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ABSTRACT

In current structural design specifications, such as EN 1993-1-1 for steel and EN 1993-1-4 for
stainless steel, the stability of members is typically assessed through the use of buckling curves,
which consider the influence of initial geometric imperfections and residual stresses. An
alternative, more direct, approach is to perform either an elastic or inelastic second-order
analysis of the member or structure with imperfections. For modelling convenience, so-called
‘equivalent’ imperfections are typically utilised, which consider the combined influence of
both geometric imperfections and residual stresses. Equivalent imperfections for the design of
columns and beams by second-order elastic analysis, also referred to as geometrically nonlinear
analysis with imperfection (GNIA), are provided in the current design specifications. For
columns, equivalent imperfections for design by second-order inelastic analysis, also referred
to as geometrically and materially nonlinear analysis with imperfections (GMNIA), were
recently developed, but for beams that are susceptible to lateral-torsional buckling (LTB), there
are currently no appropriate provisions. The aim of this study is therefore to develop equivalent
imperfections for use in out-of-plane stability design of steel and stainless steel members by
GMNIA. The proposals are calibrated against the results of benchmark finite element (FE)
simulations performed on a large number of steel and stainless steel members with geometric
imperfections and residual stresses subjected to major axis bending. Two proposals for

equivalent imperfection amplitudes are developed: (1) eomod, for use with eigenmode-affine
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imperfections and (2) eonow, for use with sinusoidal bow imperfections. The latter is applied
solely in the lateral direction and as a summation of a half-sine wave and a full sine wave.
Relative to the traditional Eurocode design calculations, employing the proposed LTB
imperfections in GMNIA provides generally more accurate member resistance predictions,
while remaining safe-sided relative to the benchmark FE results. The reliability of the design
provisions is demonstrated through statistical analysis, where it is shown that partial safety

factors of 1.0 for steel and 1.1 for stainless steel can be safely adopted.

Keywords: Advanced analysis; Equivalent imperfections; Finite element modelling; Inelastic

analysis; Lateral-torsional buckling; Plastic design; Stainless steel; Steel

1. INTRODUCTION

Steel beams are often susceptible to out-of-plane instability effects, such as lateral-torsional
buckling (LTB). The influence of LTB on the resistances of steel beams is traditionally
accounted for in design standards [1, 2] through the use of buckling curves. There are currently
two different sets of LTB curves given in Eurocode 3 [1], referred to as the general case (see
Section 2.1.1) and the specific case (see Section 2.1.2). These curves implicitly consider the
influence of geometric imperfections and residual stresses in the determination of the buckling
reduction factor [3-7]. Alternatively, the LTB design of members can be undertaken more
directly by performing a second-order, also referred to as geometrically nonlinear, or advanced,
analysis with imperfections. In this design approach, member out-of-straightness is explicitly
modelled and individual member buckling checks can be avoided; only cross-section strength
checks against internal forces derived according to second order theory are required, resulting

in a more direct design approach.

In structural steel members, both geometric and material (i.e. residual stresses) initial

imperfections arise during the manufacturing and fabrication processes, and the influence of



both must be accounted for in design. The required imperfection amplitude for use in design
by advanced analysis depends on (i) the analysis type, (ii) the cross-section failure criterion
and (iii) the shape of the imperfection modelled. Geometric imperfections can either be
included in an analysis through direct modelling of the deformed geometry or through the
scaling of a suitable eigenmode. In the former case, the relative simplicity of defining the
deformed geometry is retained without the encumbrance of an additional linear buckling
analysis (LBA), while in the latter case, more accurate results are generally achieved (see

Section 5.2 for further details).

With improvements in computational efficiency, second-order inelastic analysis, also referred
to as geometrically and materially nonlinear analysis with imperfections (GMNIA), typically
implemented using computationally efficient beam finite elements, is being increasingly
employed in the design of steel and stainless steel structures [8-11]. While EN 1993-1-1 [1]
and the upcoming prEN 1993-1-1 [12] include recommendations for equivalent imperfections,
which consider the combined influence of geometric imperfections and residual stresses, for
use in second-order elastic analysis, there are currently no provisions for second-order inelastic

analysis.

Equivalent imperfections have been developed by Walport et al. [13] for use in design by
second-order inelastic analysis of structural members for flexural buckling. This study follows
a similar methodology and derives equivalent imperfections for use in design by second-order
inelastic analysis of structural members for LTB. Two equivalent imperfection amplitudes are
proposed: (1) eomod, for use with the first LTB eigenmode and (2) eopow, for use with directly

defined sinusoidal bow imperfections.



2. EUROCODE PROVISIONS FOR LTB DESIGN

In this section, the Eurocode provisions [1, 2, 12, 14] for design of beams susceptible to LTB
are outlined. Firstly, the traditional approach for the LTB assessment of steel and stainless steel
beams (i.e. the approach involving the calculation of the LTB reduction factor y.r) is described;
next, the current and upcoming provisions for LTB design by second-order elastic analysis
using equivalent imperfections are set out. Finally, the need for revised equivalent

imperfections for use in design by second-order inelastic analysis is explained.

2.1 EN 1993-1-1 design rules for laterally-unrestrained beams

The current version of EN 1993-1-1 [1] considers two cases for the LTB assessment of steel
beams — (i) a general case and (ii) a specific case, for rolled sections or equivalent welded

sections. In both cases, the member buckling resistance Mprq is given by Eqg. (1):

M Rk
Myga = Xir — @

M1
where y. 7 is the buckling reduction factor, which considers the adverse effects of LTB on the
ultimate cross-section resistance of a steel beam, ywm1 is the partial safety factor for member
buckling, and Mc Rk is the characteristic (unfactored) cross-section bending moment resistance
equal to the product of the yield stress fy and the major axis section modulus Wy (i.e. M¢rk =
Wyfy); Wy is taken as the plastic section modulus Wy for Class 1 and 2 cross-sections, the

elastic section modulus Wey for Class 3 cross-sections and an effective section modulus Wegr.y

for Class 4 cross-sections.

2.1.1 General case

The general case is applicable to beams with any cross-section type. The corresponding
buckling curves are the same as those employed for column design, but a different buckling
curve selection table is used [19]. In this approach, the LTB reduction factor y, T is calculated

as:
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in which a7 is the imperfection factor determined on the basis of the cross-section depth-to-

width (h/b) ratio and },; is the non-dimensional slenderness, given by:

e = Mg /M, @
in which Mg is the elastic critical buckling moment determined either through numerical
methods using a linear buckling analysis (LBA) or using approximate equations, for example
those given in technical report CEN TR 1993-1-103 [15]; the latter approach has been adopted
in this study. The current version of EN 1993-1-4 [2] also adopts the buckling curves described
above for the design of stainless steel beams, but with a.t=0.76 (for welded I-sections) and a

threshold (plateau) slenderness value of 0.4 instead of 0.2.

2.1.2 Specific case
The specific case is applicable to steel beams with rolled I-sections or equivalent welded I-

sections. The LTB reduction factor y.t can be determined as follows:
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in which g is a modification factor and /.1, is the threshold (plateau) slenderness value, for
which the value of 0.4 is recommended [1]. For non-uniform bending cases, in addition to the
consideration through Mc, the applied LTB reduction factor may also be modified to take

account of the full influence of the bending moment distribution [1]. The formulation of the



specific case is based on extensive experimental results [16], statistical work [17] and

numerical studies [18], and differs from the flexural buckling curves.

Both the general case and specific case are modified Ayrton-Perry type formulae, calibrated
for LTB through modification of the imperfection factor a7 [7]. For both hot-rolled and welded
I-sections, the values of a1 prescribed for use with Egs. (5) and (6) are higher than those for

Egs. (2) and (3).
2.2 prEN 1993-1-1 and prEN 1993-1-4: Doubly symmetric I- and H-sections

Unlike the flexural buckling curves, the LTB curves outlined in Section 2.1 are not fully
mechanically coherent [19]. To address this issue, Taras and Greiner [7, 19] proposed a new
set of formulae for the LTB design of steel members, as given by Egs. (7) and (8), that are due

to be included in the upcoming prEN 1993-1-1 [12],

fu
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where fy is a factor that accounts for the influence of bending moment diagram and J, is the

with

normalised member slenderness for minor axis flexural buckling. The definition of the
imperfection factor a1 was also amended, becoming a function of the major Wey and minor

axis We ; elastic section moduli of the beam cross-section, as listed in Table 1.

