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Abstract By defining the attributes of river networks, we can quantitatively extract records of climatic and
tectonic changes from them. The stream power incision model (SPIM) provides a framework within which this
can be achieved, as it facilitates the calculation of the relative rock uplift from river characteristics. One
parameter that has been widely employed in tectonic and fluvial geomorphology is the channel steepness index,
a metric that can represent the normalized rock uplift rate experienced by a river. However, to accurately infer
the channel steepness index, we must accurately estimate m/n, the ratio between the two positive exponents of
the SPIM. Present methodologies to constrain m/n rely on an assumption that rock uplift and erodibility are
spatially invariant. These conditions are rarely present on Earth. In this study, we use a synthetic example and
examples from the Siwalik Hills and Olympic Mountains to demonstrate how existing methodologies to
constrain m/n produce systematic errors when there is spatial variation, and particularly spatial gradients, in the
processes driving landscape evolution. To solve this problem, we present a methodology to estimate m/n based
on a large river network inversion that accounts for spatial variation in landscapes. After demonstrating that the
methodology can accurately recover m/n in our synthetic landscape, we show that our methodology can
reconcile contrasting observations in the Siwaliks, and is critical to inferring accurate values of channel
steepness index in the Olympic Mountains. This highlights the utility of large topographic inversions for
investigating landscape dynamics.

Plain Language Summary Rivers move material across the Earth's surface in a process known as
erosion. The amount of water in a river, and how quickly that water flows, controls how much a river can erode.
To compare the number of erosion in different rivers, researchers created a stream power model. The stream
power model allows researchers to measure features of rivers and put a number to the amount of erosion
occurring in that river. Unfortunately, to do this we must know the values of some of the numbers in the model,
which are known as m and n. However, this can be difficult to do if the amount of rainfall or rock uplift rate
changes over the course of the river. In this paper, we solve this problem by introducing a new method to
calculatem/n, which allows us to factor in changes in rock uplift and erodibility (a value that describes how easy
it is for rivers to erode) along the river network. This allows us to recover the best fitting value of m/n.

1. Introduction
A principle of tectonic geomorphology is to take the shape of topography and infer the processes that created it.
Rivers are particularly helpful in this endeavor, as they are found across much of Earth, are often the dominant
drivers of topographic change in a landscape, and encode climatic and tectonic information within their
morphology (Kirby & Whipple, 2012; Lague, 2014; Whittaker, 2012). Provided we can extract this information
through parameterization and modeling of river processes, river networks represent a large data set that can be
used to understand Earth surface processes.

River networks lend themselves to quantitative modeling as they follow a set of natural laws. River networks must
flow downhill, and there is a relationship between upstream drainage area and slope that causes their slope to
decrease as they do so (Hack, 1957; Morisawa, 1962). By defining the relationship between slope and area, we
can compare the relative steepness of portions of rivers in the same network or different networks that have
different upstream drainage areas. This is useful, as the relative steepness of a river can be a proxy for the relative
rock uplift rate, which allows us to extract tectonic information from the Earth's surface (Kirby &Whipple, 2001,
2012; Smith et al., 2022; Wobus et al., 2006).
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One popular way to extract the relative steepness of a river network is to use the stream power incision model
(SPIM). This, however, requires constraining the ratio between the SPIM parameters m and n. Traditional
methods to infer m/n require examining some length of a river network and assuming that tectonic, climatic, and
geological variables that influence the form of river networks are constant over this length scale (Goren
et al., 2014; Hergarten et al., 2016; Mudd, Clubb, Gailleton, & Hurst, 2018; Perron & Royden, 2013; Wobus
et al., 2006). On Earth, this is rarely the case. Rock uplift rates deteriorate away from faults or fold axes, pre-
cipitation rates follow gradients due to orographic effects, and lithology varies on a variety of length scales
(Burbank et al., 1996; Han et al., 2015; Reiners et al., 2003; Roe et al., 2002, 2003;Willett, 1999). As such, natural
gradients almost always additionally contaminate estimates of the stream power parameters, beyond errors
associated with noise and choice of methodology.

With the use of a synthetic, steady‐state 2‐D landscape and examples from the Siwalik Hills and Olympic
Mountains, we demonstrate that existing methods to estimate m/n produce systematic errors when there is a
spatial gradient in rock uplift or erodibility. We also present a new methodology to constrain the m/n based on a
topographic inversion that can account for such spatial gradients. Using the same examples, we demonstrate that
our method can accurately recover m/n, ensuring that subsequent measurements of geomorphic indices are also
accurate. We demonstrate that our estimated m/n and channel steepness index values complement previous and
independent observations of processes in our chosen natural landscapes, lending confidence to our results.

1.1. Flint's Law and the Stream Power Model

The relationship between the slope and upstream drainage area was described as a power law function by
Hack (1957) and Morisawa (1962), before being formalized by Flint (1974). Flint's law, as it has become known,
states that,

S = ksA− θ. (1)

where S is the slope, A is the upstream drainage area, θ is the concavity index, and ks is the channel steepness
index. This parameterization of river network data allowed researchers to describe differences in river networks in
a quantitative manner.

The concavity index and channel steepness index can be extracted from slope and upstream drainage area data by
performing slope‐area analysis (Wobus et al., 2006). For a river at steady state, a regression fit through the log‐
transformed slope and area data yields two parameters: the concavity index and the channel steepness index. In
this sense, the concavity index and channel steepness index are simply estimates made from topographic data to
describe how quickly the gradient of a channel decreases downstream, and the relative steepness of the river,
respectively.

The detachment limited stream power model (Howard, 1994; Howard & Kerby, 1983; Whipple & Tucker, 1999)
can be recast into a version of Flint's law, allowing us to ascribe information about tectonics to the channel
steepness index parameter. The stream power model states that the erosion rate,

E = KAmSn, (2)

where A and S are the same as in Equation 1, m and n are positive exponents, and K is the erodibility, which
combines many variables such as lithology, sediment size and climatic regime to describe the efficiency of fluvial
incision. If a river network is in steady state and there is no change in the elevation of any location on a river
network through time, the rock uplift rate and erosion rate must be balanced. We can therefore substitute E in
Equation 2 for the rock uplift rate, u, and rearrange this equation to the power law described by Equation 1, where

S = (
u
K
)

1
n
A−

m
n . (3)

In the special case of spatially invariable values of rock uplift and erodibility, we can see that the channel

steepness index is equivalent to ( u
K)

1
n and that the concavity is equal to m/n, sensu stricto Flint (1974). In this way,
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if we can estimatem/n, we can measure the value of ( u
K)

1
n and relate this to either changes in relative rock uplift rate

or bedrock erodibility. An estimate of the concavity index from slope‐area analysis would also be equivalent to
the m/n. However, slope‐area analysis can magnify the errors associated with the noise inherent in Digital
Elevation Model (DEM) data sets, making it unsuitable for large topographic analyses made possible by the
availability of DEM data and advances in computing (Perron & Royden, 2013; Roberts et al., 2012; Smith
et al., 2022).

