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Chapter 1: Historical Overview and Contemporary

Challenges in Parkinson’s Disease

Overview

Parkinson’s disease (PD) is a complex progressive neurodegenerative disease with multifactorial etiology.

Both rare and common genetic variants contribute to the disease’s risk, onset, severity, and progression.

There are no treatments that cure PD, but there are multiple treatments designed to help patients

manage their symptoms. For progressive neurodegenerative diseases such as PD, early and accurate

diagnosis is likely to be key in effectively developing and using new interventions, while the disease

process is most amenable to therapeutic intervention. This work aims to leverage large multi-omic

datasets to identify patients early in their disease course and design personalized risk and progression

predictions. In addition to investigating multiple *omics and common genetic variations associated with

PD, I will investigate the contribution of rare variants to PD risk. The outcome of this work aims to

improve early diagnosis and identify potential therapeutic targets for new disease-modifying treatments.

Background: Parkinson’s Disease

PD was initially described by British physician Dr. James Parkinson in 1817, in An Essay on the Shaking

Palsy. He described multiple men between the ages of 50 and 65 with the following characteristic motor

symptoms of PD: tremor of limbs even at rest, impaired and stooped posture, and slow, erratic

movement (bradykinesia) coupled with the weakness of muscles (Parkinson 1817; Lees 2017). Now, the

diagnostic criteria for PD are characterized by a composite of motor symptoms termed “parkinsonism”

or Parkinson's syndrome, together with supportive features consistent with an underlying pathological

diagnosis of Lewy body PD. The Queen Square Brain Bank criteria focused on motor symptoms,

progression and the response to treatment and the more recent Movement Disorder Society (MDS)

diagnostic criteria for PD include supportive non-motor features. Parkinsonism is an umbrella term to

describe the motor symptoms typically found in PD, such as bradykinesia, rigidity, tremor, and postural

instability. Typically the prodromal phase of PD has characteristics such as anosmia, sleep disturbances,

and constipation, sometimes up to 20 years prior to the development of overt symptoms (Savica et al.

2009; Gelber, Launer, and White 2012).

Synucleinopathies
Synucleinopathies are a group of neurodegenerative diseases characterized by abnormal intracellular

aggregations of the alpha-synuclein protein encoded by SNCA. They include PD, dementia with Lewy

bodies (DLB), pure autonomic failure (PAF), and multiple system atrophy (MSA). The role of

alpha-synuclein was established following the identification of SNCA as a gene that contains mutations

linked to the autosomal dominant form of PD, and of alpha-synuclein as a core component of Lewy

bodies (Fayyad et al. 2019; Goedert et al. 2013). The pathological characteristics of PD are Lewy bodies in
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multiple brain regions including the midbrain and a loss of dopaminergic neurons in the substantia nigra

pars compacta. Other synucleinopathies include MSA and DLB, suggesting there might be both clinical

and genetic overlap between PD and these diseases (Blauwendraat, Nalls, and Singleton 2020).

Role of Genetics in Parkinson’s Disease

Traditionally perceived as having limited genetic involvement, PD now stands recognized as a condition

underpinned by a spectrum of genetic contributions. The genetic underpinnings of PD have been

routinely viewed through a dichotomous lens: monogenic determinants or common small-effect

variants. However, the more we delve into the genetics of PD, the more we recognize the fluidity

between these categories. This spectrum of genetic influence in PD is becoming increasingly nuanced,

challenging the conventional boundaries of classification (Figure 1).

On one end, we have monogenic forms of PD, characterized by a mutation or several mutations in a

single gene with dominant or recessive inheritance. These forms, while rare, are pivotal as they have

high, although age-dependent penetrance. Familial PD, cases with a clear family history, comprises 10%

of all PD cases, of which known monogenic PD accounts for about 30% (S. Bandres-Ciga et al. 2020; Klein

and Westenberger 2012). Such mutations are predominantly caused by rare variants with significant

impacts, and certain monogenic forms intriguingly deviate from the prototypical Lewy body pathology

seen in many PD patients (Johansen et al. 2018).

Traversing the spectrum, there are rare high-risk variants that exhibit incomplete penetrance but

demonstrate some level of familial clustering. These rare variants, while not assuring the manifestation

of PD, contribute substantially to its risk, often in conjunction with environmental factors.

Finally, at the opposite end lies common small-effect variants. Contrary to the earlier belief that PD had

negligible genetic contribution, research over the past two decades underscores the importance of these

variants in apparently sporadic forms of PD. Within the PD research community, a strong example of this

was the extensive genome-wide association study (GWAS) by Nalls and colleagues, analyzing over 37,000

PD cases, 18,000 proxy cases, and 1.4 million controls in individuals of European ancestry, identifying 90

distinct signals associated with PD risk across 78 loci (Nalls et al. 2019a). While common in the

population and enriched in PD cases, each of these variants only marginally escalate the risk. This

adheres to the common disease-common variant hypothesis, which posits that multiple genetic markers

nominated by GWASs are prevalent but confer minimal risk individually (Schork et al. 2009).

In the broader context, defining "variant" as any change in the DNA sequence that may influence gene

function, potentially contributing to conditions like monogenic PD, and "risk" as the likelihood conferred

by genetic variants—whether they are high or low frequency—to develop the disease, delineates the

expansive scope of genetics in PD research (Lake et al. 2021). The uncovering of these genes and genetic

variants not only offers hope to carriers but also highlights pathways for potential therapeutic

interventions.
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Genes Previously Associated with Parkinson’s Disease

Figure 1: Manolio Plot for Parkinson’s Disease

SNCA

In the intricate landscape of disease etiology, monogenic forms of the disease typically arise from rare

mutations. These mutations are typically identified through examination of families, particularly in

extensive families with a high incidence of affected members. A key discovery was made by

Polymeropoulos and colleagues, when they identified mutations in SNCA within an Italian lineage (M. H.

Polymeropoulos et al. 1997). This marked the first instance where mutations in a protein-coding gene

were associated with autosomal dominant PD (Mihael H. Polymeropoulos et al. 1997, 1996; Klein and

Westenberger 2012). The protein in question, alpha-synuclein, encoded by SNCA, undergoes misfolding

and aggregation, culminating in the formation of Lewy bodies and neurites—both hallmark features of

PD. Further advancing our understanding, in 2003, Singleton and colleagues discovered that a triplication

in the SNCA locus is causative of PD (A. B. Singleton et al. 2003). This revelation underscored the notion

that an overproduction of the alpha-synuclein protein, instigated by multiple copies of SNCA, is a

sufficient trigger for the neurodegeneration characteristic of PD. Currently, the scientific community is

directing considerable efforts towards targeting the alpha-synuclein protein. The objective is to mitigate

the deleterious accumulation it induces within Lewy bodies and neurites, as this therapeutic avenue

holds promise in both modifying the disease trajectory and stalling its onset and progression (Fields,

Bengoa-Vergniory, and Wade-Martins 2019; Oliveira et al. 2021).
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The genetic intricacies of PD further unravel when considering the rare missense variants and copy

number augmentations of SNCA, both of which have been implicated in the autosomal dominant form of

PD (A. B. Singleton et al. 2003; M. H. Polymeropoulos et al. 1997; Chartier-Harlin et al. 2004).

Additionally, a range of non-coding common variants have been spotlighted for their role in elevating PD

risk (Nalls et al. 2019a), and are associated with an earlier disease onset (Blauwendraat et al. 2019).

Intriguingly, the underlying mechanism for this seems to range on the increased expression of SNCA

(Pihlstrøm et al. 2018; Soldner et al. 2016). Collectively, this body of evidence positions SNCA at a central

position regarding PD pathogenesis, prompting the current pharmacological endeavors aimed at

modulating SNCA levels.

Pathogenic missense SNCA variants are rare in the general population, with five disease-causing

mutations identified (p.A30P, p.E46K, p.G51D, p.A53T and p.A53G) (Blauwendraat, Nalls, and Singleton

2020) and these mutations can be associated with Parkinson’s disease dementia, Lewy body dementia

(LBD), and MSA (Scholz and Bras 2015). In a relative comparison, SNCA copy number variants emerge

with a higher frequency, albeit remaining rare, with documentation spanning approximately 60 families

(Kasten and Klein 2013). It is noteworthy that carriers of these SNCA mutations often exhibit a more

aggressive disease trajectory, accompanied by a heightened prevalence of symptoms such as dementia,

rapid eye movement (REM) sleep behavior disorder, and autonomic dysfunction. The age of onset for

these carriers tends to skew earlier than idiopathic PD, with a predominant clustering around the late

forties to early fifties. Beyond the conventional autosomal dominant inheritance patterns, there are

intriguing reports of SNCA copy number gains manifesting through mosaic patterns (Perandones et al.

2014; Perez-Rodriguez et al. 2019; Mokretar et al. 2018). However, the broader implications of this in the

overarching PD pathogenesis narrative warrant more expansive studies.

SNCA mutations and their role in PD underscores the pleomorphic risk locus hypothesis, illustrating how

variations within a single gene can manifest in diverse outcomes (A. Singleton and Hardy 2011). Such

findings illustrate the pleomorphic nature of the SNCA locus, with mutations leading to a spectrum of

clinical presentations, from typical PD symptoms to more aggressive forms involving dementia and

autonomic dysfunction.

GBA1

The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), a pivotal player in PD

etiology. GCase is crucial for the breakdown and recycling of glucosylceramide, a glycolipid; its

dysfunction leads to the accumulation of glucosylceramide and related glycolipids in cells, affecting

macrophage-monocyte cell lineage (Welsh et al. 2020).

GBA1 mutations are linked to both Gaucher's disease, an autosomal recessive lysosomal storage

disorder, and significantly elevated PD risk, with a five to ten-fold increase depending on the population

(Sidransky et al. 2009). GBA1 represents a classic pleomorphic locus, showcasing a spectrum of coding,

structural, and non-coding variants, each imparting varying degrees of PD risk (A. Singleton and Hardy

2011). GBA1-positive PD also presents with more severe non-motor symptoms clinically (Toffoli et al.

2023).
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It is believed that reduced GCase activity due to GBA1 mutations leads to the accumulation of

glucocerebrosides and alpha-synuclein, contributing to neurodegeneration (Schapira 2015). This

relationship highlights the therapeutic potential of enhancing GCase activity as a novel intervention in

PD (Migdalska-Richards and Schapira 2016). However, the hypothesis that GBA1 mutations lead to

reduced GCase activity, causing accumulation of glucocerebrosides and alpha-synuclein and contributing

to neurodegeneration (Schapira 2015), has been complicated by the clinical trial results of Venglustat.

This drug, aimed at reducing glucocerebroside levels based on the theory that such reduction could

mitigate alpha-synuclein aggregation and provide neuroprotective effects, did not significantly impact

disease progression in trials (Giladi et al. 2023). This outcome suggests that the pathophysiological

relationship is more complex than initially believed, pointing to the possibility of additional or alternative

mechanisms of disease beyond the simple accumulation of glucocerebrosides and alpha-synuclein.

Among the specific mutations in GBA1, p.N370S (rs76763715) and p.L444P (rs421016) are notable. The

p.N370S mutation is most prevalent in Ashkenazi Jewish individuals and contributes significantly to PD

risk, presenting as a milder form of Gaucher's disease (Balwani et al. 2010). The prevalence and impact

of these GBA1 mutations demonstrate notable variation across populations, especially among Ashkenazi

Jews (Toffoli, Smith, and Schapira 2020; Gan-Or et al. 2008).

LRRK2

Leucine-Rich Repeat Kinase 2, or LRRK2, also known as PARK8, is integral to PD research, particularly

following the discovery of mutations in families with late-onset PD (Funayama et al. 2005; Paisán-Ruíz et

al. 2004; Zimprich et al. 2004). These mutations exhibit an autosomal dominant inheritance pattern,

appearing in about 5-6% of familial PD cases and in less than 1% of sporadic PD cases, thus highlighting a

significant genetic factor in familial PD (Di Fonzo et al. 2005; Brice 2005).

The prevalence of LRRK2 mutations exhibits remarkable variation among different populations: they are

identified in up to 28% of PD cases in the Ashkenazi Jewish community (Ozelius et al. 2006) and in as

many as 41% of cases in the North African population (Inzelberg, Hassin-Baer, and Jankovic 2014),

indicating a significant ethnic and geographical influence on PD risk associated with LRRK2.

A key feature of LRRK2 in PD pathology is its influence on kinase activity; mutations in the LRRK2 gene

have been shown to increase this activity (Gloeckner et al. 2006). This finding is crucial for understanding

the molecular mechanisms driving PD and for developing targeted therapies. Further research into

LRRK2 has also suggested potential links between these mutations and specific clinical features of PD,

such as the rate of disease progression and the severity of motor and non-motor symptoms (Wojewska

and Kortholt 2021). Additionally, ongoing studies are exploring how LRRK2 interacts with other proteins

and pathways within cells. These insights offer promising avenues for personalized medicine approaches

in PD treatment, tailoring interventions to individual genetic profiles (Sen and West 2009; Eschbach and

Danzer 2014).
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Recessive Genes: PINK1 and PRKN

Two genes usually associated with early-onset PD are PRKN (also known as parkin) and PINK1. PRKN

mutations were first identified in individuals with autosomal recessive juvenile parkinsonism (ARJP) in

Japanese families (Ishikawa and Tsuji 1996). PRKN encodes the E3 ubiquitin ligase parkin (Cookson 2012),

and patients with these mutations do not typically have Lewy bodies when examined postmortem

(Takahashi et al. 1994). PINK1 mutations are rare, and were first identified in families with autosomal

recessive inheritance and have earlier parkinsonism onset with slower progression (Valente et al. 2004).

The proteins encoded by PRKN and PINK1 are important for mitochondrial regulation and mitophagy,

and mutations disrupt these functions, indicating that dysregulation of mitochondrial pathways are key

mechanisms in PD pathogenesis (Pickrell and Youle 2015; Cookson 2012).

Other Rare Genetic Mutations Associated with Parkinson’s Disease

In addition to the well-characterized genes such as GBA1, SNCA, LRRK2, PINK1, and PRKN, PD is also

associated with mutations in less commonly implicated genes that contribute to its complex genetic

landscape. Notable among these are genes like DJ1, ATP13A2, PLA2G6, FBXO7, VPS35, CHCHD2, and

VPS13C, which, although less common, play significant roles in PD pathogenesis. These rare genetic

mutations showcase the broader spectrum of genetic contributors that affect various cellular pathways,

including mitochondrial function, autophagy, and inflammatory responses in PD (Jia, Fellner, and Kumar

2022; W. Li et al. 2021; Reed et al. 2019).

Overlap between Monogenic and Idiopathic Forms of Parkinson’s Disease

There is, however, some overlap between the monogenic and idiopathic forms of PD, with some

monogenic PD genes representing pleomorphic risk loci for idiopathic PD. Pleomorphic risk loci are

defined as a risk at individual loci that fall on a spectrum of allele frequency and effect size, with loci

capable of enveloping low-risk and high-risk variants. Both SNVs and CNVs can result in increased

expression of certain genes, indicating a common pathway through which genetic variations exert their

effects on disease risk (A. Singleton and Hardy 2011).

Polygenic Risk Scores

Known rare and/or common variants can be combined to calculate a polygenic risk score (PRS). PRS are

subtypes of genetic risk scores (GRS). They are used to evaluate one's overall risk or predisposition to a

disease or phenotype, derived from case-control GWAS considering comprehensive genetic architecture,

including the effects of both protective and risk variants. PRS per individual is calculated by taking the

sum of risk alleles weighted by the effect size (in an external dataset), calculated from a GWAS, and

indicates an individual's susceptibility to the disease based on alleles present in their genome. An area of

active research, PRS for PD affection status, age-at-onset, and even specific symptoms using different

methodologies, have been developed (Koch et al. 2021). For example, PRS can be used to quantify the

effect of common variant risk for PD, for example in modifying the penetrance of the disease, as in the

case of LRRK2 p.G2019S carriers on PD (Iwaki et al. 2020). The heritability of PD driven by common
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genetic variation is estimated to be around 22% and approximately a third of this variation is explainable

by the largest common genetic variation study in individuals of European ancestry (Elsayed et al. 2021;

Nalls et al. 2019b). PRSs highlight the importance of understanding the genetic predisposition for disease

and evaluation for risk prediction. However, given that GWASs performed in PD are primarily on

individuals of European origin, the statistics generated and subsequently used for PRS are best suited for

Europeans and underperform in non-European populations is a significant limitation to consider (Duncan

et al. 2019; A. R. Martin et al. 2020).

Role of Genomics in Parkinson’s Disease

Machine Learning

In the realm of computational biology, machine learning (ML) emerges as a promising direction allowing

computational systems to learn and make inferences from large amounts of data. ML algorithms can

analyze large volumes of data, recognizing complex patterns and relationships that might be

unobservable to humans.

ML is a subset of artificial intelligence (AI) focused on building systems that learn from data, identifying

patterns, and making decisions with minimal human intervention. ML specifically involves algorithms

that improve automatically through experience. In the computational biology space, ML algorithms are

particularly adept at weighting genetic variants and developing predictive models, thanks to their ability

to handle the vast complexity and volume of genomic data. These algorithms can assign importance to

various genetic factors based on their influence on a particular trait of interest, enabling the creation of

models that can predict disease risk or therapeutic outcomes. A successful application of ML in genomics

is in cancer genomics, where ML models have identified novel cancer-driving mutations and have helped

in predicting patient outcomes and treatment responses (Moon et al. 2023). Another example is in

predictive models for cardiovascular diseases, where ML algorithms analyze genetic and clinical data to

predict an individual's risk, demonstrating the potential of ML to develop personalized medicine and

disease prevention strategies (Pal et al. 2022).

This ability is particularly useful in genomics, where the datasets are not only large but also complex

(Libbrecht and Noble 2015). Genomic datasets are characterized by their high dimensionality and

volume. ML provides tools to handle this complexity efficiently, enabling the extraction of meaningful

insights from vast amounts of data (Stephens et al. 2015; Min, Lee, and Yoon 2017). It allows for more

precise and comprehensive analyses, which are essential for understanding genetic diseases and

developing personalized medicine strategies (Angermueller et al. 2016).

In recent years, the demand for machine learning (ML) expertise has outpaced the supply, despite the

surge of people entering the field. To address this gap, there have been significant strides in the

development of user-friendly machine learning software that can be used by non-experts (Table 1). The

first steps toward simplifying machine learning involved developing simple, unified interfaces to a variety
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of machine learning algorithms (e.g., scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion,

Grisel, Blondel, Prettenhofer, Weiss, Dubourg, and Others 2011), XGBoost (Chen and Guestrin 2016),

LightGBM (Ke et al. 2017), TensorFlow (Abadi et al. 2016), PyTorch (Paszke et al. 2019). Although these

packages have made it easy to experiment with machine learning, there is still a fair bit of knowledge

and background in data science required to produce high-performing and usable machine learning

models.

However, different data types require different ML pipelines and different custom functionality defined

by domain expertise. The development of ML models for genomics (genetics and multi-omics) data, in

particular, is notoriously difficult for a non-expert. These data modalities require significant domain

expertise to clean, pre-process, harmonize and perform quality control (QC) (Eraslan et al. 2019).

Furthermore, tuning, validation, and interpretation involve taking into account the biology and the

limitations of the underlying data collection, protocols, and technology.

The most recent strategic vision published by the National Human Genome Research Institute stated

that the features of the epigenetics and transcriptomics will be incorporated into predictive models of

the effect of genotype on phenotype routinely by the year 2030 (Green et al. 2020). Biomedical

researchers are currently at the convergence of two scientific advances that will allow progress in early

detection and remote identification of potentially high-risk individuals: first, the availability of substantial

clinical, demographic, and genetic/genomic datasets, second, advances in the automation of ML

pipelines and artificial intelligence, to maximize the value of this massive amount of readily available

data (Sudlow et al. 2015). Previous work in this space to use ML to predict PD risk and onset use data

types such as analyzing gait (Palmerini et al. 2017), fall detection methods (Silva de Lima et al. 2017), and

other motor data (Noyce et al. 2014), or sleep behaviors (Campabadal et al. 2021).

To encapsulate the evolving landscape of machine learning in the field of PD research, it is evident that

the future holds great promise. The integration of machine learning with extensive genomic, clinical, and

*omics data offers a path for understanding PD's complex etiology (Table 1). As computational

methodologies advance, they will enable researchers to unearth deeper insights into the disease's

progression, risk factors, and individual variability in response to treatment, offering hope for improved

patient outcomes and a deeper understanding of this multifaceted, complex disease.

Supervised Learning Unsupervised Learning

Requires "teaching" the model by training the
data with a labeled dataset

Requires machine learning algorithms draw
conclusions that may not be visible to the human
eye on unlabeled data

Analogous to learning in the presence of a Analogous to self-guided learning where one
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teacher or supervisor works on their own to discover information

Relevant for data where we know what kind of
data we are dealing with and know what to
expect

Relevant for data where we know little to nothing
about the data

Includes algorithms for classifying labeled data
and regression (predicting trends using previous
labeled data)

Includes algorithms for clustering (finding
patterns and groupings from unlabeled data) and
association (establishing similarities amongst data
objects inside large databases)

Pros include less computational complexity and
higher level of accuracy

Pros include not requiring output data and being
able to classify big data

Table 1: Overview of differences between supervised and unsupervised machine learning.

