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ABSTRACT 

In current structural design specifications, such as EN 1993-1-1 for steel and EN 1993-1-4 for 

stainless steel, the stability of members is typically assessed through the use of buckling curves, 

which consider the influence of initial geometric imperfections and residual stresses. An 

alternative, more direct, approach is to perform either an elastic or inelastic second-order 

analysis of the member or structure with imperfections. For modelling convenience, so-called 

‘equivalent’ imperfections are typically utilised, which consider the combined influence of 

both geometric imperfections and residual stresses. Equivalent imperfections for the design of 

columns and beams by second-order elastic analysis, also referred to as geometrically nonlinear 

analysis with imperfection (GNIA), are provided in the current design specifications. For 

columns, equivalent imperfections for design by second-order inelastic analysis, also referred 

to as geometrically and materially nonlinear analysis with imperfections (GMNIA), were 

recently developed, but for beams that are susceptible to lateral-torsional buckling (LTB), there 

are currently no appropriate provisions. The aim of this study is therefore to develop equivalent 

imperfections for use in out-of-plane stability design of steel and stainless steel members by 

GMNIA. The proposals are calibrated against the results of benchmark finite element (FE) 

simulations performed on a large number of steel and stainless steel members with geometric 

imperfections and residual stresses subjected to major axis bending. Two proposals for 

equivalent imperfection amplitudes are developed: (1) e0,mod, for use with eigenmode-affine 
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imperfections and (2) e0,bow, for use with sinusoidal bow imperfections. The latter is applied 

solely in the lateral direction and as a summation of a half-sine wave and a full sine wave. 

Relative to the traditional Eurocode design calculations, employing the proposed LTB 

imperfections in GMNIA provides generally more accurate member resistance predictions, 

while remaining safe-sided relative to the benchmark FE results. The reliability of the design 

provisions is demonstrated through statistical analysis, where it is shown that partial safety 

factors of 1.0 for steel and 1.1 for stainless steel can be safely adopted.     

Keywords: Advanced analysis; Equivalent imperfections; Finite element modelling; Inelastic 

analysis; Lateral-torsional buckling; Plastic design; Stainless steel; Steel  

1. INTRODUCTION

Steel beams are often susceptible to out-of-plane instability effects, such as lateral-torsional 

buckling (LTB). The influence of LTB on the resistances of steel beams is traditionally 

accounted for in design standards [1, 2] through the use of buckling curves. There are currently 

two different sets of LTB curves given in Eurocode 3 [1], referred to as the general case (see 

Section 2.1.1) and the specific case (see Section 2.1.2). These curves implicitly consider the 

influence of geometric imperfections and residual stresses in the determination of the buckling 

reduction factor [3-7]. Alternatively, the LTB design of members can be undertaken more 

directly by performing a second-order, also referred to as geometrically nonlinear, or advanced, 

analysis with imperfections. In this design approach, member out-of-straightness is explicitly 

modelled and individual member buckling checks can be avoided; only cross-section strength 

checks against internal forces derived according to second order theory are required, resulting 

in a more direct design approach. 

In structural steel members, both geometric and material (i.e. residual stresses) initial 

imperfections arise during the manufacturing and fabrication processes, and the influence of 
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both must be accounted for in design. The required imperfection amplitude for use in design 

by advanced analysis depends on (i) the analysis type, (ii) the cross-section failure criterion 

and (iii) the shape of the imperfection modelled. Geometric imperfections can either be 

included in an analysis through direct modelling of the deformed geometry or through the 

scaling of a suitable eigenmode. In the former case, the relative simplicity of defining the 

deformed geometry is retained without the encumbrance of an additional linear buckling 

analysis (LBA), while in the latter case, more accurate results are generally achieved (see 

Section 5.2 for further details).      

With improvements in computational efficiency, second-order inelastic analysis, also referred 

to as geometrically and materially nonlinear analysis with imperfections (GMNIA), typically 

implemented using computationally efficient beam finite elements, is being increasingly 

employed in the design of steel and stainless steel structures [8-11]. While EN 1993-1-1 [1] 

and the upcoming prEN 1993-1-1 [12] include recommendations for equivalent imperfections, 

which consider the combined influence of geometric imperfections and residual stresses, for 

use in second-order elastic analysis, there are currently no provisions for second-order inelastic 

analysis.  

Equivalent imperfections have been developed by Walport et al. [13] for use in design by 

second-order inelastic analysis of structural members for flexural buckling. This study follows 

a similar methodology and derives equivalent imperfections for use in design by second-order 

inelastic analysis of structural members for LTB. Two equivalent imperfection amplitudes are 

proposed: (1) e0,mod, for use with the first LTB eigenmode and (2) e0,bow, for use with directly 

defined sinusoidal bow imperfections.    
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2. EUROCODE PROVISIONS FOR LTB DESIGN 

In this section, the Eurocode provisions [1, 2, 12, 14] for design of beams susceptible to LTB 

are outlined. Firstly, the traditional approach for the LTB assessment of steel and stainless steel 

beams (i.e. the approach involving the calculation of the LTB reduction factor χLT) is described; 

next, the current and upcoming provisions for LTB design by second-order elastic analysis 

using equivalent imperfections are set out. Finally, the need for revised equivalent 

imperfections for use in design by second-order inelastic analysis is explained. 

2.1 EN 1993-1-1 design rules for laterally-unrestrained beams   

The current version of EN 1993-1-1 [1] considers two cases for the LTB assessment of steel 

beams – (i) a general case and (ii) a specific case, for rolled sections or equivalent welded 

sections. In both cases, the member buckling resistance Mb,Rd is given by Eq. (1): 

 
c,Rk

b,Rd LT

M1

M
M χ

γ
=  (1) 

where χLT is the buckling reduction factor, which considers the adverse effects of LTB on the 

ultimate cross-section resistance of a steel beam, γM1 is the partial safety factor for member 

buckling, and Mc,Rk is the characteristic (unfactored) cross-section bending moment resistance 

equal to the product of the yield stress fy and the major axis section modulus Wy (i.e. Mc,Rk = 

Wyfy); Wy is taken as the plastic section modulus Wpl,y for Class 1 and 2 cross-sections, the 

elastic section modulus Wel,y for Class 3 cross-sections and an effective section modulus Weff,y 

for Class 4 cross-sections.  

2.1.1 General case 

The general case is applicable to beams with any cross-section type. The corresponding 

buckling curves are the same as those employed for column design, but a different buckling 

curve selection table is used [19]. In this approach, the LTB reduction factor χLT is calculated 

as: 
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in which αLT is the imperfection factor determined on the basis of the cross-section depth-to-

width (h/b) ratio and LTλ  is the non-dimensional slenderness, given by: 

 LT c,Rk cr/ ,λ M M=  (4) 

in which Mcr is the elastic critical buckling moment determined either through numerical 

methods using a linear buckling analysis (LBA) or using approximate equations, for example 

those given in technical report CEN TR 1993-1-103 [15]; the latter approach has been adopted 

in this study. The current version of EN 1993-1-4 [2] also adopts the buckling curves described 

above for the design of stainless steel beams, but with αLT = 0.76 (for welded I-sections) and a 

threshold (plateau) slenderness value of 0.4 instead of 0.2. 

2.1.2 Specific case   

The specific case is applicable to steel beams with rolled I-sections or equivalent welded I-

sections. The LTB reduction factor χLT can be determined as follows:  

 2LT LT
2

2 LT
LTLT LT

11
 but 
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where 

 ( )
2

LT LT,0 LTLT LT0.5 1     = + − +
  

 (6) 

in which β is a modification factor and LT 0λ ，  is the threshold (plateau) slenderness value, for 

which the value of 0.4 is recommended [1]. For non-uniform bending cases, in addition to the 

consideration through Mcr, the applied LTB reduction factor may also be modified to take 

account of the full influence of the bending moment distribution [1]. The formulation of the 
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specific case is based on extensive experimental results [16], statistical work [17] and 

numerical studies [18], and differs from the flexural buckling curves.   

Both the general case and specific case are modified Ayrton-Perry type formulae, calibrated 

for LTB through modification of the imperfection factor αLT [7]. For both hot-rolled and welded 

I-sections, the values of αLT prescribed for use with Eqs. (5) and (6) are higher than those for 

Eqs. (2) and (3).  

2.2 prEN 1993-1-1 and prEN 1993-1-4: Doubly symmetric I- and H-sections   

Unlike the flexural buckling curves, the LTB curves outlined in Section 2.1 are not fully 

mechanically coherent [19]. To address this issue, Taras and Greiner [7, 19] proposed a new 

set of formulae for the LTB design of steel members, as given by Eqs. (7) and (8), that are due 

to be included in the upcoming prEN 1993-1-1 [12], 
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where fM is a factor that accounts for the influence of bending moment diagram and zλ  is the 

normalised member slenderness for minor axis flexural buckling. The definition of the 

imperfection factor αLT was also amended, becoming a function of the major Wel,y and minor 

axis Wel,z elastic section moduli of the beam cross-section, as listed in Table 1. 

The new provisions shift the transition point between buckling curves (i.e. αLT value) from 

/h b = 2.0 to 1.2 to reflect the /h b  ratio at which a change in residual stress magnitude is 

assumed [20], while the geometric factor el,y el,z/W W  considers the influence of varying cross-

section geometry and reduces the scatter of the capacity predictions [7, 19]. An upper limit is 
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also defined, taken as the imperfection factor for minor axis buckling αz, on the basis that the 

compression flange of a very deep section with (comparatively) low torsional rigidity should 

behave similarly to a column undergoing minor axis buckling [7]. 

