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ABSTRACT: The calculation of absolute binding free energies (ABFEs) for protein−ligand
systems has long been a challenge. Recently, refined force fields and algorithms have improved
the quality of the ABFE calculations. However, achieving the level of accuracy required to
inform drug discovery efforts remains difficult. Here, we present a transferable enhanced
sampling strategy to accurately calculate absolute binding free energies using OneOPES with
simple geometric collective variables. We tested the strategy on two protein targets, BRD4 and
Hsp90, complexed with a total of 17 chemically diverse ligands, including both molecular
fragments and drug-like molecules. Our results show that OneOPES accurately predicts
protein−ligand binding affinities with a mean unsigned error within 1 kcal mol−1 of
experimentally determined free energies, without the need to tailor the collective variables to
each system. Furthermore, our strategy effectively samples different ligand binding modes and
consistently matches the experimentally determined structures regardless of the initial protein−
ligand configuration. Our results suggest that the proposed OneOPES strategy can be used to
inform lead optimization campaigns in drug discovery and to study protein−ligand binding and unbinding mechanisms.

The binding and unbinding of ligands to protein targets
underlie both biological and pharmaceutical activity.

Accurate prediction of protein−ligand binding free energies is
therefore a critical aspect of computer-aided drug design
(CADD). For instance, the calculated free energies can be used
to prioritize compound synthesis and to guide hit optimiza-
tion.1−4 Recent improvements in force fields, sampling
algorithms, and the advent of low-cost parallel computing
have improved the quality of simulation-based free energy
predictions and made them more affordable. However, further
advances are still needed to achieve reliable and accurate
results for a wide range of ligands and protein targets.5

Despite the availability of high-quality protein force fields,
major challenges remain in the parametrization of complex
ligands, including those with delocalized electron density.5,6 In
addition, the interaction between suboptimal ligand, protein,
and solvent force fields can introduce artifacts and systematic
errors that are difficult to account for. With respect to free
energy calculations, unbiased molecular dynamics (MD)
would require impractically long simulation times to
exhaustively sample all the relevant states contributing to the
free energy of binding before providing reliable estimates.7−10

To address this issue, several MD-based methods have been
developed, such as alchemical transformations11−16 and
collective variable-based enhanced sampling approaches.17−24

The former decouple the ligand from the protein along a
nonphysical thermodynamic cycle, known as the alchemical
cycle. This allows the calculation of binding free energies
without directly simulating the binding and unbinding events.
This eliminates the need to sample the intermediate states that

are often found along physical uncoupling pathways, leading in
many cases to accurate free energy estimates at a reasonable
computational cost.14 However, these methods face problems
when the ligand binding pose is not known or there are
significant conformational changes in the target following the
formation/disruption of the protein−ligand complex.25

Collective variable-based enhanced sampling approaches, on
the other hand, directly accelerate the binding and unbinding
of the ligand to the target protein along physical association
pathways. These strategies rely on the definition of a set of
collective variables (CVs) that approximate the reaction
coordinate and drive exploration of the underlying free energy
surface, effectively accelerating the transitions between differ-
ent metastable states. In principle, they do not depend on the
knowledge of the correct binding pose, but their performance
is highly dependent on the quality of the CVs and is typically
limited to the simultaneous use of no more than three CVs.26

In the case of ligand binding, typical CVs include the distance
of the ligand from the pocket as well as its orientation and
conformation. Other important factors that have been shown
to play a role in many binding mechanisms are the ligand and
cavity solvation as well as the conformation of the cavity.27−31
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If the selected CVs fail to accelerate the sampling of the
relevant slow (and often unknown) degrees of freedom, then
convergence of the free energy landscapes associated with
binding and unbinding of the ligand may require impractically
long sampling times. In the most unfavorable cases, no
convergence is observed.32−34 Defining an optimal set of CVs
is challenging, especially since the optimal set might vary for
different ligands binding to the same target. Other aspects that
complicate the use of CV-based algorithms include monitoring
the convergence of the estimated free energy profiles and
determining when to stop the calculation.35 In addition,
regardless of the approach, the presence of multiple competing
binding poses, interfacial water, or large conformational
changes in the protein and in the ligand tend to affect the
reliability of the free energy estimates.9,10,28,36−40

To address the challenge of defining optimal yet universally
applicable CVs for ligand binding as well as other issues that
hinder the use of CV-based approaches for absolute binding
free energy calculations, we present a transferable enhanced
sampling strategy. Our approach leverages our recently
developed OneOPES (One On-the-fly Probability Enhanced
Sampling) algorithm41 and a simple set of geometry-based CVs
to calculate the absolute binding free energies of protein−
ligand complexes. Specifically, OneOPES combines multiple
replicas with different versions of OPES42−44 to reduce the
dependence of the free energy estimates on an optimal choice
of CVs, while the designed set of simple geometric CVs can be
easily adapted to most ligand-target systems.

