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1 | INTRODUCTION

An elliptic curve over a number field with endomorphisms other than multiplication by an integer
is said to have complex multiplication. These can make the curves easier to work with. It is well-
known, and important for this paper, that they always have even rank. Indeed, suppose we have an
elliptic curve E over K with complex multiplication, and note that E(K) ® , Qis a vector space over
Q with dimension equal to the rank of E. Now the endomorphisms must in fact form a lattice in
an imaginary quadratic field L. Then E(K) ®, Q is an L-vector space, and so an even-dimensional
Q-vector space.

It is not hard to prove that these curves also have root number 1 [1, Proposition 6.3], so they
satisfy the parity conjecture. We might hope that there is an analogous result for Selmer groups,
that is, that the p*®-Selmer ranks (defined below) are even, and hence the curves satisfy the p-
parity conjecture. This is in fact true, however it is not so easy to prove. In this paper we will
present a new proof of this result, and generalise it to abelian varieties (Theorem 1). One might
hope that a proof analogous to that for ranks works, as this is also a question of finding the rank ofa
vector space on which L acts. To see why this proof fails, note that we are now looking at @ ,-vector
spaces. The argument for ranks used the fact that a Q-vector space acted on by L has even Q-rank,
but this is not true when we replace Q by Q,,. For example, suppose p = 5 and L = Q(i). Then we
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can have an action of L on a one-dimensional Q p-vector space, because i € Q5. The method works
when p is inert in L, but not when it splits.

Suppose we have an elliptic curve E over a number field K, which has complex multipli-
cation. Looking at the Tate-Shafarevich group III, we find its p-primary part is isomorphic to
(finite group) X (@,/Z, )°» for some integer &,,. We will define the p®-Selmer rank to be rk ,(E) =
rk(E) + 6.

A generalisation of elliptic curves is abelian varieties. The aim of this paper is to prove the
following:

Theorem 1. Suppose A/K is an abelian variety with complex multiplication by a field M (see
Definition 4), and p a prime. Then 1k ,(A) is even.

Given that the rank is even, Theorem 1 is equivalent to the statement that the divisible part of
IIT has even Z p-corank. This is in fact expected to be 0, as 11 is conjectured to be finite.

Another reason to expect Theorem 1 to hold is the p-parity conjecture, which states that for an
abelian variety A over a number field K, with root number w(A/K),

(=1)*pA/B = w(A/K).

In the CM case, the root number is 1 [9, Remark 2 after Theorem 4], so Theorem 1 is equivalent
to the p-parity conjecture for abelian varieties with complex multiplication. In a different form
p-parity was conjectured by Selmer in 1954 [8]. The conjecture is known in the case where A is an
elliptic curve over a number field admitting a p-isogeny thanks to T. Dokchitser and V. Dokchitser
[4] and Cesnavi¢ius [1]. By calculating root numbers, this allowed Cesnavi¢ius to conclude that
for elliptic curves with complex multiplication, rk,(A) is even. However, there is no equivalent
p-parity result to use for abelian varieties, so we must use a different method.

Throughout the paper, we use ‘complex multiplication’ or ‘CM’ to mean complex multiplication
defined over K. With CM defined over @, the p-parity conjecture has been proved for elliptic
curves over totally real K, but is open in general. For p # 2 this is due to Nekovar [7, 5.10] and for
p = 2 Green and Maistret [5, 6.5].

From Theorem 1, we can deduce the following:

Corollary 2. Suppose A and p are asin Theorem 1. If 1| p*°] is infinite, then it contains (QP/ZP)Z.

Notation

Throughout, we will assume A and B are abelian varieties over a number field K.

We will denote the dual of an abelian variety A by A, and of an isogeny f : A - Bby f : B —
A.

Let A : A — A be some polarisation of A defined over K.

For an isogeny f and a field L, denote by f 41, the map on L-points induced by f, and similarly
let fi; be the map induced on the Tate-Shafarevich group.

For a prime p, lI[p*] is the p-primary part of III. §, will denote the multiplicity of @,/Z,
in II[ p]. Specifically, II[ p®] = (finite group) X (Q,/Z p)5P for some integer §,. I11; will be the
divisible part of IIT and IIT, ; the quotient of I1T by I1I ;.