Overarching Themes and Aims in this Dissertation
The overarching challenges and aims addressed in this dissertation are as follows:

1. Reviewing the historical landscape and current limitations: To synthesize previous research

findings, emphasize the existing lack of diversity in genetic studies, highlight the potential

benefits of Machine Learning (ML) in this space, and position the current research within the

broader context of PD studies (Chapter 1).

2. Assessing the structural variants using UKBiobank: To investigate structural variants in SNCA by

leveraging data from the UKBiobank, providing insights into potential genetic markers or factors

and highlighting the importance of a scalable approach (Chapter 2).

3. Investigate rare variants in all genes across multiple large-scale datasets: To analyze large-scale

cohorts, examining rare variants in both recognized and potential candidate genes, with an

emphasis on their influence on broader genetic pathways and PD manifestations and the

benefits of a scalable approach (Chapter 3).

4. Broadening the GWAS horizon beyond European populations: To conduct the first African and

African admixed genome-wide association study, a population outside the European ancestry,

aiming to unearth population-specific genetic risk factors for PD and the benefits of a global

approach (Chapter 4).

5. Leveraging machine learning and multi-omics data: To introduce the GenoML platform and use

the AMP-PD dataset—encompassing genetic information, clinicodemographic details, and

transcriptomics data—to develop a robust ML model that evaluates PD diagnoses, followed by

an in-depth analysis of its findings and the benefit of global and scalable approaches (Chapter 5).
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6. Conclusions and future directions: To collate the research findings, derive conclusions, engage in

thorough discussions, and evaluate the overall impact of the presented work, while also charting

potential future avenues in PD genetic research (Chapter 6).
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Chapter 2: Investigating Structural Variants in SNCA

Leveraging the UK Biobank

Overview and Broader Relevance

SNCA, encoding alpha-synuclein, plays a pivotal role in the pathogenesis of PD. Variations in SNCA,

particularly structural variants, are of significant interest in understanding the molecular mechanisms

underlying PD. Structural variants include a range of genomic alterations such as duplications, deletions,

and more complex rearrangements, which can disrupt the gene's function or alter its expression levels.

In the context of PD, duplications and triplications of SNCA have been linked to familial forms of the

disease, suggesting a dosage effect where increased alpha-synuclein protein leads to neuronal toxicity.

Additionally, SNPs in SNCA have been associated with sporadic PD , further supporting the gene’s

importance in the context of PD. For instance, therapies aiming to reduce alpha-synuclein expression or

mitigate its toxic aggregation could be particularly effective in individuals with SNCA duplications or

triplications, or in patients with SNPs that increase the level of SNCA expression (eQTLs).

In this chapter, I conduct a study focusing on UK Biobank data, investigating the frequency and nature of

these structural variants in SNCA. Exploring these variants in a large cohort like the UK Biobank provides

valuable insights into their prevalence in the general population and their contribution to PD risk.

This work has been published here:

Blauwendraat C*, Makarious MB*, Leonard HL, Bandrés-Ciga S, Iwaki H, Nalls MA, Noyce AJ, and

Singleton AB: “A Population-Scale Analysis of Rare SNCA Variation in the UK Biobank”

Neurobiology of Disease (2021); https://doi.org/10.1016/j.nbd.2020.105182

Introduction

PD is a complex neurodegenerative disorder which is likely to be caused by both genetic and

environmental risk factors. Its pathogenesis is closely linked to genetic components, with SNCA playing a

crucial role. This gene encodes the alpha-synuclein protein, which is found in aggregates in Lewy bodies,

a pathological hallmark of PD.

The genetic landscape of PD is intricate. There are rare damaging variants and more common risk

variants, contributing to the disease in different ways. Notably, rare missense variants and copy number

gains in SNCA cause autosomal dominant PD, as identified in several studies (A. B. Singleton et al. 2003;

M. H. Polymeropoulos et al. 1997; Chartier-Harlin et al. 2004). These pathogenic missense SNCA variants

are rare in the general population, but there are well reported families who carry SNCA mutations, such

as p.A30P, p.E46K, p.G51D, p.A53T, and p.A53G. They are associated with more rapid progression and
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extreme PD presentations, often including dementia, rapid eye movement sleep behavior disorder, and

autonomic dysfunction. SNCA CNVs are more frequent than missense variants but still rare, with about

60 families reported. These variants are linked to an earlier onset of PD, typically in the late forties or

early fifties (Book et al. 2018; Konno et al. 2016). Large scale studies of familial PD indicate that SNCA

multiplications account for ~0.5% of familial PD cases (Schmaderer et al. 2023).

Moreover, non-coding common variants in SNCA have been found to moderately increase PD risk (Nalls

et al. 2019a) and lead to earlier disease onset (Blauwendraat et al. 2019). These variants likely increase

SNCA expression, contributing to disease pathogenesis (Pihlstrøm et al. 2018; Soldner et al. 2016). The

presence of these variants in the broader population was examined in large-scale studies like the UK

Biobank cohort (Bycroft et al. 2018).

In addition to the more typical autosomal dominant inheritance patterns, SNCA copy number gains have

been reported through mosaic patterns (Perandones et al. 2014; Perez-Rodriguez et al. 2019; Mokretar

et al. 2018). However, further research is needed to establish whether this represents a general PD

pathogenesis mechanism. Current research efforts are focusing on developing drugs that target SNCA

expression. The central role of SNCA in PD pathogenesis makes it a prime target for therapeutic

intervention. By lowering SNCA expression, for example using anti-sense olgionuclelotide therapy it is

hoped that the progression of PD can be slowed or halted.

Understanding the interplay of genetic factors in PD is crucial for developing effective treatments and for

the early diagnosis and management of the disease. The background population frequency of copy

number variants in SNCA is unknown. Here, I analyze the frequency and types of these SNCA structural

variants in the UK Biobank to understand prevalence in the general population and their contribution to

PD risk using scalable approaches.

Methods

The data used in this study can be accessed publicly by submitting an application to the UK Biobank

(available at [https://www.ukbiobank.ac.uk/]) and gnomAD (accessible at

[https://gnomad.broadinstitute.org/]). The code developed for preprocessing, visualization, and analysis

is available on our GitHub repository, which can be found at

[https://github.com/neurogenetics/UKbiobank_SNCA]. This study encompassed data from 488,377

individuals from the UK Biobank, accessed in 2020, focusing on the SNCA gene region.

UK Biobank Phenotype Data

Phenotype Data Collection and Prodromal Phenotype Assessment

Phenotypic data from the UK Biobank was comprehensively sourced using a variety of field codes to

gather detailed health and demographic information. This included data derived from the International

Classification of Diseases, 10th Revision (ICD-10) codes (field code: 41270), which provided insights into a

wide range of diagnosed conditions. Specific attention was paid to Parkinson's Disease (PD; field code:
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131023), and further enriched by gathering information about the illnesses of both the father and

mother of participants (field codes: 20107 and 20110). Additional data were collected regarding cases of

parkinsonism (field code: 42031) and dementia (field code: 42018), both of which are critical for

understanding neurodegenerative diseases. The genetic ethnic grouping of participants was also

considered (field code: 22006), along with their year of birth (field code: 34) and age at the time of

recruitment into the study (field code: 21022).

In order to assess potential prodromal phenotypes of PD, the MDS Prodromal Criteria was employed, as

detailed elsewhere (Heinzel et al. 2019). This criteria is a set of guidelines developed to identify early

signs of PD before the onset of its classic motor symptoms. The use of these criteria in conjunction with

the detailed phenotypic data collected from the UK Biobank allowed for a more nuanced and early

detection of potential PD cases and if they are associated with the structural variation in SNCA.

UK Biobank Genotype Data

Data Acquisition and Preparation

The genotype data, including B-allele frequency and Log2 ratio values, were obtained from the UK

Biobank's version 2 June 2020 release. This dataset included information on the larger SNCA gene region

located on chromosome 4 (hg19; chr4:84992449-96412248).

B-allele Frequencies

B-allele frequency (BAF) refers to the frequency of the “B” allele at a given SNP in a sample. SNPs are

often denoted as A/B, where “A” and “B” represent different alleles. BAF is the proportion of the “B"

allele in the sample, with values ranging from 0 (no “B” alleles) to 1 (all “B” alleles). To calculate BAF, the

number of reads for the “B” allele is divided by the total number of reads for both “A” and “B” alleles at a

specific SNP. For example, if there are 20 reads for the “A” allele and 80 reads for the “B” allele, the BAF

would be . BAF is particularly useful in detecting CNVs in a genome.
80

20+80 = 0. 8

In humans, a normal diploid organism, the BAF for heterozygous SNPs should be around 0.5. Deviations

from this expected value can indicate the presence of duplications or deletions. For example, a BAF

closer to 0.33 or 0.66 might suggest a trisomy at that locus, as one of the alleles is present in an extra

copy. Note that deletions typically do not have any 0.5 values because most “A” genotypes will be 0 and

most B genotypes will be 1, however this should not be confused with homozygous stretches of DNA,

where all AA genotypes will be 0 and all “B” genotypes will be 1. At a deletion or homozygous stetch,

there will be some single “A” and “B” (where not all will be homozygous “A”, some will be homozygous

“B”). See Table 2 for a summary of how to interpret BAF. These value ranges do not capture somatic

mosaicism, where partial deletions and duplications can confound the values, but we consider somatic

mosaicism in the manual revision of the plots.
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BAF Approximate Value Genotype Type

0 AA Normal; 2 genotypes

0.75 ABBB Triplication; 4 genotypes

0.66 ABB Duplication; 3 genotypes

0.5 AB Normal; 2 genotypes

0.33 AAB Duplication; 3 genotypes

0.25 AAAB Triplication; 4 genotypes

1 BB Normal; 2 genotypes

Table 2: Summary of B-allele frequency values and corresponding genotypes and type of structural

variation. BAF: B-allele frequency.

Log2 Ratios

The Log2 Ratio (L2R) is a measure used to detect CNVs based on the intensity of the signals obtained

during genotyping. The expected intensity is typically derived from a reference set of normal samples.

For example, if the observed intensity is twice the expected intensity, the L2R would be log2(2/1) = 1.

L2R is valuable in identifying genomic gains and losses. A higher than normal L2R value indicates a gain

(duplication), while a lower than normal value suggests a loss (deletion). See Table 3 for a summary of

how to interpret L2R.

L2R Value Genotypes Type

Less than 0 A or B Deletion; 1 genotype

0 AA, AB, or BB Normal; 2 genotypes

Greater than 0 ABB or AAB Duplication; 3 genotypes

Greater than or equal to 0.75 ABBB or AAAB Triplication; 4 genotypes

Table 3: Summary of Log2 ratios and corresponding genotypes and the type of structural variation. L2R:

Log2 ratio.

Specific Region Analysis

SNCA was analyzed in three specific regions:
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● The larger SNCA region gene ±5 megabases (Mb)(hg19; chr4:85645250-95759466)

● The SNCA gene ±0.5 Mb (hg19; chr4:90145250-91259466)

● The SNCA gene body (hg19; chr4:90645250-90759466)

For a broader chromosomal analysis, the ±20 Mb region surrounding SNCA (hg19;

chr4:70645250-110759466) and the entirety of chromosome 4 (hg19; chr4:1-180915260) were

examined.

BAF values approximately at 0.66 and 0.33 suggested the likelihood of duplications. For each region, I

computationally quantified the number of BAF values for variants within specific intervals. Specifically, I

counted the number of BAF values for variants within two ranges: greater than 0.65 but less than 0.85,

and greater than 0.15 but less than 0.35. This counting was conducted for each of the three regions

under study. In cases where the count of variants exceeded six, those samples were selected for more

detailed examination. Additionally, I calculated the average L2R values for each region. High average L2R

values were indicative of potential duplications, whereas low average values pointed towards the

possibility of deletions. This approach allowed for a more nuanced understanding of the genomic

variations in the regions of interest leveraging information from the BAF and L2R values to prioritize

samples for visual inspection. In our analysis, we inferred mosaicism events through careful examination

of both L2R and BAF plots, looking for patterns indicative of mixed cell populations with different copy

number states. These patterns included intermediate shifts in L2R values and BAF patterns deviating

from the expected 0, 0.5, and 1 positions. We adopted a conservative approach by using "mosaicism" as

an umbrella term for complex structural events that did not present exactly expected representations in

both L2R and BAF plots. By choosing to do this, it allowed us to capture and report genomic complexity

without overcommitting to specific interpretations, thereby reducing the risk of false positives and

acknowledging the limitations of our semi-automated approach. Such an approach is particularly

valuable in the context of mosaic events, which often manifest as subtle or ambiguous signals in genomic

data.

Among the almost 500,000 individuals in this release, a thorough manual inspection was conducted on

363 cases prioritized using BAF and L2R values. This examination resulted in the discovery of 26 samples

exhibiting signs of possible genomic events. These events encompassed a range of genetic alterations

such as duplications, deletions, and other more intricate variations. For samples exhibiting significant

genomic events, all other autosomal chromosomes were also thoroughly examined. For effective

visualization and analysis, the LOWESS (Locally Weighted Scatterplot Smoothing) method was applied

with a variable smoother span, adjusted according to the total graph size (ranging from 0.01 to 0.0001).

This allowed for the calculation of more refined smoothed averages. Additionally, bespoke functions

were developed in R to visually represent and interpret the genomic variations.

Calculation of Relatedness

The UK Biobank genotype data (v2) was also used to calculate relatedness among individuals, to identify

potential relatives between individuals studied, using PLINK (v1.9; (C. C. Chang et al. 2015).
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UK Biobank Exome Sequencing Data

Data Acquisition and Processing

The exome sequencing data from the UK Biobank (FE dataset encompassing field codes 23160 and

23161) were acquired in June 2020. This dataset included exome sequencing from a total of 49,960

individuals. ANNOVAR was used for variant annotation (K. Wang, Li, and Hakonarson 2010). This process

involved a screening for known pathogenic SNCA variants, which included p.A30P, p.E46K, p.G51D,

p.A53E, and p.A53T. These variants were cross-referenced with reported pathogenic data from reputable

sources such as ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) and the Human Gene Mutation

Database (HGMD; Professional version 2020.2 from Qiagen), along with analysis of loss-of-function (LoF)

variants encompassing stop codons, frameshift mutations, and splicing errors.

Additionally, exome sequencing data were used to validate and replicate genomic events, leveraging the

allelic depth (AD) field from each individual’s exome sequencing VCF (variant call format) files. A ratio of

AD was calculated by dividing the highest depth value by the lowest for each variant, providing a

measure of how many times each allele of a variant is observed in the sequencing data, a quantitative

measure of allelic representation. By comparing the AD ratio across different samples, we can confirm

the presence of these events and assess their frequency. This AD ratio was then visualized using the

ggplot2 package in R (Wickham 2016), offering a visual representation of the genomic variations.

For quality control and comparative analysis, ten random samples were selected as negative controls,

ensuring the robustness of the data interpretation. Furthermore, to provide a broader context and

enhance the reliability of the findings, additional population allele frequencies were sourced from the

Genome Aggregation Database (gnomAD, https://gnomad.broadinstitute.org/, version 2.1.1, June 2020;

(Karczewski et al. 2020).

Results

Assessment of SNCA Mutations in UK Biobank Cohort

In this comprehensive study of the UK Biobank, my focus was on assessing the presence and frequency

of known, potentially pathogenic mutations in the SNCA gene, which is widely recognized for its

association with PD. The analysis was centered around five well-established SNCA variants, specifically

p.A30P, p.E46K, p.G51D, p.A53E, and p.A53T. None of these variants were detected in the exome

sequencing data from the UK Biobank. Their absence suggests either a low prevalence of these specific

mutations in the studied population or potential gaps in the detection capabilities of the sequencing

methods used.

Despite this, the study did uncover two SNCA variants with uncertain or conflicting pathogenic status,

detailed in Supplementary Table 1. The frequencies of these variants in the UK Biobank cohort were

found to be in line with those reported in the gnomAD database, a global reference for human genetic
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variation. This consistency reinforces the reliability of the findings and provides a comparative context

for understanding the prevalence of these variants.

None of the individuals carrying these SNCA variants had a reported clinical diagnosis of PD in the UK

biobank. However, a familial link to PD was noted in a small subset of these individuals. Specifically,

thirteen subjects were identified as carriers of the SNCA p.P117T variant. Among them, one individual

had a parent with a PD diagnosis. Additionally, 28 subjects carried the SNCA p.H50Q variant, and within

this group, two had a parent who had been diagnosed with PD. This familial pattern hints at a possible

hereditary component or increased susceptibility to PD in carriers of these variants.

It is, however, crucial to note that these observations did not attain statistical significance, as indicated

by p-values greater than 0.1 in a 2x2 Fisher exact test. This lack of statistical significance suggests that

while there may be a biological or genetic link, the evidence is not strong enough to establish a definitive

connection between these SNCA variants and PD.

Analysis of SNCA Copy Number Variants

Identification of Subjects with SNCA Variants

In my examination of SNCA CNVs in the UK Biobank genotyping data, I identified 30 individuals with

distinct genetic variations. These individuals were classified into three groups based on their specific

types of SNCA variations. The first group included six individuals with duplications of SNCA. This type of

genetic change is noteworthy for its potential impact on the gene's function and expression. Another six

individuals formed the second group, characterized by deletions in SNCA. Deletions represent a

significant alteration in the gene and may have implications for gene function and disease risk. The third

group, comprising 14 individuals, was distinguished by large, complex genetic events involving SNCA.

These events were notable for showing significant mosaicism, indicating a varied genetic composition

within the individuals' cells. Further details about these large complex events, including the specific

nature of the genetic alterations, are outlined in Supplementary Table 2.
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Figure 2: Six whole gene SNCA duplications were identified in the UK Biobank cohort

Identification of Subjects with Duplications and Deletions in SNCA

Regarding SNCA duplications, we identified six potential cases. Each of these cases displayed clear

changes in both BAF and L2R, consistent with a SNCA duplication (Figure 2). The duplications varied in

size but averaged around 2Mb. The smallest observed duplication was approximately 0.8Mb, while the

largest extended up to about 6Mb. This variation in size suggests a range of effects that these

duplications could have on gene function and expression. Regarding deletions, we found six potential

cases. Five of these were complete deletions of SNCA, while one appeared to be a partial deletion. The

partial deletion is of particular interest as it could, like a complete deletion, also lead to

haploinsufficiency; where a partial loss of gene function occurs due to having only a single functional

copy of a gene that is not sufficient to maintain normal function (Figure 3). The average size of these

deletions was estimated to be around 0.76Mb, with the smallest being about 0.2Mb and the largest

close to 1Mb. The range in sizes of both duplications and deletions highlights the genetic diversity in

SNCA variations.
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Figure 3: Five full SNCA deletions and one (likely) partial SNCA deletion (D) were identified in the UK

Biobank cohort

Identification of Subjects with Complex Events in SNCA

The discovery of 14 complex events in the SNCA region were discovered through a thorough examination

of the SNCA region, extending ±20Mb from the gene, as well as a comprehensive review of the entirety

of chromosome 4 and all other autosomes. I identified 14 of these complex events (Supplementary

Figure 1).

My findings indicated that the majority of these complex events could be instances of mosaicism, where

different cells within the same individual have different genetic compositions. Notably, these mosaicism

events predominantly spanned a substantial portion of the long arm of chromosome 4, specifically from

regions 4q11 to 4q35. This suggests a widespread genetic variability within individual cells, particularly in

the region of chromosome 4 where SNCA is found. Interestingly, no significant events akin to these were

identified on other chromosomes within the individuals studied, underscoring the unique nature of

these occurrences in the context of SNCA and, on a broader scale, chromosome 4.

Upon a more detailed analysis, 11 of these 14 complex events were classified as large complex events,

each exhibiting varying levels of mosaicism. This variation highlights the genetic diversity and complexity
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inherent in these cases. Two of these eleven events were particularly noteworthy, as they were likely

mosaic deletions resulting from uniparental disomy events, where an individual receives two copies of a

chromosome, or part of a chromosome, from one parent and no copy from the other parent.

Validation Using Exome Sequencing Allelic Depth Data

In order to validate the results I obtained from the genotyping array data regarding the SNCA CNVs, we

also examined the exome sequencing data. This process focused on analyzing the AD data for all

heterozygous variants present on chromosome 4. Out of the 30 subjects identified with potential SNCA

variations, I was able to apply this method of validation to two specific cases. These were subject #dup3,

who had an identified SNCA duplication, and subject #comp8, who exhibited a complex SNCA event. In

both instances, these subjects showed clear differences in AD at the genomic locations corresponding to

their respective SNCA events (Figure 4).

Figure 4: Partial validation of genomic events of the genotyping array data using exome sequencing

data

A) Duplication in the SNCA gene region (subject #dup3), B) Partial duplication of the long arm of chromosome 4 (subject

#comp8). Red and blue vertical line represents the SNCA gene body.
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To ensure the robustness of our findings, we included a comparative analysis using ten randomly

selected subjects from the exome sequencing data as negative controls. These control subjects were

crucial for establishing a baseline of AD in the absence of SNCA copy number variations. None of these

control subjects exhibited any evidence of allelic imbalance (Supplementary Figure 2). This lack of

imbalance in the control group helped to reinforce the validity of the allelic depth differences observed

in subjects #dup3 and #comp8.