Taking the same expressions (i.e. Eqs. (7) and (8)), Fortan and Rossi [21] determined suitable 

αLT values for application in the LTB design of stainless steel members; the proposals, given 

by Table 1, are due to be included, together with the indicated upper bounds, in the upcoming 

Eurocode prEN 1993-1-4 [14]. 

2.3 Equivalent imperfections for use in design by second-order elastic analysis 

Equivalent imperfections implicitly account for the combined effects of geometric and material 

imperfections. They may be applied in an analysis in two ways: (1) through the scaling of the 

lowest eigenmode or (2) through the direct modelling of a bow imperfection, and with an 

amplitude either determined by back-calculation from the relevant buckling curve or taken 

from a set of prescribed tabulated values. The equivalent imperfections developed for use in 

second-order elastic analysis (i.e. GNIA) are described in the following section.    

2.3.1 Back-calculated equivalent imperfections 

2.3.1.1 EN 1993-1-1 back-calculated equivalent imperfections 

For the design by second-order elastic analysis of a steel beam susceptible to LTB, EN 1993-

1-1 [1] recommends an equivalent imperfection with a lateral bow shape and an amplitude ke0, 

where e0 is the equivalent imperfection for the weak axis flexural buckling design of the 

corresponding member in compression and k = 0.5. The amplitude e0 can be back-calculated 

from the flexural buckling curves given in EN 1993-1-1 [1], as given by: 

 ( ) z
0 z z z0.2    for 0.2

W
e α λ λ

A
= −   (9) 
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In Eq. (9), αz is the imperfection factor for minor axis flexural buckling, Wz is the minor axis 

section modulus and A is the cross-sectional area. This equation was derived on the basis of a 

linear M-N cross-section failure criterion, under axial load N and second-order minor axis 

bending moment Mz, as described in [22]. The linear elastic and plastic cross-section M-N 

interaction curves for axial force and minor axis bending moment are given by Eqs. (10) and 

(11), respectively: 

 
z

pl el,z

1
N M

N M
+ =  (10) 

 
z

pl pl,z

1
N M

N M
+ =  (11) 

where Npl is the axial cross-section resistance, and Mel,z and Mpl,z are the elastic and plastic 

minor axis bending moment resistances. For LTB design by GNIA, the linear elastic and plastic 

cross-section interaction curves are given by Eqs. (12) and (13), respectively [12, 23]: 

 
y z

el,y el,z el

1
M M B

M M B
+ + =  (12) 

 
y z

pl,y pl,z pl

1
M M B

M M B
+ + =  (13) 

where My and Mz are the major and minor axis bending moments, B is the bimoment, Mel,y and 

Mpl,y are the elastic and plastic major axis bending moment resistances and Bel and Bpl are the 

elastic and plastic warping bimoment resistances [24], as given for I-sections by: 

 ( )2
el f y f / 6B t b f h t= −  (14) 

 ( )2
pl f y f / 4B t b f h t= −  (15) 

where h, b and tf are the overall depth, flange width and flange thickness of the I-section. 

For flexural buckling, use of the back-calculated equivalent imperfection amplitudes – e0,el,b-c 

(with a linear elastic cross-section check – Eq. (10)) and e0,pl,b-c (with a linear plastic cross-

section check – Eq. (11)) – in design by second-order elastic analysis (GNIA) yields the same 



9 

 

flexural buckling resistances as those obtained from the flexural buckling curves provided in 

EN 1993-1-1 [1]. However, for LTB design by second-order elastic analysis, the equivalent 

imperfections – ke0,el,b-c and ke0,pl,b-c – do not directly correspond to the results obtained from 

the buckling curves (clauses 6.3.2.2 and 6.3.2.3 of EN 1993-1-1 [1]), and have been shown to 

be inaccurate for use in LTB design by GNIA, with the value of k = 0.5 deemed to be too small 

[25].  

2.3.1.2 Equivalent imperfections back-calculated from LTB curves in prEN 1993-1-1 

According to the analytical formulation [7, 19] behind the new LTB curves given in prEN 

1993-1-1 [12], the amplitude of the equivalent imperfection for use in GNIA e0,LT [26] can be 

back-calculated from:   

 ( ) z
0,LT LT z z0.2     for 0.2

W
e α λ λ

A
= −   (16) 

where αLT is the imperfection factor for LTB, determined from Table 1. Eq. (16) was derived 

on the basis of linear cross-section failure criterion under uniform major axis bending moment 

My, second-order minor axis bending moment Mz and warping bimoment B [7], as given by 

Eqs. (12) and (13). Employment of the elastic Wel,z and plastic Wpl,z minor axis section moduli 

in Eq. (16) provides the equivalent imperfections e0,LT,el,b-c and e0,LT,pl,b-c, for use in GNIA with 

linear elastic (Eq. (12)) and plastic (Eq. (13)) cross-section verifications, respectively. Since 

the derivation of the LTB curves in prEN 1993-1-1 [12] was performed on the basis of 

eigenmode-affine imperfections, these back-calculated equivalent imperfections should also be 

defined through the scaling of the eigenmode in GNIA. 

Fig. 1 (a) and (b) present the normalised second-order internal moments at the critical cross-

section and linear cross-section interaction curves for members subjected to uniform major axis 

bending, obtained from GNIA and GMNIA employing equivalent imperfections e0,LT,el,b-c and 

e0,LT,pl,b-c, as well as the prEN 1993-1-1 member buckling resistances MEC3. Fig. 1 (a) presents 
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the results for a Class 3 cross-section, which utilises a linear elastic cross-section interaction 

curve, while Fig. 1 (b) presents the results for a Class 2 cross-section, which utilises a linear 

plastic cross-section interaction curve. In both cases, the second-order elastic moment path with 

back-calculated imperfections intersects the interaction curve exactly at the buckling resistance 

MEC3, though this is not always the case due to the post-critical response of slender beams 

described below. However, as in the case of flexural buckling [13], the back-calculated 

equivalent imperfections determined for use in LTB design by GNIA are not suitable for use 

in GMNIA. Depending on the design case, the GNIA-derived equivalent imperfections can 

result in both over-predictions and under-predictions of resistance. In Fig. 1 (a), due to the 

spread of plasticity through the cross-section after first yield and before the attainment of the 

peak load, the member resistance obtained from GMNIA with e0,LT,el,b-c is higher than the result 

obtained from GNIA with e0,LT,el,b-c. In Fig. 1 (b), due to the effective double-counting of the 

influence of material nonlinearity, utilising the plastic equivalent imperfection e0,LT,pl,b-c in 

GMNIA results in a lower member resistance than that obtained from GNIA.  

Note that, for some slender members, the ultimate resistance can exceed the elastic buckling 

moment Mcr. This is because after large torsional deformations, the cross-sectional minor axis 

bending capacity effectively becomes a lower bound to the LTB resistance [7]. This behaviour 

is captured in a second-order analysis. However, the derivation of the LTB curves presented in 

prEN 1993-1-1 [12] and thus the equivalent imperfections back-calculated from the LTB 

curves, as determined by Eq. (16), do not account for this “post-critical” load-carrying 

mechanism [19]. Therefore, member resistances obtained from GNIA or GMNIA using back-

calculated equivalent imperfections can be substantially exceed the prEN 1993-1-1 buckling 

resistance MEC3 [27], but only after large torsional deformations. This is shown in Fig. 2, for a 

hot-rolled S420 steel HEA 100 member with LTλ  = 1.0 subjected to uniform bending. It can be 

seen that the member resistances obtained from GNIA and GMNIA with a back-calculated 
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equivalent imperfection e0,LT,pl,b-c for the linear plastic cross-section interaction curve are higher 

than the Eurocode resistance MEC3 by 14% and 12%, respectively. 

2.3.2 Tabulated equivalent imperfections 

2.3.2.1 EN 1993-1-1 tabulated equivalent imperfections  

According to EN 1993-1-1 [1], when using lateral bow equivalent imperfections of amplitude 

ke0 in design by second-order elastic analysis, e0 may, as a simpler alternative to performing 

the back-calculation described above, be taken from the tabulated values listed in Table 5.1 of 

EN 1993-1-1 [1] for the weak axis flexural buckling design of the corresponding member in 

compression; in prEN 1993-1-1 [12], revised tabulated equivalent imperfections for LTB 

design by second-order elastic analysis are provided [28], as described below. 

2.3.2.2 prEN 1993-1-1 tabulated equivalent imperfections  

According to prEN 1993-1-1 [12], equivalent imperfection amplitudes e0,LT for use in LTB 

design by GNIA can be determined from Eq. (17): 

 
LT

0,LT

β L
e

ε
=  (17) 

where βLT is the reference relative bow imperfection for LTB, values of which are provided in 

tabular form [12, 28], as summarised in Table 2, L is the member length and ε is the material 

parameter given by: 

 
y

235
ε

f
=  (18) 

The imperfection amplitude may be applied in the form of a lateral bow. Note that, unlike the 

corresponding equivalent imperfections for flexural buckling, given by Eq. (19), that are 

dependent on not only the reference relative bow imperfection for flexural buckling β, but also 

the imperfection factor α [29], Eq. (17) is not dependent on the LTB imperfection factor αLT. 
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The factor βLT in Eq. (17) does however depend on the adopted cross-section failure criterion 

(linear elastic or linear plastic) and the geometrical depth-to-width ratio h/b of the cross-section.   