Write Y ,(A/K) for Hom(Ill;[p*],Q,/Z,), the Pontryagin dual of I11;[p]. Let ¥,(A/K) =
Y ,(A/K) ®z, Qp- Note this is a Qp,-vector space of dimension &,, and an Endg(4) ®;
Qp,-module.
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Definition 3 (Rosati involution). For an abelian variety A with polarisation 4, the Rosati involu-
tion is the involution on Endg(A) ®, Q@sending f to fT := 1710 foA. We extend this by continuity
to Endg(A) ®, Q).

Definition 4 (Complex multiplication). We say A has complex multiplication if

* Endg(A) ® Q O M, where M is a totally complex field containing a totally real field L, [M :
L] =2and[L : Q] = dim(A);
* the Rosati involution corresponds to complex conjugation on M.

Note that this is complex multiplication over K, not over K (which is sometimes called potential
complex multiplication).

2 | SELF-ISOGENIES

Suppose A and B are abelian varieties over a number field K, and f : A — B an isogeny
between them.
Recall the following theorem.

Theorem 5 [6, Proof of 1.7.3, 1.7.3.1]. There is some finite set S of places of K such that

sy #ooker(fa,)  #eoker(fary))  #ker(fap)  #ker(fun)’

H #ker(f 4x,)) #ker(fax))  #eoker(f)  #ker(fy)

Corollary 6. Suppose that A = B, that is, f is a self-isogeny. Then

#ker(fi) = #ker(fp).

Proof. In the formula in Theorem 5, the left-hand side is equal to the ratio of the volume forms
(r)

of A and B that appear in the formula for # predicted by the Birch—-Swinnerton-Dyer con-

jecture (see [6, Section 1.7] for a full definition; in the notation of this chapter the volume term is

W). These depend only on A and not f so when A = B, thisis 1.

Similarly, the next two terms equal the ratio of the regulators of A and B and the orders of their
torsion subgroups. Specifically,

#ker(f o)  #ooker(fp))  Reg(A/KIH#B(K),prs#B(K) o
#ooker(f o) #ker(fyp)  Reg(B/KIHAK) ors #HAK ) ors

therefore when A = B this is also 1. O
The following variant of this result will be useful.

Lemma 7. Suppose f is as above, and p any prime. Then

#ker(fmlpooj) = #ker(fmlpooj),

Q'8 'vZ0Z '02TZ69YT

wouy

SUONIPUOD pUe SWLB | 31 88S *[7202/60/92] U0 Aiqi auluQ /B[1Mm ‘s301nes Aeiqi JON uopuo 8|00 AiseAIuN AQ PEOET SWIA/ZTTT OT/I0PAU0D" A3 M A

FETIIS

35UB0 |17 SUOWIWOD dAIER.D 3 el idde 8y Aq peusenoh ae sapiLe O ‘8sn Jo s3ni Joj Ariqiauliuo A3|IAm uo



2714 | BELL

Proof. For any prime p, the p-adic valuations of the kernels in Lemma 6 must be equal. As both
kernels decompose as a product over primes ! of their I-primary subgroups, the p-part of each side
comes from III[ p*], so we can replace III by III[ p*°] and still have equality. O

Lemma 8. Suppose f is as before. Then we can split the kernels into divisible and non-divisible
parts. Specifically,

#ker(fyy #ker(fiy ) = #ker(fiy D#ker(fiy ).

Proof. We will show #ker(fyy) = #ker(fyy )#ker(fyy ) and similarly for f. This holds by an
application of the snake lemma to the exact sequence

0-I; -I-1I,; —» 0

with the isogeny f, which is valid because f maps I11, to I1;. We can also see that #coker(fy,) =
1, because f has a conjugate isogeny g : A — A. This has the property that fog = [deg(f)], and
multiplication by an integer is surjective on II1;. The result follows. O

Lemma 9. Let A/K be an abelian variety, p a prime, and f : A — A an isogeny defined over K.
Then

#ker(fmd[poo]) = #ker(fmd[poo]).
Proof. By the functoriality and non-degeneracy of the Cassels-Tate pairing on I, 4,

#ker(fmndlpooj) = #COker(fH_[nd[pWJ)

[6, proof of 1.7.3]. Now #coker(fmnd[pm]) and #ker(fmnd[pm]) are equal, because III, ;[p*] is a
finite group. So, the non-divisible parts of the equation in Lemma 8 cancel out, and we have
equality of the divisible parts. O
3 | COMPLEX MULTIPLICATION

Recall Y,(A/K):= Hom(Ill;[p*],@,/Z,) and V,(A/K) :=Y,(A/K) ®Zp Q). Note this is an
Endg (A) ®, Q,-module. For ¢ a self-isogeny of A, denote the map induced on Y ,(A/K) by ¢Yp,
and similarly if ¢ € Endg(A4) ®, Q,, denote the map induced on Y,(A/K) by ¢3?p'

Lemma 10. Suppose A/K is a polarised abelian variety, p a prime, and ¢ an invertible element of
Endg(A) ®, Q). Then

ord pdet(c;byp) = ord pdet(qb;p ).