1.2. Constraining m/n With the Integral Approach

The integral approach provides an alternative method to extract river network parameters from DEMs that is less
sensitive to noise (Harkins et al., 2007; Perron & Royden, 2013; Royden et al., 2000). This is because it works
directly with elevation data, as opposed to slope data that amplifies noise in an elevation data set (Mudd, Clubb,
Gailleton, & Hurst, 2018). To work with elevations, and not slopes, we can recast Equation 3 as

dz
dx
= (

u
K
)

1
n
A−

m
n . (4)

where z is the elevation, and x is the distance along the channel from the baselevel, xb. Integrating Equation 4
provides the elevation of a point in the river network as an integral of downstream variables,

z(x) = z(xb) +∫

x

xb

(
u(x′)
K(x′)

)

1
n

A(x′)−
m
n dx′, (5)

where u, K, and A may all vary with position. If channel steepness index, or ( u
K)

1
n, is assumed to be spatially

invariant, then,

z(x) = z(xb) + (
u
K
)

1
n
∫

x

xb

dx′
A(x′)

m
n
. (6)

Here we have an expression for the elevation that can also be used to calculate the channel steepness index.
However, it is conventional to introduce a reference drainage area A0, which allows us to keep the units of the
integrand in unit length. Hence, the integrand is defined as,

χ =∫

x

xb

(
A0

A(x′)
)

m
n

dx′, (7)

which is substituted into Equation 6 to give the elevation as

z(x) = z(xb) + (
u

KA0m)

1
n

χ. (8)

As Equation 8 is a straight line equation of the form y= c+mx, where y and x are elevation and χ respectively, we

can see that the gradient, m, is equal to the unknown parameter ( u
KA0m)

1
n
. This quantity is defined as u* for

simplicity and is the normalized relative rock uplift rate. In turn, any suitable regression through a χ‐elevation data
set can be used to extract u*.

The χ values of a river network can be calculated through numerical integration. An example of how this can be
done is with the TopoToolbox function chitransform (Schwanghart & Scherler, 2014), which calculates the

cumulative integral of ( A0
A(x′))

m
n
with the trapezoidal method. To do this, however, we must know or estimate a

value for m/n. A methodology to constrainm/n is possible using the χ‐transformation itself, as shown in Figure 1,
provided the river network experiences a specific set of conditions.
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If a river network is in steady state with a uniform u* value, all parts of the network should have the same channel
steepness index, and points on the network with similar elevations will also have similar χ values (Perron &
Royden, 2013). When performing the χ transformation with the correct value of m/n, data pairs representing the
trunk stream and the tributaries will be collinear, and collapse onto the same straight line (Figure 1b). However, at
different values of m/n, the tributaries will not collapse onto the same line as the trunk stream (Equation 8,
Figures 1a and 1c). We can use this principle to estimate the m/n value of a river network. This is done by finding
the m/n value which minimizes the variability in a χ‐elevation data set, which can be quantified with a disorder
metric (Goren et al., 2014; Hergarten et al., 2016; Mudd et al., 2014; Perron & Royden, 2013). Here, we show the
disorder metric as defined by Hergarten et al. (2016), but other methodologies use similar principles (e.g., Goren
et al., 2014; Mudd et al., 2014; Perron & Royden, 2013).

In Figure 1, we simulate a steady state river network using the FastScape algorithm (Braun &Willett, 2013). The
network has been created using a constant erodibility value, a temporally and spatially invariant rock uplift rate,
and an m/n value of 0.45. To determine the m/n value from the χ‐elevation data, we first perform the χ trans-
formation at different values ofm/n, as demonstrated in panels A, B and C. At each value ofm/n, we calculate the
disorder, D, introduced by Hergarten et al. (2016). This is done by first sorting the river nodes in ascending order
of elevation and then calculating the sum of the absolute differences between the χ‐values of adjacent nodes such
that the sum of the differences, ψ, can be expressed as

ψ =∑
n

i=1

⃒
⃒χi+1 − χi

⃒
⃒. (9)

As the absolute values of χ differ depending on the value of m/n used, it is necessary to rescale S to the maximum
value of χ in the river network at each value ofm/n to prevent bias toward values ofm/n that produce small overall
values of χ. Doing this, we arrive at the calculation of the disorder, D, where

Figure 1. (a–c) χ‐plots of a synthetic river profile created by performing the χ transformation of that river profile at different
values for the concavity index. The synthetic river profile that these χ‐plots are based on was created using the FastScape
algorithm, where the rock uplift rate and erodibility were spatially invariable, and the concavity index value was 0.45. In
panel (b), we see that the river profile collapses onto a line, as the trunk stream and tributaries are collinear when the correct
value for the concavity index is used to perform the χ transformation. (d) A curve of disorder, D, versus concavity index for
the simulated profile. The value at which D is at a minimum is 0.45, the value which was used to create the profile. This
demonstrates the efficacy of this methodology for recovering the concavity index, provided channel steepness is spatially
invariant.
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D =
ψ − χmax

χmax
. (10)

If the trunk stream and tributaries are perfectly collapsible, the value of D should be 0. As expected, when
calculating D across a range of m/n values for the simulated river network in Figure 1, the value closest to 0 is the
value that was used to simulate the network, 0.45. Note that the value is not exactly 0 likely due to numerical
diffusion. The disorder methodology reliably infers the correct value of m/n when there is no spatial variation in
rock uplift and erodibility. Under these conditions, the concavity index of the river provides an accurate estimate
of the m/n ratio.

Provided a river network has experienced spatially invariant channel steepness index values, no matter the
temporal variation in channel steepness index, the above‐described methodology and similar methodologies (e.g.,
Goren et al., 2014; Mudd et al., 2014) all accurately recover the correct m/n value (Supporting Information S1).
However, when spatial variation in the channel steepness index is introduced, this is no longer the case.

1.3. The Influence of Spatial Gradients on Estimates of m/n and Concavity

Spatial gradients in rock uplift and erodibility are present in almost every setting on Earth, at a wide range of
spatial scales. For a mountain range experiencing rock uplift along a normal fault, the rock uplift rate decreases
away from the fault (Anders et al., 1993; Armstrong et al., 2003; Buck, 1988). For topography being created by
folding, the rock uplift rate is highest on the axial plane of the fold, and decreases away from the center (Bufe
et al., 2016; Lavé & Avouac, 2000). Gradients in precipitation caused by orographic effects can translate to
gradients in erodibility (Adams et al., 2020; Han et al., 2015; Leonard & Whipple, 2021; Roe et al., 2002), along
with a number of other factors such as weathering regime and sediment production that vary within single
catchments (Riebe et al., 2015). This is problematic as gradients in channel steepness index (as defined in
Equation 3) along the course of a river network create river long profiles that appear to have constant channel
steepness index but are actually experiencing spatial variation. This is demonstrated in Figure 2.

