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Abstract 

Parkinson’s disease (PD) is a progressive neurological condition that can be 

measured using clinical scales. Features of PD progression include motor and 

cognitive decline, as well as the emergence of motor fluctuations such as levodopa-

induced dyskinesias. Although some patients follow a common progression trend, 

there is significant heterogeneity, with some patients progressing more quickly  and 

exhibiting distinct clinical features. This heterogeneity is also notable at disease onset. 

I hypothesised that PD progression might be explained by common genetic variability.  

During my PhD, I performed longitudinal genome-wide association studies (GWAS) to 

understand the genetic basis of  motor progression and the time to develop 

dyskinesias, a motor fluctuation influenced by PD onset and chronic levodopa 

treatment. Additionally, I conducted a large-scale disease severity analysis using 10 

different clinical instruments. For this large-scale analysis I used long-gwas, an end-

to-end Nextflow pipeline to conduct cross-sectional and longitudinal GWAS. 

Based on these GWAS approaches, I identified several loci significantly associated 

with prognosis, severity and survival. Applying functional annotation analyses to 

decode GWAS, I successfully nominated genes to be associated with the outcomes 

at most GWAS significant loci. I nominated the ACP6 gene to be associated with the 

progression of axial PD motor features, and MAD1L1 and SOX9 genes to be 

associated with the severity of axial PD motor features. In addition, I nominated the 

LRP8, XYLT1, and DNAJB4 genes as associated with the time to develop dyskinesias 

in PD. Notably, I validated three novel loci (SERGEF, OTUD7A, SCN1A) associated 

with the severity of hyposmia, alongside previously reported LRRK2 and GBA1 genes, 

involved in the autophagy-lysosomal pathway which may serve as surrogates for α-

synuclein pathology. 

Finally, I conducted a cell-type enrichment analysis of PD progression and 

susceptibility using publicly available longitudinal GWAS cell type expression data. We 

found a significant association between genes implicated in  PD motor  progression 

and microglia. Furthermore, we proposed a new framework for cell type enrichment 

that efficiently incorporates information about cis-regulation of gene expression. 
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Impact Statement 

During my PhD, I have contributed to understanding the common genetic variability 

that influences clinical progression and presentation in Parkinson’s disease (PD). 

Additionally, I have been involved in developing a pipeline that democratises this type 

of analysis. I have explored multiple methods to interpret results from genetic 

association studies and proposed novel ways to perform cell type enrichment 

analyses. 

I hope that the progress achieved during my PhD contributes to the long journey of 

developing novel disease-modifying therapeutic avenues. We have identified several 

genes associated with motor progression and severity, as well as the survival time of 

levodopa-induced dyskinesias. We anticipate that these associations will be further 

tested in mice and cell models by academic collaborators to explore their potential 

impact on PD prognosis and to further characterise the involved pathways. 

Some of my research outcomes have been used for the Aligning Science Across 

Parkinson’s grant renewal. I have also presented my research findings at several 

conferences through poster presentations 

Based on a large-scale multi-ancestry disease severity genetic study, I have shed new 

light on the genetic drivers of hyposmia, a feature that might be a surrogate for α-

synuclein pathology. I hope these novel markers will be further tested and understood 

in relation to the LRRK2-GBA1 autophagy-lysosomal pathway. These new genes 

could be widely used in clinical practice, either by improving current diagnostic tools 

or by targeting the novel putative genes that might relate to α-synuclein pathology and 

spread. 

I hope that long-gwas, a freely available end-to-end open-access pipeline for genetic 

association studies of severity and prognosis, will lead to a significant increase in 

findings in population genetics and provides a resource for investigators in multiple 

fields. With the automation of the most up-to-date approaches to account for 

confounding sources and efficient quality control, I envision an increase in novel loci 

proposed for further investigation in relation to disease modification strategies. 
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Finally, understanding which cell types are affected by genetic variants linked to traits 

brings benefits both inside and outside academia. When testing new disease-

modifying therapeutics, it is crucial that the drug is delivered to the affected cell type 

in a disease state. In my research, I have developed an analysis on cell type 

enrichment of PD progression using relevant information. I have made my code 

available, and I hope further research in my lab will focus on enhancing and utilising 

these methods. This work will be relevant in building a cellular map to link cells and 

traits in PD. 
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1) Introduction 

a) Parkinson’s disease 

Parkinson’s disease (PD) is one of the conditions included under the term 

“parkinsonism”. Although it is the primary form of parkinsonism, Drug Induced 

Parkinsonism, Progressive Supranuclear Palsy, Dementia with Lewy Bodies, Multiple 

System Atrophy, Corticobasal degeneration, and Vascular Parkinsonism are other 

atypical forms of parkinsonism accounting for up to 15% of cases, and presenting with 

variable patterns of progression, treatment, signs, and symptoms. PD is a progressive 

neurodegenerative disorder that was first described by James Parkinson in 1817 [1]. 

It is the second most common neurodegenerative condition, thought to develop from 

an interaction of environmental and genetic factors [2]. However, PD is highly 

heterogeneous, with its symptoms and rate of progression varying between individuals 

[3]. Growing evidence suggests that genetics can explain some of the variability in 

progression [4]. Uncovering such genetic determinants would lead to further 

understanding of the molecular mechanisms of the condition and would help in 

identifying new targets for disease-modifying treatments. 

i) Epidemiology 

PD is a common condition affecting 6.1 million people worldwide (2016) [5]. The 

disorder impacts our society and health system. The prevalence and incidence of 

disease have increased in the past two decades [6]. 

Ageing is one of the strongest associations with PD risk [7,8]. Nevertheless, it is 

unclear if age-related cell death is the result of the chronic exposure to environmental 

toxins or instead a result of biological ageing [9]. It is possible that the complex 

interaction between environmental exposures, genetic changes and ageing lead to the 

underlying neurodegenerative condition [10]. Among PD patients, men have a higher 

incidence, prevalence and risk of mortality than women by a ratio of 1.4:1 [11], and 

this lower risk seems to happen at all ages [9]. Some potential explanations include 

men being more exposed to environmental risk factors or the protective role of female 

hormones [9]. Socioeconomic status is also a determinant factor of disease risk, with 

lower status associated with higher disease risk, reflecting a higher exposure to 
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adverse experiences during the group's lifespan [9]. There are also disease risk 

differences with respect to ethnicity, race, and geography, although according to Ben-

Shlomo, they are difficult to explore due to existing inequities across groups as well 

as high quality data being limited to high-income regions [9]. The prevalence of PD is 

estimated to be lower in Africa, similar or lower in Asia, and similar in Latin America 

compared to Europe and North America [9]. The plausible reasons for differences in 

prevalence across regional groups are diverse including differences in genetic 

background or environmental exposures. A study on migrants has shown that PD 

prevalence estimates are higher in African and Japanese migrants living in the USA, 

than those living in their ancestral countries [12,13]. Multi-ethnic genetic studies have 

reported that the frequency and penetrance of genetic risk variants for PD differs 

across ethnic groups and geographical regions [9]. Nevertheless, differences in 

prevalence might also reflect difficulties in some geographical regions to access health 

care, complicating more extended diagnosis [9]. 

ii) Clinical and pathological aspects 

From a clinical perspective, there are four cardinal features of Parkinson’s: 

Bradykinesia, postural instability, rest tremor, and rigidity. Postural disturbance and 

gait freezing are recognised as motor parkinsonian symptoms related to advanced 

Parkinson’s [14]. PD is not only a motor disorder. Before the syndrome is first 

diagnosed, rapid eye movement sleep behaviour disorder (RBD), olfactory problems, 

constipation, and depression can occur, and the correlation between PD and some of 

these early non-motor PD symptoms has been widely reported [15]. About a third of 

patients with RBD will develop PD within a decade [16,17]. In addition, as the course 

of the disease progresses, cognitive impairment becomes a prominent feature. 

Aarsland and colleagues performed a systematic review of studies that focused on the 

prevalence of dementia in PD [18]. They concluded that dementia affected 24 to 31% 

of all PD patients. Longitudinal studies support the increasing prevalence of dementia 

over time, and most Parkinson's patients with long disease duration will develop 

dementia [18]. These non-motor features, which are determinants of morbidity and 

poor quality of life, have been included by the Movement Disorder Society in the 

clinical diagnostic criteria for PD [19,20]. 
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One pathological feature of PD is the loss of dopaminergic neurons in the substantia 

nigra pars compacta (SNpc) [21]. Clinico-pathological studies have shown a 

correlation between the loss of dopaminergic neurons at the SNpc and motor features 

such as bradykinesia and rigidity in the advanced stage of the disease [22]. Another 

prominent pathological feature is Lewy pathology, that is the aggregation of the 

abnormally folded α-synuclein protein. When α-synuclein misfolds, it becomes 

insoluble and accumulates to create intracellular inclusions known as Lewy bodies 

within the cell body and Lewy neurites within neuronal processes [23]. Another feature 

of PD pathology is neuroinflammation through the development of an active 

inflammatory response mediated by astrocytes and microglia [24]. 

iii) Molecular and immune mechanisms 

PD develops as a result of synaptic dysfunction and neurodegeneration, with α-

synuclein as the main protein accumulating and leading to the deposition of oligomers 

and fibrils, and the formation of Lewy bodies and Lewy neurites [25]. From a molecular 

perspective, this α-synuclein accumulation in different forms and shapes may relate to 

impaired mitochondrial and lysosomal function [19]. Mitochondria are organelles 

implicated in survival cell signalling and energy production. Mitochondrial dysfunction 

happens in the early stages of PD. Alterations of mitochondrial structure and dynamics 

lead to abnormal intracellular calcium levels, reduced ATP production and an increase 

in reactive oxygen species [19]. Both genetic and environmental factors which have  a 

direct impact on mitochondrial homeostasis have been linked to PD and Parkinsonian 

disorders [26,27]. Moreover, there are processes involved in mitochondrial 

homeostasis that may have a key role in PD pathogenesis. Mitophagy is the process 

of selectively removing damaged or redundant mitochondria through their signalling 

for lysosomal degradation. For instance PRKN and PINK1 are PD causing genes 

involved in mitochondrial quality control which regulate mitophagy mechanisms [28]. 

These mitochondrial health processes are central in neurons, cells with high energy 

requirements [19]. Lysosomes, another type of organelles, are involved in mitophagy 

In addition, they are important in processing protein aggregates. Therefore, a 

malfunctioning lysosome can lead to an increased α-synuclein oligomer accumulation 

as well as impaired mitochondrial activity. The genetic evidence that PD risk is related 
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to lysosomal activity is mainly centred on the GBA1 gene, which encodes the 

lysosomal enzyme acid β-glucocerebrosidase  [19]. 

iv) Clinical progression 

PD progression can be described on the basis of Kalia and Lang's description [21]. 

PD has a premotor or prodromal phase with prominent non-motor features such as 

RBD and olfactory dysfunction. PD diagnosis coincides with the onset of the classical 

motor symptoms. Then, progression follows the trend of worsening motor features 

over time and the prescription of symptomatic treatment, which as a side effect will 

end up leading to a characteristic trend of complications in the long term, including 

non-motor fluctuations, dyskinesias, and psychosis. The late stage of the disorder is 

characterised by motor and non-motor features resistant to treatment such as freezing 

of gait, falls, dysphagia and speech dysfunction. Autonomic symptoms are also 

prominent during the late disease stages. In addition, dementia is also characteristic 

of the late disease stage, affecting 83% of patients with PD who have had 20 years of 

disease duration [21]. 

Our ability to understand disease progression comes from long term outcomes 

reported from observational studies such as the Sydney Multicenter Study of levodopa 

naive, short disease duration idiopathic PD patients [29]. 15 years from study initiation, 

48% of patients experienced dementia, 36% had mild cognitive impairment, 94% had 

experienced dyskinesias, 56% had developed dystonia.  In addition,  81% had 

experienced falls, hallucinations and depression were experienced by 50%, choking 

was experienced in 50%, symptomatic postural hypotension in 35%, urinary 

incontinence in 41%, and 65% of the cohorts had died [30]. After 20 years, the main 

problems were related to non-levodopa responsive features characteristic of some PD 

patients. Dementia was present in 83% of patients, and 74% of patients had died [31]. 

This suggests that most patients follow this progressive decline in the clinical motor 

and non-motor hallmarks of the condition.  

However, disease progression is heterogeneous and not all patients develop all the 

features in a uniform way. Presentation at disease onset and progression of motor 

features vary widely between patients.  PD empirical subtypes have been proposed 

according to the motor symptoms. The two main subtypes are tremor-dominant PD 
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(prominent tremor related impairment) and non-tremor-dominant PD (phenotypes 

such as akinetic-rigid syndrome and postural instability gait disorder - PIGD) [32]. 

There is also an intermediate phenotype with prominent tremor and non-tremor related 

motor symptoms. The prognosis and the progression varies across patients divided in 

these groups. Tremor-dominant PD patients display on average a slower rate of 

progression and the functional disability is not as severe as compared with non-tremor 

PD (PIGD) [21]. But these are not the only proposed PD subtypes with distinct 

progression patterns. In the past two decades, PD cluster analyses have aimed to 

subgroup patients using data-driven approaches [33–39]. Marras and Lang 

commented that PD cluster analyses should take into account the effect of disease 

duration on defined subtypes. If disease duration is not taken into account, an 

identified PD subtype could simply be a variable stage over the PD course [40]. For 

instance Graham and Sagar, who identified several clusters based on cognition and 

motor performance, realised that there were differences in the average disease 

duration, proposing that their three short disease duration clusters would evolve into 

two motor only impairment and cognitive and motor impairment long disease duration 

clusters [33]. PD subtypes may reflect differences in underlying biological 

mechanisms, which could further refine our understanding of disease heterogeneity 

[41]. 

The progression of PD is likely to mirror the underlying neuropathology, as suggested 

by the correlation between clinical and neuropathological features. When PD is 

diagnosed there are prominent motor symptoms, reflecting substantial dopaminergic 

neuronal loss in the substantia nigra [42]. A more updated view by Marras and 

colleagues proposes that the onset of disease occurs when a substantial proportion 

of dopaminergic terminals in the basal ganglia are lost [43]. The most influential view 

of PD progression based on neuropathology came in 2002, when Braak and 

colleagues  proposed a progression staging scheme based on the α-synuclein 

pathological inclusions and its differential distribution in the brain [44,45]. They 

hypothesised damage in some brain areas to explain some of the progression 

hallmarks in PD. For instance, they proposed that Braak stages 5 and 6 (Lewy body 

pathological spread affecting limbic and neocortical structures) might explain impaired 

cognition among PD patients. Years later, Braak and colleagues found a correlation 

between the cognitive decline and the stage of Lewy Body pathology according to the 
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staging system [44,45]. Dementia in PD cases has been found to correlate with cortical 

Lewy bodies [46,47]. However, some other studies have not been able to replicate 

these findings [48]. Similarly, the neuropathological assessment in the Sydney 

Multicentre Study, revealed that some young onset PD cases with Lewy body 

pathology fit Braak staging, whereas some other rapidly progressive patients showed 

diffuse Lewy body disease [49]. These findings further support the heterogeneity of 

PD progression. Patterns of clinical progression not matching these proposed 

pathological stages might be a surrogate for yet unknown pathological hallmarks of 

PD not involving Lewy Body spread in the brain. 

It is clear that α-synuclein aggregation is a hallmark of the main form of PD and its 

progression and spread. However, since the discovery of SNCA, other PD-associated 

loci have been discovered, which might explain pathogenic processes in forms of PD 

which lack Lewy bodies and Lewy neurites at autopsy [23]. In general terms, 

progression might relate to intrinsic cellular factors such as mitochondrial and 

lysosomal function or factors related to spread of a toxic protein. 

b) Genetics of Parkinson’s disease 

PD aetiology can be understood in part through genetics. Even though there is no 

consensus on the quantification of the heritable component of the disorder and how 

this inheritance happens when PD causing and risk associated variants segregate 

together, the most updated estimates range between 22% and 40% [19]. Concordance 

rates in twin studies suggest the heritability of PD is 30% [50]. Heritability estimates 

based on PD common genetic variability exclusively, suggests the heritable 

component of idiopathic PD is 22%, of which only a fraction (16-36%) is explained by 

the largest PD risk genome-wide study [51]. 

PD genetics is complex, and it is likely that we have only uncovered a fraction of it. In 

addition, environmental and behavioural factors play a role on PD aetiology, and some 

of these factors may well interact with genetics (for example directly regulating gene 

expression, or shaping the epigenome), therefore making the PD genetic puzzle 

harder to complete as a result of the multidimensional spectrum causing the condition 

[9]. 
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Regarding the genetics of Parkinson’s, there are rare mutations that segregate in 

families and are known to cause PD [52,53]. These mutations are defined as rare as 

their frequency is very low in the general population (frequency < 1%). Nevertheless, 

taking them all together, the number of cases with a reported PD causing rare mutation 

is relatively common. Up to 15% of PD patients have a positive PD family history and 

5–10% of these familial cases may have Mendelian inheritance [54]. However, PD 

genetics does not only span rare mutations causing disease. In addition, there are PD 

associated common genetic variants, that is genetic variants that have a frequency > 

1% in the general population, which can be either protective or disease-causing [51]. 

Even though they are not disease causing mutations, when some individuals carry 

some of these common variants, they may develop Parkinson’s related to a polygenic 

effect. PD risk variants have different magnitudes of effect, directionality, frequency, 

deleteriousness, and penetrance [4]. The vast majority of patients with PD are 

diagnosed as sporadic without a clear genetic (familial) cause [51]. 

i) Mendelian mutations in PD 

The past few decades have witnessed the discovery of recessively and dominantly 

inherited genes responsible for rare monogenic forms of PD. Well-known, highly 

penetrant autosomal dominant mutations causing PD are found within the SNCA, 

LRRK2 and VPS35 genes, and autosomal recessive disease causing mutations are 

found  in the PRKN, DJ-1, and PINK1 genes  [55]. 

According to Blauwendraat and colleagues, the term monogenic for PD is an 

oversimplification. Some carriers of any of these highly penetrant PD mutations may 

not develop PD (known as incomplete penetrance), which suggest that other genetic 

and environmental factors influence disease aetiology together with the well 

characterised highly penetrant mutations [4]. 

The first mutations in PD families was described by Polymeropoulus and colleagues. 

They found a mutation (p.A53T) in the fourth exon of SNCA, a gene located on 

chromosome 4, in a large Italian family, and replicated their findings in 3 unrelated 

Greek families with PD [56]. Subsequently, Singleton and colleagues examined a large 

family with autosomal dominant PD, and carried out quantitative real-time PCR 

amplification of SNCA exons to find an increase in gene dosage consistent with a gene 
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triplication [57]. Similarly, duplications of the α-synuclein gene have been found to 

cause PD [58]. 

Interestingly, as described earlier SNCA is the major component of Lewy bodies, and 

a reduction in the solubility of α-synuclein leads to the formation of filaments from 

insoluble alpha synuclein that aggregate into cytoplasmic inclusions, which contribute 

to the death or dysfunction of glial cells and neurons [59]. Although its neuronal 

function is unknown, it may have a role in synaptic vesicle dynamics, mitochondrial 

function, intracellular trafficking and might be a potential chaperone. α-synuclein 

acquires neurotoxic properties when it aggregates into insoluble α-synuclein fibrils 

characteristic of Lewy pathology [60]. α-synuclein may aggregate due to its 

overproduction as a result of the gene duplications and triplications that Singleton and 

colleagues, and Ibanez and colleagues described as mutations causing autosomal 

dominant PD. Another reason could be mutations in domains that lead to protein 

misfolding and oligomerization or alteration on the molecular pathways in which α-

synuclein takes part [19,61].  

Based on frequency, specific rare variants in LRRK2 are the most important Mendelian 

cause of late-onset autosomal dominant PD, with a mutation frequency ranging from 

2-40% depending on the population [55], which may reflect genetic diversity among 

different ethnic groups and geographical regions, as well as variability in sample sizes, 

study designs or mutation screening techniques of genetic studies. LRRK2 G2019S is 

the most well characterised LRRK2 disease causing mutation in PD [62–66]. The 

G2019S mutation occurs most commonly in European, North African, and Jewish 

families. G2019S is estimated to account for up to 30% of inherited PD cases in certain 

populations [67]. However, there are other pathogenic mutations at the LRRK2 gene 

more frequent in Asian populations, such as the N1437D mutation in Chinese families, 

and I2020T in Japanese families [19,68]. In addition, G2019S mutation penetrance 

varies across age stratified groups, increasing up to 85% at 70 years old [67]. 

Interestingly, this variation in penetrance seems to be independent of the individual’s 

ancestry at a fixed age of 80 years [69]. 

Different LRRK2 missense mutations have been reported as disease-segregating 

mutations, and patients that harbour mutations have dopaminergic degeneration 

according to findings from LRRK2-autopsy cases [70]. The LRRK2 encoded protein is 
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involved in autophagy (the process through which cells transports cytoplasmic 

components to the lysosome for their degradation and recycling), lysosomal function, 

and vesicular trafficking [71]. LRRK2 protein pathogenic mutations concentrate around 

the kinase and GTPase domains, and disease-causing mutations in these regions 

increase  protein kinase activity. A study using a rodent model expressing the human 

G2019S LRRK2 sequence in neurons, has shown that dopaminergic neurons are 

progressively lost in the substantia nigra, which is associated with the level of LRRK2 

kinase activity [72]. Several groups have tried to explain the molecular mechanisms of 

pathogenic LRRK2 mutations. Zimprich and colleagues firstly hypothesised that 

LRRK2 may phosphorylate α-synuclein and tau proteins, leading to the accumulation 

followed by aggregation of unfolded α-synuclein and tau proteins in dying neurons 

[73]. LRRK2 has several putative protein-protein interaction domains so it is plausible 

that mutations that alter these domains affect the contact with other proteins. In 

addition, dysfunction through mutations in the LRRK2 kinase domain would also lead 

to changes on the proteins LRRK2 might interact with and phosphorylate such as α-

synuclein and tau proteins [55]. 

A more recent hypothesis by Alessi and Sammler based on data from recent years 

holds that LRRK2 does regulate autophagy. This process seems to also be controlled 

by a subgroup of RAB family proteins, that are phosphorylated by LRRK2 kinase, 

which ensure homeostasis and unaltered autophagy [71]. In addition, inflammation is 

also regulated by LRRK2 and there are high levels of expression in immune cells such 

as macrophages and monocytes. Mouse models expressing the G20192 LRRK2 

mutation have been found to be protected from infection. In contrast, mice lacking 

LRRK2 or expressing LRRK2 inhibitors, have been found to be unable to clear out 

infections [74]. Understanding the protective role of LRRK2 against infectious 

diseases, and more specifically, knowing if an antagonistic pleiotropy event occurs 

between LRRK2 pathogenic mutations and PD and immunity, might be transferable 

knowledge to shed new light into PD disease aetiology. Whether LRRK2 inhibitors 

have disease modifying effects on PD patients carrying pathogenic LRRK2 mutations 

or in sporadic PD is under active investigation in ongoing drug trials [71]. 

Two other genes, PARKIN and PINK1 have been found to cause early onset 

autosomal recessive PD [75,76]. PARKIN encodes an E3 ubiquitin ligase with an 
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amino-terminal ubiquitin-like domain and carboxyl-terminal ubiquitin ligase domain 

and resides in the cell’s cytosol. PINK1 encodes a serine-threonine protein kinase that 

localises to mitochondria. Both proteins work in the same pathway and participate in 

maintaining mitochondrial homeostasis [77], an organelle that as we already 

mentioned, is thought to play a central role in PD aetiology. First evidence of the link 

between mitochondrial dysfunction and PD was based on evidence from people 

developing the disease after illicitly using  methyl-4-phenyl-1,2,5,6-tetrahydropyridine 

(MPTP) [78]. MPTP was found to oxidise to 1-Methyl-4-phenylpyridinium (MPP+), 

which causes the inhibition of complex I in the mitochondrial respiratory chain after its 

selective uptake in dopaminergic neurons [79]. 

ii) Common variation in PD 

Genome wide association studies (GWAS) have been a powerful tool to better 

understand how genetic variability contributes to the development of disease. GWAS 

usually focuses on genetic variants with a minor allele frequency (MAF) higher than 1 

or 5%. Therefore GWAS allows us to understand the common genetic architecture of 

complex diseases such as PD. In the past decades, several large association studies 

gathering samples of European ancestry have been conducted revealing genetic 

variants increasing the risk for PD [51,80,81]. In 2019, Nalls and colleagues conducted 

the largest GWAS to date totalling 37,000 cases, 18,600 UK Biobank proxy-cases 

(where the individual had a parent affected by PD), and 1,400,000 controls of 

European ancestry, and 7,800,000 single nucleotide polymorphisms (SNPs). This 

large scale study revealed 90 independent SNPs significantly increasing the risk of 

developing PD. They estimated based on a PD polygenic risk score (PRS) that the 

total SNP based heritability uncovered from their analysis, is about one third of the 

total SNP heritability of the condition [51]. This estimate suggests there is still a high 

percentage of the common heritability yet to be discovered. In addition, they performed 

several pathway, tissue, and cellular enrichment analyses across genes near the PD 

risk variants and found that genes were enriched in the brain. Interestingly, the 

expression of the selected PD genes were enriched in neuronal cells. Some of the 90 

independent PD risk variants fell close to monogenic Parkinson’s genes such as 

SNCA, LRRK2, GBA1, and VPS13C. The strongest associations found by Nalls and 

colleagues were at the SNCA and MAPT loci. This large PD case-control GWAS meta-
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analysis has been recently expanded by Kim and colleagues incorporating several 

diverse ancestry populations. They identified 12 potentially novel risk loci, 9 that were 

shared across all ancestries and three that had heterogeneous effects across the 

different ancestry groups, hence were ancestry-specific. Based on fine-mapping they 

nominated 6 putative causal variants at 6 loci previously linked to PD [82]. 

Another large GWAS in PD patients of Asian ancestry, gathering 6,724 patients 24,851 

healthy controls, identified 11 GWAS loci, reaching genome wide significance 9 of 

which overlapped with the Nalls and colleagues' European ancestry GWAS. Of the 78 

SNPs nominated from the European GWAS, and that were polymorphic in the Asian 

GWAS, 63 (80.8%) were found to have the same directionality of association and 15 

(19.2%) had an opposite direction. This suggests that there is an overlap in the 

common variability between the two different ancestry groups as well as consistent 

effect sizes, but also some differences such as 2 PD genetic risk factors reaching 

genome-wide significant only in the Asian ancestry specific cohort, as well as 

differences in LD haplotypes and allele frequency (AF) [83]. The presence of non-

overlapping risk variants across ancestries is also shown in an analysis that gathered 

samples of Chinese ancestry. They genotyped several variants at four loci that have 

been reported to modulate the risk for PD (SNCA, PARK16, LRRK2, BST1). They 

found consistent effects of SNCA, and LRRK2 variants and the risk for PD. However, 

they found PARK16 variants to be associated with a lower PD risk. They did not find 

any effect between variants within the BST1 locus and the risk for PD [84]. 

More recently, the largest GWAS in patients of African ancestry revealed a variant 

within GBA1, as the most significant genetic risk factor for PD in African and African 

admixed populations. They identified changes in GBA1 expression which lead to 

decreased glucocerebrosidase activity (the protein encoded by GBA1), hence 

suggesting those expression changes as the potential disease mechanism increasing 

the risk in PD in African and African admixed populations. In a separate analysis, they 

further characterised the functional effect of the GBA1 non-coding risk variant. They 

found that this variant, which is a key intronic branchpoint, alters the splicing of 

functional GBA1 transcripts, reducing the levels of the protein, hence the activity [85] 

GBA1 encodes the lysosomal enzyme glucocerebrosidase, and its dysfunction is 

linked to Gaucher’s disease (GD). GD is an autosomal recessive disorder and more 
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than 300 mutations, including insertion, deletion, point and missense mutations have 

been reported to cause the condition [86]. Moreover, some GBA1 mutations both 

biallelic and single mutations, are a risk factor for PD. 

Different studies conducted in PD cohorts have found heterogeneity in the clinical 

presentation of patients carrying GBA1 mutations. There is evidence suggesting that 

GBA1 pathogenic mutation carriers have a distinct clinical presentation compared to 

non-carriers. A well-powered study in a large UK observational cohort with 2.5% GBA1 

GD causing pathogenic mutation carriers, and 6.2% GBA1 non-synonymous PD 

variants, with L444P being the most common pathogenic mutation, suggested that 

patients with GBA1 mutations were 5 years younger at PD AAO compared to non-

carriers. Moreover, GBA1 mutation carriers more commonly had a greater risk of 

cognitive impairment, poorer response to dopaminergic treatment, lower α-synuclein 

levels as well as increased disease severity (higher Hoehn and Yahr -HY- score, a 

measure of disease severity) [87]. Other studies in non-European populations have 

reported consistent findings for age at onset, showing that GBA1 mutation carriers are 

younger at PD onset [88,89]. However, there are discrepancies in the motor and 

cognitive presentations linked to GBA1 carriers. A large multicentre study did not find 

differences in motor presentations between GBA1 pathogenic mutation carriers and 

non-carriers [90]. Similarly, other well-powered studies have found an association 

between GBA1 mutation carriers and development of dementia as well as cognitive 

decline [91,92]. 

The penetrance of GBA1 PD genetic variants  were estimated to range from 7.6% at 

50 years to 29.7% at 80 years, based on the kin-method, an approach that leverages 

family data to calculate the probability that an individual with a certain genotype will 

show a particular phenotype, helping to assess the degree of penetrance. The 

penetrance of GBA1-PD variants is higher than that estimated on GBA1-GD patients 

and their relatives [93]. Blauwendraat and colleagues  investigated genetic modifiers 

of GBA1-associated PD penetrance, using case-control GWAS based on GBA1 

mutation carrier status. Among the 90 independent variants found on the Nalls 2019 

cc-GWAS meta-analysis, they found a strong association between the rs356219 

polymorphism that passed Bonferroni correction and SNCA locus [94]. This SNCA-

GBA1 link and risk for PD is also plausible given that there is also a biological link 
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between glucocerebrosidase and α-synuclein, as they have been shown to interact in 

vitro as well as to influence the intracellular levels and processing of each other 

[95,96]. 

We have previously highlighted mutations at the LRRK2 and SNCA genes that 

segregate in families and cause PD. In addition, common genetic variation at the 

LRRK2 and SNCA loci has been associated with the risk of developing sporadic PD 

in [51]. Mutations that increase PD risk are located in the protein-coding gene and also 

in non-coding regions [67,97]. These non-coding variants are likely to have a biological 

effect based on the modulation of gene splicing and/or expression [98]. 

iii) The genetic architecture of PD progression 

When studying PD genetics, there is an additional layer of complexity. Apart from the 

known disease causing Mendelian mutations [4,55] as well as common genetic 

variants that increase the risk of developing sporadic PD [51], it is possible that 

unknown common and rare genetic variants contribute to the high heterogeneity in 

progression trajectories. One key reason to make such a hypothesis is that some 

candidate PD genes analyses have successfully been associated with distinct 

progression trends. For instance, prospective studies looking at differences between 

LRRK2 mutation carriers and non-carriers have found that patients carrying the 

G2019S mutation showed a slower motor decline [99]. Another study comparing GBA1 

mutation carriers versus non carriers showed the cohort carrying the mutation  to have 

a more severe cognitive and motor decline [100]. It is clear that there are PD mutations 

that correlate with specific longitudinal PD traits. 

Whether known PD risk genetics is also associated with PD progression is not fully 

understood yet. Iwaki and colleagues looked at the association of 31 PD risk SNPs 

with PD progression. Those 31 SNPs were nominated from three major PD risk studies 

showing variants that were significantly associated with PD risk [101–103]. Then, they 

looked at the association of these independent SNPs with PD clinical features. They 

used data from a total  of 23,423 visits by 4,307 patients of European ancestry from 

13 longitudinal cohorts. Variants in the GBA1 gene were linked to daytime sleepiness 

and potential RBD changes. Furthermore, researchers identified a connection 

between the GBA1 variant p.N370S and treatment-related challenges such as 
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wearing-off and dyskinesia. They also confirmed links between GBA1 variants and 

declines in motor and cognitive functions. Additionally, genotype-phenotype 

associations were observed, including an intergenic variant near LRRK2, which was 

associated with accelerated motor symptom progression, and an intronic variant in 

PMVK associated with the emergence of wearing-off effects, which refer to the gradual 

return of motor and non-motor symptoms as the effectiveness of levodopa or other 

dopaminergic medications diminishes [104]. Therefore, the overlap between the 

common genetics of PD risk and progression is only partial and some common genetic 

variants influencing disease course might be unknown. However, a major limitation of 

this study is that it did not use the most up to date results from 90 independent risk 

loci associated with PD from the study conducted by Nalls and colleagues [51,80,81]. 

In the past years, there have been a number of GWASs performed to explore the effect 

of genetic variation on disease presentation and progression. The largest GWAS of 

PD AAO on 28,000 patients with PD showed that not all 90 PD risk variants are 

associated with AAO [105]. They found two genome-wide significant signals related to 

younger disease onset at the known PD risk loci SNCA, and the protein-coding gene 

TMEM175. In spite of the smaller sample size compared to the largest PD risk GWAS, 

which decreases the power of the study to reveal the complete PD AAO genetic 

heritability, the authors found a significant effect in only 6 loci based on a targeted 

analysis looking at the 44 SNPs that were genome-wide significant in the Chang and 

colleagues PD GWAS meta-analysis [106]. According to Blauwendraat and 

colleagues, based on AAO GWAS results, the mechanism that lead to early PD onset 

could be related to SNCA pathology, since TMEM175 has been associated with 

increased α-synuclein aggregation and an increase in α-synuclein expression might 

also lead to an increase in α-synuclein aggregation [4]. A more recent study, led by 

the COURAGE-PD Consortium, added to the previous PD AAO meta-analysis a PD 

cohort of 8,535 PD patients of predominantly European ancestry, which led to the 

validation of the previously reported SNCA locus as well as the discovery of a novel 

locus, BST1, significantly associated with an earlier AAO [107]. This is a clear example 

showing that the genetic make-up of sporadic PD cases not only involve genetic 

variants that confer risk of disease but also the non-overlapping genetic determinants 

leading to differences on PD presentation as determined by the age at disease onset. 
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Liu and colleagues investigated whether genetics contributes to cognitive decline in 

PD. They accessed data from 15 different cohorts making up a total of 4,872 patients 

covering 36,123 study visits and carried out a longitudinal genome-wide survival study 

(GWSS) approach. They used Cox proportional hazard models (CPH) with covariate 

adjustment to investigate the influence of common and low-frequency genetic variants 

on cognitive decline by measuring the time to reach a Parkinson's disease with 

dementia (PDD) outcome from disease onset. They found a genome-wide significant  

association signal at the RIMS2 locus with progression to PDD with a HR = 4.74. They 

further validated the association signal using a linear mixed effect model (LMM) and a 

different measure of global cognitive function in PD, the Mini Mental State Exam. They 

found patients carrying the lead RIMS2 variant to decline more rapidly over time 

compared to non-carriers. RIMS2 encodes the regulating synaptic membrane 

exocytosis 2 protein, a RIM family member, which is involved in docking and priming 

of presynaptic vesicles. In addition, they defined sub-threshold P-Values to investigate 

the overlap between PD susceptibility variants and the variants nominally associated 

with progression to PDD end point. They examined 505 variants, and none of them 

were significantly associated with susceptibility to PD, which suggests that there is 

little overlap between the genetic determinants of PD susceptibility and progression to 

PDD. Finally, they looked at the effects of GBA1 and APOE on risk of dementia in 

patients with PDD. They found that patients carrying the APOE ε4 or a GBA1 

pathogenic mutation for Gaucher’s disease or protein-coding variants associated with 

PD showed a faster cognitive decline compared to non-carriers. Finally they derived a 

polygenic hazard score (PHS) using the lead variant from each of the three prognosis 

loci they found to reach significance (including RIMS2 lead variant), as well as with the 

inclusion of GBA1 and APOE [108]. However, the analysis performed by Liu and 

colleagues has not been replicated [109], suggesting the association they found in 

their analysis could be driven by just one subset of the data (ie one large cohort with 

different inclusion criteria than the rest could lead to a more homogeneous profile 

compared to the rest of the cohorts), and not representative of the more general PD 

population. Nevertheless, it is worth highlighting they managed to derive a GHS 

comprising significant associations and develop predictive models that performed well 

in external cohorts that were not part of the meta-analysis.  
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Real and colleagues designed a study with a similar power than Liu’s and colleagues 

in terms of sample size. They made use of the same definition of cognition to explore 

genetic variants that influence progression to PDD through a GWSS using CPH 

models and data from four longitudinal PD cohorts. They found three genome-wide 

significant loci, and the most significant SNP was the APOE ε4 allele-tagging SNP. 

APOE stands out as the primary genetic risk for Alzheimer as well as an earlier age of 

onset of disease [110]. Numerous studies have additionally demonstrated its 

involvement in cognitive deterioration and dementia among individuals with 

Parkinson's disease [111–113]. IIn addition, they found a novel association at the 

LRP1B locus, a receptor for APOE-carrying lipoproteins which is  highly expressed in 

the adult human brain. Based on APOE and LRP1B interaction analyses, they found 

that carriers of both APOE ε4 and LRP1B rs80306347 risk alleles had a higher hazard 

of progression to PDD (HR = 8.08, 95% CI = 4.64–14.1, P = 1.55 × 10−13) compared 

to carriers of LRP1B s80306347 (HR = 2.33, 95% CI =1.34–4.05, P = 0.00273) and 

APOE ε4  alleles separately. However, they did not find a significant interaction effect 

between the two alleles in a separate regression model, suggesting that the 

relationship between each allele and the outcome is likely independent, meaning the 

variables do not interact in a meaningful way in explaining the variation in the 

progression to dementia in PD. Moreover, a survival analysis was conducted 

controlling for APOE status. The findings revealed an elevated hazard of progressing 

to PDD among carriers of the LRP1B rs80306347 variant, which confirms that the 

impact of rs80306347 is independent of the influence of APOE. Finally, they could 

validate the effect of GBA1 variants in PDD through a candidate gene analysis, which 

supports the idea of GBA1 increasing the risk of progression to dementia [109]. 

Other analyses with different study designs have also investigated PD progression 

and how it is associated with genetics more exhaustively. Iwaki and colleagues studied 

the genetic impact on the trajectory of PD-related phenotypes using longitudinal data 

from 12 longitudinal cohorts in a total of 4,093 patients with and carried out GWAS for 

25 cross-sectional and longitudinal phenotypes. They divided the analyses based on 

whether the PD progression outcomes were gathered under a continuous or binomial 

category. For continuous outcomes, they assessed progression through the 

longitudinal quantitative or ordinal scores of  Hoehn and Yahr (HY), total and sub-

scores of Movement Disorders Society Unified Parkinson’s Disease Rating Scale 
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(MDS-UPDRS), Mini-Mental State Examination (MMSE), Montreal Cognitive 

Assessment (MoCA), and Schwab and England Activities of Daily Living (SEADL). 

They used  LMMs to evaluate the association of variants for each of these  continuous 

traits. For binomial outcomes, they assessed progression based on constipation, 

cognitive impairment, depression, daytime sleepiness, HY stage > 2, hyposmia, 

insomnia, motor fluctuation, RBD, restless legs syndrome, and a SEADL < 70. They 

used a combination of logistic regression and Cox proportional hazard models for 

binomial outcomes depending on outcome development rate at baseline to assess the 

influence of variants for each of the binomial outcomes. They found two variants 

reaching genome wide significance. An SLC44A1 intronic variant was associated with 

reaching HY>2 more quickly. They also found an intergenic variant in chromosome 10  

to be  associated with a lower prevalence of insomnia at baseline. This variant is a 

significant expression quantitative trait loci (eQTL) for the α-2A adrenergic receptor. In 

candidate gene analysis, they replicated previous reports of GBA1 coding variants 

(rs2230288: p.E365K; rs75548401: p.T408M) being associated with greater motor and 

cognitive decline over time, and an APOE ε4 tagging variant (rs429358) being 

associated with greater cognitive deficits in patients [114]. 

Tan  and colleagues also explored the progression of Parkinson’s using data from 3 

deeply phenotyped longitudinal cohorts, totalling 3,364 patients with 12,144 

observations (mean follow-up 4.2 years). Instead of looking at individual clinical 

assessments, they made use of principal component analysis (PCA) to derive the 

outcomes that would be later used in GWAS. They came up with a composite measure 

(PCA gathering motor and cognitive assessments in PD), as well as a  motor and a 

cognitive score for each patient at each time point. They came up with the residual 

slopes of the PCA derived scores to remove the variance of progression trajectories 

explained by confounders using linear mixed effect models. Finally, they conducted a 

GWAS on the residual slopes through a multiple regression analysis.  They managed 

to replicate previous findings regarding the association of APOE ε4 with a worse 

dementia progression pattern. In addition, they identified a novel signal in ATP8B2 

associated with motor progression based on a MAGMA gene-based analysis [115]. 

