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ABSTRACT

The direct analysis method (DAM), featuring second order elastic analysis with two stiffness reduction
factors - 7, and g, is the primary means of stability design for steel structures in AISC 360 and AISI
S100. The equivalent provisions for stainless steel structures, which are due to be incorporated into the
upcoming AISC 370 and ASCE-8 Specifications are developed herein. Stainless steel exhibits a
rounded stress-strain response, typically described by the Ramberg-Osgood formulation. The slope of
this function (i.e. the tangent modulus), adjusted to consider the influence of residual stresses, is used
to define the stiffness reduction factor 7z, at a given axial load level to be applied to members in
compression to allow for the adverse influence of the spread of plasticity and residual stresses. The
dependency of the degree of stiffness reduction on the roundedness of the stress-strain curve, which
varies between the different grades of stainless steel is also directly captured through the strain
hardening exponent n that features in the Ramberg—Osgood formulation. Values of 0.7 for AISC 370
and 0.9 for ASCE-8 are proposed for the general stiffness reduction factor z4 to be applied to all member
stiffnesses to account for the development and spread of plasticity, and to ensure a suitable reduction in
stiffness for slender members with low axial load levels. The different zy values between the two
specifications is required to reflect the different buckling curves and axial-bending interaction
expressions employed. The accuracy of the proposed method for the design of stainless steel members
and frames is assessed through comparisons with benchmark shell finite element results. Comparisons
are also made against the new provisions in AISC 370 for design by second order inelastic analysis.
The reliability of the design proposals is demonstrated through statistical analyses, where it is shown

that a resistance factor ¢ of 0.9 can be adopted.
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INTRODUCTION

The direct analysis method (DAM) in AISC 360 (AISC, 2016b) and AISI S100 (AISI, 2016) uses
second order analysis to determine the internal forces in structures in the deformed configuration. The
influence of material nonlinearity and residual stresses can be accounted for by either (1) performing
an elastic analysis but with reduced stiffness in the members or (2) performing an inelastic analysis. In
the former case, the relative simplicity of elastic analysis is retained, while in the latter case, more
accurate results are achieved. The capacity of members is verified by either (1) buckling checks or (2),
if initial bow imperfections are included in the members of the analysed structure, cross-section checks.
In either case, the need for the determination of effective buckling lengths is eliminated (Deierlein,
2003; Kucukler, Gardner & Macorini, 2014; Surovek-Maleck & White, 2004a; Chan, Liu & Liu, 2011).
Frame out-of-plumbness is accounted for in the analysis through direct modelling or through the
application of notional loads. For design by second order elastic analysis, also referred to as
geometrically nonlinear analysis (GNA), two stiffness reduction factors are defined: (1) a general
stiffness reduction factor with a value of 0.8, referred to herein as zq4, to be applied to all member
stiffnesses to account for the development and spread of plasticity and (2) =, to account for the
additional reduction in flexural stiffness due to the effects of yielding and residual stresses of heavily
loaded compression members. The value of 7y = 0.8 also ensures that the strength of slender members
is similar to that obtained from column buckling curves (Deierlein, 2003). Further studies have been
carried out to derive a single stiffness reduction factor zmy that considers fully the detrimental influence
of spread of plasticity, residual stresses and member out-of-straightness on structural behavior for both
steel (Kucukler, Gardner & Macorini, 2014, 2016, 2015; Kucukler & Gardner, 2018, 2019) and stainless
steel (Shen & Chacén, 2020b, 2020a).

Design by elastic analysis with stiffness reduction has been developed and widely used for carbon steel
structures (Surovek-Maleck & White, 2004a, 2004b; Deierlein, 2003). However, no equivalent design
rules are available for application to stainless steel structures, where the influence of material yielding
is more significant (Walport et al., 2019). The new AISC 370 Specification (AISC, 2021) will
encompass the design, fabrication and erection of hot-rolled and welded austenitic and duplex stainless

steel structures. The provisions closely mirror AISC 360 (AISC, 2016b), but deviate where necessary
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to account for the differences in material behavior between stainless steel and carbon steel and the
resulting influence on structural behavior (Baddoo & Francis, 2014; SCI, 2013). Meanwhile, ASCE-8
(ASCE, 2021), for the design of cold-formed austenitic, duplex and ferritic stainless steel structures,

which is broadly aligned to AISI S100 (AISI, 2016), is also being substantially revised.

In this paper, stiffness reduction factors are derived to enable extension of the direct analysis method to
the stability design of stainless steel structures. The accuracy of the proposed stiffness reduction method
in predicting the capacity of austenitic, duplex and ferritic stainless steel members and frames is
assessed relative to benchmark shell finite element results obtained second order inelastic analysis with
imperfections — also referred to as geometrically and materially nonlinear analysis with imperfections
(GMNIA). Comparisons are also made against a new method of design by second order inelastic
analysis (GMNIA) with strain limits, which is due to be incorporated into AISC 370 (AISC, 2021;
Walport, Gardner & Nethercot, 2021). The reliability of the design proposals is demonstrated through

statistical analyses, and worked examples are presented to illustrate their application.

FINITE ELEMENT MODELLING

Both shell and beam finite element (FE) models are developed in this study; the shell FE models are
utilized to generate benchmark results with which to assess the accuracy of the proposed design
approach, while the beam FE models are used in the application of the stiffness reduction method. In
this section, details of the FE modelling approach employed are presented. The FE models were
developed using the general purpose FE software ABAQUS (ABAQUS, 2014) and validated against

experimental results from the literature, as reported below.

Development of Benchmark Shell Finite Element Models

The generation of benchmark shell finite element results, obtained by means of second order inelastic
analysis with imperfections (GMNIA), is described in this section. The four-noded reduced integration
S4R shell element, from the ABAQUS (ABAQUS, 2014) element library, was employed herein to
create all benchmark models, as successfully adopted in previous similar studies (Meng & Gardner,
2020; Kucukler, Gardner & Macorini, 2015; Bu & Gardner, 2019a). Both welded I-sections and cold-
formed hollow sections were modeled, with the web depth and flange width subdivided into 12 elements
to accurately capture local buckling and the spread of plasticity. The web plate was offset by half the

thickness of each of the flanges such that overlapping of the flange and web plates was avoided. The
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number of elements along the length of the members was defined such that the element aspect ratio was
close to unity. The modified Riks method was used to trace the full load-deformation response of the
modeled members and frames. Pin and roller support conditions were achieved through the coupling of
the member end cross-section nodes to a master node, and in all cases the members were constrained
out-of-plane along the flange centrelines at intervals close to the local buckling half-wavelength L
(Fieber, Gardner & Macorini, 2019b). Note that, mirroring the approach taken in the development of
the equivalent provisions in AISI S100, only cold-formed hollow sections are modeled herein. It is

recommended that open cross-sections are considered in future research.

Geometric imperfections and residual stresses

In the benchmark models, an initial out-of-straightness in the form of a half-sine wave with a magnitude
eo of 1/1000 of the member length L was assumed. For the frames, an initial out-of-plumbness of 1/500
of the frame height was assumed, as recommended in (AISC, 2016a), and applied as a notional load
(Hnu). The geometric imperfections were incorporated into the models in the most unfavourable
directions considering the applied loading and boundary conditions. Sinusoidal local plate
imperfections were defined with an imperfection magnitude of 1/200 and 1/50 of the web height and
half flange width, respectively, as recommended in EN 1993-1-5 (EN 1993-1-5, 2009), and a half-
wavelength close to the elastic local buckling half-wavelength Ly, calculated using the formulae set

out in Fieber, Gardner & Macorini (2019b).

For the I-section models, the residual stress distribution for welded stainless steel I-sections developed
by Yuan et al. (2014) was utilized, noting that stainless steel I-sections are predominately produced by
welding. The residual stresses were modeled explicitly as an initial stress condition; corresponding
plastic strains were also assigned (Kucukler, Xing & Gardner, 2020). An additional analysis step was
included prior to loading to allow the residual stresses to equilibrate. Based on previous experimental
and numerical findings (Ellobody & Young, 2005; Gardner & Nethercot, 2004; Jandera, Gardner &

Machacek, 2008), residual stresses were not included in the hollow section FE models.

Material modeling

The stress-strain behavior of the modeled members and frames was described using the two-stage
Ramberg-Osgood formulation (Arrayago, Real & Gardner, 2015; Mirambell & Real, 2000), as given
by Egs. (1) and (2):
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where ¢ and f are the engineering strain and stress respectively, Fy is the yield (0.2% proof) stress, E is
the Young’s modulus, Fy is the ultimate stress, Ery is the tangent modulus at the yield (0.2% proof)
stress, defined by Eq. (3), & is the ultimate strain estimated as &, = 1 — Fy/F, for austenitic and duplex
stainless steel and as &, = 0.6(1 — F,/Fy) for ferritic stainless steel, and n and m are the strain hardening
exponents. In this study, typical grades of austenitic, duplex and ferritic stainless steel have been
considered and the key material properties recommended in (AISC, 2021; ASCE, 2021) have been

adopted, as summarised in Table 1.

