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Abstract: Accurate modelling of occupancy patterns is critical for reliable estimation of building stock
energy demand, which is a key input for the design of district energy systems. Aiming to investigate
the suitability of different occupancy-modelling approaches for the design of district energy systems,
the present study examines a set of standard-based schedules (from the UK National Calculation
Methodology), a widely used stochastic occupancy model, and a novel energy-data-driven occupancy
model. To this end, a dynamic energy model of a higher education office building developed within a
stock model of London’s Bloomsbury district serves as a testbed to implement the occupancy models,
explore their implications for the estimation of annual and peak heating and cooling demand, and
extrapolate the findings to the computationally demanding building stock stimulations. Furthermore,
the simulations were conducted in two years before and after the COVID-19 pandemic to examine the
implications of hybrid working patterns after the pandemic. From the results, the energy-data-driven
model demonstrated superior performance in annual heating demand estimations, with errors of
±2.5% compared to 14% and 7% for the standard-based and stochastic models. For peak heating
demand, the models performed rather similarly, with the data-driven model showing 28% error
compared to 29.5% for both the standard-based and stochastic models in 2019. In cooling demand
estimations, the data-driven model yielded noticeably higher annual cooling demand and lower
peak cooling demand estimations as compared with the standard-based and stochastic occupancy
models. Given the adopted building-modelling approach, these findings can be extended to district-
level investigations and inform the decision on the choice of occupancy models for building stock
energy simulation.

Keywords: occupancy modeling; building energy simulation; district energy systems; energy data-
driven methods; building stock modeling

1. Introduction

As buildings account for approximately 40% of global energy consumption [1], decar-
bonisation of buildings at scale is a necessity to tackle climate change. Previous studies
have demonstrated that the building sector’s zero-carbon targets are far more within reach
at the community level due to the synergies and efficiencies gained through mixed energy
use, the economy of scale, and better integration of renewables [2]. Specifically, thermal
energy supply and load balancing are suggested to be more effective on scales larger than
individual buildings [3]. Chow [4] demonstrated that achieving zero-carbon targets at the
district level needs up to 70% less capital cost as compared with retrofitting individual
buildings. O’Brien [5] suggested that to achieve zero-energy buildings, it is critical to
consider energy flexibility at the building level to allow for a better interaction between
buildings’ and neighbourhoods’ energy systems and reach the best design configurations
for a cluster of buildings and neighbourhoods. Walker at al. [6] also underlined the impor-
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tance of planning for built environment energy systems at the neighbourhood scale, as this
enhances the incorporation of distributed energy systems to achieve energy neutrality.

In this setting, utilisation of District Energy Systems (DESs) is an efficient way of
decarbonising the heating and cooling provided to buildings [7], which also secures energy
supply by diversifying energy sources and the demand for heating and cooling. DESs offer
a unique opportunity to use large-scale renewable energies and recovered heat sources that
cannot be used otherwise, and their effectiveness and carbon-saving potential grows as
they expand and connect to each other.

2. Literature Review

Previous research suggests that full realisation of energy networks’ potentials depends
on reliable modelling and assessment of their thermal efficiency, CO2 emissions, capital,
and running costs, along with their resilience in providing thermal comfort for building
occupants under the changing climatic conditions [8,9]. Specifically, accurate assessment of
building stock base and peak thermal loads is critical for optimum sizing of district energy
networks [10]. Oversizing increases initial and running costs and reduces efficiency, and
undersizing could affect occupants’ comfort significantly.

Modelling DESs presents several challenges. First, the complexity of these systems,
with multiple heat sources, a complex distribution network, and many end users, demands
powerful computing resources and laborious efforts for reliable modelling and optimisation.
Second, the fluctuating and complex nature of renewables on the supply side adds further
challenges to modelling and simulation. Thirdly, capturing the fluctuating nature of space
heating and cooling demands in buildings, which vary based on indoor and outdoor
environmental conditions along with occupants’ energy-related behaviour, poses another
challenge [11]. This latter point, in particular, means that the accuracy and quality of
heat demand models of individual buildings is crucial for the overall accuracy of DES
models [12].

In this context, occupant behaviour is one of the most critical variables in zero-carbon
design, especially due to the improvement of buildings’ physical characteristics and energy
systems [13–16]. Many studies have demonstrated that occupants play a significant role
in shaping energy demand in buildings [17–20], and are identified as the main source
of the discrepancy between estimated and actual energy consumption and the resulting
uncertainty in evaluating building energy consumption (see, for example, [21–23]).

