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Abstract: G-quadruplex (G4) sequences, which can fold into higher-order G4 structures, are abundant
in the human genome and are over-represented in the promoter regions of many genes involved in
human cancer initiation, progression, and metastasis. They are plausible targets for G4-binding small
molecules, which would, in the case of promoter G4s, result in the transcriptional downregulation of
these genes. However, structural information is currently available on only a very small number of
G4s and their ligand complexes. This limitation, coupled with the currently restricted information
on the G4-containing genes involved in most complex human cancers, has led to the development
of a phenotypic-led approach to G4 ligand drug discovery. This approach was illustrated by the
discovery of several generations of tri- and tetra-substituted naphthalene diimide (ND) ligands that
were found to show potent growth inhibition in pancreatic cancer cell lines and are active in in vivo
models for this hard-to-treat disease. The cycles of discovery have culminated in a highly potent
tetra-substituted ND derivative, QN-302, which is currently being evaluated in a Phase 1 clinical
trial. The major genes whose expression has been down-regulated by QN-302 are presented here: all
contain G4 propensity and have been found to be up-regulated in human pancreatic cancer. Some of
these genes are also upregulated in other human cancers, supporting the hypothesis that QN-302 is a
pan-G4 drug of potential utility beyond pancreatic cancer.
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1. Introduction

There is considerable current interest, notably in the academic community [1–5], in
directly targeting the higher-order DNA motifs (G-quadruplexes: G4s) in those genes which
are relevant to human cancers using drug-like small molecules. The goal is to selectively
interfere with the processes of transcription, translation, or replication in cancer cells and
thus inhibit tumor growth. Two such compounds have entered clinical evaluation for
human cancers, CX-5461 (Pidnarulex) [6–8] and QN-302 [9,10], which can be classified as
experimental drugs rather than solely as G4-binding agents.

The focus of this article is to present the background and the distinctive approach to
the discovery and development of one of these drugs (QN-302) as an anticancer agent. We
also describe the plausible gene targets for QN-302 that have emerged to date from whole-
genome transcriptome studies. There is increasing interest in targeting G4s in viruses,
bacteria, and parasitic targets [11–16]. Although plausible small molecule G4 ligands have
been identified for some of these, none have yet reached a clinical assessment stage and
they will not be discussed further here, although the methodology described below may
also be applicable in these fields.

G-quadruplexes are higher-order DNA (and RNA) structures formed by the asso-
ciation of successive short G-tracts [17–21] and have characteristic four-guanine Hoog-
steen hydrogen-bonded planar motifs, termed G-quartets (or tetrads). The consequence of
G-quartet formation in single-stranded G-tract sequences is that the backbone of intramolec-
ular G4s is folded back at least three times, giving rise to the “four-stranded” nature of
G4 structures, in contrast to the two anti-parallel strands of canonical duplex DNA. G4s
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require metal ions for stability, most often K+ or Na+, which sit in the central channel of a
G4, either in the plane of a G-quartet or between two adjacent ones, in close electrostatic
contact with the O6 atoms of the guanine bases forming the G-quartets.

The majority of G4s encoded in the human genome usually comprise four G-tracts,
and are typified by the general sequence:

. . .. . ..GaXnGbXoGcXpGd. . .. . .

where a. . .d are the numbers of G residues in each short G-tract, typically 2–4, and are
usually directly involved in G-quartet formation [18,21–23].

The sequences linking the G-tracts, Xn, Xo, and Xp, can be any combination of residues,
including G, which form loops in these right-handed G4 structures [24]. This notation also
suggests that the G-tracts can be of unequal length, and if this is the case, then some of the
G residues can be part of loop regions. The assumption that all G-tracts within a quadruplex
sequence are identical is true for vertebrate telomeric sequences but is frequently not the
case for non-telomeric human genomic sequences, or even for all telomeric sequences in
some lower eukaryotic organisms. G4s can have a variety of topologies, varying in mutual
strand direction and depending on such factors as loop size and character [18,21,22,24].
Some G4s are highly polymorphic, typified by those formed by repeats of the human
telomeric DNA sequence. Various G4s with all-parallel, hybrid, and all-anti-parallel strands
have been characterized. The major right-handed simple G4 topologies determined to
date are defined by their backbone directionality; these are parallel, antiparallel (chair and
basket), and hybrid forms 1 and 2, all of which have been observed in human telomeric
G4s [25,26]. The cytosine-rich strand complementary to a G4 sequence can also form
distinct four-stranded structures, termed i-motifs [27], which, even though they are less
stable than G4s at physiological pH, may also have discrete biological functions [27,28].

G4s are non-randomly distributed in the human genome. Initial bioinformatics esti-
mates based on the above general sequence suggested a total occurrence of ca 376,000 uni-
molecular G4s [22,23], not all of which occur within genes. Subsequent relaxation of the
sequence limits to include potentially longer loops than the originally assumed seven-
nucleotide maximum [22,23] increases this to 2—10-fold more putative and potentially
stable G4s [29,30] than the original estimates, although the exact numbers predicted depend
on the algorithm used and the underlying assumptions about the sequence [30]. The advent
of G4-specific antibodies [31] combined with next-generation sequencing methodology
has enabled direct experimental assessments of G4 numbers in cells to be made and their
occurrence to be mapped. Some 10,000 G4 occurrences have been mapped in a human
breast cancer cell line, compared with ca 1500 in a normal cell line [32], suggesting that G4s
may be useful targets for cancer cell selectivity and possible therapeutic intervention. G4s
sometimes occur in clusters, implying added structural and biological complexity.

G4s are over-represented in the promoter regions of many cancer-linked genes [33–37]
as well as in 5′- and 3′-untranslated regions [38–40]. Their presence in individual pro-
moter sequences, normally close to transcription start sites (for example in the oncogenes
KRAS [40–42], c-KIT [43,44], MYC [45–48]), has been of particular interest. Many studies
have indicated that the binding of a G4-selective small molecule can inhibit the transcription
of these genes (see for example references [42,44,45,47,48]), possibly by hindering tran-
scription factor interaction with the promoter and the G4. To date, with a few exceptions,
targeting RNA G4s has not been of comparable focus, although their potential structural
complexity suggests that future efforts in this area may be fruitful (see for example [49–51]).

