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Abstract 

Brain-age estimation has gained increased attention in the neuroscientific community due to 

its potential use as a biomarker of brain health. The difference between estimated and 

chronological age based on neuroimaging data enables a unique perspective on brain 

development and ageing, with multiple open questions still remaining in the brain-age research 

field. This perspective article presents an overview of current advancements in the field and 

envisions the future evolution of the brain-age framework before its potential deployment in 

hospital settings. 
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Main 

As chronological age does not comprehensively represent the complexity and heterogeneity of 

the process of ageing, the construct of biological age, encompassing various biophysiological 

measures, has been proposed to explore why ageing affects people differently and to better 

determine age-related risks of adverse outcomes1,2. Multiple ways of estimating biological age 

have been developed to improve the understanding of the diverse nature of the body's ageing 

course3,4,5,6, with brain age estimation thought to reflect the brain’s biological age7. 

Brain-age estimation has provided a novel framework centred on the general concept of ageing 

patterns, moving away from disease-specific comparisons in studies that are restricted by 

sample size, pattern specificity, and disease heterogeneity. The brain-age approach builds on 

the understanding that the ageing human brain undergoes characteristic changes and that 

various factors, including disease, can accelerate or slow down the natural ageing process of 

the brain8,9.  

The brain-age framework typically utilises machine learning (ML) in a prediction task where 

the machine is trained on brain features (i.e., structural and/or functional properties of the brain) 

of people without psychiatric or neurological diagnoses, and is later applied to new data, 

resulting in a predicted age. The algorithm estimates an individual's brain age by comparing 

their brain pattern to the one common for a brain at a given age (Fig. 1a). The difference 

between the estimated and the chronological age is used as a simplified measure of the brain’s 

ageing progression. A positive value (i.e., older estimated brain age) indicates more prominent 

brain changes that commonly occur with ageing progression, whereas a negative difference 

(i.e., younger estimated brain age) signifies a more youthful-appearing brain pattern than 

expected for that individual’s age10. 

Brain-age estimation has been applied in various studies investigating psychiatric and 

neurological conditions, cognitive and physiological markers, genetic factors, as well as 

environmental and lifestyle factors11,12,13,14,15. The implementation of the brain-age method is 

becoming more popular and accessible with the increasing availability of ML frameworks and 

large (open-access) MRI datasets16. This wealth of data facilitates and improves the overall 

process, ultimately leading to more accurate and reliable assessments of brain ageing. Multiple 

advances have been made in brain-age estimation over the past decade and novel challenges 

have arisen in the field, which we briefly discuss in this Perspective. 

 

Benefits and applications of the brain-age estimation 

Advances in brain-age estimation can enable the investigation of risk- or protective factors 

associated with brain health in development and ageing. Brain-age could be used as a tool to 

assess the effectiveness of interventions in clinical trials of age-associated neurodegenerative 

diseases or aimed at promoting healthy brain ageing. By monitoring changes in an individual's 

brain-age estimate over time, the impact of lifestyle changes, pharmacological treatments or 
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cognitive training programmes on brain ageing can be evaluated, leading to development of 

personalised strategies for healthy ageing7,12. 

The application of brain-age estimation extends beyond research settings, as it provides a 

straightforward and intuitive measure of a complex brain ageing pattern, potentially serving as 

a non-invasive biomarker of brain health10. It supports early clinical identification of 

individuals at higher risk of neurodegenerative disorders, as well as disease staging and further 

monitoring17. 

 

Fig. 1: The brain-age estimation framework. a) The brain-age estimation framework stems from the idea of 

creating a model that fits well to the healthy ageing brain, but shows greater errors in prediction in non-normative 

cases. b) There is at present no standard way of building a brain-age estimation model, however, here are depicted 

common steps of the workflow. The initial input (MRI – magnetic resonance imaging, EEG – 

electroencephalography, MEG – magnetoencephalography) can be (minimally) preprocessed and fed to the 

algorithm. Abbreviations: CNN – convolutional neural networks, SFCN – simple fully convolutional network, 

ResNet – Residual Network CNN, GPR - Gaussian process regression, RVR – relevance vector regression, SVR 

– support vector regression. The estimated age can be compared to the chronological age and can be debiased via 

statistical procedure. 