This gene encodes an ATPase phospholipid transporter (type 8B, member 2) and had 

never been reported to be associated with PD before.  In addition, based on targeted 

analysis of PD risk variants, they found GBA1 p.E326K to be nominally associated 
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with composite and cognitive progression, consistent with what Iwaki  and colleagues 

found [116]. Unfortunately, they could not replicate the finding for the SLC44A1 variant 

that was associated with progression to HY>2  in the Iwaki GWAS. 

There are also other studies that have attempted to look at the progression of PD but 

with limited power due to small sample size.  Ju Chunk and colleagues undertook 

survival analyses using Cox proportional hazard models. They found two associations 

that did not reach significance after Bonferroni correction, one with survival to cognitive 

decline (CLRN3; HR = 2.03, 95% CI 1.47–2.79, p =  4.08e−6 ), and the other with 

survival to motor decline (C8orf4; HR = 1.81; 95% CI = 1.42–2.31; p = 1.51e−6) [117]. 

None of these associations were replicated by the larger longitudinal GWASs I 

previously described. 

In addition, other studies have focused on assessing genetic variants linked to 

candidate genes to understand how they influence progression. With respect to genes 

that influence motor decline, GBA1 and LRRK2 are not the only genes listed as 

potentially disease modifying targets. Stoker and colleagues accessed data from the  

CamPaIGN cohort (n=142) to explore concomitant genetic risk factors that could 

influence the progression of GBA1-PD. They found the rs356219 polymorphism at the 

SNCA locus significantly modulated the progression trajectory in GBA1-PD. Based on 

CPH models and  Kaplan-Meier (KM) curves, they found that in particular the G/G 

genotype was associated with a worse cognitive decline. This effect  occurred in 

GBA1-PD patients [118]. Another recent study explored the influence of several SNCA 

PD variants, independently of GBA1. They did find a minor effect of the known PD-

risk variants rs356219 on motor progression as defined by UPDRS II score. In 

particular, they found that the G/G genotype was associated with a higher UPDRS II 

score. However, this association was not found in relation to UPDRS II rate of 

progression. They concluded that SNCA variants might have some effect on modifying 

disease progression but are not a major determinant of the PD clinical heterogeneity 

[119]. Rim and colleagues undertook a longitudinal study on 363 population-based 

incident PD cases diagnosed less than 3 years from baseline assessment to 

investigate the effect of SNCA on disease progression. They concluded that SNCA is 

a predictor of faster motor symptom decline in idiopathic PD based on their finding of 

a 4-fold increase in risk of carriers of the SNCA-Rep1 263 base pair repeat allele, a 
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promoter variant located in the SNCA-Rep1 microsatellite, which is among the most  

frequently investigated variants in SNCA [120]. Another study of 296 Chinese patients 

found that SNCA variants significantly contributed to the survival and severity of motor 

dysfunction [117]. Nevertheless, the impact of SNCA polymorphisms on disease 

progression is somewhat inconclusive as many studies have not been able to reach 

the sample conclusion [121,122]. 

Similarly, APOE is not the only genetic factor that has been associated with cognitive 

decline in PD. COMT, BDNF, MTHFR, and SORL1 can also influence cognitive 

decline [123]. Another gene that has been implicated in cognitive decline is MAPT. 

Goris and colleagues found that development of PD dementia and cognitive decline 

were strongly associated with the inversion polymorphism containing MAPT. They also 

found a synergistic interaction between the MAPT inversion polymorphism and the 

single nucleotide polymorphism rs356219 from the 3′ region of SNCA [124]. Later on, 

Setó-Salvia and colleagues found that MAPT H1 was associated with PD and has a 

strong influence on the risk of dementia in PD patients [125]. Similarly to PD motor 

decline and the possible role of SNCA, there is controversy regarding MAPT impact 

on cognitive decline and progression to dementia, as many other well-powered studies 

were unable to replicate the findings [121,126]. 

2) Methods 

a) Strategies and sources to capture disease progression 

i)  Longitudinal cohorts 

In longitudinal studies, the first challenge is data collection. One of the most powerful 

data sources are biobanks, large repositories that contain biological data such as 

genotypic data, and store it associated with phenotypic data, so that it can be used in 

research [127]. When electronic health records (EHR) are available, multiple genetic 

research questions become feasible due to the large and deeply phenotyped samples 

available from biobanks [128]. In essence, biobanks enable the identification of loci 

and, subsequently, genes associated with various incident diseases, as well as those 

influencing drug efficacy or adverse reactions in an unbiased population sample. They 
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offer valuable insights into molecular targets, supporting the evidence-based creation 

of new drugs or diagnostic tools. Additionally, biobanks allow investigation of the 

interplay between genetics and treatment factors in disease progression, providing 

crucial medical information applicable to personalised medicine.  An advantage worth 

highlighting relates to the removal of recall bias, in studying incident as opposed to 

prevalent cases and disadvantages include the lack of disease specific measures. A 

good example and widely used resource is the UK Biobank (UKBB), a prospective 

study gathering extensive genotypic and phenotypic data (including longitudinal 

follow-up) of over 500,000 participants aged 40-69 at recruitment [129]. Others include 

the Million Veteran Program, the BioBank Japan, All of Us Research Program, and 

FinnGen [130–133]. 

Cohort studies are another data source that enable us to assess how a condition 

evolves. Rothman and Greenland stated that in the field of epidemiology, 'cohort’ is 

more often used to refer to those people that share a common experience or condition 

[134]. Cohorts are characterised as individuals from the general population with a 

shared attribute such as experiencing a specific health event. In such cases, the cohort 

design provides more information about health conditions measured by clinical 

assessments after the disease onset. This data assembly under cohorts enables the 

research community to investigate associations between multiple exposures and 

outcomes in a more specific way compared to a random sample [134].  

There are two main types of cohort study. Prospective studies are those in which an 

exposure is assessed at baseline and study participants are followed up to record the 

development and progression of disease and mortality. Retrospective studies refer to 

those in which study participants are identified based on an inclusion criteria and 

exposures are assessed at baseline. Then outcomes of interest are studied during the 

historical observation period for those targeted samples [135]. Cohort studies can be 

used to determine the natural history and the prevalence of a condition. Normally, a 

study population free of disease / disease complication or an outcome is selected 

according to an exposure of interest and then followed up until the occurrence of the 

outcome of interest [136]. Cohort studies are particularly useful as they enable us to 

investigate single exposure, multiple outcomes associations, building up more 

insightful answers to hypotheses [137]. In addition, cohort studies are particularly 

appealing as opposed to case-control and cross-sectional study settings, in which 
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associations cannot efficiently separate causes and consequences [137].  

Nevertheless, cohort studies also have their disadvantages. They suffer from selection 

bias. This normally occurs as the groups studied on a cohort should represent the 

underlying population and have the same exposures. In practice, this is usually not the 

case. In addition, losses to follow-up can cause difficulty, and high differences in follow 

up between recruitment groups on a cohort can bias results [137]. 

To study PD in particular, there are an increasing number of cohorts set up with 

different aims. Some PD cohorts aim to understand the natural history of PD. A good 

example of such cohorts is the Cambridgeshire Parkinson’s Incidence from GP to 

Neurologist (CamPaIGN), a well-designed prospective study of PD evolution during 

10 years on a population-representative incident cohort focusing on three milestones: 

postural instability (measured by HY 3), dementia and death [138].  A review from 

Heunzel and colleagues conducted in 2017 identified a total of 44 PD cohort studies 

with a published follow-up time of at least one year by using a PubMed search 

(“longitudinal” AND “Parkinson disease” AND “clinical”). All cohorts together made up 

a total of 14,666 participants,  (cohorts’ median: 138; range: 23–3.090), a median 1.5-

year follow-up interval (0.5–4 years) and a median (planned) observational period of 

5 years (1–20 years) were indicated. All 44 cohorts assessed motor functions, using 

UPDRS-III in 93% of studies. Similarly, cognitive function was measured in all cohorts 

identified  [139]. 

Biobanks and observational studies are the primary data source for gene discovery in 

bioinformatics PD research. Target identification guides the time-consuming and 

dedicated phase of developing drugs modulating the disease related genes and 

ultimately the design of new Randomised Clinical Trials (RCT) for disease 

modification. For example, a Crohn’ disease GWAS nominated the IL-12/IL-23 

pathway to be associated with the development of disease [140]. This led to the design 

of clinical trials targeting that pathway [141].  

RCTs are a type of prospective studies intended to measure the effectiveness and/or 

the safety of one or more interventions. An intervention such as treatment is allocated 

to two or more groups and the outcomes of interest are recorded so that comparisons 

can be made between the control and the treated groups. Each participant that is part 

of the RCT should have the same chance to be included in the intervention group 
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[142]. The randomisation incorporated in the clinical trial experiment is known to 

reduce bias when one wants to study cause-effect relationship thanks to the balancing 

of characteristics between groups in which a drug is being tested and compared 

against one another [143]. As a result, any differences observed between groups for 

the outcome of interest, can be attributed to the treatment. To further minimise bias, 

patient allocation in groups is anonymised (concealment), and participants, doctors, 

nurses and researchers are often blinded so that they do not know what treatment 

each participant is receiving. As with any experiment design, RCTs have their 

limitations, such as loss to follow up, time, high cost, and problems with generalisability 

(lack of representation of the intended population for which the RCTs was designed) 

[143]. 

In PD, clinical trials are intended to find drugs that can be proposed as either 

symptomatic treatments (ST; Improves or reduces symptoms of the condition) or 

disease modifying treatments (DMT; Delays or slows the progression of the condition 

by addressing the underlying biology of PD). In 1970 the U.S Federal Drug Agency 

(FDA) approved levodopa as the primary ST for PD [144]. In addition, monoamine 

oxidase type B (MAO-B) inhibitors, amantadine, apomorphine and dopamine agonists 

were tested before levodopa was approved [145–147]. However, all the currently 

approved drugs to treat PD target ST and none of them work directly in the underlying 

pathological biology, hence they have no impact in the progression of the disorder. 

However, thanks to the PD genetic research efforts, we have more knowledge of the 

possible biological pathways that either govern or influence the progressive 

neurodegeneration of Parkinson’s. As a result, in the past years there has been a 

notable increase in clinical trials based on the understanding of potentially disease-

relevant mechanisms of action [148]. 

During my PhD, I have mostly accessed PD patients data from Cohort studies and 

RCTs, based on data availability in the lab. Now, I will introduce in more detail 3 PD 

cohorts, 1 RCT, as well as 1 PD data source from a program called AMP-PD that has 

harmonised multiple PD cohorts and RCTs into one unified biobank  [149]. 

Tracking Parkinson’s [150]: The Tracking Parkinson's study is a multi-centre 

observational research initiative that enlisted patients from 72 centres throughout the 

UK. The recruitment criteria involve patients clinically diagnosed with PD who met the 



 

42 

UK Brain Bank diagnostic standards. Ethics approval was granted by the West of 

Scotland Research Ethics Service. The study adhered to the Declaration of Helsinki 

and is registered under NCT02881099 at ClinicalTrials.gov. This PD cohort study 

primarily recruited patients with recent onset, enrolling patients whose diagnosis was 

within 3.5 years. All participants underwent comprehensive clinical assessments 

recorded every 18 months, including motor, cognitive, and other non-motor 

evaluations. A second young onset PD group was established consisting of individuals 

diagnosed at the age of 50 or younger with a time from diagnosis exceeding 3.5 years. 

However, their assessments were conducted only at baseline, without longitudinal 

follow-up. 

Oxford Discovery [151]: The Oxford Discovery study, officially known as the Oxford 

Parkinson's Disease Centre Discovery study, represents another observational 

multicentre investigation in the United Kingdom. Patients with PD were enlisted from 

neurology clinics located in the Thames Valley area. Eligible participants for the study 

were those who met the UK Brain Bank diagnostic criteria for PD and had received a 

diagnosis within the last three years. Ethical approval for the study was obtained from 

the Berkshire Regional Ethics Committee. Exclusions from participation were applied 

to individuals with non-idiopathic parkinsonism, dementia preceding PD by one year, 

or cognitive impairment hindering the acquisition of informed consent. Participants 

underwent standardised clinical assessments every 18 months. 

Drug Interaction with Genes in Parkinson’s Disease (DIGPD) [152]: DIGPD is a 

multi-centre longitudinal cohort study of PD patients. Patients were recruited based on 

the UK PD Society Brain Bank criteria that had a disease duration of less or equal than 

5 years from disease duration at recruitment. Data was collected over 5 years by 

specialists in movement disorders. At every visit, specialists checked if patients met 

the UK PD BB criteria and filled out the standardised questionnaires. The cohort was 

approved by French regulatory authorities and an ethics committee, and conducted 

according to good clinical practices. All patients gave written informed consent 

(ClinicalTrials.gov NCT01564992). This study was set up to identify disease modifier 

genes as well as gene modifiers of treatment response and adverse events of 

parkinsonism drugs. 
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Simvastatin as a neuroprotective treatment for PD (PD-STAT) [153]: Carroll and 

colleagues set up a double-blind, randomised, placebo-controlled, multi-centre clinical 

trial to assess the possibility that statins might confer neuroprotection against PD. 

They did so as there is evidence from epidemiological and pre-clinical studies 

supporting the protective role of statins. In addition, simvastatin, a widely used 

cholesterol lowering drug with a well-established safety profile, has shown in various 

toxin and genetic cell culture and rodent PD models to influence several biological 

pathways that have been linked to PD such as neuroinflammation. Therefore, the PD-

STAT experiment aims to define whether simvastatin could be used as 

neuroprotective therapy in PD. For that, they aimed to measure the futility of the drug 

in terms of prevention of the motor decline in PD patients, the validation the safety and 

tolerability of the drug in PD patients, the impact of simvastatin on activities of daily 

living and to distinguish symptomatic and disease modifying effects from simvastatin 

uptake [153]. The final results of the study  showed that simvastatin was futile as a 

disease-modifying therapy in patients with PD of moderate severity [154]. 

The Accelerating Medicine Partnership in Parkinson’s Disease (AMP PD) [149]: 

AMP program is a partnership between multiple biopharmaceutical and life sciences 

companies, the National Institute of Health (NIH),  and non-profit organisations. 

This initiative was set up to undertake a deep molecular characterisation and 

longitudinal clinical profiling of PD patient data and biosamples. The collection of such 

data is intended to enable researchers to identify and validate biomarkers of PD 

progression, prognostic and diagnostic. AMP-PD gathered data from well 

characterised cohorts with clinical data and biosamples available that were collected 

based on similar protocols and using common data elements. Among cohorts included 

in the latest release (release number 3) available when I last accessed AMP-PD data 

(20/01/2024), are: The MJFF and NINDS BioFIND study, Harvard Biomarkers Study 

(HBS), the NINDS Parkinson's Disease Biomarkers Program (PDBP), the LRRK2 

cohort consortium (LCC), NIA International Lewy Body Dementia Genetics 

Consortium Genome Sequencing in Lewy body dementia case-control cohort (LBD), 

the study of Isradipine as disease modifying agent (STEADY-PD3), the study of Urate 

elevation in PD (SURE-PD3), and MJFF Parkinson’s Progression Marker Initiative 

(PPMI). In addition, more recently, the Global Parkinson’s Genetics Program (GP2) 

has joined the AMP-PD portal to provide a rich dataset [155]. 
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PPMI is a multi-centre, international observational study [156]. PPMI is one of the most 

deeply phenotyped cohorts made publicly available to the community, with the primary 

objective of identifying and validating biomarkers that can aid in tracking the 

progression of Parkinson's disease. This initiative involves the recruitment of patients 

with Parkinson's disease at multiple centres across Europe, America, and Australia, 

adhering to the following selection criteria: 

- Asymmetric resting tremor or asymmetric bradykinesia or two of bradykinesia, 

resting tremor, and rigidity 

- Diagnosis within 2 years 

- Hoehn and Yahr Stage I or II at baseline 

- Untreated for PD, and not expected to require PD medication within 6 months 

at baseline 

- Dopamine transporter (DAT) imaging showing DAT deficit 

- 30 years or older at time of PD diagnosis 

Throughout the study, participants underwent assessments every 3 months during the 

first year, followed by assessments every 6 months until the conclusion of the fifth 

year, and subsequently, assessments were conducted annually. Cognitive evaluations 

occurred exclusively during yearly visits. Motor assessments during annual visits were 

conducted in the "practically defined off" state, where participants refrained from taking 

PD medications since the night before the visit and for at least 12 hours prior. Since 

cognitive and "practically defined off" motor assessments were carried out annually, 

only data from annual visits were included in the analysis. 

ii) Clinical instruments 

The serial measures of clinical phenotype with questionnaires and structured clinical 

examinations are a reliable and accepted indicator of progression, and the baseline 

phenotype may predict future progression. For example, the extent of tremor in PD 

patients can be quantified using clinical scales such as MDS-UPDRS [157]. Several 

studies have reported an association between tremor dominant PD and a benign 

disease course [158–161]. Such indicators of progression are a valuable resource as 

there may be an association between the underlying pathophysiology and the 
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phenotype. In the study of Eggers and colleagues they linked the more benign disease 

course in tremor dominant patients with a less pronounced dopaminergic deficit [158]. 

Understanding the heterogeneity in PD progression is a primary aim of many 

observational cohort studies [150,156,162,163]. These longitudinal studies focus on 

gathering clinical assessments sensitive to changes. Measuring and modelling 

progression is central to developing effective disease modifying treatments and to 

understanding the underlying disease biology. Within the GP2 program [155] we have 

surveyed the use of Parkinson's assessments across global studies and selected the 

best established ones as we move towards one of our goals of creating the largest 

deeply phenotyped PD federated longitudinal cohort available. I summarise these 

clinical instruments in Table 1. They have been used widely across global clinics and 

are considered good definitions of different aspects of PD progression and severity. 

Table 1. Summary of PD clinical measures and scales. 

Clinical measure Description 

Hoehn and Yahr [164] Motor progression based on symmetry, postural stability and gait  

Rankin Scale [165] Degree of disability or dependence in the daily activities of people 

who have suffered a stroke or other causes of neurological 

disability 

MDS-UPDRS Part I [157] Non motor experiences of daily living 

MDS-UPDRS Part II [157] Motor experiences of daily living 

MDS-UPDRS Part III  [157] Motor signs  

MDS-UPDRS Part IV [157] PD motor complications  

MoCA [166] Cognitive assessment 

SDM [167] Shared Decision-Making assessment between a professional and 

a patient to evaluate psychometric speed 

SCOPA-COG  [168] Scale sensitive to cognitive deficits in PD 

RBD Screening Questionnaire 

[169] 
Instrument to diagnose rapid eye movement sleep behaviour 

disorder (RBD) based on sleep behaviour measures 

Epworth Sleepiness Scale [170] Daytime sleepiness measure  

Geriatric Depression Scale [171] Clinical severity of depression among the elderly 

Schwab England ADL [172] ADL scale to determine dependence  

UPSIT Olfactory test [173] Sensibility of individuals to detector smells 

PDQ-8 [174] Quality of life in PD patients 

King's PD pain scale [175] Instrument to measure pain specifically in the PD population 
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Clinical measure Description 

MMSE [176] Cognitive impairment measure 

UPDRS Part I [177] Mentation, behaviour and mood 

UPDRS Part II [177] Activities of daily living 

UPDRS Part III [177] Motor examination 

UPDRS Part IV [177] Complications of therapy 

PD RFQ-U [178] Instrument to measure the exposure to: caffeine, tobacco, alcohol, 

physical activity, head injury, residential and occupational 

histories, NSAID and hormonal medications, body habitus and 

pesticide exposure 

Short description of all valid PD clinical scales summarised within the GP2 Cohort Integration Working 

Group. 

Some of these scales are disease specific and some are used across conditions. Even 

though they may be considered good markers of different aspects of PD progression, 

there is no gold standard as to which test to use when studying clinical progression. 

Each assessment has its strengths and weaknesses to quantify progression. 

When it comes to assessing PD motor progression, MDS-UPDRS III (PD motor 

examination) can be used to measure both response to levodopa treatment 

(symptomatic treatment) and the rate of change over time (progression) as exemplified 

by its widespread use in observational studies and RCTs. PPMI's original cohort 

consisted of de novo PD patients followed up during the course of 5 years, and the 

MDS-UPDRS scale was employed as one of the clinical assessments to measure 

motor and non-motor symptom severity in PD. A study using PPMI de novo PD 

patients was designed to characterise the progression pattern in untreated patients. 

They used the MDS-UPDRS scale to measure progression. They showed a linear 

increase of 2.4 (95% CI, 0.210–2.70 points per year) points per year in MDS-UPDRS 

part III total score (off medication), 0.92 points (95% CI, 0.80–1.05 points per year) for 

Part I (on medication), and  0.99 points (95% CI, 0.86–1.13 points per year) for Part II 

(on medication). Most of the changes in the MDS-UPDRS total score (a composite 

score made up by gathering each MDS-UPDRS subscale’s score) were driven by the 

changes from  MDS-UPDRS part III (estimated to account for 51% of MDS-UPDRS 

total score progression). Moreover, this study showed that the linear increase on the 

MDS UPDRS part III total score occurred in subgroups according to medication status. 

In the medicated group (patients that started taking dopamine medication at their 12-
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months visit) a slower, linear increase was seen (1.8 points per year) as compared to 

a faster linear increase seen in the unmedicated group (progression of 4 points per 

year)  [179]. 

In spite of the linear increase trend per year in the MDS-UPDRS scale reported on the 

PPMI de novo PD patients, whether the MDS-UPDRS scale is able to accurately 

capture disease progression during the early stages of the disease, is still uncertain. 

Regnault and colleagues used longitudinal MDS-UPDRS part II and III data in patients 

from the PPMI cohort, whose disease duration from diagnosis was ≤ 2 years, to 

investigate how well they explain the progression of early PD motor signs. They found 

both scales to have psychometric limitations which suggests a limited precision in 

measuring early motor signs. Limitation in the precision to measure early motor signs 

can decrease the sensitivity to detect differences in clinical change during the early 

stages of the disease. Particularly for MDS-UPDRS III, in spite of lacking single items 

to better measure changes in early PD, they found a clinically meaningful hierarchy 

explained by the scale, which makes it possible to be seen as a single metric across 

the severity continuum, hence MDS-UPDRS III could still be used as a basic measure 

to capture the basis of motor progression. On the other hand, MDS-UPDRS II was 

found to have more psychometric limitations, as the scale was not conceptually clear, 

even after an attempt of an scale reconceptualization, which may make the MDS-

UPDRS II less appropriate for measuring motor symptoms in early PD as well as in 

studying disease severity across time [180]. 

Evers and colleagues used a linear Gaussian state space model in a large 

observational cohort. With this type of statistical model, one can describe within-

subject changes over time, and quantify estimates for the variance introduced by noise 

(measurement error and short-term effects), as well as the variance due to differences 

between individuals' progression results. The authors showed that the within-subject 

reliability, that is the rate of change per individual, across all parts of MDS-UPDRS 

was low. However, the within subjects reliability was favourable for parts II and III on 

the OFF state, as compared with part I and III on the ON state, with the scores 

measuring mobility, gait and posture, and rest tremor having the most consistent 

behaviour, outperforming scores quantifying bradykinesia, rigidity, and kinetic/postural 

tremor. Therefore, as previously suggested by authors of the MDS-UPDRS scale, 

analyses based on the subscales rather than on the composite MDS-UPDRS score 
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are preferred. In addition, because mobility and gait scores are most reliable in 

measuring individual subject changes, this knowledge could help to further split MDS-

UPDRS subscales to more efficiently measure motor progression [181]. 

Although MDS-UPDRS part III is widely used in drug trials, other measures may 

outperform MDS-UPDRS part III or capture other important aspects of progression. 

Schrag and colleagues conducted a thorough comparison of clinical instruments in a 

community-based sample and a clinic-based sample, assessing the response to 

change over time of different scales measuring quality of life, disability, and 

impairment. This study showed that scales reflecting activity of daily living and 

functioning (SE, and UPDRS ADL part) were the most responsive to change over time, 

likely because overall function accounts for non-motor features as well as medication-

driven motor components. Moreover, HY was slightly more responsive to change over 

1 year than the UPDRS motor part III, for the clinic-based sample only [182]. 

Conventionally, clinical trials and observational studies have relied on face to face 

assessments at study centres at 1-6 monthly intervals. The advent of data collection 

from smartphones and wearable sensors could overcome widespread MDS-UPDRS 

scale limitations as they provide continuous and rater-independent measures of the 

patient's clinical state [181,183]. Despite the development of ambulatory devices to 

objectively measure progression, (MDS-)UPDRS, and HY, are still the most commonly 

used instruments to measure progression, and these scales are, to some extent, 

sensitive to change, with apparent differences according to disease duration (faster 

motor dysfunction in the first 5 years of the disease), and medication status (patients 

under PD medication show a decreased deterioration of motor signs) (Figure 1) [183]. 
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Figure 1. Overview of motor progression across patients included in the placebo 
arms of  treatment studies. 

 
Motor performance measured by (A) Hoehn and Yahr stage, (B) Total UPDRS Score, 
C) UPDRS III score, and (D) UPDRS II score.  On the X-axis, disease duration in 
years. In red, studies without antiparkinsonian medication. In blue patients on 
antiparkinsonian medication with clinical measures on the OFF state. In green, 
patients on antiparkinsonian medication with clinical measures on the ON state. 
Thicker lines indicate more than 200 patients at study entry. The start of the line 
indicates the mean disease duration at the study inclusion. Figure reproduced from 
Maetzlet and colleagues [183]. 

When it comes to measuring global cognition in PD patients, MoCA and MMSE are 

widely used screening instruments. However, it is not clear whether such instruments 

are sensitive to changes over time. A study was designed to compare MMSE, MoCA, 

and SCOPA-Cog in PD patients without dementia at study enrolment across 6 North 

American movement disorders centres. Data for the instruments was collected yearly. 

They compared the assessments in terms of responsiveness over time, which can be 

understood as a way of quantifying the ability of an outcome to detect meaningful 

changes in a patient’s health status over time. To measure the responsiveness over 

time, the authors used receiver operating characteristics (ROC) curves. They 

measured the area under the ROC curves (AUC) for MoCA (0.55 (95% CI 0.48–0.62)), 

MMSE (0.56 (0.48–0.63)) and SCOPA-Cog (0.63 (0.55–0.70)), with a larger AUC 
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meaning greater responsiveness to change. They did not find significant differences 

across the AUCs. Based on these results, they concluded that the sensitivity to detect 

decline in non-demented PD patients is poor. They hypothesise this might have an 

impact in clinical practice due to the lack of stable scores that capture cognitive decline 

[184]. 

Another study found that MMSE scores, as opposed to MoCA, declined significantly, 

which suggests that the MMSE may be more sensitive to cognitive decline [185]. In 

the OPDC cohort, Hu and colleagues found that MoCA was more sensitive in detecting  

changes than the MMSE, as they found that the MoCA declined  significantly during 

study [186]. There is discrepancy between the studies that attempt to define a gold 

standard for measuring cognitive decline in PD. Other studies have also compared the 

sensitivity of the score to detect cognitive decline in a cohort of 102 Chinese idiopathic 

PD patients followed up for 30 months. Chen and colleagues found that cognitive 

performance significantly declined at 30 months as measured by both MoCA and 

MMSE. The annual decline was 0.82 for MMSE, and 1.02 for MoCA, suggesting that 

the MoCA scale might capture more cognitive decline compared to the MMSE scale 

[187]. 

Kim and colleagues investigated the capability of three clinical assessments, MoCA, 

DRS-2 and MMSE to predict disease progression on a group of nondemented PD 

patients with at least two clinical assessments over time. They found MoCA as the 

only outcome significantly associated with progression to PD with dementia (PDD) and 

faster time to dementia [188]. These results suggest that MoCA-based statistical and 

prediction modelling might be powerful to predict future progression to dementia and 

might be more powerful to capture dementia than the other two clinical instruments 

they compared (DRS-2 and MMSE). 

iii) Statistical methods 

There are several statistical methods that can be used to explore the impact of genetic 

variation on disease phenotype and progression. The goal is to be able to define the 

average impact of genetics on the rate of progression in a well-powered and bias free 

manner. In this section, I summarise the different statistical models I used in my thesis. 
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Linear regression 

A linear regression is a type of statistical model which estimates the linear relationship 

between a quantitative outcome (dependent variable) and one or more explanatory 

variables (independent variables). We can distinguish between simple linear 

regression (only one independent variable) or multiple linear regression (more than 

one independent variable). Linear regression models make use of the linear function 

to estimate the model parameters for each explanatory variable (the so called 

regression coefficients, weights or “betas”) that can be used to predict the outcome of 

a dependent variable. To estimate the model parameters, linear regression models 

make use of “cost functions” on an optimization problem so the goal is to minimise 

such functions. The most widely used cost function in linear regression is the least 

squares approach, in which the goal is to minimise the sum of the squares of the 

residuals (the difference between the observed value and the value estimated by the 

model). 

We can use these models to determine the amount of variation in the dependent 

variables attributed to the explanatory variables, as well as to determine the strength 

of their relationship. By using linear models in genetic studies, I can characterise the 

relationship between genetic variation and an outcome of interest such as a 

quantitative measure of PD severity based on a cross sectional clinical outcome or PD 

progression based on an average rate of change of a longitudinal assessment. 

Logistic regression 

Logistic regression is a powerful statistical modelling technique used to estimate the 

probability of a binary outcome based on one or more explanatory variables. At its 

core, this method employs the logit function—the natural logarithm of the odds—to 

transform probabilities from the bounded interval (0,1) to the entire real number line (-

∞,+∞). This transformation allows for linear modelling of the relationship between 

predictors and the log-odds of the event of interest. 

The model's foundation lies in the sigmoid curve, also known as the logistic function, 

which maps real-valued inputs to probabilities. The inverse of this function, the logit, 

serves as the link function in logistic regression, enabling the estimation of log-odds. 
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In binary logistic regression, the response variable is dichotomous, typically coded as 

0 or 1. The model estimates the log-odds of the event (coded as 1) occurring, given a 

set of predictor variables that may be continuous, categorical, or a mixture of both. 

The relationship between these predictors and the log-odds is assumed to be linear. 

Parameter estimation in logistic regression is commonly achieved through maximum 

likelihood estimation. This method identifies the values of the model parameters that 

maximise the likelihood of observing the given data under the assumed model. 

In my research, I applied logistic regression to both traditional case-control studies 

and within-case genetic analyses. These applications allowed me to quantify the 

association between genetic variants and disease occurrence by estimating the log-

odds of disease presence conditional on genetic markers. This approach provides 

valuable insights into the genetic basis of diseases and can inform risk prediction and 

personalised medicine strategies. 

Generalised linear model (GLM) 

GLM is a generalisation of linear regression. GLM can model dependent variables with 

any type of distribution (as opposed to simply normal distributions required in linear 

regression). They make use of a link function of the response variable which varies 

linearly with the predictors. Likewise GLMs unify various models such as linear 

regression and logistic regression. In case control studies, in which  there is a binary 

response (disease or healthy condition), or in other words, a Bernoulli variable, a linear 

regression model is not suitable as probabilities are bounded on both ends. The log-

odds function serves as a link function between the probability and the linear 

regression expression. This is because the log-odds function ranges between 

(−∞,+∞), as I said earlier, so that linear regression can be applied, and once 

coefficients are estimated through linear regression, the log-odds can be easily 

converted back into probabilities. 

Linear mixed effect model (LMM) 

LMM is an extension of the ordinary least-squares (OLS) regression. LMM is used to 

incorporate hierarchical data such as serial measures. In longitudinal data, the OLS 

model assumption of observations sampled independently and randomly from the 

population is not met, as patient level observations are sampled from the same group 
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repeatedly, so there is non-independency in the data within groups. LMMs mitigate 

this assumption by taking into account the correlated nature of observations within 

groups. There are two sources of variance within hierarchical data, that is within 

groups (i.e. individual level serial observations), or between groups (i.e. patients with 

or without a candidate predictor variable, in this case a single nucleotide variant across 

patients).  

LMMs incorporate fixed and random effects. Fixed effects match those from OLS or 

multiple linear regression, as it is a parameter associated with each covariate that is  

non-random and considered to be constant for the population being studied. Fixed 

effects are consistent at the group level (i.e. individuals). An example is the overall 

effect of the SNP under investigation that is consistent across individuals. This 

parameter is an estimation of the true coefficient in the population based on our data. 

Random effects are parameters that account for unexplained sources of variance (i.e. 

differences between individuals). Random variability can be included at two levels, the 

intercept and the slope. With a random intercept we allow for differences in the 

intercept between the population average and each individual intercept. With a random 

slope, we allow for differences between the population average slope and the 

individual slope. Therefore, in LMMs, the parameters are no longer fixed, but have a 

variation around their average values, and this usually provides a better fit and 

explains more variation than strategies based on OLS. 

LMMs are able to account for unbalanced data, allocate individuals with incomplete 

records (individuals missing any time point during study duration), and are more 

informative as they capture the heterogeneity of complex traits over time, resulting in 

an increase of power to detect significant associations and reduction of false positive 

rates, as opposed to aggregated strategies. 

Cox proportional hazard model (CPH) 

Survival is a term used to refer to the time from a start point to the occurrence of an 

event (i.e, death, progression to a clinical milestone). Therefore, survival analysis 

refers to those statistical strategies to investigate the time for the occurrence of an 

event. When we want to use observational studies to perform a survival analysis on 

an event of interest, right-censoring might occur (study finishes and a patient has not 

experienced the event yet; a patient is lost to follow up). Right-censoring is efficiently 
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handled on survival analysis. Based on the observed survival times from observation 

studies, the survival probability can be estimated using the Kaplan-Meier 

nonparametric method. CPHs is a type of survival model to measure the association 

between the survival probability and multiple factors that may influence the survival 

time. The interpretation of the outcome-factor relationship is based on the hazard rate, 

which is the event rate at a time point (t) conditioning on surviving at least until that 

time point (t). A covariate coefficient greater than zero equals a hazard ratio greater 

than one, which indicates that the value of that covariate increases, the event hazard 

increases, therefore the survival time decreases as well.  

Cox models are widely used in medical research to test treatment assignment, so that 

one can test the hazards of taking a medication against being untreated to assess the 

effectiveness of a drug on an outcome such as disease progression. Cox models are 

also used in genetic association studies to assess the impact of patients carrying a 

certain genotype, and the impact on the survival time while adjusting for confounding 

variables such as age (if we were assessing time to mortality, and one of the groups 

were older, that group would be more likely to die earlier due to the unaccounted effect 

of ageing on mortality).  

There is one assumption for Cox models to generate unbiased effect estimates, and 

is that the hazards must be proportional during the study length. If the hazards of a 

given genotype on the subject are not constant over time, then conclusions about the 

survival time and outcome relationship through Cox models would not be valid and the 

model should be rejected. To check if this assumption is met, there are several 

statistical tests and graphical diagnostics that can be used. In my Thesis, I normally 

plotted the Kaplan-Meyer curves that enable to visually inspect the proportional 

hazards hold true. I also used the scaled Schoenfeld residuals (time-independent 

residuals) to correlate them with time and test for residuals-time independency. 

iv) Algorithms 

The standard approach to conduct genetic association studies is to apply the statistical 

models previously described at a genome-wide scale, which is testing genetic variants 

genome-wide against an outcome of interest. I can apply the same idea to explore 
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how a specific phenotype progresses over time, so use repeated measures during a 

study length and evaluate the impact of genetics on those progression trends. 

Even though LMM makes possible the modelling of hierarchical data, they become 

computationally expensive when performed at a genome-wide scale, that is when 

performing ~6,000,000 independent tests. Recent studies have focused on finding 

more efficient approaches around LMM to shorten the compute time, making such 

type of large scale analysis possible. In 2012, Sikorska and colleagues explored 

several methods to decrease the compute time of longitudinal GWAS while producing 

accurate estimates. They compared the methods and found a conditional two step 

approach was the best performing method. This method was based on the idea of 

conditional inference. They estimated the longitudinal effects on the baseline 

characteristics omitting SNP information. In the case the reduced model is mis-

specified by the effect of SNP cross-sectionally or longitudinally, the subject-specific 

slopes would contain information about the evolution of the outcome of interest for the 

different SNP alleles. Therefore, on a second step the best linear unbiased predictors 

of the subject-specific slope can be regressed on the SNP using a simple OLS [189]. 

Ning and colleagues developed the GMA method, which is composed of GMA-fixed 

based on a fixed regression strategy with eigenvalue decomposition, and GMA-trans, 

which applies a linear transformation of genomic estimation values for unbalanced 

(individuals may be recorded at different time points) and balanced (all individuals are 

measured at the same time points) longitudinal traits [190]. TrajGWAS is a method 

that scales linearly with the number of individuals. It allows us to assess the 

contribution of genetics to the mean level of biomarker trajectories or their fluctuations 

(or individual variability or within-subject variability), which are both a form of 

longitudinal trajectories [191]. Another approach, HiGwas, is based on a function-

values approach to select significant SNPs based on lasso penalty and estimate their 

time-varying genetic effects that follow biologically interpretable functions [192]. 

There are two other novel algorithms that I have incorporated in my genetic 

association studies due to their very efficient reduction in computational time as well 

as the very accurate approximations to LMMs. 
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Simultaneous correction for empirical Bayesian estimates (SCEBE) 

SCEBE is an algorithm adapted to explore genome-wide associations with longitudinal 

outcomes through mixed-effect modelling.  With SCEBE, we fit a base mixed-effects 

model and used the predictors of random effects from the base model as phenotypes 

for GWAS through a linear regression model. Because the predictors of random 

effects are affected by shrinkage to population mean, as they are the weighted sum of 

the population and sample mean, using them as phenotypes would lead to biased 

estimations of the SNP effect estimated P-values. Yuan and colleagues quantified the 

bias in SCEBE and added it as a correction matrix, allowing us to generate unbiased 

SNPs metrics [193]. 

Genome-wide Analysis of Large-scale Longitudinal Outcomes using 
Penalization (GALLOP) 

GALLOP is a high speed algorithm that enables the estimation of the cross-sectional 

and longitudinal SNP effects and the P-value of the test-statistic. GALLOP relies on 

the small SNP effects on outcomes on GWAS settings. We can estimate the variances 

in a base LMM and make the assumption of the model variances not changing after 

adding a given SNP due their very small effect sizes (the proportion of variance 

explained by a SNP on a LMM will be very small). Using the equivalence between a 

mixed model and penalised least squares, a system of many linear equations is set 

up and the result is a very sparse system with only the last rows and columns changing 

from SNP to SNP, which will result in a low memory use. This approach decreases the 

computational time by three orders of magnitude compared to the use of pure LMMs 

at the genome-wide scale [194]. 

v) Genetic approaches to disease progression 

Here, I summarise some of the different approaches that research groups have used 

to investigate the impact of genetic variants on longitudinal traits. 

Gorski and colleagues made use of multiple cohorts, including UK Biobank, to define 

for each individual the decline of estimated glomerular filtration rate (eGFR), which 

can progress to overt kidney failure. They used the annual eGFR decline to define 

genetic variants significantly associated with the annual decline [195]. Whereas these 

approaches are accurate and they are efficient surrogates of progression, they might 
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be underpowered as opposed to strategies that make use of all the repeated measures 

as continuous outcomes [196]. 

A genetic association study of early childhood growth made use of longitudinal growth 

traits from multiple cohorts based on a two-step approach. They used LMMs to derive 

sex-specific individual postnatal growth velocity and BMI curves in children from data 

collected from primary health care or clinical research visits. Then, they performed 

GWAS on six harmonised early growth traits and found four variants at four 

independent loci associated with three early growth traits, one of them, a newly 

discovered variant at the LEPR/LEPROT locus [197]. Adkins and colleagues 

investigated the common genetic variants predicting developmental trajectories of 

alcohol consumption in three longitudinal community samples. They used a two-step 

approach to first compute a subject-specific alcohol consumption trajectory adjusted 

on age, and then regressed on additive SNP effects based on linear regression [198]. 

Tan and colleagues carried out a GWAS on the rate of change in forced expiratory 

volume in the first second (FEV1) across 14 longitudinal, population-based cohort 

studies. The study encompassed 27,249 adults of European ancestry and employed 

a linear mixed-effects model for the analysis. They identified two novel genetic loci in 

association with the rate of change in FEV1 that harbour candidate genes related to 

lung function [199]. Allen and colleagues performed GWASs using LMMs with random 

slope and intercept with an (Time  x SNP) interaction term, to identify genetic variants 

associated with declining lung capacity or declining gas transfer after diagnosis of IPF 

[200]. Smith and colleagues used Cardiovascular disease (CVD) risk factors recorded 

from childhood from the Bogalusa Heart Study, a longitudinal study focused on the 

early natural history of CVD. They used LMMs to estimate e. SNP and SNP x AGE 

interaction effects separately. They found genetic variants associated with CVD risk 

factors in a time-dependent (SNP x time effects on risk factors)  and time-independent 

(SNP only effects on risk factors) fashion [201]. All these studies showed good power 

to investigate genetic association with longitudinal outcomes. Previous research found 

that efficient two-step approaches provide unbiased test-statistics and effect sizes of 

SNPs as opposed to regressing longitudinal traits on SNPs on LMMs genome-wide 

[193]. 