Table 1 lists the human promoter G4 molecular structures determined to date by
crystallography and/or NMR methods. All these G4s have a cancer association, mostly by
being within established oncogenes. The small size of this list (14 entries) is remarkable,
given that the number of known mutation-driven cancer genes is at least 727 [52], and
that many more genes are known to be dis-regulated, especially in common solid cancers
such as breast, pancreatic, and prostate cancer (see Section 3 below). G4s appear to have
multiple functions [53] in addition to their involvement in transcriptional initiation, de-



Molecules 2024, 29, 3653 3 of 22

pending on their location in the human genome and in individual genes. They have been
extensively implicated in replication [54], translation [38,39], DNA damage [55,56], genome
rearrangements [57,58], and genome instability [59]. The effects of G4 ligands on these
processes is yet to be thoroughly explored, in contrast with the emphasis to date on G4
promoter–ligand binding.

Table 1. Human promoter DNA G4s for which molecular structures have been determined, taken
from the Protein Data Bank (PDB), indicating the method used for structure determination.

Gene PDB ID Method Gene PDB ID Method

MYC 1XAV NMR PARP1 6AC7 NMR

BCL2 2F8U NMR MYC 6AU4 X-ray

c-KIT1 2KQG NMR WNT 6L8M NMR

c-KIT2 2KYO NMR K-RAS 6SUU NMR

hTERT 2KZD, 2KZE NMR PDGFR 6V0L NMR

MYC 2LBR NMR K-RAS 6WCK X-ray

VEGF 2M27 NMR MYC 6ZL2, 6ZL3 NMR

c-KIT1 3QXR X-ray BCL-2 6ZX6, 6ZX7 NMR

B-RAF 4H29 X-ray MYC 7KBV, 7KBW, 7KBX NMR

c-KIT1 4WO2, 4WO3 X-ray VEGFR 7XFV NMR

K-RAS 512V NMR RET 7YS5 NMR

VEGF 5ZEV NMR EGFR 8JFQ NMR

G4s within the promoter of the common oncogene MYC have been shown to play a
major role in the transcription of this gene, with these promoter G4s being direct targets for
transcription factors such as SP1 [60]. One can speculate that the formation of a G4-ligand
complex results in steric hindrance to G4 accessibility, in a way yet to be determined,
so that transcription factor binding is no longer achievable. This is consistent with G4
end-capping by ligands, observed experimentally in G4-ligand structures (ligand capping
may also be involved in the mechanism of action of telomeric G4-targeting agents—see
below). It has been suggested that the G4 promoter regions in multiple cancer genes need
to be simultaneous targets for those complex cancers with multiple genetic aberrations.
Multiple G4 targeting may thus have potential for more fruitful therapeutic outcomes
than single-gene targeting [61–64]. To date, there have been rather few studies that have
examined this issue in detail; instead, in most instances, a correlation between a single
gene’s downregulation and potent ligand binding to its promoter G4 has been taken
to demonstrate a direct mechanistic link. This may be the case in many instances (see
Section 3c). However, this is not necessarily universally true, as shown by a careful
study [65] involving MYC targeting that has clearly revealed that indirect effects can occur.
These can deceive one into accepting at face value a correlation between G4s and the
downregulation of gene expression as direct cause and effect, adding complexity to the
seductively simple concept of promoter G4 targeting. On the other hand, some unequivocal
demonstrations of a direct link between gene downregulation and G4 action have been
achieved, for example with MYC and the ellipticine derivative GQC-05 using a pair of cell
lines with exon-specific exploitable differences [66].

1.1. Native G4 Structures

The topology and geometry of many G4s have been determined by X-ray crys-
tallographic and NMR methods [21], although, as stated above, few are of promoter
G4s. Structural data and relevant information are available in the Protein Data Bank
(the PDB: www.rcsb.org), the more detailed Nucleic Acid Database (www.nakb.org, last

www.rcsb.org
www.nakb.org
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accessed on 15 July 2024), and the specialized G4 database ONQUADRO (https://onquadro.
cs.put.poznan.pl/, last accessed on 9 July 2024). G4 prediction programs are useful
tools for evaluating the propensity of a given sequence to form a G4. QGRS Mapper
(https://bioinformatics.ramapo.edu/QGRS/, last accessed on 3 May 2024) and G4 Hunter
(http://bioinformatics.ibp.cz, last accessed on 3 May 2024) are widely used, especially
in conjunction with biophysical methods such as circular dichroism and melting profiles,
to determine G4 formation and stability. There are also a growing number of G4-protein
structures, with their details similarly available in the PDB.

Almost all the native G4 structures deposited to date are of discrete DNA G4s formed
by folding G4 sequences. Many of the deposited structures are of telomeric G4s, from
human and other organisms, with small changes in the G4 or flanking sequence often
resulting in topological change. These are equivalent to (sometimes with altered 5′ or 3′

nucleotides), and sometimes identical to, the sequences used in biophysical and ligand-
binding studies.

G4s share the common feature of a core comprising stacked G-quartets, held together
by backbones and loops. The variety of G4 structures mostly reflects differences in their
loop size, sequence, number of G-quartets, and strand polarity. This variety is also manifest
in size differences between G4 grooves [67]. B-form duplex DNA has a well-defined major
and a minor groove, with the latter having a sequence-dependent spine of hydration. High-
resolution G4 crystal structures have also identified discrete structured water molecule
spines within the grooves, which can be assumed to play a role in small molecule and
protein binding [67,68].

There are currently no reported structural studies of a DNA G4 embedded in its fully
natural genomic duplex environment. However, a recent cryo-electron microscopy analysis
at a resolution of 7.4 Å [69] of a G4 embedded between two DNA duplexes comes close
to being the sole exception to date (PDB id 8DU). The G4 in this more complex structure
is from the MYC promoter NHEIII (nuclease-hypersensitive element III) sequence. The
two duplexes are not co-linear as previously assumed but are oriented at an angle of
53◦ to each other, with the G4 and a region of unstacked duplex in between them. The
complementary strand to the G4 in this structure is not a natural C-rich i-motif one, but
a synthetic poly T loop construct. Even so, the structure reveals that the central G4 has
potentially accessible terminal G-quartet surfaces together with the adjacent and partially
unwound duplex region. These surfaces are then analogous to those observed in the crystal
and NMR structures of isolated G4s (Table 1) and may be available for small molecule
binding. Other crystal and NMR structures of G4s with a duplex at one end have been
observed [70,71] and similarly reveal an accessible planar terminal G-quartet at an end of
the G4. This feature appears to be a conserved and biologically relevant general recognition
motif for small molecule binding, with potential for specificity arising from non-bonded
interactions with the surfaces and clefts in the duplex–G4 junctions.