However, whereas building stock modelling has relatively matured in terms of using
of dynamic thermal simulation tools and relying on relatively detailed and accurate ge-
ometric definitions of buildings, representation of occupants and their interactions with
building environmental control systems remains a challenge. This aligns with the challenge
underlined by previous studies that using single archetypes to represent all buildings in a
segment of the building stock can result in a loss of detail and accuracy in the model [24].
In particular, the paucity of high-resolution data on occupants’ energy-related behaviour at
an urban scale leads to major difficulties in accurate and granular estimation of buildings’
energy consumption [25], leading to a more challenging performance gap at the urban
scale [26].

Specifically, previous studies demonstrate three approaches for occupancy modelling
in district-level energy simulations. The first approach relies on schedules of occupants’
presence, use of light and equipment, and hot water. This approach, which is adopted
by building performance standards such as ASHRAE standard 90.1 and the UK National
Calculation Method (NCM) [27], has been traditionally used in building energy simulation
studies for years. The use of fixed occupancy schedules in urban-scale energy modelling
presents both advantages and disadvantages. On the plus side, they offer a simple, straight-
forward approach to modelling, which can be beneficial for large-scale urban energy
assessments where detailed data may not be available. Also, the consistency of profiles
allows for easier comparison across different buildings and scenarios [28]. In addition,
these schedules are derived from established guidelines and are easy to implement in
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simulation tools, making them accessible for practitioners who may not have the resources
to develop complex, data-driven models [29]. Standard schedules also provide a base-
line for policymakers to evaluate energy performance and develop energy conservation
measures at an urban scale, especially when detailed occupancy data are unavailable [29].
On the other hand, as the standard-based occupancy schedules do not reflect the actual
occupancy patterns, their use can lead to significant discrepancies between predicted and
actual energy consumption. This is particularly problematic in non-residential buildings
where occupancy patterns can vary widely from one building to another [30–32].

Furthermore, while many studies in this area have primarily relied on standard peak
values and schedules for occupancy across their sample size [33], this approach tends
to overlook the large diversity in the operation of buildings by occupants [34], which
can result in an overestimation of occupancy loads and directly impact the estimation
of energy demands for district energy networks. For example, in their study, Happle
et al. [26] demonstrated that the use of uniform schedules and fixed set points leads to an
overestimation of peak cooling loads.

The second approach to modelling occupants in building stock modelling is based on
the integration of computationally advanced stochastic models of occupant presence and be-
haviour [35]. These models are meant to, and could potentially, enhance the representation
of occupants in building performance models. But, as suggested by other studies [36,37],
the reliability of these models and their cost benefit, especially for the purpose of stock
modelling, are rather debatable (and this will be further investigated in this study). In
particular, the integration of these computationally expensive models into building stock
energy models (which by their nature are computationally demanding themselves) is very
challenging. This has led many researchers (including the authors) to rely on single runs of
stochastic models (albeit across sub-hourly timesteps of annual simulations), which could
to a large extent undermine the benefits of stochastic models to yield probable ranges of
building performance indicators (rather than single values of these indicators).

The third approach to modelling occupancy in buildings relies on leveraging data
analytics to predict and optimise building occupancy patterns, which can significantly
enhance energy efficiency and operational effectiveness [38–40]. This approach utilises
various data sources, such as plug load profiles and sensor data, to infer occupancy states
and adjust building systems accordingly. For example, Vassiljeva et al. [39] developed
an algorithm using energy consumption data to create occupancy profiles for optimising
ventilation schedules in school buildings. This method relied on energy consumption
data from air handling units to either predict the presence of occupants or estimate their
number [39]. In another effort, Vosoughkhosravi et al. [41] utilised machine learning
algorithms to detect occupancy in office spaces based on individual plug load data. The
models, validated with seat pressure sensors, achieved high accuracy in real-time occupancy
detection, demonstrating a cost-effective alternative to traditional sensor-based systems.
While data-driven occupancy modelling offers substantial benefits in energy efficiency
and operational optimisation, challenges such as data privacy, model generalisability, and
the complexity of human–building interactions remain. Addressing these issues requires
further research and development to refine these models and ensure their applicability
across diverse building types and environments [42]. Emerging data-driven approaches,
such as those using machine learning and clustering algorithms, offer more nuanced
insights by capturing the variability in occupant behaviour and energy use patterns [29,30].
These methods can enhance the accuracy of energy models, although they require more
detailed data and computational resources which may not be always available.

