019S 0.09 | 714 | 2.82 1.00E-02
rs76763715 | 1 | 155235843 G2019S 0.04 | -3.30 | 081 4.59E-05
rs185993818 | 12 | 41691672 G2019s 0.06 | 349 | 094 2.00E-04
rs34637584 | 12 | 40340400 | G2019S and N370S | 0.09 | 7.00 | 2.80 1.00E-02
rs76763715 1 |[155235843 | G2019S and N370S | 0.04 | -7.56 | 3.90 5.00E-02
rs185993818 | 12 | 41691672 | G2019S and N370S | 0.06 | 2.03 | 0.95 2.00E-03

| applied the same principle to explore the effect of adding GBA1 and LRRK2 mutation
carrier status as mediators in the association of genetics with the remainder of the
baseline outcomes (Table 20). Interestingly, | found a significant association between
Hoehn and Yahr stage and the SNPs at the LRRK2 locus, and this association was
not uncovered on the simpler model without GBA1 N370S mutation carrier status as
a mediator. The lead SNP was rs991584002 (8 = 0.31; SE = 0.05; P-value = 1.1E-8).
GS019S was also present on this LD block and nominally associated ( = 0.26; SE =
0.05; P-value = 4.87E-5).

In addition, | explored all independent SNPs associated with the UPSIT score at the
nominal significance level (P-value 1e-6) and annotated them using the FUMA web
platform. In brief, I mapped all independent SNPs to HUGO symbols based on
positional distance. Moreover, based on LD, | inferred missing SNPs on my data from
the 1000 Genomes reference panel, as | expect that SNPs in high LD with tagging
SNPs, to also have an inflation in the test statistics. This provides additional
information as one independent SNP in LD with the tag SNP that was not present in
the input data for the genetic association study, might be mapped to a different gene,
giving us further insights into the functional implication of the locus of interest (Table
25).
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Table 25. Nominal significant association with the baseline UPSIT score

HUGO chr nindSigSNPs minGwasP ~ posMapSNPs posMapMaxCADD
GBA1l 1 1 3.89E-09 1 23.7
FDPS 1 4.26E-09 1 2.417
RUSC1 1 1 4.26E-09 1 2.417
MSTO1 1 1 2.84E-07 1 14.66
UBQLN4 1 1 2.84E-07 0 0
SMG5 1 1 2.84E-07 0 0
TMEM79 1 1 2.84E-07 0 0
IL6R 1 1 NA 1 0.342
SHE 1 1 NA 1 1.782
TDRD10 1 1 NA 1 1.782
KCNN3 1 1 NA 5 14.05
PYGO2 1 1 NA 1 18.51
SHC1 1 1 NA 1 18.51
CKS1B 1 1 NA 1 18.51
ADAM15 1 1 NA 1 4.595
EFNA4 1 1 NA 1 4.595
EFNA3 1 1 NA 1 4.595
ASH1L 1 1 NA 4 9.391
GONA4L 1 1 NA 2 2.504
SYT11 1 1 NA 1 7.134
RIT1 1 1 NA 1 7.134
SCN1A 2 2 1.79E-06 38 10.76
SCNO9A 2 1 1.79E-06 0 0
TTC21B 2 2 3.05E-06 0 0
GALNT3 2 1 5.43E-06 0 0
SCN7A 2 1 1.47E-05 0 0
LSAMP 3 1 1.66E-06 2 1.323
FBXW11 5 1 5.54E-06 0 0
PDZRN4 12 4 1.33E-09 11 13.31
ABCD?2 12 1 4.09E-09 1 0.213
CNTN1 12 3 1.18E-08 70 12.3
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HUGO chr nindSigSNPs minGwasP ~ posMapSNPs posMapMaxCADD
LRRK2 12 2 4.27E-08 3 6.718
GXYLT1 12 3 7.58E-08 1 1.031
C120rf40 12 3 3.89E-07 5 1.904
SLC2A13 12 3 3.89E-07 6 1.904
MUC19 12 2 4.29E-07 6 10.41
KIF21A 12 3 1.07E-06 2 10.56
DHX37 12 1 1.18E-06 36 10.63
BRI3BP 12 1 1.18E-06 0 0
CPNES8 12 4 1.23E-06 5 10.28
TMEM117 12 1 1.29E-06 7 11.66
ADAMTS20 12 1 NA 2 2.058
IRAK4 12 1 NA 1 0.699
NELL2 12 1 NA 5 4.172
DBX2 12 1 NA 1 0.419
TEX101 19 1 4.39E-06 0 0

iv) Validation of the LRRK2 and the GBA1 associations with the

UPSIT score in Tracking Parkinson’s

| found high variability in the GBA1 N370S and LRRK2 G2019S MAFs between
European cases from AMP-PD Unified and Tracking Parkinson’s cohorts (4% vs 0.3%
for N370S and 6% vs 0.6% for G2019S, respectively). Therefore, these variants were

excluded during the long-gwas quality control framework of the TPD cohort.

To validate our findings in the Tracking Parkinson’s data source, | accessed Sanger
sequencing patient-level genetic data and characterised each patient based on
G2019S and N370S mutation carrier status, for a total of 2000 PD patients. | adjusted
a GLM model on sex, standardised age at diagnosis, and the first 3 PCs, as well as
the two pathogenic variants separately. Promisingly, | found G2019S approaching
significance in the association model against the UPSIT total score and the
directionality of the effect was consistent with that from the UPSIT European meta-
analysis (B = 6.07, SE = 3.25, P-value = 0.052). | did not find a significant association
between N370S and the UPSIT score, but | found the directionality of the effect to be
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consistent with the findings from the AMP-PD Unified European cohort (B =-1.88, SE
= 2.17, P-value = 0.4). Interestingly, | found a significant association between GBA1
N370S status and Hoehn and Yahr stage and MDS-UPDRS Il total score (Table 26).

Table 26. GBA1 N370S GLM summary statistics across multiple outcomes from
Tracking Parkinson’s

Variable Estimate std.error statistic p.value
HY 0.57 0.20 2.92 0.0035
UPDRSIII 11.41 4.29 2.66 0.0079
BFI 2.80 1.58 1.77 0.0772
ESS 2.38 1.60 1.48 0.1386
GASTRO -0.26 0.19 -1.34 0.1819
RBD 1.29 1.10 1.18 0.2392
Leeds dep 0.96 1.05 0.91 0.3619
UPSIT -1.88 2.17 -0.87 0.3871
UPDRSII 1.75 2.15 0.81 0.4157
UPDRSI -1.18 1.76 -0.67 0.5029
UPDRSIV -0.24 0.61 -0.39 0.6967
PDQ8 0.61 1.59 0.39 0.6998
NMSS -2.44 10.67 -0.23 0.819
Leeds anx 0.22 1.17 0.19 0.8518
PDSS 1.33 7.73 0.17 0.864
LEDD 8.62 67.28 0.13 0.898
MOCA adj 0.12 1.07 0.12 0.9075
MOCA -0.02 1.10 -0.02 0.9873

BFI=Brief Fatigue Inventory; ESS=Epworth Sleepiness Scale; GASTRO=Gastrointestinal symptoms;
HY=Hoehn and Yahr; LEDD = Levodopa Equivalent Daily Dose; Leeds dep=Leeds scale to assess
depression; Leeds anx=Leeds scale to assess anxiety; MOCA=Montreal Cognitive Assessment;
MOCA adj=Montreal Cognitive Assessment adjusted score; NMSS=Non-Motor Symptoms Scale for
Parkinson's Disease; PDQ8=Parkinson's Disease Questionnaire-8; PDSS=Parkinson's Sleep Scale;
RBD=REM Sleep Behavior Disorder; UPDRSI=UPDRS scale part I; UPDRSII=UPDRS scale part I,
UPDRSIII=UPDRS scale part lll; UPDRSIV=UPDRS scale part IV; UPSIT=University of Pennsylvania
Smell Identification Test

| also found LRRK2 G2019S mutation status to be associated with a higher MDS-
UPDRS 1V total score (Table 27).
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Table 27. LRRK2 G2019S GLM summary statistics across multiple outcomes from
Tracking Parkinson’s

Variable Estimate std.error statistic p.value
UPDRSIV 1.64 0.78 2.11 0.0346
UPSIT 6.07 3.25 1.87 0.0518
PDQ8 2.48 1.95 1.28 0.2021
UPDRSIII 6.81 5.42 1.26 0.2092
BFI 2.77 251 1.11 0.2682
GASTRO -0.26 0.24 -1.08 0.2791
HY 0.20 0.25 0.79 0.4315
ESS 1.48 2.03 0.73 0.4661
Leeds dep 0.88 1.28 0.68 0.4957
Leeds anx 0.87 1.43 0.61 0.5427
UPDRSI 1.08 2.16 0.50 0.6166
NMSS 4.38 11.72 0.37 0.7086
RBD -0.39 1.39 -0.28 0.7778
LEDD -18.05 86.87 -0.21 0.8354
MOCA adj 0.18 1.44 0.12 0.9016
PDSS -0.73 9.48 -0.08 0.9383
UPDRSII 0.15 2.64 0.06 0.9559
MOCA -0.02 1.47 -0.02 0.9868

BFI=Brief Fatigue Inventory; ESS=Epworth Sleepiness Scale; GASTRO=Gastrointestinal symptoms;
HY=Hoehn and Yahr; LEDD = Levodopa Equivalent Daily Dose; Leeds dep=Leeds scale to assess
depression; Leeds anx=Leeds scale to assess anxiety; MOCA=Montreal Cognitive Assessment;
MOCA adj=Montreal Cognitive Assessment adjusted score; NMSS=Non-Motor Symptoms Scale for
Parkinson's Disease; PDQ8=Parkinson's Disease Questionnaire-8; PDSS=Parkinson's Sleep Scale;
RBD=REM Sleep Behavior Disorder; UPDRSI=UPDRS scale part I; UPDRSII=UPDRS scale part Il;
UPDRSIII=UPDRS scale part lll; UPDRSIV=UPDRS scale part IV; UPSIT=University of Pennsylvania
Smell Identification Test

v) Elucidating the molecular implication of the olfactory impairment
in PD.