1.2. Structures of G4 Small Molecule Complexes

The molecular structures of many low-molecular weight compounds with isolated G4s
have been determined by crystallography and NMR. A selection of these is listed in Table 2.
The overwhelming majority involve human telomeric G4s (see below). The ligands are
generally characterized by having a planar extended chromophore with from one to four
appended cationic side chains. A few do not conform to this general chemotype, having
for example a macrocyclic core, as in the natural product telomestatin [72,73]. By contrast,
the synthetic compound pyridostatin has a single central pyridine ring at the center of
the molecule, with two attached side-arms, each culminating in a substituted quinoline
group [55,74].

https://onquadro.cs.put.poznan.pl/
https://onquadro.cs.put.poznan.pl/
https://bioinformatics.ramapo.edu/QGRS/
http://bioinformatics.ibp.cz
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Table 2. Human promoter DNA ligand-G4 complexes for which molecular structures have been deter-
mined, taken from the Protein Data Bank (PDB), indicating the method used for structure determination.

Target G4 Ligand Method PDB ID

Human telomeric G4 BRACO-19 X-ray 3CE5

Human telomeric G4 Telomestatin NMR 2MB3

Human telomeric G4 Berberine derivative X-ray 72UR

G4-duplex hybrid Phen-DC3 NMR 8ABD

RET promoter G4 Trioxacarcin A, cov. bound NMR 8GP7

KRAS promoter G4 Coptisine NMR 7X8O

Human telomeric G4 Phen-DC3 NMR 7Z9L

G4-duplex hybrid Pyridostatin NMR 7X2Z, 7X3A

G4-duplex hybrid SYUIQ-5 NMR 7PNG

MYC promoter G4 Berberine NMR 7N7E

PDGFR promoter G4 Berberine NMR 7MSV

MYC promoter G4 NSC85697 NMR 7KBX

VEGF promoter G4 Platinum complex NMR 6LNZ

MYC promoter G4 DC-34 NMR 5W77

MYC promoter G4 DAOTA-M2 NMR 5LIG

Human telomeric G4 MM41 X-ray 4DA3, 3UYH

Human telomeric G4 BMSG-SH-3 X-ray 4DAQ

Regardless of the nature of the G4 ligand, their consistent binding mode has the
chromophore, macrocycle, or central heteroaromatic ring stacked and stabilized by π–π
stacking interactions with a terminal G-quartet at one end of the target G4. Side chains
occupy grooves, although the crystal and NMR structures show that they rarely completely
occupy groove space. An examination of several high-resolution crystallographic analyses
has shown that conserved water molecules, embedded in the grooves, play a role in
mediating side-chain binding between ligand and hydrogen bond donors/acceptors on the
groove surfaces [68].

A microarray approach has been used to identify a novel small-molecule compound
(DC-34) that binds specifically to a MYC promoter G4. This compound does not conform
to the conventional view of a G4 ligand [75,76]. It does not have an extended aromatic
chromophore or extended cationic side-arms. The associated NMR structure of the G4 com-
plex [76] has shown that, perhaps surprisingly, the benzofuran and methylbenzene rings of
DC-34 stack on both terminal G-quartets of the MYC G4, forming a 2:1 ligand:G4 complex.
It was also definitely demonstrated that DC-34 selectively down-regulates MYC expression
via its G4 binding and has a minimal effect on a panel of other G4-containing oncogenes
such as BCL2 and KRAS.

2. The Targeting of Human Telomeric G4s

Human chromosomal ends, termed telomeres, comprise the DNA sequence TTAGGG,
which is repeated several thousand times, together with associated proteins [77]. Although
most telomeric DNA exists naturally in a standard Watson–Crick duplex form, the extreme
ends of ca 100–200 nucleotides are single stranded. These would naturally fold into
G4 structures, typically with 3–4 repeats [78,79], but are hindered in doing so by specific
telomeric single-stranded DNA binding proteins, such as hPOT1 [80]. Human telomeric
DNA progressively shortens during successive rounds of replication, until it reaches
a critical point (the Hayflick limit) when cells enter a senescent stage as a prelude to
apoptosis [81]. However, over 80% of tumor cells have evolved a way to circumvent
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this and become immortalized. This is achieved in most cancer cells by expression of the
reverse transcriptase enzyme telomerase, which progressively synthesizes TTAGGG repeats
onto the 3′ ends of telomeric DNA, maintaining its length [82]. Conversely, telomerase
activity can be inhibited by inducing the folding of the single-stranded ends into G4s, since
the synthesis of a TTAGGG repeat on the telomerase template requires the telomere end
substrate to be single-stranded [83]. The consequence of telomerase inhibition is eventual
senescence and cell death for an affected cancer cell. It was subsequently hypothesized [84]
that the G4 folding of telomeric DNA ends could be facilitated by using a G4-selective
small molecule to stabilize 3′-terminal G4s. A library of G4-binding disubstituted amido-
anthraquinones (AQs) was shown to do just this, resulting in measurable telomerase
inhibition [84]. This was the first study to show that small-molecule binding to a G4 could
have a biological (and a potential therapeutic) effect. This working hypothesis used the
very limited G4 structural data available at the time to suggest that the two cationic side
chains of these AQ ligands would effectively occupy two grooves of the NMR structure of
a human intramolecular telomeric G4, which was taken as a plausible model [85].