In a wider perspective, recent advancements in data technologies have provided
opportunities for a deeper understanding of building occupant patterns [43]. For example,
the use of passive Wi-Fi sensing methods has shown potential for estimating occupant
behaviour on an urban scale, providing a low-cost and privacy-friendly solution [44].
However, despite these developments, there is still a need for more comprehensive and
high-quality datasets [45], along with development and examination of fit-for-purpose
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occupancy-modelling approaches to improve the accuracy of building energy modelling at
the urban scale, which is of critical importance for demand-side modelling in the design
and assessment of DESs.

In conclusion, existing literature emphasises the importance of decarbonising the
building sector to combat climate change and highlights the potential of community-based
solutions, particularly district energy systems (DESs). However, accurate modelling of
these systems, specifically with regard to representation of occupant behaviour, remains a
challenge, leading to discrepancies between predicted and actual energy consumption.

3. Research Aims and Scope

Within the context described in the introduction and literature review, this research
aims to evaluate the suitability of different occupancy-modelling approaches for building
stock energy modelling and assess their impact on building energy demand estimations as
needed for the optimal design of district energy systems.

The current study makes use of a building stock model developed for UCL Bloomsbury
campus in London, England [46], but focuses on one of the buildings from the campus to
implement and test different computationally demanding occupant behaviour modelling
approaches. Specifically, we populate the building model with three types of occupancy
models (namely, deterministic standard-based schedules, a stochastic model of occupants’
presence, and a novel energy-data-driven occupancy model) for estimation of annual and
peak heating and cooling demands as key performance indicators considered in the design
of DESs. The study examines these indicators for two years, namely 2019 and 2023, to
capture pre- and post-pandemic occupancy patterns.

It should be noted that, while the scope of this study is limited to one building, as
the building model is developed as a part of a district model (with typical characteristics
of these models as detailed in Section 4.3), the findings of the study can directly inform
modelling of occupants for the purpose of building stock energy modelling. As such, the
studied building serves as a small-scale testbed to identify the most cost-effective occupancy
models to be integrated into a much more computationally expensive building stock energy
modelling campaign.

4. Method
4.1. Overview

To describe the research method systematically, in the following, we first discuss the
studied building (Section 4.2), and then describe how the energy model of this building is
developed (Section 4.3). Subsequently, Section 4.4 details the three occupancy-modelling
approaches selected for this study. These are, namely, a standard-based approach using
fixed schedules from UK NCM, a stochastic model selected from the literature generating
random daily occupancy profiles, and a novel energy-data-driven model (EDDOS). Lastly,
Section 4.5 describes the building performance indicators used to evaluate the studied
occupant behaviour models in assessment of district energy systems. Figure 1 illustrates
how these different components of the research make it possible to assess the suitability of
different occupancy models for building stock energy simulations.

4.2. Case Study Building

As clarified in Section 3, this study focuses on one higher education office building
from the UCL Bloomsbury campus in central London. The building, called UCL Central
House, is a six-storey building, which mainly accommodates offices and meeting rooms
(for academic staff and PhD students) along with the Bartlett Library on its ground floor.
The building was selected as a case study since it was representative of one type of (office-
dominated) Bloomsbury campus building and its metered gas and electricity use was
collected for a number of years. Figure 2 illustrates the building’s typical floor plan.
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4.3. The Building Model

The building model used in this study is one of 120 models developed for the UCL
Bloomsbury campus stock model, the detailed process of which is explained by Kourgiozou
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et al. [46]. These are building energy models generated using the extensively validated
dynamic building energy modelling tool EnergyPlus in two main steps:

1. Developing a 3D building stock database integrating key building-level data includ-
ing building name, geometry (including footprint and height), construction, and
activity type, based on data sources such as UCL Estates, Display Energy Certificates,
Ordnance Survey, and Valuation Office Agency (as detailed in [46]).

2. Using a Python-coded tool called SimStock [47] to automatically generate Energy-
Plus thermal models for each building by extracting data from the 3D building
stock database.

The generated building energy models maintain the actual building forms (instead
of using geometric archetypes) and are comprised of one thermal zone per floor. They
also represent glazing ratios across different facades as derived from a database developed
in a previous study [48]. Four sets of operation schedules (involving occupancy, light,
equipment, and hot water use) are assigned to the ground floor zone and the thermal
zones representing upper floors as per data obtained from the UK National Calculation
Methodology [27]. For the purpose of the current study on UCL Central House building, an
EnergyPlus ideal loads air system is defined in the building model, which makes it possible
to estimate building heating and cooling energy demands without a detailed definition of
the HVAC system.