The new provisions shift the transition point between buckling curves (i.e. aLt value) from
h/b=2.0 to 1.2 to reflect the h/b ratio at which a change in residual stress magnitude is
assumed [20], while the geometric factor w/Wehy IW,, considers the influence of varying cross-

section geometry and reduces the scatter of the capacity predictions [7, 19]. An upper limit is



also defined, taken as the imperfection factor for minor axis buckling a, on the basis that the
compression flange of a very deep section with (comparatively) low torsional rigidity should

behave similarly to a column undergoing minor axis buckling [7].

Taking the same expressions (i.e. Egs. (7) and (8)), Fortan and Rossi [21] determined suitable
aLt values for application in the LTB design of stainless steel members; the proposals, given
by Table 1, are due to be included, together with the indicated upper bounds, in the upcoming

Eurocode prEN 1993-1-4 [14].

2.3 Equivalent imperfections for use in design by second-order elastic analysis

Equivalent imperfections implicitly account for the combined effects of geometric and material
imperfections. They may be applied in an analysis in two ways: (1) through the scaling of the
lowest eigenmode or (2) through the direct modelling of a bow imperfection, and with an
amplitude either determined by back-calculation from the relevant buckling curve or taken
from a set of prescribed tabulated values. The equivalent imperfections developed for use in

second-order elastic analysis (i.e. GNIA) are described in the following section.

2.3.1 Back-calculated equivalent imperfections

2.3.1.1 EN 1993-1-1 back-calculated equivalent imperfections

For the design by second-order elastic analysis of a steel beam susceptible to LTB, EN 1993-
1-1 [1] recommends an equivalent imperfection with a lateral bow shape and an amplitude ke,
where eg is the equivalent imperfection for the weak axis flexural buckling design of the
corresponding member in compression and k = 0.5. The amplitude e can be back-calculated

from the flexural buckling curves given in EN 1993-1-1 [1], as given by:

&= (% —0.2)\% for7,>0.2 ©)



In EQ. (9), a; is the imperfection factor for minor axis flexural buckling, W; is the minor axis
section modulus and A is the cross-sectional area. This equation was derived on the basis of a
linear M-N cross-section failure criterion, under axial load N and second-order minor axis
bending moment M, as described in [22]. The linear elastic and plastic cross-section M-N
interaction curves for axial force and minor axis bending moment are given by Egs. (10) and

(12), respectively:

N M
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where Np is the axial cross-section resistance, and Meiz and My are the elastic and plastic
minor axis bending moment resistances. For LTB design by GNIA, the linear elastic and plastic

cross-section interaction curves are given by Egs. (12) and (13), respectively [12, 23]:
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where My and M; are the major and minor axis bending moments, B is the bimoment, Me;y and
Moy are the elastic and plastic major axis bending moment resistances and Bel and By are the

elastic and plastic warping bimoment resistances [24], as given for I-sections by:

B, =tb?f,(h—t)/6 (14)
B, =tb2f, (h—t)/4 (15)

where h, b and t; are the overall depth, flange width and flange thickness of the I-section.

For flexural buckling, use of the back-calculated equivalent imperfection amplitudes — €o el o-c
(with a linear elastic cross-section check — Eq. (10)) and egpip-c (with a linear plastic cross-

section check — Eqg. (11)) — in design by second-order elastic analysis (GNIA) yields the same



flexural buckling resistances as those obtained from the flexural buckling curves provided in
EN 1993-1-1 [1]. However, for LTB design by second-order elastic analysis, the equivalent
imperfections — keg e1,p-c and ke pi b — do not directly correspond to the results obtained from
the buckling curves (clauses 6.3.2.2 and 6.3.2.3 of EN 1993-1-1 [1]), and have been shown to
be inaccurate for use in LTB design by GNIA, with the value of k = 0.5 deemed to be too small

[25].

2.3.1.2 Equivalent imperfections back-calculated from LTB curves in prEN 1993-1-1
According to the analytical formulation [7, 19] behind the new LTB curves given in prEN
1993-1-1 [12], the amplitude of the equivalent imperfection for use in GNIA ey 7 [26] can be

back-calculated from:

&t =y (4 —0.2)\% for 1, >0.2 (16)
where a1 is the imperfection factor for LTB, determined from Table 1. Eq. (16) was derived
on the basis of linear cross-section failure criterion under uniform major axis bending moment
My, second-order minor axis bending moment M, and warping bimoment B [7], as given by
Egs. (12) and (13). Employment of the elastic Wei, and plastic Wy, minor axis section moduli
in Eq. (16) provides the equivalent imperfections eo .7 e1,p-c and €o,.T pib-c, fOr use in GNIA with
linear elastic (Eq. (12)) and plastic (Eq. (13)) cross-section verifications, respectively. Since
the derivation of the LTB curves in prEN 1993-1-1 [12] was performed on the basis of
eigenmode-affine imperfections, these back-calculated equivalent imperfections should also be

defined through the scaling of the eigenmode in GNIA.

Fig. 1 (a) and (b) present the normalised second-order internal moments at the critical cross-
section and linear cross-section interaction curves for members subjected to uniform major axis
bending, obtained from GNIA and GMNIA employing equivalent imperfections eg | T elp-c and

€o,LTplb-c, aS Well as the prEN 1993-1-1 member buckling resistances Mecs. Fig. 1 (a) presents



the results for a Class 3 cross-section, which utilises a linear elastic cross-section interaction
curve, while Fig. 1 (b) presents the results for a Class 2 cross-section, which utilises a linear
plastic cross-section interaction curve. In both cases, the second-order elastic moment path with
back-calculated imperfections intersects the interaction curve exactly at the buckling resistance
Mecs, though this is not always the case due to the post-critical response of slender beams
described below. However, as in the case of flexural buckling [13], the back-calculated
equivalent imperfections determined for use in LTB design by GNIA are not suitable for use
in GMNIA. Depending on the design case, the GNIA-derived equivalent imperfections can
result in both over-predictions and under-predictions of resistance. In Fig. 1 (a), due to the
spread of plasticity through the cross-section after first yield and before the attainment of the
peak load, the member resistance obtained from GMNIA with eg . 1 elb-c IS higher than the result
obtained from GNIA with e L1e1p-c. In Fig. 1 (b), due to the effective double-counting of the
influence of material nonlinearity, utilising the plastic equivalent imperfection eg 1 pibc In

GMNIA results in a lower member resistance than that obtained from GNIA.

Note that, for some slender members, the ultimate resistance can exceed the elastic buckling
moment M. This is because after large torsional deformations, the cross-sectional minor axis
bending capacity effectively becomes a lower bound to the LTB resistance [7]. This behaviour
is captured in a second-order analysis. However, the derivation of the LTB curves presented in
prEN 1993-1-1 [12] and thus the equivalent imperfections back-calculated from the LTB
curves, as determined by Eqg. (16), do not account for this “post-critical” load-carrying
mechanism [19]. Therefore, member resistances obtained from GNIA or GMNIA using back-
calculated equivalent imperfections can be substantially exceed the prEN 1993-1-1 buckling

resistance Mecs [27], but only after large torsional deformations. This is shown in Fig. 2, for a
hot-rolled S420 steel HEA 100 member with },; = 1.0 subjected to uniform bending. It can be

seen that the member resistances obtained from GNIA and GMNIA with a back-calculated
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equivalent imperfection eg Lt p1,b-c fOr the linear plastic cross-section interaction curve are higher

than the Eurocode resistance Mecs by 14% and 12%, respectively.

