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Abstract
For an elliptic curve with complex multiplication over
a number field, the 𝑝∞-Selmer rank is even for all 𝑝.
Česnavičius proved this using the fact that 𝐸 admits a 𝑝-
isogeny whenever 𝑝 splits in the complex multiplication
field, and invoking known cases of the 𝑝-parity conjec-
ture. We give a direct proof, and generalise the result to
abelian varieties.
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1 INTRODUCTION

An elliptic curve over a number fieldwith endomorphisms other thanmultiplication by an integer
is said to have complex multiplication. These can make the curves easier to work with. It is well-
known, and important for this paper, that they always have even rank. Indeed, supposewe have an
elliptic curve𝐸 over𝐾with complexmultiplication, andnote that𝐸(𝐾) ⊗ℤ ℚ is a vector space over
ℚ with dimension equal to the rank of 𝐸. Now the endomorphisms must in fact form a lattice in
an imaginary quadratic field 𝐿. Then 𝐸(𝐾) ⊗ℤ ℚ is an 𝐿-vector space, and so an even-dimensional
ℚ-vector space.
It is not hard to prove that these curves also have root number 1 [1, Proposition 6.3], so they

satisfy the parity conjecture. We might hope that there is an analogous result for Selmer groups,
that is, that the 𝑝∞-Selmer ranks (defined below) are even, and hence the curves satisfy the 𝑝-
parity conjecture. This is in fact true, however it is not so easy to prove. In this paper we will
present a new proof of this result, and generalise it to abelian varieties (Theorem 1). One might
hope that a proof analogous to that for ranksworks, as this is also a question of finding the rank of a
vector space onwhich 𝐿 acts. To seewhy this proof fails, note that we are now looking atℚ𝑝-vector
spaces. The argument for ranks used the fact that aℚ-vector space acted on by 𝐿 has evenℚ-rank,
but this is not true when we replace ℚ by ℚ𝑝. For example, suppose 𝑝 = 5 and 𝐿 = ℚ(𝑖). Then we

©2024 The Authors. Bulletin of the LondonMathematical Society is copyright © LondonMathematical Society. This is an open access article
under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided
the original work is properly cited.

Bull. London Math. Soc. 2024;56:2711–2717. wileyonlinelibrary.com/journal/blms 2711

https://orcid.org/0000-0002-6361-2237
mailto:james.bell.20@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/blms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fblms.13094&domain=pdf&date_stamp=2024-06-06


2712 BELL

can have an action of 𝐿 on a one-dimensionalℚ𝑝-vector space, because 𝑖 ∈ ℚ5. Themethodworks
when 𝑝 is inert in 𝐿, but not when it splits.
Suppose we have an elliptic curve 𝐸 over a number field 𝐾, which has complex multipli-

cation. Looking at the Tate–Shafarevich group Ш, we find its 𝑝-primary part is isomorphic to
(finite group) × (ℚ𝑝∕ℤ𝑝)

𝛿𝑝 for some integer 𝛿𝑝. Wewill define the 𝑝∞-Selmer rank to be rk𝑝(𝐸) =
rk(𝐸) + 𝛿𝑝.
A generalisation of elliptic curves is abelian varieties. The aim of this paper is to prove the

following:

Theorem 1. Suppose 𝐴∕𝐾 is an abelian variety with complex multiplication by a field 𝑀 (see
Definition 4), and 𝑝 a prime. Then rk𝑝(𝐴) is even.

Given that the rank is even, Theorem 1 is equivalent to the statement that the divisible part of
Ш has even ℤ𝑝-corank. This is in fact expected to be 0, as Ш is conjectured to be finite.
Another reason to expect Theorem 1 to hold is the 𝑝-parity conjecture, which states that for an

abelian variety 𝐴 over a number field 𝐾, with root number 𝑤(𝐴∕𝐾),

(−1)rk𝑝(𝐴∕𝐾) = 𝑤(𝐴∕𝐾).