Phenotypic Data Analysis of Subjects with SNCA Alterations

Interestingly, none of the individuals with potential SNCA alterations were reported to have PD,

parkinsonism, or dementia. This was further confirmed by reviewing the ICD-10 codes, where no

diagnosis of PD was found among these individuals. This absence of explicit PD or related diagnoses in

the records of these individuals was an unexpected yet important observation, given the established

links between variations in SNCA and PD.

However, considering the complexity and variability of PD's clinical presentation, especially in its early

stages, I acknowledged that some of these individuals might be in the prodromal phase of PD, where

non-specific symptoms precede the more definitive motor symptoms of PD. To explore this further, I

investigated the three participants who had prodromal PD symptoms noted. These three were then

evaluated using the revised MDS Prodromal Criteria, an evaluation designed to identify individuals who

are likely in the prodromal phase of PD. Despite this assessment, none of the three subjects met the

threshold for probable prodromal PD (Table 4).

LNG ID Mutation Age Sex Prodromal features MDS pooled LR MDS Probablity

del2 Deletion 55 Male Depression, anxiety, IBS (constipation) 4.8 3.50%

comp7 Complex/mosaic 52 Male Depression, head injury 1.9 0.10%

comp13 Complex/mosaic 67 Male Autonomic dysfunction 22.2 31%

Table 4: Overview of prodromal ICD-10 codes in SNCA copy number variant carriers.

LNG: Laboratory of Neurogenetics; IBS: Irritable bowel syndrome; MDS: Movement Disorders Society; LR: Likelihood ratio.

Additionally, I observed familial links to other neurodegenerative disorders in some indviduals. Two

individuals (#comp3 and #comp6) reported having a parent with dementia. Notably, one of these

subjects (#comp6) also had a parent with PD. While these familial links are intriguing, particularly in the

context of genetic predisposition to neurodegenerative diseases, they were not statistically significant.

Using a Chi-square test yielded a p-value greater than 0.1, indicating that these observations could not

be linked to the variations in SNCA.
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Of the 14 individuals with mosaic patterns, four of them (approximately 29%) had a documented history

of blood-based cancers. These cancers included lymphoma, multiple myeloma, and myelodysplastic

syndrome (Supplementary Table 2). This suggests a potential link or coincidence between mosaicism in

SNCA and the occurrence of certain blood-based cancers. Originally believed to be exclusive to neurons,

alpha-synuclein is now known to be significantly present in erythroid cells according to mRNA findings,

with its protein components identifiable across all blood elements, including packed red blood cells,

PBMCs, platelets, and plasma. Individuals carrying SNCA triplications exhibit alpha-synuclein levels in

their whole blood that are roughly twice as high as those in family members without the mutation and in

unrelated individuals without the mutation. However, it remains unclear whether there is a link between

common SNCA polymorphisms that increase risk and levels of alpha-synuclein in the periphery (Mata et

al. 2010). The exact nature of this association requires further investigation.

The demographic profile of the individuals with SNCA variations also provided interesting insights. The

average age of recruitment for those carrying SNCA deletions was 52 years, with an age range of 41 to 56

years. For individuals with SNCA duplications, the average recruitment age was higher, at 61 years, and

ranged from 49 to 69 years. Similarly, the average age for individuals with complex SNCA events was 61

years, spanning an age range of 42 to 69 years. Notably, two subjects in this group were not classified as

European from the demographic information provided by the UK biobank, indicating some diversity in

the genetic background of the study cohort.

Two pairs of individuals, based on their relatedness value (Proportion of Identity by Descent; PIHAT

approximately 0.5), were identified as siblings. The reported birth years of each pair differed by about

two years. The first pair, individuals #dup1 and #dup6, both had a 1.5Mb SNCA duplication. The second

pair, individuals #del2 and #del5, both had a 0.8Mb SNCA deletion. The occurrence of the same type of

SNCA variation in siblings is particularly noteworthy, as it suggests a possible genetic inheritance pattern

and highlights the importance of family history in studies focused on genetics.

Conclusions and Discussion

Missense Mutations and Copy Number Gains in SNCA

In an effort to perform a comprehensive assessment of the UK Biobank cohort for pathogenic variants in

SNCA, I focused on detecting known missense mutations that are often linked to PD. Surprisingly, none

of the five missense mutations typically associated with PD and traditionally recognized as pathogenic,

were identified among the cohort participants. Beyond these known mutations, our analysis revealed

the presence of other SNCA missense mutations. These mutations, however, come with a degree of

uncertainty regarding their role in PD. Some of these identified mutations have conflicting reports in the

literature, with varying interpretations of their pathogenicity. Interestingly, despite the identification of

these missense mutations in SNCA, none of the carriers were reported to have PD.
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Among the individuals carrying these missense SNCA mutations, three reported a positive family history

for PD. This familial link could suggest a genetic predisposition, but due to the low allele frequency of

these variants in the population, it is challenging to robustly determine if their occurrence is higher than

what might be expected by chance. This difficulty in establishing a clear statistical link between these

variants and PD underscores the need for further research and larger sample sizes. In previous work, we

suggested that the SNCA p.H50Q mutation is likely not pathogenic, despite existing functional evidence

that might suggest otherwise (Blauwendraat et al. 2018).

I also identified six instances of SNCA copy number gains and another six of copy number losses.

Additionally, we discovered 14 complex SNCA genetic events. Again, unexpectedly, none of these

individuals with SNCA variations had been diagnosed with PD. Three of these individuals had been

assigned ICD-10 codes for symptoms that are commonly recognized as prodromal. Despite this, they did

not meet the established criteria for a prodromal PD diagnosis as outlined elsewhere (Heinzel et al.

2019). This finding suggests that while these individuals exhibit some early symptoms, they do not

conclusively indicate the onset of PD or are classified as prodromal PD cases according to current

diagnostic standards. Moreover, one subject with an SNCA deletion was diagnosed with schizophrenia,

based on their ICD-10 code. Previous studies have suggested schizophrenia as a potential prodromal

symptom in individuals with SNCA duplication (Takamura et al. 2016). Regarding genetic predispositions,

this finding might raise the question of whether certain psychiatric conditions may be early indicators of

neurodegenerative diseases like PD.

It is well-established that SNCA copy number gains are a clear cause of autosomal dominant PD.

However, the role of SNCA copy number losses in PD is less clear, as they are not typically reported to

cause the disease and are likely protective. The absence of a PD diagnosis in these subjects with SNCA

variations could indicate a possibility of later development of PD. This is particularly relevant considering

that the average age of onset for PD in duplication carriers is around 46.9 years, with an age range from

30 to 73 years, as reported in a recent meta-analysis (Book et al. 2018). Therefore, it is possible that

some of these individuals might develop PD later in life, beyond the age at which they were assessed in

our study.

Mosaic Events and Their Implications

In our investigation, we uncovered 14 potential mosaic events related to SNCA. Out of these, 11 events

were classified as large complex events. These complex events were notable for their varying levels of

mosaicism, indicating a diversity in the extent of genetic variation present within the individuals studied,

aligning with previous studies which discussed the implications of such large-scale mosaic events (Conlin

et al. 2010). Two of the 14 identified mosaic events were characterized as likely being large mosaic

deletions, each spanning between 20 to 25Mb. These sizable deletions suggest a significant alteration in

the genetic structure within the affected individuals, potentially impacting either the function or

expression of SNCA. One of the mosaic events appeared to be the result of a uniparental disomy event

and seemed to affect a major portion of the long arm of chromosome 4, where SNCA is located.
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Previous studies have demonstrated a link between SNCA mosaicism and PD as well as other

synucleinopathies, providing evidence supporting the role of SNCA mosaicism in these

neurodegenerative conditions in brains (Perez-Rodriguez et al. 2019; Mokretar et al. 2018; Perandones et

al. 2014). This evidence highlights the importance of understanding mosaicism and its implications in the

pathogenesis and progression of PD and related disorders.

Four individuals among the 14 identified with potential mosaic SNCA events, constituting approximately

29% of the group, had a history of blood-based cancers, such as lymphoma and multiple myeloma. This

significant proportion of individuals with both mosaic SNCA events and a history of hematologic

malignancies raises questions about a possible link between these genetic alterations and cancer

predisposition. However, a key uncertainty in this observation is whether the mosaic events observed in

blood-derived DNA are also mirrored in tissues more directly related to PD, such as brain tissue and

neurons. Since SNCA variations and the resultant expression of alpha-synuclein protein are critical factors

in the development of PD, understanding the presence and impact of these mosaic events in PD-relevant

tissues is crucial. Moreover, the exact effect of these mosaic events on the expression of SNCA and the

alpha-synuclein protein is not fully understood. While these genetic alterations in blood cells are evident,

their influence on gene and protein expression within the central nervous system, and consequently

their role in PD pathogenesis, remains a subject of ongoing research.

Limitations and Future Directions

Multiplex ligation-dependent probe amplification (MLPA) is recognized as the gold standard technique

for detecting CNVs. This method offers high sensitivity and specificity in identifying variations in the

number of copies of a particular gene segment. However, a primary challenge in this study was the lack

of immediate access to the DNA samples of the subjects with potential SNCA variation. This limitation

hindered our ability to use MLPA for direct validation of the identified CNVs.

To circumvent this limitation, we used available exome sequencing data to partially validate two of the

genomic events identified. Exome sequencing, while not as targeted for CNV detection as MLPA, still

provides valuable insights into the genetic composition of an individual and AD information collected as

a part of exome sequencing can be used to infer CNVs to some extent. Through this approach, we were

able to confirm the presence of these two specific genomic events, lending support to our initial findings

based on genotyping array data.

Nevertheless, the partial nature of this validation highlights the need for more comprehensive future

efforts to fully understand these genetic variations. This is particularly important for the complex mosaic

events we identified. Such events, involving variations in the genetic makeup across different cells of the

same individual, present a more complex scenario that requires follow-up investigation.

Despite the UK Biobank being an extensive resource, it is not immune to certain limitations, particularly

regarding the completeness of phenotype data. The primary source of this limitation stems from the

reliance on electronic health records (EHRs) and the use of ICD-10 coding. EHRs, while comprehensive,
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may not capture every aspect of a patient's health history, especially more subtle symptoms or

conditions that are not routinely coded. In the context of PD and its prodromal stages, this limitation is

significant. Prodromal PD often presents with non-specific symptoms that might not be adequately

captured or coded in EHRs, leading to potential underreporting or misclassification of PD cases in our

study.

Additionally, while our prioritzation methods are scalable and rapid, our methodological approach

incorporated manual interpretation of visualized genetic data. While this allows for a nuanced

understanding of the data, it also poses a risk of missing certain types of genetic variations. Smaller

deletions or complex genomic rearrangements, which might be less apparent in the data, could be

overlooked. These smaller or more intricate genetic alterations can be crucial in understanding the full

genetic landscape of diseases like PD. The potential for missing smaller deletions or complex

rearrangements is a notable concern, as these genetic changes could play a significant role in disease

pathogenesis or progression. This gap highlights the need for a more refined analytical approach,

possibly involving more advanced genetic analysis techniques, to ensure a comprehensive understanding

of the genetic variations present in the UK Biobank cohort.

The results of this study highlight the occurrence of SNCA CNVs and mosaicism among individuals in the

general population who do not exhibit symptoms of PD. Here, I point to the existence of genetic

alterations typically associated with PD in individuals without any explicit reported clinical manifestation

of the disease. These individuals, who carry SNCA CNVs or display mosaicism but remain free of PD

symptoms, present a unique opportunity for further scientific exploration, aimed at understanding the

mechanisms by which SNCA variation contribute to PD. Investigating why some individuals with these

genetic alterations do not develop PD could provide insights into potential protective factors or

mechanisms.

Moreover, these individuals are potential candidates for inclusion in clinical trials. Research could focus

on monitoring these individuals over time to observe if and when they might develop PD symptoms, or

exploring therapeutic interventions aimed at preventing the onset of PD in those with a particular

genetic predisposition.

Additionally, the role of mosaicism in the SNCA region, especially as observed in blood-derived genotype

data, warrants further investigation to understand how moscaism relates to disease development.

Broader case-control studies are necessary to determine the association of SNCA mosaicism with PD or

other neurodegenerative diseases. Such studies should aim to compare individuals with and without PD

symptoms, focusing on the prevalence and patterns of mosaicism and their potential role in disease

pathogenesis. This approach will help clarify whether these genetic events are mere bystanders or active

contributors to the disease process.

54



Chapter 3: Large-scale Rare Variant Burden Testing in

Parkinson's Disease

Overview and Broader Relevance

While genome-wide association studies have already identified over 90 loci with common variants

associated with PD, offering valuable insights into the disease's biology, there has been a notable lack of

large-scale analyses focusing specifically on rare genetic variants.

To address this, this study leverages extensive whole genome and exome sequencing data, examining a

broad cohort that includes individuals with PD, proxy-cases, and healthy controls. The objective of this

study is to conduct thorough analyses on these participants' genetics and how these less common

genetic variations might influence the risk of developing PD. I revisit and explore both established and

potentially new genetic contributors to PD. This includes genes such as GBA1 and LRRK2, where

mutations within these genes have been previously linked to PD risk, and extends to probing variants in

other genes potentially implicated in the disease. I conduct burden tests to study the potential impact of

specific genetic changes, like small insertions/deletions (indels) and single nucleotide variations (SNVs)

that alter protein function, chosen for their anticipated functional significance. In brief, burden tests

collectively assess the individual variants that may be rare or impart a small effect by aggregating them

and assessing their association with PD (in this study, by variant class restricted to a gene).

Here, I conduct the first large-scale, extensive investigation at a genome-wide scale to explore rare

genetic variants associated with PD risk, focusing specifically on those with minor allele frequencies

(MAF) below 1%. This analysis delves deeply into the rare genetic elements of PD, aiming to uncover

their potential contributions to the susceptibility of disease risk.

This work has been published here:

Makarious MB, Lake J, Pitz V, Fu AY,…, Beach TG, Serrano GA, Real R, Morris HR, Ding J, Gibbs

RG, Singleton AB, Nalls MA, Bhangale T, Blauwendraat C: “Large-scale Rare Variant Burden

Testing in Parkinson's Disease” Brain (2023); https://doi.org/10.1093/brain/awad214

Introduction

PD emerges from a complex interplay of aging, environmental influences, and genetic factors. The study

of common genetic variants in PD has been extensively pursued through large genome-wide association

studies (GWAS), revealing significant insights. These studies have identified 92 independent risk signals

linked to PD, encompassing common variants near genes such as SNCA, TMEM175, and MAPT (Nalls et

al. 2019a; Foo et al. 2020a). Typically found in non-coding regions, these array-based GWAS risk alleles

usually have a frequency above 5% in the target population and tend to exert relatively small effects.
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In contrast, the exploration of rare, more damaging variants, often implicated in familial and sporadic

forms of PD, has primarily employed family-based methods. Notable examples include coding variants in

genes like SNCA (M. H. Polymeropoulos et al. 1997) and PRKN (Kitada et al. 1998). Another intriguing

aspect in PD genetics is the diversity observed in pleomorphic genes, where multiple variants across a

spectrum of allele frequencies exhibit a wide array of effect sizes (A. Singleton and Hardy 2011). This

phenomenon is exemplified in PD, where GWAS have pinpointed common variants near genes such as

GBA1, GCH1, LRRK2, SNCA, and VPS13C with moderate effects (Nalls et al. 2019a), while familial studies

have identified rare variants in these same genes with more substantial impacts, such as GBA1 p.N370S ,

LRRK2 p.G2019S, and SNCA p.A53T (Jansen et al. 2017; Gaare et al. 2020; Rudakou et al. 2021; Mencacci

et al. 2014).

However, the landscape of rare variants in PD has not been thoroughly investigated on a genome-wide

scale. While candidate gene studies have reported rare variant associations in PD-related genes like ARSA

and ATP10B (J. S. Lee et al. 2019; S. Martin et al. 2020), these findings are subject to debate due to

inconsistent replication across independent PD datasets (Makarious et al. 2019; Fan et al. 2020; Tesson

et al. 2020; Real et al. 2020). A significant challenge in rare variant analysis is the diminishing quality and

reliability of imputation methods as allele frequencies decrease. As most large-scale GWAS datasets still

predominantly rely on more cost-effective genome-wide genotyping methods over sequencing, they

often use imputed genotype data.

This study addresses these challenges by analyzing whole genome (WGS) and whole exome sequencing

(WES), which are more adept at analyzing rare variants. We conduct the most extensive genome-wide

analysis of rare variants in PD to date, encompassing 7,184 PD cases, 6,701 proxy cases (individuals with

a parent or sibling diagnosed with PD), and 51,650 neurologically healthy controls of European ancestry

from various large-scale sequencing projects. Through gene-level burden testing, we aim to decipher the

contributions of moderate- to large-effect rare variants to the genetic landscape of PD, thus enhancing

our understanding of its genetic etiology.

Methods

Access to the Accelerating Medicines Partnership in Parkinson’s Disease (AMP-PD) data and quality

control notebooks requires individual registration at [https://amp-pd.org/]. UK Biobank data also

necessitate application for access via [https://www.ukbiobank.ac.uk/]. Other cohort data were sourced

through collaborations with the National Institutes of Health (NIH) and Genentech, with all studies

adhering to their respective institutional ethics guidelines and obtaining informed consent from

participants. All generated data and full results available at

[https://github.com/neurogenetics/PD-BURDEN]. NABEC data can be accessed through NCBI dbGaP,

study accession phs001300.v2.p1.
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Cohorts

AMP-PD and NIH Clinic

AMP-PD is a collaborative initiative designed to consolidate data from various cohorts into a unified

research platform dedicated to PD research. This platform unifies data storage and analysis from several

cohort studies, encompassing clinical metrics, whole genomes, whole blood RNA sequencing

transcriptomics, and proteomics data for participants.

Version 2.5 of the AMP-PD release includes whole genome sequencing data from approximately 10,000

participants across 8 cohorts. These samples were subjected to joint genotyping using the TOPMed

Freeze 9 Variant Calling Pipeline. The cohorts contributing to this release include BioFIND, Harvard

Biomarker Study (HBS), NINDS Lewy Body Dementia (LBD), LRRK2 Cohort Consortium (LCC), NINDS

Parkinson's Disease Biomarkers Program (PDBP), Parkinson’s Progression Markers Initiative (PPMI), the

randomized Phase 3, 2-arm, double-blind, parallel-group trial STEADY-PD3, and the ​​randomized,

double-blind, placebo-controlled trial of urate-elevating inosine treatment named the “Study of URate

Elevation in Parkinson’s Disease, phase 3” trial (SURE-PD3). Detailed information about each cohort's

recruitment methodology is available on the AMP-PD website (https://amp-pd.org/).

In addition to the AMP-PD datasets, parallel sequencing efforts were conducted at the Laboratory of

Neurogenetics (LNG) and the U.S. Uniformed Services University (USHUS). These included samples from

the NIH PD clinic, the United Kingdom Brain Expression Consortium (UKBEC; Trabzuni, United Kingdom

Brain Expression Consortium (UKBEC), and Thomson 2014), the North American Brain Expression

Consortium (NABEC; (Gibbs et al. 2010), and the Wellderly study (Erikson et al. 2016). The AMP-PD

cohorts (PPMI, PDBP, HBS, BioFIND, SURE-PD3, and STEADY-PD3) underwent processing in accordance

with the Genome Analysis Toolkit (GATK) Best Practices guidelines by the Broad Institute’s joint discovery

pipeline (Poplin et al. 2018).

Other cohorts were processed separately but similarly, adhering to the GATK Best Practices and Broad

Institute’s workflow for joint discovery and Variant Quality Score Recalibration (VQSR). The data

processing and QC protocols are detailed in previous studies (S. Bandres-Ciga et al. 2020; Iwaki et al.

2021). These sequencing efforts achieved median/mean coverages ranging between 33.3x and 35.0x.

Additional QC included removing closely related individuals (with PIHAT >0.125, removing second-degree

relatives or closer) using PLINK software (v1.9; Purcell et al. 2007). All participants were of European

ancestry, as established by principal component analysis against HapMap3 European ancestry

populations. Biased or genetically targeted datasets, such as LRRK2 and GBA1 variant carriers in specific

PPMI efforts, were excluded from this analysis. A minimum allele count (MAC) threshold of 1 was set for

all variants within gene boundaries. Exonic regions were isolated from the whole genome sequencing

data, using exome calling regions from gnomAD mapped to the hg38 reference genome (Karczewski et al.

2020). The AMP-PD and NIH datasets were merged prior to gene burden analysis, with 3,848 duplicated

samples removed prior to analysis.
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UK Biobank

The UK Biobank is a population-based prospective study tracking around 500,000 individuals based in

the United Kingdom, where the data is available upon application. Made available to researchers are

multiple types of data for the recruited individuals including phenotypes, genotypes, imaging, and

physical activity monitoring data.