2.3.2 Tabulated equivalent imperfections

2.3.2.1 EN 1993-1-1 tabulated equivalent imperfections

According to EN 1993-1-1 [1], when using lateral bow equivalent imperfections of amplitude
keo in design by second-order elastic analysis, ep may, as a simpler alternative to performing
the back-calculation described above, be taken from the tabulated values listed in Table 5.1 of
EN 1993-1-1 [1] for the weak axis flexural buckling design of the corresponding member in
compression; in prEN 1993-1-1 [12], revised tabulated equivalent imperfections for LTB

design by second-order elastic analysis are provided [28], as described below.

2.3.2.2 prEN 1993-1-1 tabulated equivalent imperfections

According to prEN 1993-1-1 [12], equivalent imperfection amplitudes eo .t for use in LTB

design by GNIA can be determined from Eq. (17):

pizL

&

17)

Gt =
where St is the reference relative bow imperfection for LTB, values of which are provided in

tabular form [12, 28], as summarised in Table 2, L is the member length and ¢ is the material

parameter given by:

£= |— (18)

The imperfection amplitude may be applied in the form of a lateral bow. Note that, unlike the
corresponding equivalent imperfections for flexural buckling, given by Eq. (19), that are
dependent on not only the reference relative bow imperfection for flexural buckling g, but also

the imperfection factor a [29], Eq. (17) is not dependent on the LTB imperfection factor ayr.
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The factor gLt in EQ. (17) does however depend on the adopted cross-section failure criterion

(linear elastic or linear plastic) and the geometrical depth-to-width ratio h/b of the cross-section.

_apt
&

& (19)

The use of Eq. (17) for LTB design by second-order elastic analysis has been shown in previous
research [27, 30] to provide somewhat conservative resistance predictions. This is highlighted
in Fig. 3, which shows the normalised load paths and capacity predictions of a hot-rolled S420

steel IPE 140 member with },; = 0.8 subjected to uniform bending. Employing the tabulated

imperfection for use with the plastic interaction curve determined from Eq. (17) €o.LT,pitab iN
both GNIA and GMNIA results in conservative resistance predictions, up to 17% lower than
the prEN 1993-1-1 member buckling resistance Mecs. These tabulated imperfection amplitudes
have been derived on the basis of second-order elastic analysis and, as for the back-calculated
imperfection amplitudes and as in the case of flexural buckling [13], are generally unsuitable

for use in design by second-order inelastic analysis (GMNIA).

3. GENERATION OF BENCHMARK FINITE ELEMENT DATA

In this section, benchmark finite element (FE) data, against which the required equivalent
imperfections for use in the out-of-plane stability design of beams by second-order inelastic
analysis (i.e. GMNIA) can be calibrated, are generated. The benchmark data were obtained
following the recommendations set out in [9, 10, 11], featuring the GMNIA of beam FE models
with geometric imperfections, residual stresses and strain limits to simulate cross-section
failure. The key components of the procedure followed to obtain the benchmark data, including

validation against physical experiments, are described in this section.
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3.1 Modelling approach

The finite element analysis software Abaqus [31] was used to carry out the GMNIA simulations.
The shear deformable prismatic Timoshenko beam element referred to as B310S in Abaqus
[31], which allows for the effects of torsion and warping in open-sections, was used [32-34].
Fork-end support conditions, allowing warping deformations (by not restraining the 7th degree

of freedom [31]) but fully restraining twisting at the supports, were employed for all members.

The investigations carried out in this section cover: (i) different grades of hot-rolled steel (S235,
S355 and S420) and stainless steel (austenitic, duplex and ferritic) members, (ii) different ratios

of the major axis bending moments applied at the beam ends v = 1, 0.5, 0, -0.5 and -1, (iii) a
range of normalised LTB slenderness values },; = 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4, and (iv) a

series of different cross-section geometries — European HEB 100, HEB 400, HEB 700,

HEB 1000, IPE 100, IPE 140, HEM 200, HEA 100, HEA 800 profiles — covering a range of
cross-section slenderness values Zp (see Section 3.4) between 0.14 and 0.48. Note that the

influence of the fillet radii was not included in either the benchmark models described in this
section or the design models described in later sections. Beams with closed cross-sections, such
as square or circular hollow sections, are not generally vulnerable to LTB [35], and thus were

not assessed in this study.

3.2 Material modelling

Hot-rolled steel and stainless steel have distinctively different material characteristics. While
hot-rolled steel has an elastic stage with a clear yield point, followed by a plateau and then a
strain hardening region, stainless steel is characterised by a rounded stress-strain response with
no clear yield point and significant strain hardening. The material parameters adopted in this
study are summarised in Table 3. The Poisson’s ratio was taken as v = 0.3 in the elastic range

and v = 0.5 in the plastic range. For hot-rolled steel, the three steel grades, S235, S355 and
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S420, were considered. The quad-linear stress-strain model, developed by Yun and Gardner
[36] and included in prEN 1993-1-14 [37], was used in this study, as illustrated in Fig. 4 (a).
The three input parameters for the material model are the Young’s modulus E, yield stress fy

and ultimate stress fy. The stress-strain (o-¢) relationship over the full range is defined by:

Ee fore<e,
f, fore, <e<e,
c={f,+Es(e—&4) for e, <e <Cpg, (20)
f,— f
feo, + U—%(g -Ce,) for Cg, <e<g,
’ u _Clgu

where the strain hardening strain esn is given by:

f
6 =012~ 0055 but 0.015 < &, <0.03 (21)

u

the ultimate strain g, is determined from:

f
& = 0.6(1—%] but &, > 0.06 (22)

u

and the strain hardening modulus Egh is determined from:

Esh — Lfy (23)
ngu — &

The constants C; and C; are given by Eqgs. (24) and (25), respectively.

_ & +0.25(8u —ssh)
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For stainless steel, three families —austenitic (A), duplex (D) and ferritic (F) — were considered;
for each family, one typical grade was chosen. The standardised material properties for
numerical studies defined by Afshan et al. [38] were employed, as listed in Table 3. The two-
stage Ramberg-Osgood material model [39-41] was used in this study, as given by Egs. (26)-

(27) and illustrated in Fig. 4 (b), where fy is the yield stress, taken as 0.2% proof stress, &2 IS
y
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the total strain at the yield stress fy, equal to 0.002+f,/E, Ey is the tangent modulus at the 0.2%

proof stress, as given by Eq. (28) and n and m are the strain hardening exponents.

e=240002] Z foro < f, (26)
E f,
£ f £\ of, )
=gyt | g, —gy, L || T forf,<o<f, @7)
E, E, |\ f.,
-
1+0.0020 -~ (28)

y

3.3 Geometric imperfections and residual stresses

Equivalent imperfections applied in a shape of single lateral bow have been shown to be
unsuitable for use in loading cases with a low proportion of bending moment at midspan (e.g.
antisymmetric bending) [23]. Therefore, initial geometric imperfections in the form of the first
LTB eigenmode, scaled to 1/1000 of the unbraced member lengths L were defined in the
benchmark FE models. In this study, initial twist imperfections were not included in the beam
FE models; this is deemed suitable since initial twist imperfections have been shown to have
negligible influence on the ultimate lateral-torsional buckling resistances of beams [18, 42] and
are stated to not generally be needed in EN 1993-1-1 [1]. Residual stresses were also introduced
into the FE models. Residual stress patterns in carbon steel and stainless steel sections differ
due to the different mechanical and thermal properties resulting from the specific chemical
compositions and microstructure [43]. For hot-rolled carbon steel, the residual stress pattern
given by ECCS [20] was utilised, as illustrated in Fig. 5 (a). For stainless steel, the residual
stress pattern for welded I-sections developed by Yuan et al. [44] was adopted, as illustrated in
Fig. 5 (b). The residual stresses were introduced into the beam FE models using the SIGINI
user subroutine [31], by defining the initial stresses at section points prior to the loading step.

To accurately represent the residual stress distributions, each web and flange plate was assigned

15



33 section points for the hot-rolled steel profiles [45] and 41 sections points for the stainless
steel profiles [46] along the width, respectively. Corresponding plastic strains due to the
residual stresses [47] were also assigned in the case of the stainless steel models using the
HARDINI user subroutine [31]. Note that it was not necessary to include such plastic strains
in the steel profiles since the imposed residual stress remained in the elastic range of the

material.