 

Computational aspects of brain age prediction  

With the advancement of MRI technologies and the availability of large neuroimaging datasets, 

such as UK Biobank (https://www.ukbiobank.ac.uk/), OASIS (https://www.oasis-brains.org/), 

NKI (https://fcon_1000.projects.nitrc.org/indi/pro/nki.html), IXI (https://brain-

development.org/ixi-dataset/), and many others, multiple brain-age algorithms have emerged, 

employing various terms to name the difference between the estimated and chronological age, 

such as brain age gap estimate (BrainAGE)18, brain-predicted age difference (Brain-PAD)19, 

brain age delta 20,21,22, and brain estimated age difference (Brain-EAD)23. Despite differences 

in nomenclature, general commonalities of the brain age estimation process can be identified 

(Fig. 1b). However, there is currently no standard way of estimating the brain age and changes 

in the common steps can lead to variation in brain-age estimation accuracy and subsequent 

sensitivity to disease effects. 

Input 

A brain-age model’s performance depends heavily on the amount and type of input data, which 

can range from resampled raw data to fully preprocessed analysis-ready brain features. The 

first can be used in deep learning (DL) workflows, whereas standard ML algorithms typically 

require feature selection and/or feature reduction24. 

The most commonly utilised neuroimaging features to date have been from structural MRI, 

preprocessed in either region- or voxel/vertex-wise manner, resulting in measures such as brain 

tissue volumes18,25,26, cortical thickness, area, and curvature27,28. In addition, features from 
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other imaging modalities have been employed to predict brain age, such as resting state 

functional connectivity MRI29,30, diffusion MRI31, positron emission tomography (PET)32, and 

other data-acquisition techniques, e.g., EEG33 or MEG34. 

Joining features from multiple modalities in an age-prediction model has been shown to 

improve the performance in comparison to single modality approaches35,36,37,38. The optimal 

methods for combining modalities are an open area of research, as part of wider efforts to 

optimise the ‘fusion’ of different data types. This can be ‘early’ fusion, such as simple 

concatenation of features or images35, or ‘late’ fusion such as ensemble methods where brain-

age predictions are generated separately for each modality and then combined using averaging 

or a more sophisticated ensemble approach37. Alternatively, ‘mid’ fusion techniques that define 

latent representations from different modalities, using auto encoders or similar methods, before 

combining these latent representations, can be considered39. Not only do brain-age prediction 

models stand to benefit from developments in data fusion research, but the brain-age paradigm 

serves as a useful ‘sandpit’ in which to develop such methods for neuroimaging, since abundant 

imaging data with age labels are readily available to the community.  

Algorithm 

The amount and type of available input can help determine the choice of the algorithm40, which 

in turn affects the results of brain-age prediction41,42 and the associations to cognitive 

measures43. Among the possible (non-)parametric, (non-)linear, Bayesian, tree‐based, and 

kernel‐based models that have been developed, brain-age studies utilising standard ML 

algorithms have predominantly employed relevance vector regression (RVR)18, Gaussian 

process regression (GPR)19, support vector regression (SVR)23, or extreme gradient boosting 

(XGBoost)22. 

With the advances in data sharing and aggregation, the shortage of data is often a trivial 

problem, and in recent years DL models started gaining more attention in the field. Various 

models, such as convolutional neural networks (CNN)44, ResNet45, and simple fully 

convolutional network (SFCN)46, have been developed to predict the brain age. These models 

utilise either slice-based (2D) or voxel-based (3D) input type and some of the pretrained brain-

age models are openly available online20,47,48,49.  

Moreover, the development of transformers and diffusion models for natural language 

processing or computer vision respectively, have recently made pronounced societal impacts. 