_ E
Y ™ 140.002nL
Fy

©)

Validation of shell finite element models

To validate the adopted shell finite element modeling approach, the 12 experiments of (Bu & Gardner,
2019b) on austenitic stainless steel I-section beam-columns were simulated. The testing comprised pin-
ended members under uniaxial major or minor axis bending plus compression, with the initial loading
eccentricities varied to provide a range of moment-to-axial load ratios. For the minor axis bending cases,
the member slenderness L/ry, where L is the member length and ry is the radius of gyration about the
minor axis, was equal to 95.9; for the major axis bending cases, the member slenderness L/ry, where ry
is the radius of gyration about the major axis, was equal 57.0. The measured geometry and local and
global imperfection amplitudes were incorporated into the FE models, along with the measured stress-
strain response. Fig. 1 shows the experimental and numerical lateral deflection paths for five (three
buckling about the major axis and two about the minor axis) of the 12 cases; the responses are
consistently in close agreement. In terms of the failure load predictions, the mean FE-to-test ultimate
load ratio was 0.99 and 0.98 for the six major and six minor cases, respectively, with corresponding
COV values of 0.057 and 0.053, respectively. In addition to the accurate capacity predictions
demonstrated herein, the adopted shell FE modeling approach has also been shown to provide accurate
results in a number of previous studies (Meng & Gardner, 2020; Kucukler, Gardner & Macorini, 2015;
Bu & Gardner, 2019a). The shell FE models are thus considered to be suitable for the generation of

benchmark results against which to assess the design provisions proposed in this paper.

5
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Development of Beam Finite Element Models

The 2-noded linear Timoshenko beam elements B310S and B31, from the ABAQUS element library,
were employed to create beam FE models with open and closed cross-sections, respectively, for
implementation of the proposed design approach. Models were created of columns, beams, beam-
columns and frames. In the developed frame models, the members were connected via fixed multi-point
constraint ties at their ends providing full continuity. Results from the beam FE models were compared
against those from shell FE models to ensure that the key member-level and frame-level behavioral
features were accurately captured; this is demonstrated in Fig. 2, where load-deformation paths of an
example austenitic stainless steel fixed based portal frame are compared. To account for the finite size
of the rigid beam-to-column connections in the benchmark shell FE simulations, the member lengths in
the beam FE models were shortened and rigid *MPC, Beam links were used to represent the connection
region, as shown in Fig. 2a (Fieber, Gardner & Macorini, 2020). It can be seen that the shell and beam

FE models provide essentially the same global response predictions.

DERIVATION OF STIFFNESS REDUCTION FACTORS FOR DESIGN BY SECOND ORDER

ELASTIC ANALYSIS

In this section, stiffness reduction factors for the design of stainless steel structures by second order
elastic analysis (GNA) are derived. The factors are derived in line with those for carbon steel members
set out in AISC 360 (AISC, 2016b), but reflect the particular characteristics of stainless steel. The

proposals are due to be incorporated into AISC 370 (AISC, 2021) and ASCE-8 (ASCE, 2021).

Stiffness Reduction Factor =,

The stiffness reduction factor z, accounts for the effects of yielding and residual stresses on the flexural
stiffness of compression members; it should be applied by reducing the moment of inertia (second

moment of area) of the columns and is a function of the level of axial loading.

Existing provisions for steel structures

In AISC 360 (AISC, 2016b), the stiffness reduction factor 1, is given by Eq. (4) for steel structures and
was derived from the Column Research Council (CRC) column strength curve (Lui & Ge, 2005), where
Pr is the required axial compressive strength using LRFD or ASD load combinations and Py is the

cross-section compressive strength; for nonslender sections Pns = FyAg, where Fy is the yield stress and
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A is cross-sectional area, and for slender sections Py = FyAe, Where Ac is the effective cross-sectional

area.
(10 ;-<05
Tl (1-8)  Zsos “

The expression was obtained from the ratio of the inelastic to the elastic column buckling capacity
(Yura, 1971; Liew, 1992), which can, broadly, be considered to follow the tangent modulus concept
(Liew, White & Chen, 1994; Orbison, 1982; Liew, 1992; Deierlein, 2003; Lui & Ge, 2005). The
reduction factor reflects the material behavior of carbon steel and the presence of residual stresses; for
axial load levels less than half of the cross-section yield load, there is no stiffness reduction. Stiffness
reduction commences beyond this value as plasticity develops at the outer fibres of the cross-section
owing to the presence of residual stresses with peak values in compression assumed to be equal to one-
half of the yield strength Fy (Orbison, 1982). The level of stiffness reduction increases under increasing
axial load. Since =, is a function of the axial load level, it must be applied iteratively in the design
process; the resulting forces and moments from the analysis are only true at the load level assumed in
the calculation of z,. However, this step is often not needed because for steel design, z, only applies at
relatively high axial load levels P/Pns > 0.5 (Surovek-Maleck & White, 2004a). Since Eq. (4) i.e. the
CRC column curve does not consider member out-of-straightness in its derivation, allowance for these

bow imperfections is needed either through member checks or through direct modelling in the analysis.

Development of new provisions for stainless steel structures

A stiffness reduction function for stainless steel compression members to account for the influence of
plasticity z,m can be directly derived from the Ramberg-Osgood expression (Eq. (1)). Defining the
stiffness reduction factor due to material nonlinearity as the ratio of the tangent to the Young’s modulus,

mm = EJ/E, where E; = df/de and f = P/A, the following expression is obtained:

1
Thm = E / P\ 1 (5)
1+0.002n§(},—;)

where P; is the required axial compressive strength using LRFD or ASD load combinations and Py is

the cross-section compressive strength.

To consider the additional contribution to stiffness reduction of residual stresses, expressions for z, for

buckling about the major and minor axis were calibrated against the major (x-x) and minor (y-y) axis
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tangent flexural stiffness reduction obtained from finite element models of stainless steel welded I-
section stub columns with residual stresses. A W8x31 cross-section, divided into n = 1440 monitoring
areas (each of area Aj, distance to centroid in the x and y direction y; and x;, and tangent stiffness E;),
was subjected to pure axial compression. For each axis of buckling (x-x and y-y), the numerical stiffness
reduction factor z, e Was calculated through the summation of the contribution of each element i to the

flexural stiffness, as given by Egs. (6) and (7).

T — Z?=1 Et,iAiyl'Z (6)
b,x,FE Z?=1 EAiin

2
T — Zln=1 Et,iAixi (7)
b,y,FE Z?=15Aixi2

The proposed stiffness reduction factor ,, accounting for the combined effects of material nonlinearity
and residual stresses, was derived on the basis of Eq. (5), but with the strain hardening exponent n
modified to an effective strain hardening exponent nes to allow for the influence of residual stresses by
calibration against the results of Eqgs. (6) and (7) for the different axes of buckling. The proposed
expression for 7, is given by Eq. (8) and illustrated in Fig. 3, while the values of the effective strain

hardening exponents ne are presented in Table 2.

1

Tb = i)neff—l (8)

1+0.002neff%(Pns
The differing values of nes for the different buckling axes reflect the fact that the flexural stiffness is
reduced more severely for the minor axis than the major axis due to the more detrimental influence of
the compressive residual stresses at the flange tips, as seen in Fig. 3. In the case of rectangular hollow
structural sections (HSS), since the residual stresses are small, the ratio of the tangent flexural stiffness
to the initial elastic flexural stiffness can be assumed to equal to zum (i.€. neir equal to n). To retain the
same demarcation between cross-sections as the AISC 370 flexural buckling curves (see Table 4), the

stiffness reduction function for welded box sections and round HSS is taken equal to that for I-sections

buckling about the major axis.

Since neg is a function of n, the varying degrees of roundedness of the stress-strain curves for the
different grades of stainless steel (with the typical austenitic grade 304, duplex grade S32101 and ferritic
grade 410S studied herein) is reflected in m, as shown in Fig. 4. Alongside the proposed stiffness
reduction factors, the carbon steel stiffness reduction factor, given by Eq. (4), is also presented in Fig.

4. It can be seen that, unlike in AISC 360 (AISC, 2016b), the stiffness reduction for stainless steel

8
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commences from the onset of loading. This stems from the stiffness reduction function being based on
the Ramberg-Osgood material model, which features a contribution from the nonlinear term
(0.002(f/Fy)n in Eq. (1)) at all stress levels, despite the actual material response being purely elastic
in the initial stages. Nonetheless, the early onset of stiffness reduction is an accurate reflection of the
inherent rounded stress-strain response of stainless steel, exacerbated by the influence of the residual
stresses. The greatest reduction at low to moderate axial load levels occurs for austenitic stainless steel,
mirroring the low limit of proportionality and the low value of the strain hardening exponent n, resulting
in the highest degree of nonlinearity of stress-strain response among the three main families of stainless

steel.

In ASCE-8-20 (ASCE, 2021), for the design of cold-formed stainless steel structural members, a single
column curve, corresponding to that for the minor axis buckling of I-sections in AISC 370, is provided;
the value of nes for this case is therefore proposed for inclusion in ASCE-8 (ASCE, 2021), as given in

Table 2, and presented in Fig. 5 for the typical grades of stainless steel.

Amplified Notional Load Approach

Application of the stiffness reduction method is inherently an iterative process; the stiffness reduction
factors 7, are calculated at the load level of interest and the results of the subsequent second order
analysis (GNA) are only valid at that same load level. An alternative, simpler approach that avoids the
need for iteration is to replace the use of 1, factors (i.e. by setting z, = 1.0 for all members) with the
application of additional notional horizontal loads (Hani). The enhanced notional loads are designed to
account indirectly for the effect of the spread of plasticity and residual stresses on the global response
of the structure. However, since the additional notional loads impact the behavior of the full structure,
rather than just the heavily loaded members, overly conservative resistance predictions can result when

P-4 effects are significant.

Existing provisions for steel structures

In AISC 360 (AISC, 2016b), additional notional loads of magnitude 0.001 of the total factored gravity

loads acting at each story of structural frames are defined.

Development of new provisions for stainless steel structures
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The stiffness reduction factors z, derived for stainless steel herein are more severe than those for carbon
steel, reflecting the earlier initiation of yielding of the material. A commensurate increase in the
additional notional horizontal load (Han.) from 0.001 to 0.002 of the total factored gravity load applied
at each story of structural frames is therefore proposed for inclusion in both AISC 370 and ASCE-8 for
stainless steel design. The appropriateness of this proposal is demonstrated in subsequent sections (see

also Tables 7, 9, 11-13 and Figures 6, 8, 11 and 13).