3.4 Continuous strength method (CSM)

Cross-section failure was signified in the developed FE models by the maximum compressive
strain reaching the CSM strain limit &csm, as given by Egs. (29) and (30) for hot-rolled carbon

steel [48-51]:

fon _ 98 pit <o for 7, <068 (29)
&y }«p
0222 1 .
Foom [1—WJW for 0.68 < 4y <1.0 (30)
&y Ap p

and Egs. (31) and (32) for materials exhibiting a rounded stress-strain response, including
stainless steel [39], aluminium alloys [52] and cold-formed steel [53].

6., 025 0.002
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— but <Q for 1, <0.68 31)
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0.002( ey ! T, )" -
%ﬂ:[l_ O_'f_ffj_}_os (oeamec ! 1) for 0.68 < A, <1.0 (32)
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In Egs. (29)-(32), which are referred to as the base curves in the continuous strength method
(CSM), &csm Is the maximum strain that a cross-section can endure prior to failure, ey = fy/E is
the yield strain, Q is a project specific design parameter that defines an upper bound to the

maximum permitted strain, for which the value of 15 is recommended [10], oedmax iS the
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maximum stress in the cross-section and /Tp is the cross-section slenderness, determined from

Eq. (33):

= |—— (33)

UCT,CS

where acr cs IS the elastic local buckling stress of the full cross-section which can be calculated
numerically (e.g. through the finite strip software CUFSM [54]), or using the equations

developed by Gardner et al. [55]; the latter approach is adopted in this study.

3.5 Generation of benchmark data

Beam finite elements are able to directly capture global member instabilities, such as LTB, but
are unable to capture local cross-section instabilities. Thus, in [10, 56], it was proposed that the
CSM strain limits are applied to capture cross-section failure, by checking the maximum
compressive longitudinal strains against the corresponding CSM strain limits for all cross-
sections in the structure at each load increment. Note that the strain limit is applied only to the
strains resulting from the applied load (i.e. not the strains arising from the residual stresses). In
the developed method, a GMNIA of the structure using beam finite elements is first performed;
the ultimate capacity is then defined based on either (i) the peak load factor obtained from the
analysis or (ii) the load factor at which the CSM strain limit is attained at any cross-section in
the considered member or structure, whichever occurs first [46]. The accuracy and reliability
of this approach have been verified for carbon steel [10, 45, 51, 57] and stainless steel structures
[11], considering a wide range of cases. Relative to the traditional design calculations, this
design method provides more accurate and consistent member capacity predictions, removing
the need for cross-section classification, individual member buckling checks and the

calculation of effective lengths in the determination of member resistances [45].

To take account of the beneficial influence of local strain gradients along the member lengths

on cross-section resistance, it was recommended in [10] to average the maximum compressive
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longitudinal strains in the cross-sections over a defined length. To enable the application of the
strain averaging approach [10], the lengths of the beam elements were taken as less than or
equal to the corresponding elastic local buckling half-wavelengths Ly cs of the cross-sections,
which can be obtained numerically, e.g. through the finite strip software CUFSM [54], or
through the expressions presented in [58], which were adopted in the present study. In this
study, 100 beam elements were used to model each member, to accurately capture the spread

of plasticity, as adopted in the previous similar studies [46,59].

3.6 Validation of beam FE models

Although the aforementioned beam FE modelling approach has been successfully employed in
numerous previous investigations [10, 11, 13, 45, 57], in the present study, prior to being used
to generate benchmark data, the approach is further validated against the results from 44
experiments reported in the literature [60-65], focusing on beams experiencing LTB. The
loading configurations included (i) 3-point bending and 4-point bending [60], (ii) 3-point
bending with eccentrically applied vertical loading, leading to additional torsion [61-64] and
(iii) concentrated loading applied at the free-end of cantilever beams [65]. The boundary and
loading conditions of the beam FE models were consistent with those employed in the tests.
The measured global geometric imperfection amplitudes and residual stresses were
incorporated into the FE models where reported; the shape of the geometric imperfections were
defined as the first LTB eigenmode. If no measured imperfection amplitudes or residual
stresses were provided, the values from Section 3.3 were employed. The results of the
validation study, including the mean and coefficient of variation (CoV) values of the ratios of
the ultimate resistances obtained from beam FE models o, re to those obtained in the
experiments ayest (1.€. o, re/ow test), are summarised in Table 4. It can be seen that the beam FE
models developed in this study are able to provide ultimate strength predictions that are

consistently very close to experimental results.
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In Fig. 6, the experimental and numerical load-twist and load-vertical displacement curves for
a sample of beams tested under eccentric 3-point bending in [62, 63] and [64] are shown, where
P is the applied load, ¢ and w are the twist and vertical displacement at midspan, respectively,
and Puest IS the ultimate load obtained from the experiments. It can be seen from the figures
that the beam FE models accurately capture the load-deformation response observed in the
experiments, and are therefore considered to be suitable for the generation of benchmark data,

against which the required equivalent imperfections can be determined.

4. REQUIRED EQUIVALENT IMPERFECTIONS FOR DESIGN BY SECOND-

ORDER INELASTIC ANALYSIS

In this section, the required equivalent imperfections for use in the out-of-plane stability design
of steel members by second-order inelastic analysis are calculated by iteratively running beam
FE models with varying initial imperfection amplitude eo until the obtained ultimate member
resistance coincides with the benchmark data to within 0.5%. This is illustrated in Fig. 7 for
two example beams under uniform bending. The beam FE models used to back-calculate the
required equivalent imperfections were developed following the same approach as the
benchmark FE models except with a varying amplitude of geometric imperfection and no

residual stresses.

It should be noted that the required equivalent imperfections calculated herein were introduced
into the FE models through the scaling of the first LTB eigenmode, as employed in the
benchmark FE models. The equivalent imperfection applied in a shape of single lateral bow
has been shown to be unsuitable for use in loading cases with a low proportion of bending
moment at midspan (e.g. antisymmetric bending) [23]. A similar conclusion was reached in the

study of Ebel [66] in which the shape of the first LTB eigenmode was recommended for
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equivalent imperfections. The new design curves for LTB in prEN 1993-1-1 [12] (see Section

2.2) were also developed based on imperfections in the shape of the first LTB eigenmode [7].

The amplitude of the geometric imperfections introduced into benchmark FE models was equal
to L/1000. Since the equivalent imperfections take account of the combined effects of
geometric imperfections and residual stresses, the required values egreq must be larger than
L/1000. Fig. 7 (a) and (b) show the required equivalent geometric imperfection amplitudes €g req
for two S355 hot-rolled steel members subjected to uniform bending M, with HEB 400 and
HEA 100 cross-sections, respectively, and 4, = 1.2. It can be seen that the HEA 100 cross-
section, which has a depth-to-width ratio h/b less than 1.2, needs a higher required equivalent
imperfection than that of the member with the HEB 400 cross-section (i.e. L/360 > L/600),
where h/b is greater than 1.2. This is because, as shown in Fig. 5 (a), for hot-rolled steel I-
section members, larger residual stresses exist in cross-sections with h/b < 1.2 than with h/b >
1.2, resulting in a more detrimental effect on member resistances, and consequently requiring
larger equivalent imperfection amplitudes. This is also reflected in the upcoming prEN 1993-
1-1 [12], which includes a higher LTB imperfection factor ot for the LTB curves of cross-
sections with h/b < 1.2.