In the CM case, the root number is 1 [9, Remark 2 after Theorem 4], so Theorem 1 is equivalent
to the 𝑝-parity conjecture for abelian varieties with complex multiplication. In a different form
𝑝-parity was conjectured by Selmer in 1954 [8]. The conjecture is known in the case where𝐴 is an
elliptic curve over a number field admitting a 𝑝-isogeny thanks to T. Dokchitser and V. Dokchitser
[4] and Česnavičius [1]. By calculating root numbers, this allowed Česnavičius to conclude that
for elliptic curves with complex multiplication, rk𝑝(𝐴) is even. However, there is no equivalent
𝑝-parity result to use for abelian varieties, so we must use a different method.
Throughout the paper, we use ‘complexmultiplication’ or ‘CM’ tomean complexmultiplication

defined over 𝐾. With CM defined over ℚ̄, the 𝑝-parity conjecture has been proved for elliptic
curves over totally real 𝐾, but is open in general. For 𝑝 ≠ 2 this is due to Nekovar [7, 5.10] and for
𝑝 = 2 Green and Maistret [5, 6.5].
From Theorem 1, we can deduce the following:

Corollary 2. Suppose𝐴 and 𝑝 are as in Theorem 1. IfШ[𝑝∞] is infinite, then it contains (ℚ𝑝∕ℤ𝑝)
2.

Notation

Throughout, we will assume 𝐴 and 𝐵 are abelian varieties over a number field 𝐾.
We will denote the dual of an abelian variety 𝐴 by 𝐴̂, and of an isogeny 𝑓 ∶ 𝐴 → 𝐵 by 𝑓 ∶ 𝐵̂ →

𝐴̂.
Let 𝜆 ∶ 𝐴 → 𝐴̂ be some polarisation of 𝐴 defined over 𝐾.
For an isogeny 𝑓 and a field 𝐿, denote by 𝑓𝐴(𝐿) the map on 𝐿-points induced by 𝑓, and similarly

let 𝑓Ш be the map induced on the Tate–Shafarevich group.
For a prime 𝑝, Ш[𝑝∞] is the 𝑝-primary part of Ш. 𝛿𝑝 will denote the multiplicity of ℚ𝑝∕ℤ𝑝

inШ[𝑝∞]. Specifically, Ш[𝑝∞] ≅ (finite group) × (ℚ𝑝∕ℤ𝑝)
𝛿𝑝 for some integer 𝛿𝑝. Ш𝑑 will be the

divisible part of Ш andШ𝑛𝑑 the quotient of Ш byШ𝑑.
Write 𝑌𝑝(𝐴∕𝐾) for Hom(Ш𝑑[𝑝

∞], ℚ𝑝∕ℤ𝑝), the Pontryagin dual of Ш𝑑[𝑝
∞]. Let 𝑝(𝐴∕𝐾) =

𝑌𝑝(𝐴∕𝐾) ⊗ℤ𝑝
ℚ𝑝. Note this is a ℚ𝑝-vector space of dimension 𝛿𝑝, and an End𝐾(𝐴) ⊗ℤ

ℚ𝑝-module.
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𝑝∞-SELMER RANKS OF CM ABELIAN VARIETIES 2713

Definition 3 (Rosati involution). For an abelian variety 𝐴 with polarisation 𝜆, the Rosati involu-
tion is the involution onEnd𝐾(𝐴) ⊗ℤ ℚ sending𝑓 to𝑓† ∶= 𝜆−1◦𝑓◦𝜆.We extend this by continuity
to End𝐾(𝐴) ⊗ℤ ℚ𝑝.

Definition 4 (Complex multiplication). We say 𝐴 has complex multiplication if

∙ End𝐾(𝐴) ⊗ ℚ ⊃ 𝑀, where 𝑀 is a totally complex field containing a totally real field 𝐿, [𝑀 ∶

𝐿] = 2 and [𝐿 ∶ ℚ] = dim(𝐴);
∙ the Rosati involution corresponds to complex conjugation on𝑀.

Note that this is complexmultiplication over𝐾, not over 𝐾̄ (which is sometimes called potential
complex multiplication).

2 SELF-ISOGENIES

Suppose 𝐴 and 𝐵 are abelian varieties over a number field 𝐾, and 𝑓 ∶ 𝐴 → 𝐵 an isogeny
between them.
Recall the following theorem.