 0

αβL
e

ε
=  (19) 

The use of Eq. (17) for LTB design by second-order elastic analysis has been shown in previous 

research [27, 30] to provide somewhat conservative resistance predictions. This is highlighted 

in Fig. 3, which shows the normalised load paths and capacity predictions of a hot-rolled S420 

steel IPE 140 member with LTλ  = 0.8 subjected to uniform bending. Employing the tabulated 

imperfection for use with the plastic interaction curve determined from Eq. (17) e0,LT,pl,tab in 

both GNIA and GMNIA results in conservative resistance predictions, up to 17% lower than 

the prEN 1993-1-1 member buckling resistance MEC3. These tabulated imperfection amplitudes 

have been derived on the basis of second-order elastic analysis and, as for the back-calculated 

imperfection amplitudes and as in the case of flexural buckling [13], are generally unsuitable 

for use in design by second-order inelastic analysis (GMNIA). 

3. GENERATION OF BENCHMARK FINITE ELEMENT DATA 

In this section, benchmark finite element (FE) data, against which the required equivalent 

imperfections for use in the out-of-plane stability design of beams by second-order inelastic 

analysis (i.e. GMNIA) can be calibrated, are generated. The benchmark data were obtained 

following the recommendations set out in [9, 10, 11], featuring the GMNIA of beam FE models 

with geometric imperfections, residual stresses and strain limits to simulate cross-section 

failure. The key components of the procedure followed to obtain the benchmark data, including 

validation against physical experiments, are described in this section. 
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3.1 Modelling approach 

The finite element analysis software Abaqus [31] was used to carry out the GMNIA simulations. 

The shear deformable prismatic Timoshenko beam element referred to as B31OS in Abaqus 

[31], which allows for the effects of torsion and warping in open-sections, was used [32-34]. 

Fork-end support conditions, allowing warping deformations (by not restraining the 7th degree 

of freedom [31]) but fully restraining twisting at the supports, were employed for all members. 

The investigations carried out in this section cover: (i) different grades of hot-rolled steel (S235, 

S355 and S420) and stainless steel (austenitic, duplex and ferritic) members, (ii) different ratios 

of the major axis bending moments applied at the beam ends ψ = 1, 0.5, 0, -0.5 and -1, (iii) a 

range of normalised LTB slenderness values LTλ  = 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4, and (iv) a 

series of different cross-section geometries – European HEB 100, HEB 400, HEB 700, 

HEB 1000 , IPE 100, IPE 140, HEM 200, HEA 100, HEA 800 profiles – covering a range of 

cross-section slenderness values pλ  (see Section 3.4) between 0.14 and 0.48. Note that the 

influence of the fillet radii was not included in either the benchmark models described in this 

section or the design models described in later sections. Beams with closed cross-sections, such 

as square or circular hollow sections, are not generally vulnerable to LTB [35], and thus were 

not assessed in this study. 

3.2 Material modelling 

Hot-rolled steel and stainless steel have distinctively different material characteristics. While 

hot-rolled steel has an elastic stage with a clear yield point, followed by a plateau and then a 

strain hardening region, stainless steel is characterised by a rounded stress-strain response with 

no clear yield point and significant strain hardening. The material parameters adopted in this 

study are summarised in Table 3. The Poisson’s ratio was taken as ν = 0.3 in the elastic range 

and ν = 0.5 in the plastic range. For hot-rolled steel, the three steel grades, S235, S355 and 
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S420, were considered. The quad-linear stress-strain model, developed by Yun and Gardner 

[36] and included in prEN 1993-1-14 [37], was used in this study, as illustrated in Fig. 4 (a). 

The three input parameters for the material model are the Young’s modulus E, yield stress fy 

and ultimate stress fu. The stress-strain (σ-ε) relationship over the full range is defined by: 
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where the strain hardening strain εsh is given by: 
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the ultimate strain εu is determined from: 
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and the strain hardening modulus Esh is determined from: 
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The constants C1 and C2 are given by Eqs. (24) and (25), respectively. 
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For stainless steel, three families – austenitic (A), duplex (D) and ferritic (F) – were considered; 

for each family, one typical grade was chosen. The standardised material properties for 

numerical studies defined by Afshan et al. [38] were employed, as listed in Table 3. The two-

stage Ramberg-Osgood material model [39-41] was used in this study, as given by Eqs. (26)-

(27) and illustrated in Fig. 4 (b), where fy is the yield stress, taken as 0.2% proof stress, ε0.2 is 
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the total strain at the yield stress fy, equal to 0.002+fy/E, Ey is the tangent modulus at the 0.2% 

proof stress, as given by Eq. (28) and n and m are the strain hardening exponents.   
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3.3 Geometric imperfections and residual stresses 

Equivalent imperfections applied in a shape of single lateral bow have been shown to be 

unsuitable for use in loading cases with a low proportion of bending moment at midspan (e.g. 

antisymmetric bending) [23]. Therefore, initial geometric imperfections in the form of the first 

LTB eigenmode, scaled to 1/1000 of the unbraced member lengths L were defined in the 

benchmark FE models. In this study, initial twist imperfections were not included in the beam 

FE models; this is deemed suitable since initial twist imperfections have been shown to have 

negligible influence on the ultimate lateral-torsional buckling resistances of beams [18, 42] and 

are stated to not generally be needed in EN 1993-1-1 [1]. Residual stresses were also introduced 

into the FE models. Residual stress patterns in carbon steel and stainless steel sections differ 

due to the different mechanical and thermal properties resulting from the specific chemical 

compositions and microstructure [43]. For hot-rolled carbon steel, the residual stress pattern 

given by ECCS [20] was utilised, as illustrated in Fig. 5 (a). For stainless steel, the residual 

stress pattern for welded I-sections developed by Yuan et al. [44] was adopted, as illustrated in 

Fig. 5 (b). The residual stresses were introduced into the beam FE models using the SIGINI 

user subroutine [31], by defining the initial stresses at section points prior to the loading step. 

To accurately represent the residual stress distributions, each web and flange plate was assigned 
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33 section points for the hot-rolled steel profiles [45] and 41 sections points for the stainless 

steel profiles [46] along the width, respectively. Corresponding plastic strains due to the 

residual stresses [47] were also assigned in the case of the stainless steel models using the 

HARDINI user subroutine [31]. Note that it was not necessary to include such plastic strains 

in the steel profiles since the imposed residual stress remained in the elastic range of the 

material. 

3.4 Continuous strength method (CSM) 

Cross-section failure was signified in the developed FE models by the maximum compressive 

strain reaching the CSM strain limit εcsm, as given by Eqs. (29) and (30) for hot-rolled carbon 

steel [48-51]: 
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and Eqs. (31) and (32) for materials exhibiting a rounded stress-strain response, including 

stainless steel [39], aluminium alloys [52] and cold-formed steel [53]. 
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In Eqs. (29)-(32), which are referred to as the base curves in the continuous strength method 

(CSM), εcsm is the maximum strain that a cross-section can endure prior to failure, εy = fy/E is 

the yield strain, Ω is a project specific design parameter that defines an upper bound to the 

maximum permitted strain, for which the value of 15 is recommended [10], σEd,max is the 
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maximum stress in the cross-section and 𝜆̅p is the cross-section slenderness, determined from 

Eq. (33): 
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where σcr,cs is the elastic local buckling stress of the full cross-section which can be calculated 

numerically (e.g. through the finite strip software CUFSM [54]), or using the equations 

developed by Gardner et al. [55]; the latter approach is adopted in this study. 

3.5 Generation of benchmark data 

Beam finite elements are able to directly capture global member instabilities, such as LTB, but 

are unable to capture local cross-section instabilities. Thus, in [10, 56], it was proposed that the 

CSM strain limits are applied to capture cross-section failure, by checking the maximum 

compressive longitudinal strains against the corresponding CSM strain limits for all cross-

sections in the structure at each load increment. Note that the strain limit is applied only to the 

strains resulting from the applied load (i.e. not the strains arising from the residual stresses). In 

the developed method, a GMNIA of the structure using beam finite elements is first performed; 

the ultimate capacity is then defined based on either (i) the peak load factor obtained from the 

analysis or (ii) the load factor at which the CSM strain limit is attained at any cross-section in 

the considered member or structure, whichever occurs first [46]. The accuracy and reliability 

of this approach have been verified for carbon steel [10, 45, 51, 57] and stainless steel structures 

[11], considering a wide range of cases. Relative to the traditional design calculations, this 

design method provides more accurate and consistent member capacity predictions, removing 

the need for cross-section classification, individual member buckling checks and the 

calculation of effective lengths in the determination of member resistances [45]. 

To take account of the beneficial influence of local strain gradients along the member lengths 

on cross-section resistance, it was recommended in [10] to average the maximum compressive 
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longitudinal strains in the cross-sections over a defined length. To enable the application of the 

strain averaging approach [10], the lengths of the beam elements were taken as less than or 

equal to the corresponding elastic local buckling half-wavelengths Lb,cs of the cross-sections, 

which can be obtained numerically, e.g. through the finite strip software CUFSM [54], or 

through the expressions presented in [58], which were adopted in the present study. In this 

study, 100 beam elements were used to model each member, to accurately capture the spread 

of plasticity, as adopted in the previous similar studies [46,59]. 