Figs. 8 and 9 show the required values of the non-dimensional equivalent imperfections
Jreq = L/ &, for hot-rolled and stainless steel members, respectively, subjected to a range of
bending moment distributions along the member length (v = 1, 0.5, 0, -0.5 and -1), achieved
through varying the ratio of the applied end moments (i.e. w = M2/My, where M1 and M are the
bending moments applied at each end of the beam) versus member slenderness 2, . It should
be noted that members with different member slenderness have varying sensitivity to geometric
imperfections. This is illustrated in Fig. 10, which shows the ratio of ultimate load carrying
capacities obtained from GMNIA with CSM strain limits My, with varying non-dimensional

geometric imperfection values j = L/eg ranging from 100 to 1000, to the benchmark results Mg,
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for two hot-rolled steel HEB 400 members with member slenderness },; = 0.4 and 1.0,
respectively, subjected to uniform bending M. It can be observed that the more slender member
(with .+ = 1.0), for which LTB is more pronounced, is more sensitive to the geometric
imperfections. It can be seen that with decreasing geometric imperfection amplitude, there is a
clear increase in ultimate resistances. By contrast, the stockier member (with 7, = 0.4) is
much less sensitive to geometric imperfections; when the imperfection eo varies from L/100 to
L/1000, the difference between the ultimate bending moment resistances is less than 10%. In
the range of L/1000 < e < L/500, the ultimate resistances are almost constant and all are within
0.5% of the benchmark results. This confirms that for stocky members, variation in the initial

geometric imperfection has little influence on the ultimate resistance.

In this study, as in [13], it is proposed that the imperfection factor is incorporated into the
definition of the equivalent imperfection amplitude eo T, to capture the varying influence of
residual stresses for different cross-section types. Since the influence of geometric properties

is directly captured by GMNIA using three-dimensional beam finite elements, the employed
imperfection factor does not require inclusion of the geometric parameter ,/We,,y/We,,Z

discussed in Section 2.2, and is proposed to be simply taken as a; (i.e. the imperfection factor
for minor axis flexural buckling), as given in Table 5, which generally corresponds to the upper
limit of aLr provided in prEN 1993-1-1 [12] and prEN 1993-1-4 [14]. This ensures that the
severity of the influence of residual stresses is captured, but without inheriting the additional

compensatory effects included in oyt for calibration of the LTB curves.

Both Egs. (17) and (19) include the material parameter ¢, to allow for the influence of material
yield strength on the required equivalent imperfections in GNIA. However, since the influence

of the material nonlinearity is directly captured by GMNIA, the equivalent imperfections for
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LTB design are no longer required to be a function of ¢. This mirrors the provisions in [13] for

flexural buckling design by GMNIA.

Hence, adopting the same format of the expressions for flexural buckling [13], the equivalent
imperfections proposed in this study are a function of the imperfection factor a, and a reference

relative imperfection S, as given by Eq. (34), where o; is determined from Table 5.

€t = a, -l (34)

Based on the back-calculated required equivalent imperfections eoreq, the required values of

the reference relative imperfection freq can be determined as:

ﬁreq = eO,req /azL (35)

Figs. 11 and 12 show the prq values for hot-rolled steel and stainless steel members,
respectively, for a range of cross-sections, member slenderness values and bending moment
gradients. With the introduction of the imperfection factor a,, the required values of 1/fq are
less scattered than the required values of jreq = L/€oeq, @S Shown in Figs. 8 and 9. This confirms

the validity of including the imperfection factor «; in the definition of eg 7.

5. DESIGN RECOMMENDATIONS AND EVALUATION

In this section, recommendations are made for equivalent imperfections for use in the out-of-
plane stability design of steel and stainless steel members by GMNIA. Two proposals for
equivalent imperfection amplitudes are made for: (1) the scaling of the first LTB eigenmode,
denoted eomod and (2) for direct modelling of lateral bow imperfection shapes, denoted eo pow-
The ultimate strength predictions obtained through the use of the recommended equivalent
imperfections are compared against both the benchmark FE results and Eurocode calculated
resistances. The reliability of the recommendations is then assessed, and their application is
demonstrated through worked examples. Note that in the present study, CSM strain limits are

applied to capture cross-section failure, but cross-section checks can alternatively and
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conservatively be used. Nevertheless, the developed equivalent imperfections are independent

of the slenderness and classification of the cross-section.

5.1 Design recommendations

5.1.1 Mode imperfection eo,mod

Based on the required imperfections determined in Section 4 and shown in Figs. 11 and 12, the
reference relative imperfection value of gt = 1/150 is proposed for use in LTB design by
GMNIA of members subjected to different bending moment gradients, for both hot-rolled steel
and stainless steel, and for all the member slenderness values and cross-sections examined

herein, as given by Eq. (36).

Cmos = @Bl =0, L /150 (36)
A singe value of gt is chosen for all cases, independent of the member slenderness 1, in
order to retain simplicity. A certain level of conservatism is therefore accepted for some

geometries [13, 29], as indicated in Section 4.

It can be seen in Figs. 11 and 12 that the proposed recommendation of gt = 1/150 provides a
safe-sided approximation to the majority of the required values of fSreq. This value is also
consistent with that provided in [13] for use in flexural buckling design by GMNIA; in both
studies, the structural response and influence of varying geometric characteristics and material
properties is directly captured in the GMNIA and the influence of different residual stresses is

captured through the imperfection factor (o or o).

5.1.2 Lateral bow imperfection eg pow

The proposed equivalent imperfection detailed above is recommended for use with the first
LTB eigenmode. However, in practical design situations, it is somewhat cumbersome to
conduct a linear buckling analysis (LBA) prior to GMNIA to obtain the LTB eigenmode;

furthermore, the appropriate isolation of members within a structure and the choice of
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eigenmode is not always straightforward. Therefore, an alternative design recommendation,
whereby equivalent imperfections are applied through direct modelling as lateral bow
imperfections of amplitude eonow, IS also made herein. As mentioned in Section 4, an
imperfection in the shape of a half-sine wave is unsuitable for bending moment diagrams with
a low proportion of bending moment at midspan [23]. Hence, to cover the range of possible
bending moment diagrams, a combination of two shapes of lateral imperfections is proposed
in this study: (1) a half-sine wave, which is similar to the deformed shape of members under
uniform bending (v = 1), and (2) a full-sine wave, corresponding to the deformation profile of
members under antisymmetric bending (y = -1). The amplitude of the full-sine wave
imperfection is taken as «,L/215, which is approximately equal to 70% of that of the half-sine

wave imperfection. Hence, a lateral equivalent bow imperfection eppow IS defined as the
summation of a half-sine wave with imperfection amplitude egpow1 (With Sir: = 1/150), as
determined from Eq. (37), and a full-sine wave with imperfection amplitude egpow2 (With
Pir. = 1/215), as determined from Eq. (38). This proposal is illustrated in Fig. 13, and given
in Table 6.

€o.pow1 = azﬂLT,lL =a,L /150 (37)
€opowz = O P, L=a, L1215 (38)

Note that the amplitude of the half-sine wave bow imperfection is consistent with that for
flexural buckling [13]. Note also that the summation of these two imperfections is not

symmetric, and thus should be applied in practice in the most unfavourable direction and form.

5.2 Evaluation of design recommendations

The proposed mode eomod and lateral bow eo pow equivalent imperfections are assessed in this
section for application with GMNIA. The assessment was carried out on 1134 steel members

and 1134 stainless steel members, each considering three material grades, nine cross-sections,
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six member slenderness values, the seven load cases indicated in Section 3.1, as well as the

load cases of uniformly distributed loading (UDL) and a concentrated central point load.

5.2.1 Mode imperfection €o,mod

Fig. 14 shows comparisons of the ultimate resistance predictions obtained from (1) the
proposed design approach Mmod Using GMNIA with the eigenmode shape of equivalent
imperfection and egmod, (2) the prEN 1993-1-1 [12] LTB curves Mecs and (3) the benchmark
FE models (GMNIA with eigenmode imperfections of amplitude L/1000 plus residual stresses)
Mee, for the examined hot-rolled steel members subjected to different loading conditions. The
mean values of the member resistance predictions obtained using the different design

approaches relative to the benchmark FE results are summarised in Table 7. It can be seen that
the Eurocode predictions are overly conservative for slender members (e.g. },; > 1.2); this is

because the “post-critical” load-carrying mechanism in slender members (see Section 2.3.1.2)

was not allowed for in the derivation of the buckling curves provided in prEN 1993-1-1 [12].
For some stocky members ( },; = 0.4), the Eurocode predictions lie slightly on the unsafe side.