Subsequent studies revealed the onset of cellular senescence and apoptosis following
ligand-induced telomerase inhibition by AQs and other G4 targeting compounds (see
for example references [86–88]). In a few instances, in vivo anti-tumor effects were ob-
served in cancer xenograft models, for example with the tri-substituted acridine compound
BRACO-19 (Figure 1) [89]. This compound had been designed [90] by qualitative molecular
modelling to have superior G4 vs duplex selectivity compared to the disubstituted AQ
ligands and thus had an improved telomerase potency. It was hypothesized that the three
side chains of BRACO-19 would each bind in a G4 groove, driving improved G4 binding,
telomerase potency, and G4 selectivity. These predicted changes were observed. The
modelling used the (then) sole human telomeric G4 experimental structure available, the
anti-parallel structure in Na+ solution, determined by NMR [85]. This structural concept
was subsequently validated by an X-ray crystallographic study of BRACO-19 bound to a
human telomeric bimolecular G4 [91], which also showed that BRAC-19 conforms to the
standard model of ligand–G4 interaction, i.e., its acridine chromophore end-stacks onto a
G4. Many synthetic compounds and natural products, notably the cyclic natural product
telomestatin and derivatives of BRACO-19, have been evaluated as potential anti-tumor
agents [87,92,93]. They have been presumed to act via a telomerase-mediated mechanism,
although few have reached the point of detailed in vivo mechanistic evaluation, in part
due to pharmacological challenges.
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Telomerase targeting via G4s was eventually abandoned as an anticancer approach, in
part because: (1) compounds such as the trisubstituted acridines only showed moderate
anti-tumor potency at best [94], and (2) some, such as the pentacyclic acridines, typified by
the compound RHPS4 [95], had significant off-target cardiotoxic liabilities (hERG), which
an analogue campaign failed to eliminate [96,97]. There was a view at the time that all
G4 ligands would have inherent hERG or neuro-receptor off-target toxicity. Subsequent
detailed receptor binding studies on later chemical series such as the naphthalene diimides
have shown that this view is erroneous. However, as in any serious drug discovery
program, it is vital to check for such effects and not shy away from making the decision to
abandon a particular chemotype if it is associated with serious adverse effects, especially
those that are manifest at doses close to therapeutic ones.

In addition, the mechanism of action of these compounds is more complex than
suggested by the simple model outlined above. It is now apparent that compounds such
as BRACO-19 and RHPS4 act, at least in part, not by G4-directed telomerase inhibition
but instead by telomere end-uncapping [89,97]. This involves initial G4-ligand formation
competing with single-strand binding proteins, resulting in the exposure of telomeric DNA
ends. This event triggers DNA damage responses [55,56,98]. Such a mechanism is unlikely
to be cancer cell selective, in accordance with the modest in vivo anticancer activity shown
by these G4 ligands.

However, the telomerase inhibition/telomere uncapping approach has recently re-
ceived renewed attention with several promising studies, suggesting that, with appropriate
G4 ligands, it may be worth further investigation [99–101].

3. Promoter G4s as Therapeutic Targets

The seminal study by Hurley et al. [45] demonstrated that the porphyrin ligand
TMPyP4 could down-regulate the expression of the MYC oncogene via promoter G4 bind-
ing. This work has been followed (see for example references [34–37]) by very many studies
in which a given promoter G4 has been targeted by a G4 ligand, with readouts of high G4
affinity and gene downregulation, most commonly from biophysical studies together with
an in vitro expression assay. Sometimes expression changes are assessed in cellular exper-
iments (see for example references [44,47,48,65,102–106]). Popular target cancer-relevant
genes include MYC, KRAS, c-KIT, BCL-2, and hTERT [34–37]. However, this approach
currently has several challenges:

a. The overwhelming majority of known G4 structures have broadly similar small-
molecule recognition features. These are: (1) the planar terminal G-quartets at
the ends of a G4, and (2) multiple grooves/loops, albeit of differing sizes and elec-
trostatic charge/hydrogen bond donor/acceptor distribution, depending on the
G4 topology and sequence. The recognition challenge involves the selection of a
single G4 in a single gene in a cell by a typical small molecule ligand from the set of ca
10,000 G4s encoded in the transcriptionally active genes in a cancer cell [32] (see the
G4 ligand database https://www.g4ldb.com/ with over 4800 entries, last accessed
25 July 2024).

Thus, the cellular selection of a single gene G4 from the global G4 gene pool is currently
implausible. However, some progress has been made, in the case of the MYC gene, using
a microarray approach [75,76]. One caveat is that the selectivity of the small molecule
DC34 derived from this study was evaluated on a small panel of G4s and not on the
complete genome.

Structure-based design approaches have also been extensively reported but, at the
present state of knowledge, are unlikely to succeed in identifying a compound capable of
single-gene G4 selection given the above challenges. In addition, the currently available
data set of promoter G4 molecular structures (Table 1) is very small. The added struc-
tural complexity of a G4 fully embedded in a duplex environment is indicated by the
sole (low-resolution) currently available structure [69] that shows a G4 in a more biolog-
ically relevant context. It is hoped that future higher resolution structures of promoter

https://www.g4ldb.com/
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G4–duplex complexes will become available and will highlight features exploitable for
ligand specificity. These are not apparent in the current G4 structures that lack their
duplex context.

Existing G4 structures have the greatest variability in terms of the size and nature
of their grooves and loops, with longer loops such as in the hTERT promoter G4 being
themselves capable of secondary structure formation, adding to potential selectivity. Sev-
eral studies (see for example references [107–110]) have employed in silico screening to
find drug-like G4-binding ligands, sometimes locating compounds with features distinct
from the conventional chromophore/side-chain ones. Some approaches, exemplified by
G4-QuadScreen (https://chemopredictionsuite.com/, last accessed 14 July 2024), have
used a multi-targeting approach against several G4s [111]. This has been successful in
identifying 62 hits from a library of 631,475 natural product compounds collected from
large compound databases such as ZINC (https://zinc15.docking.org/, last accessed
14 July 2024). The final three lead compounds have cell growth-inhibitory activities
(IC50 values) against a small panel of cancer cell lines of 6–30 µM. Tellingly, the G4 and
cellular selectivity of these were not found to be obviously related.

b. It is possible to unequivocally identify the complete set of G4-containing genes
in a cell type [32,112–115]. However, we are very far at present from identifying,
validating, and determining the tertiary folds of the totality of G4s encoded within
the promoters of all these genes. The scale of this challenge is again highlighted by
the very small number of promoter gene G4s for which structural data are currently
available and which have been targets for structure-based design (see for example
references [116–118]);

c. Targeting a single G4 may be therapeutically sufficient in some cancers that have a
single dominant driver gene, e.g., c-KIT in gastro-intestinal tumors (GIST), especially
in early-stage disease [119]. Liposarcomas also fall into this category since they are
characterized by dysregulation of the MDM2 gene, which contains a G4 region in its
promoter [120] and which can be successfully targeted by the G4 ligand QN-302 [121].
On the other hand, complex hard-to-treat cancers such as pancreatic cancer (PDAC)
involve the dis-regulation of many genes and their pathways [122,123]—there are,
therefore, very many G4s that are potential targets in these diseases.