Stiffness Reduction Factor =y

The general stiffness reduction factor 7y accounts for the reduction in member stiffness due to the
development and spread of plasticity; it is applied to all members in the structure by uniformly reducing
the Young’s and shear moduli. For structures that are governed by elastic buckling, the z4 factor results

in design strengths approximately equal to z4 times the elastic stability limit.

Existing provisions for steel structures

In AISC 360, a reduction factor zy of 0.8 is prescribed to account for the reduction in stiffness due to
plasticity. The value of 0.8 was derived from benchmark studies presented by (Surovek-Maleck, 2001;
Surovek-Maleck & White, 2004b) considering a 0.9 factor for strong-axis beam-column strength
predictions and its multiplication by ¢ (0.9). Note that these studies showed that a value of 0.7 (0.89) is
required for weak axis bending. For slender members, where z, is equal to unity, the 0.8 factor results
corresponds approximately to the margin of safety implied in the column curves i.e. 0.8 = 0.9 x 0.877

(Deierlein, 2003; Surovek-Maleck & White, 2004a).

Development of new provisions for stainless steel structures

In this study, 7y has been calibrated against benchmark results from the nonlinear shell finite element
analysis of a series of stainless steel columns, beams, beam-columns and portal frames, considering
different cross-section shapes and a range of slenderness values, axial load-to-bending ratios and
column-to-beam stiffness ratios for the frames. Based on an extensive range of comparisons, presented
in subsequent sections, a value of 7y = 0.7 is proposed, as given in Table 2. Note that a single value of
14, @S employed for carbon steel in AISC 360, is deemed suitable for all grades of stainless steel, with
the value of 0.7 being roughly equal to the minimum flexural buckling coefficient 5, (see Table 4) that

controls the flexural buckling strength of slender columns.

10
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In ASCE-08 (ASCE, 2021), for the design of cold-formed stainless steel structural members, a stiffness
reduction factor 74 equal to 0.9 is recommended, as given in Table 2. The difference between the
proposed value of 7y for AISC 370 and ASCE-08 reflects the different cross-section force-moment
interaction equation, the different column buckling curves and the different moment capacities between
the two codes. Note that while z; = 0.9 is larger than the corresponding value of 0.8 used in AISC 360
for steel, since =, drops below unity at low axial load levels for stainless steel, unlike the case for steel
where 7, = 1.0 up to P = 0.5Py, the overall stiffness reduction (i.e. zqz) is similar between the two

materials for slender members (i.e. low axial load levels).

DESIGN BY SECOND ORDER ELASTIC ANALYSIS

In design by second order elastic analysis (GNA), the stiffness reduction factors are employed to
recognise the influence of plasticity and residual stresses. The resistance of the members must be
subsequently verified either by member buckling checks or, if initial bow imperfections are included in
the members of the analysed structure, cross-section checks. In all cases, an out-of-plumbness ratio of
1/500 must be either directly modeled or applied as a set of equivalent notional loads of magnitude
equal to 0.002 times the total gravity load applied at each story of the structure (Hn). In Table 3, four
options, referred to as Design Cases 1, 2, 3 and 4 and abbreviated to DC1, DC2, DC3 and DC4, for
design by second order elastic analysis (geometrically nonlinear analysis, GNA — DC1, DCz2;
geometrically nonlinear analysis with imperfections GNIA — DC3, DC4) are detailed. Design Cases 1
and 2 require member checks, while Design Cases 3 and 4 include member imperfections and therefore
resistances can be verified with cross-section checks only. To take account of the additional capacity
due to strain hardening, Design Case 4 utilizes the continuous strength method given in Appendix 2 of

AISC 370 and Section 6 of ASCE-8.

Member Buckling Checks

In Design Cases 1 and 2, flexural buckling is accounted for through member buckling checks and the
required compressive strength P is taken as the nominal compressive strength equal to the critical stress
Fer multiplied by the cross-section area A. In this study, the critical stress F¢ has been determined using

the revised column curves included in AISC 370 (AISC, 2021), and given by Eqgs. (9)-(11):

Fr=F for éSﬁo = (9)

11
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Fr=12 </31 Fe )Fy for ﬁOJ:—y <-< 5.62J:—y (10)

E, =pBE for L>562 \/E (11)
T Fy

where Fy is the yield stress, E is the modulus of elasticity, Fe is the elastic buckling stress given by Eq.
(12):

F, = W (12)
where L is the effective member length, equal to the laterally unbraced length of the member multiplied
by the effective length factor K, r is the radius of gyration, and «, fo, 1 and . are the flexural buckling
coefficients, as defined in Table 4 (Meza, Baddoo & Gardner, 2021). Note that the effective length for

flexural buckling of all members is taken as the unbraced length herein i.e. K =1 (AISC, 2021).

Unlike in AISC 360, these curves take account of the varying influence of residual stresses by
differentiating between the different axes of buckling and cross-section shapes, in a similar manner to
EN 1993-1-4 (EN 1993-1-4:2006 + Al:, 2015; Afshan et al., 2015). Additionally, the curves include a
plateau, as defined by Eq. (9), for members with low slenderness L/r; this recognises that the strength

of short stainless steel members exceed the yield load as a result of strain hardening.

In ASCE-8, a single flexural buckling curve is given for all cross-section shapes. The curve is the same
as that given in AISC 370 for the minor axis flexural buckling of I-section members but with an

allowance for capacities in excess of the yield load for members with low slenderness (i.e. members
satisfying L/r < Bo/E/E)).

The flexural strength of members should be calculated considering the limit state of yielding, local
buckling and lateral-torsional buckling. For the in-plane bending of beams with compact cross-sections,
only the limit state of yielding needs to be considered and the nominal flexural strength M is given as
FyZ, where Z is the plastic section modulus about the axis of bending. Note that stainless steel exhibits
substantial levels of strain hardening; in strength governed cases capacities can far exceed the plastic
moment capacity M,. This benefit is captured in the continuous strength method, which features in the

provisions of both AISC 370 and ASCE-8, as discussed in the following section.
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For combined loading, the nonlinear interaction curve given by Egs. (13) and (14), is employed in both
AISC 360 (AISC, 2016b) and 370 (AISC, 2021), while in ASCE-8 (ASCE, 2021) the linear interaction

curve given by Eq. (15) is used.

By <10 for Z>02 (13)
Py, 9M, Py
L™ <10 for Z<o2 (14)
2P, My Py

T <10 (15)

where P, and M; are the required compressive and flexural strengths, respectively, and P, and M, are

the nominal compressive and flexural strengths, respectively.

For Design Cases 1 and 2, for the example case of members with compact cross-sections, the resistances

are therefore verified (according to AISC 370 design) using Egs. (16) and (17).

P, , 8 M, P,

rod + 572 <10 for o >0.2 (16)
P My P,
Fd + Y <10 for oA < 0.2 a7

Since the influence of the spread of plasticity and residual stresses are accounted for through stiffness
reduction and the influence of out-of-plumbness on the structural response is considered through direct
modeling or by the application of notional horizontal loads in a second order analysis, unbraced member

lengths are used in the member checks (Deierlein, 2003; Kucukler, Gardner & Macorini, 2014).

Cross-section Checks

If member bow imperfections are included in the structural model, member instability is directly
captured in the second order analysis and only cross-section strength checks are required to verify the
capacity of the structure. This method is set out in Appendix 1 of both AISC 360 (AISC, 2016b) and
370 (AISC, 2021). The cross-section strength check is performed using Egs. (13) and (14), but with the
nominal compressive strength of the member P, taken as the cross-section compressive strength FyA,
where A is the cross-section area, or as FyA. for members with slender elements, where A. is the effective
area of the cross-section; the resulting cross-section interaction curve is given by Egs. (18) and (19) for

the case of compact cross-sections. This method is referred to herein as Design Case 3 — see Table 3.

P88 <10 for Z>02 (18)
FyA = 9F,Z Fy
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B <10 for <02 (19)
2F,A  FyZ FyA

Note that in AISC 360 (AISC, 2016b), the use of additional notional loads in place of stiffness reduction

through =, is not permitted with the method described in this sub-section; the same restriction is applied

in AISC 370 (AISC, 2021).

Continuous strength method

The continuous strength method (CSM) is a deformation based design approach that enables a rational
exploitation of the spread of plasticity, strain hardening and element interaction in the design of stainless
steel cross-sections (Afshan & Gardner, 2013; Gardner, 2008). The method is set out in Appendix 2 of
AISC 370 (and is also included for the calculation of flexural strength in Chapter 6 of ASCE-8), and
can be used for the verification of members with initial bow imperfections through second order elastic
analysis (GNIA) plus CSM cross-section checks. This method of design is referred to as Design Case
4 —see Table 3. The same interaction equations (i.e. Egs. (13) and (14)) apply, but with the CSM cross-
section resistances in compression Pncsm and bending Mncsm Used in place of P, and M, to give:

P, 8 M,

+ <10 for =>0.2 (20)
Pn,r:sm 9 n,csm Pn,csm
Py M <10 for <02 (21)
2Pn,r:sm Mn,csm Pn,csm
where Pncm is given by:
— Ecsm Ecsm
Bycsm = : KA,  for e <10 (22)
Procsm = FesmAg ~ for =2 >1.0 (23)
y
and My csm IS given by:
My csm = 52 M, for Zm <10 24
n,csm — ey y or ey . ( )
a
_ Esh S (Ecsm _ _ S Ecsm Ecsm
My com = M, (1 +2 Z( ~ 1) (1 Z)/( ~ ) ) for > 10 (25)

where Fen is the CSM design stress, as given by Eq. (26), e, is the yield strain equal to F,/E, Esh is the
strain hardening modulus, as given by Eq. (27), where C is equal to 0.16 for austenitic and duplex
stainless steel and 0.45 for ferritic stainless steel, My is the elastic moment capacity, M, is the plastic

moment capacity, S is the elastic section modulus, Z is the plastic section modulus, and &, is the ultimate
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tensile strain, estimated as e, = 1 — Fy/F, for austenitic and duplex stainless steel and as &, = 0.6(1 —

Fy/Fy) for ferritic stainless steel.