To investigate PD, exome sequencing data from a total of 200,643 individuals (OQFE dataset, field codes:

23151 and 23155) were downloaded from the UK Biobank (Bycroft et al. 2018) in December of 2020.

Standard quality control was performed to exclude non-European outliers. Closely related individuals

(PIHAT >0.125) were excluded by selecting one sample at random using PLINK (v1.9; Purcell et al. 2007).

Standard exome sequencing data filtering, performed by the UK Biobank Exome Sequencing Consortium,

sequenced these exomes with 95.8% of targeted bases covered at a depth of 20x or higher, described in

previous UK biobank exome sequencing studies (Backman et al. 2021).

UK Biobank phenotype data were obtained from ICD-10 codes (field code: 41270), PD (field code:

131023), illnesses of father and mother (field codes: 20107 and 20110), parkinsonism (field code: 42031)

or dementia (field code: 42018), genetic ethnic grouping (field code: 22006), year of birth (field code: 34)

and age of recruitment (field code: 21022). Cases were defined as any individual identified as having PD

using the above field code. Proxy-cases were defined as having a parent or sibling with PD as previously

reported (Nalls et al. 2019a). Controls were filtered to exclude any individuals with an age of recruitment

<59 years, any reported nervous system disorders (Category 2406), a parent with PD or dementia (field

codes: 20107 and 20110), and any of the following reported neurological disorders: (disorder/field

code): Dementia/42018, Vascular dementia/42022, frontotemporal dementia (FTD)/42024, amyotrophic

lateral sclerosis (ALS)/42028, Parkinsonism/42030, PD/42032, progressive supranuclear palsy

(PSP)/42034, or MSA/42036.

Genentech

In a comprehensive whole-genome sequencing effort, Genentech contributed data comprising 2,710 PD

cases and 8,994 control individuals. PD cases included 2,318 individuals from 23andMe, a subset of

those included in the analysis by Chang and colleagues (D. Chang et al. 2017) who were contacted and

provided consent for this analysis. Additionally, 392 PD cases were incorporated from the Roche clinical

trial of tolcapone (TASMAR), a now-approved oral medication designed to be used alongside carbidopa

and levodopa, aimed at alleviating the symptoms of PD. For the control group, individuals were selected

from various Genentech clinical trials and studies. These control subjects were diagnosed with diseases

that do not exhibit significant genetic correlation with PD. The diseases include age-related macular

degeneration (AMD; n=1,735 individuals), asthma (n=3,398 individuals), idiopathic pulmonary fibrosis

(IPF; n=1,532 individuals), and rheumatoid arthritis (RA; n=2,329 individuals).

The whole-genome sequencing was conducted using the Illumina HiSeq platform. This platform

facilitated 30x coverage of the genome with 150bp paired-end reads. The sequencing data was of high

fidelity, with genotypes having a genotype quality (GQ) score lower than 20 marked as missing. These

reads were aligned to the GRCh38 human reference genome using the Burrows-Wheeler Aligner (BWA)
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(H. Li and Durbin 2009). Post-alignment, the GATK Best Practices pipeline was employed for essential

processes like base quality score recalibration, indel realignment, and duplicate removal (H. Li and

Durbin 2009; McKenna et al. 2010). Subsequently, SNP and indel discovery, along with genotyping, were

executed across all samples concurrently, adhering to the Variant Quality Score Recalibration (VQSR) as

recommended in the GATK Best Practices (DePristo et al. 2011; Van der Auwera et al. 2013; Van der

Auwera and O’Connor 2020).

The dataset, comprising 11,704 samples, met rigorous QC criteria. These criteria included a genotype

missing rate below 0.1, ensuring no sample pair had a kinship coefficient (k0, representing the

probability of zero alleles shared IBD or the value Z0 as reported by the PLINK --genome module) less

than 0.4. Additionally, all samples were validated through five iterations of outlier removal using

principal component analysis (PCA; (Price et al. 2006).

Variant Annotation

Variants in this study were annotated using the SnpEff and SnpSift annotation tools (version 4.3t;

(Cingolani et al. 2012) along with the Ensembl Variant Effect Predictor (VEP; version 104; McLaren et al.

2016). We also used the Combined Annotation Dependent Depletion (CADD; version 1.4; Rentzsch et al.

2019) and the Loss-of-Function Transcript Effect Estimator (LOFTEE; version 1.02; Karczewski et al. 2020)

as VEP plugins. For gene burden analysis in this study, I classified the variants into the following variant

classes: 1) missense variants as identified by SnpEff, 2) variants with moderate or high impact as

determined by SnpEff/SnpSift, 3) high confidence LoF variants as classified by LOFTEE, and 4) variants

possessing a CADD PHRED score greater than 20 or classified as high confidence LoF by LOFTEE.

SnpEff

SnpEff is a tool is designed for annotating genetic variants found in sequencing data and predicting their

functional impact. Using a comprehensive database that encompasses approximately 38,000 genomes,

SnpEff can process variants across a broad range of organisms, providing valuable insights into their

potential biological significance. The annotation process involves categorizing variants based on their

locations (such as exonic, intronic, intergenic, etc.) and types (like missense, nonsense, synonymous,

etc.). SnpEff also predicts the functional impacts of these variants, such as whether they might alter

protein function or gene expression. This prediction is crucial for understanding how variations in DNA

sequence contribute to phenotypic differences, disease susceptibility, and drug response.

SnpSift

Working in conjunction with SnpEff, SnpSift offers advanced filtering and prioritization capabilities for

genetic variants. It integrates data from multiple databases, enhancing the depth and breadth of variant

analysis. SnpSift can filter variants based on various criteria, such as their frequency in the population,

predicted impact, or association with specific diseases or traits. One of the key features of SnpSift is its

ability to predict amino acid changes resulting from non-synonymous variants and to assess the potential

impacts of these changes. These impacts are often classified into categories such as "moderate" or

"high," depending on the predicted degree of alteration in protein function or structure.
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CADD

CADD PHRED was developed to assess the potential pathogenicity of SNVs and small indels within the

human genome. Its significance stems from the growing need to interpret the enormous volume of

variant data generated by modern high-throughput sequencing technologies.

CADD has a scoring system, conceptualized in a PHRED-like format. This format, familiar to genomic

researchers due to its application in quantifying the quality of base calls in sequencing, is repurposed in

CADD to quantify the deleteriousness of genetic variants. These scores are expressed in PHRED-scaled

units, which essentially log-transform raw scores to a more interpretable scale. Higher CADD scores

indicate a greater likelihood that a variant is deleterious and could potentially impact biological function,

indicating that a score of 20 places the variant in the top 1% of harmful variants in the human genome.

CADD integrates a wide array of genomic features, including evolutionary conservation, functional

annotations, and other sequence-based characteristics, to assess each variant. This integration takes into

account both the direct impact of a variant on protein structure and function, as well as more subtle

effects that might influence gene regulation or transcript stability. This assists in prioritizing variants for

further study, especially in large-scale genomic projects. Additionally, there is ongoing refinement and

updates to CADD, leveraging deep learning networks and splicing information. CADD continues to

incorporate new data and improved algorithms, ensuring its relevance and accuracy.

LOFTEE

LOFTEE’s main function is to assess and categorize genetic variants that potentially lead to the loss of

function in genes. LOFTEE specifically targets mutations such as stop-gain (nonsense), frameshift, and

disruptions in splice sites. These types of mutations are known for their capacity to drastically alter gene

function, making the accurate identification and categorization of these variants important in research.

The types of variants analyzed by LOFTEE include stop-gain mutations, point mutations causing

premature termination of protein translation, often resulting in truncated and usually non-functional

proteins. Frameshift mutations, caused by insertions or deletions, change the reading frame of a gene,

typically producing different and non-functional protein products. Additionally, variants that disrupt

normal splice sites can significantly affect pre-mRNA splicing, potentially leading to aberrant or

incomplete proteins (Vihinen 2023).

A key feature of LOFTEE is its ability to classify these LoF variants into two categories: low confidence and

high confidence. High confidence LoF variants are those with strong evidence suggesting a true loss of

gene function, supported by factors like the evolutionary conservation of the affected region, available

functional data, or alignment with known disease phenotypes. In contrast, low confidence LoF variants

are those where the evidence is less definitive or where conflicting data exist regarding their impact.

These variants require further experimental validation to fully understand their effects (Karczewski et al.

2020).
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Gene Burden Tests

The Combined Multivariate and Collapsing (CMC) Wald and Optimal Sequence Kernel Association Test

(SKAT-O) tests are statistical methods to analyze the impact of rare variants. These methods are designed

to improve the detection of associations between genetic variants and complex diseases, especially

when individual variants might have subtle effects that are challenging to detect with conventional

approaches (Seunggeung Lee et al. 2014).

CMC Wald

The CMC Wald tests are used for gene-based association studies, and are particularly effective for

analyzing rare variants. This method combines multiple rare variants within a gene into a single analytical

framework, increasing the power to detect associations that might be missed when examining variants

individually. The “collapsing” component of this test involves grouping rare variants based on specific

criteria like their location within a gene or predicted functional impact. The “multivariate” aspect refers

to the statistical technique used to assess the collective effect of these variants on the trait of interest

(Seunggeun Lee, Wu, and Lin 2012; Seunggeun Lee et al. 2016). This approach is necessary for studying

rare genetic variants, which might individually occur at a low frequency in the population but collectively

exert a significant influence on disease risk.

The benefit of the CMC Wald test is its enhanced power in detecting associations with rare variants by

considering their cumulative effect within a gene. However, it can suffer from reduced specificity if the

collapsing includes variants not associated with the trait, and it often assumes that grouped variants

exert a similar effect on the trait. CMC Wald tests also assume that the variants within the collapsed

group are independent of each other, which does not take into consideration regions of linkage

disequilibrium (LD) (Seunggeung Lee et al. 2014).

SKAT-O

SKAT-O is a versatile and robust statistical method used to test the association of a set of variants with a

phenotype, especially useful in the context of rare variants and complex traits. It integrates elements of

the SKAT (Sequence Kernel Association Test) and burden tests, offering a flexible approach that adapts to

different genetic architectures. SKAT-O can assess both the aggregate effect of multiple rare variants and

identify individual variants with more substantial effects. The key advantage of SKAT-O is its adaptability,

maintaining high statistical power across various genetic effect scenarios, from many variants with small

effects to fewer variants with larger effects. SKAT-O has demonstrated reliability in gene detection

compared to either the burden or SKAT tests used independently. This enhanced effectiveness is

achieved through its adaptive selection of the optimal linear combination of both SKAT and burden tests,

which is designed to maximize the test's power (Seunggeun Lee, Emond, Bamshad, Barnes, Rieder,

Nickerson, Christiani, et al. 2012). However, it requires careful selection of the variants for analysis and

can be computationally intensive, as because it is a mixed effect model, assumes a normal distribution

and that the genetic variants have random, not fixed, effects.
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SKAT-O, compared to CMC Wald, is better suited for complex traits as it can account for rare and

common variants, and especially when there is heterogeneity in genetic effects (Seunggeun Lee, Emond,

Bamshad, Barnes, Rieder, Nickerson, NHLBI GO Exome Sequencing Project—ESP Lung Project Team, et al.

2012). It provides flexibility in handling various genetic effect sizes and directions, but it might be less

effective when the effect sizes are very uniform. SKAT-O is also limited when handling sparse

alternatives, referring to the scenarios where only a small proportion of variants in a set are actually

associated with a disease or trait. It is important to note that sparse alternatives are quite common in

sequencing studies since many variants in a set are typically not influential for the risk or related traits of

a disease​​(Liu et al. 2019). In this study, I attempt to mitigate this by analyzing particular variant classes

that have a higher probability of being associated with disease risk.

Gene Burden Analysis and Meta-analyses

Analyses

All analyses were stratified by the four variant classes described above and by maximum control MAF

levels of 1% and 0.1%. These algorithms were run using the RVtests package (v2.1.0; Zeggini and Morris

2015) for the UK Biobank, and combined AMP-PD and NIH dataset. For Genentech data, SKAT-O and

CMC-Wald tests were performed using the R package SKAT (Wu et al. 2011). Unless otherwise stated, all

results reported in this manuscript correspond to the SKAT-O rare variant test, and all meta-analyses

were performed using the combined p-values reported following Fisher’s test.

The AMP-PD and NIH dataset were adjusted for the following factors: sex, age, and the initial five

principal components. In contrast, the UK Biobank datasets were calibrated for sex, Townsend scores,

and the first five principal components. For the analysis involving the UK Biobank, only neurologically

healthy individuals aged 60 and above were considered, thus excluding age as a variable in the analysis.

Analyses of rare variants were conducted separately for each dataset, all using the hg38 genome build.

Two comprehensive meta-analyses were carried out as follows: firstly, a case-control meta-analysis

involving the integrated AMP-PD and NIH dataset, the Genentech dataset, and the UK Biobank

case-control dataset; secondly, a meta-analysis combining case-control and proxy-control results from

the amalgamated AMP-PD and NIH dataset, the Genentech dataset, the UK Biobank PD case-control

dataset, and both the sibling and parent proxy-cases datasets from the UK Biobank. A detailed

description of this analytical process is presented in Figure 5. A visualized distribution of the PCs per

dataset and age distribution within datasets can be found in Figure 6 and Figure 7.

The population substructure evident in Figure 6 likely reflects varying ancestry among cohort

participants, particularly in the American cohorts (AMP-PD, NIH, and Genentech), which have a higher

proportion of individuals with AJ ancestry. This clustering aligns with the known genetic differences

between AJ and broader European populations. In my analysis, I did not further divide European and AJ

ancestry; however, we confirmed European ancestry for all participants through PCA against reference

populations from HapMap3. HapMap3 provides a global reference panel that includes individuals from

well-characterized populations, such as Europeans (CEU), Africans (YRI), and Asians (CHB and JPT).
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Figure 5: Graphical representation of the analytical process for conducting large-scale rare variant

burden testing in Parkinson's Disease

(1) Variant annotation was executed through the Variant Effect Predictor (VEP), leading to the categorization of variants into four

distinct groups: (i) missense variants, as identified by SnpEff; (ii) variants with moderate or high impact according to

SnpEff/SnpSift definitions; (iii) high confidence loss-of-function (LoF) variants, as determined by LOFTEE; and (iv) variants that

either possess a CADD PHRED score greater than 20 or are high confidence LoF variants, as classified by LOFTEE. (2) For each

dataset, burden analysis was carried out independently, focusing on variants classified as rare (minor allele frequency, MAF, less

than 1%) and ultra-rare (MAF below 0.1%). (3) The first meta-analysis approach, referred to as the ‘case-control’ meta-analysis,

involved solely Parkinson's disease (PD) cases and control subjects. (4) The second meta-analysis strategy, known as the

‘case-control-proxies’ meta-analysis, incorporated PD cases, PD proxy cases (including siblings and parents), and control

subjects.

AMP-PD: Accelerating Medicines Partnership in Parkinson’s Disease; NIH: National Institutes of Health; PD: Parkinson’s disease;

LoF: Loss-of-Function; LOFTEE: Loss-of-Function Transcript Effect Estimator; VEP: Variant Effect Predictor; CADD: Combined

Annotation Dependent Depletion; MAF: Minor allele frequency

Meta-analysis

The combined P-Value approach using Fisher’s test aggregates p-values from different studies to

ascertain an overall effect. Fisher’s test, a classic technique for combining p-values, operates under the

null hypothesis that all individual studies are independent and exhibit no effect. The method involves

summing the natural logarithms of the p-values from each study, and then this sum is multiplied by -2.

The resultant statistic adheres to a chi-square distribution with degrees of freedom equal to twice the

number of studies. Notably, Fisher’s method has been shown to be effective in detecting over 75% of

causal effects (whether deleterious or protective), particularly when these effects align in direction

across studies (Derkach, Lawless, and Sun 2013).
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Figure 6: Principal component plots per dataset included in large-scale rare variant burden

meta-analyses

AMP-PD: Accelerating Medicines Partnership in Parkinson’s Disease; NIH: National Institutes of Health; PD: Parkinson’s disease;

EV: Eigenvalue.

Figure 7: Age distribution per dataset included in large-scale rare variant burden meta-analyses

AMP-PD: Accelerating Medicines Partnership in Parkinson’s Disease; NIH: National Institutes of Health; PD: Parkinson’s disease
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Power Calculations

In this study, I conducted 100 gene simulations using the power calculation feature of the SKAT R

package (version 2.0.1; Seunggeun Lee, Emond, Bamshad, Barnes, Rieder, Nickerson, Christiani, et al.

2012), with European haplotypes as the default setting. The simulations projected a total sample size of

65,535, which included 7,184 PD cases, 6,701 proxy cases with a weighting equivalent to one-fourth of a

PD case (effectively 1,675 cases), and 51,650 control participants. This configuration resulted in a case

ratio of 13.5%. PD prevalence was assumed to be 1%, as previously reported (Tysnes and Storstein 2017).

For exome-wide significance, I applied a Bonferroni-corrected threshold of 2.50E-6, considering an

estimated 20,000 protein-coding genes. With the application of two distinct burden testing algorithms,

we established a final significance threshold at 1E-6. The power analyses, which were varied based on

causality percentages (at 10%, 5%, 3%, 1%, and 0.5%) and MAF of causal variants (at 0.05%, 0.1%, 0.5%,

1%, 3%, and 5%), are detailed in Table 5. The analyses indicate that with a minimum assumption of 3%

causal rare alleles, there is at least 80% power to detect associations at the specified MAF thresholds

(Table 5).

Table 5: Power calculations at various causal percentages and MAFs (given 1% disease prevalence and

alpha=1E-6)

MAF: Minor allele frequency
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Causal Minor Allele Frequency (MAF; %)

0.05 0.1 0.5 1 3 5

Causal

Percentage (%)

10 100 100 100 100 100 100

5 75.483 99.999 100 100 100 100

3 27.853 89.383 99.989 100 100 100

1 3.867 14.843 49.704 71.429 96.362 96.594

0.5 0.001 4.462 21.325 35.344 67.970 74.767
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Sample Size Age^ (Mean ± SD) Sex (Male; %)

Dataset Cases Controls Cases Controls
Cases sex

(Male; %)

Controls

sex

(Male; %)

AMP-PD and NIH

Genomes (Includes:

PPMI, PDBP, HBS,

BioFIND, NIH PD clinic,

UKBEC, NABEC,

Wellderly)

3369 4605
62.1

(11.8)

71.9

(16.2)
63.6 47.6

UKB case-control (WES) 1105 5643
62.9

(5.24)

64.1

(2.84)
62.4 47.6

UKB sibling proxy-control

(WES)
668* 3463

62.2

(5.59)

64.1

(2.83)
45.5 49.5

UKB parent

proxy-control (WES)
6033* 28945

58.1

(7.23)

64.1

(2.82)
42.5 48.7

Genentech case-control

(WGS)
2710 8994

64.7

(10.4)

59.2

(15.6)
59.2 40.7

Total
7184 cases;

6701 proxies
51,650 controls

Table 6: Datasets included in rare variant burden analysis after quality control

AMP-PD: Accelerating Medicines Partnership Parkinson’s disease; NIH: National Institutes of Health; PPMI: Parkinson's

Progression Markers Initiative; PDBP: Parkinson’s disease Biomarkers Project; HBS: Harvard Biomarker Study; UKBEC: UK Brain

Expression Consortium; NABEC: North American Brain Expression Consortium

WES: Whole exome sequences; WGS: whole genome sequences

* indicates proxy cases

^age for AMP-PD and NIH datasets reported at recruitment or baseline, ages reported for UKBiobank datasets at recruitment,

ages reported for Genentech at recruitment

Results

Study Overview

In this study, I curated substantial datasets comprising 7,184 PD cases, along with 6,701 sibling or parent

proxies, and a control group of 51,650 individuals. The data were sourced from whole genome

sequencing (from AMP-PD, NIH, and Genentech) and exome sequencing (from the UK Biobank; Table 6).

To assess the genetic burden of rare variants, gene-level burden tests were conducted across all genes.

This analysis was segmented into four distinct classes of variants and applied two different MAF

thresholds for determining causality (overview in Figure 5).
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One key observation was the inverse relationship between the deleteriousness of a variant class and the

number of variants identified per gene; more harmful variant classes tended to yield a smaller number

of variants per gene. For a comprehensive understanding of the distribution and quantity of these

variants within each gene among both cases and controls, and how these vary according to the class of

variant and the specific cohort (with the exception of the Genentech cohort), see Supplementary Tables

3, 4, 5, and 6. These tables offer a detailed breakdown, stratified by variant class and cohort for every

gene.

Exome-Wide Significance of Genetic Variants in Parkinson's Disease Case-Control Studies

In this study, I conducted gene burden analyses across various PD case-control datasets, including

AMP-PD and NIH, Genentech, and UK Biobank cases, as well as sibling and parent proxies from the UK

Biobank. This multi-dataset approach yielded significant findings known PD genes, notably GBA1 and

LRRK2, which demonstrated exome-wide significance under both MAF thresholds (P < 1E-6; Table 7 and

Table 8; Supplementary Tables 7 and 8). Lambda values calculated for each dataset (λ1000;
Supplementary Table 9) indicated minimal genomic inflation, adjusted for the varying numbers of cases,

proxy-cases, and controls. Notably, smaller datasets, such as the UK Biobank sibling proxy-control

dataset, exhibited more pronounced genomic deflation (λ1000 < 0.9) when analyzed independently.