3.6 Validation of beam FE models 

Although the aforementioned beam FE modelling approach has been successfully employed in 

numerous previous investigations [10, 11, 13, 45, 57], in the present study, prior to being used 

to generate benchmark data, the approach is further validated against the results from 44 

experiments reported in the literature [60-65], focusing on beams experiencing LTB. The 

loading configurations included (i) 3-point bending and 4-point bending [60], (ii) 3-point 

bending with eccentrically applied vertical loading, leading to additional torsion [61-64] and 

(iii) concentrated loading applied at the free-end of cantilever beams [65]. The boundary and 

loading conditions of the beam FE models were consistent with those employed in the tests. 

The measured global geometric imperfection amplitudes and residual stresses were 

incorporated into the FE models where reported; the shape of the geometric imperfections were 

defined as the first LTB eigenmode. If no measured imperfection amplitudes or residual 

stresses were provided, the values from Section 3.3 were employed. The results of the 

validation study, including the mean and coefficient of variation (CoV) values of the ratios of 

the ultimate resistances obtained from beam FE models αu,FE to those obtained in the 

experiments αu,test (i.e. αu,FE/αu,test), are summarised in Table 4. It can be seen that the beam FE 

models developed in this study are able to provide ultimate strength predictions that are 

consistently very close to experimental results. 
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In Fig. 6, the experimental and numerical load-twist and load-vertical displacement curves for 

a sample of beams tested under eccentric 3-point bending in [62, 63] and [64] are shown, where 

P is the applied load,  and w are the twist and vertical displacement at midspan, respectively, 

and Pu,test is the ultimate load obtained from the experiments. It can be seen from the figures 

that the beam FE models accurately capture the load-deformation response observed in the 

experiments, and are therefore considered to be suitable for the generation of benchmark data, 

against which the required equivalent imperfections can be determined. 

4. REQUIRED EQUIVALENT IMPERFECTIONS FOR DESIGN BY SECOND-

ORDER INELASTIC ANALYSIS 

In this section, the required equivalent imperfections for use in the out-of-plane stability design 

of steel members by second-order inelastic analysis are calculated by iteratively running beam 

FE models with varying initial imperfection amplitude e0 until the obtained ultimate member 

resistance coincides with the benchmark data to within 0.5%. This is illustrated in Fig. 7 for 

two example beams under uniform bending. The beam FE models used to back-calculate the 

required equivalent imperfections were developed following the same approach as the 

benchmark FE models except with a varying amplitude of geometric imperfection and no 

residual stresses. 

It should be noted that the required equivalent imperfections calculated herein were introduced 

into the FE models through the scaling of the first LTB eigenmode, as employed in the 

benchmark FE models. The equivalent imperfection applied in a shape of single lateral bow 

has been shown to be unsuitable for use in loading cases with a low proportion of bending 

moment at midspan (e.g. antisymmetric bending) [23]. A similar conclusion was reached in the 

study of Ebel [66] in which the shape of the first LTB eigenmode was recommended for 
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equivalent imperfections. The new design curves for LTB in prEN 1993-1-1 [12] (see Section 

2.2) were also developed based on imperfections in the shape of the first LTB eigenmode [7].   

The amplitude of the geometric imperfections introduced into benchmark FE models was equal 

to L/1000. Since the equivalent imperfections take account of the combined effects of 

geometric imperfections and residual stresses, the required values e0,req must be larger than 

L/1000. Fig. 7 (a) and (b) show the required equivalent geometric imperfection amplitudes e0,req 

for two S355 hot-rolled steel members subjected to uniform bending M, with HEB 400 and 

HEA 100 cross-sections, respectively, and LTλ  = 1.2. It can be seen that the HEA 100 cross-

section, which has a depth-to-width ratio h/b less than 1.2, needs a higher required equivalent 

imperfection than that of the member with the HEB 400 cross-section (i.e. L/360 > L/600), 

where h/b is greater than 1.2. This is because, as shown in Fig. 5 (a), for hot-rolled steel I-

section members, larger residual stresses exist in cross-sections with h/b ≤ 1.2 than with h/b > 

1.2, resulting in a more detrimental effect on member resistances, and consequently requiring 

larger equivalent imperfection amplitudes. This is also reflected in the upcoming prEN 1993-

1-1 [12], which includes a higher LTB imperfection factor αLT for the LTB curves of cross-

sections with h/b ≤ 1.2. 

Figs. 8 and 9 show the required values of the non-dimensional equivalent imperfections 

req 0,req/j L e=  for hot-rolled and stainless steel members, respectively, subjected to a range of 

bending moment distributions along the member length (ψ = 1, 0.5, 0, -0.5 and -1), achieved 

through varying the ratio of the applied end moments (i.e. ψ = M2/M1, where M1 and M2 are the 

bending moments applied at each end of the beam) versus member slenderness LTλ . It should 

be noted that members with different member slenderness have varying sensitivity to geometric 

imperfections. This is illustrated in Fig. 10, which shows the ratio of ultimate load carrying 

capacities obtained from GMNIA with CSM strain limits Mu, with varying non-dimensional 

geometric imperfection values j = L/e0 ranging from 100 to 1000, to the benchmark results MFE, 
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for two hot-rolled steel HEB 400 members with member slenderness LTλ  = 0.4 and 1.0, 

respectively, subjected to uniform bending M. It can be observed that the more slender member 

(with LTλ  = 1.0), for which LTB is more pronounced, is more sensitive to the geometric 

imperfections. It can be seen that with decreasing geometric imperfection amplitude, there is a 

clear increase in ultimate resistances. By contrast, the stockier member (with LTλ  = 0.4) is 

much less sensitive to geometric imperfections; when the imperfection e0 varies from L/100 to 

L/1000, the difference between the ultimate bending moment resistances is less than 10%. In 

the range of L/1000 ≤ e0 ≤ L/500, the ultimate resistances are almost constant and all are within 

0.5% of the benchmark results. This confirms that for stocky members, variation in the initial 

geometric imperfection has little influence on the ultimate resistance. 

In this study, as in [13], it is proposed that the imperfection factor is incorporated into the 

definition of the equivalent imperfection amplitude e0,LT, to capture the varying influence of 

residual stresses for different cross-section types. Since the influence of geometric properties 

is directly captured by GMNIA using three-dimensional beam finite elements, the employed 

imperfection factor does not require inclusion of the geometric parameter el,y el,z/W W  

discussed in Section 2.2, and is proposed to be simply taken as αz (i.e. the imperfection factor 

for minor axis flexural buckling), as given in Table 5, which generally corresponds to the upper 

limit of αLT provided in prEN 1993-1-1 [12] and prEN 1993-1-4 [14]. This ensures that the 

severity of the influence of residual stresses is captured, but without inheriting the additional 

compensatory effects included in αLT for calibration of the LTB curves. 

Both Eqs. (17) and (19) include the material parameter ε, to allow for the influence of material 

yield strength on the required equivalent imperfections in GNIA. However, since the influence 

of the material nonlinearity is directly captured by GMNIA, the equivalent imperfections for 
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LTB design are no longer required to be a function of ε. This mirrors the provisions in [13] for 

flexural buckling design by GMNIA. 

Hence, adopting the same format of the expressions for flexural buckling [13], the equivalent 

imperfections proposed in this study are a function of the imperfection factor αz and a reference 

relative imperfection βLT, as given by Eq. (34), where αz is determined from Table 5. 

 0,LT z LTe α β L=  (34) 

Based on the back-calculated required equivalent imperfections e0,req, the required values of 

the reference relative imperfection βreq can be determined as: 

 req 0,req z/β e α L=  (35) 

Figs. 11 and 12 show the βreq values for hot-rolled steel and stainless steel members, 

respectively, for a range of cross-sections, member slenderness values and bending moment 

gradients. With the introduction of the imperfection factor αz, the required values of 1/βreq are 

less scattered than the required values of jreq = L/e0,req, as shown in Figs. 8 and 9. This confirms 

the validity of including the imperfection factor αz in the definition of e0,LT. 

5. DESIGN RECOMMENDATIONS AND EVALUATION 

In this section, recommendations are made for equivalent imperfections for use in the out-of-

plane stability design of steel and stainless steel members by GMNIA. Two proposals for 

equivalent imperfection amplitudes are made for: (1) the scaling of the first LTB eigenmode, 

denoted e0,mod and (2) for direct modelling of lateral bow imperfection shapes, denoted e0,bow. 

The ultimate strength predictions obtained through the use of the recommended equivalent 

imperfections are compared against both the benchmark FE results and Eurocode calculated 

resistances. The reliability of the recommendations is then assessed, and their application is 

demonstrated through worked examples. Note that in the present study, CSM strain limits are 

applied to capture cross-section failure, but cross-section checks can alternatively and 
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conservatively be used. Nevertheless, the developed equivalent imperfections are independent 

of the slenderness and classification of the cross-section. 

5.1 Design recommendations 

5.1.1 Mode imperfection e0,mod  

Based on the required imperfections determined in Section 4 and shown in Figs. 11 and 12, the 

reference relative imperfection value of βLT = 1/150 is proposed for use in LTB design by 

GMNIA of members subjected to different bending moment gradients, for both hot-rolled steel 

and stainless steel, and for all the member slenderness values and cross-sections examined 

herein, as given by Eq. (36). 

 0,mod z LT z /150e α β L α L= =  (36) 

A singe value of βLT is chosen for all cases, independent of the member slenderness LTλ , in 

order to retain simplicity. A certain level of conservatism is therefore accepted for some 

geometries [13, 29], as indicated in Section 4.  