This bottom-up building stock modelling approach offers a balance between efficiency
and accuracy and captures the dynamic relationship between the demand and supply
sides as needed for design and assessment of DESs. Specifically, the dynamic nature of the
underlying energy simulation engine allows for estimation of sub-hourly energy demands
per building and provides a testbed for a feasibility study of integrating new technologies
and renewables under future climate change scenarios [49]. Furthermore, this stock model
can be populated with sub-hourly patterns of occupants’ presence and behaviour, which
makes it particularly useful for the purpose of this study. Conversely, the low granularity
of thermal zones (one zone per floor) adds some inaccuracy to the estimation of building
energy demands and limits the possibilities of integrating high-resolution occupant models
(such as agent-based occupancy models, or models of occupant behaviour which capture
interactions with the environmental control systems of dedicated offices).

4.4. Occupancy Modelling
4.4.1. Studied Approaches

Three occupancy-modelling scenarios are considered in this study, namely standard-
based occupancy schedules, non-repeating occupancy schedules based on a stochastic
occupancy model, and energy-data-driven occupancy schedules (EDDOSs). These are
explained in more the detail in the following.

4.4.2. Fixed Standard-Based Occupancy Schedules

In this deterministic approach to occupancy representation, the UK National Calcu-
lation Method (NCM) [27] is used as the reference for occupancy-related assumptions.
NCM is a modelling guide provided in the UK in support of building performance simula-
tion and assessments mandated in Approved Document Part L (Conservation of fuel and
power). NCM comprises the underlying dynamic building simulation methods and stan-
dard databases for building construction and activities. Table 1 gives the occupancy-related
assumptions considered in this scenario and Figure 3 illustrates the UK NCM weekday
schedules of occupancy, use of lights, and equipment used in this study.
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Table 1. Occupancy-related assumptions under the standard-based scenario.

Model Input Parameter Value

People maximum density 0.103 [persons/m2]

Occupancy schedule UK NCM D1_Edu_CellOff_Occ

Metabolic rate 123 [W/persons]

Latent heat fraction 0.4

Lighting maximum density 4.6 [W/m2]

Lighting schedule UK NCM D1_Edu_CellOff_Light

Equipment maximum density 11.99 [W/m2]

Equipment schedule UK NCM D1_Edu_CellOff_Equip

Hot water Supply 0.2369 (l/day/m2)
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4.4.3. Non-Repeating Occupancy Profiles from a Stochastic Model

In this occupancy-modelling scenario, a stochastic occupancy model developed by
Page et al. [50] was used to generate random daily occupancy profiles for the annual
building performance simulation. The same occupancy schedule from the standard-based
scenario was fed as input to this model, which along with a parameter of mobility (defined
as the ratio of state change probability to state persistence probability) allowed the model to
return non-repeating daily profiles of occupancy states (present or not present). The model
was set to start from a state of vacancy for the first timestep of the day for all occupants
to then determine the state of occupancy of each occupant at each time step based on the
previous occupancy state and the probability of transition from this state to either the same
state or its opposite state. To this end, for each time step, a random number between 0 and
1 was generated and compared with the transition probabilities to determine if a change of
occupancy state occurred. Further details on this occupancy model can be found in [50].

The stochastic occupancy model was executed for 240 weekdays and 125 weekends
and public holidays for each occupant to obtain random daily presence profiles originating
from the UK NCM occupancy schedule. Figure 4 shows the zone-level weekday occupancy
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schedules resulting from averaging the randomly generated daily occupancy profiles of
84 occupants in one of the building floors. The resulting zone-level occupancy schedules
were incorporated into the building model and were referenced in the definition of occu-
pants in each thermal zone. The weekends and public holidays were considered in this
process such that the days of the week were consistent in models with fixed standard-based
and random occupancy profiles.
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4.4.4. Energy-Data-Driven Occupancy Schedules (EDDOSs)

Aiming to model occupancy patterns more realistically, without relying on a stochastic
modelling process, a novel procedure was developed and tested to derive occupancy
schedules based on energy-use data. First, it was examined to what extent energy-use data
correlated with the hours of the day. While metered gas data did not suggest a correlation
with the hours of the day, electricity use and the hours of the day showed a good correlation
(with an R-squared of 0.84) in the studied building (Figure 5). On this basis and following
the periodic pattern of weekly electricity use in the building (see Figure 6), an algorithm was
set up to translate the fluctuating electricity use into occupancy schedules. To this end, the
minimum and maximum values of hourly electricity consumption were identified in each
week, and these were assigned to the lowest and highest occupancy levels, respectively
(Figure 6). Between these two ends, the occupancy variations were assumed to follow
the changes in electricity use linearly. To account for weather-dependant and seasonal
changes in electricity use, each week data were processed separately. Thus, the procedure
returned non-repeating daily profiles of occupancy corresponding to the variations in
electricity use. For the purpose of this study, year 2019 electricity-use data were used to
identify the occupancy profiles, as this represented a building usage pattern before the
COVID-19 pandemic.
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4.5. Building Performance Indicators and Evaluation of Occupancy Models