VARIANT

CLASS

(MAF <1%) GENE

CASE ONLY

META PVAL

CASE PROXIES

META PVAL

AMP NIH

PVAL GNE PVAL

UKB

CASE

PVAL

UKB

SIBLING

PVAL

UKB

PARENT

PVAL

Missense

GBA1** 3.27E-14 1.46E-21 1.05E-05 1.32E-08 3.14E-04 0.247 2.15E-10

LRRK2* 7.15E-07 9.46E-06 1.96E-07 0.047 0.372 0.615 0.482

Moderate or

High Impact

GBA1** 9.10E-15 1.32E-22 1.05E-05 5.70E-08 1.89E-05 0.073 2.15E-10

LRRK2* 7.23E-07 9.85E-06 2.09E-07 0.040 0.413 0.584 0.527

TUBA1B 0.69 9.02E-05 NA 0.647 0.501 0.352 9.48E-07

LOF

B3GNT3** 4.40E-09 3.36E-09 NA 4.40E-09 NA NA 0.032

CAPN10** 3.60E-07 7.84E-07 NA 0.005 3.75E-06 0.053 0.394

CADD>20 or

LOF

GBA1** 3.72E-14 9.12E-22 1.24E-05 6.99E-08 5.77E-05 0.130 2.15E-10

LRRK2* 2.49E-07 4.22E-06 2.23E-07 0.012 0.409 0.735 0.485

ADH5 4.62E-06 6.15E-05 0.512 0.170 3.13E-07 0.491 0.768

OR1G1 0.215 6.56E-06 0.848 0.029 0.620 6.58E-07 0.063

Table 7: Genes reaching exome-wide significance (p<1E-6) in MAF <1% in meta-analyses and individual

datasets following SKAT-O

AMP NIH: Accelerating Medicines Partnership Parkinson’s disease; NIH: National Institutes of Health; GNE: Genentech; UKB: UK

Biobank
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MAF: Minor allele frequency

*denotes genes that pass exome-wide significance (P<1E-6) in meta-analyses

VARIANT

CLASS

(MAF <0.1%) GENE

CASE ONLY

META PVAL

CASE

PROXIES

META PVAL

AMP

NIH

PVAL

GNE

PVAL

UKB

CASE

PVAL

UKB

SIBLING

PVAL

UKB

PARENT

PVAL

Missense GBA1* 1.86E-05 4.48E-12 0.022 2.30E-02 2.55E-04 5.41E-03 6.86E-08

Moderate or

High Impact

GBA1* 1.71E-06 4.87E-16 NA 0.088 1.13E-06 0.001 5.13E-10

AUNIP** 1.54E-08 2.70E-07 NA 0.023 3.04E-08 0.170 1

TUBA1B 0.690 9.02E-05 NA 0.647 0.501 0.352 9.48E-07

TREML1* 0.048 3.58E-07 NA 0.010 0.858 0.001 1.41E-05

LOF

B3GNT3** 4.40E-09 3.36E-09 NA 4.40E-09 NA NA 0.032

AUNIP** 1.64E-08 2.04E-07 NA 0.024 3.13E-08 0.116 1

CAPN10** 3.60E-07 7.84E-07 NA 0.005 3.75E-06 0.053 0.394

CADD>20 or

LOF

GBA1** 2.33E-07 1.20E-14 0.017 0.127 4.56E-07 8.93E-04 7.89E-08

LRRK2 3.46E-06 2.65E-06 0.727 6.15E-07 0.044 0.771 0.014

AUNIP* 2.12E-07 1.53E-06 0.886 0.032 3.15E-08 0.125 1

OR1G1 0.215 6.56E-06 0.848 0.029 0.620 6.58E-07 0.063

Table 8: Genes reaching exome-wide significance (p<1E-6) in MAF <0.1% in meta-analyses and individual

datasets following SKAT-O

AMP NIH: Accelerating Medicines Partnership Parkinson’s disease; NIH: National Institutes of Health; GNE: Genentech; UKB: UK

Biobank

MAF: Minor allele frequency

*denotes genes that pass exome-wide significance (P<1E-6) in meta-analyses

Differential Impact of Variant Classes in PD Gene Burden Analysis

The initial rare variant burden analysis highlighted the significance of GBA1 and LRRK2 across multiple

variant class categories, including missense, moderate/high impact, and LoF or highly deleterious

variants (CADD PHRED > 20). Specifically, GBA1 variants showed significant results in both the Genentech

(P-values ranging from 1.32E-08 to 6.99E-08) and UK Biobank parent proxies (P = 2.15E-10 for all variant

class categories) datasets. Similarly, LRRK2 variants were significant in the combined AMP-PD and NIH

dataset (P-values ranging from 1.96E-07 to 2.23E-07).

Additionally, LoF variants in B3GNT3 were found to be exome-wide significant in the Genentech dataset

(P=4.40E-09), with nominal significance in the UK Biobank parent proxies dataset (P=0.032;

Supplementary Figures 3 through 9; Genentech [hg38: chr19:17807816:T:G, chr19:17807816:T:G,
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chr19:17807816:T:G] and UK Biobank [hg38: chr19:17807982:GC:G; chr19:17808033:C:T;

chr19:17812105:C:CA]). TUBA1B showed significance in moderate and high impact variants in the UK

Biobank parent proxies dataset (P=9.48E-07). In the UK Biobank cases-control dataset, significant results

were observed for LoF or highly deleterious variants in ADH5 (P=3.13E-07) and in the sibling proxies

dataset for OR1G1 (P=6.58E-07; Table 7; Supplementary Table 8).

Ultra-rare variant (MAF < 0.1%) burden analysis further demonstrated the significance of variants in

GBA1 within the UK Biobank parent proxies dataset (P-values ranging from 6.88E-08 to 5.13E-10). GBA1

also showed significance in the case-control dataset (P=4.56E-07). LRRK2 variants were significant in the

Genentech dataset (P=6.15E-07). Noteworthy findings in the UK Biobank case-control dataset included

significant moderate/high impact variants in AUNIP (P=3.04E-08), and TUBA1B in the parent proxies

dataset (P=9.48E-07). Additionally, LoF variants in B3GNT3 (P=4.40E-09) and AUNIP (P=3.13E-08) were

significant in the Genentech and UK Biobank case-control datasets, respectively. Finally, the ultra-rare

variant burden analysis found no significant genes exome-wide within the AMP-PD and NIH genomes

across the four variant classes (P < 1E-6; Table 8; Supplementary Table 7).

Meta-analyses

We designed and I executed two distinct meta-analyses. The first, referred to as the case-control

meta-analysis, did not incorporate any UK Biobank proxy-cases, while the second, named the

case-control-proxies meta-analysis, did include these proxy-cases alongside the standard PD cases and

neurologically-healthy controls. In both meta-analyses, lambda values remained within the expected

range (λ1000= 0.97-1.00), indicating no significant deviation from the norm (Supplementary Table 10).

In terms of rare variant burden analysis, both meta-analyses demonstrated significant exome-wide

associations for GBA1 across different variant classes – missense, moderate/high impact, and LoF or

predicted highly deleterious variants. The results were notably robust, with the case-control analysis

yielding P-values of 3.27E-14, 9.10E-15, and 3.722E-14 for these variant classes, respectively. The

case-control-proxies analysis presented even more striking findings, with P-values of 1.46E-21, 1.32E-22,

and 9.12E-22, respectively. Furthermore, high confidence LoF variants in CAPN10 and B3GNT3 also

showed significant exome-wide associations in both analyses (Table 7), with P-values of 3.60E-07 and

4.40E-09 in the case-control and 7.84E-07 and 3.36E-09 in the case-control-proxies meta-analyses,

respectively.

The ultra-rare variant burden analysis further reinforced these findings. It demonstrated significant

exome-wide associations for moderate/high impact and high confidence LoF variants in AUNIP in both

meta-analyses. The case-control analysis showed P-values of 1.54E-08 and 1.64E-08, respectively, while

the case-control-proxies analysis reported 2.70E-07 and 2.04E-07. Additionally, TREML1 showed

significance with the inclusion of proxy-cases. In line with the rare variant analysis, ultra-rare LoF variants

in CAPN10 and B3GNT3 also remained significant. Importantly, both rare (MAF < 1%) and ultra-rare (MAF

< 0.1%) variants in GBA1 were associated with an increased risk of PD (Table 7 and Table 8).
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B3GNT3 emerged as a gene of interest in the high confidence LoF variant class with significant p-values,

especially in the Genentech dataset (P=4.40E-09) and to a lesser extent in the UK Biobank parent proxies

dataset (P=0.032). Nevertheless, no variants meeting the criteria for high confidence LoF were found in

the AMP-PD and NIH genomes, leaving the association of rare LoF variants in B3GNT3 within these

datasets unconfirmed. A majority of the novel candidate genes identified in this study, including

B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10, and TREML1, achieved exome-wide significance

exclusively through the SKAT-O test (Supplementary Table 3). Comprehensive results from both the

SKAT-O and CMC Wald burden tests for each variant class, MAF cutoff, and meta-analysis group are

available on our dedicated GitHub repository.

Conditional LRRK2 Analysis

I also conducted a conditional analysis on LRRK2, a gene known to be associated with PD, particularly

focusing on the p.G2019S (rs34637584) variant, a relatively prevalent as a risk factor. To understand the

extent to which the rare variant association at LRRK2 is influenced by p.G2019S, we incorporated the

allelic status of LRRK2 p.G2019S into our analysis. Each individual's LRRK2 p.G2019S status was

quantified as 0, 1, or 2, reflecting their allelic dosage. This method allowed me to condition this analysis

on the LRRK2 p.G2019S status while retaining carriers in the dataset.

We then included the allelic status as a covariate in our burden analyses. Interestingly, the initial

association observed at LRRK2 dissipated (P > 0.05) after this conditional adjustment across all tested

variant categories and MAF thresholds in the discovery datasets, with the exception of the Genentech

dataset (Supplementary Table 12). This suggests that the rare variant association at LRRK2 might be

predominantly driven by the p.G2019S variant.

Furthermore, apart from LRRK2 p.G2019S, we did not identify any other significant coding risk factors

within LRRK2. It is notable that other rare coding variants previously identified as risk factors for PD, such

as LRRK2 p.R1441H (J. Liao et al. 2014), were not observed in our study. This absence underscores the

unique impact of the p.G2019S variant in the context of LRRK2-associated PD risk and highlights the

necessity of considering specific variant influences in genetic analyses of complex diseases like PD.

Assessing Previously Reported PD Causal or High Risk Genes and GWAS Regions

In this comprehensive analysis, we evaluated numerous genes previously associated with PD based on

rare variant associations. A detailed list of these genes is available in Supplementary Table 13, and for

specific information on the frequency and number of variants for each gene, variant class, and dataset,

refer to Supplementary Tables 3 to 6. Apart from GBA1 and LRRK2, which were already discussed, none

of the genes in our study reached exome-wide significance (P > 1E-6). Nevertheless, we observed

notable sub-significant signals for LoF or highly deleterious variants in ARSA (P=8.73E-05) and DNAJC6

(P=8.08E-04; Supplementary Tables 3, 4, and 13).

Interestingly, the gene PRKN, known for its strong association with early onset PD, did not show a

significant P-value in our analysis (P=0.30). To further investigate, I examined the enrichment of
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homozygous and potentially compound heterozygous PRKN mutations in PD. In the most stringent

variant class (LoF or highly deleterious variants), I identified a frequency of 0.41% in cases and 0.07% in

controls within the combined AMP-PD and NIH dataset (Supplementary Table 14). Additionally, I did not

find significant P-values in VPS35 (present only in the Genentech dataset), known for its autosomal

dominant association with PD, or SNCA, associated with earlier onset and more severe PD. VPS35

showed a P-value of 0.235 in the case-control meta-analysis, and SNCA had a P-value of 0.274 in the

case-proxy-control meta-analysis, suggesting limited impact of these genes in our dataset

(Supplementary Tables 3 and 5).

We also sought to determine if known PD loci identified through GWAS presented rare variant

associations. This approach was inspired by previous findings near genes like SNCA, GBA1, GCH1,

VPS13C, and LRRK2 (Jansen et al. 2017; Gaare et al. 2020; Rudakou et al. 2021; Mencacci et al. 2014).

Our assessment covered 82 PD GWAS regions: 78 from the largest GWAS of Europeans (Nalls et al.

2019a), two from the largest PD GWAS of East Asians (Foo et al. 2020b), and two from the largest PD

GWAS on progression (Tan et al. 2021); Supplementary Table 15). In our meta-analyses, only GBA1 and

LRRK2 reached significance after applying the Bonferroni correction for 2,361 unique genes within 1 Mb

of known PD loci. This suggests that the GWAS signals in these regions are likely driven by non-coding

variants rather than coding variants, underscoring the complex genetic architecture of PD and the

potential predominance of non-coding genetic factors in its pathogenesis.

Conclusions and Discussion

In this study, I present the results from comprehensive rare variant gene burden tests for PD, using 7,184

PD cases, 6,701 proxy-cases, and 51,650 healthy controls. My meta-analysis on gene burden tests

reinforces the association of rare variants in GBA1 and LRRK2 with PD risk among individuals of European

ancestry.

Rare Variant Gene Burden in PD and Novel Gene Associations

In addition to GBA1 and LRRK2, this study evealed several novel PD-associated genes, namely B3GNT3,

AUNIP, ADH5, TUBA1B, OR1G1, CAPN10, and TREML1, that achieved exome-wide significance (P < 1E-6)

in my analysis in sample sets that are not enriched for early onset PD or familial PD (Supplementary

Table 11). However, it is important to note that these genes did not demonstrate consistent significance

across all datasets. The lack of replication at exome-wide significance in independent datasets may be

attributed to varying dataset powers, influenced by differences in sample size and geographical

population diversity, which in turn affect the presence of these rare variants.

A notable finding from my study was the strong evidence of a novel rare variant association in B3GNT3.

LoF variants in this gene showed a significant meta-analysis P-value (P=4.40E-09), primarily driven by the

Genentech (P=4.40E-09) and UK Biobank parent proxies (P=0.032) datasets. However, such variants were

not found in the combined AMP-PD and NIH genomes, suggesting the necessity of additional data to
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confirm their association with PD risk. Further investigation into B3GNT3 revealed three LoF variants

potentially linked to an increased risk of PD. Among the four individuals in the Genentech dataset

carrying these B3GNT3 variants, three were diagnosed with PD, and one was a control. Notably, all three

PD cases reported a family history of the disease, which is relatively common in this cohort but does not

necessarily indicate familial PD. These patients experienced an earlier onset of PD symptoms (in their 30s

or younger), although they did not exhibit a notable prevalence of tremors, gait disturbances, REM sleep

disturbances, or anosmia. Additionally, no significant identity-by-descent (IBD) linkage was found among

these three PD cases (the proportion of the genome where zero alleles are shared IBD, average k0=0.91).

Given the rarity of these variants in B3GNT3, driving the association primarily in the Genentech and UK

Biobank parent proxies datasets, it's plausible that they are absent in other datasets examined.

This not only corroborates the role of GBA1 and LRRK2 in PD, but also introduces several other genes

potentially associated with the disease. The observed variability in gene significance across different

datasets underscores the challenges in studying rare genetic variants in PD and highlights the need for

further research to validate these findings.

Mitigating Bias in Genetic Burden Analysis

Rare genetic variants often exhibit population specificity, potentially introducing bias in burden analyses

if population substructure is not adequately addressed. These variants may emerge in specific

populations due to genetic drift, founder effects, or selective pressures, leading to strong associations

within one group while being rare or absent in others. If not properly accounted for, this can result in

spurious associations that do not accurately reflect genetic risk factors for the disease under study. To

mitigate this issue, I implemented two strategies: inclusion of top eigenvectors from PCA as covariates in

all models to control for population stratification and minimize ancestry-related confounding, and

application of a meta-analysis approach to reduce potential bias arising from subpopulation differences

between cohorts, thereby limiting the influence of population-specific variants.

An example of a population-specific variant is LRRK2 p.G2019S, a known risk factor for PD that is

enriched in Ashkenazi Jewish populations. Given its prevalence in the study cohorts, I conducted a

conditional analysis to determine whether the observed rare variant associations within the LRRK2 gene

were primarily driven by p.G2019S. This conditional analysis incorporated the allelic dosage of LRRK2

p.G2019S (0, 1, or 2) as a covariate in the burden analysis. Post-conditioning, the initial associations at

LRRK2 were no longer significant (P > 0.05) in all cohorts except Genentech.

Assessment of Previously Suggested PD GWAS Loci and Genetic Testing Limitations

In my investigation, I examined rare variants in previously suggested PD GWAS loci, including genes like

SYT11, FGF20, and GCH1 (Pu et al. 2022). Despite thorough analysis, I did not identify significant p-values

in these genes, a finding that aligns with a parallel, albeit smaller, study conducted in the East Asian

population (Pu et al. 2022). This raises questions about the underlying mechanisms at these PD GWAS

loci. Although it seems plausible that some risk variants may influence gene expression differences, it

remains unclear whether all such variants contribute to PD risk through this mechanism.
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A notable observation from my research was the absence of several genes typically associated with PD,

such as PINK1 and PRKN, known as common genetic causes of early onset PD (Kasten et al. 2018). This

was somewhat anticipated, as the burden testing algorithms employed are more effectively tuned to

identify dominant and high-risk variants, like those found in GBA1 and LRRK2, but less sensitive to

recessive and ultra-rare mutations. It is also important to consider the distinctive clinical presentations in

PD patients carrying PRKN, PINK1, and SNCA mutations, which often include earlier onset, variable

progression rates, and rapid dementia onset, differing from the general PD population (Klein and

Westenberger 2012). Given that the majority of PD cases in my study manifested symptoms in their

sixties, it is less probable that these cases would harbor pathogenic PRKN mutations, which are more

characteristic of early onset PD (Table 6).

Additionally, it is crucial to highlight the extreme rarity of certain disease-causing variants. For instance,

pathogenic missense variants in SNCA have only been documented in approximately 25 reports,

suggesting their scarcity in the broader population. Consequently, such mutation carriers are likely

underrepresented in the datasets used in my study. This underrepresentation underscores a significant

challenge in genetic research of PD, particularly when examining rare variants and their contributions to

disease etiology.

Exploring the Role of Immune Response and Microtubule Defects

The involvement of the immune system, particularly the adaptive T lymphocyte response in PD, has been

well-documented (Mosley et al. 2012). A gene of interest in my study is B3GNT3, which is responsible for

encoding an enzyme crucial in the synthesis of L-selectin. This enzyme plays a pivotal role in lymphocyte

homing, especially in the rolling of leukocytes on endothelial cells, a process vital for their migration to

inflammatory sites. This suggests a possible link between B3GNT3 and the immune responses observed

in PD.

Another gene, TUBA1B, encodes the 1B chain of alpha-tubulin, a primary constituent of the

cytoskeleton. Recent studies suggest that defects in microtubules, which are integral to the cytoskeleton,

might contribute to the progressive neuronal loss characteristic of PD (Calogero et al. 2019; Pellegrini et

al. 2017). The aggregation of alpha-tubulin, resulting from mutations in genes like parkin and

alpha-synuclein, which are known to be implicated in PD, further underscores the potential role of

TUBA1B in the disease's pathology (Ren, Zhao, and Feng 2003; Cartelli et al. 2016).

TREML1, a TREM receptor, has been increasingly implicated in various neurodegenerative disorders,

including Alzheimer’s disease, PD, and multiple sclerosis (Dardiotis et al. 2017; Feng et al. 2019; Piccio et

al. 2008). This highlights the potential importance of TREML1 in the context of PD. Additionally, ADH5,

which encodes one of the alcohol dehydrogenases, has been studied for its association with PD risk,

albeit with conflicting results (J. J. Kim et al. 2020; Buervenich et al. 2005; García-Martín et al. 2019). The

examination of ADH5 in PD may provide further insights into its role in disease progression or risk.
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Other genes nominated in this analysis were AUNIP, OR1G1, and CAPN10. AUNIP is involved in cell cycle

regulation and DNA damage response, playing a critical role in maintaining genomic stability (Yang et al.

2019). OR1G1 encodes a member of the olfactory receptor family, which are G-protein-coupled

receptors involved in the initiation of neuronal responses for odor perception (Ben-Arie et al. 1994).

CAPN10 encodes calpain-10, a cysteine protease implicated in proinsulin processing and insulin

secretion, with genetic variations in this gene associated with type 2 diabetes susceptibility and altered

glucose-stimulated insulin secretion​(Stumvoll et al. 2001). Despite these insights, there remains no clear

connection between the known biology of PD and the functions of AUNIP, OR1G1, and CAPN10. As such,

it is imperative to conduct further studies that offer both genetic support and functional data for these

genes. This will be crucial in elucidating their potential roles in PD.