It can be seen in Figs. 11 and 12 that the proposed recommendation of βLT = 1/150 provides a 

safe-sided approximation to the majority of the required values of βreq. This value is also 

consistent with that provided in [13] for use in flexural buckling design by GMNIA; in both 

studies, the structural response and influence of varying geometric characteristics and material 

properties is directly captured in the GMNIA and the influence of different residual stresses is 

captured through the imperfection factor (α or αz). 

5.1.2 Lateral bow imperfection e0,bow  

The proposed equivalent imperfection detailed above is recommended for use with the first 

LTB eigenmode. However, in practical design situations, it is somewhat cumbersome to 

conduct a linear buckling analysis (LBA) prior to GMNIA to obtain the LTB eigenmode; 

furthermore, the appropriate isolation of members within a structure and the choice of 
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eigenmode is not always straightforward. Therefore, an alternative design recommendation, 

whereby equivalent imperfections are applied through direct modelling as lateral bow 

imperfections of amplitude e0,bow, is also made herein. As mentioned in Section 4, an 

imperfection in the shape of a half-sine wave is unsuitable for bending moment diagrams with 

a low proportion of bending moment at midspan [23]. Hence, to cover the range of possible 

bending moment diagrams, a combination of two shapes of lateral imperfections is proposed 

in this study: (1) a half-sine wave, which is similar to the deformed shape of members under 

uniform bending (ψ = 1), and (2) a full-sine wave, corresponding to the deformation profile of 

members under antisymmetric bending (ψ = -1). The amplitude of the full-sine wave 

imperfection is taken as αzL/215, which is approximately equal to 70% of that of the half-sine 

wave imperfection. Hence, a lateral equivalent bow imperfection e0,bow is defined as the 

summation of a half-sine wave with imperfection amplitude e0,bow,1 (with LT,1  1 /150β = ), as 

determined from Eq. (37), and a full-sine wave with imperfection amplitude e0,bow,2 (with 

LT,2  1 / 215β = ), as determined from Eq. (38). This proposal is illustrated in Fig. 13, and given 

in Table 6. 

 0,bow,1 z LT,1 z /150e α β L α L= =  (37) 

 0,bow,2 z LT,2 z= / 215e α β L α L=  (38) 

Note that the amplitude of the half-sine wave bow imperfection is consistent with that for 

flexural buckling [13]. Note also that the summation of these two imperfections is not 

symmetric, and thus should be applied in practice in the most unfavourable direction and form. 

5.2 Evaluation of design recommendations 

The proposed mode e0,mod and lateral bow e0,bow equivalent imperfections are assessed in this 

section for application with GMNIA. The assessment was carried out on 1134 steel members 

and 1134 stainless steel members, each considering three material grades, nine cross-sections, 
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six member slenderness values, the seven load cases indicated in Section 3.1, as well as the 

load cases of uniformly distributed loading (UDL) and a concentrated central point load. 

5.2.1 Mode imperfection e0,mod  

Fig. 14 shows comparisons of the ultimate resistance predictions obtained from (1) the 

proposed design approach Mmod using GMNIA with the eigenmode shape of equivalent 

imperfection and e0,mod, (2) the prEN 1993-1-1 [12] LTB curves MEC3 and (3) the benchmark 

FE models (GMNIA with eigenmode imperfections of amplitude L/1000 plus residual stresses) 

MFE, for the examined hot-rolled steel members subjected to different loading conditions. The 

mean values of the member resistance predictions obtained using the different design 

approaches relative to the benchmark FE results are summarised in Table 7. It can be seen that 

the Eurocode predictions are overly conservative for slender members (e.g. LTλ  ≥ 1.2); this is 

because the “post-critical” load-carrying mechanism in slender members (see Section 2.3.1.2) 

was not allowed for in the derivation of the buckling curves provided in prEN 1993-1-1 [12]. 

For some stocky members ( LTλ  = 0.4), the Eurocode predictions lie slightly on the unsafe side. 

The resistance predictions obtained from design by GMNIA using the proposed equivalent 

imperfections are more accurate and less scattered than those obtained using the Eurocode 3 

buckling curves. The large majority of the predictions obtained using the proposed equivalent 

imperfections are safe-sided (i.e. Mmod/MFE ≤ 1). For stainless steel members, similar 

conclusions can also be made, as shown in Fig. 15. Compared with the design method in prEN 

1993-1-4 [14], design by GMNIA employing the proposed equivalent mode imperfections 

e0,mod provides more accurate member resistance predictions while remaining safe-sided. Note 

that initial twist was not introduced into the beam FE models in this study, as explained in 

Section 3.3. 
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5.2.2 Lateral bow imperfection e0,bow  

The proposal for the lateral bow equivalent imperfection e0,bow was assessed in the same manner 

as above. Figs. 16 and 17 show comparisons of the ultimate resistance predictions obtained 

from (1) GMNIA with the proposed lateral bow equivalent imperfection Mbow, (2) the prEN 

1993-1-1 LTB curves MEC3 and the benchmark FE models MFE, for hot-rolled steel and stainless 

steel members, respectively, subjected to different loading conditions. Comparing the results 

presented in Figs. 14-17 and Table 7, it can be seen that, in general, for both steel and stainless 

steel members, the mode equivalent imperfection provides the most accurate resistance 

predictions. The lateral bow imperfection provides more conservative resistance predictions in 

the cases where ψ = 0 and -0.5; in these cases, the shape of the applied combined lateral bow 

imperfections is similar to the LTB eigenmodes but the bow equivalent imperfection amplitude 

e0,bow is more severe than e0,mod. Nonetheless, employing the lateral bow imperfection in 

GMNIA provides very good results, with more accurate predictions than the Eurocode design 

calculations, and with the benefit of not requiring an LBA for obtaining the LTB eigenmode. 

5.3 Reliability analysis 

The reliability and required partial safety factor γM1
* for the proposed equivalent imperfections 

for use in design by GMNIA were evaluated through the first order reliability method (FORM) 

set out in EN 1990:2002 [67] and further explained by Afshan et al. [68]. According to EN 

1990:2002 [67], typical buildings fall into reliability class RC2 with a 50-year design life and 

a target reliability index of 3.8 for ultimate limit state design. The derivation of partial safety 

factors are based on this value. The recommended values of the partial safety factors γM1 are 

1.0 for steel in prEN 1993-1-1 [12] and 1.1 for stainless steel in prEN 1993-1-4 [14]. 

The ultimate bending moment capacities of members experiencing LTB are dependent on the 

basic variables – yield stress fy, major axis plastic section modulus Wpl,y and Young’s modulus 
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E. The influence of these variables change with the member proportions for each numerical 

simulation. The dependency of the member resistance on the basic variables fy, Wpl,y and E can 

be derived for each numerical simulation following the method set out in [68], presented as the 

exponents c, d and e to be applied to the basic variables (i.e. fy
c
, Wpl,y

d
, E

e
), as given by Eqs. 

(39), (40) and (41), respectively, where M1.05fy, M1.05Wpl,y and M1.05E are the ultimate bending 

moment capacities obtained from the numerical analysis with the yield stress multiplied by 

1.05, with the major axis plastic section modulus multiplied by 1.05 and with the Young’s 

modulus multiplied by 1.05, respectively, and Mfy, MWpl,y and ME are the original ultimate 

bending moment capacities. 

 
( )
( )

1.05fy fy

y y

ln /

ln 1.05 /

M M
c

f f
=  (39) 

 
( )
( )

1.05Wpl,y Wpl,y

pl,y pl,y

ln /

ln 1.05 /

M M
d

W W
=  (40) 

 
( )

( )
1.05E Eln /

ln 1.05 /

M M
e

E E
=  (41) 

Fig. 18 shows values of the exponents c, d and e obtained for members subjected to uniform 

bending. Fig. 18 (a) shows the values obtained using the proposed mode equivalent 

imperfections e0,mod for the considered hot-rolled steel members, while Fig. 18 (b) shows the 

values obtained using the proposed lateral bow equivalent imperfections e0,bow for the 

considered stainless steel members. In general, with increasing member slenderness LTλ , the 

dependency on the yield stress fy (represented by exponent c) decreases, while the dependency 

on the major axis plastic section modulus Wpl,y (represented by exponent d) and the Young’s 

modulus (represented by exponent e) increases. This reflects the transition from in-plane 

bending, dominated by plasticity to elastic buckling, controlled by Young’s modulus, with 

increasing slenderness, together with a general dependency on the section geometry. However, 

it can be seen from Fig. 18 that there are a few outliers (highlighted in red dashed circles) not 
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consistent with the above statements. These are due to the “post-critical” load-carrying 

mechanism mentioned in Section 2.3.1.2: the ultimate resistance of slender members can 

exceed the elastic critical buckling moment Mcr and approach the minor axis bending resistance. 

Hence, for these slender members, the dependencies on the yield stress and geometric 

properties (presented by exponents c and d) approach unity, while the dependency on the 

Young’s modulus (presented by exponent e) reduces. 

The adopted values of material overstrength fy,mean/fy,nom (i.e. the ratio of mean to nominal yield 

strength) and the CoV of yield strength Vfy were specified according to prEN 1993-1-1 [12] for 

steel and reference [69] for stainless steel; the CoV of geometric properties VWpl,y was 

determined according to [68]; the CoV of Young’s modulus VE was taken as 0.03 for both 

materials [12]. The values assumed herein are listed in Tables 8 and 9. The combined 

coefficient of variation Vrt of the material and geometric basic variables is given by Eq. (42) 

[70]; note that Vrt is calculated for each numerical simulation. 