It has recently been described that hyposmic PD patients were predominantly positive
for the a-synuclein seed amplification assay (SAA) [389]. Interestingly, the rate of a-
synuclein SAA positivity was shown to be decreased among LRRK2 mutation carriers,
and this was reduced even further in LRRK2 mutation carriers without olfactory

impairment [389]. This is consistent with the finding that PD associated with LRRK2
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pathogenic variants can present without synucleinopathy at autopsy. However, in
LRRK2 mutation carriers with an a-synuclein SAA positive result, the proportion of
hyposmia was high (75%). Similarly, more than 90% of GBA1 PD mutation carriers
with a positive a-synuclein assay were found to have hyposmia. Altogether, this clearly
suggests a central role of LRRK2 and GBAL1 in the hyposmia manifestation in PD
patients, which might lead to the subsequent a-synuclein pathology as measured by

a-synuclein SA.

Our results from the UPSIT meta-analysis support a role for LRRK2 and GBAL1 in
determining olfactory performance in PD. Previously, it has been reported that a-
synuclein overexpression could result in a-synuclein aggregation [4]. | did not find any
nominal significant association to be a cis-eQTL for SNCA expression. In this section
| explored whether G2019 and N370S status explain differences in the expression or
accumulation of a-synuclein, which could be a marker of a-synuclein aggregation and
pathology. This would provide further support in the LRRK2 and GBA1 mutations role

controlling a-synuclein aggregation manifesting with hyposmia.

One major strength of the AMP-PD unified cohorts is the availability of matched clinical
and multi-omics data. Likewise, | could assess the hypothesis of N370S and G2019S
PD pathogenic mutations leading to a prominent SNCA overexpression which could
lead to aggregation. In addition, | explored whether there could be any other biomarker
contributing to pathology as a consequence of any of the GBAl and LRRK2
pathogenic mutations. | used data from AMP-PD CSF Untargeted protein measures.

| matched samples with transcriptomics and genetics and stratified the data based on
G2019S and N370S mutation carriers leading to a total of 1120 PD patients available
for the differential expression analysis. Out of the 1120 PD patients with matched
genetic, clinical and whole-transcriptome data, 75 were LRRK2 G2019 mutation
carriers, and 135 were GBA1 N370S mutation carriers. | found the expression of
SNCA and SNCA-AS1 to be nominally significant in the differential expression analysis
based on G2019 status (SNCA logFC = 0.2; P-value = 0.03) (SNCA-AS1 logFC =0.3;
P-value = 0.03). However, neither SNCA or its antisense form differential expression
reached significance after applying Bonferroni correction. In addition, | found three

genes to be differentially expressed based on G2019S status (Table 28) (Figure 25).
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| did not find any significant differential expression based on N370S status. SNCA did
not reach nominal significance (SNCA logFC =-0.21; P-value = 0.1).

Table 28. Differential expression significant results and SNCA nominal significant
results

gene_name gene_type chr logFC t P.Value adj.P.val Aégﬁ;(r%rl— Ang:sr_Ca
AC022150.4 | sense_intronic| 19 | -0.14 | -5 | 6.58E-07 | 1.70E-02 3.22 3.05
AC090630.1 lincRNA 12 | -0.63 |-4.78| 2.04E-06 | 1.70E-02 -2.05 -2.42
processed_ps
ZC3H11B eudogene 1 |-0.22 |-4.78| 2.03E-06 | 1.80E-02 0.21 0.07
SNCA-AS1 antisense 4 | 027 | 21 | 3.60E-02 | 5.30E-01 -2.13 -2
SNCA protein_coding| 4 0.2 |219( 2.90E-02 | 5.10E-01 9.92 10.2

LogFC = the mutation carriers vs non-carriers protein fold change in logarithmic
scale; t = test-statistic of the fold change; P.value = Significance of the test-statistic;
Adj.P.Val = P.value adjusted by Bonferroni correction. AvgExpr_Control = Average
protein expression in the non-carrier group; AvgExpr_Case = Average protein
expression in the carriers group.

Figure 25. Volcano plot of differentially expressed genes based on G2019S status

Volcano Plot: LRRK2 carrier vs. non carrier
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The X axis represents the log2 fold change between G2019S carriers and non-carriers
groups. The y-axis represents the -log10(P-value). Each dot is the fold change of the
normalised measure of a transcript.
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Similarly, 1 matched samples with proteomics and genetics and stratified the data
based on LRRK2 and GBA1 mutation carriers leading to a total of 357 PD patients
available for the differential abundance analysis. Of these, 27 were LRRK2 G2019
mutation carriers, and 9 were GBA1 N370S mutation carriers. | did not find any patient
carrying both G2019S and N370S mutations. a-synuclein abundance was not
available among the proteins with abundance records. | found proteins whose
abundance was significantly different between the mutation carriers and non-carriers

groups (Figure 26).

Figure 26. Volcano plot of differential abundant proteins between LRRK2 G2019S
(left) and GBA1 N370S (right) mutation carriers versus non-carriers

Volcano plots of protein differential abundance across LRRK2 and GBA mutation groups
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The red dashed line represents the significance threshold of P-value = 0.05 in -log10
scale. The X axis represents the log2 fold change between carriers and non carriers
groups. The y-axis represents the -log10(P-value). Each dot is the fold change of the
normalised measure of a protein.

Interestingly, when stratifying based on GBAL status, we found the most differentially
abundant protein to be P02655 (ApoC Il), a protein that belongs to a protein cluster
together with ApoE and ApoC-I. Because they share a protein cluster, they also share
a generalisable function. Based on LRRK2 stratification, we found P05060
(Secretogranin-1) as the most significantly differentially abundant protein. We have
summarised UniProt codes with the corresponding HUGO symbols and a description

of the protein function in Table 29.
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Table 29. Differentially abundant proteins.

UniProt  Grouping coef std err z p_value 0.025 0.975
P02655 GBAl -4.8329 1.837 -2.631 0.009 -8.433 -1.232
P02749 GBAl -4.6593 2.165 -2.152 0.031 -8.903 -0.416
P02792 GBAl -3.3194 1.683 -1.972 0.049 -6.619 -0.02
P01011 GBAl 7.0553 3.625 1.946 0.052 -0.05 14.161
P19827 GBAl -2.46 1.283 -1.918 0.055 -4.974 0.054
P07858 LRRK2 3.6779 1.346 2.732 0.006 1.039 6.317
P05060 LRRK2 3.83 1.39E+00 2.752 0.006 1.103 6.559
P02655 LRRK2 3.50 1.41E+00 2.475 0.013 0.729 6.269
P05090 LRRK2 4.66 1.97E+00 2.371 0.018 0.808 8.513
Q8NE71 LRRK2 2.37 1.03E+00 2.296 0.022 0.347 4.399
P05155 LRRK2 5.19 2.28E+00 2.275 0.023 0.72 9.668
P02656 LRRK2 3.17 1.51E+00 2.097 0.036 0.207 6.127
P0O0738 LRRK2 -1.38 6.57E-01 -2.094 0.036 -2.664 -0.088
P49588 LRRK2 2.27 1.11E+00 2.039 0.041 0.088 4.456
000584 LRRK2 3.31 1.66E+00 1.993 0.046 0.055 6.563

Knowing the tissue and the cell type burden of the PD olfaction impairment meta-

analysis lead SNPs gives us new insights into how disease develops and progresses

based on the hypothetical central role of LRRK2, GBAL and related proteins in a-

synuclein deposition. | accessed FUMA, and conducted enrichment analyses on the

UPSIT severity GWAS against all 54 tissues represented in GTEx. | found an

enrichment of either down-regulated or up-regulated genes in basal ganglia (brain

caudate and the nucleus accumbens), as well as a significant enrichment in the

hypothalamus (Figure 27).
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Figure 3. Tissue specificity analysis based on the differentially expressed genes
(DEG) for each tissue from the GTEx Consortium
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DEGs were pre-calculated based on a two-sided t-test for gene expression values of
any one of the tissues against all others. P-values < 0.05 after Bonferroni correction
and an absolute log fold change > 0.58 were defined as differentially expressed
genes in a given tissue compared to the rest. Apart from the two-sided DEG
analysis, the analysis of the test-statistics was used to derive an up-regulated DEG
and down-regulated measure of specific trend of differential enrichment. Finally, a
hypergeometric test was used to test the input gene set nominated from MAGMA
gene-set analysis against each of the tissue level DEG sets. From top to bottom, Up
regulated DEG, Down regulated DEG, Both sides DEG.

vi) Nominating genetic determinants of SAA independent of LRRK2
and GBAL1l

Following up on the hypothesis that LRRK2 and GBA1 mutations have a central role
in controlling a-synuclein pathology, whose clinical manifestations include hyposmia,
we conducted a GWAS on a-syn-SAA to investigate if we could further implicate GBA1
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and LRRK2 on a-synuclein deposition. In addition, we were interested in knowing if
there are any other genetic determinants aside from the LRRK2/GBALl-related

autophagy-lysosomal pathway).