PDAC continues to be the focus of the G4 targeting project at The School of Pharmacy
and is introduced at this point in this paper. We then discuss the discovery and development
of the novel small molecule compound QN-302 in the light of the challenges posed in the
earlier sections, and we describe the approach that we have developed to circumvent the
current limitations of G4 targeting methods.

4. The Discovery and Optimization of Substituted Naphthalene Diimides Targeting G4s

4.1. An Overview of Pancreatic Cancer

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most intractable of hu-
man cancers, with a continuing high mortality and low long-term survival rate, combined
with resistance to effective therapeutic approaches [124–127]. Small-molecule therapy in
PDAC has not to date made a major difference to patient outcomes [128]. The widely
used standard-of-care nucleoside drug gemcitabine [129,130] is only palliative and ex-
tends the life span in patients with advanced, metastatic PDAC disease by a few months
at most. Other more aggressive therapies, for example the FOLFIRINOX combination
(5-fluorouracil, irinotecan, oxaliplatin, and folinic acid), can only be applied to that fraction
of patients able to withstand the major side-effects of the cytotoxic components [131]. PDAC
is characterized by genetic complexity (see for example references [122,132]), even though
mutations in four genes (KRAS, CDKN2A, TP53, and SMAD4) have been consistently
described as major players in PDAC initiation. Many studies have identified large-scale
gene expression changes, with a further >2000 genes contributing to PDAC metastasis and

https://chemopredictionsuite.com/
https://zinc15.docking.org/
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progression. Successful therapeutic approaches to PDAC are thus unlikely to be based on
targeting single individual genes or their expressed proteins.

4.2. Early-Generation Naphthalene Diimides

The realization that the number of pendant groups on an appropriate planar het-
eroaromatic platform can play a critical role in G4 affinity and specificity was initially
demonstrated for the BRACO-19 molecule [89,90], with its three substituent groups. Since
all G4s, whatever their topology, have at least more than two grooves, albeit of varying
geometries depending on the G4 topology, it was logical to consider enhancing the generic
G4 specificity with three or four pendant groups. Several naphthalene imide and diimide
compounds had been previously shown to bind by intercalation to duplex DNA and one,
amonafide (5-amino-2-[2-(dimethylamino) ethyl]benzo[de]isoquinoline-1,3-dione), with a
single cationic side chain, has been in clinical trials against several cancer types, although
its severe toxicity has precluded its further development [133].

It was hypothesized, from qualitative molecular modelling using the human in-
tramolecular telomeric G4 crystal structure [134], that the naphthalenediimde (ND) core
moiety could effectively π–π stack onto a terminal G-quartet in typical G4s by virtue of its
delocalized electron system. ND core geometry and its ability to stack on G4 ends would
enable the delivery of three of four substituent sidechains into the grooves of G4s. These
side chains would optimally have a terminal cationic character, which would enhance their
binding to G4s via electrostatic interactions with the anionic phosphate-lined groove walls,
whereas duplex DNA (and RNA) binding would not be feasible due to steric hindrance
from the multiple side chains. An initial library of 26 tri- and tetra-substituted ND com-
pounds was synthesized from the inexpensive commercially available starting compound
1,4,5,8-naphthalene tetracarboxylic dianhydride [135]. Compounds having, for example,
four acyclic sidechains terminating in dimethylamine or pyrrolidine groups, were found
to strongly stabilize a human telomeric G4 in solution, as measured by a FRET (fluores-
cence resonance energy transfer) assay. The G4 stabilizing ability of these compounds was
broadly correlated with high potency in 96 h SRB (Sulforhodamine B) cell-growth inhibition
assays, with optimal IC50 values of 5–10 nM. Active compounds also displayed moderate
potency in a modified telomerase TRAP (telomerase repeat amplification protocol) assay.
Mechanistic studies suggested that telomere uncapping was just one aspect of their mode
of action, and that the transcriptional inhibition and induction of chromosome instability
were also possibly involved [136].

A subsequent analysis of three tetra-substituted NDs with all four side chains termi-
nating in N-methyl piperazine groups examined their anti-proliferative activity in a small
panel of seven cancer cell lines, together with their G4 binding and telomerase inhibitory
activity [137]. This showed that the two pancreatic cancer lines, PANC-1 and MIA-PaCa2,
were the most sensitive, and that G4 stabilization was necessary but, by itself, was an
insufficient indicator of biological activity. The most active of the three was subsequently
examined in the MIA-PaCa2 and HPAC tumor xenograft models, in which ca 50% and 30%
decreases in tumor volume were observed with a dose of 3 mg/kg three times weekly [138].
Telomerase inhibition was also observed in vitro and in vivo, although it was recognized
that this was unlikely to be the sole mode of action.

Crystallographic studies of G4 complexes with two tetrasubstituted NDs played a role
in the optimization of the ND sidechains, using a small, focused library of nine ND deriva-
tives with varying cyclic and cationic end groups and side chain lengths [139]. This resulted
in the identification of the lead compound MM41 (Figure 1: 4,9-Bis((3-(4methylpiperazin-
1-yl)propyl)amino)-2,7-bis(3-morpholinopropyl) benzo[lmn] [3,8]phenanthroline-1,3,6,8
(2H,7H)-tetraone), which was then chosen for detailed mechanistic study. This compound,
with two of the N-methyl-piperazine groups replaced by less basic morpholino ones, was
consistently the most potent in a small panel of cancer cell lines (Table 3). It was also
notable that, within the panel, MM41 was most active against a lung (A549) and a pan-
creatic cancer line (MIA-PaCa2), whereas it was some 30–50-fold less active against two
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renal cancer lines (786-0 and RCC4). Interestingly, although MM41 strongly stabilized a
telomeric G4 as judged by a FRET assay, the increases in G4 melting behavior (∆Tm values)
were comparable to those observed with several other less potent ND derivatives. MM41
also showed significant activity in a mouse xenograft model of PDAC [140]. Twice-weekly
15 mg/kg doses resulted in a ca 80% tumor growth decrease. Two animals in a group
of tumor-bearing animals survived tumor-free after 279 days. This second encouraging
indication of potent in vivo activity for an ND compound [138] led to a decision that further
optimization was warranted.

Table 3. Cell-growth inhibition data (IC50 values in nM) for the tetrasubstituted ND compound
MM41 [139] in a panel of cancer cell lines and a normal fibroblast line (WI-38), using a 96 h SRB assay.