The study focused on annual and peak heating and cooling demands as key building
performance indicators for the design of district energy networks [51–55]. These indicators
represent the annual total and hourly peak amount of heating and cooling energy that must
be delivered to the building to maintain the heating and cooling set-points. In detail, these
indicators can be defined as follows:

• Annual Heating Demand (AHD): This represents the total amount of heating energy
required over a year to maintain the heating set-points:

AHD =
8760

∑
t=1

Qheating(t)
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where Qheating(t) is the heating energy demand at hour t, and 8760 is the total number of
hours in a year.

• Peak Heating Demand: This represents the maximum heating energy required to
maintain the heating set-points at a certain hour over a year.

• Annual Cooling Demand (ACD): This represents the total amount of cooling energy
required over a year to maintain the cooling set-points:

ACD =
8760

∑
t=1

QCooling(t)

where Qcooling(t) is the cooling energy demand at hour t, and 8760 is the total number of
hours in a year.

• Peak Cooling Demand: This represents the maximum cooling energy required to
maintain the cooling set-points at a certain hour over a year.

The estimated heating demand values were then divided by an efficiency factor of
0.7 assumed for the building heating system and compared with the building metered
natural gas to assess the accuracy of building model estimations under different occupancy-
modelling scenarios. In terms of cooling, however, as the building is not served by a central
cooling system, the estimation of cooling demand only served to discuss the implications
of different occupancy-modelling approaches on a theoretical level (and to inform future
development of the DES serving the building).

Furthermore, to test the occupancy models more extensively, the building model was
simulated for two years, namely 2019 and 2023, as the former represents an occupancy
pattern before the COVID-19 pandemic, and the latter represents an occupancy pattern
once the post-pandemic hybrid way of working was well established. This also allowed
the study to test the performance of the energy-data-driven model based on the year used
for its training (2019) and a validation year (2023) with a different occupancy pattern. To
this end, for both 2019 and 2023, the EDDOS maximum occupancy fraction (as specified in
Figure 6) was set to 1.0, based on a systematic test of the model with different values of 0.4,
0.6, 0.8, and 1.0 for this parameter of the model.

5. Results and Discussions
5.1. Occupancy Profiles

Figure 7 illustrates the daily occupancy profiles resulting from the different occupancy-
modelling methods investigated in this study: a standard-based fixed schedule used for
all simulation weekdays (UK NCM) and an aggregated occupancy profile resulting from
averaging all weekday profiles generated by the stochastic occupancy model (Stochastic
Annual Average), along with a randomly selected profile from EDDOS (EDDOS Random
Day) and its annual average profile (EDDOS Annual Average).

As can be seen in Figure 7, the UK NCM is the only occupancy profile that maintains
100% occupancy for a rather long period (11 am to 12 pm and 3 pm to 4 pm). The ag-
gregated profile from the stochastic model has slightly reduced occupancy levels in these
periods. However, it follows the UK NCM pattern in showing a clearly reduced occupancy
level during the two-hour ‘lunch break’. Moving on to the EDDOS profiles, which are
generated based on electricity-use data, the EDDOS Random Day profile does not reach
100% occupancy and does not show a clear reduction during the lunch break. Most notably,
however, the EDDOS Annual Average has clearly flattened midday occupancy peaks. This,
firstly, suggests that EDDOS has generated daily profiles with more substantial variations in
occupancy as compared with the stochastic model profiles illustrated in Figure 4. Secondly,
the energy-data-driven profiles point to the rather negligible impact of the lunch break in
reducing occupancy density in this building. This corresponds with the authors’ observa-
tion in the building that most of the occupants have their lunch inside the building (and in
the same level of the building) or leave the building for a very short period for lunch.
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Figure 7. Weekday occupancy profile from different occupancy-modelling scenarios.

It should be noted that, to allow for a valid comparison of energy-demand estimations,
all occupancy models are implemented in such a way that they return the same number of
occupancy hours in total (namely 1824 h per occupant representing an average of around
35 working hours per week) for an annual simulation as per the UK NCM.