Foom = F, + Eoney (Ejym _ 1) for  fm> 19 (26)
_ FF
Esh - Cagu—ey (27)

The ratio ecsm/ey defines the maximum strain that the cross-section can tolerate ecsm as a multiple of the

yield strain, and is obtained from Gardner, Wang & Liew (2011):

Zom — 025 < min (A, ﬁ) for 2, <0.68 (28)
Ey Al sy
E% _ (1 _ ‘31112552)?105 for 0.68 <1, <16 (29)

Egs. (28) and (29) are applicable to non-slender and slender cross-sections, respectively, where A;
(denoted /Tp,cs in prEN 1993-1-4 (prEN 1993-1-4, 2020)) is the cross-sectional slenderness, C: is equal
to 0.1 for austenitic and duplex stainless steels and 0.4 for ferritic stainless steels (Afshan & Gardner,
2013; Bock, Gardner & Real, 2015), and A (denoted Q in EN 1993-1-4 (prEN 1993-1-4, 2020)), is a
project specific design parameter defining the maximum allowable level of plastic deformation (Fieber,

Gardner & Macorini, 2019a). For design by elastic analysis with stiffness reduction, A is equal to 5.

DESIGN BY SECOND ORDER INELASTIC ANALYSIS

The most accurate representation of the behavior of a structure, leading to the most accurate design
method, is achieved through the use of second order inelastic analysis — also referred to as geometrically
and materially nonlinear analysis with imperfections (GMNIA). In this approach, the influence of the
material nonlinearity on the structural response is directly modeled through the definition of the full
stress-strain curve of the material in the second order analysis. Plastic hinges do not provide an accurate
reflection of the gradual spread of plasticity seen in stainless steel structures. It is therefore necessary
to account for the zones of plasticity by directly modeling the nonlinear material stress-strain response
in a plastic zone, also known as distributed plasticity or fibre, analysis (Walport et al., 2019). A new
method for the design of stainless steel structures by second order inelastic analysis with imperfections
(GMNIA), performed using beam finite element analysis is included in Appendix 1 of AISC 370 (AISC,
2021; Walport, Gardner & Nethercot, 2021). This corresponds to Design Case 5 (DC5) in Table 3. In

this design method, accurate material modeling is ensured through use of the two-stage Ramberg-
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Osgood expression, while cross-section strength checks are replaced by the application of strain limits.
The strain limits depend on the slenderness of the cross-section. Consequently, cross-section
slenderness dependent levels of spread of plasticity, moment redistribution and strain hardening can be
exploited, in a consistent and rational manner enabling accurate predictions of the resistance of
structural systems. The strain limits are taken from the CSM, as given by Egs. (30) and (31), where fis
the maximum stress level in the cross-section and n is the strain hardening exponent of the Ramberg—
Osgood material model. Note that these Equations differ from the CSM base curve given by Eqgs. (28)
and (29) to account for the difference between the bilinear and rounded stress-strain curves. Also, a
stricter limit is placed on the maximum value of 4 (1.0 instead of 1.6) for system level design by second

order inelastic analysis (GMNIA).

foom _ 025 1 0002 pyy fem < A for 2, < 0.68 (30)
&y A &y &y

e = (122 e ST g ggn< < 10 &
y l 1 y

To allow for the beneficial influence of moment gradients, the maximum compressive strains output
from the second order inelastic analysis (GMNIA) at each cross-section are averaged over the elastic
local buckling half-wavelength Le, denoted Lycs in prEN 1993-1-4 (prEN 1993-1-4, 2020), (Fieber,
Gardner & Macorini, 2019a; Walport, Gardner & Nethercot, 2021). The elastic local buckling half-
wavelength of the cross-section Le may be obtained numerically or using the simplified expressions
given in Fieber, Gardner & Macorini (2019b) — the magnitude of the elastic local buckling half-
wavelength will normally be in the region of the cross-section plate widths. The value of L also defines

the maximum length of the beam elements to be utilized in the analysis.

Initial geometric imperfections and residual stresses must be considered in the analysis and can be
modeled as either (1) a member bow imperfection of magnitude L/1000, where L is the member length,
plus residual stresses, or (2) an equivalent member imperfection that accounts for the combined
influence of geometric imperfections and residual stress, as given by Eq. (32), where eg is the bow
imperfection magnitude, aeq is the imperfection factor (prEN 1993-1-4, 2020), the values of which are

given in Table 5 for common cases, and f = 1/150 (Walport, Gardner & Nethercot, 2020).

e e 1
TO = pqff  but TO = 1000 (32)
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Through this method of design by second order inelastic analysis with imperfections (GMNIA), failure
of a system occurs either at the load level at which the CSM strain limit is reached, or, in stability
dominated cases, at the load level at which the analysis reaches a peak (Walport, Gardner & Nethercot,

2021).

ASSESSMENT OF PROPOSALS FOR MEMBER DESIGN

The accuracy and reliability of the developed recommendations for the design of stainless steel
columns, beams and beam-columns is assessed in this section with respect to the benchmark shell FE

ultimate loads determined using GMNIA.

Results

In this section, the results of the elastic and inelastic design methods, as outlined in Table 3, are
compared against benchmark shell FE results for austenitic, duplex and ferritic stainless steel columns,
beams and beam-columns. Note that Design Case 2 is not considered in this section as this only relates
to analyses at system level. Design Cases 1, 3 and 4 incorporate the developed stiffness reduction factors
combined with elastic analysis, while Design Case 5 utilizes inelastic analysis. These are summarised
as follows - DC1: GNA + 74 + 7, + member check, DC3: GNIA + 74 + 7, + cross-section check, DCA4:
GNIA + 74 + 7, + cross-section check + CSM end points and DC5: GMNIA (equivalent imperfections)

+ CSM strain limits.

Table 6 presents the results from the austenitic, duplex and ferritic stainless steel W8x31 and

SHS8x8x%3/8 cross-section beam-columns considered in this study. Five member slenderness values

L/r (20, 40, 80, 120 and 160), where L is the member length and r = \/I/_A is the radius of gyration with
I being the moment of inertia (second moment of area) and A the cross-sectional area, and three bending
moment distributions (BMD) along the member length (BMD 1: w =1, BMD 2: w =0, BMD 3: y = -
0.5), achieved by changing the ratio of applied end moments y = MJ/M1, where M; and M; are the
applied end moments, were considered. Note that for the duplex stainless steel members, which have
higher strengths than other grades and hence are more strongly influenced by buckling effects for a
given geometry, only the practical L/r ratios of 20, 40 and 80 were considered. It can be seen that for
all grades of stainless steel, the proposed stiffness reduction factors 7, and zq4 result in generally safe
sided average capacity predictions compared with the benchmark shell FE results (ranging between

27% on the safe side to 6% on the unsafe side).
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Fig. 6 shows a comparison between the capacity predictions of the austenitic stainless steel W-section
columns, beams and beam-columns subjected to major axis bending obtained using the four design
approaches and the benchmark shell FE results. The results are presented in terms of the radial error
versus the radial angle, as defined in Fig. 7, where Ree and Ry are the radial distances measured from
the origin to the data points in M—N space determined from the benchmark FE model and the considered
design approach, respectively. Values of radial error larger than unity indicate safe-sided predictions.
A radial angle of 0° corresponds to pure bending while a radial angle of 90° corresponds to pure
compression. The level of scatter in the predictions (either side of the mean) of Design Cases 1 to 4 is
similar to that obtained using the equivalent rules for carbon steel structures (Surovek-Maleck & White,
2004b; Ziemian & Wang, 2019). The scatter is related, in part, to the use of a uniform zy and the lack
of consideration given to the influence of the shape of the bending moment diagram on the development
of the plasticity (Kucukler, Gardner & Macorini, 2016); this can be seen in the results presented in Table
6 and Fig. 6, which become increasingly conservative with increasing bending moment gradient i.e
transitioning from BMD 1 to 3. Additionally, while the significant strain hardening effects associated
with stainless steel are fully captured through accurate material modeling in the benchmark shell FE
results, they are essentially disregarded in Design Cases 1-3 and partially reflected through the use of
the CSM end points in Design Case 4. From Fig. 6, it can be seen that when the radial angle is between
0° and 50°, there are a number of capacity predictions on the unsafe side. This is because, for members
subjected to high levels of bending, particularly those of stocky proportions, the real degree of stiffness
reduction is greater than that obtained using the proposed design approach, but applying more severe
stiffness reduction (i.e. a lower value of zg) would render the capacity predictions of slender members
and those dominated by compression very conservative. A balance has therefore been struck, with 75 =
0.7 for AISC 370 and z; = 0.9 for ASCE-8, the appropriateness of which is demonstrated in the reliability

analyses presented in the following sub-section (see also Table 6).

Design Case 5, in which the full nonlinear stress-strain response is explicitly modeled and the influence
of moment gradients is captured through strain averaging provides very accurate and consistent results
for all three loading arrangements. Note, in particular, that the standard deviation of the radial error is
considerably lower for DC5 than all cases of design by second order elastic analysis (GNA/GNIA),

ranging between 0.03 and 0.07, compared with 0.04 and 0.21 for DC1-4 — see Table 6.

18



500

501
502
503
504
505

506

507
508
509
510
511
512
513

514

915
516
517
518
519
520
521
522
523
524
525
526
527

Reliability Analysis

The safety of the proposed structural design provisions are assessed in this sub-section. Values of the
resistance factor ¢ have been calculated from Eq. (33) for each dataset, based on a target reliability
index £ equal to 2.6 and a dead-to-live load ratio of 1:3 (SCI, 2013; Bartlett et al., 2003; Lin, Yu &
Galambos, 1992). The recommended value for the resistance factor ¢ is 0.9 and this is therefore taken
as the target value in the present study.