Here, we test the approach on a set of 17 protein−ligand
complexes comprising two well-characterized protein systems:
bromodomain-containing protein 4 (BRD4) and heat shock
protein 90 (Hsp90). The set includes 11 BRD4-ligand
complexes and 6 Hsp9-ligand complexes, including both
experimentally determined and modeled binding poses, with
ligands varying widely in size and affinity for the target
proteins. This diversity allows for a thorough evaluation of our
computational strategy. Additionally, the test set includes two
different crystallographic poses of the same ligand bound to
Hsp90 (PDB IDs: 2WI2 and 2WI3). This system allows for a
direct assessment of the accuracy of our method across
different initial ligand orientations within the binding pocket.
We also tested two different force fields and two water models
to assess their impact on the resulting free energy estimates.
Our results correlate well with experimental data, with a

mean unsigned error within 1 kcal mol−1 of experimentally
determined free energies. The results highlight how our
OneOPES protocol provides accurate absolute binding free
energy estimates in agreement with experimental values across
a wide range of systems. Our strategy can efficiently accelerate
the sampling of a number of relevant degrees of freedom
without the need for the time-consuming development of ad
hoc CVs. Ultimately, the transferability of our protocol suggests
a promising route toward its application to lead optimization
campaigns in drug discovery.

OneOPES for Ligand Binding. OneOPES was originally
designed to address the problem of converging free energy
landscapes with a suboptimal set of CVs.41 It combines a CV-

Figure 1. Schematic of our OneOPES strategy for protein−ligand binding. Top-lef t panel: example of the two main CVs biased with OneOPES,
the protein−ligand distance, shown as a cyan line, and the protein−ligand contact map. A funnel-shaped restraint is applied along the protein−
ligand distance vector. Bottom-lef t panel: examples of the auxiliary CVs accelerated with OneOPES, i.e., hydration sites, both within the protein
binding site and some ligand atoms, and ligand torsions. Right panel: illustration of the replica exchange and the thermal gradient used in our
OneOPES simulations. The combination of different enhanced sampling schemes allows for the exploration of several ligand binding modes,
resulting in accurate binding free energy surfaces.
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driven exploration with a replica exchange strategy and
tempering scheme to accelerate the crossing of significant
free energy barriers. Here, we adapted the original OneOPES
approach to accelerate the binding and unbinding of ligands to
a target protein without having to tailor the set of CVs for each
ligand-target system. Specifically, we designed two general CVs
that describe the orientation and distance of the ligand relative
to the target protein pocket (Figure 1). These CVs are used in

OneOPES to control the main simulation bias that is deposited
via the OPES Explore44 sampling scheme.
The first CV describes the distance between the center of

mass of the ligand and the binding site. The center of mass of
the ligand is projected on a vector originating from the protein
and intersecting the binding site. The distance between the
ligand’s center of mass and the origin of this vector defines the
CV and allows us to distinguish between conformations where
the ligand is bound to the protein or sampling bulk water.

Figure 2. Structures of the BRD4-ligand complexes and free energy correlation plots. (a) Structural representation of a BRD4-ligand complex
(left, PDB ID: 4OGJ) and chemical structure of the ligands presented in this work (right). The secondary structure of the protein is shown in cyan,
and the ligand is shown as sticks. Carbon, nitrogen, oxygen, and sulfur ligand atoms are shown in gray, blue, red, and yellow, respectively. The
different ligands are listed in decreasing order of affinity for the BRD4 binding site. (b) Correlation plots of experimental versus calculated binding
free energies obtained using OneOPES and either the OPC (left) or TIP3P (right) water model. The dark gray shaded area represents a deviation
of ±2 kcal mol−1 from the experimental values, while the light gray corresponds to a deviation of ±1 kcal mol−1. The ideal correlation is shown as a
black line.
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Additionally, this vector serves as the main axis for a funnel-
shaped potential, which limits the ligand exploration to
relevant regions of the conformational space.45−47