5.2. Annual Heating Demand

Table 2 and Figure 8 give the annual heating demand values as estimated by the
building model populated with the standard-based occupancy schedules (NCM), the
stochastic occupancy model, and the energy-data-driven model (EDDOS) in comparison
with metered heating energy data in the years 2019 (pre-COVID occupancy pattern) and
2023 (post-COVID occupancy pattern). The metered data represent the actual use of natural
gas in the building, which provides a basis for comparing the accuracy of energy demand
estimations (after applying a building heating system efficiency factor of 0.7 to the estimated
heating energy demands). The negative error values in Table 2 show an underestimation of
the heating energy demand, while the positive error values depict an overestimation.

Table 2. Obtained annual heating demand values as estimated by the building model populated
with standard-based (UK NCM) occupancy schedules, stochastic occupancy model, and energy-data-
driven occupancy schedules (EDDOSs), along with the estimation errors as compared with metered
heating energy in years 2019 and 2023.

Year Indicators
Standard-Based

Occupancy Schedule
(UK NCM)

Stochastic
Occupancy Model

Energy-Data-Driven
Occupancy Schedules

(EDDOSs)
Metered

2019

Annual Heating
Demand

[kWh/m2]
32.34 32.41 36.73 37.66

Estimation Error
[%] −14.1 −13.9 −2.5 -

2023

Annual Heating
Demand

[kWh/m2]
25.50 25.57 28.32 27.62

Estimation Error
[%] −7.7 −7.4 2.5 -



Buildings 2024, 14, 2933 12 of 18

Buildings 2024, 14, x FOR PEER REVIEW 13 of 20 
 

weather data [Error! Reference source not found.], Heating Degree Days (HDDs) for the 

years 2019 and 2023 are, respectively, 2491 and 2308. 

Table 2. Obtained annual heating demand values as estimated by the building model populated 

with standard-based (UK NCM) occupancy schedules, stochastic occupancy model, and energy-

data-driven occupancy schedules (EDDOSs), along with the estimation errors as compared with 

metered heating energy in years 2019 and 2023. 

Year Indicators 

Standard-

Based 

Occupancy 

Schedule 

(UK NCM) 

Stochastic 

Occupancy 

Model 

Energy-

Data-

Driven 

Occupancy 

Schedules 

(EDDOSs) 

Metered  

2019 

Annual Heating Demand 

[kWh/m2] 
32.34 32.41 36.73 37.66 

Estimation Error [%] −14.1 −13.9 −2.5 - 

2023 

Annual Heating Demand 

[kWh/m2] 
25.50 25.57 28.32 27.62 

Estimation Error [%] −7.7 −7.4 2.5 - 

 

Figure 8. Annual heating demand as estimated by the building model populated with standard-

based (UK NCM) occupancy schedules, stochastic occupancy model, and energy-data-driven occu-

pancy schedules (EDDOSs), compared with metered heating energy in years 2019 and 2023. 

5.3. Peak Heating Demand 

Table 3 and Figure 9 show the hourly peak heating demand values estimated by the 

building models using the standard-based occupancy schedules (NCM), the stochastic oc-

cupancy model, and the energy-data-driven occupancy schedules (EDDOSs) in compari-

son with metered heating energy data in the years 2019 and 2023. 

In contrast to annual heating demand results, the three models have performed ra-

ther similarly in estimating peak heating demand, although the energy-data-driven model 

(EDDOS) still shows a better performance. For 2019, EDDOS shows an error of 28% com-

pared with that of 29.5% given by the stochastic model and NCM, and for 2023, EDDOS 

gives a very small error of 1.1% compared to that of 4.4% yielded by the stochastic model 

and NCM. It should be noted that the results illustrated here are absolute peak values 

2019 2023

Year

0

5

10

15

20

25

30

35

40

A
n
n

u
a

l 
H

e
a
ti
n

g
 D

e
m

a
n

d
 p

e
r 

F
lo

o
r 

A
re

a
 [
k
W

h
/m

2
]

UK NCM

Stochastic

EDDOS

Metered

Figure 8. Annual heating demand as estimated by the building model populated with standard-based
(UK NCM) occupancy schedules, stochastic occupancy model, and energy-data-driven occupancy
schedules (EDDOSs), compared with metered heating energy in years 2019 and 2023.

The results, firstly, suggest that the stochastic occupancy model, despite its much
higher computational cost, has not resulted in any significant improvement in the esti-
mation of annual heating demand in both studied years. This finding aligns with what a
number of previous studies have suggested (see, for example, [10]). Secondly, the building
model equipped with energy-data-driven occupancy schedules (EDDOSs) demonstrates
noticeably smaller errors in the estimation of annual heating demand compared to NCM
and the stochastic model (±2.5% error compared with around 14% and 7% from NCM and
the stochastic model in the years 2019 and 2023, respectively).