We accessed PPMI PD samples available from the AMP-PD Unified cohort with
available SAA data and that passed long-gwas quality control steps. We conducted a
logistic regression GWAS using SAA binary status as the outcome. We did not find
support for LRRK2 or GBA1 variants associated with the a-synuclein pathology as
measured by SAA (Figure 28). Of note, N370S, G2019S, and the G2019S-
independent top lead SNP at the LRRK2 locus, did not reach genome-wide
significance (N370S log(OR) =-0.79 SE = 0.39; P-value = 0.04); (G2019S log(OR)
0.90; SE = 0.30; P-value = 2e-3); (rs185993818 OR = 0.39 SE = 0.32; P-value
0.23).

Figure 28. Manhattan plot of the SAA GWAS.

-log10 P-value

Chromosome

The x-axis represents the chromosome, and the position of each variant in the meta-
analysis. The y-axis shows the two-sided P-value in the -log10 scale. Genome-wide
significance is set at a P-value of 5e-08, and is represented by the red line on the
Manhattan plots.

Instead, | found three LD blocks approaching genome-wide significance in
chromosomes 7, 11 and 17. | have annotated the lead SNP on each locus in Table
30. I cross-checked the association of these SNPs in the UPSIT meta-analysis. None

of the variants reached nominal significance (P < 1le-6). The variant at the CRK locus
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was nominally associated at the significance threshold of P < 0.05. (CRK locus
:rs117985867 B = 1.04 ; SE = 042 ; P-value = 0.01), (LOC124902707 locus;
rs28370535 B = 0.63; SE =0.39 ; P-value = 0.11), and (HDAC9 locus rs111978 3 =
0.11; SE =0.24 ; P-value = 0.64).

Table 30. Lead SNP for each LD block approaching nominal significance in the SAA
GWAS.

rsiD chr pos Al MAF beta se gwasP nearestGene func
rs111978 7 (18271954 A | 0.28 [0.91/0.18|4.67E-07 HDAC9 intronic
NCRNA i

rs28370535 | 11 |71388977| G | 0.08 [1.35]|0.25|9.84E-08| LOC124902707 | ntronic

rs117985867| 17 | 1453350 | G | 0.04 |1.36|0.27|3.26E-07 CRK intronic

For each lead SNP, | provide which is the mapped Gene based on distance to it.
Because all lead SNPs were intragenic, | mapped each SNP falling on each gene
boundary. P-value, two-sided P-value of association from meta-analysis;
nearestGene, the closest gene to the top lead SNP on each genomic risk locus; fun,
the ANNOVAR annotated function of the top lead SNP.

In addition, | adjusted the SAA GWAS on LRRK2, GBA1, and LRRK2 + GBA1 mutation
carriers status. | did not find a drop in significance on any of these three loci. This
suggests that the three genes found to associate with SAA outcome are independent

of the LRRK2 and GBAL1 driven a-synuclein accumulation.

Finally, | also adjusted the UPSIT genetic study previously described based on SAA
status. Of note, for this analysis, | could only run a GWAS and not a meta-analysis,
since SAA status was only available for the AMP-PD cohort. Interestingly, adjusting
the UPSIT outcome on SAA status led to a loss of significance at the LRRK2 locus
(rs185993818 B =3.03 SE = 1.04869; P-value =0.004 ) (G2019S B = 2.92; SE = 0.90;
P-value = 0.001) locus but not the GBAL1 locus (N370S 8 = -4.03; SE = 0.96; P-value
= 3.26e-05).

vii) Multi-ancestry analysis of the olfactory impairment reveals novel

genetic markers

Recent work is shedding light into ancestry-specific risk factors of PD as well as gains
in power to uncover novel associations based on multi-ancestry meta-analysis studies

[82,390]. | wanted to explore whether performing a meta-analysis between summary

161



statistics of different ancestry groups, with a focus on uncovering homogeneous
genetic effects, would increase the power to detect novel significant associations.
Previously, | found the correlation between the effect sizes of the H&Y and MDS-
UPDRS Il meta-analyses in AJ and EUR to be modest (Figure 23). Therefore, |
hypothesised that a fixed-effect meta-analysis would lead to an increase in power to
uncover homogeneous genetic variants, primarily as a result of an increase of the final
sample size and shared disease severity risk factors between AJ and EUR PD

ancestry groups.

For this analysis, | was primarily interested in the UPSIT score, following up on results
from Europeans previously described. | accessed the AJ UPSIT GWAS performed
among AMP-PD data (Table 20). As expected, | also found the LRRK2 and GBAL1 loci
to be significant in the UPSIT GWAS in the AJ subset (Figure 29). Interestingly, | found
the GBAL locus to have the most significant associations. The lead SNP at the GBA1
locus was rs76763715 (B = -5.78; SE = 0.95; P-value = 3.11e-9). The most significant
association at the LRRK2 locus was rs184460887 (B = 4.85; SE = 0.82; P-value =
8.44e-09). G2019S was among the top hits (8 = 5.01; SE = 0.89; P-value = 4.43e-08).
In addition, | found another single intragenic variant reaching genome-wide
significance at the RBCK1 locus in chromosome 20 (lead SNP rs6051899; Effect =
3.75; SE = 0.65, P-value = 2.11e-8).

Figure 29. AJ UPSIT AMP-PD GWAS.
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Chromosome

The x-axis represents the chromosome, and the position of each variant in the meta-
analysis. The y-axis shows the two-sided P-value in the -log10 scale. Genome-wide
significance is set at a P-value of 5e-08, and is represented by the red line on the
Manhattan plots.
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Then, | performed a multi-ancestry meta-analysis for the UPSIT results from the AJ
and EUR clusters. | found 5 independent disease severity loci (Figure 30). | annotated
the meta-analysis genomic risk loci using FUMA. | found a large inflation in test-
statistics at the GBA1 (top lead SNP =rs76763715 , Effect = -4.9, SE = 0.6, P-value
= 3.45-17) and the LRRK2 (top lead SNP = rs3463758; Effect = 4.96; SE = 0.64, P-
value = 2.92e-17) loci, similar to the results of the UPSIT ancestry-specific GWASSs.
In addition, | found novel independent loci reaching genome-wide significance at the
SERGEF, SCN1A, OTUDTYA loci (Table 31).

Figure 30. Manhattan plot of the UPSIT score multi-ancestry meta-analysis (EUR
and AJ).
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Chromosome

The x-axis represents the chromosome, and the position of each variant in the meta-
analysis. The y-axis shows the two-sided P-value in the -log10 scale. Genome-wide
significance is set at a P-value of 5e-08, and is represented by the red line on the
Manhattan plots.

Table 31. Table of the lead SNP for each significant LD block multi-ancestry meta-
analysis

rsiD chr pos Al MAF beta se P nearestGene func

rs34637584 12 40340400 0.09 | 4.38 [0.52 | 1.92e-17 LRRK2 exonic

rs76763715 1 155235843 0.05| -4.99 | 0.58 | 3.43e-17 GBAl exonic

rs147669178 11 17914781 0.04 | -3.92 [ 0.65 | 1.34e-09 SERGEF intronic

OO |44

0.12 | 2.49 |0.41]| 1.52e-09 OTUD7A intronic

SCN1A;
rs1960242 2 166990047 | G [0.29 | -1.55 | 0.28 | 3.29e-08 | SCN1A-AS1 | intronic

rs146931292 15 31720353
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Based on ANNOVAR annotations, most of the SNPs in LD with the independent

significant SNPs at the nominated loci were intergenic (87%) or intronic (7%). A

significant proportion of SNPs was also falling on intronic regions of non-coding RNAs
(2%) (Figure 31). Table 32 summarises all lead SNPs with a P-value <le-6 and the

gene they are mapped onto.