The second CV is a contact map (CMAP) that captures the
initial orientation of the ligand within the binding pocket. The
contact map is defined such that only ligand orientations
similar to the initial binding pose have large CMAP values with
the CV decreasing sharply to zero for dissimilar orientations.
This property of the CMAP allows reasonable resolution of
different ligand poses within the binding pocket as well as the
evaluation of poses that differ from the initial one.
In addition to the two primary CVs, our strategy includes

additional CVs to improve the sampling of various degrees of
freedom that may contribute to the binding and unbinding
mechanisms. In particular, we accelerate the water coordina-
tion around polar atoms within the binding site, the hydration
of polar atoms of the ligand, and the torsion angles that control
the transitions between different ligand rotamers. The
sampling of different solvation states of the protein cavity is
often a crucial aspect of binding and unbinding ki-
netics.27−29,31,48 Water molecules may be essential in bridging
favorable interactions between protein side chains and the
ligand, thereby stabilizing the bound state. On the contrary, the
presence of highly ordered water molecules in the apo binding
cavity may constitute a major barrier to ligand rebinding.48

Transitions between different ligand conformations, espe-
cially in the case of larger ligands, can significantly contribute
to the binding free energy.49 Typically, specific rotamers
correspond to the ligand-bound conformation, with higher
affinity ligands usually adopting a single primary rotameric
conformation and lower affinity binders exploring a few.
However, good quality sampling requires a ligand to explore
different rotameric conformations, especially upon unbinding
and transitioning to the bulk solution. To this end, we
explicitly bias the ligands’ rotatable bonds that are part of
delocalized double bonds and are typically associated with
higher energy barriers. These auxiliary CVs help to sample
different unbound ligand conformations, thereby improving
the accuracy of the resulting free energy estimates.
The bias deposited along the auxiliary CVs is significantly

lower than the bias deposited along the primary CVs. Similarly,
the rate of bias deposition along the additional CVs is lower
than the rate of deposition along the primary CVs. In fact, the
role of the auxiliary CVs is to accelerate important degrees of

freedom that are not explicitly captured by CMAP and the
protein−ligand distance. Our OneOPES strategy does not aim
to converge the free energy along these auxiliary CVs but
employs them only to help converge the 2D free energy
projected onto the two primary CVs, where most of the
simulation bias is deposited.
To further facilitate the convergence of the binding free

energy, OneOPES combines the CV-driven exploration of
OPES Explore with eight exchanging replicas and OPES
MultiThermal.43 The replica exchange scheme accelerates
sampling via parallel exploration of the accessible phase space.
Furthermore, the addition of an OPES MultiThermal bias
renders OneOPES in a way analogous to parallel tempering
techniques,50−54 effectively allowing the exploration of a user-
defined temperature range. By enhancing the fluctuations of
the system’s potential energy, OPES MultiThermal allows the
sampling of a multicanonical ensemble spanning temperatures
within a given temperature range [Tmin, Tmax].
The different replicas follow an increasingly aggressive

exploration gradient, with replica zero being driven only by the
OPES Explore bias along the two main CVs and higher replicas
being subject to gradually increasing out-of-equilibrium
conditions. Specifically, replicas one-seven (i.e., the explora-
tion-dedicated replicas), while subject to the same OPES
Explore bias as replica zero, also include additional OPES
Explore bias deposited along the auxiliary CVs, with higher
replicas containing a greater number of auxiliary CVs. In
addition, the exploration-dedicated replicas are also subject to
the OPES MultiThermal bias, which enhances the sampling of
all degrees of freedom by effectively increasing the sampling
temperature, with higher replicas being subjected to higher
temperatures. This framework allows rapid exploration of the
bound and unbound states across the different replicas, thereby
increasing the overall sampling quality and facilitating the
convergence of the binding free energy. Finally, upon
convergence, the equilibrium quantities, such as the free
energy of binding, can be recovered from replica zero via a
standard reweighting procedure. Further details on system and
simulation setup can be found in Supporting Information
Sections 1−4. To determine when to stop the simulations and
save computational time we have developed an error-informed
stopping strategy that is presented in more detail in Supporting
Information Section 5.