Notably, there is also a difference between 2019 and 2023 in terms of metered heating
energy use (36.73 kWh/m2 for 2019 and 28.32 kWh/m2 for 2023), which, apart from
potentially different occupancy and operation patterns, could also be attributed to weather
variations. Based on the hourly weather data files used for this study obtained from
Shinny weather data [56], Heating Degree Days (HDDs) for the years 2019 and 2023 are,
respectively, 2491 and 2308.

5.3. Peak Heating Demand

Table 3 and Figure 9 show the hourly peak heating demand values estimated by the
building models using the standard-based occupancy schedules (NCM), the stochastic oc-
cupancy model, and the energy-data-driven occupancy schedules (EDDOSs) in comparison
with metered heating energy data in the years 2019 and 2023.

In contrast to annual heating demand results, the three models have performed
rather similarly in estimating peak heating demand, although the energy-data-driven
model (EDDOS) still shows a better performance. For 2019, EDDOS shows an error of 28%
compared with that of 29.5% given by the stochastic model and NCM, and for 2023, EDDOS
gives a very small error of 1.1% compared to that of 4.4% yielded by the stochastic model
and NCM. It should be noted that the results illustrated here are absolute peak values (and
not high percentiles of heating demands commonly used for system sizing). Prediction
of absolute peak values in a year, with all the transient boundary conditions influencing
the actual building energy use, poses a great challenge to any building energy model from
a probability standpoint, and thus the different levels of errors observed in the studied
years are not surprising. However, these discrepancies highlight the importance of refining
predictive models to account for such variations in peak demand more accurately.
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Table 3. Obtained hourly peak heating demand values as estimated by the building model populated
with standard-based (UK NCM) occupancy schedules, stochastic occupancy model, and energy-data-
driven occupancy schedules (EDDOSs), along with the estimation errors as compared with metered
heating energy in years 2019 and 2023.

Year Indicators
Standard-Based

Occupancy Schedule
(UK NCM)

Stochastic
Occupancy Model

Energy-Data-Driven
Occupancy Schedules

(EDDOSs)
Metered

2019

Hourly Peak
Heating Demand

[kW]
117.76 117.76 116.38 90.93

Estimation Error
[%] +29.5 +29.5 +28.0 -

2023

Hourly Peak
Heating Demand

[kW]
106.04 106.03 102.51 101.37

Estimation Error
[%] +4.6 +4.6 +1.1 -
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Figure 9. Hourly peak heating demand as estimated by the building model populated with standard-
based (UK NCM) occupancy schedules, stochastic occupancy model, and energy-data-driven occu-
pancy schedules (EDDOSs), compared with metered heating energy in years 2019 and 2023.

5.4. Annual and Peak Cooling Demands

Figures 10 and 11 present the obtained annual and peak cooling energy demands,
respectively, as estimated using the three occupancy-modelling scenarios in the years 2019
and 2023. While the studied building does not have a dedicated electricity meter for the
central cooling system to allow for assessing the accuracy of these estimations, comparison
of the cooling demand values provides insights into the implications of using the different
occupancy models. It should be noted that the building thermal model used in this study is
only verified and validated against actual heating-energy-use data. However, as previous
studies have also suggested [57–60], this process ensures that the model correctly captures
the building’s thermal dynamics, which are relevant to both heating and cooling. While
this method cannot completely replace direct validation based on cooling data, it provides
a solid framework for the comparative assessment of the building model’s cooling demand
estimations, as populated with different occupancy models.
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Figure 10. Annual cooling demand as estimated by the building model populated with standard-
based (UK NCM) occupancy schedules, stochastic occupancy model, and energy-data-driven occu-
pancy schedules (EDDOSs) in years 2019 and 2023.
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Figure 11. Peak cooling demand as estimated by the building model populated with standard-based
(UK NCM) occupancy schedules, stochastic occupancy model, and energy-data-driven occupancy
schedules (EDDOSs) in years 2019 and 2023.