Future Directions and Limitations in Rare Variant Analysis of PD

Despite this being the largest effort to identify rare genetic variants in PD, there are several key

limitations to this work. A significant limitation of my study is its restriction to individuals of European

ancestry. It is essential to extend rare variant analyses to non-European populations and consider

different age-at-onset ranges, especially as more whole genome and exome sequencing data become

available. This expansion is crucial for a more comprehensive understanding of PD's genetic diversity and

its implications across various demographics.

My analysis focused on four variant classes, which inherently limits the scope to specific types of genetic

mechanisms. For instance, in analyzing LoF variants, I concentrated on mutations impairing protein

function and their disease risk impact. This approach may overlook other disease mechanisms, such as

gain-of-function mutations. Additionally, while the sample size is substantial, there is a lack of power to

detect associations in genes where a small percentage of variants are functional or causal (Table 5). This

limitation is particularly relevant as some rare variant tests differentially weigh variants based on

penetrance and effect size.

The comprehensive literature search for rare variant associations was not limited to late-onset PD,

potentially influencing the failure to replicate these associations in our analysis focusing on late-onset

PD. Additionally, not all datasets in the meta-analysis were jointly called from raw read alignments,

raising the possibility of batch effects influencing the results. However, the meta-analysis model used

was designed to mitigate these biases by leveraging the power of the datasets without combining them.

Further investigation, including segregation analysis in multiplex families or resequencing in large

case-control datasets, is warranted, especially for early onset and familial cases.

The inclusion of parent and sibling proxy-cases from the UK Biobank aimed to enhance statistical power.

While proxy-cases are valuable in large-scale common variant studies (Nalls et al. 2019a), caution is

necessary when investigating recessive diseases. Most patients in this study represent the general PD

population, where a smaller fraction reports a positive family history. Future studies should focus on

recruiting patients suspected of having monogenic forms of PD, as they are more likely to carry highly
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pathogenic or causal mutations not typically associated with PD (Global Parkinson’s Genetics Program

2021). The clinical heterogeneity within PD cases necessitates further validation of the pathogenicity of

rare or ultra-rare variants (Campbell et al. 2020; Mu et al. 2017; Sauerbier et al. 2016). My analysis was

restricted to SNVs and small indels, not encompassing copy number variants due to data access

limitations. Future studies should include copy number variants, as they have been shown to be

significant in PD, using long-read sequencing for a more robust identification of these variants (Billingsley

et al. 2023; (Daida et al. 2023).

In conclusion, while my study has reaffirmed GBA1 and LRRK2 as genes harboring rare variants

associated with PD and has nominated several other previously unidentified genes, the need for further

research is evident, prioritizing familial PD cases and individuals of non-European ancestry. This study

underscores the complex interplay between genetics and PD, highlighting the potential contributions of

specific genes to the disease's pathophysiology. While certain genes have established links to PD, others

like AUNIP, OR1G1, and CAPN10 warrant further investigation to fully understand their involvement in

this neurodegenerative disorder. Deeper exploration into the biological mechanisms of these genes,

particularly B3GNT3 and TREML1, and replication in more diverse and familial datasets, will enhance our

understanding of PD genetics.
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Chapter 4: Expanding GWAS: Assessing Genome-wide

Parkinson’s Disease Risk in the African and Admixed

Populations

Overview and Broader Relevance

The current understanding of PD heavily relies on studies conducted in populations of European

ancestry, leading to a critical knowledge gap in PD genetics, particularly in African and African admixed

populations. In contrast to the previous chapter, here we focus on genome-wide common variation and

how they are associated with disease risk. Despite the advancements in GWAS across various ethnicities,

these populations have been notably underrepresented. This oversight has limited our comprehension

of PD's genetic diversity and risk factors. In studies involving European, Asian, and Latin American

populations, numerous loci linked to disease risk have been identified. Specifically, research within

European populations has discovered 78 loci and 90 distinct signals related to the risk of PD. In Asian

populations, nine loci have been replicated, along with the identification of two new signals unique to

this ancestry. Additionally, recent genome-wide association studies encompassing multiple ancestries

have brought to light 12 new loci. However, the genetic landscape of PD in African populations remained

largely unexplored.

Addressing this gap, this study represents the first extensive genome-wide assessment of PD genetics in

African and African admixed populations, with the analysis including a total of 197,918 individuals. Using

data from various cohorts, mainly from the Global Parkinson’s Genetics Program (GP2) and 23andMe,

the study focuses on identifying ancestry-specific genetic risk factors, analyzing haplotype structures,

and exploring coding and structural variations.

My research uncovered a novel common risk factor at the GBA1 locus in African populations, and

identified a novel disease mechanism via expression changes consistent with decreased GBA1 activity

levels. This study bridges the diversity gap in PD research, unveiling a critical genetic risk factor in GBA1

unique to African and African admixed populations. It underscores the importance of ancestry-specific

genetic research and highlights the distinct genetic risk factors in these populations. The findings offer

novel avenues for RNA-based therapeutic strategies and inform the design of future clinical trials,

emphasizing the need for inclusive representation, ultimately paving the way for personalized, efficient

treatments and advancing the field towards equitable healthcare solutions.

This work has been published here:

Rizig M*, Bandrés-Ciga S*, Makarious MB*, Oluwadamilola O, Wild Crea P, Abiodun O, Levine KS,

…, Nigeria Parkinson Disease Research Network, International Parkinson’s Disease Genomics

Consortium - Africa, Black and African American Connections to Parkinson’s Disease (BLAAC PD)

Study Group, the 23andMe Research Team, Blauwendraat C, Houlden H, Singleton AB,
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Okubadejo N, Global Parkinson’s Genetics Program: “Genome-wide Association Identifies Novel

Etiological Insights Associated with Parkinson’s Disease in African and African Admixed

Populations” Lancet Neurology (2023); https://doi.org/10.1016/S1474-4422(23)00283-1

Introduction

Globally, PD affected approximately 6.1 million people in 2016, with projections estimating a rise to 17.5

million by 2040, owing to an aging population and increased longevity (GBD 2016 Parkinson’s Disease

Collaborators 2018; Dorsey et al. 2018). Notably, ethnic variations in monogenic causes and genetic risk

factors have been observed across different populations. For example, the LRRK2 p.G2019S mutation,

while prevalent in familial and sporadic PD cases in Zambia and Northern Africa, has not been reported

in some sub-Saharan African populations (N. Okubadejo et al. 2008; Cilia et al. 2012; N. U. Okubadejo et

al. 2018; Yonova-Doing et al. 2012).

Africa, a continent of rich ethnic diversity, is home to numerous ethno-linguistic groups spread across its

varied geographical landscapes. In West Africa, with Nigeria being the largest country, the population

primarily belongs to the Niger-Congo phylum. Conversely, North African and Northeast African

populations predominantly fall under the Afroasiatic and Nilo-Saharan phyla (Schlebusch and Jakobsson

2018). However, despite this diversity, comprehensive and high-quality data on the prevalence of PD in

African populations is notably lacking.

The age-standardized prevalence rates of PD, as indicated by the Global Burden of Disease 2016 data,

suggest that sub-Saharan Africa has one of the lowest rates, ranging from 30 to less than 60 cases per

100,000 population. In stark contrast, North Africa exhibits prevalence rates more akin to those observed

in Europe and the Middle East, with notably higher figures (GBD 2016 Parkinson’s Disease Collaborators

2018; Safiri et al. 2023;N. U. Okubadejo et al. 2006; Blanckenberg et al. 2013). Furthermore, PD

prevalence demonstrates a male predominance, being about 1.4 times more frequent in males as per

the 2016 GBD estimates (GBD 2016 Parkinson’s Disease Collaborators 2018). This observation aligns with

previous studies from Africa, which generally report a higher male-to-female ratio, with overall

male:female prevalence ratios ranging between 1.32 and 1.39 (Khedr et al. 2015; El-Tallawy et al. 2013;

Zirra et al. 2023). However, it's crucial to note that most of these data are derived from hospital-based

studies, which might be biased due to higher hospital attendance and health-seeking behaviors for

non-obstetric reasons among men, influenced by a variety of social and cultural factors.

In sub-Saharan Africa, the typical clinical presentation of PD is characterized by a delayed diagnosis,

often at a more advanced stage of the disease. Interestingly, the motor and non-motor manifestations in

these populations appear to be similar to those observed in other regions of the world (O. O. Ojo et al.

2020; Oluwadamilola O. Ojo et al. 2021). In a contrasting context, African Americans have been reported

to exhibit higher rates of cognitive impairment compared to White populations, alongside a lower

propensity for parkinsonism (Bailey et al. 2021) and reduced medication usage (Xie et al. 2021).
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These findings underscore the need for more region-specific and culturally sensitive studies in Africa to

better understand the epidemiology and clinical manifestations of PD. This will not only aid in developing

tailored healthcare strategies but also contribute to the global understanding of PD's diverse

presentations and progression patterns.

GWAS have been instrumental in unraveling the genetics of complex disorders such as PD, and have

been pivotal in elucidating the hereditary aspects of PD in these populations (Leonard et al. 2024). The

most comprehensive GWAS meta-analysis on PD risk to date, focusing on European ancestry, has

identified 90 unique genome-wide significant risk signals, accounting for approximately 16-22% of PD's

inheritable risk (Nalls et al. 2019b; Blauwendraat, Nalls, and Singleton 2020). The largest PD GWAS

meta-analysis in East Asian populations identified two population-specific signals (Foo et al. 2020a), and

a recent GWAS in Latin Americans proposed two potential novel loci for further exploration (Loesch et al.

2021). The first multi-ancestry PD GWAS meta-analysis nominated 11 novel loci, laying the groundwork

for future research aimed at fine-mapping novel genetic regions linked to PD (J. J. Kim et al. 2022).

GWAS are also invaluable tools for improving disease prediction models and expanding our biological

understanding of specific diseases (Sara Bandres-Ciga et al. 2020). Recent genetic studies in European

populations suggest that nearly one-third of PD's genetic heritability can be attributed to polygenic risk

scores (PRSs). Heritability estimates for PD indicate that common genetic variants account for

approximately 22-27% of disease risk. GWAS loci explain 16-36% of this risk, with SNP-based

narrow-sense heritability calculated using LD score regression (LDSC) estimated at about 22%. This LDSC

estimate is considered conservative, while GCTA heritability estimates are slightly higher, around 27%.

Twin studies further support the genetic contribution to PD, suggesting a heritability estimate of 34%

(Nalls et al. 2019a). However, the extent to which PRSs explain heritability in under-researched and

underserved populations remains unknown (Elsayed et al. 2021; Schumacher-Schuh et al. 2022). Despite

these advances, the genetics of PD in non-European populations remains largely uncharted.

African and African admixed populations present unique opportunities for genetic studies of both

monogenic and complex diseases due to their high within-population genetic variability, shorter linkage

disequilibrium (LD) blocks, and the high presence of population-specific alleles (Choudhury et al. 2020).

Studying these populations not only promotes scientific equity and addresses health disparities but also

provides a vital platform for validating the findings from other populations. This approach could lead to

the discovery of novel or unique genetic loci and enhance our understanding of genotype-phenotype

correlations, shedding light on the pathophysiological mechanisms of PD.

Methods

Methodological Framework and Demographic Composition of Participants

Visual overviews of the study design and the participant selection proces are presented in Figure 8 and

Figure 9. The data for this study was sourced from three key entities: the International Parkinson’s
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Disease Genomics Consortium - Africa (IPDGCAN), the Global Parkinson’s Disease Genetics Program

(GP2), and GWAS summary statistics from 23andMe, Inc.

Figure 8: Analysis workflow schematic for the GWAS in African and African Admixed individuals

GWAS: Genome-wide association study; eQTL: Expression quantitative trait loci
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Figure 9: Workflow diagram with case/control breakdown per dataset for GWAS in African and African

Admixed Individuals

IPDGCAN: International Parkinson’s Disease Genomics Consortium - Africa; GP2: Global Parkinson’s Genetics Program; AFR:

African; AAC: African Admixed; GWAS: Genome-wide association study; SNP: single nucleotide polymorphism

* Genotyped samples underwent quality control procedures before taking part in this study

** Summary statistics were obtained via collaboration with 23andMe

IPDGCAN and GP2 Data Collection

The PD cases sourced from efforts in Africa, predominantly from West Africa and specifically Nigeria,

present a limitation in terms of representativeness for the entire African continent. Nonetheless, these

cases offer valuable insights into the genetic underpinnings of PD in this specific region. On the other

hand, the control group in this study is largely derived from global efforts, displaying a higher degree of

genetic admixture. It is important to note that while some individuals are predicted to be of African

ancestry, their specific origin within Africa, particularly Nigeria, cannot be ascertained with absolute

certainty. However, our principal component analysis, in comparison with the 1000 Genomes reference

panel (Figure 10), confirms their unmistakable African heritage. For the purpose of this study, individuals

of African admixed ancestry are defined based on their ancestral similarities to the African ancestry in

Southwest United States of America (ASW) and African Caribbean in Barbados (ACB), as categorized in

the 1000 Genomes project.

Figure 10: African cohort with 1000 Genome populations

IPDGCAN: International Parkinson’s Disease Genomics Consortium - Africa
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In the context of this research, cohorts are defined as groups of individuals who share similar predicted

ancestry and have undergone genotyping, imputation, and processing under uniform quality control

parameters. For the IPDGCAN and GP2 cohorts, ethical approval for participation in genetic studies was

obtained from the respective ethical committees for medical research. Participants in these cohorts

provided informed written consent. Additionally, all cohorts involved in the GP2 initiative are subject to a

rigorous review of consent forms by the Operations and Compliance working group. This review ensures

adherence to the ethical guidelines set by their respective institutional review boards. Consent includes

participation in the initial cohorts and any subsequent studies within the constraints of local laws.

In the studies collected by IPDGCAN and GP2, all participants underwent comprehensive neurological

examinations. These examinations, performed by the study's neurologists, were essential for

documenting the clinical and neurological status of each participant. The diagnosis of PD in these studies

hinged on meeting the criteria set forth by the United Kingdom PD Society Brain Bank (Hughes et al.

1992). This criteria was adhered to with one exception: the exclusion of participants with more than one

affected relative was not a requirement for this study. Individuals who did not receive a PD diagnosis

were classified as control subjects. These controls underwent assessments to identify any signs of

neurological conditions. Any control subjects showing clinical indicators of neurodegenerative diseases

were not included in the study cohort.

IPDGCAN and GP2 Data Generation and Processing

The genotyping process for the IPDGCAN and GP2 studies involved the use of two distinct platforms: the

NeuroBooster array (version 1.0, Illumina, San Diego, CA, USA) and the NeuroChip array (version 1.0,

Illumina, San Diego, CA, USA). The NeuroBooster array is notable for its comprehensive coverage,

featuring a backbone of 1,914,935 variants, as well as including ancestry informative markers, IBD

markers, X-chromosome SNPs for sex determination, and an additional 96,517 customized variants (Sara

Bandres-Ciga et al. 2023).

For the GP2 initiative, sample genotyping was exclusively conducted using the NeuroBooster array. In

contrast, the IPDGCAN initiative used both the NeuroChip array—with its 306,670 backbone variants and

179,467 customized variants (Blauwendraat et al. 2017) —and the NeuroBooster array. The raw

genotype data from these arrays, containing 39,302 and 24,404 reference panel SNPs from

NeuroBooster and NeuroChip arrays respectively, underwent a meticulous process involving a custom

machine learning method for ancestry prediction and pruning, as part of the GenoTools pipeline

(available at https://github.com/GP2code/GenoTools; Koretsky et al. 2022).

The process of ancestry estimation in this study involved a detailed and systematic approach. Initially,

the samples were categorized based on ancestry estimates. These estimates were primarily determined

using reference panels from three major sources: the 1000 Genomes Project (1000 Genomes Project

Consortium et al. 2015), the Human Genome Diversity Project (Siva 2008), and a dataset focused on the
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Ashkenazi Jewish population (Bray et al. 2010). The reference panel for ancestry estimation was

comprehensive, consisting of 703 African, 601 South Asian, 585 East Asian, 534 European, 490 Latin

American, 471 Ashkenazi Jewish, 190 African admixed, 183 Central Asian, 152 Middle Eastern, and 99

Finnish individuals. The reference panel was meticulously curated, excluding palindromic SNPs and

filtering out variants with MAF below 5%, genotyping call rate below 99%, and Hardy-Weinberg

Equilibrium (HWE) P value below 1E-4. The genotype data was then harmonized with the reference

panel, with any missing genotypes imputed based on the mean value of the variant in the reference

panel. For further refinement, GenoTools employed an 80/20 split for the reference panel samples into

training and testing sets. PCs were derived from the overlapping SNPs, and these were transformed via

Uniform Manifold Approximation and Projection (UMAP) to highlight global genetic population

substructure and stochastic variation. These PCs were also used as covariates in our analyses. A linear

support vector machine, was trained on the UMAP-transformed PCs. This classifier demonstrated robust

performance in ancestry prediction, achieving balanced accuracies exceeding 0.95 during 5-fold

cross-validation. These models were then applied to the GP2 and IPDGCAN data to estimate ancestry for

all samples.

Standardized QC measures were applied to all samples. Exclusion criteria for the samples included: a call

rate below 95%, discrepancies between genetically determined sex and clinical data, and excess

heterozygosity indicated by |F| statistics exceeding 0.25. Further refinement involved the removal of

samples exhibiting IBD across more than 12.5% of the genome, which typically indicates a relation as

close as first cousins. SNP-level QC included the exclusion of SNPs failing the Hardy-Weinberg Equilibrium

(HWE) with a P value less than 1E-4 in control samples, along with the pruning of variants for

missingness by case-control status and haplotype, each at a threshold of P≤1E-4.

Additional filters were applied for MAF below <0.5% and HWE P value below 1E-5 before submission to

the TOPMed Imputation server. The TOPMed reference panel, version r2, features data from 97,256

reference samples encompassing over 300 million genetic variants. This panel, as of October 2022,

comprises approximately 180,000 participants with diverse ancestries: 29% African, 19% Latin American,

8% Asian, and 40% European. Further details about the TOPMed study, imputation Server, and Minimac

imputation are documented elsewhere respectively (Taliun et al. 2021; Das et al. 2016; Fuchsberger,

Abecasis, and Hinds 2015), and are accessible at https://imputation.biodatacatalyst.nhlbi.nih.gov.

Following imputation, the data underwent pruning based on a MAC threshold of 10 and an imputation

Rsq of 0.3, ensuring robust and reliable genetic data for subsequent analysis.

For the meta-analysis, we focused specifically on samples with African or African admixed ancestry.

Using ADMIXTURE (v1.3.0;

https://dalexander.github.io/admixture/binaries/admixture_linux-1.3.0.tar.gz), we ran a supervised

analysis, categorizing individuals as 'African' if their African admixture was 90% or more, and as 'African

admixed' if it was less than 90%. The GWAS results were annotated using ANNOVAR v2020-06-08, with

samples clustering within African and African admixed ancestries represented alongside 1000 Genome

populations for visualization in Figure 10 and Figure 11.
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Figure 11: African Admixed cohort with 1000 Genome populations

Principal component analysis plots displaying African admixed samples under study (red) with 1000 Genome populations including Africans from

the Southwest of the US (yellow) and African Caribbeans (brown)

Quality control and imputation for the 23andMe data set were performed separately and differently

from the IPDGCAN and GP2 datasets. The age distribution of these cohorts is visualized in Figure 12.

Figure 12: Age distributions of cohorts involved in studying susceptibility of risk in the African and

African admixed populations

IPDGC: International Parkinson’s disease Genomics Consortium; GP2: Global Parkinson’s Genetics Program; AFR: African

23andMe Data Collection

The participants from 23andMe consented to take part in this research voluntarily, agreeing to the

research protocol approved by the external AAHRPP-accredited IRB, Ethical & Independent (E&I) Review

Services. As of 2022, this entity is a part of Salus IRB (https://wwwversiticlinicaltrialsorg/salusirb).
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23andMe Data Generation and Processing

The 23andMe relied on self-reported information. This method involved recruiting PD patients through a

collaborative effort with organizations such as the Michael J. Fox Foundation and The Parkinson’s

Institute and Clinical Center, as well as various PD patient groups and clinics. Recruitment materials,

including emails and hard copy mailings, were sent to individuals affiliated with these groups who had

identified themselves as PD patients. Only individuals who self-reported a PD diagnosis were considered

PD cases for this study. However, those who reported either a change in their PD diagnosis or uncertainty

about their diagnosis were excluded from further analysis. Prior research has demonstrated that

self-reported PD status is generally as reliable as clinically diagnosed PD (Heilbron et al. 2019). Any

individual with a self-reported history of atypical parkinsonism (e.g., dementia with Lewy bodies,

progressive supranuclear palsy, multiple system atrophy, corticobasal degeneration) or non-parkinsonian

tremor disorders was also excluded. Furthermore, a PD GWAS meta-analysis revealed a strong genetic

correlation between self-reported PD cases in the 23andMe GWAS data and clinician-ascertained PD

cases in non-23andMe GWAS datasets (genetic correlation from LDSC (rG) = 0.85, SE = 0.06; Nalls et al.

2019b).