Theorem 5 [6, Proof of I.7.3, I.7.3.1]. There is some finite set 𝑆 of places of 𝐾 such that

∏
𝑣∈𝑆

#ker(𝑓𝐴(𝐾𝑣)
)

#coker(𝑓𝐴(𝐾𝑣)
)
=

#ker(𝑓𝐴(𝐾))

#coker(𝑓𝐴(𝐾))
⋅
#coker(𝑓𝐵̂(𝐾))

#ker(𝑓𝐵̂(𝐾))
⋅
#ker(𝑓Ш)

#ker(𝑓Ш)
.

Corollary 6. Suppose that 𝐴 = 𝐵, that is, 𝑓 is a self-isogeny. Then

#ker(𝑓Ш) = #ker(𝑓Ш).

Proof. In the formula in Theorem 5, the left-hand side is equal to the ratio of the volume forms
of 𝐴 and 𝐵 that appear in the formula for 𝐿(𝑟)(𝐴,1)

𝑟!
predicted by the Birch–Swinnerton-Dyer con-

jecture (see [6, Section I.7] for a full definition; in the notation of this chapter the volume term is∏
𝜈∈𝑆 𝜇𝜈(𝐴,𝜔)

|𝜇|𝑑 ). These depend only on 𝐴 and not 𝑓 so when 𝐴 = 𝐵, this is 1.
Similarly, the next two terms equal the ratio of the regulators of𝐴 and 𝐵 and the orders of their

torsion subgroups. Specifically,

#ker(𝑓𝐴(𝐾))

#coker(𝑓𝐴(𝐾))
⋅
#coker(𝑓𝐵̂(𝐾))

#ker(𝑓𝐵̂(𝐾))
=

Reg(𝐴∕𝐾)#𝐵(𝐾)𝑡𝑜𝑟𝑠#𝐵̂(𝐾)𝑡𝑜𝑟𝑠

Reg(𝐵∕𝐾)#𝐴(𝐾)𝑡𝑜𝑟𝑠#𝐴̂(𝐾)𝑡𝑜𝑟𝑠
,

therefore when 𝐴 = 𝐵 this is also 1. □

The following variant of this result will be useful.

Lemma 7. Suppose 𝑓 is as above, and 𝑝 any prime. Then

#ker(𝑓Ш[𝑝∞]) = #ker(𝑓Ш[𝑝∞]),
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2714 BELL

Proof. For any prime 𝑝, the 𝑝-adic valuations of the kernels in Lemma 6 must be equal. As both
kernels decompose as a product over primes 𝑙 of their 𝑙-primary subgroups, the 𝑝-part of each side
comes fromШ[𝑝∞], so we can replace Ш byШ[𝑝∞] and still have equality. □

Lemma 8. Suppose 𝑓 is as before. Then we can split the kernels into divisible and non-divisible
parts. Specifically,

#ker(𝑓Ш𝑑
)#ker(𝑓Ш𝑛𝑑

) = #ker(𝑓Ш𝑑
)#ker(𝑓Ш𝑛𝑑

).

Proof. We will show #ker(𝑓Ш) = #ker(𝑓Ш𝑑
)#ker(𝑓Ш𝑛𝑑

) and similarly for 𝑓. This holds by an
application of the snake lemma to the exact sequence

0 →Ш𝑑 →Ш→Ш𝑛𝑑 → 0

with the isogeny 𝑓, which is valid because 𝑓mapsШ𝑑 toШ𝑑. We can also see that#coker(𝑓Ш𝑑
) =

1, because 𝑓 has a conjugate isogeny g ∶ 𝐴 → 𝐴. This has the property that 𝑓◦g = [deg(𝑓)], and
multiplication by an integer is surjective onШ𝑑. The result follows. □

Lemma 9. Let 𝐴∕𝐾 be an abelian variety, 𝑝 a prime, and 𝑓 ∶ 𝐴 → 𝐴 an isogeny defined over 𝐾.
Then

#ker(𝑓Ш𝑑[𝑝
∞]) = #ker(𝑓Ш𝑑[𝑝

∞]).