 ( ) ( ) ( )
2 2 2

rt fy Wpl,y EV cV dV eV= + +  (42) 

It should be noted that, as recommended in [11, 13], in the implementation of the design method 

through second-order inelastic analysis (i.e. GMNIA), the Young’s modulus E should be taken 

as a reduced (characteristic) value, rather than the mean value. Hence, in this study, the reduced 

values of E = 200,000 N/mm2 for steel and E = 191,000 N/mm2 for stainless steel were adopted 

[12-14, 37] in the performed GMNIA design calculations. 

The mean correction factor b was calculated using a modified definition based on the average 

ratio of the benchmark resistance re to the predicted resistance rt, as given by Eq. (43), instead 

of the least-squares method recommended in EN 1990:2002 [67]. This prevents the derived 

value of b from being biased toward the data points with higher resistance values [70, 71].    
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The key reliability analysis results for all considered cases are reported in Tables 8 and 9, 

including the mean correction factor b, the coefficient of variation of the results obtained using 

the proposals relative to the benchmark FE results Vδ and the required value of partial safety 

factor γM1
*. All values of b are greater than 1, indicating the mean predictions obtained using 

two proposals are safe-sided; this is shown in Table 7. The required values of the partial safety 

factor γM1
* are slightly higher than the target values of 1.0 for steel members [12] and generally 

lower than 1.1 for stainless steel members [14], but all are in line with the recommendations 

given by SAFEBRICTILE [72, 73], which allows a small exceedance of the target values to 

allow for the influence of the combined coefficient of variation Vr incorporating the variability 

of the model and the basic variables. Note that if the values of fy,mean/fy,nom and Vfy are taken as 

1.30 and 0.060 instead of 1.20 and 0.050 for austenitic stainless steel and taken as 1.20 and 

0.045 instead of 1.15 and 0.055 for ferritic stainless steel (as assumed in the reliability analyses 

performed in [68]), the calculated values of γM1
* still satisfy the SAFEBRICTILE [72, 73] 

requirements. Therefore, the two proposals for equivalent imperfections are deemed to be 

suitable for use in the out-of-plane stability design of steel and stainless steel members by 

GMNIA, in conjunction with the recommended values of the partial safety factor γM1 i.e. 1.0 

for steel and 1.1 for stainless steel. 

5.4 Worked examples 

Two worked examples are presented in this section to illustrate the implementation of the 

proposed equivalent imperfections in design by second-order inelastic analysis.  

The first worked example considers a beam made of grade S355 steel (fy = 355 MPa, fu = 510 

MPa, reduced value of E = 200,000 N/mm2 and ν = 0.3) with a hot-rolled HEA 100 cross-

section and a length of L = 4685 mm, which corresponds to a relative LTB member slenderness 
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LTλ  = 1.2; the considered beam is subjected to uniform major axis bending moment M, as 

shown in Fig. 19 (a).   

The second worked example considers a beam made of duplex stainless steel (fy = 530 MPa, fu 

= 770 MPa, n = 9.3, m = 3.6, reduced value of E = 191,000 N/mm2 and ν = 0.3) with a cross-

section equivalent to an HEB 100 and a length of L = 5690 mm, which corresponds to a relative 

LTB member slenderness LTλ  = 1.3; the considered beam is subjected to a concentrated central 

point load P, generating an internal major axis bending moment M at midspan, as shown in Fig. 

19 (b).   

Fig. 19 (a) shows the normalised applied bending moment for worked example 1 versus lateral 

displacement paths of the considered beams, as well as the resulting ultimate load predictions 

obtained from: (1) GMNIA with e0 = L/1000 + residual stress (R.S.), i.e. the benchmark FE 

result, (2) GMNIA with e0 = e0,mod, (3) GMNIA with e0 = e0,bow, (4) GNIA with e0 = e0,LT,pl,b-c, 

(5) GNIA with e0 = e0,LT,pl,tab and (6) the member buckling check given in prEN 1993-1-1 [12] 

(see Section 2.2) MEC3. The corresponding graph and ultimate load predictions for worked 

example 2, with the normalised internal major axis bending moment at midspan (i.e. M/Mpl,y) 

plotted on the vertical axis, is shown in Fig. 19 (b). A summary of the results is given in Table 

10. 

Considering the first worked example, the prediction obtained from GNIA using the back-

calculated equivalent imperfection e0,LT,pl,b-c with a linear plastic cross-section check is located 

on the unsafe side of the benchmark result and overpredicts the resistance by 5%. The 

prediction obtained from GNIA using the tabulated equivalent imperfection e0,LT,pl,tab with a 

linear plastic cross-section check is safe-sided but overly conservative compared with the 

benchmark FE result MFE, with Me0,LT,pl,tab = 0.909MFE. Use of the proposed equivalent 

imperfections in GMNIA provides close and safe-sided predictions compared with the 
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benchmark FE result MFE with Mmod/MFE = 0.988 and Mbow/MFE = 0.973. Use of the proposed 

equivalent imperfections in GMNIA provides an increase in capacity of about 14%, compared 

to the Eurocode design prediction MEC3 for the case considered in this worked example. The 

failure of this member in GMNIA was stability governed (i.e. due to the attainment of the peak 

load prior to the CSM strain limit being reached).  

Similar observations also can be made for the second worked example. Again, use of the 

proposed equivalent imperfections in GMNIA provides close and safe-sided predictions 

compared with the benchmark FE result MFE, with Mmod/MFE = 0.991 and Mbow/MFE = 0.993, 

corresponding to an increase in capacity of about 25%, 7% and 17% compared to the Eurocode 

design prediction MEC3, the predictions obtained from GNIA using the back-calculated 

equivalent imperfections e0,LT,pl,b-c and the predictions obtained from GNIA using the tabulated 

equivalent imperfections e0,LT,pl,tab, respectively. In this worked example, GMNIA failure was 

governed by the CSM strain limit. Note that in both worked examples, the member resistances 

obtained from GNIA using the back-calculated equivalent imperfection e0,LT,pl,b-c are higher 

than the buckling resistances MEC3, since the “post-critical” load-carrying mechanism in 

slender members (see Section 2.3.1.2) was not allowed for in the development of the LTB 

curves provided in prEN 1993-1-1 [12].  

6. CONCLUSIONS 

Equivalent imperfections consider the combined influence of initial geometric imperfections 

and residual stresses. Current design specifications include recommendations for equivalent 

imperfection amplitudes for use in design by GNIA. However, no appropriate provisions are 

given for equivalent imperfections for use in design by GMNIA. In this study, calibrated 

against the benchmark results generated from GMNIA with both geometric imperfections and 

residual stresses, two shapes and corresponding amplitudes of equivalent imperfections for use 



32 

 

in the out-of-plane stability design of steel and stainless steel members by GMNIA have been 

developed: (1) the first LTB eigenmode with an amplitude e0,mod = αzL/150 and (2) a lateral 

bow imperfection e0,bow combining of a half-sine wave with an amplitude e0,bow,1 = αzL/150 and 

a full-sine wave with an amplitude e0,bow,2 = αzL/215; accurate results are achieved with either 

approach. The minor axis flexural buckling imperfection factor αz, which is generally equal to 

the upper bound value on αLT in prEN 1993-1-1 [12] and prEN 1993-1-4 [14], is utilised in the 

proposed imperfection amplitudes to capture the adverse influence of residual stresses, but 

without inheriting the additional compensatory effects included in αLT for calibration of the 

LTB curves. In the design by GMNIA using the developed equivalent imperfections, cross-

section checks or CSM strain limits can be used to capture cross-section failure; the latter more 

accurate approach is adopted in this study. 

The accuracy and suitability of the proposed equivalent imperfections were assessed against 

benchmark FE results for 1134 steel I-section members and 1134 stainless steel I-section 

members, each considering three material grades, nine cross-sections, six member slenderness 

values and seven load cases. The resistance predictions obtained using GMNIA with the 

proposed equivalent imperfections (both e0,mod and e0,bow) were shown to be accurate, safe-

sided and less scattered than those obtained from the Eurocode lateral-torsional buckling curves. 

The suitability of the proposals developed herein for application to structural members of other 

cross-sectional shapes will be examined in future research. 