23andMe participants were genotyped using one of five different platforms, each with varying amounts

and types of SNPs. The platforms ranged from the Illumina HumanHap550+ BeadChip with

approximately 560,000 SNPs to the Illumina Infinium Global Screening Array with around 640,000

variants. The genotyping platforms were designed to capture a wide array of genetic diversity and were

standardized for research purposes. Samples that failed to reach a 98.5% call rate were re-genotyped,

and participants with repeatedly failed analyses were contacted for additional samples. Across all

platforms, a total of 1,522,458 variants were genotyped.

The ancestry classification for the 23andMe dataset employed an algorithm that compared the

genome-wide content of 23andMe with an in-house customer reference panel consisting of 14,393

individuals. This process was carefully controlled by removing related individuals and those whose

genetic ancestry did not align with their survey answers. A total of 45 ancestry populations were

identified through principal component analysis using data from various genetic projects. The classifier

algorithm partitioned phased genotyped data into windows and used a support vector machine to

classify haplotypes into one of 45 worldwide reference populations. These classifications were then fed

into a hidden Markov model (HMM) to refine the ancestry estimates, with recalibration using simulated

admixed individuals. The final ancestry composition included six higher-level populations.

For African Americans and Latin Americans, whose ancestry compositions are varied, a logistic classifier

was employed to differentiate between these groups based on the length of segments of European,

African, and American ancestry.

In the 23andMe phasing process, they constructed a high-quality phasing panel by selecting 200,000

African American participants, each with less than 5% missingness in their genotyping data. 23andMe

ensured the inclusion of only high-quality variants by focusing on SNPs, with criteria such as a MAF of at
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least 0.1%, less than 5% missingness per variant, a correlation greater than 0.9 with sequence data, and

MAF consistency with the gnomAD database. Additionally, 23andMe performed male heterozygosity

tests on the non-pseudoautosomal regions of the X chromosome. The phasing of participant genotyping

data was carried out using SHAPEIT4, tailored to each specific genotyping platform (Delaneau et al.

2019).

The imputation process at 23andMe employed two key reference panels for imputation: the Human

Reference Consortium (HRC) panel, accessible from the European Genome-Phenome Archive at the

European Bioinformatics Institute (accession EGAD00001002729), and the 23andMe reference panel,

developed using a combinated of internal and external WGS datasets. The HRC panel, comprising 27,165

samples, were adjusted to the hg38 human genome reference sequence, with those moving to different

chromosomes during this 'liftover' process being excluded. Subsequently, these variants were re-phased

using SHAPEIT4, and singletons (variants appearing in only one individual) were removed. The finalized

HRC panel included an array of 39,057,040 SNPs.

The 23andMe reference panel was curated from 12,217 samples, selected from both internal and

external sources (Supplementary Table 16). This panel's composition provides a broad and diverse

genetic representation, essential for accurate imputation. Imputation was conducted using Beagle 5.31,

targeting 85 million variants across the entire panel. This process was tailored according to the origin of

the variants: those unique to the HRC panel were imputed using HRC samples, those exclusive to the

23andMe panel were imputed with 23andMe samples, and variants common to both panels were

imputed using a combined sample set. Imputation was performed independently for each genotyping

platform used by 23andMe.

To ensure the validity of their GWAS, 23andMe meticulously selected unrelated individuals using a

segmental IBD estimation algorithm. Individuals were defined as related if they shared more than 700

centimorgans IBD, approximating the genetic sharing expected between first cousins in an outbred

population. In selecting participants for phenotype analyses, cases were prioritized over controls to

maximize the case sample size, retaining cases in instances where both a case and control were related.

For the 23andMe GWAS, they conducted logistic regression analyses on both genotyped and imputed

SNPs, assuming additive allelic effects. They incorporated covariates such as age, sex, the top five PCs,

and genotype platform indicators to account for potential confounding factors. The association test P

values reported were derived from a likelihood ratio test, with X chromosome results treated similarly,

coding male genotypes as homozygous diploid. 23andMe flagged SNPs genotyped only on their older

platforms (v1/v2) due to their smaller sample sizes and those on chromosomes M and Y where calling is

less reliable. Using trio data, they assessed parent-offspring transmission, flagging SNPs that deviated

significantly from expected inheritance patterns. They also considered the call rate, date of genotyping,

sex effects, and probe reliability, flagging SNPs that failed.

For imputed results, they flagged SNPs with low imputation quality (r2<0.5) and those showing evidence

of batch effects related to genotyping platforms. Across all their GWAS results, SNPs with insufficient

sample size or problematic logistic regression results were also flagged.
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Assessment of Risk, Age of Onset, and Analysis of Genetic Admixture

To assess the risk associated with PD, I analyzed imputed dosages using a logistic regression model.

These imputed dosages are genotype probabilities for a variant being A/A, A/B, or B/B, ranging from 0 to

2, and they incorporate a degree of uncertainty. My analysis was adjusted for several covariates,

including sex, age, and the first ten PCs. These PCs were initially fitted on the set of SNPs overlapping

between our datasets and the reference panel, to represent the underlying population substructure

more accurately. I used the age at onset (AAO) for PD cases and the age at recruitment for control

subjects. In cases where the AAO was unavailable (which was less than 6% of individuals), I used the age

at recruitment as a substitute. Additionally, for those individuals who did not provide any age

information, which was less than 5% and 2% of cases and controls respectively, I imputed an average

age.

For generating summary statistics, I employed PLINK 1.9 and 2.0 (Purcell et al. 2007). I ensured that only

data meeting a minimum imputation quality of 0.30 and a MAF greater than 5% were included in the

analysis. To explore the impact of genetic variation on the AAO of PD cases, I performed a linear

regression analysis, adjusting for the same covariates. In this analysis, AAO was defined based on the

self-reported date of the first motor symptom.

Furthermore, we conducted linear regression analyses to examine the correlation between potential

GWAS signals and levels of genetic admixture. All these analyses were carried out on the Terra platform

(https://app.terra.bio/). For the GWAS, I focused on African and African admixed ancestries

independently, using PLINK and applying a Bonferroni correction threshold of 5E-8 prior to conducting

meta-analysis. To synthesize the summary statistics from all sources, I used fixed-effects meta-analyses,

as implemented in METAL (Willer, Li, and Abecasis 2010). For calculating pairwise LD values, I relied on

data from the 1000 Genomes Project’s African population, accessed through LD link

(https://ldlink.nci.nih.gov/?tab=home). Finally, the colocalization of association summary statistics was

visualized using LocusCompareR (version 1.0; https://github.com/boxiangliu/locuscomparer).

Logistic Regression

In my research, I focused on estimating the risk associated with PD by analyzing imputed dosages. These

imputed dosages represent the genotype probabilities for a variant to be either A/A, A/B, or B/B, ranging

from 0 to 2. These probabilities take into account certain levels of uncertainty. My analysis employed a

logistic regression model, adjusted for covariates including sex, age, and the first ten PCs.

Logistic regression is chosen over linear regression as the foundational model in GWAS when dealing

with a binary phenotype, in this study positive disease cases compared to neurologically healthy

controls, to assess the relationship between the genotype and the logarithm of the odds of developing

the disease. The additive model, which was the chosen approach for this study, can be articulated as

follows:

𝑙𝑜𝑔 𝑃𝑟(𝑌=1|𝑋=𝑥)
𝑃𝑟(𝑌=0|𝑋=𝑥) = µ + 𝑥β
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In this model, µ represents the logarithm of the odds, commonly referred to as 'log-odds', for genotype

0. Meanwhile, β signifies the log of the odds ratio (logOR) between genotype 1 and genotype 0. The

exponential of β (exp(β)) corresponds to the actual odds ratio (OR). Furthermore, the logOR between

genotypes 2 and 0 is denoted as 2β. This model operates additively on the log-odds scale, which

translates to a multiplicative function on the odds scale.

Linear Regression

Linear regression has been a fundamental tool for identifying genetic variants associated with

continuous traits in GWAS. Specifically, I applied linear regression to investigate how genetic variations

influence the AAO of PD cases. This analysis was carefully adjusted for critical covariates such as sex, age,

and the first ten PCs. In this context, AAO was precisely defined as the self-reported date when the first

motor symptom was experienced. Moreover, my research extended to conducting linear regression

analyses aimed at understanding the relationship between potential GWAS signals and levels of genetic

admixture.

The foundational concept of simple linear regression, which underpins these analyses, can be

summarized by the equation . In this formula, represents the response or dependent𝑦 = 𝑚𝑥 + 𝑏 𝑦
variable, which, in the case of my study, pertains to the AAO of PD. The term denotes the predictor or𝑥
independent variable, which refers to the specific genetic variations under examination. The coefficient

is the estimated slope of the regression line, indicating the rate of change in the response variable per𝑚
unit change in the predictor. Lastly, is the estimated intercept, representing the expected value of the𝑏
response variable when the predictor is zero. This linear regression framework enables a systematic

exploration of the genetic factors influencing the onset and progression of PD.

Power Calculations to Estimate Sample Size Requirements

Power calculations were performed to accurately forecast the number of additional PD cases required to

achieve genome-wide significance with 80% power. This calculation was particularly focused on variants

with minor allele frequencies and effect estimates typical of common genetic variations identified

through GWAS. Additionally, these calculations were based on a disease prevalence rate of 0.6% (as per

the Global Burden of Disease Study). For this purpose, we used the publicly available Genetic Association

Study (GAS) power calculator from the University of Michigan

(https://csg.sph.umich.edu/abecasis/cats/gas_power_calculator/). This tool employs an additive genetic

model, which is appropriate for the kind of genetic analysis typical in GWAS. The additive model

assumption is crucial as it aligns with the nature of the genetic variants typically observed in complex

diseases like PD. Power calculations help in determining the appropriate sample size to detect an effect

of a given size with a specified level of confidence. By using this tool, I was able to estimate the

additional number of PD case samples needed to robustly detect genetic variants that contribute to the

disease's risk. This estimation is vital for planning future studies, ensuring they are adequately powered

to detect clinically and biologically relevant genetic associations.
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Population Attributable Risk

I extended the analysis of PD risk to include the estimation of population attributable risk (PAR), which

quantifies the proportion of disease cases in the population that can be linked to a specific genetic

variant. The PAR is particularly informative as it encompasses both the prevalence of the variant,

represented by the MAF, and the strength of its association with the disease, indicated by the OR. The

computation of PAR is based on the following formula:

𝑃𝐴𝑅 =  𝑀𝐴𝐹*(𝑂𝑅−1)
𝑀𝐴𝐹*(𝑂𝑅−1)+1

This equation integrates the increased risk associated with the genetic variant (OR - 1) with its frequency

within the population (MAF), providing a metric that captures the impact of the variant on the disease

burden in the population. In the logistic regression framework, the PAR is derived from the genotype

probabilities, which are the outcomes of imputed dosages, and the covariate-adjusted ORs. The

calculation of PAR thus allows me to ascertain the public health implications of genetic findings by

estimating the overall disease cases that could potentially be prevented if the effects of the risk alleles

were mitigated.

Conditional Analysis

Conditional analysis was performed to assess any additional association signals at the specifically

nominated GBA1 locus. This analytical approach entailed conducting an association analysis while

conditioning on the primary associated SNP at the GBA1 locus, identified as rs3115534. The objective

was to determine if there existed additional SNPs at this locus that were significantly associated in a

manner independent of the primary SNP.

To achieve this, I conducted conditional analysis using individual-level genotype data. However, it's

important to note a key limitation in this approach: the summary statistics obtained from the 23andMe

study were not incorporated into these estimations. This exclusion was a necessary consideration in the

methodology, as it impacted the comprehensiveness and the scope of the secondary signal identification

within the GBA1 locus. Despite this limitation, the conditional analysis provided valuable insights into the

genetic complexity and the potential independent genetic contributors at the GBA1 locus.

Fine-mapping and Haplotype Analysis

We conducted fine-mapping analyses to prioritize potential causal variants within the identified GBA1

risk haplotype. This process was conducted using the R package 'coloc' (available at

https://CRAN.R-project.org/package=coloc). The primary goal was to pinpoint putative causal variants

across the LD block that harbored the genome-wide signal. The specific methodology we employed was

the "approximate Bayes Factor fine-mapping under a single causal variant assumption" provided by the

'coloc' package. This approach evaluates the posterior probabilities of each SNP being the causal variant

within a given locus. For this analysis, I calculated the posterior probabilities (PP) for the region in

question, adhering to the default prior probability setting of 1E-4. This setting was based on the

assumption that there is a single causative variant per locus.
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The rationale behind using Bayesian genetic fine-mapping in genetic studies is to identify specific causal

variants within GWAS loci that are responsible for each association. This is achieved by reporting credible

sets of plausible causal variants. These sets are interpreted as containing the causal variant with a

pre-defined level of coverage probability. By applying this method to the LD block containing the

genome-wide signal, I aimed to provide a more nuanced understanding of the genetic architecture

within the GBA1 locus, enhancing our insights into its role in disease manifestation. This approach is

particularly valuable in the context of complex genetic disorders, where identifying the specific genetic

variants that contribute to disease risk can be challenging.

In this study, we also compare haplotype sizes using individual-level data from African, African admixed,

and European PD cases. A critical step in this process was the standardization of the three datasets,

ensuring that only the same genotyped SNPs that passed identical QC steps were included in the

analysis. This harmonization of data was crucial for the integrity and comparability of the results. For the

actual determination of the haplotype blocks, I employed PLINK 1.9, using its default parameters. This

software estimates haplotype blocks based on Haploview's interpretation of block definitions. An

important aspect of this method is that it considers only pairs of variants located within a 200-kilobase

(kb) range of each other. This approach is designed to ensure a focused and relevant analysis of genetic

linkage. The criterion for two variants to be regarded as in strong LD within this framework is stringent. It

requires that the lower bound of the 90% D-prime CI is greater than 0.70, and simultaneously, the upper

bound of the CI must be at least 0.98. This dual threshold ensures a high degree of confidence in the

identification of strong LD between variants.

Glucocerebrosidase Activity Assay

For this study, our team acquired patient-derived lymphoblastoid cell lines (LCLs) from the Coriell

repository ([Coriell Institute for Medical Research; https://www.coriell.org/). These LCLs were

maintained in suspension culture conditions, using RPMI 1640 medium (ThermoFisher Scientific,

11875093) supplemented with 2mM Glutamax (ThermoFisher Scientific, 35050061), and 15% FBS

(ThermoFisher Scientific, A3160501). The cultivation was carried out at a controlled temperature of 37°C

and in an atmosphere containing 5% CO2.

For protein extraction from these LCLs, we employed a citrate-phosphate buffer (0.2 M Na2HPO4, 0.1 M

citrate, protease inhibitor, pH 5.8, Millipore Sigma, 11836170001), activated with 0.25% Triton X-100. To

assess glucocerebrosidase (GCase) activity, we conducted a fluorometric assay using

4-methylumbelliferone (4-MU, Sigma Aldrich, M1381). This assay was performed in quadruplicate,

adhering to the protocol previously reported (Peters, Lee, and Glew 1975), with an adjusted incubation

time of 2.5 hours. Each assay sample comprised 5E6 cells, with protein concentrations normalized to 0.7

mg/mL using the BCA Protein Assay (Thermo Fisher Scientific 23225).

To analyze the trends in GCase enzymatic activity among different genetic groups, I used the Welch

two-sample t-test. This test was specifically implemented to compare the GCase activity between
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individuals homozygous for the rs3115534-GG risk allele and those heterozygous for the rs3115534-GT

allele, as well as between rs3115534-GG homozygous risk allele carriers and rs3115534-TT homozygotes

for the non-risk allele. The Welch’s t-test is particularly suited for this analysis as it assumes normal

distribution in both groups but does not require equal variances.

The test statistic is calculated using the formula:
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The degrees of freedom for this test are determined by the formula:
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This formula accounts for the differences in standard deviations (SD) between the two samples. It is

noteworthy that if both samples have identical SDs, the degrees of freedom for Welch’s t-test coincide

with those of the Student's t-test.

Short- and Long-read Whole Genome Sequencing

To delve deeper into the novel GWAS signal identified, WGS analyses were conducted on a cohort

comprising 206 individuals. This group included 141 PD cases and 65 controls, among which there were

39 GBA1 rs3115534-GG carriers, 69 rs3115534-GT carriers, and 98 rs3115534-TT carriers. The short-read

WGS DNA sequencing for this cohort was performed by Psomagen. Additionally, Oxford Nanopore

Technologies (ONT) long-read whole-genome sequencing data was generated for a select group of

individuals: five carrying the GBA1 rs3115534-GG allele, two heterozygotes, and six carriers of the GBA1

rs3115534-TT allele. The extraction of high molecular weight DNA was conducted from either frozen

blood samples or cell lines.

For the short-read WGS process, Psomagen quantified the starting genomic DNA material using a

fluorescence-based Picogreen assay (ThermoFisher, cat. #P7589) and verified DNA integrity via genomic

DNA screen tape (Agilent Technologies, cat. # 5067-5365/5067-5366) on a TapeStation 4200 (Agilent

Technologies). Approximately 0.5 g of genomic DNA (gDNA) served as the input for Truseq PCR-freeµ
library construction. The fragmentation of gDNA to an insert size of 350 bp was achieved using
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LE220-plus Focused-ultrasonicator (Covaris), followed by a series of purification and validation steps,

culminating in adapter ligation and final library validation using KAPA Library Quantification Kits (Roche,

cat. #07960298001) on a Light cycler 480 (Roche). The validated library was then normalized and loaded

onto a Novaseq6000 for sequencing.

For data processing, we employed the functional equivalence pipeline (Regier et al. 2018) at the Broad

Institute for alignments and variant calls against the GRCh38DH reference genome. We adhered to the

quality metrics defined by the AMP-PD initiative (https://amp-pd.org; Iwaki et al. 2021) for sample-level

WGS quality control. High-quality variants were identified following the Broad Institute's joint discovery

pipeline, with stringent criteria for variant quality score recalibration. We also performed specialized

calling of GBA1 variants using Gauchian (v1.0.2; Toffoli et al. 2022) and genotyped known neurological

repeat expansions with STRipy (v2.2; Halman, Dolzhenko, and Oshlack 2022). Variants meeting quality

control standards were annotated using ANNOVAR (Kai Wang, Li, and Hakonarson 2010). The CRAM files

were visualized using the IGV web browser (Robinson et al. 2011).

For the long-read sequencing, DNA extraction from blood samples used the Kingfisher APEX instrument

and the Nanobind CBB Big DNA kit (HBK-CBB-001), while frozen cell pellets underwent manual extraction

using the same kit following the protocol by Kolmogorov and colleagues (Kolmogorov et al. 2023;

https://dx.doi.org/10.17504/protocols.io.q26g74169gwz/v1). Post size-selection using the Circulomics

Short Read Eliminator Kit (SS-100-101-01), libraries were prepared with the SQK-LSK 110 Ligation

Sequencing Kit from ONT and sequenced on a PromethION R9.4.1 flow cell for 72 hours.

The raw signal data obtained in Fast5 files from minKNOW v22.10.7 (ONT) underwent super accuracy

basecalling with Guppy v6.12. The Fastq files that passed quality control were mapped to the GRChg38

reference genome using winnowmap (v2.03; Jain et al. 2022), and structural variants were called using

Sniffles2 (v2.0.3; Smolka et al. 2022) with default parameters and the “–-tandem-repeats'' option. This
comprehensive approach allowed for an in-depth exploration of the genetic landscape associated with

the GBA1 signal in our PD samples.

Polygenic Risk Profiling

Polygenic risk score (PRS) analysis for PD was performed as follows. Briefly, a PRS was calculated

incorporating effect estimates from the European meta-GWAS summary estimates for the 90 SNPs

previously associated with PD risk in European populations (Nalls et al. 2019b). Risk allele dosages were

counted, then summed and a genetic risk score was generated across all loci in both African and African

admixed data. All SNPs were weighted by their published betas, giving greater weight to alleles with

higher risk estimates. PRSs were standardized to have a mean of 0 and SD of 1. Then, a logistic regression

was performed regressing disease status against PRSs using PLINK’s “--score” option. Risk profiling

analysis was adjusted for age, sex, and PCs one through 10. I repeated these steps using the African

admixed effect estimates from the 23andMe summary statistics for those same 90 SNPs identified by the

European meta-GWAS assessing PD risk susceptibility (Nalls et al. 2019b).
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Runs of Homozygosity

Based on an LD-pruned data set (using previously described parameters), runs of homozygosity (ROHs)

were defined using PLINK 1.9 to assess potential over-representation of sharing recessive regions in

cases versus controls. Here, we evaluated the largest individual-level dataset (GP2; African individuals;

Table 9), where samples genotyped on the NeuroBooster array included 711 African cases and 1,011

African controls. I explored ROHs containing at least 10 SNPs and a total length greater or equal to 1,000

Kb, with a rate of scanning windows of at least 0.05 (not containing >1 heterozygous call or 10 missing

calls). In order to explore overall homozygosity between cases and controls, three metrics were assessed,

including the number of homozygous segments spread across the genome, total kilobase distance

spanned by those segments, and average segment size on autosomes only.