1.481 My, Fy, Py

exp(ﬁ V1%+V5>

In Eq. (33), Mm, Fn and Py, are the mean values of the random variables associated with material
properties, cross-section geometry and design rule assumptions, respectively, and Vg and Vq are the
coefficient of variation of the load effect Q and resistance R, respectively. The coefficient of variation
of the resistance Vg is calculated from Eq. (34), where Vu, Ve and Ve are the coefficients of variation
associated with the uncertainties in material properties, fabrication and design rule assumptions,
respectively. The parameters considered in this study are given in Table 7 (Afshan et al., 2015; Baddoo,

Meza & Gardner, 2020).

Ve =Vi+VZ+VE (34)
The calculated required ¢ factors are presented in Table 6, where it can be seen that all values are greater
than the value of 0.9 included in AISC 370, and therefore the target reliability is achieved. In some
cases, the ¢ factors are well in excess of 0.9 (with a maximum ¢ value of 1.24), suggesting over-
conservatism. However, as well as achieving desirable ¢ factor values, weight was also given to
ensuring that the mean capacity predictions for the different groups considered were not too much on
the unsafe side (i.e. with an average ¢ ratio below unity) and similarly, that capacities of individual
members were not excessively over-predicted. It should also be noted that stainless steels have high
over-strength factors (see Table 7) which, in the AISC reliability analysis framework, uniformly benefit
all members, regardless of their slenderness and the applied loading, while in reality, the benefit of
overstrength dissipates with increasing slenderness as instability dominates. Overall, the attained ¢
factors are similar to those achieved in the reliability assessment of the other design provisions in AISC
370 (AISC, 2021), as outlined in DG27 (SCI, 2013). A resistance factor of 0.9 is therefore

recommended.
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APPLICATION OF METHOD TO STRUCTURAL FRAMES

In this section, the accuracy of all five design cases, including Design Case 2 (GNIA + 75 + Hane +
member check), for the in-plane design of stainless steel frames is assessed. As previously outlined, an
alternative to applying the stiffness reduction factors =, which is an iterative process, is to impose
additional notional horizontal loads (Hanc) of magnitude 0.002 of the total factored gravity load applied
at that story of the structure. Fig. 8 shows a comparison of the results of a one bay fixed based austenitic
stainless steel (Fy = 205 N/mm?, E = 193000 N/mm?) portal frame obtained from (1) benchmark shell
FE GMNIA and (2) Design case 2 i.e. second order elastic analysis (GNA) with no member
imperfections modeled, a stiffness reduction of 7, applied to all members, a notional horizontal load of
magnitude 0.002 times the vertical load (to represent out-of-plumbness), an additional notional
horizontal load (Han.) Of the same magnitude and member checks, in which Pns and M, correspond to
the column buckling resistance and major axis plastic bending moment resistance of the columns,
respectively. The ratio of the column height L. to beam length L, was fixed at 1:3, resulting in a ratio
of the flexural stiffness of the columns to that of the beams of Gg = (I/Lc)/(Iv/Lb) = 1.0, while three
column lengths were modeled to achieve a range of member slenderness values L/r. It can be seen in
Fig. 8 that the stiffness reduction method with additional notional loads (Han) results in safe sided
predictions in all cases. The level of conservatism increases as the bending moment increases. This is
the result of two limitations to the approach: (1) the additional notional load (Han) does not consider
the variation in axial load level between members, as captured in z,, and therefore effectively applies to
members on the basis of their contribution, through their elastic stiffnesses, to the lateral stability of the
frame and (2) the member check limits the bending capacity to the plastic moment capacity M,, while

the benchmark shell FE model captures the beneficial influence of strain hardening.

Vogel Frame

In this sub-section, the second order elastic (DC1 to DC4 — GNA/GNIA) and inelastic (DC5 — GMNIA)
design methods presented herein are applied to the six-story Vogel frame (Vogel, 1985), as shown in
Fig. 9, with austenitic stainless steel material properties (E = 193000 N/mm?, Fy = 205 N/mm?, F, =515
N/mm?, n = 7). The benchmark frame response was determined using second order inelastic analysis
with imperfections (GMNIA - L/1000 + residual stresses) using beam finite elements. Beam elements
were deemed to be acceptable in the benchmark model since the behavior of the Vogel frame is

controlled by overall stability, rather than cross-section strength, and a very similar result would
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therefore be expected from a shell FE simulation. Fig. 10 shows the load-deformation path of the Vogel
frame; for validation of the modeling approach, a GMNIA of the Vogel frame was also carried out using
the original steel material properties (E = 205000 N/mm?, F, = 235 N/mm?) and plotted alongside the

original response presented by Vogel (Vogel, 1985) — a close match can be observed in Fig. 10.

The ultimate design load factors for the Vogel (Vogel, 1985) frame apc, calculated as the load level for
which the utilisation ratio of the critical member reaches unity for the different design cases (DC1-5),
along with benchmark ultimate load factor obtained from GMNIA, are presented in Table 8 and shown
in Fig. 11. The apc values were determined through iteration for Design Cases 1, 3 and 4, with the
stiffness reduction factors recalculated considering the first-order member forces at the load factor apc.
The capacity predictions for Design Cases 1 to 4 are safe sided and are of similar accuracy to those
determined for the equivalent frame in carbon steel by Kucukler, Gardner & Macorini (2016) — average
predicted-to-FE capacity ratios of 0.99 to 1.07 compared with 1.02 and 1.06 for the direct analysis
method (equivalent to DC1) and notional load method (equivalent to DC2), respectively, for carbon
steel. The behavior of the frame is best represented by DCS5 since all material and geometric
nonlinearities are explicitly modeled, leading to the most accurate prediction of both the distribution of
internal forces and moments and structural capacity. Note that the load-deformation path of DC5 differs
from the benchmark response due to the use of equivalent geometric imperfections in DC5 (Eg. (32))
instead of the explicit modeling of both geometric imperfections (L/1000) and residual stresses in the

benchmark model.

The stiffness reduction factors z, for Design Cases 1-4 at the ultimate system load (i.e. when the critical
member had a utilisation equal to unity) for each member in the Vogel frame are presented in Table 9.
It can be seen that the middle columns of each story have the lowest stiffness reduction factors,
representing the highest level of plasticity. Note that 7, is only applied to the flexural stiffnesses (i.e. by
reducing the second moments of areas) of the columns while z; = 0.7 is applied uniformly to all members

through the reduction of the Young’s modulus E and shear modulus G.

As well as the ultimate design load, it is important to consider the accuracy of the prediction of the
distribution of forces and moments within the frame. Table 10 presents a comparison of the maximum
normalised bending moments within the members of the VVogel frame determined at the ultimate system
loads for the five design cases considered. The maximum bending moment in each member at the

ultimate system load Mpc is presented normalised by the plastic moment capacity My (i.e. Mpc/Mp) of
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the member, as well as by the corresponding bending moment obtained from the benchmark GMNIA
Mewmnia (i.e. Mpc/Mewmnia). The bending moments are generally well predicted, with the largest
discrepancies arising in members with relatively low bending moments at failure. For example, in DC1,
the maximum Mpc/Mewmnia Value of 1.23 occurs in member C26 which has a Mpc/M, value of 0.09,
while the minimum Mpc/Memnia Value of 0.89 occurs in member C24, which has a Mpc/Mp value of
0.24. These two members correspond to the least heavily loaded members in bending and therefore the

accuracy of the moment predictions is deemed reasonable.

For all design cases, C21 is the critical member that governs failure. For DC1, DC3, DC4 and DC5 the
bending moments in this critical member are well predicted with Mpc/Memnia Values of 0.96, 1.00, 1.05
and 1.04, respectively. As observed in Kucukler, Gardner & Macorini (2016), DC2 does not consider
the influence of the differential rates of plasticity in the structure on the distribution of internal forces
and moments and therefore results in the least accurate predictions of ultimate load and distribution of
forces/moments when compared with the benchmark results. The additional notional load (Hand), used
in DC2 to mimic the influence of plasticity and residual stresses accounted for in z,, impacts the
behavior of the full frame, rather than just the highly loaded members, and overestimates the maximum

bending moment resisted by the critical member (C21) by 26% in comparison to GMNIA.

Asymmetric Frame

In this sub-section, the second order elastic (GNA/GNIA) and inelastic (GMNIA) desigh methods
presented herein are applied to the multistory asymmetric frame shown in Fig. 12, with ferritic stainless
steel material properties (E = 200000 N/mm?, F, = 205 N/mm?, F, = 415 N/mm?, n = 14). The
benchmark results were obtained by means of geometrically and materially nonlinear analysis with

imperfections (L/1000 + residual stresses) using shell finite elements.

The ultimate load factors of the frame apc, calculated as the load level for which the utilisation rate of
the critical member becomes equal to unity, for the different design cases (DC1-5), as well as the
ultimate load factor obtained from the benchmark shell FE model are presented in Table 11 and shown
in Fig. 13. The apc values were determined through iteration for Design Cases 1, 3 and 4, with the
stiffness reduction factors recalculated considering the first order member forces at the load factor apc.
However, note that in the considered frame, the axial loads in the members were all less than P/Pns =
0.2 and consequently z, = 1.0 in all cases (see Fig. 4c); this explains the similar design predictions for

the four elastic design options (DC1-4). The capacity predictions for all design cases are safe sided. The
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behavior of the frame is best represented in DC5 since all material and geometric nonlinearities are
explicitly modeled, leading to the most accurate prediction of both the distribution of internal forces

and moments and structural capacity.