The algorithms we described in the previous section to investigate the genetic impact 

on longitudinal traits in large scale analyses are largely underused. He and colleagues 
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made use of the previously described tool, TrajGWAS to assess the influence of SNPs 

on the bone mineral density (BMD) trajectory mean as well as on the within-subject 

variability of BMD. They used data from 141,261 white participants from the UK 

Biobank with heel BMD phenotype data [202]. Yang and colleagues also investigated 

if during pregnancy and the postpartum period, genetic variants were associated with 

the mean and variance of platelet counts [203]. Benchmarking on these proposed 

methods to further prove the accurate approximation to LMMs and as well as to 

nominate the better performing algorithm is still needed. 

b) GWAS concepts and methods 

i) Genotyping and whole genome sequencing 

Whole genome-sequencing (WGS) 

WGS is a process through which the entire DNA sequence of an organism from both 

chromosomal and mitochondrial DNA is determined, although in practice WGS 

coverage ranges between 90-95%. During the last years, WGS has become more 

accessible thanks to the advent of new technologies such as next generation 

sequencing which entails improvements in massively parallel analysis, high 

throughput, and reduced costs. 

Genotyping 

Genotyping is a method to characterise the individual’s DNA at certain genomic 

positions. Genotyping is distinct from DNA sequencing, which is a method to 

determine all nucleotides on a specific DNA fragment. 

Microarrays are used to genotype thousands of different informative loci at a time, 

thanks to the ability to deposit different DNA sequences on a small surface, normally 

a glass slide. The microarray principle is based on complementary sequences binding 

to each other. Oligonucleotides with certain DNA combinations (probes) bind to the 

DNA of interest to detect sequence variants [204]. Therefore, when a sample 

complementary DNA is washed in the microarray, fragments of the molecule hybridise 

to a probe and the scanning software, called genotype calling, determine the genotype 

found on each probe [205]. 



 

59 

Microarrays have evolved to include both common genetic variation and disease 

specific variants. This is possible thanks to the knowledge of the heritable component 

of multiple diseases. The NeuroBooster array (NBA) is a good example this type of 

array. It is designed to boost the genetic coverage of loci linked to neurological 

diseases. NBA contains a backbone of 1,914,934 genetic markers from the Infinium 

Global Diversity Array-8 v1.0, complemented with custom content of 95,273 disease-

associated variants involved in a wide range of neurological conditions [206]. 

Genotyping data is commonly used in clinical and experimental studies. Its most 

extended application is in GWAS, in which all genetic variants across the entire 

genome are assessed for association with traits or diseases. 

ii) Linkage disequilibrium (LD) 

LD is the term used in population genetics to refer to the non-random association of 

alleles at two or more loci [207]. LD patterns are of importance in evolutionary biology 

as it provides clues about past events. Throughout the genome, LD reflects the 

breeding system, the population history and geographical subdivisions. At each 

specific genome region, LD reflects natural selection, gene conversion, mutation and 

other factors that influence the evolution of gene-frequency [208]. As an example, in 

some genomic regions, LD patterns correlate with recombination hotspots, so LD can 

be seen as a function of crossover distribution [209]. LD patterns are not constant, and 

vary across genomic regions as a result of stochastic factors such as different gene 

history across loci [210], and across populations [211]. 

For a pair of loci, the coefficient of LD is defined as the difference of the frequency of 

gametes carrying a pair of alleles at two loci (A and B) (Pab) and  the product of the 

frequency of those two alleles (Pa x Pb). Linkage Equilibrium occurs when this 

difference is equal to 0. For more than two loci, pairs of loci are normally grouped in 

the so called haplotype blocks, which are non-overlapping loci in strong LD [208], 

separated by regions of recombination events [209,212]. This suggests an 

hypothetical division of the genome into regions of high LD separated by narrow 

recombination hotspots [213]. The HapMap project confirmed the generality of 

recombination hotspots in the genome, the large lengths of segments in high LD, and 

the low haplotype diversity  [211]. 
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The block-like structure of the genome was a revolutionary discovery as they were of 

practical use in case-control association studies, enabling the use of one SNP in each 

block as an approximation of association of all the SNPs on that haplotype block [214]. 

The applications that arise from LD knowledge include mutation and gene mapping, 

detecting natural selection, and estimating allele age [208]. The LD structure of the 

genome has been used to develop widely used statistical frameworks to correct 

genomic inflation in genetic association studies [215]. LD can also be used for 

imputation [216]. 

ii) Imputation 

Imputation is a process used to infer missing genotypes from genotyping data. 

Imputation techniques rely on reference panels of tens of thousands of complete 

genomes from common ancestors and the LD structure of the genome. Likewise, 

reference and target genotyped samples can be matched to identify the shared 

patterns in DNA sequence, and the missing genotypes within the shared haplotypes 

can be inferred. To accurately impute missing DNA sequences from SNP array data, 

phasing is necessary since genotyping data is unordered [217]. Phasing is the process 

of deducing haplotypes by separating or ‘phasing’ maternally and paternally derived 

sequence information [218]. Imputation is usually performed as it increases the power 

of genetic association studies by increasing the number of variants that are available 

for hypothesis testing.  

One of the major steps forward in imputation has been the efforts driven by large 

projects such as HapMaP, 1000 Genomes, UK10K, and the Haplotype Reference 

Consortium  projects [219–222]. These large initiatives have been redefining and 

improving methods for the characterization of DNA genome-wide across several 

samples, reporting allele frequencies, types of DNA differences, as well as estimating 

the correlatory structure of the genome, which is possible due to the inherent LD 

structure of the genome, hence defining confident haplotype blocks. Based on the 

knowledge that such reference panels provide us with, microarrays can lead to yet 

confident and complete genomes in a very cost effective manner. The largest 

reference panel to date is the Trans-Omics for Precision Medicine (TOPMed), 

gathering 400,000,000 single-nucleotide and insertion or deletion variants across 

130,000 samples at date of publication. Release 3 of the panel (the most up to date 
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and currently available to the scientific community), includes 133,597 reference 

samples and 445,600,184 genetic variants distributed across the 22 autosomes and 

the X chromosome. 

At the same time that massive reference panels are generated, web servers for 

genetic data users are also available. This is a key point as increasing reference panel 

size also increases the computations cost of imputation, which would prevent every 

day users accessing and using them. The TopMed Imputation server, and the 

Michigan Imputation servers are the most powerful and widely used by the research 

community [223,224]. 

Similarly, this increase in computational cost has motivated the research community 

to develop optimised computational methods in multiple ways. By 25-03-2024, the 

most used imputation algorithms include IMPUTE2 [225], Minimac [226] and Beagle   

[227,228]. Eagle [229,230], SHAPEIT2 [231], and Beagle 5.1 can be used for 

imputation [232]. 

As part of this PhD, I individually imputed all the genotyped cohorts in the Michigan 

Imputation Server (MIS) [226]. In order to prepare data for imputation in the MIS 

specifically, I ran the Will Rayner tool for further quality checks according to the HRC 

Panel [233]. Prior to imputation, I updated strand, position, and reference / alternate 

allele assignment, as well removing A/T and G/C SNPs if MAF> 0.4, SNPs with > 0.2 

allele frequency difference, and SNPs not present in the HRC Panel [234]. Then, I 

imputed it in the MIS, using Minimac4 [235] as the genotype imputation software, HRC  

as the Reference Panel for imputation, and  Eagle v2.4 [236]. Similarly, I used TopMed 

Imputation Server for imputation of some cohorts. 

iii) Quality control steps 

Before and after data imputations, quality control is performed. Quality control is done 

at different stages and levels: 

Sample level QC: At the patient level, I removed samples with low genotyping rates 

(<98%), sex mismatch between reported sex and the genotype derived sex, 

heterozygosity outliers (I considered samples as heterozygosity outliers if they 

deviated more than ±3 standard deviations (SD) away from the mean cohort 



 

62 

heterozygosity rate).  To remove one of paired related individuals, using GCTA 

software (version 1.93.0 beta for Linux) [237], I created a genomic relationship matrix 

from pruned data between pairs of individuals, and I removed one of a pair of 

individuals with estimated relatedness larger than 0.125, equivalent to second degree 

relations. To deal with population stratification, I performed a principal component 

analysis (PCA) over pruned genotype data of each independent cohort merged with 

Utah residents with Northern and Western European ancestry (CEU), Han Chinese in 

Beijing, China (CHB), Japanese in Tokyo, Japan (JPT), and Yoruba in Ibadan, Nigeria 

(YRI) populations from the HapMap reference panel to identify non-European ancestry 

sample [238]. At first, I visualised each cohort with CEU, CHB, JPT, and YRI 

populations, so as to make a decision on the threshold  of SD away from any of the 

mean 10 first PCs from the CEU population to consider non-European ancestry 

samples. Finally, a second filter was applied  to further remove  heterozygosity outliers, 

as well as samples with low genotyping rate (<95%) based on recalculated relatedness 

and missingness frequencies on the remaining samples. 

Variant level QC: At a genotype level, I removed variants that had a missing rate 

higher than 0.05, variants with a minor allele frequency (MAF) of less than 0.01 or 

0.05, and variants whose missing calls were not randomly distributed by testing 

whether missingness status could be predicted from genotype calls at the two adjacent 

variants. Moreover, I excluded variants with extreme Hardy-Weinberg equilibrium 

(HWE) deviations as they are indicative of sample contamination. (P Value<1e-10) 

[239]. 

Post-imputation QC: To only work with variants that were imputed with high 

confidence, I removed those with an estimated value of the squared correlation 

between imputed genotypes and true, unobserved genotypes (Rsquared or Rsq) < 

0.8. Furthermore, I excluded variants with low genotyping rate (<95%), and  MAF < 

0.01, resulting in over 500000 SNPs available across cohorts. 

Post-meta-analysis QC: Once the meta-analysis was complete, I removed variants 

with MAF variability between cohorts higher than 15%, and also those variants 

showing high between-study heterogeneity according to the Cochran’s Q-test  (P < 

0.05) and I2 index (variants with an heterogeneity higher than 80%). 
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iv) GWAS 

GWAS is the  core approach in PD genetics research and in the general population 

genetics field, as it allows us to freely scan the genome in search of associations 

between genetic variants and disease with disease (in the case-control studies) or the 

severity of a phenotype and its progression. In GWAS, we can assess genetic variants 

under three different assumptions that fit any statistical model. Normally, GWAS focus 

on SNPs, usually those with MAF greater than 1% or 5%. A variant can be studied as 

being additive, that is, the effect of the polymorphism is cumulative. Therefore, the 

effect on the phenotype or trait will be higher if a variant is present as homozygous 

than heterozygous. Genetic variants can also be studied under dominant or recessive 

models. The dominant model assumes that a mutation in one allele is sufficient for the 

development of the phenotype and there is no cumulative effect. On the other hand, 

creating a recessive model assumes that a SNP must be present in the two alleles to 

have an effect on the phenotype. 

The power of GWAS to detect significant associations depends on the sample size, 

the frequency of those variants associated with traits, the effect size of those variants, 

the heterogeneity of the trait studied, as well as the LD structure. As the sample size 

of the population studied, the effect of a disease-associated variant, and the allele 

frequency increase, the power of GWAS increases. Interestingly, it is worth noting that 

there is not much difference in power when doing GWAS based on imputed data from 

SNP arrays or WGS except for ultra-rare variants (frequency less than 1e-5) (Figure 

2) [240]. For the estimation of the imputation accuracy, Vissner and colleagues used 

the average imputation Rsquared values reported by the HRC study in 

Supplementary Figure 3 [222]. 
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Figure 2. Sample Size required to detect association from Imputed (red) and WGS 
(blue) data. 

 

On the Y axis, sample size, and on the X axis minor allele frequency. Each plot 
represents the minimum sample size to detect an association of a SNP with a certain 
MAF, for different effect sizes expressed in phenotypic standard deviation units. Figure 
reproduced from Visscher and colleagues [240]. 

Therefore, increasing the experimental sample size will lead to new insights into the 

segregating variants significantly associated with complex PD phenotypes and derived 

traits such as progression, superficially for those whose effect and AF is lower as they 

can only be uncovered with larger sample sizes. 

In a simple GWAS setting, I will test the same hypothesis for all SNPs that remain after 

all QC procedures. Taking into account the LD structure of the human genome this is 

thought to be equivalent to a million independent tests.  Correction for multiple testing 

is needed in order to decrease the False Positives Rate. Currently, a genome-wide 

significance P-value threshold of 5e-8 is standard to report true common (MAF ≥ 5%) 

genetic associations, a stringent threshold adopted to avoid type I errors. 

A crucial step after performing a GWAS is to check that there is no genomic inflation, 

suggesting population stratification and a systematic underlying difference between 

cases and controls. With Quantile-Quantile plots (QQ-plots) one can visualise the 

observed P-values from the GWAS against the expected P-values from a theoretical 

χ2-distribution. A diagonal line indicates the overlap between the observed and 

expected P-values so that an early departure from the diagonal indicates inflation, 
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normally attributed to population structure [241]. Lastly, Manhattan plots are used to 

graphically represent the results of all statistical tests conducted. The plot is named 

after the skyline of Manhattan due its resemblance to the vertical arrangements of 

buildings on the island. On a Manhattan plot, the X-axis represents the genomic 

position of genetic markers along the chromosomes, and the Y-axis represents the 

significance of association between each genetic variant and the trait or disease being 

studied. This is often measured as the negative logarithm of the p-value obtained from 

statistical tests. Therefore, in a Manhattan plot, each SNP is represented by a point 

on the graph. 

v) Meta-analysis 

The power of genetic association studies is dependent on sample size, hence we are 

limited by the sample size of each cohort. Meta-analysis is a statistical approach that 

leverages results from different studies increasing overall study sample size, and, as 

a result, decreases the standard error (SE) of the effects of variants on outcomes, as 

there is a closer representation of the more general PD population. Meta-analysis 

provides us with more reliable results for the association effect. If there are cohort-

specific false positive associations (type I errors), these will not be significant in the 

meta-analysis as the results will not be supported by the other cohorts. Conversely, 

as a result of increasing sample size, small effects remaining undetectable (type II 

error) in small cohorts, may be picked up from meta-analyses [242]. Results derived 

from meta-analysis are statistically as efficient as joint participant data analysis [243]. 

Therefore, meta-analysis improves joint cohort analyses and reduces the use of 

resources [243]. 

There are two types of meta-analysis models, fixed effects, which makes the 

consideration that genetic factors have similar effects on the outcome between cohorts 

and that the observed variation happens by chance, and random effects, which 

considers that there is diversity among studies relating to true underlying allelic-effect 

heterogeneity [242]. To conduct meta-analyses I have used METAL software (version 

released on the 2011-03-25) [244]. METAL enables meta-analysis based on two 

different approaches. The first approach converts the effect directionality and P-value 

of a model variable into a signed Z-score across studies. This Z-score is combined 

across studies in a weighted sum, with the weight being proportional to the square-
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root of the sample size for each study. A second approach is based on weighting the 

effect sizes of the model variable per study by their SE. The way I performed meta-

analyses was based on a fixed-effects model weighted by β coefficients and the 

inverse of the SE [244,245]. I chose a meta-analysis over a merged analysis because 

of the heterogeneity in the inclusion and exclusion criteria across the clinical cohorts, 

and the differences in the genotyping approaches, as well as the statistical 

equivalence [243]. 

To correct summary statistics for any population stratification or cryptic relatedness 

bias, I applied genomic control correction to the cohort-specific summary statistics by 

computing the inflation of the test statistic, and then applying a correction to the SE.  

vi) Polygenic risk score (PRS) 

Variants nominated in GWAS tend to have a small effect on the phenotype of interest, 

and when they are assessed separately, their predictive capability is very limited. 

However, when we combine the effects from all the independent variants associated 

with an phenotype or trait, then this aggregated measure captures much of the 

heritability of the trait [246]. PRS is a method that has been developed to capture the 

aggregated effect of all those genome-wide variants associated with traits to increase 

the power and accuracy to predict phenotypes based on genetic variability alone 

[247,248]. More technically, PRS is calculated at the individual level as a sum of all 

the genotypes as genetic markers for a trait, genome-wide. Normally, genotypes are 

common (MAF > 0.01), biallelic SNPs, based on GWAS design. Those target 

genotypes are then weighted by their effect size inferred from GWAS results [248]. 

I used PRSice software (version 2) to compute PRS. I set a threshold of P < 1e-6 to 

include all independent nominal significant GWAS variants that make up the PRS 

[249]. I selected independent SNPs by clumping within  ±250 Kb from the index SNPs 

( the most significant SNP on a genomic window). I used the SNP betas as the 

estimate to compute the PRS. Sex, standardised AAO, and the first 5 PCs were added 

as covariates to the PRS estimation process. To compute the LD estimates, I used the 

imputed cohorts from which I calculated the PRS, as they were large enough to provide 

accurate LD estimates (N > 500). To validate the PRS as an instrument to distinguish 

between PD patients with and without  LiD, I derived time-dependent ROC curves, 
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under the assumption that different PRS loads might cause changes to time-to-LiD 

onset. I used the Inverse Probability of Censoring Weighting (IPCW) estimation of 

Cumulative/Dynamic time-dependent ROC curve from the ‘timeROC’ R package 

(version 0.4). To compute the weights, I used the Kaplan-Meier estimator of the 

censoring distribution. 

c) Functional annotation for decoding GWAS  

Although  many GWASs have been conducted revealing novel associations with PD 

risk and traits, the interpretation of nominated variants remains challenging. In 

sporadic PD, as we depart from clear Mendelian inheritance patterns, the 

interpretation of GWAS is confounded by the LD structure of the genome and is limited 

to our functional understanding of the genome and available assays. In such “complex 

traits”, there are many variants, hence genes, involved in disease, which can interact 

in an additive or non-additive way [250]. This scenario complicates the understanding 

of the underlying biological mechanism. 

As stated by Francis Crick in the central dogma of molecular biology, genes are 

transcribed into messenger RNA, and then translated to protein [251]. Therefore, 

changes at the DNA level, that is mutations in protein coding genes, or mutations in 

non-coding regions, could result in the translation of aberrant proteins due to a change 

in the protein sequence, or a dysregulation in expression altering the RNA levels or 

splicing.  

The majority of the genome is made of non-coding regions, where many regulatory 

elements exist and mediate the transcription of many genes, and this regulation can 

happen in cis (regulatory regions close to genes up to 1Mb) and trans (distal 

regulations that can happen even between loci in different chromosomes). Regulatory 

elements in the non-coding genome are enriched for disease-associated variants 

[252,253]. In addition, chromatin accessibility varies across the genome and cell types 

and there are loci transcriptionally more active than others [254], which suggests the 

non-coding genome activity is complex and genetic variation in the regulatory 

elements are linked with disease in a cell type specific manner. 
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Towards gaining novel insight into how regulatory elements control cell type specific 

gene regulation, large consortium studies have successfully provided maps of 

functional and regulatory elements [255,256]. Novel approaches have provided 

updated predictions of regulatory maps that link enhancers to genes based on 

extensive epigenetic assays at multiple tissues and cell types [257,258]. In addition, 

eQTL are derived from the combination of RNA-seq studies and genotyping or whole-

genome sequencing studies. They provide insights into how loci are associated with 

gene expression and which genes are regulated by loci across the genome in humans 

[259,260]. eQTLs are enriched for trait association [261]. Nevertheless, none of these 

approaches are able to nominate causal variants, and therefore, statistical fine-

mapping is needed to understand correlated structures due to LD.  

In order to shed light into the underlying functional alterations linked to different PD 

traits, I list here the approaches I have recurrently used throughout the PhD to decode 

GWAS. 

i) Fine-mapping 

It is often the situation in which we nominate an LD block from a GWAS. In order to 

statistically support inferences made about the potential SNPs nominated to cause a 

specific trait, fine mapping tools are the gold standard approach to decode LD blocks 

by finding the genetic variant or variants responsible for complex traits [262]. Fine-

mapping has been validated to confidently infer the causal variant or variants from 

GWAS summary statistics [263]. 

The three main statistical approaches to perform fine-mapping are based on heuristic 

methods, penalised regression models, and Bayesian methods. At a genomic level 

these approaches can be based solely on the LD structure and association statistics, 

or can incorporate functional data such data derived from expression and splicing 

analysis. These methods make use of different parameters: number of causal SNPs 

in a region as well as their effect size, the LD structure around the lead SNP, sample 

size, the SNP density and whether  the causal variant can be measured or not. 

Bayesian methods are the most widely used, since simulation studies have shown fine 

mapping Bayesian methods to perform best [262]. Bayesian methods create 2^m 

models with SNPs as discrete variables, as causal (1) or non-causal (0). Based on this 
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posterior inclusion probability (PIP) indicating the probability for each SNP being 

causal, are computed. Moreover, a credible set (CS) can be derived through a 

parameter (α). This CS is just a cumulative PIP containing the minimum set of SNPs 

reaching the probability α. Moreover, some tools make use of a variety of functional 

annotations to increase the resolution of PIPs [262]. 

ii) GCTA-COJO 

When interpreting a locus from GWAS results, usually the SNP showing the most 

significant statistical evidence for association is considered as the “top” SNP and the 

one that represents the locus. This top SNP might not be underlying causal SNP and 

the association arises just as a result of the correlation with the phenotype-causing 

SNP due the LD structure and background allele frequencies at the locus [264]. The 

top SNP is assumed to capture the maximum variation in the locus under study, and 

this is an assumption that may not hold true in two plausible scenarios: Despite the 

presence of only one causal variant in the locus, the top SNP might only partially 

capture the overall variation at the locus [264,265]. In the second scenario in which 

there is more than one independent causal variant at the locus, a single SNP is unlikely 

to capture all the LD structure between more than one unknown causal variant [264].   

To efficiently annotate GWAS results at the locus level, it is necessary to uncover all 

independent causal variants to account for the total variation and the causal effect on 

the phenotype. GCTA-COJO is a tool that enables users to perform conditional and 

joint analyses based on a stepwise selection procedure to select the SNPs based on 

conditional P-values and likewise estimate the joint effects of all selected SNPs after 

model optimization [264]. In addition, GCTA-COJO enables us to perform association 

analysis conditioning on a given list of SNPs, to explore the conditional effects of all 

SNPs at a locus. 

iii) Coloc 

Colocalization is a powerful method to evaluate whether two independent signals at 

the same locus are consistent with a shared causal variant. Colocalization analysis 

can be performed between any pair of traits such as different GWAS traits or a case-

control or phenotype GWAS vs a quantitative trait locus (QTL), which can represent 

any locus that is associated with the variation of a phenotypic trait. A typical setting 
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application that I have explored include a nominated locus from a GWAS, and an eQTL 

datasets containing loci associated with the variance in the levels of mRNA expression 

or splicing. When the two traits colocalize, it means they share one causal variant, 

hence, it is likely they also share biological mechanisms (i.e. in this example a causal 

variant from the nominated GWAS locus associated with the trait through the 

regulation in expression of a gene A).  

There are different approaches to perform colocalization analysis. During my PhD, I 

have used coloc, an R package developed by Chris Wallace [266]. Coloc tests, under 

a Bayesian Inference framework, five different hypothesis for two datasets with the 

same  allele frequency, and LD that is, samples from the same ethnic group: 

- H0: No association with either trait 

- H1: Association with trait 1, not with trait 2 

- H2: Association with trait 2, not with trait 1 

- H3: Association with trait 1 and trait 2, two independent SNPs 

- H4: Association with trait 1 and trait 2, one shared SNP 

For a region of Q variants, coloc constructs binary vectors for each trait of length Q, 

with 0 meaning no association and 1 meaning association. Then, it integrates all 

possible configurations, by using prior probabilities at the SNP level (prior probability 

of SNP associated with trait 1, trait 2, not with both traits). The computed probability 

of the data for each configuration together with the prior probabilities, can be used to 

compute the posterior probabilities for each hypothesis H  [266]. 

A high enough H4 probability supports under this Bayesian framework that the two 

traits colocalize. Normally a PP H4 higher or equal to 0.8 is robust enough to be 

confident in that the two traits colocalize, in other words that the association signal for 

risk or the primary trait of interest, colocalizes with genetic risk for the second potential 

causal trait.  

Recently a new framework to run coloc that incorporates the Sum of Single Effects 

(SuSiE) has been developed [267]. To assume that the single causal variant 

assumption holds, the new coloc framework makes use of SuSiE to partition the 

problem, so that in each loci-derived cluster, only one causal variant exists [268]. 
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I used  coloc software to test colocalization for all genes within ±1Mb from the GWASs 

lead SNPs using the eQTLGen and MetaBrain Cortex tissue meta-analysis eQTL data 

[269,270]. I used these two datasets as they are the largest blood and brain eQTL 

studies respectively, providing us with the greatest power to perform statistical co-

localization tests. However, it is worth noting that the prior for H3 hypothesis 

(association with  both phenotypic and expression traits, but distinct causal variants) 

is ≈ n(n − 1)p1 p2, which scales with the square of n, resulting in H3 becoming more 

likely than H4 as the number of overlapping SNPs in the region tested increases [271]. 

This affects the colocalization tests against MetaBrain and eQTLGen meta-analyses. 

Therefore, I also performed two sensitivity analyses, adjusting the priors according to 

the number of overlapping SNPs [272], and also performing co-localization against 

PsychENCODE, which resulted in a considerable decrease in overlapping SNPs 

compared to the overlap against eQTL meta-analyses (MetaBrain and eQTLGen). 

iv) FUMA 

FUMA is a web-based platform that enables the interpretation of GWAS results by 

integrating a wide range of biological data. Using GWASs as input, FUMA allows us 

to gain insight into the biological implications of loci of interest. There are two separate 

steps within the FUMA framework [273].  

SNP2GENE: is used to annotate SNPs according to their consequences in biological 

functionality, Combined Annotation Dependent Depletion (CADD) score, regulomeDB 

score, the chromatin state, the effects on gene expression, and chromatin interactions 

based on 3D structure chromatin data.  

GENE2FUNC: provides the user with information regarding the putative biological 

mechanisms of the nominated genes from SNP2GENE step. For the gene set 

nominated for the phenotype or trait of interest, it gathers information about previous 

diseases associated, existing genes drug targets as well as genes’ differential 

expression across a wide range of tissues from GTEx data. Moreover, an enrichment 

of the input genes (gene set enrichment analysis) in biological pathways and functional 

categories is also carried out. 
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v) echolocatoR 

EcholocatoR is an R package that enables end-to-end statistical and functional fine-

mapping as well as enrichment and annotation of results. I used the ‘echolocatoR’ R 

package (v 0.2.2) as a wrapper to perform fine-mapping based on ABF, FINEMAP, 

SuSiE, PolyFun [263,274–277]. I produced the 95% Probability Credible Set (CS95%). 

I reported the consensus SNPs at each locus, i.e. those that were included in the 95 

CS95% of at least two fine-mapping tools, therefore increasing the confidence in the 

nominated causal SNPs. I reported the PP as the mean PP across all fine-mapping 

tools. To account for SNP LD at each region, I used the precomputed LD matrix from 

the UK Biobank [278]. 

I also used echolocatoR to overlay the GWAS nominated loci with annotations of 

transcriptional activity using the assay for chromatin immunoprecipitation sequencing 

(CHIP-seq) data, and chromatin accessibility using the Assay for Transposase-

Accessible Chromatin using sequencing (ATAC-seq) data, and other gene expression 

regulatory information from transcription factor binding site marks assays. Primarily, I 

used tissue and cell type or line -specific genome-wide annotations from Roadmap, 

ENCODE, and FANTOM5 [255,279,280]. In addition, I accessed brain cell type-

specific ChIP-seq data generated by quantifying H3K4me3 and H3K27ac epigenetic 

modifications, ATAC-seq data, and Proximity Ligation-Assisted ChIP-Seq (PLAC-Seq) 

data, which is a genomic assay that combines chromatin immunoprecipitation (ChIP) 

with proximity ligation to map long-range chromatin interactions mediated by specific 

proteins, such as transcription factors or histone modifications. This assay enables  

the identification of chromatin loops and regulatory interactions at high resolution, 

providing insights into the spatial organization of the genome and gene regulation 

[281].  

vi) Cell and tissue enrichment analyses 

MAGMA 

To perform cell type enrichment analysis with PD traits, I used MAGMA software [115]. 

I first mapped SNPs to genes to obtain gene-level summary statistics based on a 

window size of 10kb upstream and 1.5kb downstream of each gene. Likewise, SNP 

level P-values can be aggregated based on the gene window size into a gene-level P-
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value based on a SNP-wise mean association model, which uses a sum of squared 

SNP Z-statistics. Then, we can use MAGMA to test for association of the gene-level 

summary statistics of a trait with specificity matrices derived from tissue and cell -level 

expression data for each gene (specificity is defined based on a given expression in a 

cell type divided by the total expression of that gene based on its overall expression 

from all tissues or cell types). Specificity measures are then grouped into bins so that 

when testing for a positive association (one-sided test) between the bins and gene 

level summary statistics, I am evaluating whether an increase in the specificity level of 

a tissue or cell is associated with an an enrichment for common-variation for the 

GWAS traits being assessed. Confounding factors are taken into account by adding 

gene size, log(gene size), gene density and long(gene density) as covariates [115]. 

To perform enrichment analyses with MAGMA, I used the MAGMA.Celltyping R 

package hosted on GitHub which eases the automatization of large-scale enrichment 

analysis  [282]. 

Stratified LD Score Regression (S-LDSC) 

Linkage disequilibrium score regression (LDSC) was a tool developed to understand 

the inflation in test statistics in GWAS driven by true polygenic effects and bias such 

as cryptic relatedness and population structure [215]. The same year, another 

implementation of LDSC, S-LDSC was developed based on the prior knowledge that 

functional categories of the genome contribute disproportionately to the heritability of 

complex diseases [283]. S-LDSC is applied for partitioning heritability from GWAS, 

and it can be applied to perform cell type enrichment analyses based on S-LDSC 

method [283]. To do so, I generated annotation files for each cell type compatible with 

S-LDSC software with SNP level information. These annotation files contain 

information with the SNPs mapped to genes that belong to the 10% most specific 

genes for a given cell type. To derive the 10% most specific gene lists for each cell 

type, I processed the expression data described above to scale it to a total of 1 million 

Unique Molecular Identifiers  (UMI) or 1 transcript per million (TPM) for each cell type 

or tissue. I only analysed genes with at least 1 million UMI or TPM in the cell type 

under study. The specificity measures were calculated by dividing the expression of a 

gene in a cell type by the total expression of that gene in all cell types. The analysis 

was limited to SNPs matching the Hapmap3 SNPs, as well as excluded the major 
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histocompatibility complex (MHC) due to its complex LD structure and high gene 

density (GitHub wiki) [284]. 

To map SNPs to genes, I extended gene ranges with 100Kb up and downstream to 

capture regulatory elements. Then, I added the mapped SNPs to the S-LDSC baseline 

model that consist of 53 functional annotations to take into account differences in 

heritability across the genome based on the activity and function of the region. I 

generated one annotation file per cell type.  

S-LDSC computes the proportion of SNP heritability with each cell type from the 

annotation file, while taking into account the 53 annotations, therefore weighting the 

region’s heritability according to the functional activity of the specific locus. Then, 

LDSC calculates an enrichment score and the coefficient Z-score P-value of the 

enrichment. The significance threshold was set to a 5% false discovery rate. For this 

analysis, I used custom scripts, mirroring the methods described by Bryois and 

colleagues [285].  

vii) Mendelian Randomization 

Mendelian randomization (MR) is a method to test the causal relationship of an 

exposure variable on an outcome driven by genetic variants. MR is normally based on 

an instrumental variable (IV) analysis, in which an instrument (i.e. genetic variant) is 

only associated with the outcome through its association with the exposure. MR makes 

the assumption that genetic variants provide a source of variation associated with the 

exposure and that is unrelated to the outcome. Therefore, the design of an MR 

analysis involves defining the association between a genetic variant (G) and an 

outcome (Y) which is used to test and quantify if an exposure of interest (X) influences 

the outcome, in the case in which the genetic variant is associated with the exposure 

and has no other path of association with the outcome [286].  

There are three main conditions that need to hold for IV analysis to have a valid 

scenario in which I can test the null hypothesis that the exposure is not associated (or 

have effect) with the outcome [286]. 

- Relevance: IV is associated with the exposure 

- Exchangeability: The IV does not have other mechanisms that influence the 

outcome other than through the exposure of interest. 
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- Exclusion restriction: The IV does not affect any other trait that has an effect on 

the outcome assessed. 

d) Code availability 

All the code for my analyses have been published on GitHub 

(https://github.com/AMCalejandro) 

  

https://github.com/AMCalejandro
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3) Genome-wide meta-analysis of Motor 
Progression in Parkinson Disease 

a) Introduction 

The majority of PD genetic studies have focused on case-control GWAS to explore 

the  genetic factors contributing to the risk for PD [51]. However, little is known yet 

about the non-overlapping genetic factors that contribute to PD onset and progression 

across the multiple PD axes (cognitive decline, motor decline, non-motor and non-

cognitive features). 

In this study, I focused on modelling the early stages of motor Parkinson's disease, 

using the total score from the MDS-UPDRS part III. This validated scale is 

recommended for clinical trials to assess both the response to levodopa treatment and 

the rate of change over time [157]. Furthermore, I derived and explored axial and limb 

motor stages from the MDS-UPDRS part III scale, based on my hypothesis of a 

potential connection between different modules of MDS-UPDRS part III and specific 

pathological processes [287].  

By using GWAS and meta-analysis, I aimed to identify genetic determinants 

associated with variability in motor progression and severity in the early stages of PD. 

This analysis led to findings significantly correlated with changes in the MDS-UPDRS 

part III scale. In addition, I performed functional annotation and fine-mapping analyses 

to unravel how the nominated genetic variants are associated with the regulation of 

gene expression and the fundamental biology underlying PD motor traits. 

b) Methods 

Code used in the analysis is available from github.com/AMCalejandro/EMPD 

(https://doi.org/10.5281/zenodo.7258985). 

i) Study Design and data Quality Control 

I examined six observational and interventional longitudinal cohorts of Parkinson's 

disease (PD), comprising a total of 4,971 patients with available genotyping or whole 

genome sequencing (WGS) data (Table 2). 

https://github.com/AMCalejandro/EMPD
https://doi.org/10.5281/zenodo.7258985
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Table 2. Study sample sizes and genotyping array. 

Study Name Abbreviations N Genotyping array 
Period of 

recruitment 

Tracking Parkinson’s  TPD 2000 Illumina 
HumanCoreExome 

array 

Recruitment between 
2012 and 2014 

Oxford Parkinson's 
Disease Centre Discovery 

Cohort 

OPDC 1082 Illumina 
HumanCoreExome

-12 v1.1 or 
Illumina Infinium 

HumanCoreExome
-24 v1.1 

Study onset 2010. 
Recruitment is still 

ongoing. 

Drug Interaction With 
Genes in Parkinson's 

Disease 

DIGPD 427 Illumina Infinium 
Multi-Ethnic Global 

(MEGA)  

Recruitment between 
2009 and 2013 

Parkinson's Progression 
Markers Initiative 

PPMI 415 WGS Recruitment between 
2010 and 2012 

Advancing Parkinson’s 
Disease Biomarkers 

Discovery 

PDBP 873 WGS Recruitment between 
2012 and 2014 

Simvastatin as a 
neuroprotective treatment 
for Parkinson’s disease 

 

PD-STAT 174 Neurochip Recruitment between 
2016 and 2018 

I selected cohorts based on the availability of longitudinal assessments using the 

Movement Disorder Society–Unified Parkinson's Disease Rating Scale part III (MDS-

UPDRS). We kept individuals with matching clinical and genotyping data, removed 

duplicated samples, (Figure 3) 

 

 

 

 

 

 

 

 

 

 



 

78 

Figure 3. Quality Control flowchart.  

 
Each row shows a different QC step at different levels ( Clinical QC, Sample level QC, 
Variant level QC, Post-Imputation QC) across each cohort displayed as a column. In 
addition, a metric of the genotyping rate prior imputation is shown in Pre-imputation. 
The resulting number of SNPs available for the study in each cohort is shown in 
TOTAL. 
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I defined limb and axial phenotypes based on established criteria using the MDS-

UPDRS part III scale [288]. Additionally, the MDS-UPDRS III total score served as an 

overall measure of PD motor signs (Table 3). 

Table 3. Limb, total, and axial PD motor measures derived from MDS-UPDRS. 

Motor Score Scores from MDS-UPDRS III 

MDS-UPDRS 
part III - Total 

Speech (3.1) , Facial expression (3.2), Rigidity (3.3), Finger tapping (3.4), Hand 
movement (3.5),  Pronation-supination movements of hands (3.6) , toe tapping (3.7), 
leg agility (3.8), Arising from chair (3.9),  Gait (3.10), freezing of gait (3.11), postural 
stability (3.12), Posture (3.13) global spontaneity of movement body (Body 
bradykinesia) (3.14), postural tremor of the hands ( 3.15), kinetic tremor of the hands 
(3.16),  rest tremor amplitude (3.17), constancy of rest tremor (3.18) 

MDS-UPDRS 
part III - Limb 

Rigidity (3.3), postural tremor of the hands (3.15), kinetic tremor of the hands (3.16), 
rest tremor amplitude (3.17) Finger tapping (3.4), Hand movement (3.5), 
Pronation-supination movements of hands (3.6) , toe tapping (3.7), leg agility (3.8),  
constancy of tremor (3.18) 

MDS-UPDRS 
part III - Axial 

Speech (3.1) , Facial expression (3.2), Arising from chair (3.9), Gait (3.10), freezing 
of gait (3.11), postural stability (3.12), Posture (3.13), global spontaneity of 
movement body (Body bradykinesia) (3.14) 

In this study, I included longitudinal data from all data sources up to 36 months from 

the baseline visit, with the aim of gathering a subset of data with low missingness rate 

(< 50% missingness). Over 36 months, I found cohorts to have a missingness 

percentage higher than 50%. I used imputation techniques to address missing motor 

outcomes. For participants with incomplete MDS-UPDRS part III data I scaled up the 

limb, axial, and total scores. For each patient’s time specific MDS-UPDRS part III 

measures, when no more than 20% of the total scores from each motor sub score 

(total, limb, axial) were missing at random, I scaled up the score summing the total 

score across motor sub scores, divided by the number of non-missing sub scores, 

multiplied by the total number of scores on each motor sub score. If more than 20% of 

the total scores per motor subscale were missing, I set the motor subscale as missing, 

and excluded that data point. On the other hand, if there were items in the MDS-

UPDRS part III scale consistently missing (missing not at random), I scaled up the 

total motor score only when there were up to 3 measures missing not at random [289]. 

I conducted genetic QC at both the sample and variant levels, followed by imputation 

using the MIS, and post-imputation QC. I applied standard sample QC steps across 

cohorts using plink v1.9 [290] (Figure 3). A more detailed explanation on the QC steps 

is in the Chapter 2 – Methods. 



 

80 

Earlier research has indicated that levodopa enhances motor state examination and 

may potentially decelerate the progression of the disease [291]. Given that the 

observable motor improvement occurs a few hours after treatment and influences the 

Movement Disorder Society–Unified Parkinson's Disease Rating Scale (MDS-

UPDRS) measure, I conducted comparisons among individuals within cohorts in the 

same state during each assessment. If cohorts had data available in the "OFF" state, 

I utilised longitudinal "OFF" vs "OFF" MDS-UPDRS part III scores; otherwise, I 

conducted "ON" vs "ON" comparisons. Additionally, I conducted sensitivity analyses 

by adjusting the motor scores based on levodopa dosage. To take into account the 

effect of dopaminergic treatment and doses on the motor scores derived from MDS-

UPDRS part III, I performed a sensitivity analysis with the adjusted total, limb, and 

axial motor scores, using a correction factor according to the effect of levodopa dose 

on the MDS-UPDRS scale. It is well known that levodopa treatment improves MDS-

UPDRS scores in the majority of PD patients [291]. To figure out whether any genetic 

association with the motor states was masked due to levodopa dosage, I used an 

equation that best predicted the effect of levodopa dose on MDS-UPDRS part III total 

over time to correct the motor scores by levodopa usage, provided by Dr Michael 

Lawton that best predicted the MDS-UPDRS III trend based on levodopa uptake. I 

used data from Tracking Parkinson’s Levodopa challenge with motor subscores 

recorded at baseline before and after treatment in order to weight the effect of 

levodopa usage on the limb and axial motor states. I found that over the average 

difference in the MDS-UPDRS part III total score pre and post dose at baseline (9.9 

points difference in average), 7.7 point change was explained by the limb composite 

score and 2.2 change due to  the axial score. I used such weights on the equation that 

best predicted what I would expect to happen long term with levodopa usage, and I 

derived the adjusted longitudinal outcomes  across cohorts. 

ii) Statistical approaches 

To assess the impact of genetics on both motor progression and baseline variability, I 

employed LMMs, a statistical model introduced in Chapter 2 - Methods. I explored 

changes in limb and axial motor severity and progression associated with genetic 

variants, focusing on an additive genetic effect. 
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Disease progression model is a LMM with random variability at both the intercept 

and the slope level. I allowed for individual’s intercepts to deviate from the global 

intercept as well as time individual’s slopes to deviate from the global average time 

slope, while allowing correlation between the intercept deviations and time effect 

deviations within individual levels. I selected the disease progression model under the 

assumption that there are differences in patients’ progression that could be explained 

from genetics. 