In Figure 2, two identical synthetic profiles have been created using different values for them/n. The elevations of
these profiles were calculated using Equation 5, and the channel steepness index functions shown in Figures 2c

Figure 2. Two identical river profiles, with different values of m/n. (a) A river network created with a spatially invariant
channel steepness index (c). This profile has a concavity index equivalent to them/n. (b) A profile created with anm/n of 0.8,
and a decreasing gradient in channel steepness index (d), which makes a profile with a concavity index of 0.45. (c) The input
channel steepness index used to create (a). (d). The input channel steepness index used to create (b). River profiles are in
steady state, such that the rock uplift and erosion rates are balanced. As the profiles are created using channel steepness index,
changes to channel steepness index could represent changing rock uplift or erodibility.
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and 2d. In profile Figure 2a, the value ofm/n is equivalent to the concavity, and the channel steepness index values
it experiences are spatially invariant. However, profile Figure 2b has experienced a decreasing gradient of channel
steepness index. Even though a greater m/n ratio is used, the concavity index is identical to that of profile
Figure 2a. If we were to perform slope‐area analysis on these two profiles, they would yield the same estimated
values of the channel steepness index and the concavity index. In this way, if a channel experiences spatial
variation in relative rock uplift rate, the channel steepness index and concavity index as defined by Flint contain
no information regarding either rock uplift or erodibility. This is not useful from the perspective of tectonic
geomorphology, and is also important to consider if one wishes to use an estimate of the concavity index as the
value of m/n.

Spatial variation causes Flint's concavity index to deviate from the best‐fitting m/n of a river network, but it also
causes issues for the χ‐based approaches to estimate m/n that have been described in Section 1.2 and are based on
an assumption of spatially uniform u*. This is because spatial variation can cause the trunk stream and tributaries
of a river network to experience different u* values, which means it is inappropriate to minimize the variance
between them. Consider the example in Figure 3. Here, we have simulated the elevations of the Little Cottonwood
Canyon river network that drains the Wasatch Range in Utah. The network has a geometry suitable for evaluating
the phenomenon described above as it has a trunk stream that runs E‐W, and tributaries that run perpendicular to
the trunk in a N‐S direction. River network elevations were simulated at an m/n value of 0.45 using the FastScape
algorithm (Braun &Willett, 2013). We impose a gradient in the rock uplift rate such that rock uplift rate values are
greater close to the base level and lower in the headwaters (Figure 3c). The χ‐elevation relationship at the correct
value of m/n would show a trunk stream with a decreasing slope from the baselevel toward the headwaters,
reflecting the gradient in rock uplift rate and thus the channel steepness index (Figure 3b). However, as the
tributaries run almost perpendicular to the trunk stream, the change in rock uplift rate that they experience along
their length is much less significant (almost negligible) than the change experienced by the trunk stream. The χ‐
elevation relationship for the tributaries would therefore be almost linear and the slope would be equal to the slope
of the χ‐elevation relationship of the trunk stream at the location of the confluence. As such, the tributaries depart
from the χ‐elevation relationship of the trunk stream and plot above the trunk channel at the true value of m/n
(Figure 3a). It is also important to note that this is simply due to spatial gradients in channel steepness, and not due
to drainage divide migration (Willett et al., 2014).

If we use the methodology described in Section 1.2 or similar methodologies that require the tributaries and trunk
stream to experience spatially uniform normalized rock uplift, the measured m/n value will not be the m/n value
that best describes the data in a stream power model framework. This is because the disorder metric will attempt to
find a value for them/n that prevents the tributaries departing from the χ‐elevation relationship of the trunk stream
(Figure 3b). In the example in Figure 3, the estimatedm/n is higher than them/n used to simulate the network (the
network was simulated with a m/n of 0.45, but the estimated m/n of Figure 3b is 0.55). This can have serious
consequences for measured values of the channel steepness index, as shown by Gailleton et al. (2021).

Figure 3. (a) A χ‐plot of the Little Cottonwood Canyon river network, with synthetic elevations that were simulated using the
FastScape algorithm, and the gradient in rock uplift rate shown in (c). As the tributaries run perpendicular to the gradient in
rock uplift, they sample a constant u* value such that the χ‐elevation relationship departs from the χ‐elevation relationship of
the trunk stream. This χ‐plot is created with the true value for m/n, that is, the m/n that was used to simulate the elevations.
(b) A χ‐plot of the same network is obtained, but the χ‐transformation is performed using the value ofm/n that minimizes the
disorder between nodes (Hergarten et al., 2016). The result is that the measuredm/n is different from the truem/n. The value
ofm/n used to simulate the river network is 0.45, but the recovered value ofm/n from the method of Hergarten et al. (2016) is
0.55. (c) The river network used to create the χ‐plots of (a and b). There is a gradient in the rock uplift rate that interacts with
different portions of the network in different ways.
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In summary, existing methodologies to estimate the m/n ratio required for topographic analysis rely on the
assumption of spatially invariant rock uplift and erodibility (Goren et al., 2014; Harkins et al., 2007; Mudd
et al., 2014; Perron & Royden, 2013; Wobus et al., 2006). The estimated m/n value, or concavity, is then used to
calculate spatial variations in the channel steepness index. This is clearly problematic. To prevent this, we present
a methodology that can account for spatial variation in channel steepness on a river network, allowing us to utilize
information contained in the tributaries to accurately estimate m/n and the channel steepness index.

2. Methods
In this study, we assess how spatial gradients in the channel steepness index influence the estimation ofm/n using
a synthetic data set created with a known m/n and real examples from the Olympic Mountains and Siwalik Hills.
We also develop a new methodology to constrain m/n that is unaffected by spatial gradients in the channel
steepness index. In this section, we describe our new methodology to constrain m/n (Section 2.1), and how we
create synthetic landscapes (Section 2.2).

2.1. A Topographic Inversion for m/n

Our methodology estimatesm/n using a topographic inversion similar to that described by Smith et al. (2022). The
methodology is based on a similar principle to the χ‐disorder methods in that we repeat the χ‐transformation
across a range of values for them/n, and observe which value of them/n produces the best fit to the data. The basis
of our methodology comes from a linear inversion that calculates spatially variable u* across a region. Note that as
we are solving for u*, we do not need to specify a value of n, and can find the optimalm/n through linear inversion
even when n does not equal one.

To define the u* of a region, we discretize the region onto a grid which defines the number of u* values being
solved for. We then use Equation 5 to describe the elevation of each river node as a summation of the differences
in χ between river nodes downstream, and the channel steepness index values at each of those downstream nodes.
This can be done using the following equation. Take three river nodes, i, j, k, where k is upstream from j, which is
upstream from i, which is upstream from the baselevel (at 0 m). If i, j and k have u* values u∗

1, u∗
2 and u∗

3
respectively, we can write the elevation of point k as,

[(χi − 0) (χj − χi) (χk − χj) ]

⎡

⎢
⎢
⎢
⎢
⎣

u∗
1

u∗
2

u∗
3

⎤

⎥
⎥
⎥
⎥
⎦
= zk, (11)

where χi is the χ value of river node i. We can then write this summation for all the river nodes in our drainage
network, and combine the equations into the matrix‐vector product such that,

Au = z. (12)

Here, A is an N × q matrix, where N is the number of nodes in the river network, and q is the number of u*
parameters defined by the grid. This grid is a discretization of space with pixel sizes larger than the DEM res-
olution. Each river node from the DEM grid within a cell defining a u* parameter is thus forced to experience the
same u* value. As such, there are typically more river nodes, N, than u* parameters, q. Each row of the A matrix
represents 1 river node and u is a vector of length q, where each row represents a cell on the discretized u* grid
corresponding to a u* parameter. In the case where multiple river nodes are located in the same u* cell, the
downstream differences in χ of these nodes are added together.