SUMMARY OF DESIGN PROPOSALS AND WORKED EXAMPLES

For the design of stainless steel members and structures by second order elastic analysis (GNA/GNIA),
the stiffnesses (flexural, axial, torsional) of all members must be uniformly reduced by the general
stiffness reduction factor zy (equal to 0.7 in AISC 370 and 0.9 in ASCE-8), as given in Table 2, and the
flexural stiffness of the members contributing to the stability of the structure must be reduced by a
further stiffness reduction factor =, as given by Eq. (8). Alternatively to the use of =, an additional
notional load (Han.) of 0.002 of the total factored gravity load applied at each story may be imposed.
In all cases, a notional load (Hn.) equal to 0.002 of the total factored gravity load acting at each story
to represent the effects of frame out-of-plumbness must be imposed. Buckling checks should be
performed to verify the stability of individual members, unless member imperfections are modeled, in
which case, only cross-section checks are required. The cross-section checks may be conducted using

the CSM, with A =5 for this application of the method.

For the design of stainless steel members and structures by second order inelastic analysis (GMNIA)
with strain limits, the influence of the material nonlinearity on the structural response is directly
modeled through the definition of the full stress-strain curve of the material. Initial geometric
imperfections and residual stresses may be either individually modeled or their combined effect may be
considered through the use of equivalent geometric imperfections. Cross-section failure may be defined
in beam finite element models through the application of the CSM strain limits, as given by Egs. (30)
and (31). To allow for the beneficial influence of moment gradients, the maximum compressive strains
output from the second order inelastic analysis (GMNIA) at each cross-section may be averaged over
the elastic local buckling half-wavelength Le. Failure of a system is defined either at the load level at
which the CSM strain limit is reached, or, in stability dominated cases, at the load level at which the

analysis reaches a peak, whichever occurs first.

Two worked examples are presented in this section to illustrate the application of the proposed approach
of design by second order elastic analysis (GNA/GNIA) with stiffness reduction for stainless steel

structures. Worked Example 1 considers an austenitic stainless steel W6x16 beam-column subjected
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to combined compression and major axis bending, as shown in Fig. 14, while Worked Example 2

considers a two-story duplex stainless steel portal frame, as shown in Fig. 15.

Worked Example 1

Worked Example 1 considers, using Design Case 1, a laterally-restrained austenitic grade 304 stainless
steel (Fy = 205 N/mm?, F, = 515 N/mm?, E = 193000 N/mm?) W6x16 member with a length L = 3810
mm subjected to a major axis bending moment M, = 20.6 kNm and an axial compression N, = 141.3
kN, as shown in Fig. 14. The material and geometric properties are included in Fig. 14. Considering the

width-to-thickness ratios of the cross-section elements, both the flange and web are compact when the
cross-section is under flexure (b/t < 0.411/E/Fy and h/t,, < 2.54,/E/F,) and nonslender under axial

compression (b/t < 0.41,/E/F, and h/t,, < 1.24,/E/FE,). Itis first necessary to calculate the stiffness
reduction factors under the applied loading. Next, a second order elastic analysis (GNA) of the member
with reduced stiffness is performed and the maximum force and moment in the member is extracted at

the applied load level. The capacity of the member is then verified using the member buckling check.

Stiffness reduction factors

The material properties for grade 304 stainless steel were taken as F, = 205 N/mm?, E = 193000 N/mm?
and n = 7. Since the member is subjected to major axis buckling, the corresponding effective strain
hardening exponent net = 0.55n = 3.85 is used. For the applied axial load, the stiffness reduction factor

7 IS calculated as:

1

Tp =

E (p )”eff‘1
Py

y

1
. == 0.903
1+0.002(385) 502 (5155)

Combined with the general stiffness reduction factor 7y = 0.7, the stiffness of the member must be

reduced by zgzm = 0.632.

Beam FE analysis — second order elastic analysis

The member length L of 3810 mm was discretised into 30 elements and a second order elastic analysis

(GNA) with stiffness reduction was carried out. Note that a smaller number of elements can be used
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when justified through a mesh convergence study. Fig. 14b shows the resulting bending moment
diagram at the applied load level. From the analysis, the required compressive and flexural strengths P,

= 141.3 kN and M = 24.4 KNm, respectively, were determined.

Determine available compressive strength

The nominal compressive strength P, must be determined based on the limit state of flexural buckling.

The member considered has a slenderness ratio L/r = 3810/66.12 = 57.6. Since L/r > 0.891,/E/F,

and L/r < 5.62,/E/F,, the critical stress Fc is given by:

Fy)\ 205,58
F, =12 31((%) ) E, =12 <0.455((ﬁ) >) 205 = 159 N/mm?

Therefore, the nominal compressive strength P, = AF¢ = 482.1 kN and the available compressive

strength Pc is ¢cPn = 433.9 KN (LRFD).

Determine available flexural strength

For a member bending about the major axis, the limit states of yielding and lateral-torsional buckling
apply. However, the considered member has adequate restraint to prevent lateral-torsional buckling and
consequently the limit state of yielding will control. Since the cross-section has compact web and
flanges, the nominal flexural strength is:

My, = F,Z, = 38.7 kNm

Therefore, the available flexural strength Mcy is ¢cMnx = 34.9 KNm (LRFD).

Resistance check

Since P./P. > 0.2, the resistance is assessed using the interaction equation:

F | 8M <1.0
P. 9M,,
And
141.3 N 8244 005
4339 9349

Therefore, the chosen W6x16 section is adequate.
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Note that a similar process is applied for the design of cold-formed members using ASCE-8, but with
the following changes: (1) the effective strain hardening value nes = 0.45n and 7y = 0.9, (2) the
compressive strength would be calculated according to Section 5 of ASCE-8 (incorporating a degree of
strain hardening) and (3) the ASCE-8 moment-axial interaction equation i.e. Eq. (19) would be

employed.

Worked Example 2

Worked Example 2 considers, using Design Case 3, a two story duplex grade S32101 stainless steel (F,
=450 N/mm?, F, = 650 N/mm?, E = 200000 N/mm?) frame, restrained out-of-plane, as shown in Fig.
15. The material and geometric properties assumed are included in Fig. 15. Member imperfections are
modeled with an amplitude of L/1000, and out-of-plumbness is considered through the application of
notional loads (Hn.) equal to 0.002 times the gravity load at each story. Considering the width-to-

thickness ratios of the HEB 340 cross-section, both the flange and web elements are compact when the

cross-section is under flexure (b/t; < 0.41,/E/F, and h/t, < 2.541/E/Fy) and nonslender under
axial compression (b/ts < 0.41,/E/F, and h/t, < 1.24 E/F,). The proposed stiffness reduction

method is implemented through the following key steps:

(1) Perform a linear elastic analysis (LA) considering out-of-plumbness.

(2) Calculate the stiffness reduction factors z, using Eq. (8) based on the member forces determined
through the LA for each column in the system.

(3) Reduce the Young’s modulus E and shear modulus G of all members by z4 as well as the flexural
stiffnesses (i.e. the moments of inertia (second moments of area) about the principal axes) of
the columns by 1.

(4) Perform a geometrically nonlinear analysis (GNIA) considering out-of-plumbness and member
imperfections.

(5) Since member imperfections are modeled, carry out cross-section checks using the internal

member forces obtained from the GNIA. Assess the adequacy of the structure.

Beam FE analysis — first order elastic analysis

All members were discretised into 30 elements and a first order elastic analysis of the frame was carried

out. The section forces (SFi, where i is the column label) in the columns are extracted as:
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SFc1=1648.8 kKN, SFc2 = 1950.4 kN, SFcs = 842.3 kN, SFcs = 957.1 kN

Stiffness reduction factors

The material properties for grade S32101 stainless steel were taken as Fy = 450 N/mm?, E = 200000
N/mm? and n = 8. Since the members are buckling about the major axis, the corresponding effective
strain hardening exponent nerr = 0.55n = 4.4 is used. For the applied axial load, the stiffness reduction

factor m is calculated for each column as

1

Tp =

E (P)"eff‘l
Py

14+ 0.002n,¢f =
eff Fy
The stiffness reduction factors, calculated for each member of the frame, are given in Table 12.

Beam FE analysis — second order elastic analysis

The members were discretised into 30 elements, and now a second order elastic analysis (GNIA) with
stiffness reduction is carried out. From the analysis, the required compressive and flexural strengths, P,

and My, respectively, at the critical cross-section of each member is determined, as listed in Table 13.

Determine available compressive strength

Since member imperfections are modeled in the analysis, the nominal compressive strength of the
members P, is taken as the cross-section compressive strength FyA. Therefore, the nominal compressive

strength Py, is equal to 7408.8 kN and the available compressive strength Pe is ¢:.P, = 6667.9 kN (LRFD).

Determine available flexural strength

For major axis flexure, the limit states of yielding and lateral-torsional buckling apply. However, the
member has adequate restraint to prevent lateral-torsional buckling and consequently the limit state of
yielding will control. Since the cross-section has compact web and flanges, the nominal flexural strength
is:

My, = F,Z, = 1043.5kNm

Therefore, the available flexural strength Mcx is ¢cMnx = 939.2 KNm (LRFD).

Resistance check
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For members C1 and C2, P,/P. > 0.2 and the resistance is assessed using the following interaction

equation:

P. 8M
T+-—2<10
P. 9M,,

For members C3, C4, B1 and B2, P,/P. < 0.2 and the resistance is assessed using the following

interaction equation:

P. M
Y +2<10
2P, My

The results of the cross-section checks on the six frame members are presented in Table 14. For all

members, the interaction equation is less than unity; therefore, the frame is adequate.