The resistance predictions obtained from design by GMNIA using the proposed equivalent
imperfections are more accurate and less scattered than those obtained using the Eurocode 3
buckling curves. The large majority of the predictions obtained using the proposed equivalent
imperfections are safe-sided (i.e. Mmod/Mre < 1). For stainless steel members, similar
conclusions can also be made, as shown in Fig. 15. Compared with the design method in prEN
1993-1-4 [14], design by GMNIA employing the proposed equivalent mode imperfections
€o,mod Provides more accurate member resistance predictions while remaining safe-sided. Note

that initial twist was not introduced into the beam FE models in this study, as explained in

Section 3.3.
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5.2.2 Lateral bow imperfection eo pow

The proposal for the lateral bow equivalent imperfection eg pnow Was assessed in the same manner
as above. Figs. 16 and 17 show comparisons of the ultimate resistance predictions obtained
from (1) GMNIA with the proposed lateral bow equivalent imperfection Mpow, (2) the prEN
1993-1-1 LTB curves Mgc3z and the benchmark FE models Mg, for hot-rolled steel and stainless
steel members, respectively, subjected to different loading conditions. Comparing the results
presented in Figs. 14-17 and Table 7, it can be seen that, in general, for both steel and stainless
steel members, the mode equivalent imperfection provides the most accurate resistance
predictions. The lateral bow imperfection provides more conservative resistance predictions in
the cases where y = 0 and -0.5; in these cases, the shape of the applied combined lateral bow
imperfections is similar to the LTB eigenmodes but the bow equivalent imperfection amplitude
€opow IS More severe than epmod. NONetheless, employing the lateral bow imperfection in
GMNIA provides very good results, with more accurate predictions than the Eurocode design

calculations, and with the benefit of not requiring an LBA for obtaining the LTB eigenmode.

5.3 Reliability analysis

The reliability and required partial safety factor ym:” for the proposed equivalent imperfections
for use in design by GMNIA were evaluated through the first order reliability method (FORM)
set out in EN 1990:2002 [67] and further explained by Afshan et al. [68]. According to EN
1990:2002 [67], typical buildings fall into reliability class RC2 with a 50-year design life and
a target reliability index of 3.8 for ultimate limit state design. The derivation of partial safety
factors are based on this value. The recommended values of the partial safety factors ywmy are

1.0 for steel in prEN 1993-1-1 [12] and 1.1 for stainless steel in prEN 1993-1-4 [14].

The ultimate bending moment capacities of members experiencing LTB are dependent on the

basic variables — yield stress fy, major axis plastic section modulus Wpy and Young’s modulus
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E. The influence of these variables change with the member proportions for each numerical
simulation. The dependency of the member resistance on the basic variables fy, Wpiy and E can

be derived for each numerical simulation following the method set out in [68], presented as the

exponents ¢, d and e to be applied to the basic variables (i.e. f,°, Wp|,yd, E®), as given by Egs.
(39), (40) and (41), respectively, where M1 osty, M1.0swpiy and My ose are the ultimate bending
moment capacities obtained from the numerical analysis with the yield stress multiplied by
1.05, with the major axis plastic section modulus multiplied by 1.05 and with the Young’s
modulus multiplied by 1.05, respectively, and My, Mwpiy and ME are the original ultimate

bending moment capacities.

o In(Mycs /M) (39)
In(L.051,/1,)
_ |n(M1,05WpI,y / MWPW) (40)
In(1-05\Npl,y /WPLY)
3 In(Ml.OSE / ME)
~ In(LOSE/E) o

Fig. 18 shows values of the exponents ¢, d and e obtained for members subjected to uniform
bending. Fig. 18 (a) shows the values obtained using the proposed mode equivalent
imperfections egmod for the considered hot-rolled steel members, while Fig. 18 (b) shows the
values obtained using the proposed lateral bow equivalent imperfections eopow for the
considered stainless steel members. In general, with increasing member slenderness 2, , the
dependency on the yield stress fy (represented by exponent c) decreases, while the dependency
on the major axis plastic section modulus W,y (represented by exponent d) and the Young’s
modulus (represented by exponent e) increases. This reflects the transition from in-plane
bending, dominated by plasticity to elastic buckling, controlled by Young’s modulus, with
increasing slenderness, together with a general dependency on the section geometry. However,

it can be seen from Fig. 18 that there are a few outliers (highlighted in red dashed circles) not
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consistent with the above statements. These are due to the “post-critical” load-carrying
mechanism mentioned in Section 2.3.1.2: the ultimate resistance of slender members can
exceed the elastic critical buckling moment Mc,and approach the minor axis bending resistance.
Hence, for these slender members, the dependencies on the yield stress and geometric
properties (presented by exponents ¢ and d) approach unity, while the dependency on the

Young’s modulus (presented by exponent e) reduces.

The adopted values of material overstrength fy mean/fy,nom (i.€. the ratio of mean to nominal yield
strength) and the CoV of yield strength Vs, were specified according to prEN 1993-1-1 [12] for
steel and reference [69] for stainless steel; the CoV of geometric properties Vwpiy was
determined according to [68]; the CoV of Young’s modulus Ve was taken as 0.03 for both
materials [12]. The values assumed herein are listed in Tables 8 and 9. The combined
coefficient of variation Vi of the material and geometric basic variables is given by Eq. (42)

[70]; note that V¢ is calculated for each numerical simulation.

Vo = [0Vl )+ (@Viagy ) + (V) (42)
It should be noted that, as recommended in [11, 13], in the implementation of the design method
through second-order inelastic analysis (i.e. GMNIA), the Young’s modulus E should be taken
as a reduced (characteristic) value, rather than the mean value. Hence, in this study, the reduced
values of E = 200,000 N/mm? for steel and E = 191,000 N/mm? for stainless steel were adopted

[12-14, 37] in the performed GMNIA design calculations.

The mean correction factor b was calculated using a modified definition based on the average
ratio of the benchmark resistance re to the predicted resistance ri, as given by Eq. (43), instead
of the least-squares method recommended in EN 1990:2002 [67]. This prevents the derived

value of b from being biased toward the data points with higher resistance values [70, 71].
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b=y (43)
N5 L

The key reliability analysis results for all considered cases are reported in Tables 8 and 9,
including the mean correction factor b, the coefficient of variation of the results obtained using
the proposals relative to the benchmark FE results Vs and the required value of partial safety
factor ym1”. All values of b are greater than 1, indicating the mean predictions obtained using
two proposals are safe-sided; this is shown in Table 7. The required values of the partial safety
factor ym1” are slightly higher than the target values of 1.0 for steel members [12] and generally
lower than 1.1 for stainless steel members [14], but all are in line with the recommendations
given by SAFEBRICTILE [72, 73], which allows a small exceedance of the target values to
allow for the influence of the combined coefficient of variation V, incorporating the variability
of the model and the basic variables. Note that if the values of fy mean/fy,nom and Vs, are taken as
1.30 and 0.060 instead of 1.20 and 0.050 for austenitic stainless steel and taken as 1.20 and
0.045 instead of 1.15 and 0.055 for ferritic stainless steel (as assumed in the reliability analyses
performed in [68]), the calculated values of ymi” still satisfy the SAFEBRICTILE [72, 73]
requirements. Therefore, the two proposals for equivalent imperfections are deemed to be
suitable for use in the out-of-plane stability design of steel and stainless steel members by

GMNIA, in conjunction with the recommended values of the partial safety factor ymi i.e. 1.0

for steel and 1.1 for stainless steel.

5.4 Worked examples

Two worked examples are presented in this section to illustrate the implementation of the

proposed equivalent imperfections in design by second-order inelastic analysis.

The first worked example considers a beam made of grade S355 steel (fy = 355 MPa, f, = 510
MPa, reduced value of E = 200,000 N/mm? and v = 0.3) with a hot-rolled HEA 100 cross-

section and a length of L = 4685 mm, which corresponds to a relative LTB member slenderness
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At = 1.2; the considered beam is subjected to uniform major axis bending moment M, as

shown in Fig. 19 (a).