To solve for the channel steepness index values, we must calculate the inverse of Equation 12. However, the
inverse of Equation 12 is a mixed‐determined system (Menke, 2012). Some u* parameters may be constrained by
one or more river nodes, but others may not be constrained by any depending on how the river network intersects
with the u* grid. Thus, as the problem is ill‐posed, we must introduce some form of regularization (Parker, 1994).
This is done by using a Laplacian operator as a roughness constraint that can be used to penalize solutions that
have large differences in u* close together in space. For the u* value at coordinates i, j on the grid, the roughness
around the cell is described as
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∇2u∗
i,j = 4 × u∗

i,j − u∗
i+1,j − u∗

i− 1,j − u∗
i,j+1 − u∗

i,j− 1. (13)

We incorporate this term into our system of equations in Equation 12 by creating a new matrix,W, that has the
dimensions q × q, and combining it to the base of the A matrix. Each row of this matrix has 5 non‐zero entries to
calculate the roughness around one u* parameter. By settingWu equal to a vector of zeros in our inverse scheme,
we force the solution to minimize the roughness around each u* parameter, and arrive at the following,

(
A

αW
) u = (

z

0
), (14)

where 0 is a vector of 0s, of length q. This form of Tikhonov regularization (Tikhonov & Arsenin, 1977) has been
used in similar river network inversions (e.g., Fox et al., 2024), and allows us to solve this system with a linear
least squares approach. Note that we also include a scalar value, α, that controls the importance of smoothness to
the solution. In this way, the least squares approach will find a solution that balances the fit to the data and the
model roughness by minimizing the misfit, ϕ, defined as,

ϕ = ‖Au − z‖2 + α2‖Wu − 0‖2. (15)

Here, we see that when α is larger, the roughness values contribute more heavily to the misfit, so the solution is
forced to be smooth to minimize this. When α is decreased, the opposite is true, and the fit to the data is prioritized.
To choose an appropriate value for α, we use an L‐curve, a plot of the norm of the solution vector (u) and the norm
of the residuals (Au − z) (Hansen, 1992). This allows us to choose a value for α that balances the trade‐off
between smoothness and a good fit to the data. Following Hansen (1992), we choose a solution that comes
from the “elbow” of the L‐curve (Figure S1 in Supporting Information S1).

The inversion scheme set out above is able to recover spatially variable u* values from the χ values and elevation
data of a river network. We can then use the inferred u* parameters to predict the elevations of the network, and
infer the value of m/n in a region. This is done by performing the following routine for a range of different values
of m/n. First, the χ values are calculated using the given value of m/n. Next, we build the A matrix using these χ
values. We perform the inversion outlined above to infer the spatially variable u* values, and then multiply the
inferred u vector by the A matrix to predict the elevations of the river network. Finally, we calculate the misfit
between the predicted and the real elevations. Once this has been performed for a range ofm/n values, we can plot
a graph of m/n versus misfit. In the same way that the m/n value that minimizes the disorder metric in the χ‐
disorder methods is the one used for analysis, the value of the m/n that minimizes the misfit here is the best fitting
m/n value for the study region. For clarity, this workflow is outlined in Figure 4. One further consideration we
make is to normalize the χ‐values calculated for each value of the m/n to the same arbitrary number, in this case
10,000. This ensures that the smoothing parameter, α, has the same weighting in each solution. For the sake of
simplicity, we have normalized the χ‐values to the same value in all of our analysis, allowing us to use the value of
α justified from an L‐curve from the Siwalik example (Figure S1 in Supporting Information S1) for each analysis.

2.2. Creating Synthetic Landscapes

We use Equation 12 as the basis for creating synthetic landscapes with known gradients in the channel steepness
index and a known value of m/n. First, we use TopoToolbox (Schwanghart & Scherler, 2014) to extract the
drainage network from a DEM. For our analysis, we use the commonly used 30 m Shuttle Radar Topography
Mission DEM data set (Farr et al., 2007) for the Uinta Mountains, Utah. The drainage network is extracted using a
threshold area for channel initiation of 1 km2. We perform the χ‐transformation at an m/n value of 0.45, build the
Amatrix in Equation 12 and then define a u vector that describes a grid of u* parameters that have a gradient from
North to South. By multiplying A by u, we create a steady‐state landscape that has experienced a gradient of
channel steepness index and has an m/n of 0.45. Although the simulated network may not perfectly reflect a real‐
life landscape, owing to variation in elevations across drainage divides with different χ‐values, this does not
influence our analysis. Instead, using a real landscape is advantageous as it ensures that the drainage network is
representative of a real drainage network. The choice of the Uintas over other regions is also advantageous as the
rivers draining the Uintas flow away from the center of the range, such that some rivers drain to the North, some to
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the East and some to the South. This allows us to impose a gradient in channel
steepness fromNorth to South and examine the combination of scenarios (i.e.,
networks flowing parallel and perpendicular to a gradient of channel steep-
ness index). It is important to note that we only use the upstream drainage area
information of the Uinta river networks; the elevation data of these networks
are totally synthetic.

3. Results
We test a number of existing methodologies and our new methodology to
infer m/n on synthetic and real‐life landscapes. The focus of this work is to
highlight the importance of spatial gradients in factors influencing channel
steepness index on river networks and how this is manifested in the metrics
commonly used in geomorphic studies. However, to ensure that our new
methodology is robust, we have also tested it in a number of other scenarios,
such as a temporal change in the relative rock uplift rate, and a step change in
the spatial distribution of relative rock uplift. Our new methodology accu-
rately estimates the correct value of m/n in these additional tests, which are
available in Supporting Information S1. In the following section, we focus on
how gradients in relative rock uplift rate influence estimates of the concavity
index and m/n.

3.1. Synthetic River Network

3.1.1. χ‐Disorder Methodology

The u* values (here reported as the more familiar channel steepness index)
used to create the synthetic landscape are shown in Figure 5a. The values of
the channel steepness index increase from the north to the south, allowing us
to examine how gradients in this parameter influence m/n estimates. As
previously mentioned, as the rivers flow in different directions, they are
influenced by different gradients. Those flowing to the north experience a

decrease in the channel steepness index as they flow downstream, whereas the opposite is true for the rivers
flowing to the south. As the rivers in this landscape were created with an m/n value of 0.45, any deviation from
this value is due to the influence of spatial gradients.

Figure 4. A flow chart outlining our methodology for determining the
concavity index from a topographic inversion.