Note that for structures composed of cold-formed members and designed using ASCE-8, the following
changes would need to be made: (1) the effective strain hardening value nes = 0.45n and zg= 0.9, (2) the
compressive strength would be calculated according to Section 5 of ASCE-8 (incorporating a degree of
strain hardening) and (3) the ASCE-8 moment-axial interaction equation i.e. Eq. (15) would be

employed.

CONCLUSIONS

Stability design rules for stainless steel structures have been established in this paper. For design by
second order elastic analysis (also referred to as geometrically nonlinear analysis (GNA) with
imperfections (GNIA)), two stiffness reductions factors are defined: (1) a general stiffness reduction
factor 7y, to be applied to all member stiffnesses (axial, flexural, torsional) to account for the
development and spread of plasticity and (2) =, to account for the additional reduction in the flexural
stiffness of compression members under increasing axial load due to the effects of yielding and residual
stresses. The influence of the varying degree of roundedness of the stress-strain behavior on the level
of stiffness reduction for the different grades of stainless steel is reflected in the strain hardening
exponent n that features in the Ramberg-Osgood formulation. A value of 7y = 0.7 for AISC 370 and
= 0.9 for ASCE-8 is proposed; the different values for the two specifications reflect the different

buckling curves and axial-bending interaction expressions and end-points employed.

Shell finite element models of the stainless steel members and frames have been developed, validated
against experimental results from the literature, and employed to verify the proposed design rules for a

wide range of cases. The proposed stiffness reduction factors = and 74 result in safe sided average
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capacity predictions compared with the benchmark shell FE results. The level of scatter in the
predictions is similar to that of the carbon steel rules of AISC 360. Comparisons have also been made
against the new provisions in AISC 370 for design by second order inelastic analysis (also referred to
as geometrically and materially nonlinear analysis with imperfections (GMNIA)) with strain limits; this
represents the most accurate design approach. The reliability of the design proposals has been
demonstrated through statistical analyses, where it was shown that a resistance factor ¢ of 0.9 can be

safely adopted.

The design provisions presented herein are due to be incorporated into the new upcoming AISC 370
Specification for hot-rolled and welded stainless steel structures and the revised ASCE-8 Specification

for the design of cold-formed stainless steel structures.
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Fig. 1. Shell FE model validation against beam-column tests on an austenitic stainless steel I-50x50x4x4 cross-

section reported by Bu and Gardner (2019b).
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the finite element (FE) modeling implemented in this study. Note that in both FE models, the same initial
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Fig. 3. Calibration of effective strain hardening exponents nes to derive the stiffness reduction factor z, to account

for the adverse influence of spread of plasticity and residual stresses as a function of the level of axial loading.
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Fig. 6. Comparison of the capacity predictions of austenitic stainless steel W-section columns, beams and beam-columns subjected to major axis bending for the Design Cases

(DC) 1 (GNA + 75+ m + no member imperfections + member check), 3 (GNIA + 73 + 7, + member imperfections (L/1000) + cross-section check), 4 (GNIA + 74 + 7, + member

imperfections (L/2000) + cross-section check + CSM end points) and 5 (GMNIA + member imperfections (equivalent imperfections) + CSM strain limits) against the benchmark

shell FE results. Note that a radial angle of 0° corresponds to pure bending while a radial angle of 90° corresponds to pure compression.
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Fig. 7. Definition of radial angle and radial error in normalised M—P interaction diagram.
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Fig. 8. Comparison of the proposed stiffness reduction method (with zy and additional notional loads)
against shell benchmark FE results for fixed based austenitic stainless steel portal frames considering
three values of column slenderness (L = 3.5 m — L/r = 40 (circles); L= 6 m — L/r = 68 (triangles);

Lc =10 m — L/r = 113 (squares)). DC2 — GNA + 75 + Hanc+ N0 member imperfections + member

check.
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Fig. 9. Geometrical and material properties and loading conditions of the modeled VVogel (1985) frame.
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Fig. 11. Benchmark GMNIA load-deflection response of Vogel frame and ultimate load factor predictions for

five design cases (DC1-5) considered. DC1: GNA + 74 + 7, + no member imperfections + member check, DC2:

GNA + 74 + Hane + no member imperfections + member check, DC3: GNIA + 74 + 7, + member imperfections

(L/1000) + cross-section check, DC4: GNIA + 7 + 7, + member imperfections (L/2000) + cross-section check
with CSM end points, and DC5: GMNIA + member imperfections (equivalent imperfection) + CSM strain limits.
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Fig. 12. Geometrical and material properties and loading conditions of the modeled ferritic stainless steel
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Fig. 13. Ultimate load capacity predictions of the multistory asymmetric frame from the stainless steel
design cases (DC1-5) apc considered normalised by the benchmark capacity agmnia. DCL: GNA + 74+
7 + N0 member imperfections + member check, DC2: GNA + 73 + Hane + N0 member imperfections + member
check, DC3: GNIA + 74 + o + member imperfections (L/1000) + cross-section check, DC4: GNIA + 7y + o +
member imperfections (L/21000) + cross-section check with CSM end points, and DC5: GMNIA + member
imperfections (equivalent imperfection) + CSM strain limits.
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Fig. 15. Worked Example 2: Two-story duplex stainless steel frame.
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Table 1. Ramberg-Osgood material model parameters (AISC 2020; ASCE 2020)

Material Young’s Yield (0.2% Ultimate Ultimate Strain Strain

grade modulus E  proof) stress Fy strain g, hardening hardening
(N/mm?) stress Fy (N/mm?) exponentn  exponent m

(N/mm?)

oM 103000 208 515 0.60 7 2.1

Duplex

532101 200000 450 650 0.31 8 2.9

Ferritic

410S 200000 205 415 0.30 15 2.4
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Table 2. Proposed 7 function coefficients

Code

Member type

Nt (> 2.5)

g

Tp

AISC
370

Rolled or welded I-
shaped sections buckling
about the minor axis, and
other  sections  not
specified in this table

0.45n

Rolled or welded I-
shaped sections buckling
about the major axis,
welded box sections, and
round HSS

0.55n

Rectangular HSS

n

0.7

ASCE-8 All sections

0.45n

0.9

Tp =

1

y

(

b

Pns

)neff—l
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Table 3. Design Cases 1 to 5 considered in this study

Analysis

Stiffness

Notional load

Label type reduction factors  coefficient Capacity check
Design Case 1 DC1 Elastic 79+ 0.002 (HnLonly)  Member check
. . 0.002 + 0.002

Design Case 2 DC2 Elastic Ty (He + Hand) Member check

Design Case 3 DC3 Elastic 79+ 0.002 (Hnw only) ggggi-sectlon
Cross-section

Design Case 4 DC4  Elastic 79+ 0.002 (HnL only)  check with CSM
end points

Design Case 5 DC5 Inelastic - 0.002 (HnLonly)  CSM strain limit
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Table 4. AISC 360 flexural buckling coefficients for austenitic, duplex and ferritic stainless steel
(Meza, Baddoo & Gardner, 2021)

Member type a Po o iz
Rolled or welded I-shaped sections buckling
about the minor axis, and other sections not 0.56 0.759 0.409 0.69

specified in this table
Rolled or welded I-shaped sections buckling

about the major axis, welded box sections, and  0.58 0.891 0.455 0.82
round HSS
Rectangular HSS 0.69 1.195 0.501 0.82
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Table 5. Imperfection factors oeq for different types of members for calculating the equivalent member
imperfection

Oleq
Member type Axis of buckling
Austenitic and Duplex Ferritic
Rectangular HSS Any 0.49 0.34
Round HSS Any 0.49 0.34
Rolled or welded I-shaped Major 0.49 0.49
sections, and welded box sections Minor 0.76 0.76
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Table 6. Summary of comparison between the proposed AISC 370 design approaches and benchmark
shell FE results for austenitic (A), duplex (D) and ferritic (F) stainless steel columns, beams and beam-
columns considering Design Cases (DC) 1, 2,3and 5 — DC1: GNA + 74 + 7, + no member imperfections
+ member check, DC3: GNIA + 7y + 7, + member imperfections (L/1000) + cross-section check, DC4:
GNIA + 74 + o + member imperfections (L/1000) + cross-section check with CSM end points, and DC5:

GMNIA + member imperfections (equivalent imperfection) + CSM strain limits.

Design by elastic analysis with stiffness reduction Design by inelastic

analysis
Cross- Design Case 1 Design Case 3 Design Case 4 Design Case 5
Grade  section tLOZd No. Radial error Radial error Radial error Radial error
type yp Rre/Roc1 Rre/Rocs Rre/Rpcs Rre/Rocs
o ¢ ¢ ¢
Ave. Std. Ave. Std. Ave. Std. Ave. Std.
1 55 1.01 0.06 108 100 0.09 104 097 009 100 1.03 0.05 1.09
W 2 55 1.08 0.07 115 106 0.09 112 103 009 108 1.03 0.05 1.10

major 3 55 112 007 119 110 0.07 117 106 008 112 1.04 006 1.10
All 165 1.07 008 113 105 0.09 110 102 010 106 103 0.05 1.10
1 5 109 012 110 106 015 103 105 014 103 106 003 1.13

2 5 118 017 114 115 019 108 114 018 107 1.07 003 114

A :1/1Vinor 3 5 124 019 118 120 020 112 119 019 112 107 0.03 114
All 165 117 018 112 114 019 106 112 018 1.06 1.07 0.03 114

1 5, 102 009 107 100 011 103 097 010 100 106 0.06 1.13

2 5 110 011 113 108 013 1.08 104 011 106 107 0.06 1.14

SHS 3 55 115 o012 117 112 042 113 108 011 111 1.08 0.07 1.15

All 165 1.09 012 111 107 013 1.07 103 012 104 107 0.07 114

1 33 102 006 09 098 006 093 099 006 093 101 0.03 0.9

W- 2 33 109 006 102 104 006 098 1.05 006 0.99 102 0.04 0.9

major 3 33 112 007 105 106 006 100 1.07 006 1.01 102 0.04 0.9

All 99 108 007 101 103 0.07 097 104 007 098 1.02 0.04 0.96

1 33 113 007 106 107 010 098 106 010 097 1.04 0.03 0.98

5 W- 2 33 122 010 113 115 012 103 114 012 1.03 1.04 0.03 0.98
minor 3 33 127 013 116 119 013 107 118 0.12 1.07 1.04 004 0.98