Figure 31. Proportion of the type of variants nominated by the EUR + AJ meta-

analysis
_ J10g2(E)
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Table 32. Nominal association multi-ancestry meta-analysis UPSIT.
rsiD chr Al MAF beta se gwasP nearestGene dist func
rs1078801 17 A |0.15]-1.95|0.35 | 5.6e-08 ZMYND15 0 intronic
rs4383741 5 A |0.11]2.24|0.42 | 9.3e-08 |CTD-2334D19.1| 83226 | intergenic
rs308702 3 C |0.13]1.980.37 | 1.4e-07 | RP11-77415.1 | 38963 | intergenic
rs10048227 | 18 T ]0.11(2.08 |0.40| 1.8e-07 | RP11-863N1.4 | 8354 intergenic
rs117811597 | 12 C |011|254|049| 3e-07 YARS2 4500 intergenic
NncRNA _intro
rs13034296 2 0.05|3.14 | 0.61 | 3.4e-07 | AC104801.1 0 nic
rs116676008 | 2 0.05(-3.11 0.61 | 3.5e-07 SNORA51 1814 intergenic
NcRNA_intro
rs116984338| 8 C |0.03|3.51|0.69 | 4.0e-07 LINC00964 0 nic
rs9884655 4 C 0.5 |-1.30| 0.25 | 4.1e-07 | RP11-236P13.1 | 19526 | intergenic
rs2323561 17 0.03(4.08 [ 0.81 | 4.7e-07 CDRTS8 26333 | intergenic
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rsiD chr Al MAF beta se gwasP nearestGene dist func
rs73239719 | 21 G |0.04]-3.23|0.64 | 5.0e-07 ITGB2 0 intronic
rs8011258 14 C [0.441-1.31|0.26 | 5.2e-07 | RP11-662J14.2 | 51529 | intergenic
rs71534222 | 12 C ]0.04|-3.32|0.66 | 5.3e-07 PRMTS8 0 intronic
rs73061198 | 12 G |0.07]2.43|0.49 | 5.4e-07 RERGL 105162 | intergenic
rs11761517 7 C |10.4411.29|0.26 | 5.7e-07 ESYT2 0 intronic
rs12340454 9 G |0.02]|4.57]|0.92|5.7e-07 LAMC3 30679 | intergenic
rs255016 7 A |0.42]1.29]|0.26 | 6.2e-07 | AC005022.1 56932 | intergenic
NcRNA_intro
rs62093526 | 18 T |0.05(-3.06|0.62| 7.e-07 |RP11-108P20.4 0 nic
rs112805272| 1 G |0.14|-1.80|0.37 | 7.8e-07 TP73 0 intronic
rs116123005| 3 T |0.03|3.85(0.78 | 8.0e-07 FOXP1 0 intronic
rs6552740 4 T ]0.35(-1.35(0.27 | 8.1e-07 | RP11-616K6.1 | 4127 intergenic
rs60050831 | 16 C |0.05]|3.11 | 0.63 | 8.6e-07 ACSM5 1968 intergenic
rs4931112 12 G |0.12|1.95|0.40 | 9.0e-07 | RP11-977P2.1 | 49205 | intergenic
rs78902372 4 C [0.16|-1.74|0.36 | 9.1e-07 | RP11-84H6.1 | 65668 | intergenic
rs74452013 8 T ]0.03(-3.58(0.73 | 9.6e-07 ASAP1 51277 | intergenic

d) Discussion

In this study, we have introduced long-gwas, a tool that democratises genetic studies
by automating all the steps involved in the integration of clinical and genetic data, from
data pre-processing, to accurate quality control, and then GWAS using different
settings. Here, we demonstrate the use of the long-gwas workflow to study the severity
of PD, as a proof of concept. To do so, we have explored a wide-range of clinical

outcomes in two different ancestry groups, Ashkenazi Jewish and Europeans.

The use of long-gwas has allowed us to identify two major genetic determinants for
hyposmia, as measured by the UPSIT scale. Our results from the UPSIT meta-
analysis revealed that LRRK2 G2019S and GBA1l N370S modulate olfactory
performance in PD. LRRK2 G2019S was found to be associated with better olfaction,
whereas GBA1 N370S was associated with worse olfaction. These results were
consistent in the two ancestry groups separately. Moreover, our results are in

agreement with a recent study [389] which showed strong association between
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hyposmia and positive a-synuclein SAA, and that the a-synuclein signature differs
between LRRK2 and GBA1 mutation carriers. Our results provide additional support
for the role of genetic variation at the LRRK2 and GBAL loci in determining smell
outcomes in PD, which is significant as smell loss is a potential surrogate for a-

synuclein pathology.

To further understand the role of LRRK2 and GBAL variation in a-synuclein pathology,
we conducted a GWAS on the SAA binary phenotype (positive or negative). We did
not find genome-wide significance support for G2019S and N370S to be associated
with the SAA status. However, it is worth mentioning that N370S and G2019S reached
nominal significance (P-value < 0.05). G2019S was associated with higher odds of
being SAA positive. N370S was associated with higher odds of being SAA negative.
These associations were in opposite directions to what | was expecting. Moreover, we
explored conditioning the UPSIT genetic association study on the SAA status. We
found the association between the two top independent variants at the LRRK2 locus
to be lost, whereas the association the GBA1 N370S and the UPSIT score remained
nominally associated (P-value < 1e-5), with consistent effects (N370S patients having
a worse average olfactory performance). This suggests that LRRK2 genetic variability
might be associated with the subsequent development of a-synuclein pathology,
whereas the pathological influence of GBA1, which is also associated with UPSIT
performance, might be independent than that from the a-synuclein deposition and
accumulation pathological implications in PD. This suggests that within the PD-SAA
positive population LRRK2 does not affect hyposmia, whereas GBAL status continues
to be associated with more severe hyposmia. In fact, when we performed a
transcriptome wide differentially expression analysis, based on LRRK2 G2019S
mutation carrier stratification, we did find the expression levels of SNCA were
nominally different between G2019S mutation carriers versus non carriers (P-value =
0.03) (not significant after applying Bonferroni correction). This nominal association
was not seen when we stratified based on N370S status.

Here, we have also proven the importance of performing ancestry-based analyses in
PD. We found an LD block in the AJ meta-analysis to be nominally associated with
H&Y score. This LD block tagged the PACRG gene, a gene next to the PARKIN gene
that is associated with autosomal recessive juvenile PD. This LD block was not present
in the H&Y EUR-specific meta-analysis. In addition, we have shown based on a multi-
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ancestry meta-analysis that there are ancestry-shared genetic determinants of PD
phenotypes, and that by gathering summary statistics from those, we can gain further
insights into the genetic determinants of the phenotype. For instance, based on an
multi-ancestry fixed-effects IVW meta-analysis in the UPSIT phenotype, we uncover
three novel LD blocks at the SERGED, SCN1A, OTUDT7A loci that were missed on the
ancestry-specific genetic studies due to a lack of power. At each of these loci the lead

SNP is more common in the AJ population.

This study has some limitations. We have performed a large meta-analysis of PD
phenotypes across data sources. During post meta-analysis processing, we kept all
the SNP-level summary statistics that were present in at least 40% of the total data
available. This implies that for some SNPs, the association could arise from only one
data source out of the 4 data sources part of the large meta-analysis. We highlight
three reasons why we decided to do the analysis this way. Some cohorts such as
AMP-PD and GP2 gather data from multiple sources in a way that a significant
association from any of those comes as a result of a shared effect and direction of an
hypothetical SNP on an outcome. Those data sources have a large number of samples
available. Second, not all the data has been whole-genome sequenced which leads
to a mismatch of variants present between the genetic datasets. This time we did not
want to discard genetic associations just because we did not have enough power to
impute one haplotype in 1 out of the 4 data sources, for example, which we think is
very conservative for a discovery-based analysis. The final reason is that
observational studies might have some inherent selection-bias based on study design
which could be masking true associations, particularly where we do not have large
sample sizes of deeply phenotyped data. Therefore, we decided to perform a meta-
analysis in which the subsequent quality control involved keeping only those variants
that were present for at least 40% of all data points, as well as applying heterogeneity
tests. Another limitation is that, we have only been able to gather deep phenotype data
from Europeans and Ashkenazi Jewish individual. This has prevented us from using
meta-analysis approaches that efficiently capture the heterogeneity in allelic effects
that is correlated with ancestries, therefore being limited to only being able explore

ancestry-shared genetic variations and accounting for between groups heterogeneity.

Finally, the severity of PD, as measured by a variety of clinical assessments, is only
one aspect of PD, and more generally, of any complex disorder with genetic influence.
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How disease progresses, and when a certain phenotype is reached are two other
major questions of interest that can be assessed from a genetic point of view. Long-
gwas automates these two other types of analyses and we envision it will facilitate
discoveries of genetic factors of progression, as well as guarantee reproducibility
across sites performing similar analysis on different data repositories. Therefore, we
hope long-gwas becomes a useful workflow for people to better understand the
genetic implications of progressive and worsening trends in complex genetic
disorders, which we believe will give new insights into direct actionable mechanisms

to test and develop disease-modifying treatments.
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6 ) PD progression cell type enrichment
analysis

a) Introduction

GWAS is a valuable method that has enabled the genetic characterization of many
diseases and traits, leading to novel successful genetic-based therapeutics [240]. One
premise for conducting GWAS is that they make key contributions to a refined
biological understanding of heritable diseases and traits. However, functional
annotation of genetic association studies is a major challenge [391]. The number of
genetic studies with successful functional annotation are very few [250]. Most genetic
associations fall in non-coding regions [252], which have proven challenging to
annotate, therefore interpret. Some studies suggest that these non-coding disease risk
loci are enriched for cis-regulatory elements (CREs) [252], so it is plausible to think

that they might be associated with phenotypes through the control in gene expression.

Genetic variation and regulation does not generalise across tissues nor cell types
[256,260]. Farh and colleagues reported that genetic variants in the non-coding
genome were enriched for promoters and enhancers. In addition, they found the
enrichment to be cell-specific [253]. A major open question when interpreting GWAS
is to know the cell type and tissues in which fine-mapped variants and their nominated
affected genes are active. In recent years, large consortium studies have generated
data to enable an understanding of the heterogeneity around regulatory hallmarks and
to determine how those differentially influence disease. The GTEXx project was set up
to explore how genetic variation influences the transcriptome levels across human
tissues. The latest GTEx consortium data analysis, derived a catalogue of genetic
regulatory variants that control gene expression and splicing events in cis (within 1Mb
span of the genetic variant position) and trans (distal regulations within or between
chromosomes) across 49 tissues. This effort led to an atlas of tissue specific regulatory
effects [386]. These genetic regulatory atlases are a new avenue to characterise at a
greater resolution variation of complex diseases and traits [392]. However, studying
genetic regulatory events from bulk tissues limits the functional interpretation due to
the lack of knowledge of cellular specificity, that is bulk RNA analysis includes multiple

cell types and states. Further efforts using GTEx data were able to nominate cell type
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clusters within bulk tissues and derive cell-type interaction quantitative trait loci. The
cellular context can be further characterised by mapping these cell type interactions
QTLs to genetic variants regulating expression and splicing, helping to define how
genetic regulation events happen in a cell type specific manner [393]. In addition,
single-cell (sc) and single-nuclei (sn) methods for RNA sequencing have helped in
understanding cell-type specific phenotypes. They allow to profile gene expression in
specific cells [394-396].