Proof. By the functoriality and non-degeneracy of the Cassels–Tate pairing onШ𝑛𝑑,

#ker(𝑓Ш𝑛𝑑[𝑝
∞]) = #coker(𝑓Ш𝑛𝑑[𝑝

∞])

[6, proof of I.7.3]. Now #coker(𝑓Ш𝑛𝑑[𝑝
∞]) and #ker(𝑓Ш𝑛𝑑[𝑝

∞]) are equal, because Ш𝑛𝑑[𝑝
∞] is a

finite group. So, the non-divisible parts of the equation in Lemma 8 cancel out, and we have
equality of the divisible parts. □

3 COMPLEXMULTIPLICATION

Recall 𝑌𝑝(𝐴∕𝐾):= Hom(Ш𝑑[𝑝
∞], ℚ𝑝∕ℤ𝑝) and 𝑝(𝐴∕𝐾) ∶= 𝑌𝑝(𝐴∕𝐾) ⊗ℤ𝑝

ℚ𝑝. Note this is an
End𝐾(𝐴) ⊗ℤ ℚ𝑝-module. For 𝜙 a self-isogeny of 𝐴, denote the map induced on 𝑌𝑝(𝐴∕𝐾) by 𝜙𝑌𝑝

,
and similarly if 𝜙 ∈ End𝐾(𝐴) ⊗ℤ ℚ𝑝, denote the map induced on 𝑝(𝐴∕𝐾) by 𝜙𝑝

.

Lemma 10. Suppose 𝐴∕𝐾 is a polarised abelian variety, 𝑝 a prime, and 𝜙 an invertible element of
End𝐾(𝐴) ⊗ℤ ℚ𝑝 . Then

ord𝑝det(𝜙𝑝
) = ord𝑝det(𝜙

†
𝑝
).

Proof. We prove this for 𝜙 an isogeny of𝐴 defined over𝐾, and the full result follows. By properties
of Pontryagin duality,

#ker(𝜙Ш𝑑[𝑝
∞]) = #coker(𝜙𝑌𝑝

).
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𝑝∞-SELMER RANKS OF CM ABELIAN VARIETIES 2715

Now 𝜙𝑌𝑝
can be represented overℤ𝑝 by amatrix 𝑃 in Smith normal form, with all diagonal entries

non-zero. Then

ord𝑝det(𝜙𝑝
) = ord𝑝det(𝑃) = ord𝑝#coker(𝜙𝑌𝑝

).

It therefore follows from Lemma 9 that

ord𝑝det(𝜙𝑝
) = ord𝑝det(𝜙̂𝑝

).

Now as 𝜙̂ = 𝜆◦𝜙†◦𝜆−1, 𝜙†
𝑝

will have the same determinant, and the result follows. □

Suppose from now on that𝐴 has complex multiplication by a field𝑀, with totally real subfield
𝐿. Now 𝑝(𝐴∕𝐾) is an 𝑀 ⊗ℚ ℚ𝑝-module.𝑀 ⊗ℚ ℚ𝑝 is isomorphic to

∏
𝔭|𝑝 𝑀𝔭, where the prod-

uct is over primes 𝔭 of 𝑀 lying above 𝑝, and 𝑀𝔭 is the completion of 𝑀 at 𝔭. We can therefore
decompose 𝑝(𝐴∕𝐾) into a sum of ℚ𝑝-vector spaces

𝑝(𝐴∕𝐾) =
⨁
𝔭|𝑝

𝑉𝔭,

where each 𝑉𝔭 is an𝑀𝔭-vector space.

Lemma 11. For each prime 𝔭|𝑝, we have

dimℚ𝑝
𝑉𝔭 = dimℚ𝑝

𝑉𝔭̄.

Proof. If 𝔭 = 𝔭̄, we are done, so suppose they are not equal. Then define 𝛼 to be the element of
𝑀 ⊗ℚ ℚ𝑝 =

∏
𝔭|𝑝 𝑀𝔭 that corresponds to 𝑝 in𝑀𝔭 and 1 in all the other factors. Now we can view

𝛼 as an element of End𝐾(𝐴) ⊗ℤ ℚ𝑝. Then

ord𝑝det(𝛼𝑝(𝐴∕𝐾)
) = ord𝑝det(𝑝|𝑉𝔭) = dimℚ𝑝

𝑉𝔭.