Proof. We prove this for ¢ an isogeny of A defined over K, and the full result follows. By properties
of Pontryagin duality,

#ker(oy Al poo]) = #coker(cpyp).
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Now ¢Yp can be represented over Z, by a matrix P in Smith normal form, with all diagonal entries
non-zero. Then

ordpdet(dayp) = ord,det(P) = ordp#coker(cpyp).
It therefore follows from Lemma 9 that
ordpdet(qbyp) = ordpdet(cﬁyp).
Now as ¢ = dop ol ™1, ¢;) will have the same determinant, and the result follows. [
p

Suppose from now on that A has complex multiplication by a field M, with totally real subfield
L. Now Y,(A/K) is an M ®@q @,-module. M ®¢ Q,, is isomorphic to lep My, where the prod-
uct is over primes p of M lying above p, and M,, is the completion of M at p. We can therefore
decompose V,(A/K) into a sum of Q,-vector spaces

Yy(A/K) =PV,

ylp
where each V, is an M ,-vector space.
Lemma 11. For each prime p|p, we have
d1me Vy,= dlm@p V.
Proof. If p = p, we are done, so suppose they are not equal. Then define « to be the element of
M®qQ, = le » M, that corresponds to p in My, and 1in all the other factors. Now we can view
a as an element of Endg (A) ®, Q,,. Then

ordpdet(ocyp(A/K)) = ordpdet(plvp) = dim@pVP'

Now by the definition of complex multiplication, a' acts as &. It therefore acts as the identity on
v, forq # p, and as multiplication by p on V5. So, by the same argument we have

i —d; _
ordpdet(ocyp “ /K)) = d1me Vs

and by Lemma 10 the result follows. O

Proof of Theorem. 1t suffices to show that dimQP Vp(A/K) =2, » dimQP V) is even. Let L be the
fixed field of complex conjugation on M. If p is inert or ramified in M /L, then [M,, : Q,] is even.
Therefore,

dim@pvlD =[M, : @p]dimMpr

is also even.
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For the primes p that split in M /L, we have p # p, and, by Lemma 11,
dlm@p Vy= dlme V.
Thus, Zplp dim@p V), is even, and so is rkp(A/K). O

Remark 12. The complex multiplication assumption can be weakened. Suppose A is an abelian
variety with Endg(A) ® , @ D M, for some field M, and suppose the Rosati involution induces
a non-trivial automorphism on M. Then we can still show that rkp(A) is even. Here denote this
automorphism by ¢ — ¢, and the fixed field of it plays the role of L. Then the proof proceeds in
the same way.

Remark 13. A similar argument can also be applied directly to p*-Selmer groups instead of III ;.
Let X ,(A/K) = Hom(Sel ) (A/K),Q,,/Zp,) and X,(A/K) = X ,(A/K) ®zp Q). Note that the Q-
rank of X, (A/K)is k), (A/K). Then replace Theorem 5 with Theorem 7 from [3]. This tells us that
for any self-isogeny ¢, Q(¢) = Q(¢), where, for an isogeny ¢ : A — B,

Q) := #coker(y : A(K)/A(K)ors = BK)/B(K)iors)#ker(Pyyy, ).
Section 2 of [2] tells us that
ord,Q(¢) = ord, #coker(¢ : X,(A/K) - X,(A/K)).

By the same arguments as in the proof of Lemma 10, with Y, and Y, replaced by X, and X, we
can show that for any invertible ¢ € Endg(A4) ®, Q,,

ordpdet(¢ Xp) = ord pdet(cﬁ Xp) = ordpdet(qb;p ).

Here, ¢ X, denotes the map on &, induced by ¢. Then by an argument similar to Lemma 11 and
the surrounding discussion, rk ,(A /K) = dim@p (Xp(A /K)) is even.
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