Disease severity model is a LMM with random variability at the intercept level only. I 

allowed the individual’s intercepts to deviate from the global intercept. It is adjusted by 

the confounding variables only. This model assumes that there is variability around 
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the motor stage patients were when the study began. In addition, the model assumes 

the motor decline would remain constant without differences between subjects. I 

selected the disease severity model under the assumption there is no unexplained 

variability in Parkinson's disease progression. 

In the disease severity model, I examined the additive genetic effect (either an 

increase or a decrease) of SNPs on the average motor score while adjusting for the 

rest of covariates, or in other words, the additive genetic effect on patients disease 

severity. For the disease progression model, I investigated the genetic additive effect 

of SNPs on the motor rate of change. 

I evaluated the power of LMMs for investigating SNP effects on changes in PD motor 

signs. The power of GWAS depends on the sample size, the frequency of those 

variants associated with traits, their effect size, the heterogeneity of the trait studied, 

and the LD structure. The power increases with sample size, variant effect size, and 

allele frequency. To estimate the power of LMMs in GWAS, I performed a power 

calculation across combinations of sample sizes, allele frequencies, and effect sizes 

in R.  I carried out 10000 simulations and tested the association of 1000 dummy SNPs 

with different effect sizes (total MDS-UPDRS III rate of decline), different AFs for those 

SNPs, and for three different sample sizes. I reported the power as the number of 

times a SNP was found to be significantly associated with the outcome accounting for 

multiple testing (P = 0.05 / N SNPs), divided by the number of simulations.  

For the disease progression model, I made use of the lmerTest R package (v. 3.1-3) 

and the Satterthwaite approach to approximate degrees of freedom, deriving p-values 

using restricted maximum likelihood (REML) due to its acceptable type-1 error rates 

[292]. Additionally, I employed the SCEBE [193] algorithm (v. 0.1.0) with REML and 

the lme4 R package (v. 1.1-30) to reduce computational costs by introducing 

unexplained variability at the slope level in the disease severity model. I validated 

SCEBE in two separate cohorts (Figure 4). All tests were two-tailed. 
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Figure 4. SCEBE validation in two independent cohorts. 

                               

              

Pearson correlation plots between P-values and Coefficients derived with SCEBE 
approach (X-axis) and with lmeRTest using the Satterwhite approach to derive P-
values (Y-axis). The two top figures are the correlation plots of models fitted with 
OPDC data. The two bottom figures are the correlation plots of models fitted using 
DIGPD data. I used MDS-UPDRS III total as the outcome of the model. Each plot 
shows the correlation value (R2), and the significance of the correlation (P). 

For meta-analysis of genome-wide association summary statistics, I used the METAL 

software (version released on 25/03/2011). The meta-analysis is based on a fixed-

effects model weighted by β coefficients and the inverse of standard errors [244,245]. 

Additionally, I applied quality control to the meta-analysis results as described in 

Chapter 2 - Methods. Statistical significance was determined at the genome-wide 

level (p = 5e−8). 
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iii) Fine-Mapping and Functional Annotation 

For each locus of interest, I implemented a conditional and stepwise model selection 

procedure to identify independently associated SNPs for each GWAS nominated locus 

[264]. Causal variant nominations were made through fine-mapping techniques  

[263,267,274,276,293] as described in Chapter 2 – Methods. To gain deeper 

insights into the regulatory mechanisms within these nominated loci, I cross-

referenced each locus with (1) cell type-specific and general genome enhancer marks, 

(2) enhancer-transcription start site (TSS) interaction marks sourced from FANTOM5, 

and (3) transcriptional regulatory marks specific to brain cell types and distal enhancer-

promoter interactions, using ‘echolocatoR’ R package (v 0.2.2)  [281,294]. 

To assess whether causal variants might be linked to motor phenotypes via gene 

expression dysregulation, I conducted colocalization analyses using the coloc method 

against cis-expression quantitative trait loci (eQTL) datasets [266,269,295,296]. 

Furthermore, I employed FUMA, a web-based platform integrating a diverse range of 

functional annotation data (version 1.3.8) [273]. The LocusZoom tool (version 0.12) 

[297] was used to visually represent the LD structure of a given locus in relation to the 

lead SNP, along with the neighbouring protein coding genes and rRNAs. 

c) Results 

We explored the overall rate of change in MDS-UPDRS part III total, limb and axial 

scores explained in Table 4. There was variation across studies. We specifically 

studied the amount of change for the motor measures in each study by comparing the 

final score with the baseline score, divided by the baseline score, for MDS-UPDRS-

total, axial and limb. We found that the axial score rate of change was the highest in 

TPD, OPDC, PD-STAT, and PDBP. The limb rate of change was the highest in PPMI 

and DIGPD.  PD-STAT and PDBP had a lower rate of changes, which may be due 

either to longer disease duration, or to selection effects related to the inclusion of 

“benign” PD in patients with longer disease duration. We assessed this by fitting a 

LMM using data from TPD, and found a significant interaction between time and 

disease duration related to  MDS-UPDRS total progression (β = -0.11, SE = 0.04, P  = 

0.01). Longer disease duration was associated with a lower total rate of change in 

MDS-UPDRS, which appears to be non-linear with extended disease durations. 
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Overall, we confirmed that the MDS-UPDRS derived measures increased, reflecting 

worsening motor impairment, from study entry up to 3 years (Figure 5). The MDS-

UPDRS part III total yearly rate of change ranged between 2.37 - 3.01 points/year, 

which is consistent with previous reports[179]. 

Figure 5. MDS-UPDRS III Motor Scores Trajectories. 

  
Trajectory of the MDS-UPDRS III–derived motor scores across cohorts. In the x-axis, 
the time point at which the MDS-UPDRS III assessment was measured. Each plot 
shows the motor scores trajectories on each cohort highlighted in the label. The y-axis 
represents the average scores for each of the motor states. The bars represent the 
SD of the average motor scores.
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Table 4. Cohort demographics and motor scores rate of change. 

Study 
N 

patients 

N 
Observations 

Visit 
interval, 

mo 
ON/OFF 

No. (%) 
male 

AAD, 
years 

mean(sd) 

AAB, years 
mean(sd) 

Yearly total 
rate of change 

mean (sd) 

total rate of change 
mean (sd) 

limb rate of change 
mean (sd) 

axial rate of change 
mean (sd) 

TPD 1699 4349 18 ON 
1101 
(64.8) 

66.20 
(±9.24) 

67.50 
(±9.31) 2.7 (±4.69) 0.48 (±0.92) 0.54 (±1.25) 0.71 (±1.37) 

OPDC 797 1978 18 ON 
513 

(64.37) 
66.04 

(±9.46) 
67.25 

(±9.57) 2.85 (±4.27) 0.50 (±0.77) 0.50 (±0.93) 1.02 (±1.76) 

PPMI 287 1653 3 & 6 & 12 OFF 
184 

(64.11) 
61.01 

(±9.73) 
61.59 

(±9.70) 3.01 (±3.65) 0.84 (±0.94) 1.03 (±1.23) 0.67 (±1.05) 

PD STAT 124 358 12 OFF 
76 

(61.29) 
NA 

66.08 
(±9.37) 1.70 (±5.76) 0.06 (±0.41) 0.07 (±0.58) 0.27 (±0.61) 

DIGPD 305 1005 12 ON 
184 

(60.33) 
59.68 

(±9.85) 
62.59 

(±9.70) 2.37 (±3.41) 0.56 (±0.87) 0.67 (±1.40) 0.52 (±0.95) 

PDBP 360 2090 6 ON 
222 

(61.67) 
59.9 

(±10.90) 
64.73 

(±9.15) 1.05 (±4.11) 0.21 (±0.61) 0.30 (±0.90) 0.40 (±1.46) 

Abbreviations = N, Number; AAD, Age at Diagnosis; AAB, Age at Baseline 
Total rate of change per year: (Last visit score - Baseline score) ÷ number of years 
Total/Limb/Axial rate of change centred: (Last visit score - Baseline score) ÷
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My  power calculation showed that  the current LMM was well powered to detect high 

effect sizes (β ≥ 0.2) for a wide range of different MAFs, with a limit for variants with 

an allele frequency ≥ 1% (Figure 6). We performed a GWAS on each cohort to study 

PD motor progression and meta-analysed results separately using a genomic control 

to correct the test statistics of those cohorts that had genomic inflation (λ > 1 & λ < 

1.2). 

Figure 6. Power to detect genetic associations in LMMs. 

 

The Y axis shows the power (0 to 1). The X axis shows the MAF of the SNP tested 
10000 times. The header of each plot represents the sample size. Different colours 
represent the simulated effect size. 

I evaluated disease progression and disease severity models for total, limb and axial 

progression. We did not find any significant genetic association with the PD limb motor 

progression or severity. For axial motor progression, I found one haplotype block that 

reached genome-wide significance (GJA5 in chromosome 1) (Figure 7a; Figure 7c).  
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Figure 7. GWAS meta-analysis of motor axial progression. 

(c) 

 

Figure 7a.Manhattan plot of the rate of axial change GWAS meta-analysis. On the X 
axis each of the 22 chromosomes, and each SNP P-value on the Y axis. The red 
dashed line indicates the genome-wide significance threshold P-value = 5e-8. The LD 
block that reached genome wide significance on chromosome 1 is on the GJA5 locus. 
Each dot corresponds to the P-Value of the conditional likelihood interaction term 
between SNP and time (SNP*time). There was no genomic inflation (λ  = 0.99). Figure 
7b. Forest plots for proxy variant rs12037169 within GJA5 locus under the GWAS 
meta-analysis using disease progression model for the axial outcome (I² = 40.1; 
Cochran's Q test: ꭓ2 = 9.64, df = 5, P = 0.10),  annotated by study, effect size, and the 
corresponding 95% confidence interval. Figure 7c. GWAS locusZoom plot. 
LocusZoom plot centred around the lead SNP at the GJA5 locus. SNPs are coloured 
according to the LD (r2) with the lead variant (purple). The corresponding degree of 
LD for each colour, is given in the plot label. 

This association was also found, at a lower significance level, for the MDS-UPDRS 

part III total. Given that there was no association with PD limb motor progression and 

severity, this relates to the inclusion of  axial components in the overall MDS-UPDRS-

III total score. Although the lead variant in the GJA5 locus was not captured in the 

PPMI WGS data, I found proxy variants that were present in all cohorts. The lead proxy 

variant was rs12037169 (β = -0.25, SE = 0.04, P = 3.93e-10) (Table 5). The association 
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test-statistic and directionality of each of these variants was consistent across cohorts 

(Figure 7b). 

Table 5. Lead SNPs on the disease progression and severity GWASs. 

SNP CHR A1 MAF BETA SE P-value 
NEAREST 

GENE 

TYPE OF 

VARIANT 
MODEL 

rs6593808 1 A 0.23 -0.28 0.04 1.35e-10 GJA5 intergenic progression 

rs12037169 1 A 0.25 -0.25 0.04 3.93e-10 GJA5 intergenic progression 

rs4073509 2 C 0.02 0.52 0.10 2.12e-07 AC098872.3 intergenic progression 

rs117239007 13 C 0.01 0.68 0.14 4.71e-07 LINC00544 intergenic progression 

rs36082764 17 T 0.42 -0.62 0.11 6.34e-08 LINC00511 

ncRNA_intr

onic severity 

rs4721411 7 T 0.40 0.53 0.10 1.66e-07 MAD1L1 intronic severity 

rs10939702 4 T 0.45 0.57 0.12 8.10e-07 WDR1 intronic severity 

To assess whether levodopa presented a substantial confounding factor in my motor 

progression study, I adjusted patient motor scores as described in the Methods 

section. This equation, designed to best estimate the impact of levodopa dose on 

MDS-UPDRS Part III total scores over time (described in the Statistical approaches 

of this Chapter), allowed us to correct the motor scores based on levodopa usage. 

To account for the influence of levodopa on limb and axial motor states, I incorporated 

data from the Tracking Parkinson's Levodopa challenge [298], which included MDS-

UPDRS Part III scores recorded before and after treatment. I applied these weights to 

correct motor scores with respect to levodopa usage. Notably, I observed no 

significant alterations in the significance level or direction of effects for the tested 

SNPs. Furthermore, rs120371169 maintained a significant association with axial 

motor progression (Table 6). 
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Table 6. Metrics per cohort of lead SNPs found on the disease severity and 
progression GWASs meta-analysis. 

Cohort rsID 
Effect 
allele 

MAF Beta se P-Value 
Levodopa 
Adjusted 

Model 

TPD rs12037169 A 0.24 -0.30 0.06 1.67e-06 No progression 

OPDC rs12037169 A 0.25 -0.33 0.09 1.75e-04 No progression 

PPMI rs12037169 A 0.27 -0.10 0.35 0.44 No progression 

DIGPD rs12037169 A 0.24 -0.29 0.11 1.84e-03 No progression 

PDSTAT rs12037169 A 0.25 -0.33 0.25 0.18 No progression 

PDBP rs12037169 A 0.23 0.07 0.18 0.59 No progression 

TPD rs12037169 A 0.24 -0.30 0.07 8.41e-06 Yes progression 

OPDC rs12037169 A 0.25 -0.35 0.09 6.20e-04 Yes progression 

PPMI rs12037169 A 0.27 -0.21 0.39 0.6 Yes progression 

DIGPD rs12037169 A 0.24 -0.28 0.11 1.84e-03 Yes progression 

TPD rs36082764 T 0.44 -0.66 0.17 2.50e-04 No severity  

OPDC rs36082764 NA NA NA NA NA No severity  

PPMI rs36082764 T 0.46 -0.66 0.19 6.50e-04 No severity  

DIGPD rs36082764 T 0.38 -0.26 0.36 0.44 No severity  

PDBP rs36082764 T 0.43 -0.65 0.28 1.00e-02 No severity  

PD-STAT rs36082764 NA NA NA NA NA No severity  

TPD rs4721411 T 0.42 0.62 0.18 6.00e-04 No severity  

OPDC rs4721411 T 0.41 0.65 0.24 8.00e-03 No severity  

PPMI rs4721411 T 0.38 0.43 0.19 2.00e-02 No severity  

DIGPD rs4721411 T 0.43 0.42 0.36 0.2 No severity  

PDBP rs4721411 T 0.40 0.70 0.27 9.00e-03 No severity  

PD-STAT rs4721411 T 0.42 -0.40 0.52 0.45 No severity  

TPD rs36082764 T 0.44 -0.65 0.18 3.00e-04 Yes severity  

OPDC rs36082764 NA NA NA NA NA Yes severity  

PPMI rs36082764 T 0.46 -0.70 0.21 8.00e-04 Yes severity  

DIGPD rs36082764 T 0.38 -0.32 0.36 0.38 Yes severity  

TPD rs4721411 T 0.42 0.62 0.18 6.00e-04 Yes severity  

OPDC rs4721411 T 0.41 0.65 0.24 8.00e-03 Yes severity  

PPMI rs4721411 T 0.38 0.33 0.21 9.00e-02 Yes severity  

DIGPD rs4721411 T 0.42 0.38 0.36 0.29 Yes severity  
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Hoehn and Yahr (HY), a metric capturing a patient's disease severity, can also be 

used over time to assess disease progression. As a way of validating the genome-

wide significant association linked to PD axial motor progression, I used a disease 

progression statistical model incorporating HY as my longitudinal outcome to explore 

the contribution of SNPs to motor changes over time. Within the GJA5 locus, at the 

same locus which was found significantly associated with axial motor progression, I 

identified an LD block approaching genome-wide significance (Figure 8). The lead 

variant in this block was rs36005900 (β = −0.08, SE = 0.0078, p = 5.7e−7). Notably, 

the directionality of the effects mirrored those observed in the axial motor progression 

GWAS. Furthermore, rs36005900 was in LD with the lead variant reported in the same 

locus for MDS-UPDRS III axial motor progression (D’ = 0.8, R2 = 0.6). 

Figure 8. Manhattan plot for disease progression GWAS meta-analysis using HY as 
the outcome. 

 

I then investigated whether there were independently associated SNPs at the GJA5 

locus. We did not find any signal other than the lead SNP in the selection procedure 

under a conditional and stepwise selection approach using GCTA-COJO. Under a 

single causal variant assumption, I then performed statistical fine mapping. I did not 

find a consensus SNPs  (a SNP nominated to be causal by 2 different fine-mapping 

tools) at the GJA5 locus. I found a total of 12 SNPs with support for causality of 

changes in motor axial progression, nominated from at least one fine-mapping tool 

(Table 7).  I did not find an overlap between the GJA5 locus haplotype block and 
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regulatory marks from functional annotation datasets described in the Chapter 2 -

Methods. 

Table 1. Fine-mapping results using ABF, FINEMAP, SUSIE, and POYFUN_SUSIE  

LOCUS SNP P leadSNP ABF 
FINEM

AP 
SUSIE 

POLYFU

N_SUSIE 
Sup mean.PP 

GJA5 rs2353 1.3e-10 FALSE 0.13 0 1 0 1 0.28 

GJA5 rs12032789 6.4e-10 FALSE 0.03 0 1 0 1 0.26 

GJA5 rs1342711 6.4e-10 FALSE 0.03 0 1 0 1 0.25 

GJA5 rs2352870 7.0e-10 FALSE 0.03 1 0 0 1 0.25 

GJA5 rs10793706 8.5e-10 FALSE 0.02 0 0 1 1 0.25 

GJA5 rs10793707 8.5e-10 FALSE 0.02 0 0 1 1 0.25 

GJA5 rs12408247 8.5e-10 FALSE 0.02 0 0 1 1 0.25 

GJA5 rs11552588 1.1e-09 FALSE 0.02 0 0 1 1 0.25 

GJA5 rs35594137 1.1e-09 FALSE 0.02 0 0 1 1 0.25 

GJA5 rs11576092 8.7e-09 FALSE 0.00 1 0 0 1 0.25 

GJA5 rs1573101 1.4e-05 FALSE 2.5e-06 1 0 0 1 0.25 

GJA5 rs4443942 9.8e-05 FALSE 4.5e-07 1 0 0 1 0.25 

MAD1L1 rs3778978 4.5e-07 FALSE 0.02 NA 1 1 2 0.50 

LINC00511 rs7213651 3.7e-06 FALSE 0.02 0.86 1 1 3 0.72 

LINC00511 rs7218929 7.6e-06 FALSE 0.01 0.07 1 1 3 0.52 

LINC00511 rs12950478 2.5e-05 FALSE 0.01 NA 1 1 2 0.50 

Abbreviation = N, Sample size to do fine-mapping; t_stat = test statistic; CS = Credible Set; PP = 
Posterior Probability.  mean.PP = the mean posterior probability from the four fine-mapping posterior 
probability. 

I also explored expression quantitative trait loci (eQTL) datasets through the FUMA 

platform. We found that many of the GWAS significant SNPs within the GJA5 locus 

were significant cis-eQTLs for ACP6, a gene located 105 kb from the lead SNP, in 

PsychEncode, and eQTLGen. In particular, we found that the lead variant was a 

significant eQTL in PsychEncode, and eQTLGen, and also rs12037169, the proxy 

significant variant found in all cohorts, was a significant cis-eQTL in eQTLGen (Table 

8). We then carried out a colocalization analysis to evaluate whether there was 

colocalization between the GWAS axial progression results and eQTL GWAS for gene 

expression at the GJA5 locus. I used cis-eQTL data from eQTLGen and Metabrain 

cortex tissue cis-eQTLs datasets and performed a colocalization test for any gene 
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within ±1Mb from the GJA5 lead SNP. We did not find direct colocalization evidence 

for any gene, including ACP6. We found PPH3 (indicating separate significant 

associations for GWAS and eQTL analysis) to be the highest for the ACP6 gene using 

default SNP priors (eQTLGen = 0.98, MetaBrain = 0.88). PPH3 was the highest for 

these two genes (PPH3 > 0.8), after we adjusted the priors according to the number 

of overlapping SNPs. 

Table 2. GJA5 locus significant SNPs that are ACP6 eQTLs across different studies. 

SNP CHR POS MAF 
Nearest 

Gene 
Gwas P-

value 
eQTL study symbol 

eQTL P-
value 

rs6593808 1 147219250 0.23 GJA5 1.349e-10 PsychENCODE ACP6 1.18e-07 

rs6593808 1 147219250 0.23 GJA5 1.349e-10 eQTLGen ACP6 1.68e-14 

rs2353 1 147222372 0.23 GJA5 1.349e-10 eQTLGen ACP6 1.58e-14 

rs7551148 1 147289707 0.25 
RP11-

314N2.2 1.815e-10 PsychENCODE ACP6 1.23e-07 

rs7551148 1 147289707 0.25 
RP11-

314N2.2 1.815e-10 eQTLGen ACP6 1.08e-07 

rs1495955 1 147249285 0.25 
RP11-

433J22.3 2.992e-10 PsychENCODE ACP6 7.97e-05 

rs1495955 1 147249285 0.25 
RP11-

433J22.3 2.992e-10 eQTLGen ACP6 6.52e-17 

rs12037169 1 147248057 0.25 GJA5 3.93e-10 eQTLGen ACP6 8.64e-17 

rs1857213 1 147219553 0.23 GJA5 6.383e-10 PsychENCODE ACP6 1.18e-07 

rs1857213 1 147219553 0.23 GJA5 6.383e-10 eQTLGen ACP6 1.73e-14 

rs1342711 1 147219835 0.23 GJA5 6.383e-10 PsychENCODE ACP6 1.20e-07 

rs1342711 1 147219835 0.23 GJA5 6.383e-10 eQTLGen ACP6 2.10e-14 

rs12032789 1 147220045 0.23 GJA5 6.383e-10 PsychENCODE ACP6 7.91e-09 

rs12032789 1 147220045 0.23 GJA5 6.383e-10 eQTLGen ACP6 1.55e-14 

rs36005900 1 147229662 0.23 GJA5 6.964e-10 eQTLGen ACP6 1.92e-13 

rs2352870 1 147206521 0.26 GJA5 7.019e-10 PsychENCODE ACP6 1.18e-07 

gwasP = P-value of a SNP in the GWAS study; eqtlP =P-value of a SNP in the eQTL study. 

I then performed a colocalization analysis to evaluate whether there was colocalization 

between the GWAS axial progression results and eQTL GWAS for gene expression 

at the GJA5 locus. No conclusive evidence of direct colocalization was identified for 

any gene, including ACP6. The highest Posterior Probability of Colocalization (PPH3), 

indicating distinct significant associations for GWAS and eQTL analyses, was 

observed for the ACP6 gene with default SNP priors (eQTLGen = 0.98, MetaBrain = 
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0.88). Even after adjusting the priors based on the number of overlapping SNPs as 

described in Chapter 2 - Methods, PPH3 remained highest for these two genes 

(PPH3 > 0.8). 

In addition, I investigated the genome-wide association of SNPs on average changes 

in limb and axial motor states using the disease severity model as highlighted in the 

statistical approaches section in Chapter 2 – Methods. No haplotype block 

reached genome-wide significance in this analysis. However, two distinct signals 

approached genome-wide significance, correlating with changes in average axial 

motor scores (MAD1L1 on chromosome 7 and LINC00511 on chromosome 17) 

(Figure 9a). The lead SNP in MAD1L1 was identified as rs4721411 (β = 0.54, SE = 

0.11, p = 1.6e−7), and the lead variant in the long noncoding RNA LINC00511 was 

rs36082764 (β = −0.62, SE = 0.11, p = 6.3e−8) (see Table 5). We found the 

directionality and the effects of the lead SNPs to be consistent across the cohorts part 

of the meta-analysis (Figure 9b and 9c). 
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Figure 1.  Motor severity GWAS Manhattan plot and lead variants forest plots.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9a. Manhattan plot for the axial severity GWAS meta-analysis. The red dashed 
line indicates the genome-wide significance threshold P-value = 5e-8. The two LD 
blocks approaching genome wide significance are on the MAD1L1 locus in 
chromosome 7 and LINC00511 locus on chromosome 17. There was no genomic 
inflation (λ  = 1.00). Figure 9b. Forest plots for lead variant rs4721411-T found at the 
MAD1L1 locus (right) under model A (I² = 0; Cochran's Q test: ꭓ2 = 4.01, df = 5, P 
=0.55) annotated by study, effect size, and the corresponding 95% confidence interval. 
Figure 9c. Forest plots for lead variant rs36082764-T  found at LINC00511 locus 
under the GWAS meta-analysis using model A  (I² = 0; Cochran's Q test: ꭓ2 = 1.07, df 
= 3, P = 0.78) annotated by study, effect size, and the corresponding 95% confidence 
interval. 

Subsequent fine-mapping at both loci identified rs3778978 in the MAD1L1 locus as 

the causal SNP and a list of three SNPs (rs7213651, rs7218929, rs12950478) in the 

LINC00511 locus as potential trait-causing SNPs. This fine-mapping effort narrowed 

down the spectrum of variants for further targeting in in vivo and in vitro analyses 

(Table 7). Notably, the MAD1L1 fine-mapped causal variant and the lead SNP 
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overlapped with an active enhancer mark, suggesting an influence of the GWAS-

nominated variants on the regulation of MAD1L1 expression (Figure 10a). 

Figure 2. MAD1L1 and LINC00511 functional annotation.  

(a)       (b) 

 
From top to bottom, transcripts plot, locus plot, the fine-mapping results, and the 
functional annotations specific assay we overlaid the GWAS locus with. In the locus 
plot, the SNPs are coloured in red as LD (given by R2) increases, and blue as the LD 
decreases. In the fine-mapping track, I highlight the SNPs with the highest posterior 
probabilities for each fine-mapping tool highlighted on the legend on the right hand 
side. In addition, I highlight in yellow the Consensus SNP. Figure 10a. We mapped 
the GWAS locus with FANTOM5 enhancer marks from the FANTOM project.  All data 
from the FANTOM5 project was scanned to plot out the 5 datasets with present 
enhancer marks on the region of interest. From top to bottom, dendritic and monocytes 
cell type specific enhancer marks, bulk enhancer transcription start site interaction 
mark, and bulk enhancer permissive and robust marks. In the locus plot from the 
middle, from the extensive and enhancer enhancers marks, we can see how they 
overlap both the lead  (red dashed vertical line), and the fine-mapped Consensus SNP 
(vertical yellow line). This overlap is also notable on the row of Enhancers-TSS 
interaction marks. Figure 10b. We mapped the GWAS locus with brain cell type 
specific regulatory element marks, the first 4 rows are the density marks (y-axis) from 
ATAC-seq assay (in pink), and CHIP-seq assays (H3K27ac in blue, and H3K4me3 in 
cyan), in astrocytes, microglia, neurons, and oligodendrocytes. The next four rows are 
the distal anchored chromatin loops (black curves) derived from the PLAC-seq assay. 
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For LINC00511, an anchored chromatin loop was identified from the GWAS LD block 

in LINC00511 to a region containing the active promoter of neuronal SOX9, indicating 

that mutations in this distal regulatory region might alter SOX9 expression specifically 

in neurons (Figure 10b). 

I investigated eQTL databases through FUMA, discovering that both the lead variant 

and the fine-mapped nominated causal variant in MAD1L1 were significant cis-eQTLs 

in BIOS and eQTLGen (Table 9). Subsequently, I conducted a colocalization analysis 

to assess the presence of a shared causal variant between the two traits as detailed 

in Chapter 2 - Methods. Despite an examination within a ±1 Mb range from the GWAS 

lead SNPs, no direct colocalization evidence was found for any gene. Unfortunately, 

there was no available cis-eQTL data for SOX9. In the MAD1L1 locus, the Posterior 

Probability H3 (PPH3), indicating an association with both phenotypic and expression 

traits with distinct causal variants, reached the highest values (PPH3 in MAD1L1: 

eQTLGen = 0.97, MetaBrain = 0.98, PsychENCODE = 0.75). 

Table 9. cis-eQTL values of the Model A MAD1L1 locus lead SNP rs4721411. 

SNP CHR MAF 
nearest

Gene 
gwasP eQTL study symbol eqtlP 

rs4721411 7 0.39 MAD1L1 1.657e-07 eQTLGen MAD1L1 1.842e-57 

rs4721411 7 0.39 MAD1L1 1.657e-07 BIOSl MAD1L1 1.215e-12 

rs3778978 7 0.38 MAD1L1 5.976e-07 eQTLGen MAD1L1 1.265e-59 

rs3778978 7 0.38 MAD1L1 5.976e-07 BIOS MAD1L1 6.313e-12 

gwasP = P-value of a SNP in the GWAS study; eqtlP =P-value of a SNP in the eQTL study. 

Biological interpretation of nominated genes in relation to PD 

ACP6 encodes Lysophosphatidic Acid Phosphatase Type 6,  an enzyme that 

regulates lipid metabolism in mitochondria [299]. Changes in ACP6 concentrations are 

found in Gaucher Disease (GD), although there is no clear link between ACP6 levels 

in and GD progression. ACP6 is highly expressed in astrocytes [300]. Mitochondrial 

dysfunction has been widely associated with PD aetiology [301]. 

MAD1L1 encodes the mitosis arrest deficient-like 1 protein, a component of the 

spindle-assembly checkpoint which prevents the onset of anaphase until 

chromosomes are aligned at the metaphase plate [302]. Recent GWAS have identified 
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MAD1L1 as a gene increasing the susceptibility for bipolar disorder and schizophrenia 

[303,304]. This variant is in high LD with the fine-mapping MAD1L1 nominated variant 

(D’ = 0.75) [305]. MAD1L1 expression is measurable in several brain tissues [306]. A 

recent study investigated healthy adults carrying the MAD1L1 rs11764590 risk allele 

[307]. Carriers showed alteration in the responsiveness and regulation of the 

mesolimbic reward system. Adults carrying the risk alleles showed significant 

hypoactivations of the ventral tegmental area (VTA), the bilateral striatum, and bilateral 

frontal and parietal cortices. Regarding PD in particular, a study including PD patients 

has shown that patients with more severe disease (measured in  “OFF” and “ON '' 

state), showed a fall in activation in the anterior cingulate cortex associated with 

reward expectancy [308]. A plausible explanation for this could be that MAD1L1 PD 

mutation carriers, showing an impaired reward system, respond worse to 

dopaminergic therapy, hence developing  with more severe axial signs. 

It is known that enhancers are found in intronic and intergenic regions, as well as that 

introns act as gene regulators [309,310]. I have found evidence of the MAD1L1 intron 

acting as an active enhancer and regulating and predicted to interact with a 

transcription start site (TSS). This together with the overlap found between eQTL and 

GWAS MAD1L1 regional plots, suggest that this intron may play an active role in 

regulation in expression.  

SOX9 is a SOX transcription factor (TFs) family member. The male sex determination 

gene (Sry) gave birth to this SOX family.  SOX TFs regulate diverse cellular processes 

during development, as well as differentiation into tissues and organs. In addition, they 

play a major role in central nervous system development and adult neurogenesis[311]. 

Studies of SOX9 gain and loss of function have demonstrated that SOX9 is required 

for the formation of multipotent Neural stem cells (NSCs) and their maintenance in the 

central nervous system during embryonic and adult phase[312]. Moreover, SOX9 

regulates the transition from neurogenesis to gliogenesis during development, and it 

has been shown that when SOX9 is not expressed, there was a reduction in astrocytes 

and oligodendrocytes, and a transient increase in motor neurons[313,314]. This is 

consistent with my findings suggesting when the distal regulation towards SOX9 

expression is altered in neurons, PD patients show a lower motor axial impairment, 

suggesting a connection between the CNS development and the adult neurogenesis. 
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d) Discussion 

To understand the biology of motor progression in PD, we carried out a large well 

powered GWAS of PD motor progression. We have found one haplotype block at the 

GJA5 locus that is significantly associated with axial PD motor progression. This 

association was consistent across individual cohorts included in my motor progression 

GWAS meta-analysis and was replicated in an analysis of H/Y supporting my findings. 

Further exploration of the GWAS significant signals in eQTL databases suggests that 

the GWAS hits may control the expression of ACP6, an enzyme that regulates lipid 

metabolism in mitochondria [299]. 

We used the MDS-UPDRS III (PD motor examination) scale, a sensitive measure of 

motor progression over time which has been widely studied in observational and 

interventional studies of PD.  A study of untreated de novo PD patients in the PPMI 

study, followed up for 5 years to assess the progression of MDS-UPDRS, showed a 

linear increase of 2.4 points per year in MDS-UPDRS part III total score [179]. In this 

study, we observed a similar yearly rate of change for the total MDS-UPDRS score 

across the studies I included in my analysis (2.3 points/year on average) (Table 4). 

We have used linear mixed effect models to investigate the common genetic variability 

associated with the severity and progression of distinct PD motor aspects. This 

concept may be consistent with PD subtypes studies having a differential motor 

severity and progression [35,315–319]. Another aspect, of this differential approach to 

PD symptomatology is that limb and axial PD motor components may have a different 

cellular and pathophysiological basis, with axial and limb motor symptoms related to 

cholinergic and dopaminergic dysfunction respectively [320,321]. 

We corrected all models by AAO, and sex and PCs as confounding variables. We 

performed a fixed effects meta-analysis as opposed to a pooled analysis to further 

account for between cohorts heterogeneity, as cohorts we included had different 

inclusion and exclusion criteria, and were either genotyped with different microarrays 

or whole genome sequenced. My results are not confounded by levodopa response, 

as defined in my sensitivity analysis. In this dataset we have identified common genetic 

variability which determines axial, but not limb motor progression.  
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The lack of  association between common genomic variation and the MDS-UPDRS 

limb subscale could be due to a combination of limited power and the levodopa effect 

in early disease.  Evers and colleagues reported that measures of mobility, tremor, 

gait and posture, were consistent and reliable measures of PD progression [181]. 

Because these measures are well represented in the axial score (except for tremor), 

this may be better powered to assess progression. Moreover, the limb signs may be 

more sensitive to levodopa use than the axial signs, making it possible that true genetic 

associations with limb motor progression were masked. Lastly, we found the individual 

cohorts with the largest sample size had a higher axial rate of change compared to the 

limb rate of change (Table 4).  A separate GWAS meta-analysis assessing the PD 

genetic contribution to the disease motor severity and subsequent functional 

annotation, identified MAD1L1 and SOX9 as candidate genes associated with PD axial 

motor severity.  Nevertheless, these potential associations did not reach genome-wide 

significance and further analysis in distinct PD cohorts are needed for validation.  

Strengths of my study include the large sample size, and the consistency of my results 

across cohorts and across different measures of axial motor progression.  Potential 

limitations of my identification of ACP6 as the relevant gene at the GJA5 locus include 

the lack of colocalization between the phenotype and expression GWAS although 

these analyses are current limited by the sample size of eQTL datasets and the lack 

of cell specific gene expression data. 

We hypothesise that expression of ACP6 is important in the function in cell groups 

relevant to axial progression in PD including the pedunculopontine nucleus, and that 

therapies directed towards mitochondrial lipid metabolism may be relevant to the 

disease modification. Further replication, in independent cohorts genotyped in the 

global Parkinson’s genetics program (GP2.org) will help to determine the importance 

of this region and further analysis of this biochemical pathway may provide new 

insights into the pathogenesis of PD progression.    
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4) Genetic meta-analysis of levodopa induced 
dyskinesia in Parkinson’s disease 

a) Introduction 

The development of levodopa-induced dyskinesia (LiD) is a major clinical problem for 

PD patients and multiple pharmacological and neurosurgical approaches have been 

developed to try to prevent, attenuate or treat LiD. Dopamine is lost from the 

nigrostriatal pathway, which manifests as bradykinesia, muscular rigidity, rest tremor 

and postural instability [21,322]. There are several symptomatic treatments for PD 

motor symptoms, with the metabolic precursor of dopamine, levodopa, being the “gold 

standard” drug. Levodopa improves motor function as measured by UPDRS or the 

more recent MDS-UPDRS, widely used standard clinical assessments to evaluate the 

motor state in PD patients [291]. A comparison of an early levodopa treated group 

against a delayed treated group showed no difference in the rate of motor progression, 

suggesting that levodopa itself is not disease modifying or disease accelerating [323].  

One of the major drawbacks of long-term levodopa treatment is that many PD patients 

experience levodopa-related motor complications, such as wearing off, dystonia and 

dyskinesia [324]. 

The prevalence of LiD varies across academic- and industry-led studies, averaging at 

around 20-40% after four years of levodopa treatment. There are two major LiD 

subtypes: peak-dose dyskinesia, which occur during the therapeutic window of 

levodopa treatment, and diphasic dyskinesia, which present at the start and end of a 

dose cycle [325]. 

Levodopa treatment is necessary for LiD development, but there are likely to be 

several other mediating factors [325]. Based on research in animal models, it is 

hypothesised that pulsatile delivery of oral levodopa, presynaptic nigrostriatal 

degeneration and intact striatal neurons are needed for the development of LiD [325]. 

Major risk factors for the development of LiD include young age at onset (AAO), female 

gender, low body weight, disease severity, disease duration and treatment duration 

(from the initiation of levodopa) as well as the total dose of levodopa [326,327]. 

Disease duration and treatment duration are closely related and delayed start study 

designs have evaluated the effect of delaying the initiation of levodopa, showing an 
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association between longer delay and a decreased risk of LiD [328]. There is 

increasing evidence that suggests genetics plays a role in the susceptibility to LiD. 

Rare variants in genes such as PRKN, PINK1, and DJ-1 have been reported to be  

associated with higher rates of dyskinesia [329–331], although patients with autosomal 

recessive PD usually have early onset disease, which is in itself a risk factor for LiD. 

A study which corrected for age and disease duration variability did not replicate the 

findings of a higher LiD susceptibility among PARK2 mutation carriers [332]. 

Common variation may also influence the risk of developing LiD. Variations at the 

DRD2, COMT, MAOA, BDNF, SLC6A3 and ADORA2A loci have all been reported to 

influence the risk of developing LiD [333–342]. Recently, an exome-wide association 

study of LiD in PD  found that variants in MAD2L2 and MAP7 loci were associated with 

LiD, and replicated the association of the opioid receptor gene OPRM1 [343]. Due to 

the high heterogeneity in the genetic determinants that regulate LiD, validation in large 

cohorts is needed. 

Here, I investigated the genetic determinants of LiD by performing a meta-analysis of 

genome-wide survival to the development of LiD in five different cohorts, and assessed 

previously reported loci. I also performed functional genetic annotation to better 

understand the nominated loci. Lastly, I have investigated the predictive power of a 

PRS, and explored baseline clinical features that were significantly associated with the 

development of LiD in PD using a  stepwise regression approach. 

b) Methods 

The source code with all materials and methods are available on GitHub 

(https://github.com/AMCalejandro/LID-

CPH.git;https://doi.org/10.5281/zenodo.8139563). The README explains each step 

of the workflow to conduct the analysis and a link to each relevant pipeline or protocol. 

i) Patients data and LiD definition 

I accessed clinical and genetic data from the Tracking Parkinson's (TPD) [150], Oxford 

Parkinson's Disease Centre Discovery Cohort (OPDC) [344],  Parkinson's Progression 

Markers Initiative (PPMI) [156], Parkinson's Disease Biomarkers Program (PDBP) 

[163], and simvastatin as a neuroprotective treatment for PD trial (PD-STAT) [153] 

https://github.com/AMCalejandro/LID-CPH.git
https://github.com/AMCalejandro/LID-CPH.git
https://doi.org/10.5281/zenodo.8139563
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studies (Table 10). Each subject provided written informed consent for participation 

according to the Declaration of Helsinki and all cohort studies were approved by the 

relevant ethics committee. 

Table 10. Study sample sizes and genotyping array. 