Table 1. Summary of the BRD4 binding free energy results using OneOPESa

Compound ΔGcalc
TIP3P ΔGexp ΔGcalc

TIP3P − ΔGexp PDB μs per replica
1 −10.5 ± 0.3 −9.8 ± 0.165 −0.7 4OGI 0.5
2 −7.8 ± 0.2 −9.6 ± 0.166 1.8 3MXF 0.7
3 −8.8 ± 0.4 −9.0 ± 0.167 0.2 4MR3 0.5
4 −9.5 ± 0.5 −8.9 ± 0.165 −0.6 4OGJ 0.6
5 −8.4 ± 0.5 −8.8 ± 0.168 0.4 4J0R 0.5
6 −10.0 ± 0.3 −8.2 ± 0.169 −1.8 3U5L 1.4
7 −7.9 ± 0.2 −7.8 ± 0.167 −0.1 4MR4 0.6
8 −6.9 ± 0.3 −7.4 ± 0.169 0.5 3U5J 0.5
9 −8.3 ± 0.3 −7.3 ± 0.068 −1.0 3SVG 0.5
10 −5.9 ± 0.2 −6.3 ± 0.170 0.4 4HBV 0.7
11 −6.7 ± 0.5 −5.671 −1.1 Model 0.7

aΔGcalc
TIP3P represents the calculated standard binding free energy with the TIP3P water model; ΔGexp denotes the experimental standard binding free

energy with references provided. The PDB files used as input are listed. Errors in the experimental measurements are reported as one standard
deviation, where available. Errors for the calculated standard free energies were obtained using block analysis. All values are given in kcal mol−1. The
simulation time for each replica (eight exchanging replicas per simulation) is reported.
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BRD4 and the Impact of the Water Model. Given the
crucial role of water in the binding/unbinding mechanism and
the importance of a well-balanced set of ligand, protein, and
water force fields,30,36,48,55−61 we evaluated the effect of two
different water models on the binding affinity estimates of 11
BRD4-ligand complexes (Figure 2a). The set of inhibitors
considered includes drug-like molecules with a wide range of
physicochemical properties. This collection represents various
chemical groups, and the heterogeneity of the set ensures that
our results are not overly influenced by limited chemical
diversity. Additionally, each BRD4 ligand complex has an

experimentally measured binding affinity, and for ten of the 11
complexes the binding mode has been crystallographically
determined at high resolution (Table 1). This provides an ideal
scenario for retrospectively testing the performance of our
strategy and investigating the effects of different combinations
of water models and force fields.
First, we selected the GAFF2 force field for ligand

parametrization and tested it with the latest Amber protein
force field, ff19SB, together with the recommended water
model, OPC, as this combination is expected to provide higher
accuracy. Despite the generally good results, our OneOPES

Figure 3. Structures of the Hsp90-ligand complexes and free energy correlation plots. (a) Structural representation of a Hsp90-ligand complex
(left, PDB ID: 3K99) and chemical structure of the ligands presented in this work (right). The secondary structure of the protein is shown in
purple, and the ligand is shown as sticks. Carbon, nitrogen, and oxygen ligand atoms are shown in gray, blue, and red, respectively. The different
ligands are listed in descending order of affinity for the Hsp90 binding site. (b) Correlation plots of experimental versus calculated binding free
energies obtained using OneOPES. The dark gray shaded area represents a deviation of ±2 kcal mol−1 from the experimental values, while the light
gray corresponds to a deviation of ±1 kcal mol−1. The ideal correlation is shown as a black line.
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calculations with the OPC water model systematically
overestimate the binding free energies, with a mean unsigned
error (MUE) of 1.5 ± 0.1 kcal mol−1 and a mean signed error
(MSE) of −1.4 ± 0.1 kcal mol−1 (Figure 2b and Table S1).
Additionally, the analysis of the corresponding 2D free energy
surfaces revealed that the crystallographic pose of ligand 10 did
not correspond to a minimum in the free energy surface
(Figure S1).
We then explored the effect of a second water model,

namely, TIP3P,62 on the free energy calculations, while
keeping all other simulation parameters unchanged. The
choice of the TIP3P model was further supported by the
fact that the GAFF2 parameters were derived with this water
model.63,64 The resulting binding free energy estimates show a
significant improvement over those obtained with the OPC
water model, with an MUE of 0.8 ± 0.1 kcal mol−1 (Figure 2b
and Table 1). Remarkably, the systematic overestimation
observed with the OPC water drops significantly, as indicated
by an MSE of −0.2 ± 0.1 kcal mol−1. Additionally, the
simulations correctly identify the crystallographic pose of
ligand 10 as the deepest free energy minimum (Figure S1).
For eight of the 11 systems, the error is within 1 kcal mol−1