Figure 5. (a) The map of channel steepness index used to create the synthetic river networks. (b) The inferredm/n values of 50
river networks, as measured using the methodology of Hergarten et al. (2016).
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In Figure 5b, we show the inferred m/n values of 50 catchments across our synthetic landscape, as measured by
the methodology of Hergarten et al. (2016). The inferred m/n values vary systematically depending on the
dominant direction the river network flows with respect to the gradient. Networks that drain to the north, which
encounter a decreasing gradient in channel steepness index as they flow downstream, have systematically lower
measured m/n values compared to the true value. The rivers that drain to the south do the opposite; they flow
toward an increasing gradient in the channel steepness index, and have higherm/n values than the true value. This
signal is due to the phenomenon outlined in Section 1.3, where we show that, as tributaries and the trunk stream of
a river network intersect gradients in channel steepness index differently, they have different gradients on a χ‐plot
at the true value of m/n. Therefore, any attempt to collapse the χ‐elevation data where there is a spatial gradient
invariably results in an incorrect estimate of m/n. Even when the difference in channel steepness index from the
baselevel to the headwaters is relatively small (less than 50 m0.9), as it is for some of the rivers draining to the
north, this gradient still has an appreciable effect on the measured values of m/n.

Rivers that flow in an E‐W direction are influenced least by the gradient, as they flow over relatively constant
channel steepness index values. As such, these networks have estimated m/n values very similar to the true
value. A good example of such a network is the easternmost network, which has a pale blue color corresponding to
an m/n value of 0.46.

3.1.2. Inverse Method for Constraining m/n

Using the inverse method to constrain m/n, we must first recover the channel steepness index or u* values. As
opposed to DEM data, which contains noise and artifacts, and real landscapes, which contain geomorphic noise
such as vegetation and landslides, there is no such noise in the synthetic network. This means that the inferred
channel steepness index map is very similar to the actual channel steepness index map when using the correct
value ofm/n (Figure 6a). The small differences in the estimated values of the channel steepness index and the true

Figure 6. (a) The inferred channel steepness index map from the inversion at the best fit m/n of 0.45. (b) Ten predicted river
profiles using our inversion parameters (navy blue) overlain on the true profiles (pale blue). The true profiles are not visible
as the fit to the data is nearly perfect. Note that the profiles have different apparent concavity indexes, similar to Figure 1, due
to the varying influence of the gradient in the channel steepness index depending on which direction the rivers flow. (c) A
curve of the misfit between observed and predicted river profiles versus them/n. The minimummisfit value occurs at anm/n
value of 0.45, the true value of the synthetic landscape.
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values are due to the inclusion of the smoothness constraint in our inversion. As there is no noise, the value of the
smoothness parameter is not important as long as it allows us to infer a stable solution. Given that the inferred
channel steepness index values are so similar to the actual channel steepness index values, the predicted river
networks are almost identical to the actual river networks (Figure 6b). However, when the value ofm/n used in the
inversion deviates from the true value of m/n, the misfit between the predicted and synthetic networks becomes
greater. The result is that a plot of misfit versus m/n produces a curve with a minimum at the true value
(Figure 6c). The trough of this curve falls at 0.45, demonstrating the ability of the methodology to recover an
accurate estimate of m/n.

3.2. The Clearwater Catchment, Olympic Mountains

The Olympic Mountains are uplifted due to deformation within the accretionary wedge of the Cascadia sub-
duction zone (Brandon et al., 1998). The Clearwater River is a tributary of the Queets River, one of the three major
rivers draining the range. As the Clearwater has been shown to be in steady state (Pazzaglia & Brandon, 2001),
and the exhumation rate within the clearwater and surrounding region is well constrained by thermochronometry
(Brandon et al., 1998; Michel et al., 2018), it represents an ideal study area to evaluate how estimated m/n values
can differ in natural settings. Although there is a slight increase in precipitation from the base‐level of the
Clearwater (here, taken as the confluence with the Queets river) to the headwaters (Prism Climate Group, 2014),
the dominant process that should influence the channel steepness index is a 3‐fold increase in the rock uplift rate
from baselevel to the headwaters, as evidenced by long‐term thermochronometric data and modeling (Brandon
et al., 1998; Michel et al., 2018).

3.2.1. Measuring m/n of the Clearwater River

We use three different methodologies to estimate the m/n of the Clearwater river (Figure 7). The first is binned
slope‐area analysis, which uses an assumption of spatially invariant channel steepness index to estimate the
concavity index which would also be assumed to be the m/n value in the catchment (Wobus et al., 2006). The
binned slope area analysis was performed using the slopearea function in TopoToolbox (Schwanghart &
Scherler, 2014), where the slope and upstream drainage area data were separated into 50 bins, before being log‐
transformed and having a linear model fit through it. The second is the χ‐disorder method described in Section 1.2,
which also assumes spatially invariant channel steepness index but estimates the m/n ratio directly (Hergarten
et al., 2016). Finally, we use the method presented here based on a topographic inversion, which allows the
channel steepness index to vary and estimates the m/n. The inversion is performed using a grid‐size of 2 km. All
three methodologies estimate different m/n values for the Clearwater. The binned slope‐area method estimates a
concavity index value, and as the slope‐area data do not belie any gradient (the relationship appears linear), we
would also assume an m/n of 0.7. This is much higher than typical values of m/n (0.4 <m/n> 0.6) used in similar
tectonic settings (Kirby & Whipple, 2001, 2012; Snyder et al., 2000; Wobus et al., 2006). The other two
methodologies, however, estimate values that are closer to those typical values for steady‐state river networks.

Figure 7. Estimates of the concavity index and m/n for the Clearwater river using three different methodologies. (a) The χ‐
disorder method and our method are shown together, as they both produce curves in which the minimum value of either
misfit or disorder indicates the value of the m/n. The χ‐disorder method estimates an m/n of 0.39, and our method estimates
anm/n value of 0.51. (b) The Slope‐Area methodology to infer the concavity index. The inferred value of the concavity is 0.7,
much greater than the m/n estimated using the other methods.
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The m/n estimated using the χ‐disorder method is 0.39, whereas the value estimated by our methodology is 0.51.
This result is what is expected given the observations from the synthetic data set. When a river flows over a
decreasing gradient of channel steepness index, the long‐profile of that river has a greater concavity index than the
value of m/n (the opposite scenario to Figure 2b). This is reflected in the value of the concavity index estimated
using the slope‐area methodology. However, when m/n is estimated using the χ‐disorder method, a decreasing
gradient results in a lower estimation of the concavity index owing to the influence of tributaries (Figures 3 and 5).
Our methodology on the other hand estimates an m/n in between these two values.

3.2.2. Influence of m/n on Channel Steepness Index

The differentm/n values inferred from these methodologies have demonstrable effects on channel steepness index
maps of the Clearwater catchment, and the interpretations that can be made from them. In Figure 8, we show three
channel steepness index maps of the clearwater catchment, created with the three estimated values of m/n. To
calculate channel steepness index values, we use our inverse scheme for u*, but report values as the more familiar
channel steepness index. We normalize the χ‐values as described in Section 2.1, such that the smoothness
constraints have the same influence on each solution. In this way, the value of the m/n is the only parameter
influencing differences in the normalized channel steepness index maps.