Integrating gene expression data from tissue and single cells and overlaying it with
genome-wide knowledge of disease and trait risk variants provide valuable insight as
to what cell types and tissues relate to specific variants of interest. In the past decade,
there have been successful studies performing cell and tissue enrichment analyses
[285,397—-399], some with a special focus on PD [285,400,401]. Strikingly, Bryois and
colleagues found cholinergic and monoaminergic neurons, enteric neurons and
oligodendrocytes to be the primary cell types involved in PD aetiology based on cell
type specific data from the entire nervous system and the Nalls’ and colleagues PD
risk GWAS [51,285,402].

While progress is being made understanding the cell specific alterations in idiopathic
PD, we know little about the cellular basis of disease progression. which may be
distinct from PD risk. In addition, the state of the art methods to perform cell type
enrichment analyses are based on partitioned heritability LDSC and MAGMA
[115,283]. Despite their robust statistical power to nominate genes in close proximity
to the target gene part of a gene set to be tested for enrichment in tissues and cell
types, the influence of CREs in the non-coding genome might be partially missed.
Other existing approaches that take into account distal regulatory information such
eQTLs to nominate genes from SNP-level data might be more accurate.

In this chapter | explore the advanced annotation of progression GWAS signals
defined earlier in the thesis with the growing catalogue of tissue and cell specific gene
expression datasets. As the amount of sSnRNA and scRNA-seq data increases over
the next 5 years, decoding GWAS will become an increasingly tractable problem. |
also propose a novel framework using Transcriptome Wide Mendelian Randomization
TWMR that efficiently adds causal interpretations of GWASs based on distal

regulatory information eQTL studies.
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b) Methods

The code | developed to run a type of cell type enrichment analysis is available at
(https://github.com/AMCalejandro/celltype _twmr). The README explains each

workflow step with a reference to the specific notebook to run the analysis.

1) GWAS data and quality control

For this analysis, | used the PD progression GWAS carried out in our lab, as well as
large PD risk and AAO GWASs [51,105,109,374,375,403]. | also used non PD-related
GWASs as control datasets to validate the sensitivity of our pipeline to nominate
expected associations between traits and certain cell types. | accessed the meta-
analysis GWAS for amyotrophic lateral sclerosis (ALS), schizophrenia, coronary artery
disease (CAD), height and body mass index (BMI) [366,404—-407]. | first applied
control and harmonised all the GWAS progression summary statistics using the
MungeSumStats Bioconductor package [408]. | removed any GWAS SNPs that are

strand-ambiguous or non-biallelic, and we stored them in a standard format .

i) Cell type and tissue expression datasets

| accessed several cell type specific expression datasets. A superset of mice brain
scRNA-seq data from the cortex, hippocampus, hypothalamus and midbrain of
independent studies from the Karolinska Institutet (KI) but that was generated with
identical methods, making the ensemble possible [398]. Zeisel mouse hippocampus
and cortex scRNA-seq data [396]. SnRNA-seq from the middle temporal gyrus of the
human cortex from Allen Institute of Brain Sciences (AIBS) [394]. Blue Lake adult
human frontal cortex snRNA-seq data [395]. | only worked with those genes that have
1:1 orthologs with the human species. All these cell type datasets were pre-
harmonised and standardised beforehand, having matrices related to the gene's mean
expression, specificity (division of each gene expression in a given cell type and the
total expression of that gene across all tissues), as well as specificity quantiles and
deciles. | accessed harmonised cell type datasets through MAGMA. .Celltyping R
package [282].

| also accessed GTEx bulk RNA-seq tissue-level data. | followed the same data

preparation procedure that Bryois and colleagues highlighted in their analysis [285]. |
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used GTEx pre-computed tissue median expression. | removed tissues sampled in
less than 100 individuals. | averaged the expression of tissues by organ (with the
exception of brain tissues), resulting in a gene expression profile for 37 tissues. |
removed genes without 1:1 human mice orthologs. | scaled gene expression to 1
million UMIs or transcript per million (TPM) for each cell type and tissue. | calculated
gene expression specificity based on the division of each gene expression in a given
cell type and the total expression of that gene across all tissues. Then, | derived the

10% most specific genes across tissues.

i) S-LDSC and MAGMA

To perform cell type enrichment of PD progression traits, | used MAGMA and S-LDSC
methods as described in Chapter 2 - Methods. In brief, MAGMA uses a multiple
regression approach to assess the association between the top 10% cell and tissue
type specific gene markers and the gene-level P-values converted to Z-scores from
GWAS data. With S-LDSC, | tested if the 10% most specific genes of each cell type
were enriched in heritability for the PD progression traits, based on the specificity
measures available for each cell. | computed LD scores for each cell type and tissue.
S-LDSC computes the proportion of SNP heritability associated with our cell type
taking into account all other baseline functional annotations in the baseline model. |
used the coefficient z-score P-value to assess the association of the cell type with a

trait.

| set up a workflow around MAGMA and S-LDSC strategies to perform a cell-type
enrichment analysis using GWAS and cell type and tissue datasets highlighted
previously (Figure 32).
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Figure 32. Workflow description to perform cell type enrichment analyses based on
MAGMA and LDSC across a range of input GWASSs.
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Iv) Transcriptome-wide Mendelian Randomization (TWMR)

TWMR is a method with a Mendelian Randomization framework (explained in
Methods) that incorporates information from cis-regulatory elements (<1MB from lead
SNP) based on eQTLs to measure the causal effect of gene expression on complex
traits by using multiple genetic variants as instrumental variables. The two main
strengths of this approach is the aggregation of multiple SNPs together, which
increases the statistical power as opposed to MR-based SNP approaches which have,
by GWAS definition, small effects on phenotypes. In addition, TWMR effectively
accounts for horizontal pleiotropy by adding on the multivariable MR framework the
mediators as exposures to a given variant that exhibits horizontal pleiotropy. Likewise,
bias is mitigated through the joint estimation of the causal effects of all exposures on

an outcome [409].

| adopted TWMR inferences and added it to a novel framework to perform cell type
enrichment analyses (Figure 33). | applied a first step of data QC that led to data
subsets of shared SNPs between GWAS, eQTL datasets, and a reference panel.
Then, TWMR is performed as described in the referenced methods. At the per-gene
level, | define all significant cis-eQTLs to then perform GCTA-COJO to derive all
independent significant eQTLs for single gene expression as my quantitative trait.
Then, | expand the resulting eQTL matrix to add extra exposures that enable us to

efficiently account for horizontal pleiotropy, as well add the extra instrumental variables
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a new exposure might have from the cis-eQTL significant SNPs input. Subsequently,

| perform data pruning (Rsq < 0.1) to avoid multicollinearity issues and then run

TWMR. Based on TWMR estimates, | can apply cell type enrichment analysis based

on a multiple regression model. | use a Z-score (probit transformed P-values for the

TWMR causal inference) as my outcome, and gene expression estimates from cell

and tissue expression datasets as the regressor. | treat the regressors in three

different ways, which are the mean expression of genes in a cell type, specificity of a

gene expression on a cell type, and a binary indicator capturing the top 10% most

differentially expressed genes on a cell type. | account for confounders in the

regression model (number of SNPs incorporated in the TWMR framework, number of

genes included for the causal inference, and gene size).