This has led to a new wave of mainstream interest in AI, through technologies such as 

ChatGPT50 or Stable Diffusion51. These approaches have already been adopted to estimate 

brain age, including the vision transformer (ViT52) and graph transformer53, and the latent 

diffusion model54. However, no benchmark study comparing the brain-age prediction 

performance of these emerging DL models, or DL more generally, with ‘classic’ ML methods 

has yet been published55, so the extent to which these methods improve performance remains 

an open question. For an in-depth overview of the ML and DL algorithms in the field, we direct 

the reader to recent review papers13,55, respectively. 
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Output 

The output of the brain-age algorithm is the individual’s predicted age, which is typically a 

single whole-brain measure or a set of values if trained on separate brain regions56,57. By 

subtracting the chronological age from the predicted age, we obtain the measure of interest, 

which is not independent from age and shows an underestimation in older- and overestimation 

in younger subjects21,58,59. To remove the age-dependency, a so-called age-bias correction can 

be applied (i.e., regressing out the effects of age)60. Several propositions of statistical age-bias 

corrections have been made, some of which either use chronological age in the correction 21,22,59 

or not25. The choice of age-bias correction method can influence the final performance 

accuracies61, while the source and amount of data used to estimate the regression parameters 

for the correction strongly affect the results62. The resulting gap, either age-bias corrected or 

uncorrected (with age added as a covariate in further statistical models), can be used in further 

(brain-behaviour) analyses. Potentially, the most transparent method is to avoid explicit age-

bias correction and rely on using age as a covariate, since the subsequent statistical analyses 

should provide the same results58. 

Theoretically, an accurate brain-age model has a low mean absolute error (MAE) on a test set 

of healthy individuals and results in high correlation between estimated and chronological age. 

Furthermore, it enables reliable and consistent estimations in a short-term test-retest or 

longitudinal scenario, and is generalisable to different datasets62. It makes valid predictions in 

healthy and clinical groups, and demonstrates construct validity by meaningful associations 

with other physiological and cognitive measures. However, due to various factors contributing 

to differences in model accuracy, it is often impossible to directly compare the brain-age 

models’ performance61,63.  

 

Challenges and advancements of brain-age estimation 

Recent breakthroughs in brain-age research have brought to light new challenges in the field. 

We here envision the prospects of further research topics as well as the challenges needed to 

address to make the brain-age a useful biomarker in the hospital settings (Fig. 2). 

 

Fig 2. Advancements and challenges in the brain-age field. For a brain-age measure to be applied in clinics as 

a biomarker, it must be accurate, reliable, and valid. Further scientific endeavours in standardising the data, 

models, measures, and routines are necessary before the potential approval by national agencies. In addition to 

improving the accuracy of the models, the validity of the measure will have to be investigated along with reducing 

the black box factor. Reliable longitudinal predictions are essential for monitoring the progression of brain 

changes, and uncertainty-aware approaches can increase the clinicians' trust in predictions. After the spillover into 

the hospital settings, the initial efforts are expected in the areas of technical implementations as well as improving 

quality of medical imaging data (by computational advancements in DL preprocessing or within the brain-age 

model itself). The ethical use of this measure is crucial, particularly given the growing availability of imaging data 

and portable low-field scanners. 
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Brain-age research 

The field lacks consensus regarding the construction and evaluation of developed brain-age 

models. Several initiatives have sought to establish a platform for standardisation and 

benchmarking of both new and extant brain-age models63,64, and a recent study conducted a 

benchmark analysis on various publicly available brain-age models65, underscoring the 

importance of further work in this area. Although these recent attempts at standardisation have 

provided a welcome framework to compare the accuracy and reliability of different models, 

they lack the inspection of validity of brain-age as a biomarker. In fact, it is not clear if the 

most accurate models really provide the most useful biomarkers66,67, as they may overlook the 

meaningful biological information necessary to discriminate between the healthy and clinical 

population20. 

The brain-age method provides an estimate of the brain's biological age, capturing relevant 

biological variance (of ageing), but also modelling- and data-related noise7,17. Further research 

is needed to disentangle this variance and to uncover the underlying biological mechanisms of 

brain ageing within the brain-age paradigm. As has been pointed out, brain age does not 

necessarily show only the patterns of brain ageing but could reflect the congenital and/or early-

life brain variability that continues through the lifespan (e.g., a person might have larger 

ventricles since their childhood)68. 

Moreover, brain-age estimation can be subjected to confounding factors related to input 

characteristics deriving from scanner differences, image acquisition protocols, image quality, 

preprocessing pipelines, etc.67,69,70. For models to generalise better to other datasets, 

harmonisation of data can improve the results of brain age estimation71,72, while transfer 

learning45,73 can provide another possible solution. To establish the brain-age as a clinical 

biomarker, future research endeavours are therefore expected in the fields of neurobiological 

underpinnings of brain age as well as modelling and data-acquisition related factors that 

contribute to the observed age differences. 