Study Name Abbreviations N Genotyping array 

Tracking 
Parkinson’s 

Disease 

TPD 2000 Illumina HumanCoreExome array 

Oxford Parkinson's 
Disease Centre 

Discovery Cohort 

OPDC 1082 Illumina HumanCoreExome-12 v1.1 or 
Illumina Infinium HumanCoreExome-24 

v1.1 

Parkinson's 
Progression 

Markers Initiative 

PPMI 415 WGS 

Advancing 
Parkinson’s 

Disease 
Biomarkers 
Discovery 

PDBP 873 WGS 

Simvastatin as a 
neuroprotective 

treatment for 
Parkinson’s 

disease 
 

PD-STAT 174 Illumina Neurochip 

  WGS = Whole Genome Sequencing 

I carried out clinical data QC on each cohort independently (Figure 11).   Levodopa 

is necessary for PD patients to develop LiD [325], therefore I excluded those who 

were not exposed to levodopa. In addition, I removed patients who had a disease 

duration at study entry of more than 10 years from disease onset, patients without 

longitudinal data (patients with less than two clinical records available), and those 

with missing genotype data. 

I defined PD patients as having dyskinesia if they reached an MDS-UPDRS item 4.1 

score equal to or higher than 2 which is equivalent to a range of 26%-50% of the 

waking time with dyskinesia, and the first appearance of LiD was defined as the 

event time. Patients were excluded if they had dyskinesia at study entry, as time to 

the development of dyskinesia could not be established. 
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Figure 11. Quality control flowchart. We highlight the number of samples remaining 
after applying the multiple QC steps on each cohort we included in this study. 

 

 
 

ii) Genotype data quality control and imputation  

To perform quality control (QC) at both the sample and genotype levels, I used 

PLINK v1.9 [290]. Each quality control step and the imputation approach was 

performed as described in Chapter 2 – Methods.  

iii) Whole-genome sequencing data 

The PDBP and PPMI cohorts  included in this study were whole-genome sequenced 

using Illumina HiSeq X Ten Sequencer. More information can be found in 

https://ida.loni.usc.edu/login.jsp. WGS data was QC’ed using the same pipeline as the 

array-based data. 

https://ida.loni.usc.edu/login.jsp
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iv) Statistical analyses 

I used the R programming language (version 4.3.0) to perform all the statistical 

analysis [345]. I studied the association between genome-wide genetic variants and  

time to develop dyskinesia from self-reported age at PD motor onset with Cox 

proportional hazard (CPH) regression models under a genetic additive model, using 

the ‘survival’ R (version 3.3-1). All tests were two-tailed.  To investigate the power to 

detect an association under a Cox regression model with the current sample size, as 

well as to perform a simulation on the relationship between power and  allele frequency 

(AF), SNP hazard ratios (HR), and sample size, I used the R package survSNP 

(version 0.25). 

I ran time-to-LiD GWAS in each cohort separately, adjusting by AAO (or AAD in the 

cohorts where AAO was not available), gender, and first 5 PCs, using as my outcome 

the midpoint between the visit the threshold was met and the previous time point. 

Multiple studies indicate that the risk of dyskinesia relates to disease severity. To 

improve the power to detect a genetic association, I explored the goodness-of-fit of 

the model in each cohort independently after adding the following baseline covariates, 

which provide surrogate measures of disease severity and dopaminergic denervation 

at baseline: levodopa or LEDD dose, disease duration from onset to baseline 

assessment and baseline motor score as measured by MDS-UPDRS part III. For each 

cohort, I selected the model which provided the most  accurate prediction of LiD based 

on the Akaike Information Criteria (AIC). I used the resulting model as the main model 

in my analysis. I summarised the nominated set of covariates in each cohort (Table 

11). I verified that the proportional hazards assumption held true by assessing the 

independence between scaled Schoenfeld residuals and time through the cox.zph 

function from the ‘survival’ package. Schoenfeld residuals are obtained by subtracting 

the individuals’ covariate values at the time “t” and the corresponding risk-weighted 

average of covariates among all those that are at risk at the time “t”. Then, they are 

scaled by performing a variance-weighted transformation. A non-significant 

relationship between the scaled residuals and time reveals proportionality of the 

hazards in the model. 
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Table 11. List of covariates added on both the basic and adjusted model across 
cohorts 

Study Name 
Covariates in 
basic model 

Covariates in the adjusted model 

Tracking Parkinson’s 
Disease 

AAO, GENDER, 5 
PCs 

AAO, GENDER, 5 PCs, BASELINE DISEASE 
DURATION, BASELINE MDS-UPDRS-III total, 

BASELINE L-DOPA DOSE 

Oxford Parkinson's 
Disease Centre 

Discovery Cohort 

AAO, GENDER, 5 
PCs 

AAO, GENDER, 5 PCs, BASELINE MDS-
UPDRS-III total, BASELINE LEDD 

Parkinson's Progression 
Markers Initiative 

AAO, GENDER, 5 
PCs 

AAO, GENDER, 5 PCs, BASELINE MDS-
UPDRS-III total, BASELINE DISEASE 

DURATION 

Advancing Parkinson’s 
Disease Biomarkers 

Discovery 

AAD, GENDER, 5 
PCs 

AAD, GENDER, 5 PCs, BASELINE MDS-
UPDRS III total, BASELINE DISEASE 

DURATION 

Simvastatin as a 
neuroprotective 

treatment for 
Parkinson’s disease 

AAO, GENDER, 5 
PCs 

AAO, GENDER, 5 PCs 

I performed a meta-analysis using METAL as described in Chapter 2 - Methods. I 

applied a post meta-analysis QC step to remove genetic variants that were present in 

less than 3 out of 5 cohorts, with less than 1000 variants, as well as variants with high 

minor allele frequency (MAF) heterogeneity across the cohorts (MAF > 0.15). In 

addition, I accounted for high heterogeneous variants by removing those with a 

significant Cochran’s Q test as well as those with an I2 index higher than 80%. 

Statistical significance was assessed at the conservative threshold of P = 5 × 10−8, 

derived from a Bonferroni correction accounting for the number of independent tests 

and the LD structure of the genome [346]. 

I proved that the model met the proportional hazard assumption after including 

significant SNPs using the cox.zph function from the ‘survival’ package. I evaluated 

whether signals were replicated across different cohorts with the R package ‘forestplot’ 

(version 2.0.1). 
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v) Sensitivity analyses 

To validate the genome-wide significance findings, I performed four sensitivity 

analyses to assess if the best model described above led to an unbiased testing of the 

null hypothesis of no association between all genome-wide SNPs and time-to-LiD. The 

first sensitivity analysis was designed to compare the basic and adjusted models.  I 

tested whether high deviations in the SNP estimates and P-values arose after 

accounting for disease severity and dopaminergic denervation at baseline by 

measuring the correlation between the basic and adjusted GWAS meta-analyses. 

Next, I performed two separate sensitivity analyses to test whether either levodopa 

dose or the PD motor severity (as measured by MDS-UPDRS part III) at the time point 

where LiD were first documented, were confounding my findings. I performed this 

sensitivity analysis in Tracking Parkinson's, the largest dataset. I performed a CPH 

GWAS on the Tracking Parkinson's cohort adjusting by: a) known confounders, b) 

known confounders + motor severity (as measured by MDS-UPDRS part III) c) known 

confounders + levodopa dose. I compared the SNP metrics from the three models for 

the lead SNPs on the loci that reached genome-wide significance on the time-to-LiD 

GWAS meta-analysis. Lastly, because the PDBP cohort did not have age at onset 

available and I used age at diagnosis (AAD) in the CPH model, I reran the time-to-LiD 

GWAS meta-analysis excluding PDBP to confirm that this cohort was not inflating the 

SNP test-statistics. 

vi) Post-GWAS analyses 

I performed fine-mapping as described in Chapter 2 – Methods to nominate causal 

variants at each locus that reached genome-wide significance. To evaluate the 

potential effect of SNPs on candidate loci on the control of gene expression I also used 

echolocatoR to map GWAS nominated loci with epigenetic marks form the brain cell 

type -specific marks by Nott and colleagues, and Uniformed transcription factor 

binding sites from ENCODE. 

To  investigate whether there were several independently associated SNPs at each 

GWAS nominated locus, I performed a conditional and stepwise selection procedure 

with GCTA-COJO (version 1.93.0 beta for Linux) [237]. I used the Accelerating 

Medicines Partnership: Parkinson’s Disease (AMP-PD, v.2.5) data [347]  (n = 10,418) 
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as the reference panel to estimate the correlation between SNPs. The reference 

sample was subjected to the same QC steps as described above, needed to get 

unbiased LD estimates [264].  

I used the ‘coloc’ R package (version 5.1.0) to perform colocalization analysis between 

loci significantly associated with progression to LiD and SNPs defining gene 

expression in the region.  I used cis-eQTL data from MetaBrain cortex tissue [270]  (N 

= 6,601 individuals) and blood cis-eQTLs from eQTLGen (N = 31,684) [269]. The 

strategy I followed to perform colocalization is explained in more detail in Chapter 2 - 

Methods.  

I used FUMA (version 1.3.8) to further characterise the nominated loci by querying 

GWAS Catalogue to retrieve uncharacterised GWAS loci SNPs in my meta-analysis 

and to get positional mapping information based on MAGMA [115]. I used a threshold 

of P < 1e-6 to nominate tag SNPs. Additional SNPs that were in high LD with tag SNPs 

were inferred using European samples 1Kg Phase3 reference panel (with r2 > 0.6 and 

independent from each other with r2 < 0.6). 

vii) Candidate gene analysis 

In order to validate variants that have been reported in previous studies to be 

associated with time-to-LiD or LiD risk, I accessed the LiDPD website (Date accessed: 

12/01/2023) and downloaded a list of curated variants from the literature. I explored 

these in my time-to-LiD GWAS meta-analysis [348]. 

viii) LiD prediction modelling 

I used PRSice software (version 2) to compute a polygenic risk score (PRS) [349]. I 

used the summary statistics of my time-to-LiD meta-analysis as base data and the 

Tracking Parkinson's cohort as target data. I chose the Tracking Parkinson's cohort as 

it is the single largest cohort, which reduces the SE of the PRS estimates, leading to 

more confident estimates. I then replicated the association of the nominated SNPs 

composing the PRS in the second largest cohort I had access to, OPDC, resembling 

a discovery / replication study design, although in this case the OPDC data had 

contributed to the LiD PRS. Further details on how we ran PRS for my analyses is 

available in Chapter 2 – Methods. 
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Next, I used a stepwise logistic regression model with a custom script using the ‘stats’ 

R base package (version 4.2.2) to find whether any baseline clinical variable was 

significantly associated with LiD status. I used data from the Tracking Parkinson's 

cohort, as it is deeply phenotypically characterised (number of baseline covariates = 

702). After removing variables with high missingness rate ( missing rate > 10%) or 

categorical variables with only one level, I defined a total of 502 baseline features 

(including the PRS). Then, I created a base logistic regression model (adjusted for sex 

the first 5 PCs and standardised AAO). At each step of the stepwise regression 

approach, I refitted the base model with each of the baseline predictors individually, 

and selected the model with the variable that decreased AIC the most. I ran the model 

until no variable further decreased the AIC, or until the AIC score was equal to 1. Once 

the model was fitted, I selected only those predictors that were significantly associated 

with the binary outcome, applying the conservative Bonferroni correction accounting 

for the number of predictors assessed. I set the significance threshold as 0.05 / 502 = 

1e-4. To account  for class imbalance in the evaluation of classifiers, I computed 

precision recall curves using the ‘PRROC’ R package (version 1.3.1) 

c) Results 

i) Cohort clinical features and prevalence 

Across all cohorts (n= 2,784 PD patients), the incidence of LiD was 14%  (Table 12), 

except in the PPMI cohort where it was 21%. This is consistent with the effect of age 

at onset on LiD [350–352], given that PPMI is a de novo study that recruited younger 

patients. I did not exclude any patient from the PPMI cohort due to left-censoring. 
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Table 12.  Cohorts summary statistics. 

COHORT 

PD 

patients 

Post-QC 

(n) 

Follow 

up, 

years 

No(%) 

LiD 

No(%) left-

censored 

No(%) 

male 

Time to 

midpoint event 

 (mean ± sd) 

AAO, years 

(mean ±sd) 

AAB, years 

(mean ± sd) 

Disease duration at 

baseline from 

onset, years 

(mean ± sd) 

MDS-UPDRS part III at 

baseline (mean ± sd) 

Levodopa dose at 

baseline (mean ±sd) 

TPD 1478 7.5 177 (12) 16 (1) 
945 

(64.3) 
7.47 (2.2) 64.43 (9.16) 67.29 (9) 2.86 (1.6) 22.36 (11.7) 217 (197) 

OPDC 705 9.0 92 (13) 8 (0.8) 451 (64) 7.87 (2.9) 64.35 (9.47) 67.21 (9.3) 2.85 (1.7) 26.27 (10.8) 280 (205) 

PPMI 283 9.0 82 (21) 0 (0) 259 (66) 8.28 (2.3) 60.16 (9.93) 62.08 (9.8) 1.92 (1.3) 21.38 (9.1) 0 (0) 

PD STAT 77 2.0 10 (13) 4 (4.9) 48 (62) 8.77 (2.8) 57.23 (8.7) 64.84 (9.2) 7.61 (1.7) 28.86 (11.6) NA 

PDBP 241 5.0 33 (14) 16 (6) 149 (62) 5.93 (2.7) NA 64.58 (9.3) 2.85 (2.5) 20.9 (11.1) 414 (207) 
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I explored the effect of demographic and clinical factors previously reported to be 

associated with LiD. I merged baseline clinical data from all the cohorts. I found that 

patients with younger PD AAO (grouped as people with age at onset higher than 50 

years and lower or equal than 50 years), had a higher probability of developing LiD 

than older patients along the time interval from disease onset to study end (HR = 1.8, 

SE = 0.14, P = 2e-5) (data excluding PDBP as AAO was not available). Female PD 

patients showed a consistent increase in the probability of developing LiD during a 

12.5 years’ time interval (Figure 12 a and b). Body mass index (BMI) was available in 

PPMI and Tracking Parkinson’s, and smoking status data was available in the 

Tracking Parkinson's cohort only. I did not find a significant increase in the probability 

of developing dyskinesia either for PD patients with low baseline BMI nor for PD 

smokers at baseline (Figure 12 c and d). 

Figure 12. LiD risk factors Kaplan-Meier curves. 

 

       
 

    

Kaplan-Meier curve for Survival probability (LID free probability) based on gender (A), 
age at onset (AAO) (B), smoking status (C), and smoking status baseline body mass 

a b 

c d 

d 
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index (BMI). The P-value (P) showing the significance of differences on the survival 
probability is given on each plot. Number at risk represents the number of PD patients 
remaining on the study at the different time points (0, 5, 10, 15 years). The colour 
expansion on each curve represents the confidence interval (CI). 

ii) Power analysis 

I performed a power analysis to estimate the power to find a genetic association 

between time-to-LiD and genome-wide SNPs with the current sample size and LiD 

event rate, and to evaluate how this varied with a range of genotype hazard ratios 

(GHRs) and AFs. I was well-powered (80% power) to detect genetic variants 

associated with the development of LiD with a HR equal or higher than 2 and a MAF 

as low as 0.01 (Figure 13a). In addition, I performed a simulation to show as the 

sample size increases, the power to detect rarer associations improves. As I increased 

the simulated sample size to 18000, I achieved 80% power for genetic variants with a 

MAF lower than 0.01, and with a HR lower than 2 (Figure 13b). 

 

Figure 13. Power calculation and simulation. 

a                                                                                          b 

 
Power calculation and simulation to detect genetic association with time to develop 

LiD as a function of sample size, relative allele frequency (AF), and genetic hazard 

ratio (GHR). Figure 13a. Power calculation (y-axis) for the current sample size based 

on different AFs (x-axis) (graph label) ; Figure 13b. Power simulation to explore the 

increase in power (y-axis) to detect lower GHR (graph grid) and relative AFs (graph 

label)  as I increase the sample size (x-axis).  
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iii) Time-to-LiD GWAS 

I ran time-to-LiD GWAS independently for each cohort, using the first appearance of 

LiD as the outcome. I meta-analysed results controlling for genomic inflation. In 

addition, I estimated genomic inflation on the time-to-LiD meta-analysis and did not 

find significant genomic inflation (λ = 1.02). I identified three loci significantly 

associated with time-to-LiD onset in the meta-analysis of the adjusted model on 

chromosome 1 , chromosome 16 and chromosome 4 (Figure 14).  

Figure 14. LiD CPH GWAS meta-analysis. 

 

The meta-analysis was conducted using a Cox proportional hazards model in each 

cohort separately, and results were meta-analysed. Genome-wide significance was 

set at 5e-8 and is indicated by the red dashed line. 

The most significant SNPs at each loci were rs72673189, rs189093213, rs180924818. 

rs72673189 (HR = 2.77 , SE = 0.18 , P = 1.53e-8) in chromosome 1, is a variant in 

the third intron of the LRP8 gene. rs189093213 (HR = 3.06, SE = 0.19, P = 2.81e-9) 

in chromosome 4 was found in the non-coding RNA LINC02353 (PCDH7 1.2Mb 

downstream). rs180924818 (HR = 3,13, SE = 0.20 , P = 6.27e-9) in chromosome 16 

was found very close (0.15Mb upstream) to the 3'-UTR of the XYLT1 protein coding 

gene  in a non-coding region of the genome (Table 13).

LiD CPH meta-analysis 
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Table 13. Independent significant SNPs with a P-value lower than 1e-7. 

CHR BP SNP MAF BETA HR SE 
SNP P-value in the 

Adjusted model 

SNP P-value in 

the Basic model 
Number of SNPs Nearest gene Type of variant 

4 32435284 rs189093213 0.02 1.12 3.06 0.19 1.673e-09 6.15e-08 3 LINC02353  ncRNA intergenic 

16 17044975 rs180924818 0.03 1.14 3.13 0.2 6.265e-09 8.20e-08 3 XYLT1 intergenic 

1 53778300 rs72673189 0.03 1.02 2.77 0.18 1.527e-08 2.65e-08 2 LRP8 intronic 

1 168645690 rs79432789 0.05 0.77 2.16 0.14 7.037e-08 2.47e-06 4 DPT intergenic 

1 39646765 rs71642678 0.01 1.61 5 0.3 8.555e-08 1.89e-07 12 MACF1 intronic 

1 80950480 rs12133858 0.04 0.76 2.14 0.14 8.692e-08 1.01e-06 48 RP11-115A15 intergenic 

9 22664277 rs77115593 0.02 1.26 3.52 0.24 9.192e-08 4.37e-07 1 LINC02551 ncRNA intronic 

14 22020490 rs139943801 0.03 1 2.72 0.19 9.522e-08 2.63e-07 1 RBBP4P5 intergenic 
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The direction of the effects was consistent across the meta-analysed cohorts in which 

the SNPs were present (Figure 15).  

Figure 15. Forest plots of lead genetic associated variants. 

 

a, LRP8 rs72673189 variant (I²=0; Q:ꭓ2=0.24, df=3, P=1.53e-08). b, LINC02353 
rs189093213 variant (I²=21.4; Q:ꭓ2=5.09, df=4, P=1.67e-09). c, XYLT1 rs180924818 
variant (I²=0; ꭓ2=0.77, df=2, P=6.27e-09). I² = I² Index of heterogeneity, HR = Hazard 
ratio, P = P-value, Q = Cochran's  Q test of heterogeneity, df = degrees of freedom. 

To visually represent the survival probability of patients carrying the lead SNP on each 

locus I found in my meta-analysis, I extracted each patient's genotypes and showed 

the difference in the probability of LiD between carriers and non-carriers through 

Kaplan-Meier curves (Figure 16). 

Figure 16. Survival curves of candidate SNPs . 

 

a, Kaplan-Meier curve for Survival probability (LiD free probability)  based on 
rs72673189 carrier status in PD patients. b, Kaplan-Meier curve for Survival probability 
(LiD free probability)  based on rs189093213 carrier status in PD patients.  c, Kaplan-
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Meier curve for Survival probability (LiD free probability)  based on rs180924818  
carrier status in PD patients. The blue curve represents genetic variant carriers, 
whereas the yellow curve represents non-carriers. p = p-value. Number at risk 
represents the number of PD patients remaining on the study at the different time 
points (0, 5, 10, 15 years). The colour expansion on each curve represents the 
confidence interval (CI). 

iv) Sensitivity analysis 

The three variants found to significantly increase LiD susceptibility in the adjusted 

model approach remained associated in the basic model including only known 

confounders (Table 14). I found the correlation of the SNP metrics between the basic 

and the adjusted model to be high (SNP P-values Pearson correlation coefficient = 

0.87; P-value < 2e-16)  (SNP Effect size Pearson correlation coefficient = 0.97; P-

value < 2e-16). This indicated that adding additional predictors based on baseline 

variation increased the power to detect SNP-outcome associations, presumably by 

explaining other sources of variance in the model, and that there was no source of 

confounding given by disease duration and severity measures (suggested by the high 

correlation in the SNP metrics). 

Table 14. Sensitivity analyses lead SNP P-values in the basic CPH model for the 
TPD cohort  

CHR BP SNP A1 A2 
Basic model 

P-value 

Levodopa 

model P-value 

MDS-UPDRS III 

model P-value 

1 53778300 rs72673189 A G 1.96E-04 2.39E-04 2.50E-04 

4 32435284 rs189093213 A G 6.32E-03 1.89E-03 3.49E-03 

16 17044975 rs180924818 G A 1.69E-04 2.62E-04 1.21E-04 

Using data from Tracking Parkinson’s only, I investigated whether these associations 

could be confounded by levodopa dose or the disease stage at the LiD event time 

point. For each of the genome-wide significant SNPs, I repeated the CPH analysis 

adjusting for levodopa dose or disease stage as measured by MDS-UPDRS part III at 

the first visit when the LiD threshold was reached or at the last available visit for 

patients who did not develop LiD during the study length. I did not find a change either 

in the hazard ratio or the test-statistics that could suggest an unaccounted source of 

confounding. Finally, excluding PDBP from the meta-analysis did not significantly 

change the lead SNP’s hazard ratio and significance levels (Table 15). 
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Table 15. Lead SNP P-values in the CPH model including and excluding PDBP 
cohort in the basic and adjusted models.  

CHR:POS SNP A1 A2 MAF HR SE P-value N PDBP MODEL 

4:32435284 rs189093213 A G 0.02 3.08 0.19 1.673e-09 2687 YES ADJUSTED 

4:32435284 rs189093213 A G 0.02 2.73 0.18 6.154e-08 2784 YES BASIC 

4:32435284 rs189093213 A G 0.02 3.29 0.19 6.24e-10 2446 NO ADJUSTED 

4:32435284 rs189093213 A G 0.02 2.88 0.19 2.989e-08 2543 NO BASIC 

16:17044975 rs180924818 A G 0.98 0.32 0.20 6.265e-09 2687 YES ADJUSTED 

16:17044975 rs180924818 A G 0.98 0.35 0.19 8.197e-08 2784 YES BASIC 

16:17044975 rs180924818 A G 0.98 0.32 0.20 6.265e-09 2446 NO ADJUSTED 

16:17044975 rs180924818 A G 0.98 0.35 0.19 8.197e-08 2543 NO BASIC 

1:53778300 rs72673189 A G 0.02 2.76 0.18 1.527e-08 2610 YES ADJUSTED 

1:53778300 rs72673189 A G 0.02 2.72 0.18 2.654e-08 2707 YES BASIC 

1:53778300 rs72673189 A G 0.02 2.93 0.19 1.505e-08 2369 NO ADJUSTED 

1:53778300 rs72673189 A G 0.02 2.83 0.19 4.214e-08 2466 NO BASIC 

v) Functional annotation 

I performed fine-mapping using ABF, SuSiE, FINEMAP, and Polyfun-SuSiE, and 

found Consensus SNPs on each CPH GWAS nominated loci (Table 16). 

Table 16. List of fine-mapped consensus SNPs on each locus. 

SNP Locus CHR P Effect SE A1 leadSNP ABF 
FINE

MAP 

SU

SIE 

POLYF

UN_SU

SIE 

Sup 

rs72673189 LRP8 1 1.5e-08 1.01 0.18 A TRUE 1 0 1 0 2 

rs180924818 XYLT1 16 6.2e-09 -1.14 0.20 A TRUE 1 1 1 1 4 

rs137895239 XYLT1 16 3.1e-05 0.88 0.21 A FALSE 0 1 1 1 3 

rs142441980 XYLT1 16 1.4e-06 0.88 0.18 A FALSE 0.01 1 1 1 3 

rs17207399 XYLT1 16 2e-04 -0.47 0.13 C FALSE 1 1 1 1 3 

rs189093213 LINC02353 4 1.7e-09 1.12 0.19 A TRUE 0.61 0.96 1 1 3 

rs10023843 LINC02353 4 0.1 0.55 0.36 T FALSE 0 0 1 1 2 

rs139511855 LINC02353 4 4.5e-05 -1.09 0.27 A FALSE 0 0 1 1 2 

rs147573196 LINC02353 4 2.5e-06 1.20 0.25 A FALSE 0 0 1 1 2 
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SNP Locus CHR P Effect SE A1 leadSNP ABF 
FINE

MAP 

SU

SIE 

POLYF

UN_SU

SIE 

Sup 

rs28858724 LINC02353 4 0.03 -0.34 0.17 A FALSE 0 0 1 1 2 

leadSNP: Whether a given SNP is the locus lead SNP. 
<tool>.CS: The posterior probability that a SNP is casual of the LiD phenotype. 
Support: The number of fine-mapping tools that nominated the Consensus SNP 
mean.PP: The mean SNP wise PP across fine mapping tools 
mean.CS: If mean PP is greater than the 95% probability threshold (mean.PP > 0.95), then mean.CS 
is 1, else 0. 

I found the lead SNP at each locus to be Consensus SNPs, which are those selected 

by at least two different fine-mapping tools. I plotted each locus found to have at least 

one variant significantly associated with time to reach LiD against brain cell type-

specific epigenomic data. I found that the lead (and fine-mapped SNP) at the LRP8 

locus belonged to a neuronal specific chromatin accessible region, which is a target 

region for DNA-associated proteins, as measured with the ATAC-seq and CHIP-seq 

(H3K27ac and H3K4me3) assays (Figure 17a). I also found  this SNP to be part of a 

neuronal specific enhancer-promoter interaction within LRP8, as defined by PLAC-seq 

(Figure 17a). This implies that this specific LRP8 intronic signal is an active neuronal 

enhancer of the LRP8 expression, forming an anchored chromatin loop recruiting the 

transcription machinery to the LRP8 transcription start site (TSS). In addition, I found 

suggestive evidence that the lead SNP lies in a transcription factor binding site (TFBS), 

as defined by the ENCODE project (Figure 17b). 
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Figure 17. LRP8 functional annotation. 

a       b 

  
From top to bottom, transcripts plot, locus plot, the fine-mapping results, and the  
functional annotations specific assay we overlaid the GWAS locus with. In the locus 
plot, the SNPs are coloured in red as LD (given by R2) increases, and blue as the LD 
decreases. In the fine-mapping track, I highlight the SNPs with the highest posterior 
probabilities for each fine-mapping tool highlighted on the legend on the right hand 
side. In addition, I highlight in yellow the Consensus SNP. Figure 17a. The last track 
contains cell type specific regulatory element marks, the first 4 rows are the density 
marks (y-axis) from ATAC-seq assay (in pink), and CHIP-seq assays (H3K27ac in 
blue, and H3K4me3 in cyan), in astrocytes, microglia, neurons, and oligodendrocytes. 
The next four rows are the distal anchored chromatin loops (black curves). I see how, 
only in neurons, there is a chromatin loop forming from the LRP8 GWS and the fine-
mapped consensus variant towards the LRP8 promoter (purple). Figure 17b. The 
rows in the last track show the transcription factor binding sites (TFBS) densities (y-
axis) measured on different cell lines and laboratories. XGR finds the top 5 
transcription factors (TF) with the highest binding activity in the track genomic window. 
These top 5 TF are displayed in the Assay label. 

Similarly, I found that some of the fine-mapped SNPs (including the lead SNP) in the 

XYLT1 locus were forming chromatin loops towards the XYLT1 promoter, as 

measured by the PLAC-seq assay, suggesting that regulation of this gene associated 

with susceptibility to LiD (Figure 18). I did not find any functional regulatory marks at 

the LINC02353 locus. 
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Figure 18. XYLT1 locus fine-mapping and brain cell type specific regulatory marks.  

 
From top to bottom, transcript plot, locus plot, the fine-mapping nominated variants 
across fine-mapping tools, brain cell type specific regulatory element marks. In the 
locus plot, the SNPs are coloured in red as LD (given by R2) increases, and blue as 
the LD decreases. In the fine-mapping track, I highlight the SNPs with the highest 
posterior probabilities for each fine-mapping tool (ABF, FINEMAP, SUSIE, 
POLYFUN_SUSIE). In addition, I highlight in yellow the Consensus SNP with the 
highest mean Posterior Probability (mean). In the cell type specific regulatory element 
marks, the first 4 rows are the density marks (y-axis) from ATAC-seq assay (in pink), 
and CHIP-seq assays (H3K27ac in blue, and H3K4me3 in cyan), in astrocytes, 
microglia, neurons, and oligodendrocytes. The next four rows are the distal anchored 
chromatin loops (black curves). I see how, only in neurons, there is a chromatin loop 
forming from the XYL71 GWS and the fine-mapped consensus variant towards the 
LRP8 promoter (purple). 

Next, I performed colocalization analysis in all genes within 1Mb from  lead SNPs with 

P < 1e-7. I found suggestive support for colocalization between the LiD GWAS meta-

analysis signals and ci-eQTL data from Metabrain Cortex (PP H4 > 0.7 on the 

unadjusted colocalization analysis; PP H4 > 0.5 on the colocalization analysis after 

adjusting the priors based on the number of overlapping SNPs in the locus of interest) 

for the DNAJB4 gene on chromosome 1 (Table 17). I did not find evidence of 

colocalization in the XYLT1, LRP8 nor the non-coding RNA loci 
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Table 17. Colocalization hypotheses posterior probabilities 

HGNC nSNPs PP.H0 PP.H1 PP.H2 PP.H3 PP.H4 ratio_PPH4_PPH3 

DNAJB4 4840 6.76E-05 7.03E-05 0.23 0.24 0.52 2.17 

ZNF697 2881 2.60E-18 2.62E-19 0.72 0.07 0.21 2.93 

LORICRIN 3572 5.25E-02 4.97E-03 0.74 0.07 0.14 1.96 

USP33 4552 4.54E-05 4.72E-05 0.43 0.44 0.13 0.30 

STXBP3 4434 1.07E-01 1.24E-02 0.72 0.08 0.08 0.92 

CLCC1 4311 7.44E-10 6.81E-11 0.85 0.08 0.07 0.92 

nSNPs: Number of overlapping SNPs between for each locus between the eqtl and the GWAS traits 
PP.<hypothesis>: The posterior probability for each coloc hypothesis 
ratio_PPH4_PPH3: The ratio of the H4 and H3 posterior probabilities (ratio = H4/H3 

 

A few loci approaching genome-wide significance (GWS) in chromosome 1, were in 

proximity with DNAJB4. Therefore, I decided to investigate if the single causal variant 

assumption holds in the DNAJB4 locus, necessary to validate the colocalization signal 

in DNAJB4. I ran GCTA-COJO under stepwise and conditional model selection 

procedures. I filtered all SNPs within the DNAJB4 locus that were used to perform the 

colocalization analysis and that matched the AMP-PD reference panel (4590 out of 

4840 SNPs included in the colocalization analysis). After performing the stepwise 

selection procedure assuming complete LD between SNPs that are more than 10Mb 

from each other, and setting a collinearity cutoff of 0.9, only the lead SNP in the locus 

retained nominal significance  (rs278853, MAF = 0.26, β = 0.40 , se = 0.08, P =  4.07e-

6). Similarly, running an association analysis on each of the 4590 SNPs conditioning 

on the lead variant (rs278853) did not show any of these SNPs to be nominally 

significantly associated, confirming the single causal variant assumption and that the 

results obtained with coloc on the DNAJB4 locus were unbiased. Lastly, to understand 

whether the DNAJB4 signal was independent of the GWS LRP8 locus signal, I ran an 

analysis conditioning on the genome-wide significant LRP8 SNP (rs72673189). I found 

that rs278853 remained nominally associated ( P = 4.40 ×  10−6), indicating these two 

signals were independently associated with the risk of developing LiD. 

vi) Candidate variant analysis 

I determined whether previously reported variants in the LiD literature (from LiDPD) 

had an impact on the time to LiD (Table 18). I found ANNK1 and BDNF variants to be 
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nominally significantly associated (P < 0.05) with the time to dyskinesia. Nonetheless, 

ANNK1 or BDNF variants did not reach the significance threshold after applying 

Bonferroni correction according to the number of SNPs tested (P < 2e-3).  

Table 18. Candidate variants analysis. 

Gene SNP MAF BETA SE P-value Direction Publication 

ANKK1 rs1800497 0.21 0.24 0.09 8.89E-03 +++-- Rieck et al. 2012 

ANKK1 rs2734849 0.50 0.18 0.08 2.11E-02 +++++ Rieck et al. 2012 

BDNF rs6265 0.18 0.19 0.10 4.95E-02 +++-+ 

Foltynie et al. 

2009 

Kusters et al. 

2018 

DRD2 rs2283265 0.17 0.16 0.10 1.06E-01 +++-- Rieck et al. 2012 

DRD2 rs6277 0.46 0.08 0.08 2.73E-01 ----+ Rieck et al. 2012 

DRD2 rs1076560 0.17 0.15 0.10 1.42E-01 +++-- Rieck et al. 2012 

PRKCA rs4790904 0.22 -0.14 0.10 1.43E-01 -++++ 

Martin-Flores et 

al. 2018 

RPS6KB1 rs1292034 0.42 -0.13 0.08 1.08E-01 ----- 

Martin-Flores et 

al. 2018 

OPRM1 rs1799971 0.12 -0.13 0.12 3.04E-01 +-+++ Strong et al. 2006 

EIF4EBP2 rs1043098 0.49 0.06 0.08 4.67E-01 +-+-- 

Martin-Flores et 

al. 2018 

SLC6A3 rs393795 0.20 0.07 0.10 4.72E-01 -++++ 

Kaplan et al. 

2014 

Purcaro et al. 

2018 

 



 

123 

Gene SNP MAF BETA SE P-value Direction Publication 

RICTOR rs2043112 0.40 0.05 0.08 5.50E-01 +++-+ 

Martin-Flores et 

al. 2018 

HRAS rs12628 0.35 -0.04 0.08 5.89E-01 +-++- 

Martin-Flores et 

al. 2018 

RPS6KA2 rs6456121 0.30 0.04 0.08 6.29E-01 ++--+ 

Martin-Flores et 

al. 2018 

COMT rs4680 0.47 -0.03 0.08 6.65E-01 ++--- 

Bialecka et al. 

2004 

de Lau et al. 

2011 

Hao et al. 2014 

Cheshire al. 2014 

PRKN rs1801582 0.16 -0.04 0.11 7.01E-01 -+-++ 

Martin-Flores et 

al. 2018 

FCHSD1 rs456998 0.49 -0.03 0.08 7.17E-01 +-+-+ 

Martin-Flores et 

al. 2018 

DRD3 rs6280 0.33 0.02 0.08 7.63E-01 +-+-+ Lee et al. 2011 

ADORA2A rs3761422 0.37 0.02 0.08 7.71E-01 +-++- Rieck et al. 2015 

ADORA2A rs2298383 0.40 0.02 0.08 8.39E-01 -+-++ Rieck et al. 2015 

HOMER1 rs4704559 0.09 -0.03 0.13 8.31E-01 +++-- 

Schumacher-

Schuh et al. 2014 

Direction: Indicates the directionality of the effect of the variant across substudies included on each 

study 

LRP8, also known as Apolipoprotein E Receptor 2 (ApoER2), is part of the low-density 

lipoprotein receptor family [353]. In addition, using western blot analysis based LRP8 

knockout mice models, have shown that LRP8 knockout increases the 



 

124 

phosphorylation level of the microtubule-stabilising protein tau encoded by MAPT 

[354]. A previous retrospective study including 855 Caucasian PD patients found a 

suggestive association between the H1b MAPT haplotype and a higher likelihood of 

dyskinesia at an initial visit [355]. In the case of XYLT1, a previous study has found a 

regulatory effect of a XYLT1 variant on the mRNA levels of GBA1 in the substantia 

nigra and cortex [356]. I investigated whether MAPT variants (rs1800547; rs242562; 

rs3785883; rs2435207) were associated with the time to LiD. In addition, I explored 

whether APOE and GBA1 variants increased the risk to develop LiD [357]. I did not 

find an association between time to LiD and APOE variants rs429358 and rs7412, or 

GBA1 rs2230288 variant (E326K), or MAPT rs1800547, rs242562, rs3785883, 

rs2435207 variants. In addition, I explored genetic associations from PINK1, DJ-1, and 

PRKN intergenic variants. Whereas I did not find any genetic variant associated with 

time to LiD on the PINK1 locus, I found 26 DJ-1 intergenic variants on the with a P-

value < 0.05 (rs1641433611 lead SNP; HR = 1.84, SE =  0.2, P = 4e-4). Similarly, I 

found 162 intergenic variants with a P-value < 0.05 in the PRKN locus ( lead SNP = 

rs113276175; HR = 1.84, SE =  0.2, P = 4e-4). 

vii) PRS is capable of distinguishing patients that develop LiD. 

I nominated a total of 67 independent SNPs to compute the PRS in the Tracking 

Parkinson's cohort. I then validated the proposed SNP set on the OPDC cohort by 

measuring the ability to distinguish LiD PD patients. I found that genetic data as 

summarised by PRS, without any other clinical or demographic data, could accurately 

distinguish PD patients that developed LiD at 10 years from disease onset in two 

separate cohorts: Tracking Parkinson's (AUC 83.9) and OPDC (AUC 87.8). At 10 

years after PD onset, I found that 16% of patients had LiD in the Tracking Parkinson’ 

cohort, and 18% of patients had LiD in the OPDC cohort.  Class imbalance can lead 

to inaccurate evaluation of classifiers. Therefore, I also computed precision recall 

curves (PROC) as large class imbalance can lead to biassed ROC curves when 

assessing the performance of a classifier. I found the PROC AUC to be lower in both 

TPD (AUC =  54.49) and OPDC (AUC = 33.24) (Figure 19). 
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Figure 19. PROC curves for PD and LiD patients PRS. 

a                                                                             b 

 
a) PROC PRS in Tracking Parkinson’s and b) PROC PRS in OPDC. The color scale 

on the right side of the plot gives an indication, which classification threshold results 

in a certain point on the curve. PR = Precision recall. Precision = Positive predictive 

value. Recall = Sensitivity. 

viii) Baseline predictors of LiD development. 

I used Tracking Parkinson's data at baseline in a stepwise regression approach using 

a logistic model. I then filtered out from the final model predictors that were not 

significantly associated after applying Bonferroni correction (P < 0.05 / 502 = 1e-4). 

In addition to the PRS, which was significantly associated with a increase of the odds 

of LiD (OR = 10.01, SE = 0.57, P = 1.07e-30), I found that anxiety at baseline (as 

measured by the Leeds Anxiety and Depression Scale [358]) was significantly 

associated with a increase of the odds of LiD (OR = 1.14, SE = 0.03, P = 7.4e-5). I 

also explored clinical features previously reported as being associated with an 

increased or decreased LiD risk. Sex, AAO, and 5PCs were added in the base model 

of the stepwise regression approach. Consistent with previous studies as well as with 

my CPH model highlighted above, younger AAO increased the LiD odds (OR = 2.41, 

SE = 0.04, P = 4e-3). However, sex was not found to be significantly associated in my 

final model including PRS and Leeds anxiety status.  
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Neither smoking status nor BMI were selected on the stepwise regression approach, 

consistent with what I found when I individually explored known LiD risk factors 

(Figure 12). Interestingly, I also found that PD family history was selected in the 

stepwise regression analysis, and was nominally significantly associated with an 

increase in the odds of LiD (OR = 1.62, SE = 0.14, P = 6.9e-4). 