Figure 8. Channel Steepness index maps created at the three different values of the m/n inferred from three different
methodologies.
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One obvious difference between the inferred channel steepness index maps is the absolute values of the inferred
channel steepness index, which change by orders of magnitude at different values of m/n. However, another key
difference between the maps is the magnitude of the gradient in the channel steepness index inferred from the
baselevel to the headwaters. At an m/n value of 0.39, the values of the channel steepness index near the baselevel
are approximately 10 m0.78, increasing to average values of 20–25 m0.78 upstream. At a value of 0.51, channel
steepness index values similarly increase, but at this value they increase from approximately 50 m1.02–150 m1.02.
At a concavity index value of 0.7, the magnitude of this gradient is much higher, with channel steepness index
values changing upstream from approximately 500 m1.4 to 3,000 m1.4. Thus, at an m/n value of 0.39, channel
steepness index values double from the baselevel to the headwaters, whereas they triple along the same area in the
map created using an m/n 0.51 and sextuple according to the map created using an m/n of 0.7. The value of m/n
therefore changes not only the absolute values of the channel steepness index but the magnitude of the inferred
gradient in the channel steepness index. This phenomenon has been reported previously (Figure 14 in Gailleton
et al. (2021)).

3.3. The Mohand Range, Siwalik Hills

The Siwalik Hills represent the active deformation front of the Himalaya, forming due to fold growth as a result of
thrusting along the Himalayan Frontal Thrust (Gansser, 1964; Hurtrez et al., 1999; Lavé & Avouac, 2000; Yeats
& Lillie, 1991). As the active front of the largest mountain range in the world, studies focused on the Siwalik Hills
have greatly developed our understanding of orogen growth (Avouac, 2003; Burgess et al., 2012; Hurtrez
et al., 1999; Kirby &Whipple, 2001, 2012; Lavé & Avouac, 2000; Yeats & Thakur, 2008; Yin, 2006). The active
and recent nature of uplift in the Siwalik Hills also causes the signatures of tectonic processes to be clearly
imparted on river networks that drain the range. As such, many seminal studies from both the perspective of
Himalayan deformation, and fluvial geomorphology, have focused on the Siwalik Hills (Avouac, 2003; Kirby &
Whipple, 2001; Lavé & Avouac, 2000, 2001; Wobus et al., 2006).

The Mohand Range is one of the ranges that makes up the Siwalik Hills, uplifted by the growth of the Mohand
anticline. There is a debate as to whether the structure is a fault‐bend fold or a fault‐propagation fold (Barnes
et al., 2011; Powers et al., 1998; Srivastava et al., 2016, 2018; Wesnousky et al., 1999), which has important
implications for the distribution of rock uplift across the range. In both cases, the rock uplift rate should decrease
from the range front in the southwest to the northeast. We should: (a) be able to recover this signal from the river
networks and (b) observe whether this gradient influences calculations of m/n. The spatial gradient in rock uplift
is, however, confounded by a lithological contact, which separates the stronger Middle Siwaliks in the southwest
from the softer unconsolidated Upper Siwaliks to the northeast (Allen et al., 2013; Barnes et al., 2011; Kirby &
Whipple, 2012). The effect of this boundary is to create the same gradient in the channel steepness index as
expected from the fault growth, with higher values in the southwest.

3.3.1. χ‐Disorder Methodology

A map of m/n, as measured using the methodology of Hergarten et al. (2016), was created by Wahyudi
et al. (2021), and has been recreated here for 100 rivers draining the Mohand Range (Figure 9). There is sys-
tematic variation in measured m/n, similar to the synthetic example, suggesting a gradient in channel steepness
index across the range is present. The rivers that drain the southwestern flank of the range have higher measured
m/n values on average than the rivers draining the northeast. For the rivers draining the southwest, the higher
values ofm/n could be explained by the increase in the channel steepness index due to the increased rock strength
from northeast to southwest (Figure 10). Providing further evidence for this is the observation that the rivers on
the southwestern flank that have lower values of m/n (around 78° Longitude) do not sample this change in rock
strength, as the Bhimgoda thrust reverses the lithological boundary (Figure 10; Raiverman et al., 1990; Wes-
nousky et al., 1999). However, with no change in lithology influencing the rivers draining the northeastern flank,
it is difficult to explain why the measuredm/n of these rivers is so lowwithout the existence of a spatial gradient in
channel steepness index.

3.3.2. Constraining m/n and Normalized Channel Steepness Index With an Inversion

As shown in Figure 9, the m/n of individual basins around the Mohand Range appear to be different when
measured using a χ‐disorder method (Hergarten et al., 2016). Them/n of rivers draining the southwestern flank of
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theMohand range has also been measured as different along different sections
of the same trunk streams (Kirby & Whipple, 2012). Using the measured
values of m/n to calculate the channel steepness index would make the
comparison of channel steepness index values difficult, as the units and those
values are heavily influenced by m/n (e.g., Figure 8). However, it is also
difficult to determine a single value for the reference concavity index or m/n
that should be used to calculate the normalized channel steepness index to
facilitate comparison of channel steepness index values across the range. In
the Mohand Range, a value of 0.45 has been used, as it can be linked to
previous studies in the Siwaliks and Himalaya (Kirby & Whipple, 2001,
2012; Wahyudi et al., 2021). However, this estimate is based on a concavity
index measurement (Kirby & Whipple, 2001), which requires spatially
invariant rock uplift and erodibility to represent them/n. As this assumption is
not true in the Siwaliks, it is unlikely that the m/n value of 0.45 is the value
that best describes the river networks. This would cause issues when calcu-
lating normalized channel steepness index values for the range (Gailleton
et al., 2021).

We apply our methodology to the Mohand Range so that we can recover the
best fitting value of m/n for the range, which can then be used to create a
normalized channel steepness index map. In Figure 10c, the curve of misfit
versus m/n derived from our inversion indicates that the best fitting value of
them/n is 0.31. This is lower than the concavity index value of 0.46 measured

by Kirby and Whipple (2001) for the Siwaliks. The misfit curve has a slightly broader trough than the synthetic
example, and this is likely due to the influence of noise in this real data set. The value of 0.31 has then been used to
predict the elevations of 10 trunk streams from around the range (Figure 10b), which show a good fit to the real
profiles, and to create a map of normalized channel steepness index (Figure 10a). The value of the smoothness
constraint, α, used in the analysis was chosen from an L‐curve (Supporting Information S1).

The normalized channel steepness index map picks out the lithological boundary between the Upper Siwaliks and
the Lower/Middle Siwaliks, such that there are much higher values of channel steepness index on the south-
western flank of the range. However, there are also increased channel steepness index values at the drainage
divide, which create a gradient in channel steepness index from high to low downstream along rivers draining the
northeastern flank (Figure 10). The decreasing gradient from headwaters to baselevel is also present in the rivers
draining to the southwest, but is imposed over the change in channel steepness index caused by lithology.