In addition, if the brain-age is to be a valuable monitoring measure in the hospital setups, it 

should provide reliable and consistent longitudinal predictions. Since the method builds upon 

cross-sectional variability it has a limited validity from a longitudinal perspective68. The 

dependance on cross-sectional data for training potentially renders the method insensitive to 

cohort effects and can limit the possibility to detect longitudinal changes due to individual 

development74. Nevertheless, a recent application to a longitudinal birth cohort study has 

demonstrated that brain-age measure reflects both congenital and ageing differences74, show 

longitudinal increase over time in early onset Alzheimer’s disease (AD)75, and corresponds 

with the presence of brain pathologies and prospective conversion to AD32,76.  

The longitudinal perspective of the brain-age method has to be further investigated. One of the 

significant bottlenecks both computationally and in terms of application is the availability of 

longitudinal data. The continuation of establishing collaborative frameworks for data sharing 
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and aggregation, as well as building open-source tools and frameworks, will help overcome 

these and similar problems in the future. In addition, future development of the brain-age field 

will rely on the advancements in artificial intelligence and the computational outputs of image 

processing. 

An initial critique of brain-age estimation pertained to its inherently black box methodology, a 

factor contributing to its limited integration into clinical practice10. The advances in 

interpretable ML/explainable AI have made the brain-age estimation much less black box type 

of measure and various approaches have been utilised to gain understanding of the models’ 

prediction. Different model-agnostic77 and specific methods, such as saliency maps 32,49,78, as 

well as explainable prototype learning methods79 have been implemented. However, the lack 

of ground-truth for the deviations from healthy brain ageing make validation challenging, so 

the explainability of the models should be further investigated. 

Not commonly in use in the field of brain-age estimation but in line with current DL practices, 

the uncertainty of the estimation has also been recognised as an important step in brain-age 

modelling. Providing confidence intervals or similar around individual point predictions should 

increase end-user (e.g., clinician) trust in the predictions, increasing the likelihood that brain-

age could be widely adopted. Recent studies implemented uncertainty aware approaches to 

brain-age estimation47,80,81 and more advances are expected from this area of research. Further 

contributions from the computational perspective are also possible in the areas of ensemble 

(DL) architectures, automated machine learning (autoML82), reduction of computational 

complexity and others. 

Moreover, a recent concern has been raised with regard to statistical age-bias correction, which 

can in certain cases artificially inflate the model’s prediction accuracy or, under specific 

circumstances, may cause circularity in the procedure83. The authors question the interpretation 

of statistically modified brain age and request for a better measure to describe deviation from 

the norm. Nevertheless, brain-age research in narrow age cohorts, where the confounding effect 

of chronological age is removed, have validated the sensitivity of brain age to other ageing 

biomarkers or clinical outcomes25,84. These findings refute the circularity argument, but 

alternative concepts of deviation from the norm are still important to consider. Analogous to 

growth charts in paediatric care, normative modelling may present a possible alternative85,86,87. 

Application in the clinics 

The initial conceptualization of brain age as a biomarker for brain health envisioned its 

application in hospital settings. However, despite over a decade of development, the brain-age 

framework has yet to mature before the implementation in clinical practice. Some of the 

fundamental challenges essential for enhancing the method were briefly presented before. Here 

we envision further (computational) advancements that could facilitate the method’s transition 

into healthcare.  

Most brain-age models are trained and tested on high resolution data from curated databases 

that do not represent current practices in clinical imaging, which typically provides low 
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resolution ‘2D’ data11,49. However, a step in direction of clinical application has recently been 

made by training a DL model on raw clinical data of various MRI modalities, resulting in a 

potentially applicable screening tool for routine hospital examinations49. Computational 

advances that could prove beneficial in the context of clinical application further include 

models that are agnostic to the image resolution and MRI contrast type88, facilitated by using 

synthetic images for learning89, MRI-aware data augmentation methods to reduce the impact 

of, for example, bias field inhomogeneities90, or image enhancement methods that are designed 

to improve the poorer-quality images91,92. This is important as the majority of clinical 

neuroimaging sites do not have access to the higher-quality MRI scanners available in research 

settings, and often have much higher throughput and less capacity for quality assurance and 

rescanning patients. Portable low-field MRI scanners may become more common in clinical 

situations93. Therefore, quality-agnostic models or image enhancement 

methods could be highly beneficial in enabling brain-age 

estimation in people who cannot normally undergo higher-field MRI 

(i.e., ≥1.5T). 