Finally, I attempted to replicate the association between dyskinesia state and anxiety 

using the State-Trait Anxiety Inventory [359] available in PPMI. I did not find the Trait 

Anxiety Score to be significantly associated with LiD patients in PPMI (OR = -0.03, SE 

= 0.04, P = 0.44).  

iv) Patients with LiD have  an average higher cognitive scoring 

I assessed the cognitive status of LiD patients because of the association between the 

LRP8 nominated locus and APOE. I explored whether the cognitive state differed 

between patients developing LiD and patients who did not develop LiD during the 

study length using the Wilcoxon rank sum non-parametric test with continuity 

correction, as I observed the data was not normally distributed. In addition, I also 

looked into differences in the MDS-UPDRS part III scores between the two groups, 

using the unpaired two samples t-test to compare the mean of two independent 

groups. I compared the LiD group (N=172) against the non-LiD PD group (N=1318) 

using data from Tracking Parkinson's alone as it is the largest deeply phenotyped 

cohort I had available. I did not find differences in the average MDS-UPDRS part III 

total score, neither at baseline nor at the visit when patients first developed LiD (or the 

last available visit in cases who did not develop LiD) (Table 19).  However, PD patients 

who did not develop LiD through the study had a significantly lower MoCA score on 

average at baseline, as well as at the final visit (Table 19). 
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Table 19. MoCa and UPDRS score comparison between PD-LiD and PD groups 

Variable method p.value statistic 
PD group 

mean(sd) 

PD-LID group 

mean(sd) 

moca_bl 

Wilcoxon rank sum test 

with continuity correction 2.1e-05 73754.5 

25.16(3.31) 

 

26.09(3.56) 

 

moca_visit 

Wilcoxon rank sum test 

with continuity correction 0.01 77249.5 

24.34(4.77) 

 

25.35(4.11) 

 

updrs_III_bl Welch Two Sample t-test 0.15 -1.45 

22.2(11.6) 

 

 

23.72(12.1) 

 

 

updrs_III_visit Welch Two Sample t-test 0.25 1.15 

31.91(16.7) 

 

30.42(14.0) 

 

moca_bl = Moca average scores for the LiD and PD group at baseline 
moca_visit = Moca average scores for the LiD and PD group at the time LiD was developed or at the 
last visit available 
updrsIII_bl = MDS-UPDRS III averages scores for the LiD and PD group at baseline 

Updrs_iii_visit = MDS-UPDRS III average scores for the LiD and PD group at the time LiD was 

developed or at the last visit available 

d) Discussion 

I have performed an untargeted genome-wide study to define genetic variants 

associated with the time-to-LiD in PD, using a CPH model under a genetic additive 

effect and analysed the effect of genetic and baseline clinical variation on the 

development of LiD. I found genome-wide significant associations with the time-to-

develop LiD at the LRP8, LINC02353 and XYLT1 loci. These associations were 

consistent across all the cohorts included in the meta-analysis. I also performed a 

candidate gene analysis, exploring genetic variants reported to be associated with LiD 

risk in my large GWAS meta-analysis. I found that genetic variability in BDNF and 

ANKK2, were nominally associated with LiD. I did not replicate any other variant 

associated with LiD risk. 

LRP8 expression is enriched in brain tissues such as the neocortex, cerebellum, 

hippocampus and olfactory bulb [353]. LRP8, together with VLDLR, is a mediator of 

the Reelin pathway, which contributes to development of the central nervous system 

as well as to facilitate neuronal migration [360,361]. LiD develops in the context of 

ongoing neuronal loss, and synaptic/signalling changes related to dopamine therapy. 

My finding suggests the changes in the Reelin pathway and neural development / 

plasticity may be important in the development of LiD. 
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In addition, the LRP8 protein stabilises the microtubule-stabilising protein tau and it 

has been shown that knocking out LRP8 in mice increases tau phosphorylation [354]. 

Post-hoc functional annotation analysis revealed a chromatin loop between an 

enhancer at the third intron of LRP8 (where the lead variant was found) and the LRP8 

promoter, thus providing functional support for LRP8 as the causal gene at this locus. 

In addition, a colocalization analysis, looking at all genes within  ±1Mb from all GWAS 

variants with P-value < 1e-7 revealed a second association in chromosome 1 with the 

DNAJB4 gene. Conditional analysis further confirmed that both regions were in LD, 

hence both LRP8 and DNAJB4 were independently associated with the time-to-LiD. I 

also found a similar event of distal regulation in the XYLT1 locus, although the 

chromatin loop did not perfectly match with the GWAS signals, making the functional 

annotation analysis inconclusive. Moreover, I found that the two GWAS nominated 

signals overlapped with Transcription Factor Binding Sites marks from the ENCODE 

project, adding further support for the transcription machinery being recruited in the 

GWAS loci and regulating both genes expression after forming the enhancer-promoter 

distal chromatin loops. Nevertheless, whereas I found a chromatin loop suggesting 

regulation of XYLT1 and LRP8 gene expression, I did not find statistical support for 

gene regulation based on the colocalization Bayesian framework.  

The three nominated protein coding genes have been previously reported to be 

functionally associated with putative PD genes, which may provide an insight into the 

development of LiD. LRP8 encodes the low-density lipoprotein receptor-related 

protein 8, and it has been found to be associated with APOE. In addition, the LRP8 

protein stabilises microtubule-stabilising protein tau and it has been shown that 

knocking out LRP8 in mice increases tau phosphorylatIon [354].  DNAJB4 gene 

encodes a molecular chaperone tumour suppressor, and member of the heat shock 

protein-40 family. Mutations in the DNAJ family protein have been reported to cause 

or increase the risk of several neurological disorders, including Parkinson's disease 

[362]. XYLT1 encodes a xylosyltransferase enzyme which takes part in the 

biosynthesis of glycosaminoglycan chains. A previous study has found a regulatory 

effect of a XYLT1 variant on the mRNA levels of GBA1 in the substantia nigra and 

cortex [356]. I did not find support for colocalization with eQTLs nor evidence 

suggestive of epigenetic regulation of genes in the LINC02353 locus. PCDH7, the 

nearest gene coding protein gene,  encodes a protein with an extracellular domain 



 

129 

containing 7 cadherin repeats. This gene has been described as a potential PD 

biomarker [363]. 

At an individual patient level, treatment strategies including levodopa and non-

levodopa therapies, and the use of deep brain stimulation (DBS) are determined by 

the emergence of motor complications including LiD. The ability to develop a predictive 

algorithm to enhance clinical care would improve the outlook for PD treatment.  Here, 

I have shown that both clinical and genetic variables have the potential to have a high 

predictive value for the development of LiD. This will need to be validated in further 

cohorts and I hypothesise that the integration of further ‘omics data (e.g. RNA and 

proteomics), using machine learning  may lead to the definition of an accurate 

predictive model for defining PD patients at risk of developing dyskinesia. 

I have analysed a large dataset with detailed clinical, drug exposure and genetic data. 

I have carefully tested for confounding by PD age at onset, gender, population 

structure and shown that my results are free of confounding effects as well as 

demonstrating they are consistent across cohorts. Because the dose of levodopa may 

be a major confounder in my study, I tested the effects of adjusting for levodopa dose 

on a sensitivity analysis, and found that the lead SNPs on LRP8, LINC02353 and 

XYLT1 loci remained significantly associated with the outcome, concluding that 

levodopa treatment was not a confounder in my study design. Likewise, adjusting for 

the MDS-UPDRS part III total score at the time of LiD development did not change the 

significance levels of the lead SNPs, suggesting that my findings were not confounded 

by motor severity or progression. 

Although this is a large study there are limitations  based on sample size. According 

to my sample calculation, I would be 80% powered to detect associations with the LiD 

phenotype from variants with a MAF of 0.01 when I reached a sample size of 18000 

patients. In addition, my results are limited to individuals of European ancestry and I 

have not explored whether there is a shared common genetic variability associated 

with changes in LiD survival across different ancestries. Expanding this analysis to PD 

genetic datasets with deeply phenotypic data available from initiatives such as the 

Global Parkinson's Genetic Program (GP2) will give us new insight into the genetics 

of PD LiD patients as well as serve as a valuable resource for validation of findings 

[155]. 
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MDS-UPDRS 4.1 is a simple but widely used measure which documents the 

appearance of LiD.  Potentially, more detailed scales such as the Unified Dyskinesia 

Rating Scale[364] would provide a more accurate measure of the extent and impact 

of LiD, which would improve future GWAS. 

Overall, I have found new evidence of common genetic variability associated with the 

time-to-LiD. I have been able to map genes at nearby risk loci, as well as provide fine 

mapping support of potential causal variants for LiD traits. Likewise, I hope to help 

design personalised medicine strategies that prevent PD patients developing 

dyskinesia according to their genetic burden which could be tested with the proposed 

PRS in this study. Similarly, I hope to help understand the molecular pathways that 

lead to LiD. Targeting nominated genes might allow the development of LiD treatment 

strategies. Further investigation regarding the overlap between anxiety GWAS and my 

GWAS might help understanding common causal pathways between the two 

conditions. Understanding shared mechanisms will help us prevent medication 

adverse events affecting non-targeted pathways and to fine-tune current treatments. 
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5) Global large-scale analysis in Parkinson’s 
disease using long-gwas provides new 
insights into the genetic determinants of 
Parkinson’s disease phenotypes. 

a) Introduction 

Complex genetic diseases are thought to develop due to the effect of multiple common 

genetic risk variants and environmental risk factors, rather than highly penetrant single 

gene variants. Genome-wide association studies (GWAS) have been used to define 

the genetics of complex traits and diseases [51,365,366]. Despite the upper limit of 

genetic studies given by the heritability of the trait, and how much of it can be captured 

by the study designs of trait-disease-specific GWAS and data availability, estimates of 

variant effects can be used to predict the genetic predisposition to disease in 

individuals who have not yet developed the condition [367]. Moreover, insights from 

GWAS have proven to be transferable when developing clinically actionable strategies 

to deal with the development and progression of disease. The PCSK9 gene 

exemplifies the successful translation of GWAS knowledge into FDA-approved 

disease-modifying treatments. After the discovery of PCSK9 mutations causing 

autosomal dominant hypercholesterolemia [368], subsequent GWAS studies identified 

genetic variants associated with low-density lipoproteins (LDL) cholesterol levels and 

coronary heart disease risk [369]. PCSK9 controls LDL levels targeting LDL receptors 

hence being associated with changes in LDL levels in plasma [370]. After promising 

clinical trials results showing the efficacy of PCSK9 inhibition to control treat 

hypercholesterolemia and reduce the risk of cardiovascular events [371], Alirocumab, 

a PCSK9 inhibitor, was approved by the FDA to treat hypercholesterolemia [372]. 

In PD, the largest GWAS of European ancestry patients to date defined a total of 90 

independent variants at 78 loci [51]. All risk variants together have been found to have 

a high predictive capability for disease diagnosis alone (AUC: 70%) based on 

machine-learning model training and optimization [373]. However, the risk variants 

uncovered so far explain just a fraction (16-36%) of the total heritability component of 

idiopathic PD estimated to be 22% [51]. Recent work expanding the largest PD genetic 

study to more ancestry diverse populations, including PD samples from East Asian, 
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Latino and African individuals, identified 12 novel loci [82]. Despite the unquestionable 

progress uncovering the genetic architecture of PD, these well powered case-control 

GWAS meta-analyses [4] have not contributed to the identification of novel disease 

modifying treatments. An alternative approach is the identification of targets for  

disease-modifying treatments based on phenotypic progression and severity GWASs 

that can identify genetic loci associated with prognosis. Together with downstream 

functional annotation to establish the nearest genes and their expression patterns 

[285], this strategy might be particularly powerful in pinpointing actionable targets for 

disease-modifying treatments.  

In recent  years, several progression and severity genetic studies have been 

conducted in PD [108,109,114,374–376] using different genetic quality control and 

modelling strategies. These have successfully identified genetic markers associated 

with different PD outcomes, such as motor and cognitive performance. Here, I 

introduce long-gwas, a Nextflow pipeline that makes longitudinal and severity disease-

specific GWAS accessible and scalable, and reproducible by decreasing the 

introduction of user systematic errors. Here, I used long-gwas to conduct  a large-

scale proof of concept disease severity analysis across multiple phenotypic outcomes 

and ancestry groups. I describe putative loci for hyposmia, an established phenotypic 

marker of α-synuclein, pathology, as well as other potential novel genetic markers that 

capture diverse aspects of the PD symptomatology.  

b) Methods 

i) Long-gwas 

The development of long-gwas has been part of a collaboration with Michael Ta at the 

NIH. My participation can be found on GitHub in the commit history 

(https://github.com/michael-ta/longitudinal-GWAS-pipeline/commits/main/) and the 

pull requests from developmental branch I created in the process of improving and 

adding new features to the tool (https://github.com/michael-ta/longitudinal-GWAS-

pipeline/pulls?q=is%3Apr+is%3Aclosed)  

Here I summarise in brief, my main contributions to the software development: 

- Rewrite of the software on DSL version 2 

https://github.com/michael-ta/longitudinal-GWAS-pipeline/commits/main/
https://github.com/michael-ta/longitudinal-GWAS-pipeline/pulls?q=is%3Apr+is%3Aclosed
https://github.com/michael-ta/longitudinal-GWAS-pipeline/pulls?q=is%3Apr+is%3Aclosed
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- Developing a modularised version of long-gwas 

- Developing configuration files for cloud and HPC based execution support 

- Enabling of parallel executions of multiple GWAS outcomes 

- Dealing with outcome missingness time points on the fly during pipeline 

execution 

- Enhancement of Manhattan and QQ plots 

- Enhancement of results processing (merge all splits into one readable file) 

- Improvement during runtime to only load modules needed for analysis (if GLM 

analysis is needed, then I do not load other modules which speeds up the tool 

and use less resources during runtime) 

- Several bugs fixes for example wrong SNPs ordering between chromosome 

splits before splits merging in plink, or overcome memory limitations when 

merging chromosome files in plink 

- Remove deprecated arguments no longer used in the new version 

- Yaml file to more efficiently write parameters 

- Enhance docker image to incorporate missing dependencies 

- Add Nextflow scripts and tree structure needed to run lon-gwas from GitHub 

without the need of manually download the workflow 

- Update web based documentation supervising a research assistant in the lab  

- Efficiently use the bin folder in the GitHub remote to allocate the custom scripts 

I use in long-gwas that enable no longer needing to hard code those scripts in 

the docker image, lighting up the image and making deployment faster 

Long-gwas is a workflow developed using Nextflow domain-specific language version 

2 (DSL2). Nextflow dataflow programming is inspired by the Unix philosophy, in the 

sense that it is based on the use of pipes, and one can chain multiple simple operations 

together. One Nextflow structure called channels enables multiple tasks to 

communicate by piping the output of a task to the input of a downstream task. 

Likewise, parallelization inherently happens based on how process outputs are 

channelled into other processes, avoiding the use of complex parallelization definitions 

[377,378]. Long-gwas  exploits  the parallelization capabilities of Nextflow to speed 

up the process of running time-consuming end-to-end (longitudinal) GWAS analyses. 

It ensures workflow portability and reproducibility of results based on the 

containerization of the tool using the Docker software platform. In addition, long-gwas 
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configuration supports Google Cloud Batch execution, making scalability possible 

when users intend to run long-gwas on heavy genomic data batches. The GitHub 

integration of long-gwas enables users to constantly track software changes. 

Long-gwas covers all the steps that are necessary to perform a (longitudinal) Genome-

Wide Association Analysis. Based on our experience performing this type of analysis, 

we have integrated the  tools that  are required to achieve the different goals at each 

step of the workflow. In addition, we automatically deal with common pitfalls when 

performing this type of analysis. 

Long-gwas is intentionally developed so that anyone with basic understanding of the 

command line can perform their analyses. Nextflow, and for instance long-gwas is 

supported in the main operating systems (Linux, Mac OS, and Windows through 

WSL2). Whereas we have hard coded on the long-gwas configuration file the amount 

of resources (CPUs and RAM) that tasks need to run, Long-gwas implements an 

efficient caching approach so that very time consuming sections only need to be run 

once when variations of a task need to be executed for the same input genetic data. 

For instance, when working with input data for a given study, if the number of genetic 

variants in the input is very high, the operation of loading the data and performing initial 

genetic data QC is time consuming. As this step is highly generalisable across any 

GWAS, we save the arranged output of this process on a cache directory so that any 

subsequent run will skip this first step. Therefore, we can rapidly re-execute parts of 

the workflow of interest. Each step is encapsulated on a container via Docker or 

Singularity. Because we acknowledge many users might not have access to an HPC 

or a cloud based platform, we provide a Nextflow configuration in long-gwas to support 

local (HPC or personal desktop) or Cloud-based executions of the workflow. This 

configuration file can be further customised by the user to exploit the job schedulers 

and cloud platforms that Nextflow supports for the workflow deployment. 

i.i) Inputs and outputs 

Long-gwas inputs are handled through a yaml file. We provide a thorough description 

of each long-gwas input file and argument on the web-based documentation page 

[379]. 

We can group the workflow inputs in four main types: 
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Data files. Chromosome level genetic VCF input files, a covariates file, and a 

phenotype file are the data files needed to run a long GWAS following multiple steps. 

Quality control arguments. Even though the data QC is fully automated in long-

gwas, we grant users full control of parameters to make decisions on data quality at 

both the sample and the genetic level. For instance, users can specify the r-squared 

threshold to filter out genetic variants with low imputation confidence, the minor allele 

frequency and count of variants to retain for analysis, the kinship parameter to decide 

the accepted relatedness between each pair of samples from the input, the ancestry 

from which we want to keep individuals from the input data to account for population 

structure, and the assembly of the input genetic data to infer whether genetic data 

liftover is necessary or not. Finally, we also provide a variable to enable users to decide 

how to create the chunks of genetic files at the chromosome level. Based on this 

variable, chromosome level data is split into chunks of N genetic variants enabling 

Nextflow to create a parallelization backend to run the genetic quality control. 

GWAS model parameters. In a generalisable way across all the models, we allow 

users to specify the covariates, phenotypes, as well as the ability to perform a separate 

GWAS for each study code based on a study grouping variable. Long-gwas supports 

the running of one model at a time. We provide  boolean (True or False) variables to 

specify whether to use the gallop powered linear mixed effect (LMM) model, the Cox 

Proportional Hazard (CPH) model, or the Generalised Linear Model (GLM) model. 

More specifically, for the LMM models, which are meant to be hierarchical and grouped 

at the individual level, we provide a time variable to specify the time point each record 

was taken for each sample ID. Similarly, for the CPH model this time variable is used 

to specify the time for individuals to reach the outcome. We also provide a variable to 

customise the GWAS results output name. 

Cache and results directory. The dataset argument is used in long-gwas to create a 

folder in which we save the multiple outputs of the long-gwas workflow, as well as a 

cache directory where we save intermediary output files that could be reused in other 

analyses with the same input genetic data files. 

Once the long-gwas workflow is completed, a results directory is generated that 

contains the following output files: 

- Diagnostic plots (Q-Q plot, PCs scree plot, 2-D PCs plots). 
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- GWAS results (Manhattan plot, and a tsv file with all GWAS SNP-level results). 

- Operation logs (log file for merging operations after preprocessing step and log 

file for the PC inference). 

i.ii) Genetic association models 

Long-gwas is intentionally developed to support three main types of statistical models 

to perform GWAS: GLM, LMM powered by GALLOP and CPH. More information on 

each type of the model is available in Chapter 2 – Methods. 

i.iii) Workflow description 

Long-gwas can be divided into three main sub workflows summarised in Figure 20. 

The preprocessing step is the first sub workflow run using the long-gwas tool, in 

which data is prepared for the downstream analysis. Genetic data is processed to 

retain highly confidently imputed genotypes. We left-align and normalise indels, and 

also split multiallelic sites into biallelic records using bcftools. We generate plink2 

genetic binary files on the output. Long-gwas standardises genetic data into build 

hg38. Therefore, if input files are provided in hg19 or other build, long-gwas performs 

the liftover of genetic files using the LiftOver tool from UCSC [380], In addition, we 

ensure consistent representation of variants in the input VCFs, by  normalising genetic 

variants using vt normalise [381] and the FASTQ hg38 reference panel as reference 

for the alignment. Lastly, genetic data is processed to remove singletons, duplicate 

variants, as well as to keep only those genotypes with high call rates. We accelerate 

this time-consuming first step by splitting the input genetic data at the chromosome 

level in multiple chunks of a defined number of SNPs, each based on the chunk_flags 

long-gwas argument. 

Once the QC is complete for each data subset, we merge the chunks back into one 

chromosome file, and those into one unique genetic file containing all genetic variants 

for all chromosomes of all samples in the study. We generate bed and pgen output file 

formats using plink2 software.  

The second step of the workflow is to perform quality control that guarantees we 

only retain high quality samples and genetic data for analysis. For that, samples with 

high genotyping missingness rate are removed, heterozygosity and ancestry outliers 

are pruned and one individual of each pair of related individuals at the first degree 
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relative level are removed. Genetic variants that are not in Hardy-Weinberg equilibrium 

are excluded, as well as variants with a minimum allele count <20 (rare variants 

exclusion). For interpretability, we provide descriptive plots highlighting the data 

processing during QC. For instance, we provide a scree plot showing the number of 

PCs that were included to decide which samples were selected as ancestry outliers, 

as well as a 3D plot showing the PCs distribution against a reference panel. We 

provide the sample list that passed all QC steps on an h5 file. 

The third step of the workflow is to run a GWAS analysis on the resulting QC data. 

The covariates and phenotype data are filtered to match samples that passed the QC 

stage using the h5 file from the QC step. In addition, new PCs are calculated on the 

final QC subset of data, and these are merged with the covariates file. Users can 

specify PCs as covariates, in which case the model will be fitted accordingly. For each 

outcome, we remove missing outcome data points that would make the model fit fail, 

and report any sample excluded for this reason. Currently, three types of analyses are 

available in long-gwas. GLMs can be deployed to evaluate the effect of variants either 

on disease risk (case-control GWAS) or on disease severity  measured by quantitative 

cross-sectional clinical instruments. CPH models [382] can be used to determine the 

impact of genome-wide variants on survival based on a predefined outcome relevant 

to  the disease under study. LMMs powered by GALLOP [194], in which we can 

evaluate the impact of genetics on both disease progression (slope-term) and severity 

(intercept-term), allowing for random sources of variation to account for unexplained 

heterogeneity at both disease presentation and progression. We exploit the Nextflow 

parallelization capabilities by splitting the data into multiple chunks and running a 

GWAS on each chunk in parallel. In addition, long-gwas can be run simultaneously on 

many outcomes, by parallelizing the GWAS analysis of all outcomes specified on the 

long-gwas pheno_name argument. Finally, we merge all data into one file per 

outcome, and we generate the Manhattan and diagnostic plots (QQ plots) for all 

results. 
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Figure 20. Long-gwas pipeline schematic overview. 

 
First we do a pre-processing step, followed by quality control. Finally, long-gwas 

performs a GWAS based on different settings on the QCed data subset.  

ii) Study design and participants 

In my initial work with the long-gwas tool I have used four data sources: the Unified 

cohorts from the Accelerating Medicines Partnership Program in Parkinson’s Disease 

(AMP-PD Unified, (https://amp-pd.org/unified-cohorts), which gathers common clinical 

and genomic data in an harmonised format from eight different cohorts (BioFIND, 

HBS, LBD, LCC, PDBP, PPMI (genetically enriched and sporadic PD patients), 

STEADY-PDR, SURE-PD3) with whole genome sequencing;  the federated cohorts 

provided by the Global Parkinson’s Genetics Program (AMP-PD GP2), genotyped with 

NBA [155,347,383]; the Tracking Parkinson’s cohort; and the Oxford Discovery 

cohorts [150,151]. Based on participant longitudinal data, we excluded any participant 

whose latest diagnosis was not PD. If longitudinal data was not available,  we used 

the latest diagnostic information. We carried out clinical data quality control by 

excluding: PD patients without clinical or demographic records at baseline, patients 

https://amp-pd.org/unified-cohorts
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with unmatched clinical and genetic data and patients with long disease duration at 

baseline (>20 years). In addition, we found the case of negative values calculating 

disease duration at baseline (diagnosis before reported symptom onset). We excluded 

these from analysis. 

For each cohort, we selected the following  clinical assessments: MDS-UPDRS Part I 

(non-motor aspects or experiences of daily living), Part II (motor aspects or 

experiences of daily living), Part III (motor examination; recorded in the on-state for 

treated participants), HY stage, MoCA, MMSE, SEADL (a scale to assess the 

capabilities of people with impaired mobility), RBD questionnaire, University of 

Pennsylvania Smell Identification test (UPSIT), the Epworth Sleepiness Scale (ESS), 

and the Parkinson’s Disease Questionnaire (PDQ-8). In addition, we accessed the α-

synuclein amplification assay from AMP-PD PPMI study participants.  

We matched clinical and genetic data in the remaining participants after QC, resulting 

in deeply phenotyped PD records for two ancestry groups: Ashkenazi Jewish and 

Europeans. Data availability for the rest of the ancestry groups was lower than 100 

samples. We considered a genetic association study on less than 100 samples to be 

under-powered so we excluded these samples from the study. 

iii) Genetic data quality control 

To assign ancestry labels to patients that passed the sample quality control stage, we 

used GenoTools, a python module to perform data quality control and genetic 

analyses [17]. To do quality control based on the available genetic data, we used the 

long-gwas arguments to perform the automated quality control steps in the workflow, 

based on our input parameters. During the data preparation step, we excluded non-

autosomal or singleton genetic variants. For Tracking Parkinson’s and Oxford 

Discovery cohorts for which data was in hg19, we lifted over the data using long-gwas, 

by setting the assembly argument (--assembly=hg19). When using  imputed genetic 

data, we filtered out variants with a R squared value <0.7 (--rsthres=0.7). In addition, 

we only kept genetic variants with minor allele frequency >5% (--

minor_allele_freq=0.05), and variants with a minor allele count of at least 20 (--

minor_allele_ct=20). We filtered one patient out of a pair of closely related individuals 

by generating a kinship square matrix and setting a kinship argument threshold (--
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kinship=0.177). To account for any possible population stratification, we ran the 

ancestry outlier detection long-gwas utility, which uses 1000 Genomes as a reference 

panel [220] . For instance, if the input genetic data was from an AJ subset inferred by 

ancestry tool, then we set up the ancestry argument to Ashkenazi Jewish (--

ancestry=AJ) or European (--ancestry=EUR) ancestry. In addition, we derive genetic 

principal components (PCs) that we use to adjust the genetic model for population 

stratification. 

On average, a total of 6,500,000 variants remained available for each independent 

ancestry cohort level data subset. For each genetic analysis on the subset of SNPs, 

we generated Q-Q plots for a graphical check, as well as estimated genomic inflation 

factors to guarantee the GWAS test-statistics were a unique function of genetic 

variability and were not inflated due to cryptic-relatedness and/or population 

stratification. To do so, we set the long-gwas arguments mh_plot to true (--

mh_plot=true). 

A further description of all the arguments we have used to conduct data quality control 

can be found on the long-gwas web-based documentation [384]. 

iv) Genome-wide disease severity model and meta-analysis 

I performed multiple genome-wide association studies across the range of quantitative 

outcomes. I used clinical baseline measures (cross-sectional data points). Data 

availability for each outcome is described in detail in Table 20. I studied the impact of 

genetic variants on disease severity using GLMs, with sex, cohort, age at baseline 

(AAB) and the first three genetic PCs as covariates. 

Table 20. Overview of data availability for each clinical outcome across ancestry 
groups in the four PD data sources. 

 AMP-PD 
Federated (GP2) 

AMP-PD 
Unified 

OPDC PROBAND N total 

Ancestry EU AJ EU AJ EU AJ EU AJ EU AJ 

MDS-UPDRS 

I - - 2128 345 787 4 1619 10 4534 359 

MDS-UPDRS 

II - - 2127 345 787 4 1622 10 4536 359 

MDS-UPDRS 

III 1052 141 2170 344 786 4 1589 9 5597 497 
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 AMP-PD 
Federated (GP2) 

AMP-PD 
Unified 

OPDC PROBAND N total 

HY 1470 165 2763 421 797 4 1699 11 6729 601 

MOCA   1669 244 788 4 1578 10 4065 258 

MMSE 1497 249 - - 792 4 - - 2289 253 

SEADL 425 - 2167 398 - - 1694 11 4286 411 

UPSIT - - 1575 320 - - 1089 8 2664 328 

RBD - - 1306 335 - - 1600 10 2906 345 

ESS - - - -  - 1636 10 1636 10 

PDQ8 - - - - - - 1634 10 1634 10 

I  used METAL software  (version released on 25/03/2011) to meta-analyse results of 

multiple GWASs at the cohort level for matched ancestry groups. I applied a fixed-

effect model based on the sum of the β coefficients for each SNP i and study j, 

weighted by the inverse of the variance of the estimated effect of the jth variant in the 

ith study (1 / [Var(βij)]). Upon meta-analysis, I applied a genomic control correction to 

the cohort-specific summary statistics by computing the inflation of the test statistic, 

and then applying the genomic control correction to the standard errors.  Similarly, I 

used the METAL software fixed-effect model to perform a meta-analysis across 

ancestries to investigate the homogeneous allelic effects between ancestry groups for 

a targeted clinical outcome, the UPSIT Olfactory Test. 

To ensure the consistency of allelic effects across the multiple genetic studies included 

in the meta-analyses, I filtered out heterogeneous variants based  on the Cochran’s 

statistic (test of heterogeneity of allelic effects) and I2 (a quantification of the extent of 

heterogeneity in allelic effects across GWASs). SNP level estimates were excluded if 

the P-value for the Cochran's Q-test for heterogeneity was <0.05 and the I2 statistic 

was ≤80%. In addition, I filtered meta-analysis results to only include genetic variants 

that were available for at least 40% of the total genetic markers. 

v) Proteome and transcriptome differential abundance and 

expression analysis 

To find transcriptomic and proteomic based biomarkers based on LRRK2 G2019S and 

GBA1 N370S status, I accessed blood whole-transcriptome counts and  Data-
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Independent Acquisition mass spectrometry-based (“untargeted”) proteomics from 

cerebrospinal fluid  (CSF) Untargeted protein abundance measures from AMP-PD 

release v3. A more detailed overview on the transcriptomic data preparation is 

available at (https://amp-pd.org/transcriptomics-data#workflows). A more detailed 

overview on Non Targeted Proteomic data preparation is available at (https://amp-

pd.org/data/untargeted-proteomics-data). 

For our differential expression transcriptome analysis, I used the limma R package. I 

transformed count features to log2-counts per million (logCPM), estimated the mean-

variance relationship and used this to compute appropriate observational-level 

weights. I then computed a linear model fit for each gene adjusting by sex, the plate 

number, age and neutrophils and lymphocytes percentages. Finally, I computed 

moderated t-statistics, moderated F-statistic, and log-odds of differential expression 

by empirical Bayes moderation of the standard errors towards a common value. 

For the analysis of differential abundant protein analysis, I used a custom function in 

Python. I transformed protein abundance to log2-counts, and removed the variance 

on measures driven by age and sex. Then, I ran a t-test to get the significance of the 

mean difference between two groups (mutation carriers versus non carriers). 

vi) Functional annotation of genetic association results 

To annotate results from genetic studies, I used the Functional Mapping and 

Annotation (FUMA) v1.3.8 web platform. FUMA defines genomic risk loci based on 

linkage disequilibrium (LD) blocks composed of independent significant SNPs at Rsq 

> 0.6. To define LD blocks, I set up a distance of 500kb between different LD blocks 

edges. For each LD block, a subset of lead SNPs is defined by finding the independent 

significant SNPs that are independent of each other at Rsq 0.1. Then, these SNPs are 

merged into LD blocks separated 250Kb from one another. Each locus is represented 

by the top lead SNP (minimum P-value) in the locus. To calculate the Rsq, I used the 

1000 Genome Reference panel with all ancestries. 

Independent significant SNPs are mapped to genes based on a window size of 10kb 

using ANNOVAR. To know the functional consequences of SNPs using ANNOVAR in 

FUMA. I also queried several eQTL sources to map SNPs to genes which likely affect 

https://amp-pd.org/transcriptomics-data#workflows
https://amp-pd.org/data/untargeted-proteomics-data
https://amp-pd.org/data/untargeted-proteomics-data
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expression of those genes. I only used cis-eQTL data (up to 1Mb) from eQTLGen, 

PsychEncode, and GTEx V8 data sources [269,385,386].   

Finally, I determined the tissue specificity of our PD phenotypes meta-analysis based 

on an enrichment analysis against all differentially expressed genes by performing a 

two-sided t-test for any label against all others for all GTEx V8 tissues. Then based on 

the sign of t-statistics, up-regulated and down-regulated DEGs were also computed. 

To test input genes derived from the meta-analysis summary statistics against each 

DEG set for each tissue, the hypergeometric test was used. Significant enrichment at 

Bonferroni corrected P-value are coloured in red.  

c) Results 

i) Summary of clinical and demographic data available for analysis 

In this analysis, I included 8,458 European and 963 Ashkenazi Jewish PD cases 

(Table 21). The GP2 European cohort had the longest mean disease duration from 

diagnosis. GP2 European cases were also younger at baseline on average. For AJ 

ancestry cases, average disease duration was also  longer in the GP2 cohort. AAB  

was similar among the AJ cases from the different data sources. The male:female ratio 

was very similar across the studies for the European ancestry samples. However, the 

proportion of males among AJ cases varied between 58% and 100% in the different 

cohorts 

Mean motor and cognitive scores  at study entry, as measured by MDS-UPDRS part 

III and MoCA respectively, were similar across cohorts. Interestingly, the Oxford 

discovery cohort showed the lowest proportion of patients in a more advanced disease 

stage, as measured by the Hoehn and Yahr scale, as well as the highest average 

score of MDS-UPDRS part III. UPSIT and RBD assessments are used to quantify the 

olfactory impairment and REM sleep behaviour disorder, and they were available for 

the AMP-PD Unified and Tracking Parkinson’s cohorts. There were no differences in 

the average scores for these two assessments across cohorts. I did not find clear 

differences in the average outcomes capturing PD non-motor features or the motor 

and cognitive states between European and AJ groups.
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Table 21. Summary of clinical and demographic features at baseline across European and Ashkenazi Jewish groups 

 AMP-PD Federated (GP2) AMP-PD Unified OPDC PROBAND 

Ancestry EU AJ EU AJ EU AJ EU AJ 

N 3492 429 2470 519 797 4 1699 11 

Age at baseline 63·1 (21·0 to 93·0) 

66.3 (40·0 to 91·0) 

64·2 (30·0 to 90·0) 66.85 (32·0 to 

90·0) 

67·3 (32·2 to 90·5) 

67.9 (58·2 to 81·6) 

67·5 (31·1 to 90·4) 64.7 (49·5 to 

75·6) 

Disease duration, 
4·4 (0 to 19·0) 6.1 (0·0 to 19·0) 3·6 (0 to 19·0) 4·8 (0 to 19·0) 

1·3 (0 to 3·5) 
0.7 (0·3 to 1·2) 1·2 (0 to 3·4) 1.5 (0·1 to 3·0 

Male sex 2134 (63%) 306 (71%) 1545 (63%) 302 (58%) 513 (64%) 4 (100%) 1104 (65%) 7 (64%) 

Female sex 1307 (37%) 123 (29%) 925 (37%) 217 (42%) 284 (36%) 0 (0%) 595 (35%) 4 (36%) 

MDS-UPDRS I 
- - 

7·7 (0·0 to 37·0) 
8.6 (0·0 to 37·0) 

8·7 (0·0 to 33·0) 
8.2 (5·0 to 12·0) 

9·2 (0·0 to 34·0) 
11.2 (4·0 to 21·0) 

MDS-UPDRS II - - 8·2 (0·0 to 46·0) 8.7 (0·0 to 39·0) 8·8 (0·0 to 33·0) 6.0 (4·0 to 10·0) 9·8 (0·0 to 48·0) 7.9 (1·0 to 20·0) 

MDS-UPDRS III 21·1 (0·0 to 100·0) 20·7 (2·0 to 64·0) 23·2 (0·0 to 83·0) 24.4 (0·0 to 83·0) 26·6 (5·0 to 77·0) 24.5 (14·0 to 35·0) 22·9 (1·0 to 76·0) 13.6 (3·0 to 26·0) 

Hoehn and Yahr 

stage, 3–5 544 (16%) 65 (14%) 409 (17%) 73 (14%) 65 (8%) 0 (0%) 331 (19%) 0 (0%) 

MOCA total - - 26·1 (3·0 to 30·0) 25.7 (8·0 to 30·0) 24·5 (12·0 to 30·0) 23.7 (20·0 to 27·0) 24·9 (9·0 to 30·0) 

26.7 (22·0 to 

30·0) 

MMSE total 30·0 (0·0 to 30·0) 28.9 (21·0 to 30·0) - - 27·4 (18·0 to 30·0) 27.0 (24·0 to 30·0) - - 

SEADL 

91·5 (60·0 to 

100·0) 

91.2 (70·0 to 

100·0) 89·1 (0·0 to 100·0) 

87.5 (10·0 to 

100·0) - - 

88·2 (20·0 to 

100·0) 

92.2 (80·0 to 

100·0 

UPSIT total - - 21·4 (0·0 to 40·0) 22.6 (0·0 to 40·0 - - 19·7 (3·0 to 37·0) 21.3 (15·0 to 31·0 

RBD total - - 4·4 (0·0 to 13·0) 4.0 (0·0 to 13·0 - - 4·7 (1·0 to 13·0) 4.1 (2·0 to 7·0 

ESS total - - - - - - 6·8 (0·0 to 24·0) 5.3 (0·0 to 12·0 



 

145 

ii) Large-scale disease severity meta-analysis across multiple PD 

clinical outcomes 

I conducted a large-scale European and Ashkenazi Jewish genetic association 

analysis across all Parkinson’s clinical outcomes available capturing motor features 

(MDS-UPDRS part II, MDS-UPDRS part III), cognitive features (MMSE, MoCA), 

disability (SEADL), disease severity (H&Y), and non-motor features (MDS-UPDRS 

part I, UPSIT, RBD) using GLM for baseline data. Subsequently, I meta-analysed 

genetic variant summary statistics for each clinical outcome. The meta-analysis was 

performed for each ancestry group independently. The sample size for each GWAS 

depended on data availability across clinical outcomes (Table 20). I did not detect 

significant genomic inflation for any of the genetic-association studies. 

For the European ancestry meta-analyses, I found statistically significant genetic 

associations with non-motor features (MDS-UPDRS part I, UPSIT), motor features 

(MDS-UPDRS part II), and disability (SEADL) (Figure 21) (Table 22). All significant 

associations were intragenic. 

Figure 21. Manhattan plots of the GWAS meta-analyses with significant 
associations.  

 
Meta-analysis for  a) Upsit score b) SEADL, c) UPDRS-I, d) UPDRS-II. The x-axis 
represents the chromosome, and the position of each variant in the meta-analysis. 
The y-axis shows the two-sided P-value in the -log10 scale. Genome-wide significance 
is set at a P-value of 5e-08, and is represented by the red line on the Manhattan plots. 
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Table 22. Table of the lead SNP for each significant LD block part of the meta-
analysis, including variants with at least 30%  availability across the multiple cohorts 

rsID chr A1 MAF beta se P-value Gene func outcome 

rs6702348 1 G 0.012 -11.76 1.81 9.25e-11 GPR137B intronic SEADL 

rs34637584 12 T 0.09 4.96 0.64 2.08e-10 LRRK2 exonic UPSIT 

rs76763715 1 C 0.002 -4.49 0.76 3.89e-09 GBA1 exonic UPSIT 

rs142137167 2 G 0.008 6.52 1.12 5.72e-09 HECW2 intronic UPDRS II 

rs181145947 9 T 0.005 6.16 1.11 3.20e-08 AGTPBP1 intronic UPDRS I 

rs11764231 7 G 0.005 7.34 1.33 3.65e-08 WDR86 intronic UPDRS II 

For each lead SNP, I provide which is the closest gene. Because all lead SNPs were 
intragenic, I mapped each SNP falling on each gene boundary. P-value, two-sided P-
value of association from meta-analysis. 

In addition, I have made available a list of all the lead SNPs that reached nominal 

significance on each locus (P-value < 1e-6) and the genes that they were mapped 

onto for each individual clinical outcome Table 23. 