Now by the definition of complex multiplication, 𝛼† acts as 𝛼̄. It therefore acts as the identity on
𝑉𝔮 for 𝔮 ≠ 𝔭̄, and as multiplication by 𝑝 on 𝑉𝔭̄. So, by the same argument we have

ord𝑝det(𝛼
†

𝑝(𝐴∕𝐾)
) = dimℚ𝑝

𝑉𝔭̄,

and by Lemma 10 the result follows. □

Proof of Theorem. It suffices to show that dimℚ𝑝
𝑝(𝐴∕𝐾) =

∑
𝔭|𝑝 dimℚ𝑝

𝑉𝔭 is even. Let 𝐿 be the
fixed field of complex conjugation on𝑀. If 𝔭 is inert or ramified in𝑀∕𝐿, then [𝑀𝔭 ∶ ℚ𝑝] is even.
Therefore,

dimℚ𝑝
𝑉𝔭 = [𝑀𝔭 ∶ ℚ𝑝]dim𝑀𝔭

𝑉𝔭

is also even.
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2716 BELL

For the primes 𝔭 that split in𝑀∕𝐿, we have 𝔭 ≠ 𝔭̄, and, by Lemma 11,

dimℚ𝑝
𝑉𝔭 = dimℚ𝑝

𝑉𝔭̄.

Thus,
∑

𝔭|𝑝 dimℚ𝑝
𝑉𝔭 is even, and so is rk𝑝(𝐴∕𝐾). □

Remark 12. The complex multiplication assumption can be weakened. Suppose 𝐴 is an abelian
variety with End𝐾(𝐴) ⊗ℤ ℚ ⊃ 𝑀, for some field 𝑀, and suppose the Rosati involution induces
a non-trivial automorphism on𝑀. Then we can still show that rk𝑝(𝐴) is even. Here denote this
automorphism by 𝜙 ↦ 𝜙̄, and the fixed field of it plays the role of 𝐿. Then the proof proceeds in
the same way.

Remark 13. A similar argument can also be applied directly to 𝑝∞-Selmer groups instead of Ш𝑑.
Let𝑋𝑝(𝐴∕𝐾) = Hom(Sel𝑝∞(𝐴∕𝐾), ℚ𝑝∕ℤ𝑝) and𝑝(𝐴∕𝐾) = 𝑋𝑝(𝐴∕𝐾) ⊗ℤ𝑝

ℚ𝑝. Note that theℚ𝑝-
rank of𝑝(𝐴∕𝐾) is rk𝑝(𝐴∕𝐾). Then replace Theorem 5with Theorem 7 from [3]. This tells us that
for any self-isogeny 𝜙, 𝑄(𝜙) = 𝑄(𝜙̂), where, for an isogeny 𝜓 ∶ 𝐴 → 𝐵,

𝑄(𝜓) ∶= #coker(𝜓 ∶ 𝐴(𝐾)∕𝐴(𝐾)tors → 𝐵(𝐾)∕𝐵(𝐾)tors)#ker(𝜓Ш𝑑
).

Section 2 of [2] tells us that

ord𝑝𝑄(𝜙) = ord𝑝#coker(𝜙 ∶ 𝑋𝑝(𝐴∕𝐾) → 𝑋𝑝(𝐴∕𝐾)).

By the same arguments as in the proof of Lemma 10, with 𝑌𝑝 and 𝑝 replaced by 𝑋𝑝 and 𝑝, we
can show that for any invertible 𝜙 ∈ End𝐾(𝐴) ⊗ℤ ℚ𝑝,

ord𝑝det(𝜙𝑝
) = ord𝑝det(𝜙̂𝑝

) = ord𝑝det(𝜙
†
𝑝
).

Here, 𝜙𝑝
denotes the map on 𝑝 induced by 𝜙. Then by an argument similar to Lemma 11 and

the surrounding discussion, rk𝑝(𝐴∕𝐾) = dimℚ𝑝
(𝑝(𝐴∕𝐾)) is even.
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