Figure 33. Workflow description to perform cell type enrichment analyses based on

TWMR.
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| used a custom multiple regression model to assess cell type specific genes mean
expression, specificity, and top 10% differential expression against GWAS Z-scores
as model outcome.
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c) Results

1) Single nuclei and cell RNA-seq datasets highlight variability in

expression between cell types

| accessed Zeisel scRNA-seq mouse cortex and hippocampus, single-cell RNA seq
superset of the entire nervous system from multiple KI sites, AIBS snRNA-seq, and
Blue Lake snRNA-seq datasets as described in Methods. | explored the cell type
specific data for the mean expression of candidate PD risk and progression genes. |
plotted the mean expression across cell types and cell type datasets. | found variability
in the average expression of 4 well established PD risk and progression genes
(SNCA, GBA1, APOE, LRRK2) (Figure 34). | found APOE gene expression to be
predominant in astrocytes and nervous system immune cells (microglia). SNCA was
expressed across most brain cell types from the Kl superset, without a clear
predominant expression on a specific cell type. This was not consistent with the mean
expression observed in cell types from the AIBS scRNA-set dataset, in which the
SNCA expression was predominant in microglia and Glutamatergic neurons. LRRK2
and GBA1 expression was close to 0 in all cell types and data sources. For the
nominated PD progression genes, | found LRP1B expression to be predominant in
central nervous system neurons based on Zeisel mouse data. LRP1B was found to be
expressed in oligodendrocyte precursor cells and excitatory neurons based on the
snRNA-seq adult human cortex datasets. ACP6 was expressed across different cell

types of the Zeisel mice dataset (Figure 35).
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Figure 34. Average expression of Parkinson’s disease candidate genes
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| assessed the average expression of PD candidate genes on A) Zeisel mouse cell
types B) KI mouse cell types C) AIBS human cortex cell types and D) Blue Lake human
cortex cell types.
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Figure 35. Average expression of Parkinson’s disease progression genes.
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| assessed the average expression of PD candidate genes on A) Zeisel mouse cell
types B) KI mouse cell types C) AIBS human cortex cell types and D) Blue Lake
human cortex cell types.

i) Cell type enrichment workflow validation on GTEX tissues

This analysis involved two major steps, which are gene expression and GWAS data
pre-processing and then running cell type enrichment analysis (Figure 32). As a proof
of concept, | validated the workflow using GTEx data and control GWASSs to assess
whether the workflow was accurate to detect the expected trait-tissue enrichments
(Figure 36). | found results from MAGMA and S-LDSC to be consistent with one
another with some exceptions. Interestingly, | found BMI GWAS signals to be enriched
in brain tissues only, consistent with previous findings [410]. CAD GWAS signals were
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found to be mostly enriched in blood and blood vessel tissues, but not in heart tissues.
| found a high enrichment of schizophrenia traits across most of the brain tissue. |
could not find the same enrichment across brain tissues for ALS. ALS was not enriched
for any of the tissues in GTEX. This lack of tissue enrichment for the ALS GWAS could
be a limitation of the quality of the ALS meta-analysis or power limitation given its
smaller sample size. Overall, | concluded the workflow | set up enabled us to detect

expected cell type enrichments for the GWAS diseases and traits we tested here.

Figure 36. Tile plot showing the cell type enrichment results based on A) Magma
and B) LDSC.
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The X-axis labels correspond to the GWASs. The y-axis labels are the GTEXx tissues
assessed for enrichment. The colour represents the strength of the association
based on the Bonferroni corrected P-value (q). The stronger the colour, the stronger
the association.

Iii) Assessing the cell and tissue enrichment of PD traits and PD risk

Once | validated the sensitivity of the two methods to detect enrichment over
expected tissues from the GTEx consortium, | expanded the analysis to assess the
enrichment related to PD traits. | explored the enrichment of PD risk, PD AAO and
PD progression traits and cell types from AIBS human cortex shRNA-seq (Figure 37
a, b), Blue Lake human cortex snRNA-seq (Figure 37 c, d), and Karolinska Institutet
(KI) (Figure 37 e,f).
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Figure 37. Tile plot showing the cell type enrichment results based on MAGMA
(Figure a,c, e) and LDSC (Figure b, d, f).
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(9). The stronger the colour, the stronger the association.
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| found a significant association between HY3 stage and microglia (Bonferroni
corrected P-value: g = 0.04), based on results from MAGMA analysis and cell types
from AIBS snRNA-seq (Figure 37 a). | could not replicate this significant association
based on the S-LDSC approach (Figure 37 b). Interestingly, this association between
microglia and H&Y stage was preserved in cell types from different samples from the
Blue Lake human cortex snRNA-seq using MAGMA (Figure 37 c). | found the same
situation in which the association was not replicated with the S-LDSC method (Figure
37 d). | also found a nominal significant enrichment between Glutamatergic and
GABAergic cell types and the LiD GWAS (Figure 37 a). Even though this enrichment
did not reach significance after Bonferroni correction, previous studies suggest that
disrupted inputs into the basal ganglia from the GABAergic and glutamatergic
pathways, may be involved in the occurrence of LiD [411]. | found a nominal
association (q = 0.05) between PD risk GWAS and Dopaminergic Adult and Medium
Spiny Neurons (MSNs) from the mouse entire nervous system Kl superset, using the
MAGMA method. This nominal association between Dopaminergic neurons and PD
risk was expected, and has been previously reported [285]. In addition, MSNs have
been previously reported to suffer a severe lack of Dopamine which lead to
compensatory and dysregulatory changes [412]. Interestingly, the association
between Dopaminergic Adult neurons prevailed based on the S-LDSC method on the
same Kl superset (Figure 37 f). The association was not significant after Bonferroni
correction (q = 0.1). Finally, I also found a nominal association between
oligodendrocytes and the PD axial GWAS (Figure 37 d) (q = 0.09).

v) TWMR cell type enrichment on GTEXx tissues

One major limitation of this analysis of cell type enrichment of PD risk and progression
traits is the limited sample size of the PD progression GWASs. Another limitation
comes from the two main approaches | used, MAGMA and S-LDSC, which depend on
the position of the SNPs or the LD structure of a tagging SNP. Therefore, they impose
a limitation based on the distance from genes and length of LD blocks used to generate
with gene-level summary statistics and LD-Scores respectively. Neither of these
methods can accurately account for influences of distal regulatory elements. As an
alternative | adopted TWMR and incorporated it into a framework to perform cell type

enrichment analyses.
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| first generated TWMR inferences for the PD risk GWAS, which is an estimate of the
gene's causal effect on the outcome, and a test-statistics of the causal association. |
checked whether TWMR successfully nominated PD candidate genes as PD risk
causal genes. | used the list of genes from Blauwendraat and colleagues [4]. Eight
genes were available in our TWMR results. Promisingly, | found the test-statistics of
the TWMR inferences to be significant in four out of the eight genes we tested (Figure
38).

Figure 38. Histogram showing the PD candidate genes (X-axis), and the strength of
the association (y-axis).
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| then performed cell type enrichment analysis against all GTEXx tissues based on 3
distinct measures (Specificity, mean expression, and top 10% most differentially
expressed genes). | found a significant enrichment after Bonferroni correction (q <
0.05) between PD risk and several basal ganglia regions (Putamen, Nucleus
accumbens, and caudate), and Hypothalamus, anterior cingulate cortex, and
Amygdala (Figure 39). Comparing the three measures available to test against
enrichment, | found the specificity measure of genes on cell types, being the most

accurate to use as the regressor in the enrichment analyses.
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Figure 39. Tile plot showing the cell type enrichment results based on TWMR
against the PD risk GWAS.
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The x-axis labels are the three different measures to record gene expression that were
used to regress against PD risk GWAS. (mean_exp =mean expression of a gene;
topl0 = top 10% differentially expressed genes; specificity = gene expression
specificity to a cell type). The y-axis labels correspond to the tissues from GTEx and
that were used to perform enrichment on the PD risk GWAS. The colour represents
the strength of the association based on the Bonferroni corrected P-value (q). The
stronger the colour, the stronger the association.

Subsequently, | performed an enrichment analysis using the specificity measure
against all the PD progression traits (Figure 40). Unfortunately, | did not find any
significant enrichment. | could not find a clear significant enrichment between PD
progression GWASs and brain tissues as | found in the previous section. |
hypothesised this is due to the limited power based on the sample size the progression
GWAS:Ss had.
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Figure 40. Tile plot showing the cell type enrichment results based on TWMR
against all PD progression GWASs and PD AAO GWAS.
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d) Conclusion

In this analysis, | expanded the latest cell type enrichment analysis on PD risk GWAS
to map specific PD progression traits to cell types. | used MAGMA and S-LDSC, which
are the state of the art algorithms to perform cell type enrichment. | found a significant
association between HY progression and microglia. | was able to find this association
replicated in two different datasets of Frontal Cortex from adult human brains. In
addition, | found a nominal association between LiD progression and Glutamatergic
and GABAergic neurons, which have been previously reported in literature as possible

pathways contributing to LiD [411].

In addition, | developed a novel framework using TWMR to perform cell type
enrichment analysis that efficiently incorporates distal regulation to perform causal
inferences of genetic variants in the different PD progression genetic studies, through
changes in gene expression [409]. | found the approach well powered to detect
expected enrichment of PD risk GWAS on brain tissues such as Hypothalamus and
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basal ganglia regions. However, | did not find any enrichment against the PD
progression GWASSs, possibly due to a lack of significant associations from the PD
progression GWASSs due to their limited sample size as a result of the study design

and data availability.

| envision this multivariable MR framework to become a core approach to map the
genetic risk of PD progression at the cellular level. As we increase the size of PD
progression GWASSs, we will also gain new insight into the brain cells whose genetic

variants are altered contributing to the progressive decline observed in PD.
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7) Conclusions and future directions

Nominating novel genetically defined targets that can ameliorate the progressive
decline of PD is a worthwhile endeavour since existing PD therapies are based on
symptomatic treatments and we lack disease modifying therapies.

Summary and new insights derived from work

In this research, | have explored different statistical approaches to define how genetics
contributes to the progression and severity of PD as measured by clinical instruments
that capture different aspects of the disorder. To assess the impact of genetics on
disease progression | have used two statistical models, LMM and CPH. LMMs take
into account repeated quantitative measures within groups, as well as unexplained
random variability in the outcome, to then estimate the effect of genetic variants on
disease progression and severity. CPH models allow us to measure the relation
between genetic variants and the time to reach a certain outcome. For gquantitative
outcomes such as MDS-UPDRS, we found the use of LMMs more powerful since this
statistical framework can use the high variability between and within groups to retrieve
population average estimates based on the time-varying trends observed in the data
and to define how much variability is explained on independent variables included in
the model. For ordinal measures, that are unable to capture much variability over time
due to the limited space of the variable, | found the use of CPHs ideal. We can record
the time to reach a certain value of the ordinal variable that records the degree of
dyskinesias, and then estimate the effect of variables such as genetic variation on the

time to reach that outcome.