All 9 121 012 110 113 013 101 113 0.12 1.01 1.04 0.03 0.98

1 33 104 004 098 102 0.05 09 100 0.05 094 1.05 0.04 0.99

2 33 111 006 105 108 0.06 101 105 006 099 1.06 005 100

SHS 3 33 115 0.07 108 111 006 104 1.08 005 1.02 1.07 0.05 1.00

All 99 108 006 101 105 0.07 099 102 006 09 1.06 005 1.00

1 55 103 006 109 099 007 104 094 008 099 1.03 005 1.10

F xﬂveljor 2 55 110 0.07 117 105 0.08 111 100 0.08 106 1.04 006 111

3 55 114 007 121 108 0.08 115 103 0.07 109 104 006 111
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All 165 109 008 115 104 009 109 099 0.09 104 104 006 111
1 55 111 010 115 105 015 101 102 0.14 100 1.09 005 116
W- 2 55 120 015 120 113 020 104 110 0.18 1.03 1.09 005 116
minor 3 55 126 017 124 118 021 108 115 019 107 110 0.06 1.17
All 165 119 016 118 112 019 1.03 109 018 102 109 0.05 1.16
1 55 105 0.09 110 103 010 106 098 010 101 1.07 0.07 113
2 5 113 011 117 110 042 111 105 011 107 1.08 0.07 1.15
SHS 3 5, 118 011 122 114 012 116 109 011 112 1.09 0.07 115
All 165 112 012 115 109 012 110 104 012 105 108 0.07 115
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Table 7. Reliability factors considered in this study (Afshan et al. 2015, Baddoo, Meza & Gardner
2020)

Austenitic stainless steel Duplex stainless steel Ferritic stainless steel
Mm 1.25 1.10 1.25
Vi 0.05 0.04 0.05
Fm 0.05 0.05 0.05
Vi 0.19 0.19 0.19
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Table 8. Ultimate load factors apc for the Vogel (1985) frame determined using Design Cases (DC) 1-
5 compared against the benchmark GMNIA ultimate load factor agwnia. DC1: GNA + 74 + 7, + nO
member imperfections + member check, DC2: GNA + 74 + Hane + N0 member imperfections + member
check, DC3: GNIA + 7y + 7, + member imperfections (L/1000) + cross-section check, DC4: GNIA + zg
+ 1o + member imperfections (L/1000) + cross-section check with CSM end points, and DC5: GMNIA

+ member imperfections (equivalent imperfection) + CSM strain limits.

GMNIA DC1 DC2 DC3 DC4 DC5
opc 1.00 0.85 0.76 0.86 0.91 1.00
opclacmnia - 0.85 0.76 0.86 0.91 1.00
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Table 9. Stiffness reduction factors z, calculated for members of the austenitic stainless steel Vogel
(1985) frame for Design Cases 1 to 4. DC1: GNA + g + o + no member imperfections + member
check, DC2: GNA + 74 + Hane + N0 member imperfections + member check, DC3: GNIA + 75 + 7, +
member imperfections (L/1000) + cross-section check, and DC4: GNIA + 73 + 7, + member
imperfections (L/1000) + cross-section check with CSM end points. HNL Hant

Member DC1 DC2 DC3 DC4
c11 0.66 - 0.66 0.63
c21 0.30 - 0.30 0.27
Cc31 0.53 - 0.52 0.49
B11 - - - -
B21 - - - -
Cc12 0.74 - 0.73 0.71
c22 0.40 - 0.39 0.36
C32 0.64 - 0.63 0.60
B12 - - - -
B22 - - - -
C13 0.82 - 0.81 0.79
c23 0.47 - 0.46 0.43
C33 0.76 - 0.75 0.73
B13 - - - -
B23 - - - -
Cl4 0.90 - 0.89 0.88
C24 0.63 - 0.63 0.60
C34 0.87 - 0.87 0.85
B14 - - - -
B24 - - - -
C15 0.89 - 0.88 0.87
C25 0.71 - 0.70 0.68
C35 0.87 - 0.86 0.85
B15 - - - -
B25 - - - -
C16 0.98 - 0.98 0.98
C26 0.95 - 0.95 0.94
C36 0.98 - 0.98 0.98
B16 - - - -
B26 - - - -
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Table 10. Maximum normalised bending moments within members determined at the ultimate system loads determined for Design Cases 1 to 5 for the VVogel
(1985) frame (denoted Mpci1 to Mpcs), with comparative normalised bending moments from GMNIA (denoted Mgmnia). DC1: GNA + 73 + 7, + no member
imperfections + member check, DC2: GNA + 75 + Hane + N0 member imperfections + member check, DC3: GNIA + 74 + 7, + member imperfections (L/1000)
+ cross-section check, DC4: GNIA + 74 + 7, + member imperfections (L/1000) + cross-section check with CSM end points, and DC5: GMNIA + member

imperfections (equivalent imperfection) + CSM strain limits.

Mermb DC1 DC2 DC3 DC4 DC5
SMbers Moci/Mp  Mpci/Mewnia Moco/My Mpco/Momnia Mpcas/Mp  Mpca/Mevnia Mpca/Mp  Mpca/Mewnia - Mopes/My  Mocs/Maomnia
c21 0.36 0.96 0.44 1.26 0.38 1.00 0.40 1.05 0.48 1.04
C31 0.55 1.05 0.45 0.99 0.58 1.06 0.63 1.10 0.72 1.03
B11 0.95 1.09 0.83 1.07 0.96 1.08 1.03 1.10 1.05 0.99
C22 0.38 0.96 0.35 1.04 0.40 0.97 0.43 0.98 0.54 1.01
C32 0.56 0.99 0.52 1.04 0.58 0.99 0.62 1.00 0.72 1.00
B12 0.84 1.10 0.75 1.09 0.85 1.09 0.91 1.11 0.88 0.98
C23 0.30 0.89 0.30 1.03 0.32 0.89 0.34 0.88 0.50 1.02
C33 0.54 0.97 0.48 0.99 0.55 0.96 0.59 0.96 0.70 1.00
B13 0.92 1.11 0.83 1.10 0.93 1.10 0.99 1.13 0.94 0.99
C24 0.24 0.89 0.22 0.97 0.25 0.88 0.27 0.86 0.44 1.04
C34 0.58 1.03 0.53 1.03 0.59 1.02 0.62 1.05 0.63 0.98
B14 0.85 1.21 0.76 1.16 0.86 1.20 0.92 1.24 0.79 0.99
C25 0.26 0.92 0.26 1.07 0.26 0.86 0.28 0.83 0.42 0.93
C35 0.69 0.92 0.65 0.99 0.70 0.89 0.74 0.89 0.91 0.98
B15 0.80 1.16 0.72 1.12 0.81 1.15 0.86 1.19 0.77 0.99
C26 0.09 1.23 0.08 1.27 0.09 1.17 0.09 1.16 0.09 0.92
C36 0.79 0.90 0.71 0.94 0.79 0.88 0.84 0.88 1.07 1.00
B16 0.79 1.20 0.71 1.15 0.80 1.20 0.84 1.23 0.73 1.00
Ave. 1.03 1.07 1.02 1.04 0.99
Std. 0.11 0.09 0.11 0.13 0.03
Max. 1.23 1.27 1.20 1.24 1.04
Min. 0.89 0.94 0.86 0.83 0.92
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Table 11. Ultimate load factors of the duplex stainless steel multistory asymmetric frame determined
using Design Cases 1-5 apc compared against the benchmark shell FE GMNIA ultimate load factor
acmnia. DCL: GNA + 74 + 7, + N0 member imperfections + member check, DC2: GNA + 74 + Hane + NO
member imperfections + member check, DC3: GNIA + 74 + 7 + member imperfections (L/1000) +
cross-section check, DC4: GNIA + 74 + 7 + member imperfections (L/1000) + cross-section check with
CSM end points, and DC5: GMNIA + member imperfections (equivalent imperfection) + CSM strain
limits.

GMNIA DC1 DC2 DC3 DC4 DC5
apc 0.260 0.210 0.208 0.214 0.216 0.260
apclocmnia 1.00 0.81 0.80 0.82 0.83 1.00
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Table 12. Stiffness reduction factors calculated for each member in the frame for Worked Example 2.

Tb Tg
C1 0.977 0.7
C2 0.996 0.7
C3 0.997 0.7
C4 0.996 0.7
Bl - 0.7
B2 - 0.7
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Table 13. Required compressive and flexural strengths at the critical cross-section of each member of
the frame in Worked Example 2.

P, (kN) M; (kNm)
C1 1622.0 730.2
c2 1988.7 733.2
Cc3 831.9 348.3
c4 972.4 348.8
B1 92.1 560.2
B2 91.7 347.9
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Table 14. Checks on critical cross-sections of six frame members in Worked Example 2

1622.0 8730.2

C1 cc795 799395 = 0.93 093 <1 .ok
1988.7 8733.2
c2 am79+§9392=099 0.99 <1 - ok
C3 8319 + 3183 _ 0.43 043 <1 .ok
2(6667.9)  939.2 U
C4 o724 + 3188 _ 0.44 0.44 <1 . ok
2(6667.9) © 939.2 T
Bl 921 —k56&2==060 0.60 <1 .ok
2(6667.9) 9392 =
91.7 347.9
B2 0.38 0.38 <1 - ok

+ =
2(6667.9) ' 939.2
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