The second worked example considers a beam made of duplex stainless steel (fy = 530 MPa, f,
=770 MPa, n = 9.3, m = 3.6, reduced value of E = 191,000 N/mm? and v = 0.3) with a cross-

section equivalent to an HEB 100 and a length of L = 5690 mm, which corresponds to a relative
LTB member slenderness J,; = 1.3; the considered beam is subjected to a concentrated central

point load P, generating an internal major axis bending moment M at midspan, as shown in Fig.

19 (b).

Fig. 19 (a) shows the normalised applied bending moment for worked example 1 versus lateral
displacement paths of the considered beams, as well as the resulting ultimate load predictions
obtained from: (1) GMNIA with eg = L/1000 + residual stress (R.S.), i.e. the benchmark FE
result, (2) GMNIA with ep = €gmod, (3) GMNIA with ep = eg bow, (4) GNIA with ey = €o,L T pib-c,
(5) GNIA with eg = eg L1 pitab and (6) the member buckling check given in prEN 1993-1-1 [12]
(see Section 2.2) Mecs. The corresponding graph and ultimate load predictions for worked
example 2, with the normalised internal major axis bending moment at midspan (i.e. M/Myly)
plotted on the vertical axis, is shown in Fig. 19 (b). A summary of the results is given in Table

10.

Considering the first worked example, the prediction obtained from GNIA using the back-
calculated equivalent imperfection eg L1,p1,0-c With a linear plastic cross-section check is located
on the unsafe side of the benchmark result and overpredicts the resistance by 5%. The
prediction obtained from GNIA using the tabulated equivalent imperfection eo T pitab With @
linear plastic cross-section check is safe-sided but overly conservative compared with the
benchmark FE result Mrg, with MeoLTpitan = 0.909Mpe. Use of the proposed equivalent

imperfections in GMNIA provides close and safe-sided predictions compared with the
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benchmark FE result Meg with Mmod/Mee = 0.988 and Mpow/Mee = 0.973. Use of the proposed
equivalent imperfections in GMNIA provides an increase in capacity of about 14%, compared
to the Eurocode design prediction Mecs for the case considered in this worked example. The
failure of this member in GMNIA was stability governed (i.e. due to the attainment of the peak

load prior to the CSM strain limit being reached).

Similar observations also can be made for the second worked example. Again, use of the
proposed equivalent imperfections in GMNIA provides close and safe-sided predictions
compared with the benchmark FE result Meg, with Mmod/Mee = 0.991 and Myow/Mre = 0.993,
corresponding to an increase in capacity of about 25%, 7% and 17% compared to the Eurocode
design prediction Mecs, the predictions obtained from GNIA using the back-calculated
equivalent imperfections eo,L 1 pib-c and the predictions obtained from GNIA using the tabulated
equivalent imperfections oL pitab, respectively. In this worked example, GMNIA failure was
governed by the CSM strain limit. Note that in both worked examples, the member resistances
obtained from GNIA using the back-calculated equivalent imperfection eo, T pib-c are higher
than the buckling resistances Megcs, since the “post-critical” load-carrying mechanism in
slender members (see Section 2.3.1.2) was not allowed for in the development of the LTB

curves provided in prEN 1993-1-1 [12].

6. CONCLUSIONS

Equivalent imperfections consider the combined influence of initial geometric imperfections
and residual stresses. Current design specifications include recommendations for equivalent
imperfection amplitudes for use in design by GNIA. However, no appropriate provisions are
given for equivalent imperfections for use in design by GMNIA. In this study, calibrated
against the benchmark results generated from GMNIA with both geometric imperfections and

residual stresses, two shapes and corresponding amplitudes of equivalent imperfections for use
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in the out-of-plane stability design of steel and stainless steel members by GMNIA have been
developed: (1) the first LTB eigenmode with an amplitude eomod = a,L./150 and (2) a lateral
bow imperfection eo pow COMbining of a half-sine wave with an amplitude eg pow,1 = a,L/150 and
a full-sine wave with an amplitude eo now,2 = a,L/215; accurate results are achieved with either
approach. The minor axis flexural buckling imperfection factor oz, which is generally equal to
the upper bound value on a.t in prEN 1993-1-1 [12] and prEN 1993-1-4 [14], is utilised in the
proposed imperfection amplitudes to capture the adverse influence of residual stresses, but
without inheriting the additional compensatory effects included in a1 for calibration of the
LTB curves. In the design by GMNIA using the developed equivalent imperfections, cross-
section checks or CSM strain limits can be used to capture cross-section failure; the latter more

accurate approach is adopted in this study.

The accuracy and suitability of the proposed equivalent imperfections were assessed against
benchmark FE results for 1134 steel I-section members and 1134 stainless steel I-section
members, each considering three material grades, nine cross-sections, six member slenderness
values and seven load cases. The resistance predictions obtained using GMNIA with the
proposed equivalent imperfections (both eomod and eopow) Were shown to be accurate, safe-
sided and less scattered than those obtained from the Eurocode lateral-torsional buckling curves.
The suitability of the proposals developed herein for application to structural members of other

cross-sectional shapes will be examined in future research.

The suitability of using the existing recommended values of partial safety factors (i.e. ym1 =1.0
for steel members and 1.1 for stainless steel members) in conjunction with the proposed
imperfections was demonstrated by reliability analysis. The proposals are due to be included

in the new upcoming Eurocode for design by finite element analysis — prEN 1993-1-14 [37].
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Fig. 14 Comparisons of the ultimate resistance predictions obtained using the proposed equivalent imperfections
based on the first LTB eigenmode Mmoq and using the prEN 1993-1-1 LTB curves Mgcs, with the benchmark
results Mrg, for hot-rolled steel members subjected to different loading conditions
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Fig. 15 Comparisons of the ultimate resistance predictions obtained using the proposed equivalent imperfections
based on the first LTB eigenmode Mmog and using the prEN 1993-1-4 LTB curves Mgcs, with the benchmark
results Mgg, for stainless steel members subjected to different loading conditions
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Fig. 18 Values of exponents c, d and e reflecting the dependency of the ultimate member resistances on the yield
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Table 1 Imperfection factor a7 for lateral-torsional buckling of doubly symmetric I- and H-sections [12, 14]

Material Grade Limits oLt
tr <40 mm 0.12, /We|,y W,, <0.34
h/b>1.2
Hot-rolled steel - tr > 40 mm 0.16, /V_Velly IW,, <0.49

h/b<1.2 - 0.16, /V_velyy IW,, <0.49
Austenitic 0.37, /We,vy IW,, <1.10

Stainless steel Duplex - 0.23, /We,,y IW,, <0.76

Ferritic 0.27, /We,,y IW,, <0.76

Table 2 Reference relative bow imperfection gt for use in lateral-torsional buckling design by second-order
elastic analysis [12]

Cross-section Condition Elastic cross-section verification  Plastic cross-section verification
h/b<2.0 1/250 1/200
Rolled
h/b>2.0 1/200 1/150
h/b<2.0 1/200 1/150
Welded
h/b>2.0 1/150 1/100

Table 3 Overview of adopted material parameters for the FE models [1, 36, 38]

Young’s  VYield (0.2%  Ultimate Strai Strain Strain
rain
. modulus  proof) stress stress . Ultimate hardening hardening
Material ~Grade hardening )
E fy fu ) strainey  exponent  exponent
strain esn
(N/mm?) (N/mm?) (N/mm?) n m
Hot- S235 235 360 0.015 0.21
rolled S355 210000 355 510 0.015 0.18 - -
Steel S420 420 520 0.026 0.12
280 580 0.50 9.1 2.3
Stainless
el D 200000 530 770 - 0.30 9.3 3.6
stee
320 480 0.16 17.2 2.8
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Table 4 Summary of validation study for beam finite element models against experimental results from literature

Reference Load configuration '\:gétcs)f MEZIL'J]’FE/OCUESCEOV

Dux & Kitipornchai (1983) [60] 3-point bending; 4-point bending 9 0.969 0.015
Lindner & Glitsch (2004) [61] 3-point bending with eccentricity 13 0.951 0.028
Tusnin & Prokic (2015) [62, 63] 3-point bending with eccentricity 6 0.898 0.055
Schaper et al. (2019) [64] 3-point bending with eccentricity 7 1.006 0.036
Demirhan et al. (2020) [65] Cantilever beams 9 1.009 0.140
Total 44 0.968 0.081