For annual and peak cooling demand estimations in both 2019 and 2023, the NCM
and stochastic models produced very similar results. In 2019, the annual cooling load
was 9.05 kWh/m2 for NCM and 9.10 kWh/m2 for the stochastic model. The same trend
continued in 2023, with annual cooling loads of 9.96 kWh/m2 for NCM and 10 kWh/m2

for the stochastic model. This suggests that the computationally expensive randomisation
of the standard-based occupancy schedules via a stochastic occupancy model, at least
through the method applied and documented in this study, does not change the building
energy model performance in a meaningful manner. On the other hand, the energy-
data-driven model (EDDOS) has reinterpreted the occupancy patterns in such a manner
(while maintaining the total occupancy hours in a year) that it yields clearly different
estimations of both annual and peak cooling energy demands. In both studied years,
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EDDOS has estimated noticeably higher annual cooling demands, 10.38 kWh/m2 for
2019 and 13.34 kWh/m2 for 2023, which can be mostly attributed to its higher occupancy
densities during the lunch-break period (see Figure 7). In general, the year 2023 has shown
higher annual cooling demands. This corresponds with Cooling Degree Days of 268 for
2023 compared to 246 for 2019, based on the hourly weather data file used for building
performance simulation [56].

In the case of peak cooling demand, as illustrated in Figure 11, EDDOS has estimated
noticeably lower values compared with the other two occupancy-modelling scenarios.
Again, the current study does not have the possibility of comparing the accuracy of these
predictions. However, the major difference in peak demand estimations of EDDOS and the
standard-based schedule, as compared with the almost non-existent difference between
the predictions of the stochastic and standard-based schedules, is worth highlighting. This
seems to suggest that, contrary to the common argument for the use of stochastic occupancy
models, in the current study, it is the rather simple EDDOS model (and not the stochastic
model) that has provided a meaningfully diversified pattern of occupancy across the year.
This finding raises important questions about the assumptions underlying occupancy
modelling for building stock level energy modelling and emphasises the need for further
investigation into the conditions under which different models may yield more accurate or
useful predictions.

6. Conclusions

The study presented here conducted a comparison of three different occupancy-
modelling approaches, including deterministic standard-based schedules (NCM), a stochas-
tic model of occupants’ presence, and a novel energy-data-driven occupancy model (ED-
DOS), for the purpose of building stock energy modelling. This involved implementation
of these models in a building energy model built within a stock modelling campaign and
testing the performance of the resulting occupied building models in estimating annual
and peak heating and cooling demands. Key findings of the study were as follows:

1. The energy-data-driven model (EDDOS) demonstrated superior performance in esti-
mating annual heating demands, with errors of ±2.5% compared to 14% and 7% for
the standard-based and stochastic occupancy models in 2019 and 2023, respectively.
This highlights the potential of energy-data-driven approaches in capturing realistic
occupancy patterns.

2. The stochastic occupancy model, despite its higher computational cost, did not signifi-
cantly improve heating demand estimations compared to standard-based schedules.
For instance, in 2019, NCM estimated 32.34 kWh/m2, while the stochastic model
estimated 32.41 kWh/m2, a negligible difference of 0.07 kWh/m2.

3. For peak heating demand estimation, all models performed similarly, with EDDOS
showing a slight edge (28% error compared to 29.5% for both stochastic and NCM
in 2019).

4. In cooling demand estimations, the energy-data-driven model (EDDOS) yielded
notably different results compared to standard-based and stochastic models. For ex-
ample, in 2023, EDDOS estimated an annual cooling demand of 13.34 kWh/m2, which
was significantly higher than the estimations of the standard-based and stochastic
models (9.96 kWh/m2 and 10 kWh/m2, respectively).

5. The energy-data-driven model estimated lower peak cooling demands compared to
other occupancy models, suggesting a more diverse pattern of occupancy throughout
the year.

Furthermore, the study revealed that even though all occupancy models were set up
to maintain a consistent total number of occupancy hours (1824 h per occupant annually),
the distribution of these hours throughout the day can significantly influence energy
consumption patterns. In addition, the study’s consideration of both pre-COVID (2019) and
post-COVID (2023) scenarios highlights the adaptability of energy-data-driven models to
changing occupancy patterns, which can be particularly useful in non-residential settings



Buildings 2024, 14, 2933 16 of 18

where occupancy patterns can vary widely over time and across different building types
and evolve over time. In this context, the study suggested that the computationally
expensive implementation of stochastic occupancy models in building stock models does
not necessarily enhance their predictive performance. However, from the finding of this
specific case study, the deployment of electricity use data to infer occupancy patterns
seems to be a promising approach to capture the diverse and dynamic nature of occupants’
presence for the purpose of building stock energy modelling.

In conclusion, while this study focused on a single building, its findings point to
potentially transformative implications for urban-scale energy modelling and district en-
ergy system design. The energy-data-driven approach adopted in the development of the
EDDOS model, if validated and refined further, could lead to more accurate assessments
of urban energy systems and a more responsive and efficient design and operation of
such systems.
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