of the experimental value, with only three systems having
errors within 2 kcal mol−1 (Table 1). In the case of ligand 6,
the observed deviation is probably due to the incorrect free
energy minimum assigned by the force field (Figure S2 and
Table S2). As previously reported, the crystal-like config-
uration is less favorable for this ligand, with the incorrect
binding mode captured by the force field substantially affecting
the free energy estimate.25 Here we report the binding free
energy obtained by considering only the crystal-like config-
urations of ligand 6. Nevertheless, the bias deposited along the
OneOPES simulation still suffers from the incorrect force field
parametrization, which probably explains the observed
deviation from the experimental value.
In Supporting Information Section 6, we also show the

results of analogous simulations performed with Well-
Tempered Metadynamics. We ran three independent simu-
lations of 1 μs each, biasing the same primary CVs and using
the same Cα-RMSD and funnel-shaped walls. As shown in
Supporting Information (Figure S3), the predicted free
energies have a higher MUE of 1.7 kcal mol−1. Additionally,
the uncertainty values of the resulting free energies, calculated
as the standard deviation of three estimates, range between 1.5
and 2.4 kcal mol−1 for most protein−ligand complexes (Table
S3). While the averages over three independent simulations are
not too far from experimental values, individual replicas show
high variability in the estimates. The impact of the quality of
the chosen CVs on the convergence of single replica
Metadynamics is indeed well-known and is one of the main
motivations for the development of algorithms that combine
multiple replica and CV-based enhanced sampling algo-
rithms.32,35

To validate our error-informed stopping strategy, we
extended the OneOPES simulations to 2 μs per replica and
recalculated the corresponding binding free energies. The
results obtained from the extended calculations are statistically
equivalent and strongly correlated, with a Pearson’s r of 0.93 ±
0.01, to those obtained with shorter OneOPES simulations
(Figure S4). Overall, our error-informed OneOPES strategy
significantly reduces the computational cost associated with
obtaining accurate binding free energies. Indeed, all OneOPES

simulations, except for ligand 6, reached an uncertainty within
1 kcal mol−1 in less than 700 ns per replica.

HSP90 and the Sampling of Multiple Ligand Binding
Modes. To test the transferability of our strategy to other
systems, we applied the same OneOPES protocol to six
Hsp90-ligand complexes. The selected inhibitors include
diverse fragment-like molecules often found in drug-like
compounds, with a range of affinities from high μM to low
nM (Figure 3a and Table 2). Additionally, to investigate the

effects of multiple ligand binding poses, we selected a protein−
ligand system where the ligand was crystallized in two different
binding modes within the same binding cavity of Hsp90 (PDB
IDs: 2WI2 and 2WI3). Due to the significantly better results
obtained previously with TIP3P, we chose this water model for
the Hsp90 simulations and parametrized the protein with the
recommended Amber ff14SB force field. Since the ff14SB and
ff19SB protein force fields are similar, we do not expect
significant differences with respect to results obtained with
ff19SB.
The results show very good agreement with the

experimentally determined values (Figure 3b). The calculated
mean unsigned error is again within 1 kcal mol−1 of the
experimental values, in agreement with the previous results
obtained from the BRD4 simulations. Specifically, four of the
six predictions have errors within 1 kcal mol−1 of the
experimental measurements, with two having errors within
1.5 kcal mol−1 (Table 2). The calculated free energies strongly
correlate with the experimental ones, with a Pearson’s r of 0.92
± 0.05, and effectively rank the ligand affinities (Kendall’s τ =
0.59 ± 0.29). The simulation time required to converge the
error is also encouraging, with all but one simulation reaching
an uncertainty threshold of 1 kcal within 700 ns.
Remarkably, all the experimental starting complexes

corresponded to a minimum in the obtained free energy
projections, indicating good parametrization of the different
systems. Furthermore, complexes 5a and 5b correspond to two
different binding modes of the same ligand. Given that the
crystal structures capture two different binding poses, we
expect that the corresponding binding free energies should be
similar, leading to observable populations for both minima.
Indeed, the binding free energies calculated with OneOPES

for the two poses are comparable, amounting to 5.7 ± 0.5 and
5.9 ± 0.4 kcal mol−1 for poses 5a and 5b, respectively.
Interestingly, both free energy estimates converge within the
uncertainty of 1 kcal mol−1 in the same simulation time