To measure how genetics influence disease severity at baseline, | have used GLM. In
this scenario, we do not take into account the patients’ progression trends to explain
heterogeneity in disease presentation by genetics. | consider this type of modelling a
useful approach for several reasons. Cross-sectional data is richer than longitudinal
data, sometimes not recorded in studies, with drop out of the most severely affected
individuals. Findings from GLM GWAS, enable the formulation of progression
hypotheses that can be explored based on data-driven approaches. Significant
genetic variants from GLM GWAS add another source of information that can be used

during longitudinal model design. For instance, we could add prior knowledge of

185



variants associated with an outcome, as mediator variables in our model to increase

the statistical power to assess genetic variants associated with progression.

Based on these statistical models, | have investigated how genetics influences
progression and severity of PD motor aspects as measured by limb and axial motor
outcomes derived from the MDS-UPDRS part Ill. |1 have looked at how genetics
contribute to the development of dyskinesias in PD. Finally, | have also undertaken a
large-scale meta-analysis in PD exploring the effect of genetic variants on the disease

presentation at baseline as measured by a wide range of clinical outcomes.

Performing these analyses involves multiple steps such as data pre-processing and
quality control, efficient model fitting, development of results and diagnostic plots.
During my PhD, | have been involved in the development of long-gwas, a Nextflow
pipeline that automates the multiple steps involved in running longitudinal, cross-
sectional, and survival GWASs, as well as all the data preparation and quality control

needed beforehand.

Understanding GWAS nominated loci is still a challenge for several reasons. Most of
the loci that are usually nominated in association studies fall in non-coding regions
[252]. This complicates the identification of the causal gene associated with the trait
and the causal mechanism. In addition, the LD structure of the genome confounds
efforts to select the causal variant, which adds another difficulty in understanding
disease biology. During my thesis | have explored multiple approaches to interpret loci
nominated from GWAS. | have used several fine-mapping approaches to nominate
consensus SNPs (those nominated to be causal from at least 2 out of 4 fine-mapping
tools). | have performed GCTA-COJO to find the number of independent significant
SNPs. | have done colocalization analyses to determine the mechanism through which
causal genes might be influencing the outcome. In addition, | have accessed functional
annotation datasets (ENCODE, Roadmap, FANTOMDb5, Brain cell types epigenetic
markers) to characterise the transcription activity, chromatin state, the presence of
transcription factor binding sites, the presence of distal enhancer-promoter chromatin
loops. This has helped us to propose genes and mechanisms during the GWAS
interpretation phase.

As a result of my research, | have nominated genes that are significantly associated

with motor progression, the development of dyskinesias, olfaction, and activities of
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daily living. In the large meta-analysis of MDS-UPDRS part Il motor outcomes, we
found one haplotype block at the GJAS5 locus that was significantly associated with the
axial motor progression. Further exploration of the GWAS significant signals in eQTL
databases suggests that the GWAS hits may control the expression of ACP6, an
enzyme that regulates lipid metabolism in mitochondria [299]. Based on a separate
meta-analysis assessing the association of genetic variants with motor severity, we
identified MAD1L1 and SOX9 as candidate genes associated with PD axial motor
severity. As a proof of the importance of coupling GWAS findings with external
functional annotation datasets, the nomination of SOX9 is a good example. The SNP
| linked to SOX9 was found at a long non-coding locus. When | integrated the locus-
specific summary statistics with PLAC-seq data from Brain cell type specific epigenetic
marks, we were able to find a long range promoter-enhancer chromatin loop,
suggesting this SNP could be associated with MDS-UPDRS part Ill axial severity
through changes in SOX9 expression.

| found significant associations with the time-to-develop LiD at the LRP8, LINC02353
and XYLT1 loci. In addition, based on a candidate gene analysis, exploring genetic
variants reported to be associated with LiD risk in my large GWAS meta-analysis, |
found that genetic variability in BDNF and ANKK2, were nominally associated with
LiD. | did not replicate any other variant associated with LiD risk. In addition, based on
a colocalization analysis, looking at all genes within £1Mb from all GWAS variants with
P-value< le-7 revealed a second independent causal association in chromosome 1
between LiD and DNAJB4 gene expression. Conditional analysis further confirmed
that both regions were in LD, hence both LRP8 and DNAJB4 were independently
associated with the time-to-LiD. | was not able to efficiently resolve the non-coding
region associated with LiD, and further research should be focused on understanding
variability in this locus and the impact on the time-to-LiD. Functional annotation is
limited by the availability of cell specific expression data, although this is rapidly

increasing.

| also studied the impact of genetics on the severity of Parkinson's disease in a large-
scale analysis, as measured by multiple clinical assessments that capture different
aspects of the condition (motor performance, cognition, overall disability, and other
non-motor features such as olfaction). | undertook a large-scale multi-ancestry

analysis across many clinical outcomes and identified two major genetic determinants
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for hyposmia, as measured by the UPSIT scale. My results from the UPSIT meta-
analysis revealed that LRRK2 G2019S and GBA1 N370S modulate the olfactory
performance in PD. LRRK2 G2019S was found to be associated with better olfaction,
whereas GBA1 N370S was associated with worse olfaction. These results were
consistent in the two ancestry groups separately. Finally, based on a multi-ancestry
meta-analysis, | was able to increase the power and find novel associations at the
SERGED, SCN1A, OTUDTA loci.

It is worth noting that | did not find any genetic variants at the SNCA locus associated
with PD progression, in any of my genetic association studies, which could support the
Braak’ progression staging through a-synuclein pathological inclusions. Based on
findings from the large-scale disease severity GWAS, an hypothesis could be that
other genetic factors such as genetic variants at the LRRK2 and GBAL1 loci have a
primary role in disease aetiology through the modulation of the autophagy-lysosomal
pathway. Such pathway disruption could then lead to subsequent a-synuclein
pathology and characteristic progression pattern as opposed to point mutations in
SNCA having an impact in disease aetiology and progression. This hypothesis agrees
with findings from the a-synuclein SAA analysis, in which they found differences in the
rate of a-synuclein SAA positive in LRRK2 and GBA1 mutation carriers with hyposmia
[389].

In my study, | found GBA1 and LRRK2 mutations to be significantly associated with
hyposmia based on a GWAS analysis. Braak staging begins at the olfactory bulb.
GBA1 and LRRK2 mutations occurring at the olfactory bulb could then cause the a-
synuclein accumulation and aggregation and therefore be the trigger to the
subsequent spread. It is worth mentioning these results were based on the UPSIT
olfactory test cross-sectional data. Further analysis investigating how olfaction
progresses according to LRRK2 and GBA1 status overlying multi-omic data will shed
new light into LRRK2 and GBAL1 implication in progression. | did not find genetic
variability in the APOE locus associated with the cognitive disease severity as
measured by MoCA and MMSE. Other studies have found APOE ¢4 allele to be

strongly associated with cognitive progression [109,116].

A separate but related question is to understand the relevant cell types for nominated

GWAS risk variants. Regulatory elements, including promoters, enhancers, and
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silencers, are key components of the non-coding genome. They play a pivotal role in
determining how genes are expressed in different tissues and cell types. Importantly,
many of these elements exhibit cell type- or state-specific activity, underscoring their
role in cellular differentiation and function [413]. A cell's phenotype is influenced by the
epigenome, DNA accessibility, and chromatin state. As a result of this unique
regulatory control, a cell’s transcriptome also has a unique signature. As an example,
previous data-driven research has been able to find cell type specific differential gene
expression markers across main human cell types [414]. As we previously mentioned,
some efforts have focused on determining the cell type enrichment of PD risk GWAS
using state-of-the-art tools [285,400]. However, knowing the cell type specificity of PD
progression GWASs remains a major open question that can be of additional value in
understanding how the underlying neuropathology progresses in brain tissues in

relation to clinical progression.

During my PhD, | have undertaken a cell type enrichment analysis on all PD
progression GWASs that we have undertaken in the lab. | found a significant
enrichment between microglia and Hoehn and Yahr state, a measure of disease
severity, which suggests genetic variability related to health decline in PD patients
might evolve as a result of an impaired immune system. | was able to find this
association in two separate adult human brain datasets (AIBS, BlueLake). | also found
other associations approaching Bonferroni corrected significance such as the
enrichment of my LiD progression GWAS and impairment in Glutamatergic and
GABAergic cells, cells previously suggested to influence the occurrence of the
condition [411]. These findings need further validation and investigation, as it can be
knowledge that must be taken into during drug design and testing of disease-
modifying. In addition, | developed a novel framework around TWMR to infer causal
associations from GWAS, based on a multivariable MR framework that incorporates
information about distal regulation, in theory more efficiently than previous state of art
methods, MAGMA and S-LDSC. This work will need further development for its wider
use, including optimization to nominate true positives and reduce the background
noise, and the development of an R package. However, | found promising results so
far, nominating PD candidate genes using a TWMR approach, including SNCA and
LRRK2, as well as promising results from a TWMR-based PD risk GWAS cell type
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enrichment analysis nominating and several basal ganglia regions (Putamen, Nucleus

accumbens, and caudate), and Hypothalamus, anterior cingulate cortex.
Limitations and future work

Here | faced some limitations that | would like to highlight for the consideration of
future research in PD progression. From a statistical point of view, it has been
suggested that prognosis GWAS, those only involving individuals which have a
condition, might partially suffer from collider bias, as a result of selection bias, in which
non correlated causes of the disease appear correlated when only including cases
affected by the condition. This scenario occurs as a result of unaccounted confounding
between disease incidence and the outcome for the condition of interest, in which
causes of the incidence will spuriously correlate with the condition assessed [415]. For
instance, among PD cases selected according to their status (PD with a certain
disease duration, being treated or not, carrying GBA1 and LRRK2 PD causing alleles
or not), some SNPs can show spurious associations with PD prognosis or severity. A
plausible explanation in this scenario is that in our PD subset, there may well be other
factors that associate with the outcome, in which case, the SNP of interest might be
significantly associated with the PD clinical outcome at least partially due to collider
bias. Recently, methods such as ‘Slope-Hunter’ have been proposed for adjustment
of collider bias in the so-called prognosis GWASSs [415]. Further studies involving PD
severity and progression should make an effort to always account for collider bias in
their pipelines as well as validate existing PD progression GWAS results to be free of

such selection bias.