The suitability of using the existing recommended values of partial safety factors (i.e. γM1 = 1.0 

for steel members and 1.1 for stainless steel members) in conjunction with the proposed 

imperfections was demonstrated by reliability analysis. The proposals are due to be included 

in the new upcoming Eurocode for design by finite element analysis – prEN 1993-1-14 [37]. 
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(a) HEA 160 (Class 3), S355, LTλ  = 0.6 

 

(b) HEA 1000 (Class 2), S420, LTλ  = 0.8 

Fig. 1 Normalised second-order internal moments at the critical cross-section and linear cross-section interaction 

curves for members subjected to uniform major axis bending, obtained from GNIA and GMNIA using the back-

calculated (a) elastic e0,LT,el,b-c and (b) plastic e0,LT,pl,b-c equivalent imperfections compared against the prEN 1993-

1-1 member buckling resistance MEC3 

 

 

 

Fig. 2 Normalised second-order internal moments at the critical cross-section and linear plastic cross-section 

interaction curve for a hot-rolled S420 steel HEA 100 (Class 1) member with LTλ  = 1.0 subjected to uniform 

major axis bending, obtained from GNIA and GMNIA using the back-calculated plastic equivalent imperfection 

e0,LT,pl,b-c compared against the prEN 1993-1-1 member buckling resistance MEC3 
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Fig. 3 Normalised second-order internal moments at the critical cross-section and linear plastic cross-section 

interaction curve for a hot-rolled S420 steel IPE 140 (Class 1) member with LTλ  = 0.8 subjected to uniform major 

axis bending, obtained from GNIA and GMNIA using the tabulated plastic equivalent imperfection e0,LT,pl,tab 

compared against the prEN 1993-1-1 member buckling resistance MEC3 

 

 

 

 

  

(a) Quad-linear material model for hot-rolled steel 

[36] 

(b) Two-stage Ramberg-Osgood material model 

for stainless steel [39] 

Fig. 4 Material stress-strain models adopted for (a) hot-rolled steel and (b) stainless steel 
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(a) ECCS [20] model for hot-rolled steel I-

sections (fy
* = 235 MPa) 

(b) Yuan et al. [44] model for welded stainless steel I-

sections 

Fig. 5 Residual stress patterns adopted for (a) hot-rolled steel and (b) welded stainless steel I-sections (+ve = 

tension; -ve = compression) 

 

 

 

 

  

(a) Specimens Test 1 and Test 3 tested in [62,63] (b) Specimens Pos. 3-1 and Pos. 1fy tested in [64] 

Fig. 6 Comparison of experimental and numerical load-deformation curves of members subjected to 3-point 

bending with eccentrically applied vertical loading at midspan, tested in [62,63] and [64]  
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(a) Hot-rolled HEB 400 (h/b > 1.2) (b) Hot-rolled HEB 100 (h/b ≤ 1.2) 

Fig. 7 Required equivalent imperfections e0,req calculated iteratively to obtain ultimate bending moment Mu within 

0.5% of the benchmark ultimate bending moments MFE obtained from GMNIA of members with geometric 

imperfection magnitudes of L/1000 and residual stresses (R.S.) 
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(a) ψ = 1 

 

(b) ψ = 0.5 

 

(c) ψ = 0 

 

(d) ψ = -0.5 

 

(e) ψ = -1 

 

Fig. 8 Required values of non-dimensional equivalent imperfections jreq = L/e0,req for hot-rolled steel members 

subjected to different bending moment distributions along the member length (ψ = 1, 0.5, 0, -0.5 and -1), achieved 

by changing the ratio of the applied end moments ψ = M2/M1 
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(a) ψ = 1 

 

(b) ψ = 0.5 

 

(c) ψ = 0 

 

(d) ψ = -0.5 

 

(e) ψ = -1 

 

Fig. 9 Required values of jreq = L/e0,req for stainless steel members subjected to different bending moment 

distributions along the member length (ψ = 1, 0.5, 0, -0.5 and -1), achieved by changing the ratio of the applied 

end moments ψ = M2/M1 
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Fig. 10 Sensitivity to geometric imperfections of hot-rolled S355 steel HEB 400 members with LTB slenderness 

LTλ  = 0.4 and 1.0 subjected to uniform bending  
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(a) ψ = 1 

 

(b) ψ = 0.5 

 

(c) ψ = 0 

 

(d) ψ = -0.5 

 

(e) ψ = -1 

 

Fig. 11 Required values of 1/βreq for hot-rolled steel members subjected to different bending moment distributions 

along the member length (ψ = 1, 0.5, 0, -0.5 and -1), achieved by changing the ratio of the applied end moments 

ψ = M2/M1 
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(a) ψ = 1 

 

(b) ψ = 0.5 

 

(c) ψ = 0 

 

(d) ψ = -0.5 

 

(e) ψ = -1 

 

Fig. 12 Required values of 1/βreq for stainless steel members subjected to different bending moment distributions 

along the member length (ψ = 1, 0.5, 0, -0.5 and -1), achieved by changing the ratio of the applied end moments 

ψ = M2/M1 
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Fig. 13 Direct modelling of lateral bow equivalent imperfection e0,bow through summation of a half-sine wave with 

amplitude e0,bow,1 = αzL/150 and a full-sine wave with amplitude e0,bow,2 = αzL/215 
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(a) ψ = 1 

  

(b) ψ = 0.5 

   

(c) ψ = 0 

  

(d) ψ = -0.5 
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(e) ψ = -1 

  

(f) Uniformly distributed load 

  

(g) Point load 

Fig. 14 Comparisons of the ultimate resistance predictions obtained using the proposed equivalent imperfections 

based on the first LTB eigenmode Mmod and using the prEN 1993-1-1 LTB curves MEC3, with the benchmark 

results MFE, for hot-rolled steel members subjected to different loading conditions 
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(a) ψ = 1 

   

(b) ψ = 0.5 

   

(c) ψ = 0 

   

(d) ψ = -0.5 
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(e) ψ = -1 

   

(f) Uniformly distributed load 

   

(g) Point load 

Fig. 15 Comparisons of the ultimate resistance predictions obtained using the proposed equivalent imperfections 

based on the first LTB eigenmode Mmod and using the prEN 1993-1-4 LTB curves MEC3, with the benchmark 

results MFE, for stainless steel members subjected to different loading conditions 
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(a) S235 

  

(b) S355 

   

(c) S420 

Fig. 16 Comparisons of the ultimate resistance predictions obtained using the proposed equivalent imperfections 

based on the combined half and full sine wave lateral bow shapes Mbow and using the prEN 1993-1-1 LTB curves 

MEC3, with the benchmark results MFE, for hot-rolled steel members subjected to different loading conditions 
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(a) Austenitic 

  

(b) Duplex 

  

(c) Ferritic 

Fig. 17 Comparisons of the ultimate resistance predictions obtained using the proposed equivalent imperfections 

based on the combined half and full sine wave lateral bow shapes Mbow and using the prEN 1993-1-4 LTB curves 

MEC3, with the benchmark results MFE, for stainless steel members subjected to different loading conditions 
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(a) Hot-rolled steel members with e0,mod, as defined in Table 6 

  

(b) Stainless steel members with e0,bow, as defined in Table 6 

Fig. 18 Values of exponents c, d and e reflecting the dependency of the ultimate member resistances on the yield 

stress fy, plastic major axis section modulus Wpl,y and Young’s modulus E, respectively, obtained through the 

design method (a) using the proposed imperfections e0,mod defined using the LTB eigenmode for the considered 

hot-rolled steel members and (b) using the proposed lateral imperfections e0,bow for the considered stainless steel 

members, subjected to uniform bending. 
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(a) Worked example 1: HEA 100, S355, LTλ  = 1.2 

 

 

(b) Worked example 2: HEB 100, duplex stainless steel, LTλ  = 1.3 

Fig. 19 Load-deformation paths and ultimate member resistance predictions for worked examples obtained from 

different design approaches 

 

 

 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

M
/M

p
l,

y

Lateral displacement at midspan (mm)

benchmark point

mode point

lateral point

GNIA elastic point

GNIA+plastic point

GMNIA (L/1000 + R.S., peak load)

GMNIA (e0,mod, peak load)

GMNIA (e0,bow, peak load)

GNIA (e0,LT,pl,b-c + linear plastic cross-section check)

GNIA (e0,LT,pl,tab + linear plastic cross-section check)

MEC3 0.569

0.6710.663

 .65 0.610

0.705

M M

HEA 100

S355

LT 1.2 =

y y

z

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180 200

M
/M

p
l,

y

Lateral displacement at midspan (mm)

benchmark point

mode point

lateral point

GNIA plastic back point

GNIA+plastic point

GMNIA (L/1000 + R.S., strain limit)

GMNIA (e0,mod, strain limit)

GMNIA (e0,bow, strain limit)

GNIA (e0,LT,pl,b-c + linear plastic cross-section check)

GNIA (e0,LT,pl,tab + linear plastic cross-section check)

MEC3 0.503

0.674

0.668

0.669

0.551

0.619

HEB 1  

Duplex stainless steely y

z

zM

P

LT 1.3=



57 

 

 

 

 

Table 1 Imperfection factor αLT for lateral-torsional buckling of doubly symmetric I- and H-sections [12, 14] 

Material Grade Limits αLT 

Hot-rolled steel - 

h/b > 1.2 

tf ≤ 40 mm el,y el,z0.12 / 0.34W W   

tf > 40 mm el,y el,z0.16 / 0.49W W   

h/b ≤ 1.2 - el,y el,z0.16 / 0.49W W   

Stainless steel 

Austenitic 

- 

el,y el,z0.37 / 1.10W W   

Duplex el,y el,z0.23 / 0.76W W   

Ferritic el,y el,z0.27 / 0.76W W   

 

 

 

Table 2 Reference relative bow imperfection βLT for use in lateral-torsional buckling design by second-order 

elastic analysis [12] 

Cross-section Condition Elastic cross-section verification Plastic cross-section verification 

Rolled 

h/b ≤ 2.0 1/250 1/200 

h/b > 2.0 1/200 1/150 

Welded 

h/b ≤ 2.0 1/200 1/150 

h/b > 2.0 1/150 1/100 

 

 

 

Table 3 Overview of adopted material parameters for the FE models [1, 36, 38] 

Material Grade 

Young’s 

modulus 

E 

(N/mm2) 

Yield (0.2% 

proof) stress 

fy 

(N/mm2) 

Ultimate 

stress 

fu 

(N/mm2) 

Strain 

hardening 

strain εsh 

Ultimate 

strain εu 

Strain 

hardening 

exponent 

n 

Strain 

hardening 

exponent 

m 

Hot-

rolled 

Steel 

S235 

210000 

235 360 0.015 0.21 

- - S355 355 510 0.015 0.18 

S420 420 520 0.026 0.12 

Stainless 

steel 

A 

200000 

280 580 

- 

0.50 9.1 2.3 

D 530 770 0.30 9.3 3.6 

F 320 480 0.16 17.2 2.8 
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Table 4 Summary of validation study for beam finite element models against experimental results from literature 