Cell Line IC50

A549 <0.010 ± 0.005

RCC4 0.56 ± 0.05

MIA-PaCa2 0.01 ± 0.01

786-0 0.32 ± 0.01

MCF-7 0.070 ± 0.007

WI-38 0.23 ± 0.01

4.3. The Development of the Phenotypic Approach to Later-Generation ND Compounds

The knowledge that several tri- and tetra-substituted G4-binding NDs display selective
potency towards pancreatic cancer cell lines, combined with activity against in vivo models
of human pancreatic cancer, gave further support to the suggestion that G4-containing
genes may be involved in the disease, and could be targets for the NDs. Inspired by the
demonstration [45] that the expression of a cancer gene (MYC) can be down regulated
by a G4 ligand led to an emphasis on promoter G4 targeting by NDs. This decision
was supported by subsequent data showing that transcriptional downregulation was
predominantly observed for genes enriched in promoter G4s, although this does not
differentiate between these genes being direct or indirect targets.

The concept has been taken further by examining ligand binding to a small panel
of G4 targets (typically 5–10 G4 promoter sequences). In some instances, selectivity was
found, but we were cognizant of the limitations both of panels containing small numbers
of G4s and of attempts at the structure-based design and optimization of further NDs
(see Section 3 above). A substantial modification of the MM41 molecule was made by
decreasing the number of side chains, each still with a formal cationic charge, and thus
also reducing its molecular weight. This resulted in the third-generation compound CM03
(Figure 1), with just three pendant side chains [64]. The design concept was supported by
the crystal structures of several complexes between MM41 and a human intramolecular
telomeric G4 [139,141], and were used as generic G4 structures. These crystal structures
did reveal that the area of the ND chromophore did not fully cover all the surface of the
stacked G-quartets and thus precluded all four side chains from simultaneously binding in
the G4 grooves. Therefore, three side chains would suffice for effective binding. However,
since the precise G4 targets of the NDs were not known at this time, the crystal structures
and associated modelling, and the biophysical measures of G4 binding, could not fully
define the optimal trisubstituted compound. Instead, cell-growth inhibitory data were
again used as the primary filter—this is the phenotypic approach traditionally used in drug
discovery [142]—which released the ND ligand optimization process from the limitations
of not being able to optimize with respect to the real G4 target(s). The resulting compound,
CM03, is similarly potent to MM41 in pancreatic cancer cell lines and in the MIA-PaCa2
in vivo xenograft model for PDAC, as well as in the therapeutically demanding in vivo
genetic model for PDAC, the so-called KPC model [143].
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Unsurprisingly, studies that have examined effects on multiple genes, initially using
micro-array methods [139] and more recently using whole-genome RNA sequencing (RNA-
seq), have revealed an altogether more complex picture than was assumed at the outset,
with binding data obtained from a very small number of G4s. These later studies revealed
that a typical G4-binding ND ligand can affect the transcription of many hundreds of
genes—the trisubstituted ND compound CM03 down-regulates 2272 genes following a
24 h exposure in MIA-PaCa2 cells [140]. It is significant that this down-regulated gene set is
enriched in G4 promoter sequences, whereas the upregulated gene set is not. The concept
of targeting multiple G4s with NDs arose from this data analysis, which also showed that
these down-regulated genes were frequently found in multiple cancer-related pathways.
Some, such as the WNT/β-catenin pathway, are generic to several cancers, whereas others,
such as the axon-guidance pathway, are specific to PDAC. Surprisingly some expected gene
targets, notably MYC, were unaffected by CM03. It was concluded that the downregulation
of multiple genes was likely to be an important factor in the anti-tumor activity of CM03 in
animal models (and possibly also in humans).

4.4. The Current Lead Compound, the Experimental Drug QN-302

Any drug discovery campaign asks the constant question: can one further improve
the current lead compound? The trisubstituted ND derivative CM03 was the starting-point
for the attempt to overcome this challenge, which set out to improve its in vitro and in vivo
biological potency by an order of magnitude, as well as ensuring as far as possible that
off-target toxicity was not a constraint to future clinical development, all perhaps in concert
with enhanced G4 affinity.

A conservative approach was taken, with the three side chains of CM03 kept fixed
and variations made at the position on the ND core where a fourth substituent had been in
MM41 (Figure 1). A total of 84 compounds were synthesized and a short-list was selected
using FRET to measure the quadruplex stabilization (resulting in G4 melting temperature
∆Tm values) for a small G4 panel together with a standard duplex DNA, and obtain cell-
growth inhibition data (IC50 values, initially for a single PDAC cell line). The former
enabled low-affinity compounds to be rejected but did not provide discrimination between
compounds with greater G4 stabilization properties. On the other hand, the cellular assays
enabled successive short-lists to be established of, firstly, nine compounds, and, finally,
three (CM03, SOP1247, and QN-302: see Figure 1). Data for the long short-list of nine
compounds were augmented by in vivo pharmacokinetic data, to ensure that the chosen
candidate compounds would have sufficient in vivo bioavailability, together with data
from receptor-binding assays, to minimize any off-target effects. The final choice was
informed by data from a panel of PDAC cell lines (Table 4). QN-302 (initially termed
SOP1812 [10]) was the outstanding and most active compound of the series, with anti-
proliferative activity in most of the PDAC lines that was up to 10-fold greater than that
of the other two compounds [144]. Thus, the anti-proliferative activities (IC50 values)
for QN-302 are at single-digit nM levels. It also has a half-life (T1/2) in vivo of 37 h and
there is no evidence of hERG or other receptor liabilities at or near therapeutic doses.
Its superior activity was also observed in in vivo xenograft and KPC models for PDAC,
with significant anti-tumor activity at a once-weekly dose of 1 mg/kg over four weeks,
compared to the 10–15 mg/kg dosing required for CM03. Both CM03 and QN-302 are
active in gemcitabine-resistant PDAC cell lines (Table 5), with the latter retaining its 10-fold
superiority in potency [145,146]. Molecular modelling using the MM41-telomeric G4 crystal
structures [139,141] has provided a plausible rationale for the superiority of QN-302. It is a
consequence of the longer benzyl-pyrrolidine substituent being able to protrude deep into
a groove and stacking onto an adjacent G-quartet. However structural data on the most
plausible G4 targets (see below) are not currently available, so modelling is most useful in
providing qualitative support to the phenotypic data (Figure 2). It remains the case though
that potent G4 stabilization is an absolute requirement in this series of NDs: those members
of the 84-compound library with low G4 ∆Tm values also had low cellular potency.
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Table 4. Cell growth inhibition data (IC50 values in nM) for three ND compounds in four PDAC cell
lines, from 96 h SRB assays. Esds are ±0.1–0.5 nM [145]. Data for QN-302 is highlighted in yellow.