All my research on the association of genetics with PD prognosis and severity has
been limited to common SNPs (MAF > 1%). With prognosis and severity GWAS, we
do not have enough power to assess how rarer variants can contribute to the
heterogeneity of PD progression with the current sample size [240]. Undertaking a
genome-wide burden analysis in PD patients with fast versus slow progression might
help to nominate certain genes harbouring rare variants associated with the
progression of PD. Similarly, assessing the burden of rare variants in cis-regulatory
elements, might help to understand the impact of regulatory elements such as
enhancers or repressors that have a role in PD progression. These variations may be

more pronounced in specific populations and could be overlooked or entirely missed

190



in others due to naturally occurring, population-based differences in allele frequencies
[416]. Therefore adding more ancestry diverse groups when exploring rare variants in
relation to PD progression might increase the power to detect significant associations.
Similarly this study is limited to SNPs, therefore other types of mutations such as
chromosomal mutations that lead to chromosomes being duplicated or lost are not
considered in this analysis. A good example is copy number variants (CNVs), with
implication in human diseases and evolution [417]. The identification of causal variants
influencing PD risk can be facilitated by employing state-of-the-art high-throughput
long-read sequencing technologies. Causal variants are not confined to SNPs but can
also encompass more complex genomic variations, such as repeat expansions or
structural variants. These variations may be easily overlooked in short-read
sequencing and can be technologically challenging to genotype due to repetitive
sequences or high GC content. PD studies specifically investigating non-SNP
variations are beginning to emerge [418].

Another limitation to highlight is the sample size achieved gathering data from multiple
sources in this study. Even if we performed some of the more powered PD progression
studies in terms of the sample size we gathered for several PD traits, we are far from
the sample sizes achieved by large studies assessing the genetic risk of traits and
diseases [51,365,366]. GWAS sample size is another major determinant of power to
uncover significant association genome-wide [240]. Initiatives such as GP2 hold the
promise of gathering a deeply phenotyped and harmonised dataset of thousands of
PD cases with a multitude of clinical assessments and longitudinal data available.
Such effort, if it overcomes the many difficulties that data gathering and curation to
high standard imposes, might lead to unprecedented discoveries explaining PD

severity and progression. And their translation to disease-modifying therapies.

Another limitation is that | have entirely focused on clinical assessments to assess PD
progression. However wearable technology enables recording measures for patients
more reliably and continuously. Such data is starting to become available for some
biobanks such as in the UK Biobank. Using more novel deep learning approaches
such as Long Short Term Memory (LSTM) models might provide additional value and
increase the power to analyse this type of wealthy data with many time points available
longitudinally at the patient level, which me able to better capture treatment responses

and fluctuations in the progression patterns.
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In the study of PD motor progression, | relied on LMM as | found this model that
assumes a linear trend to fit our data best. However, other studies of longitudinal
studies of longer duration (8-year follow up) found nonlinear mixed-effect models to fit
UPDRS serial measures better than LMM. Several reasons such as the inclusion of
more advanced PD participants and long-term effect of patients under treatment could
explain the differing results. However, as we approach larger-scale longitudinal
analyses including outcome for which we are unfamiliar what progression patterns
they might follow, as well as we include data from sources with notable differences of
exclusion and inclusion criteria (for example, disease duration restrictions), it is
important that careful investigation on the progression trajectories of the multiple
clinical outcomes we study is performed so that it can help during the model-decision

making, and detect unanticipated nonlinear progressive trends.

Replication across genome-wide analyses is important in the identification of “definite”
progression variants. This has proven to be difficult as outlined in the previous studies
carried out by Liu and colleagues and Real and colleagues | highlighted in the
Methods. Similarly, my results have not been in agreement with previous analyses of
PD motor progression or dyskinesias. There are several potential reasons that might
explain lack of replication. This could relate to differences in coverage from the
genotyping arrays used across different studies. This might lead to a low imputation
power in key loci which would lead to, for example, dropping the haplotypes that are
associated with the PD phenotype studied. Second reason could be due to variability
in these phenotypes, characterised by daily fluctuations, measurement inaccuracies,
the possible influence of environmental factors specific from each region, and the
challenges of standardising clinical assessments across various research sites and
study methodologies, which could lead to the surge of false positives. Another
plausible reason could be systematic errors during the analysis process, which might
lead to collider or confounding bias on GWASSs results when assessing the association
between a variant and a PD progression trait, which could lead to inflated test-statistics
and therefore false positives and negatives. Even if | anticipate a decrease in the non
replication issue with the use of long-gwas, further efforts should be focused on
understanding the lack of replication to understand potential novel confounders we

can account for as the field moves forward.
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To date, in the PD genetics field, most studies have focused on European ancestry
populations [419], and more recently, Asian descent [51,83]. Incorporating ancestral
diversity into PD genetics research holds crucial significance for enhancing various
aspects of PD healthcare. Firstly, the exclusion of non-European populations in
research may result in an underestimation of specific genetic risk factors to those
populations, which could serve as valuable markers for early disease detection and
risk assessment. Furthermore, including diverse populations can be of value to
validate PD risk factors from European populations or define ancestry specific novel
genetic factors. An illustrative example of such distinctions is evident in the largest
GWAS conducted in the Asian population, where no associations between the PD
phenotype and GBA1 or MAPT variants were observed, and variability in those loci
where among the top hits in the European ancestry GWAS [83]. The incorporation of
ancestral diversity into PD research is vital for advancing our comprehension of the
disease's biology and pathogenesis. This understanding, in turn, facilitates the
customisation of preventive measures and therapeutic interventions. As Nalls and
colleagues have anticipated, the inclusion of ancestry-diverse groups will allow us to
increase the genetic data granularity, which will improve the interpretation of GWAS
signals and improve the applicability and usefulness of PD genetics studies [83].
During my PhD, | have analysed the impact of genetics on disease severity of PD
patients of AJ descent. However, this still holds a limitation to highlight for several
reasons: Sample sizes available for study are much lower than the numbers available
for EUR PD patients. This study was limited to the impact of AJ genetic on severity
and overlooked the impact on progression due to low availability of time-series data

for the clinical outcomes part of studies.

Exploring nominated loci from GWAS involves dealing with diverse molecular
pathways contributing to the phenotype of interest [420]. Within these nominated loci,
detecting the causal variant can be challenging, often obscured by other non-causal
alleles falling within the same haplotype block due to the underlying LD structure. In
this context, the refinement of genotyping approaches and the development and
implementation of novel bioinformatics tools are crucial. Additionally, methods that
overlay functional annotation resources such as DNA methylation or histone
modification of regulatory elements, as well as the formation of chromatin loops, with

GWASSs provide insights into the putative epigenetic signatures of GWAS-nominated
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loci. Further research to decrease the uncertainty from fine-mapping tools, understand
the cell type basis of genetic association studies, will boost GWAS discoveries and
easy transferability from research to disease-modifying therapies testing and
development. In addition, keeping up to date with advances in the deep learning
genomics will help GWAS decoding with variant prioritisation, interpretability of the
functional implications of non-coding genome nominated variants, as well as accurate
cell type agnostic predictions of the impact of PD specific genetic architecture [421—
425].

Post-GWAS analyses are primarily directed towards identifying molecular pathways
and promising targets for biomarkers and drug development. The process involves the
discovery and validation of potential findings in independent cohorts, allowing the
nomination of pathways for further assessment in cell lines and animal models or the
construction of networks. Additionally, novel datasets for PD genetics research are
becoming publicly available resources for the research community. An example is the
Foundational Data Initiative for Parkinson’s Disease (FOUNDIN-PD) [426], an
international, collaborative, and multi-year project. It aims to generate a multi-layered
molecular dataset using a large cohort of 95 induced pluripotent stem cell (iPSC) lines
at multiple time points during differentiation to dopaminergic (DA) neurons.
Frameworks for GWAS decoding should work around these single cell PD specific
powerful datasets. Similarly, the use of deeply phenotype cohorts with matched multi-
omic data provide us with a unique opportunity to explore nominated genetic variants
and the impact on broad gene expression and translation. This enables us to nominate
potential biomarkers of genetic markers of progression as well as to decode non-
coding genetic association from GWASSs.
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