Reference Load configuration 
No. of 

tests 

αu,FE/αu,test 

Mean CoV 

Dux & Kitipornchai (1983) [60] 3-point bending; 4-point bending 9 0.969 0.015 

Lindner & Glitsch (2004) [61] 3-point bending with eccentricity 13 0.951 0.028 

Tusnin & Prokic (2015) [62, 63] 3-point bending with eccentricity 6 0.898 0.055 

Schaper et al. (2019) [64] 3-point bending with eccentricity 7 1.006 0.036 

Demirhan et al. (2020) [65] Cantilever beams 9 1.009 0.140 

Total  44 0.968 0.081 

 

 

Table 5 Imperfection factor αz for flexural buckling of doubly symmetric I- and H-sections [12, 14] 

Material Limits αz 

Hot-rolled steel 
h/b > 1.2 

tf ≤ 40 mm 0.34 

tf > 40 mm 0.49 

h/b ≤ 1.2  0.49 

Stainless steel - 0.76 

 

 

 

 

 

Table 6 Proposed equivalent geometric imperfections for out-of-plane stability design of steel and stainless steel 

members by GMNIA 

Imperfection Shape βLT Illustration 

e0,mod LTB eigenmode* βLT = 1/150  

e0,bow Lateral bow 
βLT,1 = 1/150 (half-sine wave) + 

βLT,2 = 1/215 (full-sine wave) 
 

*Eigenmode can be with or without twist with minimal effect on results. 

 

 

 

  ,mod

  ,bow,1
  ,bow,2

e0,bow,2

+
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Table 7 Summary of mean values of member resistance predictions obtained using design methods with LTB 

eigenmode equivalent imperfections Mmod, lateral bow equivalent imperfections Mbow and prEN 1993-1-1 LTB 

curves MEC3, normalised by benchmark FE results MFE, for all considered cases 

Load case No. 
Hot-rolled steel Stainless steel 

Mmod/MFE Mbow/MFE MEC3/MFE Mmod/MFE Mbow/MFE MEC3/MFE 

ψ = 1 162 0.980 0.968 0.957 0.952 0.943 0.890 

ψ = 0.5 162 0.982 0.938 0.918 0.954 0.905 0.841 

ψ = 0 162 0.984 0.932 0.906 0.957 0.888 0.828 

ψ = -0.5 162 0.982 0.938 0.904 0.951 0.891 0.830 

ψ = -1 162 0.962 0.989 0.886 0.902 0.940 0.798 

UDL 162 0.973 0.971 0.958 0.947 0.944 0.877 

Point load 162 0.970 0.975 0.947 0.943 0.946 0.862 

 

 

 

Table 8 Summary of the reliability analysis results for the proposed approach applied to hot-rolled steel members 

subjected to different loading conditions assessed against benchmark FE results 

Load case Grade No. 
fy,mean/ 

fy,nom 
Vfy VWpl,y VE 

Mode imperfection 

e0,mod 

Lateral imperfection 

e0,bow 

b Vδ γM1
* b Vδ γM1

* 

ψ = 1 

S235 54 1.25 0.055 0.029 0.03 1.008 0.014 1.013 1.020 0.017 1.005 

S355 54 1.20 0.050 0.029 0.03 1.025 0.018 1.024 1.037 0.024 1.018 

S420 54 1.20 0.050 0.029 0.03 1.030 0.021 1.021 1.043 0.026 1.016 

ψ = 0.5 

S235 54 1.25 0.055 0.029 0.03 1.007 0.013 1.016 1.055 0.036 1.004 

S355 54 1.20 0.050 0.029 0.03 1.022 0.019 1.028 1.073 0.045 1.028 

S420 54 1.20 0.050 0.029 0.03 1.026 0.022 1.029 1.076 0.049 1.034 

ψ = 0 

S235 54 1.25 0.055 0.029 0.03 1.007 0.012 1.013 1.064 0.050 1.025 

S355 54 1.20 0.050 0.029 0.03 1.020 0.017 1.028 1.081 0.059 1.056 

S420 54 1.20 0.050 0.029 0.03 1.023 0.020 1.029 1.084 0.063 1.058 

ψ = -0.5 

S235 54 1.25 0.055 0.029 0.03 1.011 0.012 1.009 1.057 0.049 1.029 

S355 54 1.20 0.050 0.029 0.03 1.022 0.018 1.025 1.074 0.058 1.057 

S420 54 1.20 0.050 0.029 0.03 1.025 0.021 1.026 1.077 0.062 1.059 

ψ = -1 

S235 54 1.25 0.055 0.029 0.03 1.033 0.025 1.000 1.006 0.006 1.007 

S355 54 1.20 0.050 0.029 0.03 1.043 0.030 1.003 1.014 0.009 1.022 

S420 54 1.20 0.050 0.029 0.03 1.045 0.034 1.008 1.015 0.011 1.023 

UDL 

S235 54 1.25 0.055 0.029 0.03 1.016 0.012 1.008 1.018 0.013 1.007 

S355 54 1.20 0.050 0.029 0.03 1.031 0.018 1.020 1.033 0.019 1.019 

S420 54 1.20 0.050 0.029 0.03 1.037 0.020 1.017 1.039 0.021 1.017 

Point load 

S235 54 1.25 0.055 0.029 0.03 1.021 0.013 1.001 1.016 0.011 1.004 

S355 54 1.20 0.050 0.029 0.03 1.034 0.020 1.017 1.029 0.017 1.019 

S420 54 1.20 0.050 0.029 0.03 1.038 0.022 1.016 1.033 0.020 1.017 
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Table 9 Summary of the reliability analysis results for the proposed approach applied to stainless steel members 

subjected to different loading conditions assessed against benchmark FE results 

Load case Grade No. 
fy,mean/ 

fy,nom 
Vfy VWpl,y VE 

Mode imperfection 

e0,mod 

Lateral imperfection 

e0,bow 

b Vδ γM1
* b Vδ γM1

* 

ψ = 1 

A 54 1.20 0.050 0.029 0.03 1.046 0.020 1.004 1.057 0.029 1.008 

D 54 1.10 0.030 0.029 0.03 1.051 0.022 1.040 1.060 0.027 1.042 

F 54 1.15 0.055 0.029 0.03 1.056 0.030 1.047 1.068 0.039 1.055 

ψ = 0.5 

A 54 1.20 0.050 0.029 0.03 1.042 0.020 1.011 1.101 0.053 1.024 

D 54 1.10 0.030 0.029 0.03 1.049 0.026 1.051 1.106 0.052 1.061 

F 54 1.15 0.055 0.029 0.03 1.055 0.033 1.056 1.118 0.067 1.080 

ψ = 0 

A 54 1.20 0.050 0.029 0.03 1.040 0.021 1.014 1.125 0.077 1.069 

D 54 1.10 0.030 0.029 0.03 1.047 0.028 1.056 1.134 0.079 1.118 

F 54 1.15 0.055 0.029 0.03 1.051 0.034 1.061 1.141 0.090 1.133 

ψ = -0.5 

A 54 1.20 0.050 0.029 0.03 1.047 0.028 1.016 1.123 0.083 1.090 

D 54 1.10 0.030 0.029 0.03 1.053 0.033 1.061 1.134 0.088 1.150 

F 54 1.15 0.055 0.029 0.03 1.056 0.038 1.064 1.137 0.095 1.151 

ψ = -1 

A 54 1.20 0.050 0.029 0.03 1.111 0.077 1.081 1.063 0.044 1.033 

D 54 1.10 0.030 0.029 0.03 1.117 0.076 1.124 1.066 0.044 1.074 

F 54 1.15 0.055 0.029 0.03 1.117 0.082 1.128 1.067 0.048 1.077 

UDL 

A 54 1.20 0.050 0.029 0.03 1.051 0.023 1.004 1.055 0.027 1.007 

D 54 1.10 0.030 0.029 0.03 1.057 0.026 1.041 1.061 0.028 1.043 

F 54 1.15 0.055 0.029 0.03 1.062 0.035 1.052 1.066 0.038 1.056 

Point load 

A 54 1.20 0.050 0.029 0.03 1.055 0.026 1.005 1.051 0.024 1.006 

D 54 1.10 0.030 0.029 0.03 1.063 0.029 1.042 1.060 0.027 1.043 

F 54 1.15 0.055 0.029 0.03 1.067 0.038 1.053 1.063 0.036 1.053 

 

 

 

Table 10 Summary of comparisons between ultimate member resistances obtained from different design methods 

for worked examples 

Imperfection e0 Analysis Cross-section check 

Example 1 Example 2 

Mu/Mpl,y Mu/MFE Mu/Mpl,y Mu/MFE 

Benchmark L/1000 + R.S. GMNIA CSM strain limit 0.671 - 0.674 - 

e0,mod GMNIA CSM strain limit 0.663 0.988 0.668 0.991 

e0,bow GMNIA CSM strain limit 0.653 0.973 0.669 0.993 

e0,LT,pl,b-c GNIA Linear plastic check 0.705 1.051 0.619 0.918 

e0,LT,pl,tab GNIA Linear plastic check 0.610 0.909 0.551 0.818 

Member buckling check MEC3 - - 0.569 0.848 0.503 0.746 

 