Table 23. All nominal and significant associations from multi GLM GWAS. 

chr A1 MAF beta se gwasP nearestGene dist func study 

5 G 0.11 2.26 0.46 1.90E-07 AC008565.1 83226 intergenic UPSIT 

1 G 0.08 0.11 0.02 4.98E-07 ADH5P2 80069 intergenic HY 

2 T 0.27 0.08 0.02 2.64E-07 ATIC 0 intronic HY 

4 G 0.03 0.18 0.04 5.92E-07 SLC9B2 0 intronic HY 

10 T 0.01 -3.24 0.60 5.07E-08 RPL39P25 10649 intergenic MOCA 

13 A 0.01 -3.77 0.71 9.75E-08 XPO4 0 intronic MOCA 

20 G 0.09 -3.53 0.65 5.47E-08 NTSR1 0 intronic SCHWAB 

13 A 0.02 3.53 0.65 5.16E-08 NALCN 0 intronic UPDRS_I 

2 G 0.01 6.53 1.12 5.72E-09 HECW2 0 intronic UPDRS_II 

3 G 0.13 1.72 0.33 1.52E-07 TSC22D2 10385 intergenic UPDRS_III 

3 C 0.22 1.36 0.27 4.28E-07 TSC22D2 14022 intergenic UPDRS_III 

10 A 0.01 8.54 1.72 7.22E-07 ZNF438 16990 intergenic UPDRS_III 

16 G 0.23 -1.37 0.26 1.55E-07 TEKT5 0 intronic UPDRS_III 

20 A 0.45 1.11 0.22 7.64E-07 RP11-137F15.1 16380 intergenic UPDRS_III 
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The number of participants of Ashkenazi Jewish ancestry was sufficiently large in the 

AMP-PD Unified and GP2 cohorts  to perform a large-scale GWAS. However, for the 

Ashkenazi Jewish samples, I only performed a meta-analysis for the Hoehn and Yahr 

and MDS-UPDRS part III GWASs due to clinical data availability (Table 20). I did not 

find any statistically significant association in the AJ HY and MDS-UPDRS meta-

analyses. Interestingly, I found a nominally significant LD block for the Hoehn and Yahr 

disease severity meta-analysis (Figure 22). The lead SNP (rs510791; β = 0.25; SE = 

0.05; P-value = 4.74e-07), is an intronic variant at the PACRG gene, a gene next to 

the PARKIN gene, which is associated with autosomal recessive juvenile PD. PACRG 

and PARKIN are co-regulated in multiple tissues and share a bi-directional promoter. 

In addition, the PARKIN co-regulated protein is a component of Lewy bodies in PD 

patients [387,388]. This variant was not associated with the HY stage in Europeans 

(rs510791; β = 0.0036; SE =  0.0123 ; P-value =  0.7728), which suggests that some 

genetic determinants of disease severity might be ancestry-specific. 

Figure 22. AJ Hoehn and Yahr meta-analysis 

 

The x-axis represents the chromosome, and the position of each variant in the meta-
analysis. The y-axis shows the two-sided P-value in the -log10 scale. 

Finally, to estimate to what extent genetic determinants might contribute to disease 

severity outcomes in PD, we derived Pearson correlation coefficients for the SNP 

effect sizes between the AJ and EUR ancestry meta-analyses of the Hoehn and Yahr 

and the MDS-UPDRS part III outcomes, which were available for both ancestry groups 

(Figure 23). Overall, the correlation results suggest that the genetic makeup that 

contributes to PD severity as measured by multiple clinical outcomes, is ancestry-
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specific. However, the correlation result across ancestries suggests that 

homogeneous effects exist.                 

Figure 23. Pearson correlation of Effect sizes between AJ and EUR MDS-UPDRS III 
(left) and H&Y (right) meta-analyses. 

 
 

iii) LRRK2 G2019S and GBA1 N370S are the main genetic 

determinants of the olfactory impairment that arise in PD patients of 

European ancestry 

The two significant LD blocks in the disease severity meta-analysis for the olfaction 

UPSIT assessment corresponded to the GBA1 locus on chromosome 1 and the 

LRRK2 locus on chromosome 12, respectively (Table 22). The lead variant at the 

GBA1 locus (rs76763715,  also known as N370S), was associated with a decrease in 

the average UPSIT score (β = -4.49 , SE = 0.76 , P-value = 3.89e-09). The lead SNP 

at the LRRK2 locus (rs184460887) was associated with an increase in the average 

UPSIT score β = 4.96; SE = 0.77; P-value = 1.06e-10). Similarly, the  second most 

significant association (rs34637584, also known as G2019S) was associated with an 

increase in the average UPSIT score (β = 4.07 , SE = 0.64 , P-value = 2.08e-10). 

To further understand the pathway associated with the smell impairment involving 

LRRK2 and GBA1, I adjusted the UPSIT total score GWAS, adding G2019S, N370S 

and G2019S or N370S mutation carrier status as mediators in the genome-wide scale 

multiple regression model on the meta-analysis results from the European-based 

UPSIT meta-analysis. I did not find any novel genetic association with the UPSIT 

outcome (Figure 24). 
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Figure 24. Association between genetic variants at the LRRK2 locus and Hoehn and 
Yahr outcome.  

 
 

 
 

 

a) Manhattan without any covariate  b) Manhattan with GBA1 N370S as covariate c) 
Manhattan with LRRK2 G209S as covariate. 

N307S remained significantly associated after adjusting on G2019S, as well as 

G2019S remained significant after adjusting on N307S. However, the LRRK2 locus 

spans more than 1Mb away from the top lead SNP, and the variance captured by this 

locus on the UPSIT score seems to be more complex than just by the effect of one 

single pathogenic mutation. For instance, on our G2019S conditional GWAS, the top 

lead SNP in chromosome 12 (rs185993818), remained nominally associated with the 

UPSIT outcome (β = 3.5 ; SE = 0.94; P-value = 2e-4). Finally, adjusting the UPSIT 

GWAS on both N370S and G2019S removed all the significance from all variants at 

both the GBA1 and the large LRRK2 loci (Table 24). 
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Table 24. G2019S and N370S, conditional GWAS. 

SNP CHR Position Condition MAF Effect SE P-value 

rs34637584 12 40340400 N370S 0.09 3.20 0.68 2.52E-06 

rs76763715 1 155235843 N370S 0.04 -8.00 4.00 4.00E-02 

rs185993818 12 41691672 N370S 0.06 3.93 0.81 1.37E-06 

rs34637584 12 40340400 G2019S 0.09 7.14 2.82 1.00E-02 

rs76763715 1 155235843 G2019S 0.04 -3.30 0.81 4.59E-05 

rs185993818 12 41691672 G2019S 0.06 3.49 0.94 2.00E-04 

rs34637584 12 40340400 G2019S and N370S 0.09 7.00 2.80 1.00E-02 

rs76763715 1 155235843 G2019S and N370S 0.04 -7.56 3.90 5.00E-02 

rs185993818 12 41691672 G2019S and N370S 0.06 2.03 0.95 2.00E-03 

 

I applied the same principle to explore the effect of adding GBA1 and LRRK2 mutation 

carrier status as mediators in the association of genetics with the remainder of the 

baseline outcomes (Table 20). Interestingly, I found a significant association between 

Hoehn and Yahr stage and the SNPs at the LRRK2 locus, and this association was 

not uncovered on the simpler model without GBA1 N370S mutation carrier status as 

a mediator. The lead SNP was rs991584002 (β = 0.31; SE = 0.05; P-value = 1.1E-8 ). 

GS019S was also present on this LD block and nominally associated  (β = 0.26; SE = 

0.05; P-value = 4.87E-5). 

In addition, I explored all independent SNPs associated with the UPSIT score at the 

nominal significance level  (P-value 1e-6) and annotated them using the FUMA web 

platform. In brief, I mapped all independent SNPs to HUGO symbols based on 

positional distance. Moreover, based on LD, I inferred missing SNPs on my data from 

the 1000 Genomes reference panel, as I expect that SNPs in high LD with tagging 

SNPs, to also have an inflation in the test statistics. This provides additional 

information as one independent SNP in LD with the tag SNP that was not present in 

the input data for the genetic association study, might be mapped to a different gene, 

giving us further insights into the functional implication of the locus of interest (Table 

25). 
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Table 25. Nominal significant association with the baseline UPSIT score 

HUGO chr nIndSigSNPs minGwasP posMapSNPs posMapMaxCADD 

GBA1 1 1 3.89E-09 1 23.7 

FDPS 1 1 4.26E-09 1 2.417 

RUSC1 1 1 4.26E-09 1 2.417 

MSTO1 1 1 2.84E-07 1 14.66 

UBQLN4 1 1 2.84E-07 0 0 

SMG5 1 1 2.84E-07 0 0 

TMEM79 1 1 2.84E-07 0 0 

IL6R 1 1 NA 1 0.342 

SHE 1 1 NA 1 1.782 

TDRD10 1 1 NA 1 1.782 

KCNN3 1 1 NA 5 14.05 

PYGO2 1 1 NA 1 18.51 

SHC1 1 1 NA 1 18.51 

CKS1B 1 1 NA 1 18.51 

ADAM15 1 1 NA 1 4.595 

EFNA4 1 1 NA 1 4.595 

EFNA3 1 1 NA 1 4.595 

ASH1L 1 1 NA 4 9.391 

GON4L 1 1 NA 2 2.504 

SYT11 1 1 NA 1 7.134 

RIT1 1 1 NA 1 7.134 

SCN1A 2 2 1.79E-06 38 10.76 

SCN9A 2 1 1.79E-06 0 0 

TTC21B 2 2 3.05E-06 0 0 

GALNT3 2 1 5.43E-06 0 0 

SCN7A 2 1 1.47E-05 0 0 

LSAMP 3 1 1.66E-06 2 1.323 

FBXW11 5 1 5.54E-06 0 0 

PDZRN4 12 4 1.33E-09 11 13.31 

ABCD2 12 1 4.09E-09 1 0.213 

CNTN1 12 3 1.18E-08 70 12.3 
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HUGO chr nIndSigSNPs minGwasP posMapSNPs posMapMaxCADD 

LRRK2 12 2 4.27E-08 3 6.718 

GXYLT1 12 3 7.58E-08 1 1.031 

C12orf40 12 3 3.89E-07 5 1.904 

SLC2A13 12 3 3.89E-07 6 1.904 

MUC19 12 2 4.29E-07 6 10.41 

KIF21A 12 3 1.07E-06 2 10.56 

DHX37 12 1 1.18E-06 36 10.63 

BRI3BP 12 1 1.18E-06 0 0 

CPNE8 12 4 1.23E-06 5 10.28 

TMEM117 12 1 1.29E-06 7 11.66 

ADAMTS20 12 1 NA 2 2.058 

IRAK4 12 1 NA 1 0.699 

NELL2 12 1 NA 5 4.172 

DBX2 12 1 NA 1 0.419 

TEX101 19 1 4.39E-06 0 0 

 

iv) Validation of the LRRK2 and the GBA1 associations with the 

UPSIT score in Tracking Parkinson’s 

I found high variability in the GBA1 N370S and LRRK2 G2019S MAFs between 

European cases from AMP-PD Unified and Tracking Parkinson’s cohorts (4% vs 0.3% 

for N370S and 6% vs 0.6% for G2019S, respectively). Therefore, these variants were 

excluded during the long-gwas quality control framework of the TPD cohort.  

To validate our findings in the Tracking Parkinson’s data source, I accessed Sanger 

sequencing patient-level genetic data and characterised each patient based on 

G2019S and N370S mutation carrier status, for a total of 2000 PD patients. I adjusted 

a GLM model on sex, standardised age at diagnosis, and the first 3 PCs, as well as 

the two pathogenic variants separately. Promisingly, I found G2019S approaching 

significance in the association model against the UPSIT total score and the 

directionality of the effect was consistent with that from the UPSIT European meta-

analysis (β = 6.07, SE = 3.25, P-value = 0.052). I did not find a significant association 

between N370S and the UPSIT score, but I found the directionality of the effect to be 
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consistent with the findings from the AMP-PD Unified European cohort (β = -1.88, SE 

= 2.17, P-value = 0.4). Interestingly, I found a significant association between GBA1 

N370S status and Hoehn and Yahr stage and MDS-UPDRS III total score (Table 26). 

Table 26. GBA1 N370S GLM summary statistics across multiple outcomes from 
Tracking Parkinson’s 

Variable Estimate std.error statistic p.value 

HY 0.57 0.20 2.92 0.0035 

UPDRSIII 11.41 4.29 2.66 0.0079 

BFI 2.80 1.58 1.77 0.0772 

ESS 2.38 1.60 1.48 0.1386 

GASTRO -0.26 0.19 -1.34 0.1819 

RBD 1.29 1.10 1.18 0.2392 

Leeds dep 0.96 1.05 0.91 0.3619 

UPSIT -1.88 2.17 -0.87 0.3871 

UPDRSII 1.75 2.15 0.81 0.4157 

UPDRSI -1.18 1.76 -0.67 0.5029 

UPDRSIV -0.24 0.61 -0.39 0.6967 

PDQ8 0.61 1.59 0.39 0.6998 

NMSS -2.44 10.67 -0.23 0.819 

Leeds anx 0.22 1.17 0.19 0.8518 

PDSS 1.33 7.73 0.17 0.864 

LEDD 8.62 67.28 0.13 0.898 

MOCA adj 0.12 1.07 0.12 0.9075 

MOCA -0.02 1.10 -0.02 0.9873 

BFI=Brief Fatigue Inventory; ESS=Epworth Sleepiness Scale; GASTRO=Gastrointestinal symptoms; 
HY=Hoehn and Yahr; LEDD = Levodopa Equivalent Daily Dose; Leeds dep=Leeds scale to assess 
depression; Leeds anx=Leeds scale to assess anxiety; MOCA=Montreal Cognitive Assessment; 
MOCA adj=Montreal Cognitive Assessment adjusted score; NMSS=Non-Motor Symptoms Scale for 
Parkinson's Disease; PDQ8=Parkinson's Disease Questionnaire-8; PDSS=Parkinson's Sleep Scale; 
RBD=REM Sleep Behavior Disorder; UPDRSI=UPDRS scale part I; UPDRSII=UPDRS scale part II;  
UPDRSIII=UPDRS scale part III; UPDRSIV=UPDRS scale part IV; UPSIT=University of Pennsylvania 
Smell Identification Test 

 

I also found LRRK2 G2019S mutation status to be associated with a higher MDS-

UPDRS IV total score (Table 27). 
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Table 27. LRRK2 G2019S GLM summary statistics across multiple outcomes from 
Tracking Parkinson’s 

Variable Estimate std.error statistic p.value 

UPDRSIV 1.64 0.78 2.11 0.0346 

UPSIT 6.07 3.25 1.87 0.0518 

PDQ8 2.48 1.95 1.28 0.2021 

UPDRSIII 6.81 5.42 1.26 0.2092 

BFI 2.77 2.51 1.11 0.2682 

GASTRO -0.26 0.24 -1.08 0.2791 

HY 0.20 0.25 0.79 0.4315 

ESS 1.48 2.03 0.73 0.4661 

Leeds dep 0.88 1.28 0.68 0.4957 

Leeds anx 0.87 1.43 0.61 0.5427 

UPDRSI 1.08 2.16 0.50 0.6166 

NMSS 4.38 11.72 0.37 0.7086 

RBD -0.39 1.39 -0.28 0.7778 

LEDD -18.05 86.87 -0.21 0.8354 

MOCA adj 0.18 1.44 0.12 0.9016 

PDSS -0.73 9.48 -0.08 0.9383 

UPDRSII 0.15 2.64 0.06 0.9559 

MOCA -0.02 1.47 -0.02 0.9868 

BFI=Brief Fatigue Inventory; ESS=Epworth Sleepiness Scale; GASTRO=Gastrointestinal symptoms; 
HY=Hoehn and Yahr; LEDD = Levodopa Equivalent Daily Dose; Leeds dep=Leeds scale to assess 
depression; Leeds anx=Leeds scale to assess anxiety; MOCA=Montreal Cognitive Assessment; 
MOCA adj=Montreal Cognitive Assessment adjusted score; NMSS=Non-Motor Symptoms Scale for 
Parkinson's Disease; PDQ8=Parkinson's Disease Questionnaire-8; PDSS=Parkinson's Sleep Scale; 
RBD=REM Sleep Behavior Disorder; UPDRSI=UPDRS scale part I; UPDRSII=UPDRS scale part II;  
UPDRSIII=UPDRS scale part III; UPDRSIV=UPDRS scale part IV; UPSIT=University of Pennsylvania 
Smell Identification Test 

v) Elucidating the molecular implication of the olfactory impairment 

in PD. 

It has recently been described that hyposmic PD patients were predominantly positive 

for the α-synuclein seed amplification assay (SAA) [389].  Interestingly, the rate of α-

synuclein SAA positivity was shown to be decreased among LRRK2 mutation carriers, 

and this was reduced even further in LRRK2 mutation carriers without olfactory 

impairment [389]. This is consistent with the finding that PD associated with LRRK2 
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pathogenic variants can present without synucleinopathy at autopsy. However, in 

LRRK2 mutation carriers with an α-synuclein SAA positive result, the proportion of 

hyposmia was high (75%). Similarly, more than 90% of GBA1 PD mutation carriers 

with a positive α-synuclein assay were found to have hyposmia. Altogether, this clearly 

suggests a central role of LRRK2 and GBA1 in the hyposmia manifestation in PD 

patients, which might lead to the subsequent α-synuclein pathology as measured by 

α-synuclein SA. 

Our results from the UPSIT meta-analysis support a role for LRRK2 and GBA1 in 

determining olfactory performance in PD. Previously, it has been reported that α-

synuclein overexpression could result in α-synuclein aggregation [4]. I did not find any 

nominal significant association to be a cis-eQTL for SNCA expression. In this section 

I explored whether G2019 and N370S status explain differences in the expression or 

accumulation of  α-synuclein, which could be a marker of α-synuclein aggregation and 

pathology. This would provide further support in the LRRK2 and GBA1 mutations role 

controlling  α-synuclein aggregation manifesting with hyposmia. 

One major strength of the AMP-PD unified cohorts is the availability of matched clinical 

and multi-omics data. Likewise, I could assess the hypothesis of N370S and G2019S 

PD pathogenic mutations leading to a prominent SNCA overexpression which could 

lead to aggregation. In addition, I explored whether there could be any other biomarker 

contributing to pathology as a consequence of any of the GBA1 and LRRK2 

pathogenic mutations. I used data from AMP-PD CSF Untargeted protein measures.  

I matched samples with transcriptomics and genetics and stratified the data based on 

G2019S and N370S mutation carriers leading to a total of 1120 PD patients available 

for the differential expression analysis. Out of the 1120 PD patients with matched 

genetic, clinical and whole-transcriptome data, 75 were LRRK2 G2019 mutation 

carriers, and 135 were GBA1 N370S mutation carriers. I found the expression of 

SNCA and SNCA-AS1 to be nominally significant in the differential expression analysis 

based on G2019 status (SNCA logFC = 0.2; P-value = 0.03) (SNCA-AS1 logFC = 0.3; 

P-value = 0.03). However, neither SNCA or its antisense form differential expression 

reached significance after applying Bonferroni correction. In addition, I found three 

genes to be differentially expressed based on G2019S status (Table 28) (Figure 25). 
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I did not find any significant differential expression based on N370S status. SNCA did 

not reach nominal significance (SNCA logFC = -0.21; P-value = 0.1). 

Table 28. Differential expression significant results and SNCA nominal significant 
results 

gene_name gene_type chr logFC t P.Value adj.P.Val 
AvgExpr_

Control 

AvgExpr_Ca

se 

AC022150.4 sense_intronic 19 -0.14 -5 6.58E-07 1.70E-02 3.22 3.05 

AC090630.1 lincRNA 12 -0.63 -4.78 2.04E-06 1.70E-02 -2.05 -2.42 

ZC3H11B 

processed_ps

eudogene 1 -0.22 -4.78 2.03E-06 1.80E-02 0.21 0.07 

SNCA-AS1 antisense 4 0.27 2.1 3.60E-02 5.30E-01 -2.13 -2 

SNCA protein_coding 4 0.2 2.19 2.90E-02 5.10E-01 9.92 10.2 

LogFC = the mutation carriers vs non-carriers protein fold change in logarithmic 
scale; t = test-statistic of the fold change; P.value = Significance of the test-statistic; 
Adj.P.Val = P.value adjusted by Bonferroni correction. AvgExpr_Control = Average 
protein expression in the non-carrier group; AvgExpr_Case = Average protein 
expression in the carriers group.  

Figure 25. Volcano plot of differentially expressed genes based on G2019S status 

 

The X axis represents the log2 fold change between G2019S carriers and non-carriers 

groups. The y-axis represents the -log10(P-value). Each dot is the fold change of the 

normalised measure of a transcript. 
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Similarly, I matched samples with proteomics and genetics and stratified the data 

based on LRRK2 and GBA1 mutation carriers leading to a total of 357 PD patients 

available for the differential abundance analysis. Of these, 27 were LRRK2 G2019 

mutation carriers, and 9 were GBA1 N370S mutation carriers. I did not find any patient 

carrying both G2019S and N370S mutations. α-synuclein abundance was not 

available among the proteins with abundance records. I found proteins whose 

abundance was significantly different between the mutation carriers and non-carriers 

groups (Figure 26).  

Figure 26. Volcano plot of differential abundant proteins between LRRK2 G2019S 
(left) and GBA1 N370S (right) mutation carriers versus non-carriers  

 
The red dashed line represents the significance threshold of P-value = 0.05 in -log10 
scale. The X axis represents the log2 fold change between carriers and non carriers 
groups. The y-axis represents the -log10(P-value). Each dot is the fold change of the 
normalised measure of a protein.  

 

Interestingly, when stratifying based on GBA1 status, we found the most differentially 

abundant protein to be P02655 (ApoC II), a protein that belongs to a protein cluster 

together with ApoE and ApoC-I. Because they share a protein cluster, they also share 

a generalisable function. Based on LRRK2 stratification, we found P05060 

(Secretogranin-1) as the most significantly differentially abundant protein. We have 

summarised UniProt codes with the corresponding HUGO symbols and a description 

of the protein function in Table 29. 
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Table 29. Differentially abundant proteins. 

UniProt Grouping coef std err z p_value 0.025 0.975 

P02655 GBA1 -4.8329 1.837 -2.631 0.009 -8.433 -1.232 

P02749 GBA1 -4.6593 2.165 -2.152 0.031 -8.903 -0.416 

P02792 GBA1 -3.3194 1.683 -1.972 0.049 -6.619 -0.02 

P01011 GBA1 7.0553 3.625 1.946 0.052 -0.05 14.161 

P19827 GBA1 -2.46 1.283 -1.918 0.055 -4.974 0.054 

P07858 LRRK2 3.6779 1.346 2.732 0.006 1.039 6.317 

P05060 LRRK2 3.83 1.39E+00 2.752 0.006 1.103 6.559 

P02655 LRRK2 3.50 1.41E+00 2.475 0.013 0.729 6.269 

P05090 LRRK2 4.66 1.97E+00 2.371 0.018 0.808 8.513 

Q8NE71 LRRK2 2.37 1.03E+00 2.296 0.022 0.347 4.399 

P05155 LRRK2 5.19 2.28E+00 2.275 0.023 0.72 9.668 

P02656 LRRK2 3.17 1.51E+00 2.097 0.036 0.207 6.127 

P00738 LRRK2 -1.38 6.57E-01 -2.094 0.036 -2.664 -0.088 

P49588 LRRK2 2.27 1.11E+00 2.039 0.041 0.088 4.456 

O00584 LRRK2 3.31 1.66E+00 1.993 0.046 0.055 6.563 

Knowing the tissue and the cell type burden of the PD olfaction impairment meta-

analysis lead SNPs gives us new insights into how disease develops and progresses 

based on the hypothetical central role of LRRK2, GBA1 and related proteins in α-

synuclein deposition. I accessed FUMA, and conducted enrichment analyses on the 

UPSIT severity GWAS against all 54 tissues represented in GTEx. I found an 

enrichment of either down-regulated or up-regulated genes in basal ganglia  (brain 

caudate and the nucleus accumbens), as well as a significant enrichment in the 

hypothalamus (Figure 27). 
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Figure 3. Tissue specificity analysis based on the differentially expressed genes 
(DEG) for each tissue from the GTEx Consortium 

 
DEGs were pre-calculated based on a two-sided t-test for gene expression values of 

any one of the tissues against all others. P-values < 0.05 after Bonferroni correction 

and an absolute log fold change > 0.58 were defined as differentially expressed 

genes in a given tissue compared to the rest. Apart from the two-sided DEG 

analysis, the analysis of the test-statistics was used to derive an up-regulated DEG 

and down-regulated measure of specific trend of differential enrichment. Finally, a 

hypergeometric test was used to test the input gene set nominated from MAGMA 

gene-set analysis against each of the tissue level DEG sets.  From top to bottom, Up 

regulated DEG, Down regulated DEG, Both sides DEG. 

vi) Nominating genetic determinants of SAA independent of LRRK2 

and GBA1 

Following up on the hypothesis that LRRK2 and GBA1 mutations have a central role 

in controlling  α-synuclein pathology, whose clinical manifestations include hyposmia, 

we conducted a GWAS on a-syn-SAA to investigate if we could further implicate GBA1 
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and LRRK2 on α-synuclein deposition. In addition, we were interested in knowing if 

there are any other genetic determinants aside from the LRRK2/GBA1-related 

autophagy-lysosomal pathway). 

We accessed PPMI PD samples available from the AMP-PD Unified cohort with 

available SAA data and that passed long-gwas quality control steps. We conducted a 

logistic regression GWAS using  SAA binary status as the outcome. We did not find 

support for LRRK2 or GBA1 variants associated with the α-synuclein pathology as 

measured by SAA (Figure 28). Of note, N370S, G2019S, and the G2019S-

independent top lead SNP at the LRRK2 locus, did not reach genome-wide 

significance (N370S log(OR) =-0.79 SE = 0.39; P-value = 0.04); (G2019S log(OR) = 

0.90;  SE = 0.30; P-value = 2e-3); (rs185993818 OR = 0.39 SE = 0.32; P-value = 

0.23). 

Figure 28. Manhattan plot of the SAA GWAS.  

  

The x-axis represents the chromosome, and the position of each variant in the meta-
analysis. The y-axis shows the two-sided P-value in the -log10 scale. Genome-wide 
significance is set at a P-value of 5e-08, and is represented by the red line on the 
Manhattan plots.  

Instead, I found three LD blocks approaching genome-wide significance in 

chromosomes 7, 11 and 17. I have annotated the lead SNP on each locus in Table 

30. I cross-checked the association of these SNPs in the UPSIT meta-analysis. None 

of the variants reached nominal significance (P < 1e-6). The variant at the CRK locus 
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was nominally associated at the significance threshold of P < 0.05. (CRK locus 

;rs117985867 β = 1.04 ; SE = 0.42 ; P-value = 0.01), (LOC124902707 locus; 

rs28370535  β =  0.63; SE =0.39 ; P-value = 0.11), and  (HDAC9 locus rs111978 β = 

0.11; SE = 0.24 ; P-value =  0.64). 

Table 30. Lead SNP for each LD block approaching nominal significance in the SAA 
GWAS. 

rsID chr pos A1 MAF beta se gwasP nearestGene func 

rs111978 7 18271954 A 0.28 0.91 0.18 4.67E-07 HDAC9 intronic 

rs28370535 11 71388977 G 0.08 1.35 0.25 9.84E-08 LOC124902707 

ncRNA_i

ntronic 

rs117985867 17 1453350 G 0.04 1.36 0.27 3.26E-07 CRK intronic 

For each lead SNP, I provide which is the mapped Gene based on distance to it. 
Because all lead SNPs were intragenic, I mapped each SNP falling on each gene 
boundary. P-value, two-sided P-value of association from meta-analysis; 
nearestGene, the closest gene to the top lead SNP on each genomic risk locus; fun, 
the ANNOVAR annotated function of the top lead SNP. 

In addition, I adjusted the SAA GWAS on LRRK2, GBA1, and LRRK2 + GBA1 mutation 

carriers status. I did not find a drop in significance on any of these three loci. This 

suggests that the three genes found to associate with SAA outcome are independent 

of the LRRK2 and GBA1 driven α-synuclein accumulation. 

Finally, I also adjusted the UPSIT genetic study previously described based on SAA 

status. Of note, for this analysis, I could only run a GWAS and not a meta-analysis, 

since SAA status was only available for the AMP-PD cohort. Interestingly, adjusting 

the UPSIT outcome on SAA status led to a loss of significance at the LRRK2 locus 

(rs185993818 β =3.03 SE = 1.04869; P-value =0.004 ) (G2019S β = 2.92; SE = 0.90; 

P-value = 0.001) locus but not the GBA1 locus (N370S β = -4.03; SE = 0.96;  P-value 

= 3.26e-05). 

vii) Multi-ancestry analysis of the olfactory impairment reveals novel 

genetic markers 

Recent work is shedding light into ancestry-specific risk factors of PD as well as gains 

in power to uncover novel associations based on multi-ancestry meta-analysis studies 

[82,390]. I wanted to explore whether performing a meta-analysis between summary 
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statistics of different ancestry groups, with a focus on uncovering homogeneous 

genetic effects, would increase the power to detect novel significant associations. 

Previously, I found the correlation between the effect sizes of the H&Y and MDS-

UPDRS III meta-analyses in AJ and EUR to be modest (Figure 23). Therefore, I 

hypothesised that a fixed-effect meta-analysis would lead to an increase in power to 

uncover homogeneous genetic variants, primarily as a result of an increase of the final 

sample size and shared disease severity risk factors between AJ and EUR PD 

ancestry groups.  

For this analysis, I was primarily interested in the UPSIT score, following up on results 

from Europeans previously described. I accessed the AJ UPSIT GWAS performed 

among AMP-PD data (Table 20). As expected, I also found the LRRK2 and GBA1 loci 

to be significant in the UPSIT GWAS in the AJ subset (Figure 29). Interestingly, I found 

the GBA1 locus to have the most significant associations. The lead SNP at the GBA1 

locus was rs76763715 (β = -5.78; SE = 0.95; P-value = 3.11e-9). The most significant 

association at the LRRK2 locus was rs184460887 (β = 4.85; SE = 0.82; P-value = 

8.44e-09). G2019S was among the top hits (β = 5.01; SE = 0.89; P-value = 4.43e-08). 

In addition, I found another single intragenic variant reaching genome-wide 

significance at the RBCK1 locus in chromosome 20 (lead SNP rs6051899; Effect = 

3.75; SE = 0.65, P-value = 2.11e-8). 

Figure 29.  AJ UPSIT AMP-PD GWAS. 

 
The x-axis represents the chromosome, and the position of each variant in the meta-
analysis. The y-axis shows the two-sided P-value in the -log10 scale. Genome-wide 
significance is set at a P-value of 5e-08, and is represented by the red line on the 
Manhattan plots.  
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Then, I performed a multi-ancestry meta-analysis for the UPSIT results from the AJ 

and EUR clusters. I found 5 independent disease severity loci (Figure 30). I annotated 

the meta-analysis genomic risk loci using FUMA. I found a large inflation in test-

statistics at the GBA1 (top lead SNP = rs76763715 , Effect = -4.9, SE = 0.6, P-value 

= 3.45-17) and the LRRK2 (top lead SNP = rs3463758; Effect = 4.96; SE = 0.64, P-

value =  2.92e-17) loci, similar to the results of the  UPSIT ancestry-specific GWASs. 

In addition, I found novel  independent loci reaching genome-wide significance at the 

SERGEF, SCN1A, OTUD7A loci (Table 31).  

Figure 30. Manhattan plot of the UPSIT score multi-ancestry meta-analysis (EUR 
and AJ). 

 
The x-axis represents the chromosome, and the position of each variant in the meta-
analysis. The y-axis shows the two-sided P-value in the -log10 scale. Genome-wide 
significance is set at a P-value of 5e-08, and is represented by the red line on the 
Manhattan plots. 

Table 31. Table of the lead SNP for each significant LD block multi-ancestry meta-
analysis 

rsID chr pos A1 MAF beta se P nearestGene func 

rs34637584 12 40340400 T 0.09 4.38 0.52 1.92e-17 LRRK2 exonic 

rs76763715 1 155235843 T 0.05 -4.99 0.58 3.43e-17 GBA1 exonic 

rs147669178 11 17914781 G 0.04 -3.92 0.65 1.34e-09 SERGEF intronic 

rs146931292 15 31720353 G 0.12 2.49 0.41 1.52e-09 OTUD7A intronic 

rs1960242 2 166990047 G 0.29 -1.55 0.28 3.29e-08 

SCN1A ; 

SCN1A-AS1 intronic 
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Based on ANNOVAR annotations, most of the SNPs in LD with the independent 

significant SNPs at the nominated loci were intergenic (87%) or intronic (7%). A 

significant proportion of SNPs was also falling on intronic regions of non-coding RNAs 

(2%) (Figure 31). Table 32 summarises all lead SNPs with a P-value <1e-6 and the 

gene they are mapped onto. 

Figure 31. Proportion of the type of variants nominated by the EUR + AJ meta-
analysis 

 

 

Table 32. Nominal association multi-ancestry meta-analysis UPSIT.  

rsID chr A1 MAF beta se gwasP nearestGene dist func 

rs1078801 17 A 0.15 -1.95 0.35 5.6e-08 ZMYND15 0 intronic 

rs4383741 5 A 0.11 2.24 0.42 9.3e-08 CTD-2334D19.1 83226 intergenic 

rs308702 3 C 0.13 1.98 0.37 1.4e-07 RP11-774I5.1 38963 intergenic 

rs10048227 18 T 0.11 2.08 0.40 1.8e-07 RP11-863N1.4 8354 intergenic 

rs117811597 12 C 0.11 2.54 0.49 3e-07 YARS2 4500 intergenic 

rs13034296 2 A 0.05 3.14 0.61 3.4e-07 AC104801.1 0 

ncRNA_intro

nic 

rs116676008 2 A 0.05 -3.11 0.61 3.5e-07 SNORA51 1814 intergenic 

rs116984338 8 C 0.03 3.51 0.69 4.0e-07 LINC00964 0 

ncRNA_intro

nic 

rs9884655 4 C 0.5 -1.30 0.25 4.1e-07 RP11-236P13.1 19526 intergenic 

rs2323561 17 T 0.03 4.08 0.81 4.7e-07 CDRT8 26333 intergenic 
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rsID chr A1 MAF beta se gwasP nearestGene dist func 

rs73239719 21 G 0.04 -3.23 0.64 5.0e-07 ITGB2 0 intronic 

rs8011258 14 C 0.44 -1.31 0.26 5.2e-07 RP11-662J14.2 51529 intergenic 

rs71534222 12 C 0.04 -3.32 0.66 5.3e-07 PRMT8 0 intronic 

rs73061198 12 G 0.07 2.43 0.49 5.4e-07 RERGL 105162 intergenic 

rs11761517 7 C 0.44 1.29 0.26 5.7e-07 ESYT2 0 intronic 

rs12340454 9 G 0.02 4.57 0.92 5.7e-07 LAMC3 30679 intergenic 

rs255016 7 A 0.42 1.29 0.26 6.2e-07 AC005022.1 56932 intergenic 

rs62093526 18 T 0.05 -3.06 0.62 7.e-07 RP11-108P20.4 0 

ncRNA_intro

nic 

rs112805272 1 G 0.14 -1.80 0.37 7.8e-07 TP73 0 intronic 

rs116123005 3 T 0.03 3.85 0.78 8.0e-07 FOXP1 0 intronic 

rs6552740 4 T 0.35 -1.35 0.27 8.1e-07 RP11-616K6.1 4127 intergenic 

rs60050831 16 C 0.05 3.11 0.63 8.6e-07 ACSM5 1968 intergenic 

rs4931112 12 G 0.12 1.95 0.40 9.0e-07 RP11-977P2.1 49205 intergenic 

rs78902372 4 C 0.16 -1.74 0.36 9.1e-07 RP11-84H6.1 65668 intergenic 

rs74452013 8 T 0.03 -3.58 0.73 9.6e-07 ASAP1 51277 intergenic 

 

d) Discussion 

In this study, we have introduced long-gwas, a tool that democratises genetic studies 

by automating all the steps involved in the integration of clinical and genetic data, from 

data pre-processing, to accurate quality control, and then GWAS using different 

settings. Here, we demonstrate the use of the long-gwas workflow to study the severity 

of PD, as a proof of concept. To do so, we have explored a wide-range of clinical 

outcomes in two different ancestry groups, Ashkenazi Jewish and Europeans. 

The use of long-gwas has allowed us to identify  two major genetic determinants for 

hyposmia, as measured by the UPSIT scale. Our results from the UPSIT meta-

analysis revealed that LRRK2 G2019S and GBA1 N370S modulate olfactory 

performance in PD. LRRK2 G2019S was found to be associated with better olfaction, 

whereas GBA1 N370S was associated with worse olfaction. These results were 

consistent in the two ancestry groups separately. Moreover, our results are in 

agreement with a recent study [389] which showed strong association between 
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hyposmia and positive α-synuclein SAA, and that the α-synuclein signature differs 

between LRRK2 and GBA1 mutation carriers. Our results provide  additional support 

for the role of genetic variation at the LRRK2 and GBA1 loci in determining  smell 

outcomes in PD, which is significant as smell loss is a potential surrogate for α-

synuclein pathology. 

To further understand the role of LRRK2 and GBA1 variation in α-synuclein pathology, 

we conducted a GWAS on the SAA binary phenotype (positive or negative). We did 

not find genome-wide significance support for G2019S and N370S to be associated 

with the SAA status. However, it is worth mentioning that N370S and G2019S reached 

nominal significance (P-value < 0.05). G2019S was associated with higher odds of 

being SAA positive. N370S was associated with higher odds of being SAA negative. 

These associations were in opposite directions to what I was expecting. Moreover, we 

explored conditioning the UPSIT genetic association study on the SAA status. We 

found the association between the two top independent variants at the LRRK2 locus 

to be lost, whereas the association the GBA1 N370S and the UPSIT score remained 

nominally associated (P-value < 1e-5), with consistent effects (N370S patients having 

a worse average olfactory performance). This suggests that LRRK2 genetic variability 

might be associated with the subsequent development of α-synuclein pathology, 

whereas the pathological influence of GBA1, which is also associated with UPSIT 

performance, might be independent than that from the α-synuclein deposition and 

accumulation pathological implications in PD.  This suggests that within the PD-SAA 

positive population LRRK2 does not affect hyposmia, whereas GBA1 status continues 

to be associated with more severe hyposmia. In fact, when we performed a 

transcriptome wide differentially expression analysis, based on LRRK2 G2019S 

mutation carrier stratification, we did find the expression levels of SNCA were 

nominally different between G2019S mutation carriers versus non carriers (P-value = 

0.03) (not significant after applying Bonferroni correction). This nominal association 

was not seen when we stratified based on N370S status. 

Here, we have also proven the importance of performing ancestry-based analyses in 

PD. We found an LD block in the AJ meta-analysis to be nominally associated with 

H&Y score. This LD block tagged the PACRG gene, a gene next to the PARKIN gene 

that is associated with autosomal recessive juvenile PD. This LD block was not present 

in the H&Y EUR-specific meta-analysis. In addition, we have shown based on a multi-
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ancestry meta-analysis that there are ancestry-shared genetic determinants of PD 

phenotypes, and that by gathering summary statistics from those, we can gain further 

insights into the genetic determinants of the phenotype. For instance, based on an 

multi-ancestry fixed-effects IVW meta-analysis in the UPSIT phenotype, we uncover 

three novel LD blocks at the SERGED, SCN1A, OTUD7A loci that were missed on the 

ancestry-specific genetic studies due to a lack of power. At each of these loci the lead 

SNP is more common in the AJ population.  

This study has  some limitations. We have performed a large meta-analysis of PD 

phenotypes across data sources. During post meta-analysis processing, we kept all 

the SNP-level summary statistics that were present in at least 40% of the total data 

available. This implies that for some SNPs, the association could arise from only one 

data source out of the 4 data sources part of the large meta-analysis. We highlight 

three reasons why we decided to do the analysis this way. Some cohorts such as 

AMP-PD and GP2 gather data from multiple sources in a way that a significant 

association from any of those comes as a result of a shared effect and direction of an 

hypothetical SNP on an outcome. Those data sources have a large number of samples 

available. Second, not all the data has been whole-genome sequenced which leads 

to a mismatch of variants present between the genetic datasets. This time we did not 

want to discard genetic associations just because we did not have enough power to 

impute one haplotype in 1 out of the 4 data sources, for example, which we think is 

very conservative for a discovery-based analysis. The final reason is that 

observational studies might have some inherent selection-bias based on study design 

which could be masking true associations, particularly where we do not have large 

sample sizes of deeply phenotyped data. Therefore, we decided to perform a meta-

analysis in which the subsequent quality control involved keeping only those variants 

that were present for at least 40% of all data points, as well as applying heterogeneity 

tests. Another limitation is that, we have only been able to gather deep phenotype data 

from Europeans and Ashkenazi Jewish individual. This has prevented us from using 

meta-analysis approaches that efficiently capture the heterogeneity in allelic effects 

that is correlated with ancestries, therefore being limited to only being able explore 

ancestry-shared genetic variations and accounting for between groups heterogeneity. 