Figure 9. A map of m/n for 100 catchments of the Mohand Range calculated
using the method of Hergarten et al. (2016). The average value of m/n if we
simply take the mean of the 100 catchments is 0.29, and if weighted by
drainage basin area is 0.32. This is similar to the value inferred from the
inversion method, though it is not clear whether taking an average of these
values has any physical meaning. Inset map shows a regional map with the
Mohand Range signified by a red square.

Figure 10. (a) A channel steepness index map of the Mohand Range, created using anm/n value of 0.31. Channel steepness is
clearly influenced by lithology; however, there are also higher channel steepness index values at the drainage divide, such
that all of the river networks, whether they drain the northeastern or southwestern flank, have a decreasing gradient in
channel steepness index imposed on them. (b) The 10 largest trunk streams of the Mohand Range (light blue), and the
predicted trunk streams from the channel steepness index values of (a). (c) The graph of misfit versusm/n using our inversion
scheme. The best fitting m/n value is 0.31. HFT, Himalayan Frontal Fault.
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Splitting the river networks draining the southwestern flank at the lithological boundary (where there is a rapid
increase in channel steepness index), both sections sample a decreasing gradient in channel steepness index,
despite the overall gradient appearing to increase downstream. The implications of this pattern are discussed later.

4. Discussion
4.1. What Causes Under or Over Prediction of m/n?

In Figure 2, we show how spatial gradients in the channel steepness index can cause rivers that have the different
m/n values to have the same concavity indices. If the estimated concavity index value is conflated with the m/n
value, there are important implications for estimated channel steepness index values. Furthermore, the meth-
odology used to inferm/n can produce systematic variation in the estimated values ofm/n if the relative rock uplift
rate varies in space.

The river profile in Figure 2b is similar to the rivers draining to the south in our synthetic example (Figure 5) in
that they all sample gradients of decreasing channel steepness index toward their headwaters. The profile in
Figure 2b has a lower concavity than the m/n that created it. This would be reflected in the measured value of
concavity using a slope‐area methodology. On the other hand, in our synthetic example, the same pattern pro-
duces higher values of m/n measured using the χ‐based method (Figures 5 and 7). This is because on a χ‐plot, the
gradient of the trunk stream of this river will decrease toward higher values of χ, but as the tributaries flow sub‐
perpendicular to the trunk stream, they do not experience a gradient in the channel steepness index. This is the
scenario observed in Figure 3. The gradient of the tributary χ‐elevation relationship is thus linear, and will be
tangential to the trunk stream. The result is that the χ‐plot of a river network experiencing a decreasing gradient to
the headwaters, transformed with the correctm/n value, will have a curved trunk stream with tributaries extending
above. In order to minimize the disorder of this network, the χ‐transformation needs to decrease the gradient of the
χ‐elevation relationship of the tributaries, which can be achieved by performing the χ‐transformation at larger
values of m/n (Figure 1c). This explains why two different methodologies may infer different values for m/n for
the same area, as typified in the Clearwater example. Here the gradient in channel steepness index increases
toward the headwaters, and the inferred m/n value from the χ‐disorder method is low (0.39) and from slope‐area
methods is high (0.7). Interestingly, our methodology, which can account for spatial gradients, infers anm/n value
in between these two values (0.51). Further evidence of the effects of spatial gradients in previous studies can be
found in the measured concavity index or m/n values of Himalayan rivers, measured as high using slope‐area
methods (Kirby & Whipple, 2001), and low with χ based methods (Gailleton et al., 2021).

4.2. Different Approaches to Counter the Influence of Spatial Gradients on River Networks

Spatial gradients in channel steepness index are created by spatial gradients in rock uplift or any factor that in-
fluences erodibility, such as precipitation. The impact of spatial gradients in normalized channel steepness is well
understood (Goren et al., 2014; Han et al., 2015; Kirby & Whipple, 2001; Leonard & Whipple, 2021; Roe
et al., 2002). Here, however, we assess the magnitude of this impact and how spatial gradients control the
estimated value of m/n when using the presently widely adopted methodologies that is, the χ‐based methods
available in LSDTopoTools and TopoToolbox (Hergarten et al., 2016; Mudd, Clubb, Gailleton, & Hurst, 2018;
Mudd, Clubb, Gailleton, Hurst, Milodowski, & Valters, 2018; Schwanghart & Scherler, 2014).

To prevent spatial variation in rock uplift and erodibility from influencing estimates of the concavity index, it can
be useful to only measure concavity on rivers or portions of rivers in which the assumptions of steady‐state and
spatially uniform rock uplift and erodibility appear to be true (Kirby & Whipple, 2001; Snyder et al., 2000).
Although this may constrain values of the concavity index and thus m/n more accurately, it requires ignoring the
majority of the information contained in the river networks. It is arguably better to use an approach that uses as
much data contained in the river networks as possible to ensure that the inferred m/n value is representative of the
entire area. Furthermore, even though care is taken to ensure that there is no variation in any geological, tectonic
and climate factors, it is unlikely that we can ever truly remove variation of these in real examples on earth.

Another approach to mitigate the influence of spatial gradients has been to incorporate precipitation data into the
channel steepness index calculation (Adams et al., 2020; Leonard & Whipple, 2021). Orographic effects often
create an increasing gradient in precipitation rates toward the headwaters of rivers, which influences the concavity
index (Han et al., 2015; Roe et al., 2002). To prevent these changes in the concavity index reflecting changes in
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the channel steepness index, some studies have weighted the channel steepness index with a precipitation or
discharge parameter (Adams et al., 2020; Leonard & Whipple, 2021). Whilst this approach benefits from being
able to isolate variation in precipitation from other variables, there are a few issues. First, the approach still relies
on the assumption of spatially uniform rock uplift and erodibility although the influence of precipitation on
erodibility is controlled. Second, by introducing modern‐day precipitation rate data, a number of new assumptions
are introduced. There is an assumption that either the landscape is in steady state with the modern‐day precip-
itation rate, or the modern‐day precipitation rate data is representative of the average precipitation rate experi-
enced by the landscape over the timescale in which it achieves steady state. Furthermore, it is assumed that across
the landscape, all precipitation is converted to runoff (Leonard & Whipple, 2021). Therefore, although the
assumption of spatially invariant precipitation rates is removed, it is replaced by a number of other assumptions,
and still relies on concavity index or m/n calculations from previous work. In contrast, the approach presented
here directly images channel steepness variations and the resulting maps could be compared to maps of pre-
cipitation or rock uplift rate to assess how these parameters influence channel steepness index values. If, however,
precipitation can be accurately constrained, it is straightforward to incorporate this into the calculation of χ and
proceed with the method presented here to estimate the optimal value of m/n, and image other unknown spatial
variations. In this respect, any known variability in precipitation rates or any other parameter could be incor-
porated into the calculation of χ or indeed any known controls on variability, such as faults or lithological
contacts, can be directly incorporated into the discretization scheme.