Before the implementation in the hospital settings, the approval of national agencies will be 

necessary. Ensuring that brain-age models can be deployed on hospital computer systems (e.g., 

Picture Archiving and Communication System - PACS) will be essential for clinical access to 

brain-age results, and already commercial vendors are marketing their own versions of brain-

age, to be used in hospital settings (e.g., BrainKey: https://www.brainkey.ai/). With clinical 

deployment comes the requirements of software consistency and back-compatibility, so that 

results can be reliably generated in different locations and at different times, even if 

computational advances render older models obsolete. Software ‘containerisation’ will be a 

key part of this, providing a standalone virtual environment including the relevant 

dependencies, so that brain-age models can be run on different operating systems and legacy 

versions maintained.  

Another important computational development relevant to clinical deployment is federated 

learning, which has emerged as a promising way to overcome issues around privacy and data 

security for biomedical research, including neuroimaging94. With federated learning 

approaches, individual-level data do not need to be shared between sites, only the locally-

learned model parameters are centralised or ‘federated’. This potentially opens up access to 

much larger datasets for training brain-age models, and has already shown some promise95. 

The algorithms used for the federated aggregation of local parameters are a key component of 

the federated learning process, and are an active area of research96. As an alternative to 

federated learning, the Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) 

consortium, has been established to facilitate the pooling of anonymised neuroimaging data 

(e.g., FreeSurfer volumes and cortical thickness values) for either meta- or mega-analysis. The 

ENIGMA Brain Age working group (https://enigma.ini.usc.edu/ongoing/enigma-brainage/) is 

leading efforts to optimise models and harmonise procedures for the purpose of brain-age 

prediction from such datasets, including in major depressive disorder and schizophrenia97,98,99. 
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Despite numerous potential improvements, further development of the brain-age method is 

similarly ambiguous as the progress in other measures of biological ageing, and could raise 

ethical concerns associated with employment, legal matters, insurance, and healthcare 

provision100,101. Although the costs of the MRI scanning are currently too high to be considered 

by the state authorities, life insurance companies or other actors, the potential of lowering these 

costs and the subsequent availability of brain-age estimation as a non-invasive Alzheimer’s 

disease biomarker before the onset of the symptoms could be of relevance to these stakeholders. 

Furthermore, additional questions about stigma, discrimination, and stress inducement could 

arise in situations of revealing the higher brain-age estimation, especially for the working 

population without ongoing memory impairments101.  

Therefore, we caution against using brain-age estimation as a general screening tool. As it had 

been demonstrated in the Nun study102, obvious pathological changes in the structure of post 

mortem brains of the participants had not been reflected in their cognition before death. A large 

difference between the estimated and chronological age of the subjects does not provide 

sufficient proof to determine diagnoses. The brain has a remarkable capacity for plasticity, 

adaptation and compensation, which can help maintain normal cognitive abilities even in the 

presence of significant brain atrophy103,104. It is therefore important to consider other factors 

such as cognitive performance, functional ability and the presence or absence of neurological 

symptoms to gain a full understanding of an individual's brain health. Brain-age estimation can 

rather serve as a supportive biomarker in helping physicians identify potential deviations from 

the normal ageing and monitoring the progression of brain changes. 

Conclusion 

The method of brain age estimation represents a departure from traditional approaches in 

analysing brain imaging data, providing a comprehensive understanding of health- and age-

related brain changes. By utilising the advantages of ML while focusing on deviations from 

normal ageing patterns, brain-age estimation provides a simple quantification of a complex 

pattern of structural brain changes associated with ageing and disease. The approach minimises 

confounding factors and allows for a more accurate assessment of brain ageing within 

individuals, regardless of their specific clinical condition or disease stage. Many advances have 

been made in the field over the past years, however, further research supported by 

computational science is warranted to unravel method’s potential in progressing our 

understanding of the brain and to apply it in clinical practice. 
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