Table 2. Summary of the Hsp90 binding free energy results
using OneOPESa

Compound ΔGcalc ΔGexp

ΔGcalc −
ΔGexp PDB

μs per
replica

1 −9.5 ± 0.7 −9.972 0.4 3K99 0.7
2 −9.3 ± 0.7 −9.173 −0.2 3OW6 1.75
3 −8.1 ± 0.5 −9.174 1.0 3EKO 0.6
4 −9.5 ± 0.3 −8.175 −1.4 2XHT 0.5
5a −5.7 ± 0.5 −4.776 −1.0 2WI2 0.5
5b −5.9 ± 0.4 −4.776 −1.2 2WI3 0.5

aΔGcalc represents the calculated standard binding free energy; ΔGexp
denotes the experimental standard binding free energy, with
references provided. The PDB files used as input are listed. Errors
for the calculated standard free energies were obtained using block
analysis. All values are given in kcal mol−1. The simulation time for
each replica (eight exchanging replicas per simulation) is reported.
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(Figure 4a). Moreover, the resulting 1D free energy
projections as a function of the protein−ligand distance are
superimposable regardless of the starting structure used for the
simulations (Figure 4b). This is further supported by the 2D
free energy map, where we reprojected the binding free energy
as a function of the protein−ligand orientation and the
distance from the protein binding site (Figure 4c). Notably,
both poses of ligand 5 correspond to a minimum in the free
energy map, with longer OneOPES simulations converging to
the same free energy landscape independently of the initial
binding mode (Figure S5).
Obtaining comparable binding free energies when starting

simulations from different initial poses is far from trivial. This
highlights how our OneOPES simulations can effectively
explore the two crystallographic minima, independently of the
starting configuration, and sample different binding modes.

Conclusions. CV-based absolute ligand binding calculations
have a number of potential advantages over alchemical
calculations, such as the ability to explore alternative binding
poses and compute the free energy profile along physical
association pathways, but their convergence crucially depends
on the choice of the set of CVs, which is far from trivial and
system dependent. Moreover, monitoring the convergence of
the reconstructed free energy landscape is not always
straightforward, and consequently it is uncertain when the
simulation can be safely terminated.

Here we show that a OneOPES strategy with a set of simple
and universal CVs based on distance and contacts performs
well for a number of realistic protein−ligand binding systems.
Its multireplica nature and the use of auxiliary CVs targeting
ligand conformation and hydration further enhance the
sampling of complex landscapes that may harbor different
local minima, complementing the limitations of the system-
agnostic main CVs. We also show that under the same
conditions, three independent 1 μs-long single replica
Metadynamics calculations give a higher MUE. When
combined with an effective strategy to monitor the progress
of the free energy estimate and its error, OneOPES produces
accurate and reliable free energy results in less than 700 ns of
sampling per replica in most cases. The accurate and reliable
results have also allowed us to select a combination of ligand
and water force fields (TIP3P and GAFF2) that leads to free
energy estimates that strongly correlate with the experiments.
The proposed strategy is capable of reconstructing the same

(correct) free energy landscape irrespective of the starting pose
and properly predicts multiple binding poses when they have
been shown to be present by experiments. Thus, OneOPES
brings a fresh perspective into the challenge associated with
estimating ligand binding free energies, especially in complex
systems characterized by nontrivial binding poses and
unidentified slow degrees of freedom. A promising future
direction is the study of systems with cryptic binding sites.77

By studying the complex conformational changes of these

Figure 4. Sampling of different ligand binding modes with OneOPES. (a) Binding free energy estimates as a function of different simulation
times of the two binding poses of ligand 5. The purple and green lines correspond to two different OneOPES simulations starting from binding
poses 5a and 5b, respectively. The first 200 ns of the simulation were considered as equilibration (see Table S5). The dark gray shaded area
represents a deviation of ±2 kcal mol−1 from the experimental values, while the light gray corresponds to a deviation of ±1 kcal mol−1. The
experimental binding free energy is shown as a black line. (b) 1D free energy projection on the ligand-binding site distance for the two simulations
of binding poses 5a and 5b, shown in purple and green, respectively. The distance at which the ligand is considered unbound is indicated by the
dashed black line. (c) 2D free energy map for the binding of ligand 5 to Hsp90, plotted as a function of the ligand’s distance from the binding site
and its orientation. The minima corresponding to the two different binding modes are marked by purple and green stars, representing poses 5a and
5b, respectively. The free energy map was obtained from the simulation starting from binding pose 5a.
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pockets alongside ligand binding, it would be possible to gain a
more comprehensive understanding of the binding mecha-
nisms. A method that is able to reliably converge the ligand
binding free energy profile along physical association pathways
can be used as a reference in a number of computational and
drug discovery applications, including the training of machine
learning approaches.
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