4.3. The Impact of the m/n on Inferring Tectonics in the Clearwater Catchment

From thermochronometry, we know that the exhumation and rock uplift rates in the Clearwater catchment are
approximately 3 times higher in the headwaters compared to the baselevel (Brandon et al., 1998; Michel
et al., 2018). Given that the catchment is in steady state, and if we make the n = 1 assumption that has been
justified in other locations in the western US (Schwanghart & Scherler, 2020; Smith et al., 2024), channel
steepness index values should represent the normalized rock uplift rate (Kirby & Whipple, 2012; Smith
et al., 2022). As lithology and precipitation rate are relatively invariant within the catchment (Prism Climate
Group, 2014; Tabor & Cady, 1978), we may make the assumption that erodibility in the catchment is spatially
invariant. Under these conditions, we would expect the channel steepness index values to scale linearly to the
measured rock uplift rates.

Under these assumptions, the map of channel steepness index created with the correct value of concavity index
should show values of channel steepness index tripling from the baselevel to the headwaters. The channel
steepness index map in which this is the case is the map created with an m/n of 0.51 inferred using our inverse
scheme. At different values of m/n, the inferred channel steepness index maps have different gradients to what is
expected, and also have different spatial patterns. This latter point has been demonstrated previously (Gailleton
et al., 2021), but we reemphasize it here to show how influential spatial gradients can be, not only for estimating
m/n but also for interpretations beyond that.

4.4. m/n Estimates and Channel Steepness Index Map Reconciles Observations in the Mohand Range

The map of normalized channel steepness index for the Mohand Range, created using our best fit m/n value of
0.31 (Figure 10), reveals several gradients in channel steepness index across the range that can explain obser-
vations from previous studies. First, we select a band of high channel steepness index on the southwestern flank of
the range. These high values correlate to the location of the stronger Lower/Middle Siwaliks, which corresponds
to greater channel steepness index values (Kirby &Whipple, 2012; Wahyudi et al., 2021). For rivers draining the
southwestern flank, the location of this lithological boundary causes the gradient in channel steepness index to
increase from the headwaters to the lower reaches, leading to higher inferred values of m/n when using a χ‐based
method (Wahyudi et al., 2021). Interestingly, Kirby and Whipple (2012) also found high values for the concavity
index when using a slope‐area methodology, contrary to the predictions in Section 4.1. Kirby andWhipple (2012)
separated their chosen river at the knickpoint caused by the lithological contact, and inferred a concavity index of
0.46± 0.15 for the upstream section, and a value of 0.73± 0.19 for the downstream section. This can be explained
by examining the gradients on the normalized channel steepness index map (Figure 10).

The river networks draining the southwestern flank of the range can be split into two sections, where in the
downstream portions, channel steepness index values are higher than in the upstream portions. This creates the
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effect of decreasing values of channel steepness index within the catchment. However, within the two portions of
the network, both above and below the lithological contact, the values of channel steepness index increase up-
stream. Measuring these portions of these river networks separately with a slope‐area method causes concavity
indices to be higher (Kirby & Whipple, 2012). We would thus expect the χ‐based approach to measure lower
values of m/n. However, because the χ‐based approach does not split the network into two at the lithological
contact, the large scale gradient this method samples is one of decreasing channel steepness index values in the
upstream direction. This causes measured m/n values from the χ‐based approach to also be higher (Wahyudi
et al., 2021). As such, the two methods that typically estimate opposite trends in the concavity index or m/n for a
given spatial gradient, produce similar values for the concavity index or m/n.

As we create a normalized channel steepness map for the entire range, we are also able to infer processes beyond
that of a lithological control on the channel steepness index (Allen et al., 2013; Kirby &Whipple, 2012; Wahyudi
et al., 2021). We observe higher values of channel steepness index in the center of the range that decrease to both
the southwest and the northeast, and we also infer decreasing values of channel steepness index to the southwest
within the higher channel steepness index values caused by the changing lithology. These gradients are imposed
over the variation in channel steepness index values caused by lithology, and we may reasonably suggest that
there is some other process creating gradients in the channel steepness index. Precipitation is relatively ho-
mogenous across the range (Shrestha et al., 2012), and we wouldn't expect noise, which should be stochastically
distributed throughout the data set, to create the systematic gradients that are observed. As such, it is likely that
variation in the channel steepness index is caused by rock uplift rate variation. On a cross‐section from southwest
to northeast across the range, we would observe two peaks in the channel steepness index: one at the lithological
contact and one at the drainage divide. Values of channel steepness index decrease from these peaks to the
southwest, and so it is possible that there is a gradient of decreasing channel steepness from the center of the range
to the range front. However, the gradient in the high channel steepness index values from the southwestern portion
of the rivers draining the southwestern flank is much greater than the gradient that acts on the upstream portions of
those rivers. Thus, we might reasonably suggest that there are two gradients acting on these rivers that are in-
dependent of each other and are caused by two regions of high rock uplift across the range. In different locations in
the Siwalik Hills, a double peak in rock uplift rate has been recovered, and is implicated with fault‐bend folding
(Lavé & Avouac, 2000), whereas a single peak in rock uplift is associated with fault‐propagation folding (Sri-
vastava et al., 2018). Our observations therefore support the hypothesis that the Mohand Range is being uplifted
by a fault‐bend fold.

5. Conclusions
Present methodologies to estimate m/n rely on an assumption of spatially invariant u* values that rarely exist in
nature. We have demonstrated that spatial gradients in the channel steepness index can result in systematic
variation in the concavity index values of river networks, and the estimates of m/n. This causes issues when
creating and interpreting maps of channel steepness index, an important and useful tool in tectonic geo-
morphology, because the tools developed to estimate m/n assume uniform channel steepness values. We provide
an alternative means of constraining m/n based on a topographic inversion that does not require a spatially
invariant channel steepness index. We have shown that our methodology is able to accurately constrain the m/n
value used to create a synthetic landscape, without requiring different catchments to have different m/n values. In
the case of the Clearwater catchment, we recover a value of m/n that can be used to correctly recover the gradient
in rock uplift inferred from other data sets. Having shown that other methods to estimate the concavity index orm/
n are impacted by the spatial gradient in rock uplift in the Clearwater catchment, we apply our methodology to the
Mohand Range in the Siwalik Hills, where gradients in rock uplift are less well constrained. We constrain an m/n
of 0.31 for the Mohand Range, lower than previous estimates for the Siwalik Hills (Kirby &Whipple, 2001). We
use this value of m/n to create a map of channel steepness index, allowing us to reconcile observations of rock
uplift rate and lithological change and explain why reported values of concavity and m/n have been variable
(Kirby &Whipple, 2012; Wahyudi et al., 2021). Our new methodology to estimatem/n represents a powerful tool
for investigating tectonic and climatic changes in landscapes and highlights the utility of inverse methods in
tectonic geomorphology.
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Data Availability Statement
The code required to calculate m/n using our inverse method is available from this zenodo repository
(Smith, 2024), which can be found on Github at https://github.com/adamsmith142/INCA.
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