Cell Line CM03 SOP1247 QN-302

MIA-PaCa2 9.0 13.8 1.3

PANC-1 15.6 15.7 1.4

CAPAN-1 26.5 38.8 5.9

Bx-PC3 15.5 20.5 2.6

Table 5. Cell growth inhibition data (IC50 values, in nM) from 96 h SRB assays, for two ND com-
pounds, together with gemcitabine and CX-5461, in two pairs of parental and gemcitabine-resistant
PDAC cell lines [147,148]. Data for the experimental drug QN-302 are highlighted in yellow.

Compound MIA-PaCa2
Parental

MIA-PaCa2
GemResist

PANC-1
Parental

PANC-1
GemResist

Gemcitabine 6.5 ± 0.7 11,055.7 ± 540.0 23.3 ± 8.4 28,750.9 ± 6121.3

CM03 13.0 ± 8.4 14.9 ± 8.3 10.4 ± 1.2 15.5 ± 1.8

CX-5461 90.3 ± 30.7 88.7 ± 22.0 32.9 ± 7.6 58.8 ± 13.8

QN-302 2.6 ± 1.0 3.8 ± 1.2 2.3 ± 0.4 3.3 ± 0.7
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chains of BRACO-19 are in the plane of the page; these have similar dimensions to two of the QN-302
ones and would be expected to bind in G4 grooves in a similar mode.

The transcriptome data obtained after 24 h exposure of MIA-PaCa2 PDAC cells to
QN-302 [10] have been further analyzed [144]. Twelve genes have been identified to have
the most significant downregulation in expression (Table 6). Almost all play a role in human
pancreatic cancer, seen by mapping them on to their expression levels in pancreatic cancer
patients, using data available from the Human Protein Atlas (https://www.proteinatlas.
org/, last accessed on 12 July 2024). It is notable that QN-302 does mostly affect the same
pathways as CM03 and SOP1247 [144]. However, QN-302 has a greater effect on genes
distinct from those sensitive to these two compounds (Table 6). Here, we briefly highlight
two examples of well-characterized genes and their encoded proteins, which are detailed
elsewhere [144]. To date, the only G4s examined in this list of G4-rich genes are those in the
S100P gene.

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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• The GLI1 gene encodes the major transcription factor GLI1 in the Hedgehog pathway
and its expression is down-regulated to a greater extent by QN-302 than by the other
two compounds, which mostly affect the expression of the GLI4 gene, which is of
lesser therapeutic significance. The GLI1 protein is significantly upregulated in human
PDAC and has been studied as a potential therapeutic target since its upregulation
promotes cell migration and metastasis;

• The S100P gene is frequently upregulated in PDAC, and both the gene and the S100P
protein have been considered as plausible therapeutic targets and biomarkers in PDAC,
since cancer cell apoptosis and anti-tumor activity are consequences of its targeting
and downregulation ([147] and references therein). A plausible G4 sequence in the
promoter of the S100P gene has been identified [147], 48 nucleotides upstream from the
transcription start site. This sequence forms a stable G4 structure under physiological
K+ conditions and is further stabilized by QN-302.

Table 6. Detailed RNA-seq expression data for the top 12 cancer-related genes showing down-
regulated expression. All have large and, for the most part, statistically significant fold changes in
mRNA expression, following 24 h QN-302 treatment of MIA-PaCa2 cells. The RNA-seq data set is
available in the GEO public functional genomics data repository (https://www.ncbi.nlm.nih.gov/
geo/, last accessed on 3 May 2024), and is listed as GSE151741 for QN-302.

Gene Log2FC FC P High/
Low Pprotein PQS PPQS ACT VACT

S100P −3.23 9.4 0.08 124/52 0.0002 60 8 Y Y

CX3CL1 −2.91 7.5 0.04 62/114 0.026 5 2 Y Y

CLIC3 −2.77 6.8 0.07 140/36 0.008 6 3 ? Y

NTN4 −2.46 5.5 0.015 129/41 0.0001 13 4 N Y

SLC19A1 −2.27 4.8 <<0.0001 138/38 0.29 38 4 ? ?

KRT16 −1.98 3.9 0.0016 140/36 0.00001 2 1 N Y

PRDM16 −1.91 3.8 <<0.0001 140/36 0.052 260 5 ? ?

RTN4R −1.87 3.7 <<0.0001 43/123 0.012 28 3 N Y

GLI1 −1.84 3.6 0.011 53/133 0.085 15 4 Y Y

MAPK11 −1.72 3.3 <<0.0001 85/91 0.005 18 6 Y Y

HSPA1A −1.15 2.2 0.0001 65/111 0.008 3 1 Y Y

GPRC5B −1.14 2.1 0.0025 125/51 0.028 4 1 N N

P is the calculated probability of each fold change. High/Low refers to human pancre-
atic cancer patient data taken from the human protein atlas, showing numbers of patients
with high and low expression of each gene; Pprotein is the calculated associated probabil-
ity. PQS is the number of calculated putative G-quadruplexes in each gene, and PPQS
represents the number in each promoter region. ACT indicates whether the gene/protein
has been studied as an anticancer target, possibly with small-molecule inhibitors. VACT
indicates whether it has been validated as an anticancer target. Limited in vivo data are
available on the expression of these genes following in vivo exposure to QN-302. However,
q-PCR data on the S100P, MAPK11, CX3CL1, and PRDM16 genes in an in vivo pancreatic
cancer model all show significant downregulation following QN-302 treatment [10,148]
(unpublished observations). We have previously reported [148] that the S100P gene is
upregulated in a sample set of poorly differentiated human pancreatic cancers. CX3CL1,
CLIC3, and MAPK11 are also significantly upregulated in these tumors (p < 0.05). However,
the tumor sample set is too small for firm conclusions to be made on the wider prevalence
of the gene set in these samples.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Notes

1. S100P codes for a Ca-binding protein involved in migration and metastasis and,
especially in pancreatic cancer, binds to and inactivates p53.