Table 5 Imperfection factor a; for flexural buckling of doubly symmetric I- and H-sections [12, 14]

Material Limits 0z
tr <40 mm 0.34
h/b>1.2
Hot-rolled steel tr > 40 mm 0.49
h/b<1.2 0.49
Stainless steel - 0.76

Table 6 Proposed equivalent geometric imperfections for out-of-plane stability design of steel and stainless steel
members by GMNIA

Imperfection Shape St Illustration
|
€0,mod LTB eigenmode* Bur = 1/150 €0,mod | I
|
|
|
| e
1.1 = 1/150 (half-sine wave) + [ |~ 0.bow2
€0,bow Lateral bow / €0,bow, 1[4 I + |
|

Bur,2 = 1/215 (full-sine wave)

|
! eo,bow,zI I

*Eigenmode can be with or without twist with minimal effect on results.
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Table 7 Summary of mean values of member resistance predictions obtained using design methods with LTB
eigenmode equivalent imperfections Mmog, lateral bow equivalent imperfections Mpow and prEN 1993-1-1 LTB

curves Mecs, normalised by benchmark FE results Mg, for all considered cases

Load case

No.

Hot-rolled steel

Stainless steel

Mmod/Mre  Mbow/Mre  Meca/Mre Mmod/Mre Mpow/Mre Meca/Mee
w=1 162 0.980 0.968 0.957 0.952 0.943 0.890
w=05 162 0.982 0.938 0.918 0.954 0.905 0.841
w=0 162 0.984 0.932 0.906 0.957 0.888 0.828
w=-05 162 0.982 0.938 0.904 0.951 0.891 0.830
w=-1 162 0.962 0.989 0.886 0.902 0.940 0.798
UDL 162 0.973 0.971 0.958 0.947 0.944 0.877
Point load 162 0.970 0.975 0.947 0.943 0.946 0.862

Table 8 Summary of the reliability analysis results for the proposed approach applied to hot-rolled steel members

subjected to different loading conditions assessed against benchmark FE results

Mode imperfection

Lateral imperfection

Loadcase ~ Grade No. ]]:y'”‘ea”/ Viy  Vwpy Ve €0,mod €0,bow
y.nom b Vs M b Vs -
S235 54 125 0.055 0.029 0.03 1.008 0.014 1.013 1.020 0.017 1.005
w=1 S355 54 120 0.050 0.029 0.03 1.025 0.018 1.024 1.037 0.024 1.018
S420 54 120 0.050 0.029 0.03 1.030 0.021 1.021 1.043 0.026 1.016
S235 54 125 0.055 0.029 0.03 1.007 0.013 1.016 1.055 0.036 1.004
w=05 S355 54 120 0.050 0.029 0.03 1.022 0.019 1.028 1.073 0.045 1.028
S420 54 120 0.050 0.029 0.03 1.026 0.022 1.029 1.076 0.049 1.034
S235 54 125 0.055 0.029 0.03 1.007 0.012 1.013 1.064 0.050 1.025
w=0 S355 54 120 0.050 0.029 0.03 1.020 0.017 1.028 1.081 0.059 1.056
S420 54 120 0.050 0.029 0.03 1.023 0.020 1.029 1.084 0.063 1.058
S235 54 125 0.055 0.029 0.03 1.011 0.012 1.009 1.057 0.049 1.029
w=-05 S355 54 120 0.050 0.029 0.03 1.022 0.018 1.025 1.074 0.058 1.057
S420 54 120 0.050 0.029 0.03 1.025 0.021 1.026 1.077 0.062 1.059
S235 54 125 0.055 0.029 0.03 1.033 0.025 1.000 1.006 0.006 1.007
w=-1 S355 54 120 0.050 0.029 0.03 1.043 0.030 1.003 1.014 0.009 1.022
S420 54 120 0.050 0.029 0.03 1.045 0.034 1.008 1.015 0.011 1.023
S235 54 125 0.055 0.029 0.03 1.016 0.012 1.008 1.018 0.013 1.007
UDL S355 54 120 0.050 0.029 0.03 1.031 0.018 1.020 1.033 0.019 1.019
S420 54 120 0.050 0.029 0.03 1.037 0.020 1.017 1.039 0.021 1.017
S235 54 125 0.055 0.029 0.03 1021 0.013 1.001 1.016 0.011 1.004
Point load S355 54 120 0.050 0.029 0.03 1.034 0.020 1.017 1.029 0.017 1.019
S420 54 120 0.050 0.029 0.03 1.038 0.022 1.016 1.033 0.020 1.017
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Table 9 Summary of the reliability analysis results for the proposed approach applied to stainless steel members

subjected to different loading conditions assessed against benchmark FE results

Mode imperfection

Lateral imperfection

Load case Grade No. e/ Viy  Vwpy Ve €0,mod €0,bow
ynom b Vs i b Vs M1
A 54 120 0.050 0.029 0.03 1.046 0.020 1.004 1.057 0.029 1.008
w=1 D 54 110 0.030 0.029 0.08 1.051 0.022 1.040 1.060 0.027 1.042
F 54 115 0.055 0.029 0.03 1.056 0.030 1.047 1.068 0.039 1.055
A 54 120 0.050 0.029 0.08 1.042 0.020 1.011 1.101 0.053 1.024
w=05 D 54 110 0.030 0.029 0.038 1.049 0.026 1.051 1.106 0.052 1.061
F 54 115 0.055 0.029 0.08 1.055 0.033 1.056 1.118 0.067 1.080
A 54 120 0.050 0.029 0.03 1.040 0.021 1.014 1.125 0.077 1.069
w=0 D 54 110 0.080 0.029 0.03 1.047 0.028 1.056 1.134 0.079 1.118
F 54 115 0.055 0.029 0.03 1.051 0.034 1.061 1.141 0.090 1.133
A 54 120 0.050 0.029 0.03 1.047 0.028 1.016 1.123 0.083 1.090
w=-05 D 54 110 0.030 0.029 0.08 1.053 0.033 1.061 1.134 0.088 1.150
F 54 115 0.055 0.029 0.03 1.056 0.038 1.064 1.137 0.095 1.151
A 54 120 0.050 0.029 0.03 1.111 0.077 1.081 1.063 0.044 1.033
w=-1 D 54 110 0.030 0.029 0.08 1.117 0.076 1.124 1.066 0.044 1.074
F 54 115 0.055 0.029 0.03 1.117 0.082 1.128 1.067 0.048 1.077
A 54 120 0.050 0.029 0.03 1.051 0.023 1.004 1.055 0.027 1.007
UDL D 54 110 0.030 0.029 0.03 1.057 0.026 1.041 1.061 0.028 1.043
F 54 115 0.055 0.029 0.08 1.062 0.035 1.052 1.066 0.038 1.056
A 54 120 0.050 0.029 0.03 1.055 0.026 1.005 1.051 0.024 1.006
Point load D 54 110 0.030 0.029 0.03 1.063 0.029 1.042 1.060 0.027 1.043
F 54 115 0.055 0.029 0.03 1.067 0.038 1.053 1.063 0.036 1.053

Table 10 Summary of comparisons between ultimate member resistances obtained from different design methods

for worked examples

Example 1 Example 2
Imperfection eg Analysis  Cross-section check
My/Moy  Mu/Mee MMy Mu/Mee
Benchmark L/1000 + R.S. GMNIA CSM strain limit 0.671 - 0.674 -
€0,mod GMNIA CSM strain limit 0.663 0.988 0.668 0.991
€0,bow GMNIA CSM strain limit 0.653 0.973 0.669 0.993
€0,LT,plb-c GNIA  Linear plastic check  0.705 1.051 0.619 0.918
€0,LT,pl,tab GNIA  Linear plastic check  0.610 0.909 0.551 0.818
Member buckling check Mgcs - 0.569 0.848 0.503 0.746

60