Finally, the severity of PD, as measured by a variety of clinical assessments, is only 

one aspect of PD, and more generally, of any complex disorder with genetic influence. 
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How disease progresses, and when a certain phenotype is reached are two other 

major questions of interest that can be assessed from a genetic point of view. Long-

gwas automates these two other types of analyses and we envision it will facilitate 

discoveries of genetic factors of progression, as well as guarantee reproducibility 

across sites performing similar analysis on different data repositories. Therefore, we 

hope long-gwas becomes a useful workflow for people to better understand the 

genetic implications of progressive and worsening trends in complex genetic 

disorders, which we believe will give new insights into direct actionable mechanisms 

to test and develop disease-modifying treatments.  
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6 ) PD progression cell type enrichment 
analysis 

a) Introduction 

GWAS is a valuable method that has enabled the genetic characterization of many 

diseases and traits, leading to novel successful genetic-based therapeutics [240]. One 

premise for conducting GWAS is that they make key contributions to a refined 

biological understanding of heritable diseases and traits. However, functional 

annotation of genetic association studies is a major challenge [391]. The number of 

genetic studies with successful functional annotation are very few [250].  Most genetic 

associations fall in non-coding regions [252], which have proven challenging to 

annotate, therefore interpret. Some studies suggest that these non-coding disease risk 

loci are enriched for cis-regulatory elements (CREs) [252], so it is plausible to think 

that they might be associated with phenotypes through the control in gene expression. 

Genetic variation and regulation does not generalise across tissues nor cell types 

[256,260]. Farh and colleagues reported that genetic variants in the non-coding 

genome were enriched for promoters and enhancers. In addition, they found the 

enrichment to be cell-specific [253]. A major open question when interpreting GWAS 

is to know the cell type and tissues in which fine-mapped variants and their nominated 

affected genes are active. In recent years, large consortium studies have generated 

data to enable an understanding of the heterogeneity around regulatory hallmarks and 

to determine how those differentially influence disease. The GTEx project was set up 

to explore how genetic variation influences the transcriptome levels across human 

tissues. The latest GTEx consortium data analysis, derived a catalogue of genetic 

regulatory variants that control gene expression and splicing events in cis (within 1Mb 

span of the genetic variant position) and trans (distal regulations within or between 

chromosomes) across 49 tissues. This effort led to an atlas of tissue specific regulatory 

effects [386]. These genetic regulatory atlases are a new avenue to characterise at a 

greater resolution variation of complex diseases and traits [392]. However, studying 

genetic regulatory events from bulk tissues limits the functional interpretation due to 

the lack of knowledge of cellular specificity, that is bulk RNA analysis includes multiple 

cell types and states. Further efforts using GTEx data were able to nominate cell type 
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clusters within bulk tissues and derive cell-type interaction quantitative trait loci. The 

cellular context can be further characterised by mapping these cell type interactions 

QTLs to genetic variants regulating expression and splicing, helping to define how 

genetic regulation events happen in a cell type specific manner [393]. In addition, 

single-cell (sc) and single-nuclei (sn) methods for RNA sequencing have helped in 

understanding cell-type specific phenotypes. They allow to profile gene expression in 

specific cells [394–396]. 

Integrating gene expression data from tissue and single cells and overlaying it with 

genome-wide knowledge of disease and trait risk variants provide valuable insight as 

to what cell types and tissues relate to specific variants of interest. In the past decade, 

there have been successful studies performing cell and tissue enrichment analyses 

[285,397–399], some with a special focus on PD [285,400,401]. Strikingly, Bryois and 

colleagues found cholinergic and monoaminergic neurons, enteric neurons and 

oligodendrocytes to be the primary cell types involved in PD aetiology based on cell 

type specific data from the entire nervous system and the Nalls’  and colleagues PD 

risk GWAS [51,285,402].  

While progress is being made understanding the cell specific alterations in idiopathic 

PD, we know little about the cellular basis of disease progression. which may be 

distinct from PD risk. In addition, the state of the art methods to perform cell type 

enrichment analyses are based on partitioned heritability LDSC and MAGMA 

[115,283]. Despite their robust statistical power  to nominate genes in close proximity 

to the target gene part of a gene set to be tested for enrichment in tissues and cell 

types, the influence of CREs in the non-coding genome might be partially missed. 

Other existing approaches that take into account distal regulatory information such 

eQTLs to nominate genes from SNP-level data might be more accurate. 

In this chapter I explore the advanced annotation of progression GWAS signals 

defined earlier in the thesis with the growing catalogue of tissue and cell specific gene 

expression datasets. As the amount of snRNA and scRNA-seq data increases over 

the next 5 years, decoding GWAS will become an increasingly tractable problem. I 

also propose a novel framework using  Transcriptome Wide Mendelian Randomization 

TWMR that efficiently adds causal interpretations of GWASs based on distal 

regulatory information eQTL studies.  
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b) Methods 

The code I developed to run a type of cell type enrichment analysis is available at 

(https://github.com/AMCalejandro/celltype_twmr). The README explains each 

workflow step with a reference to the specific notebook to run the analysis. 

 

i) GWAS data and quality control 

For this analysis, I used the PD progression GWAS carried out in our lab, as well as 

large PD risk and AAO GWASs [51,105,109,374,375,403]. I also used non PD-related 

GWASs as control datasets to validate the sensitivity of our pipeline to nominate 

expected associations between traits and certain cell types. I accessed the meta-

analysis GWAS for amyotrophic lateral sclerosis (ALS), schizophrenia, coronary artery 

disease (CAD), height and  body mass index (BMI) [366,404–407]. I first applied 

control and harmonised all the GWAS progression summary statistics using the 

MungeSumStats Bioconductor package [408]. I removed any GWAS SNPs that are 

strand-ambiguous or non-biallelic, and we stored them in a standard format . 

ii) Cell type and tissue expression datasets 

I accessed several cell type specific expression datasets. A superset of mice brain 

scRNA-seq data from the cortex, hippocampus, hypothalamus and midbrain of 

independent studies from the Karolinska Institutet (KI) but that was generated with 

identical methods, making the ensemble possible [398]. Zeisel mouse hippocampus 

and cortex scRNA-seq data [396]. SnRNA-seq from the middle temporal gyrus of the 

human cortex from Allen Institute of Brain Sciences (AIBS) [394]. Blue Lake adult 

human frontal cortex snRNA-seq data [395]. I only worked with those genes that have 

1:1 orthologs with the human species. All these cell type datasets were pre-

harmonised and standardised beforehand, having matrices related to the gene's mean 

expression, specificity (division of each gene expression in a given cell type and the 

total expression of that gene across all tissues), as well as specificity quantiles and 

deciles. I accessed harmonised cell type datasets through  MAGMA.Celltyping R 

package [282]. 

I also accessed GTEx bulk RNA-seq tissue-level data. I followed the same data 

preparation procedure that Bryois and colleagues highlighted in their analysis [285]. I 

https://github.com/AMCalejandro/celltype_twmr
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used GTEx pre-computed tissue median expression. I removed tissues sampled in 

less than 100 individuals. I averaged the expression of tissues by organ (with the 

exception of brain tissues), resulting in a gene expression profile for 37 tissues. I 

removed genes without 1:1 human mice orthologs. I scaled gene expression to 1 

million UMIs or transcript per million (TPM) for each cell type and tissue. I calculated 

gene expression specificity based on the division of each gene expression in a given 

cell type and the total expression of that gene across all tissues. Then, I derived the 

10% most specific genes across tissues. 

iii) S-LDSC and MAGMA 

To perform cell type enrichment of PD progression traits, I used MAGMA and S-LDSC 

methods as  described in Chapter 2 - Methods. In brief, MAGMA uses a multiple 

regression approach to assess the association between the top 10% cell and tissue 

type specific gene markers and the gene-level P-values converted to Z-scores from 

GWAS data. With S-LDSC, I tested if the 10% most specific genes of each cell type 

were enriched in heritability for the PD progression traits, based on the specificity 

measures available for each cell. I computed LD scores for each cell type and tissue. 

S-LDSC computes the proportion of SNP heritability associated with our cell type 

taking into account all other baseline functional annotations in the baseline model. I 

used the coefficient z-score P-value to assess the association of the cell type with a 

trait.  

I set up a workflow around MAGMA and S-LDSC strategies to perform a cell-type 

enrichment analysis using GWAS and cell type and tissue datasets highlighted 

previously (Figure 32). 
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Figure 32. Workflow description to perform cell type enrichment analyses based on 
MAGMA and LDSC across a range of input GWASs. 

 
 

iv) Transcriptome-wide Mendelian Randomization (TWMR)  

TWMR is a method with a Mendelian Randomization framework (explained in 

Methods) that incorporates information from cis-regulatory elements (<1MB from lead 

SNP) based on eQTLs to measure the causal effect of gene expression on complex 

traits by using multiple genetic variants as instrumental variables. The two main 

strengths of this approach is the aggregation of multiple SNPs together, which 

increases the statistical power as opposed to MR-based SNP approaches which have, 

by GWAS definition, small effects on phenotypes. In addition, TWMR effectively 

accounts for horizontal pleiotropy by adding on the multivariable MR framework the 

mediators as exposures to a given variant that exhibits horizontal pleiotropy. Likewise, 

bias is mitigated through the joint estimation of the causal effects of all exposures on 

an outcome [409]. 

I adopted TWMR inferences and added it to a novel  framework to perform cell type 

enrichment analyses (Figure 33).  I applied a first step of data QC that led to data 

subsets of shared SNPs between GWAS, eQTL datasets, and a reference panel. 

Then, TWMR is performed as described in the referenced methods. At the per-gene 

level, I define all significant cis-eQTLs to then perform GCTA-COJO to derive all 

independent significant eQTLs for  single gene expression as my quantitative trait. 

Then, I expand the resulting eQTL matrix to add extra exposures that enable us to 

efficiently account for horizontal pleiotropy, as well add the extra instrumental variables 



 

174 

a new exposure might have from the cis-eQTL significant SNPs input. Subsequently, 

I perform data pruning (Rsq < 0.1) to avoid multicollinearity issues and then run 

TWMR. Based on TWMR estimates, I can apply cell type enrichment analysis based 

on a multiple regression model. I use a Z-score (probit transformed P-values for the 

TWMR causal inference) as my outcome, and gene expression estimates from cell 

and tissue expression datasets as the regressor. I treat the regressors in three 

different ways, which are the mean expression of genes in a cell type, specificity of a 

gene expression on a cell type, and a binary indicator capturing the top 10% most 

differentially expressed genes on a cell type. I account for confounders in the 

regression model (number of SNPs incorporated in the TWMR framework, number of 

genes included for the causal inference, and gene size). 

Figure 33. Workflow description to perform cell type enrichment analyses based on 
TWMR. 

 
I used a custom multiple regression model to assess cell type specific genes mean 
expression, specificity, and top 10% differential expression against GWAS Z-scores 
as model outcome. 
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c) Results  

i) Single nuclei and cell RNA-seq datasets highlight variability in 

expression between cell types 

I accessed Zeisel scRNA-seq mouse cortex and hippocampus, single-cell RNA seq 

superset of the entire nervous system from multiple KI sites, AIBS snRNA-seq, and 

Blue Lake snRNA-seq datasets as described in Methods. I explored the cell type 

specific data for the mean expression of candidate PD risk and progression genes. I 

plotted the mean expression across cell types and cell type datasets. I found variability 

in the average expression of 4 well established  PD risk and progression genes 

(SNCA, GBA1, APOE, LRRK2)  (Figure 34). I found APOE gene expression to be 

predominant in astrocytes and nervous system immune cells (microglia). SNCA was 

expressed across most brain cell types from the KI superset, without a clear 

predominant expression on a specific cell type. This was not consistent with the mean 

expression observed in cell types from the AIBS scRNA-set dataset, in which the 

SNCA expression was predominant in microglia and Glutamatergic neurons. LRRK2 

and GBA1 expression was close to 0 in all cell types and data sources. For the 

nominated PD progression genes, I found LRP1B expression to be predominant in 

central nervous system neurons based on Zeisel mouse data. LRP1B was found to be 

expressed in oligodendrocyte precursor cells and excitatory neurons based on the 

snRNA-seq adult human cortex datasets. ACP6 was expressed across different cell 

types of the Zeisel mice dataset (Figure 35). 
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Figure 34. Average expression of Parkinson’s disease candidate genes  

A)                                                                           B) 

  
C)                                                                              D) 

 
I assessed the average expression of PD candidate genes on  A) Zeisel mouse cell 
types B) KI mouse cell types C) AIBS human cortex cell types and D) Blue Lake human 
cortex cell types. 
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Figure 35. Average expression of Parkinson’s disease progression genes. 

A)                                                                           B) 
 

 
C)                                                                           D) 

 

 
I assessed the average expression of PD candidate genes on  A) Zeisel mouse cell 
types B) KI mouse cell types C) AIBS human cortex cell types and D) Blue Lake 
human cortex cell types. 

ii) Cell type enrichment workflow validation on GTEx tissues 

This analysis involved two major steps, which are gene expression and GWAS data 

pre-processing and then running cell type enrichment analysis (Figure 32). As a proof 

of concept, I validated the workflow using GTEx data and control GWASs to assess 

whether the workflow was accurate to detect the expected trait-tissue enrichments 

(Figure 36). I found results from MAGMA and S-LDSC to be consistent with one 

another with some exceptions. Interestingly, I found BMI GWAS signals to be enriched 

in brain tissues only, consistent with previous findings [410]. CAD GWAS signals were 
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found to be mostly enriched in blood and blood vessel tissues, but not in heart tissues. 

I found a high enrichment of schizophrenia traits across most of the brain tissue. I 

could not find the same enrichment across brain tissues for ALS. ALS was not enriched 

for any of the tissues in GTEx. This lack of tissue enrichment for the ALS GWAS could 

be a limitation of the quality of the ALS meta-analysis or power limitation given its 

smaller sample size. Overall, I concluded the workflow I set up enabled us to detect 

expected cell type enrichments for the GWAS diseases and traits we tested here.  

Figure 36. Tile plot showing the cell type enrichment results based on A) Magma 
and B) LDSC.  

 

The X-axis labels correspond to the GWASs. The y-axis labels are the GTEx tissues 

assessed for enrichment. The colour represents the strength of the association 

based on the Bonferroni corrected P-value (q). The stronger the colour, the stronger 

the association. 

 

iii) Assessing the cell and tissue enrichment of PD traits and PD risk 

Once I validated the sensitivity of the two methods to detect enrichment over 

expected tissues from the GTEx consortium, I expanded the analysis to assess the 

enrichment related to PD traits. I explored the enrichment of PD risk, PD AAO and 

PD progression traits and cell types from AIBS human cortex snRNA-seq (Figure 37 

a, b), Blue Lake human cortex snRNA-seq (Figure 37 c, d), and Karolinska Institutet 

(KI) (Figure 37 e,f). 
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Figure 37. Tile plot showing the cell type enrichment results based on MAGMA 
(Figure a,c, e) and LDSC (Figure b, d, f). 

a)                                                                                  b) 

 

c)                                                                                  d) 

 

e)                                                                                  f) 

 
The X-axis labels correspond to the GWASs. The y-axis labels are the cell types  
assessed for enrichment. Figures A and B include the enrichment analysis on the AIBS 
cell types. Figures C and D include the enrichment analysis on the Blue Lake cell 
types. Figures E and E include the enrichment analysis on the KI cell types. The colour 
represents the strength of the association based on the Bonferroni corrected P-value 
(q). The stronger the colour, the stronger the association. 
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I found a significant association between HY3 stage and microglia (Bonferroni 

corrected P-value: q = 0.04), based on results from MAGMA analysis and cell types 

from AIBS snRNA-seq (Figure 37 a). I could not replicate this significant association 

based on the S-LDSC approach (Figure 37 b). Interestingly, this association between 

microglia and H&Y stage was preserved in cell types from different samples from the 

Blue Lake human cortex snRNA-seq using MAGMA (Figure 37 c). I found the same 

situation in which the association was not replicated with the S-LDSC method (Figure 

37 d). I also  found a nominal significant enrichment between Glutamatergic and 

GABAergic cell types and the LiD GWAS (Figure 37 a). Even though this enrichment 

did not reach significance after Bonferroni correction, previous studies suggest that 

disrupted inputs into the basal ganglia from the GABAergic and glutamatergic 

pathways, may be involved in the occurrence of LiD [411]. I found a nominal 

association  (q = 0.05) between PD risk GWAS and Dopaminergic Adult and Medium 

Spiny Neurons (MSNs) from  the mouse entire nervous system KI superset, using the 

MAGMA method. This nominal association between Dopaminergic neurons and PD 

risk was expected, and has been previously reported [285]. In addition, MSNs have 

been previously reported to suffer a severe lack of Dopamine which lead to 

compensatory and dysregulatory changes [412]. Interestingly, the association 

between Dopaminergic Adult neurons prevailed based on the S-LDSC method on the 

same KI superset (Figure 37 f). The association was not significant after Bonferroni 

correction (q = 0.1). Finally, I also found a nominal association between 

oligodendrocytes and the PD axial GWAS (Figure  37 d) (q = 0.09). 

v) TWMR cell type enrichment on GTEx tissues 

One major limitation of this analysis of cell type enrichment of PD risk and progression 

traits is the limited sample size of the PD progression GWASs. Another limitation 

comes from the two main approaches I used, MAGMA and S-LDSC, which depend on 

the position of the SNPs or the LD structure of a tagging SNP. Therefore, they impose 

a limitation based on the distance from genes and length of LD blocks used to generate 

with gene-level summary statistics and LD-Scores respectively. Neither  of these 

methods can accurately account for influences of distal regulatory elements. As an 

alternative I adopted TWMR and incorporated it into a framework to perform cell type 

enrichment analyses. 
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I first generated TWMR inferences for the PD risk GWAS, which is an estimate of the 

gene's causal effect on the outcome, and a test-statistics of the causal association. I 

checked whether TWMR successfully nominated PD candidate genes as PD risk 

causal genes. I used the list of genes from Blauwendraat and colleagues [4]. Eight 

genes were available in our TWMR results. Promisingly, I found the test-statistics of 

the TWMR inferences to be significant in four out of the eight genes we tested (Figure 

38). 

Figure 38. Histogram showing the PD candidate genes (X-axis), and the strength of 
the association (y-axis). 

                                

I then performed cell type enrichment analysis against all GTEx tissues based on 3 

distinct measures (Specificity, mean expression, and top 10% most differentially 

expressed genes). I found a significant enrichment after Bonferroni correction (q < 

0.05)  between PD risk and several basal ganglia regions (Putamen, Nucleus 

accumbens, and caudate), and Hypothalamus, anterior cingulate cortex, and 

Amygdala (Figure 39). Comparing the three measures available to test against 

enrichment, I found the specificity measure of genes on cell types, being the most 

accurate to use as the regressor in the enrichment analyses. 
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Figure 39. Tile plot showing the cell type enrichment results based on TWMR 
against the PD risk GWAS.  

                              

The x-axis labels are the three different measures to record gene expression that were 
used to regress against PD risk GWAS. (mean_exp =mean expression of a gene; 
top10 = top 10% differentially expressed genes; specificity = gene expression  
specificity to a cell type). The y-axis labels correspond to the tissues from GTEx and 
that were used to perform enrichment on the PD risk GWAS.  The colour represents 
the strength of the association based on the Bonferroni corrected P-value (q). The 
stronger the colour, the stronger the association.  

 

Subsequently, I performed an enrichment analysis using the specificity measure 

against all the PD progression traits (Figure 40). Unfortunately, I did not find any 

significant enrichment. I could not find a clear significant enrichment between PD 

progression GWASs and brain tissues as I found in the previous section. I 

hypothesised this is due to the limited power based on the sample size the progression 

GWASs had.  
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Figure 40. Tile plot showing the cell type enrichment results based on TWMR 
against all PD progression GWASs and PD AAO GWAS.  

                       

The x-axis labels highlight the GWAS. The y-axis labels correspond to the tissues from 

GTEx. The colour represents the strength of the association based on the Bonferroni 

corrected P-value (q). The stronger the colour, the stronger the association.  

d) Conclusion 

In this analysis, I expanded the latest cell type enrichment analysis on PD risk GWAS 

to map specific PD progression traits to cell types. I used MAGMA and S-LDSC, which 

are the state of the art algorithms to perform cell type enrichment. I found a significant 

association between HY progression and microglia. I was able to find this association 

replicated in two different datasets of Frontal Cortex from adult human brains. In 

addition, I found a nominal association between LiD progression and Glutamatergic 

and GABAergic neurons, which have been previously reported in literature as possible 

pathways contributing to LiD [411].  

In addition, I developed a novel framework using TWMR to perform cell type 

enrichment analysis that efficiently incorporates distal regulation to perform causal 

inferences of genetic variants in the different PD progression genetic studies, through 

changes in gene expression [409]. I found the approach well powered to detect 

expected enrichment of PD risk GWAS on brain tissues such as Hypothalamus and 
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basal ganglia regions. However, I did not find any enrichment against the PD 

progression GWASs, possibly due to a lack of significant associations from the PD 

progression GWASs due to their limited sample size as a result of the study design 

and data availability.  

I envision this multivariable MR framework to become a core approach to map the 

genetic risk of PD progression at the cellular level. As we increase the size of PD 

progression GWASs, we will also gain new insight into the brain cells whose genetic 

variants are altered contributing to the progressive decline observed in PD.  
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7) Conclusions and future directions 

Nominating novel genetically defined targets that can ameliorate the progressive 

decline of PD is a worthwhile endeavour since existing PD therapies are based on 

symptomatic treatments and we lack disease modifying therapies. 

Summary and new insights derived from work 

In this research, I have explored different statistical approaches to define how genetics 

contributes to the progression and severity of PD as measured by clinical instruments 

that capture different aspects of the disorder. To assess the impact of genetics on 

disease progression I have used two statistical models, LMM and CPH. LMMs take 

into account repeated quantitative measures within groups, as well as unexplained 

random variability in the outcome, to then estimate the effect of genetic variants on 

disease progression and severity. CPH models allow us to measure the relation 

between genetic variants and the time to reach a certain outcome. For quantitative 

outcomes such as MDS-UPDRS, we found the use of LMMs more powerful since this 

statistical framework can use the high variability between and within groups to retrieve 

population average estimates based on the time-varying trends observed in the data 

and to define how much variability is explained on independent variables included in 

the model. For ordinal measures, that are unable to capture much variability over time 

due to the limited space of the variable, I found the use of CPHs ideal. We can record 

the time to reach a certain value of the ordinal variable that records the degree of 

dyskinesias, and then estimate the effect of variables such as genetic variation on the 

time to reach that outcome.  

To measure how genetics influence disease severity at baseline, I have used GLM. In 

this scenario, we do not take into account the patients’ progression trends to explain 

heterogeneity in disease presentation by genetics. I consider this type of modelling a 

useful approach for several reasons. Cross-sectional data is richer than longitudinal 

data, sometimes not recorded in studies, with drop out of the most severely affected 

individuals. Findings from GLM GWAS, enable the formulation of  progression 

hypotheses that can be explored based on data-driven approaches. Significant 

genetic variants from GLM GWAS add another source of information that can be used 

during longitudinal model design. For instance, we could add prior knowledge of 
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variants associated with an outcome, as mediator variables in our model to increase 

the statistical power to assess genetic variants associated with progression.  

Based on these statistical models, I have investigated how genetics influences 

progression and severity of PD motor aspects as measured by  limb and axial motor 

outcomes derived from the MDS-UPDRS part III. I have looked at how genetics 

contribute to the development of dyskinesias in PD. Finally, I have also undertaken a 

large-scale meta-analysis in PD exploring the effect of genetic variants on the disease 

presentation at baseline as measured by a wide range of clinical outcomes. 

Performing these analyses involves multiple steps such as data pre-processing and 

quality control, efficient model fitting, development of results and diagnostic plots. 

During my PhD, I have been involved in the development of long-gwas, a Nextflow 

pipeline that automates the multiple steps involved in running longitudinal, cross-

sectional, and survival GWASs, as well as all the data preparation and quality control 

needed beforehand. 

Understanding GWAS nominated loci is still a challenge for several reasons. Most of 

the loci that are usually nominated in association studies fall in non-coding regions 

[252]. This complicates the identification of the  causal gene associated with the trait 

and the causal mechanism. In addition, the LD structure of the genome confounds 

efforts to select the causal variant, which adds another difficulty in understanding 

disease biology. During my thesis I have explored multiple approaches to interpret loci 

nominated from GWAS. I have used several fine-mapping approaches to nominate 

consensus SNPs (those nominated to be causal from at least 2 out of 4 fine-mapping 

tools). I have performed GCTA-COJO to find the number of independent significant 

SNPs. I have done colocalization analyses to determine the mechanism through which 

causal genes might be influencing the outcome. In addition, I have accessed functional 

annotation datasets (ENCODE, Roadmap, FANTOM5, Brain cell types epigenetic 

markers) to characterise the transcription activity, chromatin state, the presence of 

transcription factor binding sites, the presence of distal enhancer-promoter chromatin 

loops. This has helped us to propose genes and mechanisms during the GWAS 

interpretation phase.  

As a result of my research, I have nominated genes that are  significantly associated 

with motor progression, the development of dyskinesias, olfaction, and activities of 
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daily living. In the large meta-analysis of MDS-UPDRS part III motor outcomes, we 

found one haplotype block at the GJA5 locus that was significantly associated with the 

axial motor progression. Further exploration of the GWAS significant signals in eQTL 

databases suggests that the GWAS hits may control the expression of ACP6, an 

enzyme that regulates lipid metabolism in mitochondria [299]. Based on a separate 

meta-analysis assessing the association of genetic variants with motor severity, we 

identified MAD1L1 and SOX9 as candidate genes associated with PD axial motor 

severity. As a proof of the importance of coupling GWAS findings with external 

functional annotation datasets, the nomination of SOX9 is a good example. The SNP 

I linked to SOX9 was found at a long non-coding locus. When I integrated the locus-

specific summary statistics with PLAC-seq data from Brain cell type specific epigenetic 

marks, we were able to find a long range promoter-enhancer chromatin loop, 

suggesting this SNP could be associated with MDS-UPDRS part III axial severity 

through changes in SOX9 expression. 

I found significant associations with the time-to-develop LiD at the LRP8, LINC02353 

and XYLT1 loci. In addition, based on a candidate gene analysis, exploring genetic 

variants reported to be associated with LiD risk in my large GWAS meta-analysis, I 

found that genetic variability in BDNF and ANKK2, were nominally associated with 

LiD. I did not replicate any other variant associated with LiD risk. In addition, based on 

a colocalization analysis, looking at all genes within ±1Mb from all GWAS variants with 

P-value< 1e-7 revealed a second independent causal association in chromosome 1 

between LiD and DNAJB4 gene expression. Conditional analysis further confirmed 

that both regions were in LD, hence both LRP8 and DNAJB4 were independently 

associated with the time-to-LiD. I was not able to efficiently resolve the non-coding 

region associated with LiD, and further research should be focused on understanding 

variability in this locus and the impact on the time-to-LiD.  Functional annotation is 

limited by the availability of cell specific expression data, although this is rapidly 

increasing. 

I also studied the impact of genetics on the severity of Parkinson's disease in a large-

scale analysis, as measured by multiple clinical assessments that capture different 

aspects of the condition (motor performance, cognition, overall disability, and other 

non-motor features such as olfaction). I undertook a large-scale multi-ancestry 

analysis across many clinical outcomes and identified two major genetic determinants 
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for hyposmia, as measured by the UPSIT scale. My results from the UPSIT meta-

analysis revealed that LRRK2 G2019S and GBA1 N370S modulate the olfactory 

performance in PD. LRRK2 G2019S was found to be associated with better olfaction, 

whereas GBA1 N370S was associated with worse olfaction. These results were 

consistent in the two ancestry groups separately. Finally, based on a multi-ancestry 

meta-analysis, I was able to increase the power and find novel associations at the 

SERGED, SCN1A, OTUD7A  loci. 

It is worth noting that I did not find any genetic variants at the SNCA locus associated 

with PD progression, in any of my genetic association studies, which could support the 

Braak’ progression staging through α-synuclein pathological inclusions. Based on 

findings from the large-scale disease severity GWAS, an hypothesis could be that 

other genetic factors such as genetic variants at the LRRK2 and GBA1 loci have a 

primary role in disease aetiology through the modulation of the autophagy-lysosomal 

pathway. Such pathway disruption could then lead to subsequent α-synuclein 

pathology and characteristic progression pattern as opposed to point mutations in 

SNCA having an impact in disease aetiology and progression. This hypothesis agrees 

with findings from the α-synuclein SAA analysis, in which they found differences in the 

rate of α-synuclein SAA positive in LRRK2 and GBA1 mutation carriers with hyposmia 

[389]. 

In my study, I found GBA1 and LRRK2 mutations to be significantly associated with 

hyposmia based on a GWAS analysis. Braak staging begins at the olfactory bulb. 

GBA1 and LRRK2 mutations occurring at the olfactory bulb could then cause the α-

synuclein accumulation and aggregation and therefore be the trigger to the 

subsequent spread. It is worth mentioning these results were based on the UPSIT 

olfactory test cross-sectional data. Further analysis investigating how olfaction 

progresses according to LRRK2 and GBA1 status overlying multi-omic data will shed 

new light into LRRK2 and GBA1 implication in progression. I did not find genetic 

variability in the APOE locus associated with the cognitive disease severity as 

measured by MoCA and MMSE. Other studies have found APOE ε4 allele to be 

strongly associated with cognitive progression [109,116]. 

A separate but related question is to understand the relevant cell types for nominated 

GWAS risk variants. Regulatory elements, including promoters, enhancers, and 
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silencers, are key components of the non-coding genome. They play a pivotal role in 

determining how genes are expressed in different tissues and cell types. Importantly, 

many of these elements exhibit cell type- or state-specific activity, underscoring their 

role in cellular differentiation and function [413]. A cell's phenotype is influenced by the 

epigenome, DNA accessibility, and chromatin state. As a result of this unique 

regulatory control, a cell’s transcriptome also has a unique signature. As an example, 

previous data-driven research has been able to find cell type specific differential gene 

expression markers across main human cell types [414]. As we previously mentioned, 

some efforts have focused on determining the cell type enrichment of PD risk GWAS 

using state-of-the-art tools [285,400]. However, knowing the cell type specificity of PD 

progression GWASs remains a major open question that can be of additional value in  

understanding how the underlying neuropathology progresses in  brain tissues in 

relation to clinical progression. 

During my PhD, I have undertaken a cell type enrichment analysis on all PD 

progression GWASs that we have undertaken in the lab. I found a significant 

enrichment between microglia and Hoehn and Yahr state, a measure of disease 

severity, which suggests genetic variability related to health decline in PD patients 

might evolve as a result of an impaired immune system. I was able to find this 

association in two separate adult human brain datasets (AIBS, BlueLake). I also found 

other associations approaching Bonferroni corrected significance such as the 

enrichment of my LiD progression GWAS and impairment in Glutamatergic and 

GABAergic cells, cells previously suggested to influence the occurrence of the 

condition [411]. These findings need further validation and investigation, as it can be 

knowledge that must be taken into during drug design and testing of disease-

modifying. In addition, I developed a novel framework around TWMR to infer causal 

associations from GWAS, based on a multivariable MR framework that incorporates 

information about distal regulation, in theory more efficiently than previous state of art 

methods, MAGMA and S-LDSC. This work will need further development for its wider 

use, including optimization to nominate true positives and reduce the background 

noise, and the development of an R package. However, I found promising results so 

far, nominating PD candidate genes using a TWMR approach, including SNCA and 

LRRK2, as well as promising results from a TWMR-based PD risk GWAS cell type 
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enrichment analysis nominating and several basal ganglia regions (Putamen, Nucleus 

accumbens, and caudate), and Hypothalamus, anterior cingulate cortex. 

Limitations and future work 

 

Here I faced some limitations that I would like to highlight for the consideration of  

future research in PD progression. From a statistical point of view, it has been 

suggested that prognosis GWAS, those only involving individuals which have a 

condition, might partially suffer from collider bias, as a result of selection bias, in which 

non correlated causes of the disease appear correlated when only including cases 

affected by the condition. This scenario occurs as a result of unaccounted confounding 

between disease incidence and the outcome for the condition of interest, in which 

causes of the incidence will spuriously correlate with the condition assessed [415]. For 

instance, among PD cases selected according to their status (PD with a certain 

disease duration, being treated or not, carrying GBA1 and LRRK2 PD causing alleles 

or not), some SNPs can show spurious associations with PD prognosis or severity. A 

plausible explanation in this scenario is that in our PD subset, there may well be other 

factors that associate with the outcome, in which case, the SNP of interest might be 

significantly associated with the PD clinical outcome at least partially due to collider 

bias. Recently, methods such as ‘Slope-Hunter’ have been proposed for adjustment 

of collider bias in the so-called prognosis GWASs [415]. Further studies involving PD 

severity and progression should make an effort to always account for collider bias in 

their pipelines as well as validate existing PD progression GWAS results to be free of 

such selection bias.  

All my research on the association of genetics with PD prognosis and severity has 

been limited to common SNPs (MAF > 1%). With prognosis and severity GWAS, we 

do not have enough power to assess how rarer variants can contribute to the 

heterogeneity of PD progression with the current sample size  [240]. Undertaking a 

genome-wide burden analysis in PD patients with fast versus slow progression might 

help to nominate certain genes harbouring rare variants associated with the 

progression of PD. Similarly, assessing the burden of rare variants in cis-regulatory 

elements, might help to understand the impact of regulatory elements such as 

enhancers or repressors that have a role in PD progression. These variations may be 

more pronounced in specific populations and could be overlooked or entirely missed 
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in others due to naturally occurring, population-based differences in allele frequencies 

[416]. Therefore adding more ancestry diverse groups when exploring rare variants in 

relation to PD progression might increase the power to detect significant associations. 

Similarly this study is limited to SNPs, therefore other types of mutations such as 

chromosomal mutations that lead to chromosomes being duplicated or lost are not 

considered in this analysis. A good example is copy number variants (CNVs), with 

implication in human diseases and evolution [417]. The identification of causal variants 

influencing PD risk can be facilitated by employing state-of-the-art high-throughput 

long-read sequencing technologies. Causal variants are not confined to SNPs but can 

also encompass more complex genomic variations, such as repeat expansions or 

structural variants. These variations may be easily overlooked in short-read 

sequencing and can be technologically challenging to genotype due to repetitive 

sequences or high GC content. PD studies specifically investigating non-SNP 

variations are beginning to emerge [418]. 

Another limitation to highlight is the sample size achieved gathering data from multiple 

sources in this study. Even if we performed some of the more powered PD progression 

studies in terms of the sample size we gathered for several PD traits, we are far from 

the sample sizes achieved by large studies assessing the genetic risk of traits and 

diseases [51,365,366]. GWAS sample size is another major determinant of power to 

uncover significant association genome-wide [240]. Initiatives such as GP2 hold the 

promise of gathering a deeply phenotyped and harmonised dataset of thousands of 

PD cases with a multitude of clinical assessments and longitudinal data available. 

Such effort, if it overcomes the many difficulties that data gathering and curation to 

high standard imposes, might lead to unprecedented discoveries explaining PD 

severity and progression. And their translation to disease-modifying therapies. 

Another limitation is that I have entirely focused on clinical assessments to assess PD 

progression. However wearable technology enables recording measures for patients 

more reliably and continuously. Such data is starting to become available for some 

biobanks such as in the UK Biobank. Using more novel deep learning approaches 

such as Long Short Term Memory (LSTM) models might provide additional value and 

increase the power to analyse this type of wealthy data with many time points available 

longitudinally at the patient level, which me able to better capture treatment responses 

and fluctuations in the progression patterns. 
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In the study of PD motor progression, I relied on LMM as I found this model that 

assumes a linear trend to fit our data best. However, other studies of longitudinal 

studies of longer duration (8-year follow up) found nonlinear mixed-effect models to fit 

UPDRS serial measures better than LMM. Several reasons such as the inclusion of 

more advanced PD participants and long-term effect of patients under treatment could 

explain the differing results. However, as we approach larger-scale longitudinal 

analyses including outcome for which we are unfamiliar what progression patterns 

they might follow, as well as we include data from sources with notable differences of 

exclusion and inclusion criteria (for example, disease duration restrictions), it is 

important that careful investigation on the progression trajectories of the multiple 

clinical outcomes we study is performed so that it can help during the model-decision 

making, and detect unanticipated nonlinear progressive trends. 

Replication across genome-wide analyses is important in the identification of “definite” 

progression variants. This has proven to be difficult as outlined in the previous  studies 

carried out by Liu and colleagues and Real and colleagues I highlighted in the 

Methods. Similarly, my results have not been in agreement with previous analyses of 

PD motor progression  or dyskinesias. There are several potential reasons that might 

explain lack of replication. This could  relate to differences in coverage from the 

genotyping arrays used across different studies. This might lead to a low imputation 

power in key loci which would lead to, for example, dropping the haplotypes that are 

associated with the PD phenotype studied. Second reason could be due to variability 

in these phenotypes, characterised by daily fluctuations, measurement inaccuracies, 

the possible influence of environmental factors specific from each region, and the 

challenges of standardising clinical assessments across various research sites and 

study methodologies, which could lead to the surge of false positives. Another 

plausible reason could be systematic errors during the analysis process, which might 

lead to collider or confounding bias on GWASs results when assessing the association 

between a variant and a PD progression trait, which could lead to inflated test-statistics 

and therefore false positives and negatives. Even if I anticipate a decrease in the non 

replication issue with the use of long-gwas, further efforts should be focused on 

understanding the lack of replication to understand potential novel confounders we 

can account for as the field moves forward. 
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To date, in the PD genetics field, most studies have focused on European ancestry 

populations [419], and more recently, Asian descent [51,83]. Incorporating ancestral 

diversity into PD genetics research holds crucial significance for enhancing various 

aspects of PD healthcare. Firstly, the exclusion of non-European populations in 

research may result in an underestimation of specific genetic risk factors to those 

populations, which could serve as valuable markers for early disease detection and 

risk assessment. Furthermore, including diverse populations can be of value to 

validate PD risk factors from European populations or define ancestry specific novel 

genetic factors. An illustrative example of such distinctions is evident in the largest 

GWAS conducted in the Asian population, where no associations between the PD 

phenotype and GBA1 or MAPT variants were observed, and variability in those loci 

where among the top hits in the European ancestry GWAS [83]. The incorporation of 

ancestral  diversity into PD research is vital for advancing our comprehension of the 

disease's biology and pathogenesis. This understanding, in turn, facilitates the 

customisation of preventive measures and therapeutic interventions. As Nalls and 

colleagues have  anticipated, the inclusion of ancestry-diverse groups will allow us to 

increase the genetic data granularity, which will improve the interpretation of GWAS 

signals and improve the applicability and usefulness of PD genetics studies  [83]. 

During my PhD, I have analysed the impact of genetics on disease severity of PD 

patients of AJ descent. However, this still holds a limitation to highlight for several 

reasons: Sample sizes available for study are much lower than the numbers available 

for  EUR PD patients. This study was limited to the impact of AJ genetic on severity 

and overlooked the impact on progression due to low availability of time-series data 

for the clinical outcomes part of studies.  

Exploring nominated loci from GWAS involves dealing with diverse molecular 

pathways contributing to the phenotype of interest [420]. Within these nominated loci, 

detecting the causal variant can be challenging, often obscured by other non-causal 

alleles falling within the same haplotype block due to the underlying LD structure. In 

this context, the refinement of genotyping approaches and the development and 

implementation of novel bioinformatics tools are crucial. Additionally, methods that 

overlay functional annotation resources such as DNA methylation or histone 

modification of regulatory elements, as well as the formation of chromatin loops, with 

GWASs provide insights into the putative epigenetic signatures of GWAS-nominated 
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loci. Further research to decrease the uncertainty from fine-mapping tools, understand 

the cell type basis of genetic association studies, will boost GWAS discoveries and 

easy transferability from research to disease-modifying therapies testing and 

development. In addition, keeping up to date with advances in the deep learning 

genomics will help GWAS decoding with variant prioritisation, interpretability of the 

functional implications of  non-coding genome nominated variants, as well as accurate 

cell type agnostic predictions  of the impact of PD specific genetic architecture [421–

425]. 

Post-GWAS analyses are primarily directed towards identifying molecular pathways 

and promising targets for biomarkers and drug development. The process involves the 

discovery and validation of potential findings in independent cohorts, allowing the 

nomination of pathways for further assessment in cell lines and animal models or the 

construction of networks. Additionally, novel datasets for PD genetics research are 

becoming publicly available resources for the research community. An example is the 

Foundational Data Initiative for Parkinson’s Disease (FOUNDIN-PD) [426], an 

international, collaborative, and multi-year project. It aims to generate a multi-layered 

molecular dataset using a large cohort of 95 induced pluripotent stem cell (iPSC) lines 

at multiple time points during differentiation to dopaminergic (DA) neurons. 

Frameworks for GWAS decoding should work around these single cell PD specific 

powerful datasets. Similarly, the use of deeply phenotype cohorts with matched multi-

omic data provide us with a unique opportunity to explore nominated genetic variants 

and the impact on broad gene expression and translation. This enables us to nominate 

potential biomarkers of genetic markers of progression as well as to decode non-

coding genetic association from GWASs. 
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