2. CX3CL1 codes for a chemokine involved in pancreatic cancer cell migration and viability.
3. CLIC3 codes for a chloride ion channel associated with metastasis in pancreatic cancer.
4. NTN4 codes for a laminin family member that inhibits senescence.
5. SLC19A1 codes for the folate transporter gene, up regulated in several cancers.
6. KRT16 codes for a keratin associated with cancer cell motility and metastasis.
7. PRDM16 codes for a transcription factor that suppresses TGF-β signaling.
8. RTN4R codes for a protein that regulates AKT signaling and enhances cancer

cell proliferation.
9. GLI1 codes for a transcription factor that is a key effector of the Hedgehog pathway

and an established anticancer target, notably in PDAC.
10. MAPK11 codes for a mitogen-activated protein kinase involved in pathway regulation

and cancer cell proliferation.
11. HSPA1A is a heat shock gene encoding for the HSP70 protein, associated with

20 different cancers.
12. GPRC5B codes for a G protein-coupled receptor class C member involved in extra-

cellular glucose sensing and glucose metabolism. It is upregulated in several cancers
including pancreatic cancer. It is regulated by the transcription factor RUNX1.

We suggest that the enhanced downregulation of this group of genes, several of which
are known to be significant in PDAC (Table 6), may be a consequence of selectivity at the G4
level. However, at present, this must remain speculative in the absence of data as to which
ones form stable G4s and which play a significant direct or indirect role in the cellular and
in vivo potency of QN-302. It is of some future interest that several members of this 12-gene
group are involved in other cancer types, suggesting that QN-302 may have potentially
useful anti-cancer activity beyond PDAC (see Section 5 below).

4.5. QN-302 in the Clinic

The experimental anti-tumor activity of QN-302 in pancreatic and other cancers,
together with its favorable pharmacological and chemical profile, has led to its out-licensing
by UCL Business to Qualigen Therapeutics Inc as a novel cancer therapeutic agent, for
pre-clinical and clinical development. The licensing occurred in January 2022. The drug was
granted Orphan Drug status for PDAC by the Food and Drug Administration (FDA) one
year later. This took into account the existing pre-clinical data, including the findings that
toxicity was not observed at therapeutic doses in any of the animal models used for PDAC.
Subsequent toxicological, scale-up syntheses and formulation studies led in mid-2023 to an
Investigational New Drug (IND) proposal to the FDA. Consent was granted in summer
2024 for a Phase 1 dose escalation clinical trial on advanced solid tumors, including PDAC.
The trial is currently ongoing and started with an initial dose of 1.67 mg once a week over
four weeks, administered intravenously. The limited assessments to date do suggest that
(1) the drug is well tolerated, and no significant dose-limiting toxicity has been observed at
low doses, with patients reporting a good quality of life. (2) Several PDAC patients showed
no disease progression for periods of up to four months [9].

5. Conclusions

There are currently two experimental G4-binding drugs undergoing clinical assessment,
QN-302 and the fluoroquinolone-based compound CX-5461 (Figure 1) (Pidnarulex) [6–8,148].
The latter, by contrast with QN-302, shows selectivity for BRCA1/2-deficient cells [6–8,148] and
cancers, a selectivity that also appears to have been found by phenotypic selection. Although
its G4 targets have not been disclosed, it also functions as a RNA polymerase I poison and a
topoisomerase inhibitor [149,150], suggesting that it is a distinct multi-targeting agent, with
consequent advantages in the treatment of certain repair-deficient complex cancers. The results
of the Phase 1 trial with Pidnarulex [7] in a group of 46 patients with advanced solid tumors,
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emphasizing those with defective DNA repair pathways, showed 14% responses, notably in
those individuals with defective homologous recombination. This clinical proof of concept
outcome supports the rationale of the drug’s G4-related mechanism of action and paves the way
for further clinical trials, even though dose-limiting phototoxicity was observed in the patient
group. This effect appears to be confined to the fluoroquinolone chemotype of Pidnarulex, since
a control in vitro phototoxicity assay with the G4 ligand pyridostatin did not show the same
effect. This result is significant in demonstrating that phototoxicity is not a general feature of
G4 ligands.

Another example of the possible future development of QN-302 beyond PDAC comes
from preliminary screening data with a panel of prostate cancer cell lines [151], in a further
extension of the phenotypic approach to discovering further cancer categories sensitive
to this drug. This study has shown selective and low single-digit activity for QN-302 in
the PC-3 cell line (Table 7), which is a model for castration-resistant prostate cancer when
antiandrogen hormone therapies are no longer effective. This effect is seen in Table 7 for
the two clinically used drugs Abiraterone and Enzalutamide, with both having high IC50
values in the PC-3 line. An initial therapeutic study with the PC-3 xenograft model has
shown statistically significant (p = 0.0008) anti-tumor activity in this model, with 1 mg/kg
twice-weekly dosing.

Table 7. Cell viability activity in a panel of prostate cancer cell lines for two ND compounds, the
clinically approved antiandrogen drugs abiraterone and enzalutamide. Evaluations were undertaken
using an XTT (Roche) proliferation assay. Calculated IC50 values are given in nM. Esds vary from ca
0.4 to ca 20 nM, depending on the size of the IC50 value. Data for the drug QN-302 in the PC-3 cell
line is highlighted.

Prostate Cancer Lines CM03 QN-302 Abiraterone Enzalutamide

PC-3 94 3 4820 5350

DU145 113 32 N/A N/A

LNCaP 394 247 3860 4820

VCaP 135 68 N/A N/A

22RV1 90 90 N/A N/A

The phenotype-driven strategy presented here puts a disease (in this case pancreatic
cancer) at the center of the discovery and optimization process for a discrete class of G4
ligands based on the ND core (Figure 3). Thus, the phenotypic strategy has been successful
in the case of QN-302 and was born out of the necessity of circumventing the current
restricted knowledge of G4 structure and function. Even so, the G4 paradigm has been an
essential aspect of this approach in enabling effective lead chemotypes to be selected. G4
binding is the primary screen that has established the ND chemotype as appropriate for
development but, as discussed here, is not currently able to, by itself, define an optimal
lead compound. It is hoped that phenotypic screening in other G4 ligand projects will help
in the identification of new classes of G4-targeted drug-like compounds for the treatment
of other challenging cancers with unmet clinical need, even as we learn more about the
G4 story.
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