African predicted ancestry African admixed predicted ancestry*

Nigerian origin (IPDGC

cohort)

African, broad

unspecified origin

(GP2 dataset)†
African admixed

origin (GP2 dataset)§

African admixed

origin (23andMe

dataset)

Total participants 589 1,722 1,334 194,273

Recruited from

Nigerian sites 589 (100%) 1,330 (77%) 50 (4%) N/A

Cases 304 711 185 288

Recruited from

Nigerian sites 304 (100%) 672 (95%) 16 (9%) N/A

Female 80 (26%) 206 (29%) 80 (43%) N/A

Male 224 (74%) 505 (71%) 105 (57%) N/A

Controls 285 1,011 1,149 193,985

Recruited from

Nigerian sites 285 (100%) 658 (65%) 34 (3%) N/A

Female 97 (34%) 448 (44%) 714 (62%) N/A

Male 188 (66%) 563 (56%) 435 (38%) N/A

Case age at onset,

years 58.20 (9.67) 59.31 (11.37) 57.84 (14.69) N/A

Control age at

examination, years 64.4 (7.56) 65.09 (9.55) 66.34 (8.71) N/A

Array NeuroChip NeuroBooster NeuroBooster

Omni Express & GSA

& 550k
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Table 9: Demographic and clinical characteristics of the cohorts under study in African and African

admixed GWAS

Data are n, n (%) or mean (SD). N/A=not available

*African admixed defined as individuals ancestrally similar to the following 1000 Genomes project

(https://www.internationalgenome.org/) ancestry labels: African ancestry in Southwest United States of America (abbreviated

as ASW in the 1000 Genomes project) and African Caribbean in Barbados (abbreviated as ACB in the 1000 Genomes project)

†GP2 cohorts with predicted African ancestry include Baylor College of Medicine (https://www.bcm.edu/), BioFIND

(https://biofind.loni.usc.edu/), BLAAC PD (https://www.blaacpd.org/), Coriell (https://www.coriell.org/), Movement Disorders

Genotypes and Phenotypes – King’s College London (MDGAP-KINGS; further details at

https://gp2.org/the-components-of-gp2s-third-data-release/), PPMI (https://www.ppmi-info.org/), PAGE

(https://www.pagestudy.org/), University of Maryland (https://umd.edu/), and IPDGCAF-NG (https://www.ipdgc-africa.com/)

§GP2 cohorts with predicted African admixed ancestry include Baylor College of Medicine, BioFIND, BLAAC PD, Coriell,

MDGAP-KINGS, PPMI, PAGE, University of Maryland, Systemic Synuclein Sampling Study (S4;

https://pubmed.ncbi.nlm.nih.gov/28353371/), and IPDGCAF-NG

Results

Recruitment and Composition of Study Cohorts for GWAS Meta-Analysis

In this study, we used data from three distinct datasets, namely GP2, 23andMe, and IPDGCAN, to

conduct a GWAS meta-analysis. This analysis encompassed a total of 1,488 individuals identified as cases

and 196,430 participants classified as controls. Importantly, all these participants were of African or

African admixed ancestry (detailed in Figure 9). To provide a comprehensive view of the cohorts, I have

detailed their demographic and clinical characteristics in Table 9.

Figure 13: African Parkinson’s disease risk GWAS

Manhattan plot displaying the association statistical significance as –log10(p-value) in the y-axis against chromosomes in the

x-axis at a genome scale (Bonferroni correction highlighted at 5E-8). Quantile-quantile plot displaying genetic data distribution; λ
GC: Lambda value representing genomic inflation
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Genome-Wide Association Studies in African and African Admixed Populations Highlighting the GBA1

Locus

My initial research involved conducting a GWAS focusing on PD risk within the African population,

predominantly comprising individuals of Nigerian descent. This study included 997 PD cases and 1,294

control subjects. Of these, 693 PD cases and 1,009 controls were genotyped using the NeuroBooster

array, while the remaining 304 PD cases and 285 controls were analyzed using the NeuroChip array

(λ=1.01; Figure 13). The results highlighted a genome-wide significant SNP at the GBA1 locus, specifically

rs3115534 located in intron 8 of GBA1, 34 nucleotides upstream of exon 9, which emerged as the

primary variant associated with increased PD risk (Table 10 and Figure 13; rs3115534; OR=1.58; 95% CI =

1.35 - 1.84, P=3.44E-09). Interestingly, despite examining common variation typically associated with PD

risk (MAF > 5%), this variant exhibited a high OR. The study deduced that each additional G allele of

rs3115534 increased the odds of developing PD by 1.58 times. Concurrently, I conducted a GWAS in the

African admixed population, using data from African-American and Afro-Caribbean cohorts within the

GP2 initiative, supplemented by 23andMe African-American summary statistics. This analysis involved

467 PD cases and 195,120 controls (λ=1.01; Figure 14), but did not nominate any genome-wide

significant hits.

rsID Allele1 Allele2 Effect StdErr P-value Direction HetISq HetChiSq HetDf HetPVal R2 TYPE Func.refGene

rs3115534 T G -0.4579 0.0775 3.44E-09 -- 20.9 1.264 1 0.2609 0.9706 IMPUTED intronic

rs59025885 T C 0.4178 0.0761 3.97E-08 ++ 32.8 1.488 1 0.2225 0.98373 IMPUTED intergenic

Table 10: Genome-wide significant SNPs identified in the African only GWAS meta-analysis
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Figure 14: African Admixed Parkinson’s disease risk GWAS

Manhattan plot displaying the association statistical significance as –log10(p-value) in the y-axis against chromosomes in the

x-axis at a genome scale (Bonferroni correction highlighted at 5E-8). Quantile-quantile plot displaying genetic data distribution; λ
GC: Lambda value representing genomic inflation

Subsequently, I performed a comprehensive GWAS meta-analysis incorporating all African and African

admixed datasets (Figure 15), which totaled 1,488 cases and 196,430 controls. This analysis revealed that

35 SNPs in proximity to GBA1 were significantly associated with PD risk, demonstrating consistent effect

directionality. The two most distant of these SNPs were separated by approximately 639,773 base pairs

(Supplementary Table 19). Conditional analyses focusing on the top two SNPs indicated a singular causal

signal, primarily driven by rs3115534 as the lead SNP (Figure 15). Notably, the rs3115534-G allele was

more prevalent in African and African admixed populations compared to other groups, with an allele

frequency of 0.16 in gnomAD (accessed July 2023) and 0.21 according to the African 1000 Genomes

panel. Similar frequencies were observed in the African (cohort MAF = 0.25; affected MAF = 0.33;

unaffected MAF = 0.19) and African admixed datasets (cohort MAF = 0.14; affected MAF = 0.22;

unaffected MAF = 0.13) used in this study. Furthermore, the rs3115534-G allele frequency was notably

higher in Nigerian populations (Table 11). Linear regression analysis demonstrated a positive association

between the GBA1 rs3115534 variant and a higher percentage of African ancestry (BETA = -0.001, SE=

0.0005, P = 0.011), suggesting a potential genetic link to ancestry in PD risk.

Figure 15: African and African Admixed GWAS Meta-analysis assessing Parkinson’s disease risk

Manhattan plot displaying the association statistical significance as –log10(p-value) in the y-axis against chromosomes in the

x-axis at a genome scale (Bonferroni correction highlighted at 5E-8). Quantile-quantile plot displaying genetic data distribution; λ
GC: Lambda value representing genomic inflation

Population Allele frequency (count) Genotype frequency (count)

African Caribbean Black (ACB) G: 0.198 (38) T: 0.802 (154) G|G: 0.010 (1) G|T: 0.375 (36) T|T: 0.615 (59)

African Ancestry in Southwest USA (ASW) G: 0.115 (14) T: 0.885 (108) G|T: 0.230 (14) T|T: 0.770 (47)
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Esan in Nigeria (ESN) G: 0.303 (60) T: 0.697 (138) G|G: 0.061 (6) G|T: 0.485 (48) T|T: 0.455 (45)

Gambian in Western Division (GWD) G: 0.173 (39) T: 0.827 (187) G|G: 0.044 (5) G|T: 0.257 (29) T|T: 0.699 (79)

Luhya in Webuye, Kenya (LWK) G: 0.177 (35) T: 0.823 (163) G|G: 0.061 (6) G|T: 0.232 (23) T|T: 0.707 (70)

Mende in Sierra Leone (MSL) G: 0.171 (29) T: 0.829 (141) G|G: 0.024 (2) G|T: 0.294 (25) T|T: 0.682 (58)

Yoruba in Ibadan (YRI) G: 0.282 (61) T: 0.718 (155) G|G: 0.074 (8) G|T: 0.417 (45) T|T: 0.509 (55)

Total African (AFR) G: 0.209 (276) T: 0.791 (1046) G|G: 0.042 (28) G|T: 0.333 (220) T|T: 0.625 (413)

Table 11: Allele frequencies for GBA1 - rs3115534 in African and African admixed subpopulations

Variant

Base

change

Functional

consequence Genetic variant

Cases with

functional

variant (n)

Controls with

functional

variant (n)

rs31155

34-GG

carriers

(n)

rs31155

34-GT

carriers

(n)

rs31155

34-TT

carriers

(n)

chr1:15523624

9:A:C A→C

Non-synonymous

SNV Ile320Ser 1 0 0 1 0

rs149487315 C→T

Non-synonymous

SNV Met313Ile 1 0 0 0 1

rs143222798 C→T Synonymous SNV Gly277Gly 6 3 0 6 3

rs61748906 A→G

Non-synonymous

SNV Trp136Arg 1 0 1 0 0

rs368786234 G→T

Non-synonymous

SNV Ser77Arg 1 0 0 1 0

rs761621516

GTA→del

etion

Non-frameshift

deletion

Trp75del

(222_224del) 1 0 0 1 0

rs150466109 T→C

Non-synonymous

SNV Lys13Arg 12 8 0 10 10

Table 12: Functional coding variants identified by short-read whole genome sequencing in carriers of the

novel GBA1 rs3115534 variant

Analyses were done in 141 cases and 65 controls. All variants were on chromosome 1, were exonic, and were heterozygous.

SNV=single nucleotide variant.

Functional Analysis of GWAS Signal through Whole Genome Sequencing and Splicing Prediction

To explore a potential functional coding variant that might be responsible for the novel GWAS signal but

remained undetected through standard genotyping or imputation methods, we conducted short-read

WGS analyses on a cohort comprising 206 individuals. This group included 141 PD cases and 65 controls,

with 39 individuals being GBA1 rs3115534-GG carriers, 69 carrying the rs3115534-GT genotype, and 98

having the rs3115534-TT genotype. The correlation between the short-read WGS data and the imputed
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genotyped data for rs3115534 was remarkably high at 96.6%, thus affirming the reliability and accuracy

of the imputed data. However, no discernible differences in coding variation were noted between

carriers and non-carriers of the GWAS signal (Table 12). To further investigate, we applied the Gauchian

algorithm, a specialized variant caller designed for the GBA1 gene, analyzing WGS BAM files. The

Gauchian algorithm is particularly adept at addressing issues arising from the high sequence similarity

between GBA1 and its pseudogene paralog, GBAP1. Despite this advanced approach, the algorithm did

not uncover any genetic rearrangements that could elucidate the GWAS signal.

Subsequently, ONT WGS long-read sequencing data was generated for a select group of individuals: five

rs3115534-GG PD cases, two rs3115534-GT carriers, and six rs3115534-TT controls. This long-read data

was then compared to the short-read WGS data for a known structural variant carrier, previously

identified in African American populations by Tayebi and colleagues (Tayebi et al. 2000; Supplementary

Figure 10). Despite this comprehensive analysis, no structural variants that could explain the GWAS

signal were detected.

Additionally, I used splice prediction tools available at www.phenosystems.com to assess the potential

impact of these variants on normal splicing processes. These tools did not predict any significant

alterations in normal splicing patterns, though this requires further validation.

Evaluating the Additive Effect of the GBA1 Risk Allele and Its Influence on Age at Onset in PD

I focused on determining the additive effects of the GBA1 rs3115534-G risk allele and exploring its

influence on the AAO of PD. To ascertain whether the risk allele's impact was additive, I calculated the

frequency of homozygotes for the risk allele and compared it with that of heterozygotes in both PD cases

and controls and reported the risk ratios (Table 13).

Risk ratios are calculated as follows:

𝑅𝑅 = 𝑅𝑖𝑠𝑘 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑖𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡
𝑅𝑖𝑠𝑘 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒 𝑖𝑛 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡

This analysis was complemented by a follow-up examination of the association between this specific

GBA1 variant and AAO. Employing linear regression analyses, I assessed 711 cases of African ancestry

and 185 cases of African admixed ancestry. These analyses revealed that the GBA1 rs3115534-G allele

acts as a modifier of AAO in PD (African ancestry: BETA =-2.004, SE = 0.57, P = 0.0005; African-admixed:

BETA = -4.15, SE =0.58, P =0.015; Meta-analysis: BETA =-3.06, SE =0.40, P = 0.008). This implies an earlier

PD onset by approximately three years for each additional risk allele (Figure 16).
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Table 13:

rs3115534 Zygosity Information between Cases and Controls across Datasets

98

Dataset Phenotype Genotype Counts Total Frequency Risk Ratio

Africans (AFR)

in NeuroChip

Cases

G/G 38 265 0.143 1.944

G/T 120 265 0.453 1.052

T/T 107 265 0.404 1.228

Controls

G/G 18 244 0.074

G/T 105 244 0.430

T/T 121 244 0.496

Africans (AFR)

in GP2

Cases

G/G 92 687 0.134 4.259

G/T 278 687 0.405 1.209

T/T 317 687 0.461 1.374

Controls

G/G 31 986 0.031

G/T 330 986 0.335

T/T 625 986 0.634

African Admixed

(AAC) in GP2

Cases

G/G 11 183 0.060 3.807

G/T 61 183 0.333 1.387

T/T 111 183 0.607 1.226

Controls

G/G 18 1140 0.016

G/T 274 1140 0.240

T/T 848 1140 0.744

African Admixed

(AAC) in 23andMe

Cases
G/G 10 288 0.035 1.904

G/T 85 288 0.295 1.273

Controls
G/G 3,537 193,985 0.018

G/T 44,967 193,985 0.232



Figure 16: GBA1 - rs3115534 Genotypes versus age at Parkinson’s disease onset

rs3115534-GG versus age at onset; BETA =-1.96, SE = -0.64, P=0.002;

rs3115534-GT versus age at onset; BETA =-2.28, SE =0.85 , P=0.007

Furthermore, to investigate the allele's additive nature, I analyzed individual-level data from IPDGCAN

and GP2. This revealed that the rs3115534-GG genotype was 4.26 times more prevalent in African PD

cases compared to controls, and 3.81 times more prevalent in African admixed cases. Conversely, the

rs3115534-GT genotype was 1.05 times more frequent in African cases and 1.39 times more frequent in

African admixed cases. Zygosity analysis of 23andMe data corroborated these findings, indicating a

1.90-fold higher prevalence of rs3115534-GG in African admixed cases.

Moreover, under a dominant model, the OR for African ancestry was 1.74 and for African admixed

ancestry was 1.96. Remarkably, these figures closely align with the additive model predictions (African

ancestry additive model: OR =1.75; African admixed ancestry additive model: OR =1.95), suggesting an

additive rather than a dominant inheritance pattern for this variant. However, caution is advised in

interpreting the African-admixed estimates due to the small sample size and the low number of GG

carriers. Additionally, no significant differences in AAO were observed between carriers of the GBA1

rs3115534-GG and GBA1 rs3115534-GT alleles (T-test; P = 0.25).

Comprehensive Analysis of rs3115534-G Variant Across Diverse Ancestral Populations

In my detailed examination of the rs3115534-G variant, I used individual-level data from the GP2

initiative to understand its distribution across different ancestral groups. Interestingly, this variant was

not imputed in individuals of European, Ashkenazi Jewish, South Asian, East Asian, and Central Asian

ancestries, likely attributed to its low frequency in these populations. In contrast, the rs3115534-G
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variant was identified within 230 PD cases and 182 controls of Amerindian and indigenous ancestry, with

a MAF of 0.027 and a non-significant p-value of 0.43. My analysis also extended to examining the

relationship between the rs3115534-G variant and genomic admixture. Linear regression analysis

underscored a positive correlation between the presence of rs3115534-G and a higher percentage of

African ancestry (BETA = 0.064, SE = 0.024, P = 0.01). This finding supports the hypothesis of an African

founder effect, where the variant is more prevalent in populations with African lineage.

Further insights were gained by analyzing haplotype sizes at the GBA1 risk locus, particularly around the

rs3115534 variant. This analysis included populations of African, African admixed, and European

ancestry from the GP2 initiative. Notably, the European haplotypes were longer (average length = 79.19,

number of SNPs = 90), compared to the African (average length = 19.30, number of SNPs = 29) and

African admixed haplotypes (average length = 15.15, number of SNPs = 22). Such variation in haplotype

sizes underscores the genetic diversity across these populations. The rs3115534 variant haplotype was

especially prominent within the Nigerian Esan and the Yoruba in Ibadan populations, as indicated by data

from the 1000 Genomes Project (Table 14). This suggests that the haplotype may have originated in

these Nigerian populations, aligning with the concept that founder effects typically result in larger

haplotype block sizes due to decreased genetic diversity.

Table 14: Haplotype frequencies spanning GBA1 - rs3115534 per African and African admixed

subpopulation in 1000 Genomes
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Population Alleles Allele Frequencies Haplotype Count Haplotype Frequency

Esan (Nigeria)
T 0.697 138 0.697

G 0.303 60 0.303

Yoruba (Ibadan)
T 0.718 155 0.7176

G 0.282 61 0.2824

Luhya (Webuye, Kenya)
T 0.823 163 0.8232

G 0.177 35 0.1768

Gambian (Western Division)
T 0.827 187 0.8274

G 0.173 39 0.1726

Mende (Sierra Leone)
T 0.829 141 0.8294

G 0.171 29 0.1706

African Ancestry (SW USA)
T 0.885 108 0.8852

G 0.115 14 0.1148

African (Caribbean Black)
T 0.802 154 0.8021

G 0.198 38 0.1979



In addition to these findings, fine-mapping analyses further reinforced the significance of the rs3115534

variant. The lead SNP, rs3115534, exhibited a posterior probability (PP) of 71.4% for being the causal

variant, (Supplementary Table 17). Typically a PP of 80%or higher is the benchmark likely to reflect a

true causal relationship, meaning that this variant might not be the causal variant in the locus.

Expression Analysis of rs3115534-G

For my analysis, I used the whole blood expression quantitative trait locus (eQTL) summary statistics, as

provided by Kachuri and colleagues (Kachuri et al. 2023). These statistics were derived from RNA

sequencing data of 2,733 samples, primarily from individuals of African American, Puerto Rican, and

Mexican ancestries. A notable eQTL signal was identified for rs3115534, situated 8,821 base pairs from

the canonical transcription start site (Figure 17; MAF = 0.15; P= 9.99E-25, BETA = 0.238, SE = 0.022).

Intriguingly, the rs3115534-G risk allele was associated with an elevation in GBA1 gene expression levels.

Figure 17: LocusZoom plot displaying African and African Admixed Parkinson’s disease GWAS

Meta-analysis

Summary statistics versus African expression quantitative trait locus summary statistics from blood (by Kachuri et al., 2023)

To further explore this association, we examined the activity estimates of GCase, the enzyme encoded by

the GBA1 gene, in relation to different genotypes of rs3115534. The analysis indicated a decline in GCase

activity in individuals homozygous for the rs3115534-GG risk allele (762.50 ± 273.50 U) compared to

heterozygous rs3115534-GT carriers (2743.76 ± 1960.83 U), as demonstrated through a Welch

two-sample t-test (GG versus GT; t = -4.3138, df = 21.583, p-value = 0.00029). This trend was also evident

when comparing homozygous non-risk allele rs3115534-TT carriers (1879.94 ± 1010.84 U) to
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homozygous risk allele rs3115534-GG carriers, where the former group showed higher GCase activity

(Welch two-sample t-test: GG versus TT; t = -4.7564, df = 18.363, p-value = 0.00014). These findings

suggest a functional relationship between the rs3115534-G allele and GBA1 expression, potentially

influencing the enzymatic activity of GCase (Figure 18 and Figure 19).

Figure 18: GCase activity analyses performed on GBA1 - rs3115534-GG, rs3115534-GT, and rs3115534-TT

carriers

A fluorometric 4-MU assay was used to measure GCase activity in 14 lymphoblastoid cell lines, including a type I Gaucher

disease (GD) patient as a positive control. On the left, samples were aggregated by rs3115534 genotype and average activity.

Values are represented by mean and standard deviation. On the right, all 14 samples were run in quadruplicate. Samples were

screened for known GBA1 pathogenic mutations that could bias these estimates. A total of two carriers (one heterozygous for

GBA1 p.I320S and one heterozygous for GBA1 p.T75del) were removed from further analyses.
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Figure 19: GCase activity analyses performed on GBA1 - rs3115534-GG, rs3115534-GT, and rs3115534-TT

carriers

Samples with Parkinson’s disease were pulled from the 14 samples, including a type I Gaucher disease (GD) patient as a positive

control. On the left, a total of 9 samples with Parkinson’s disease were aggregated by rs3115534 genotype and average activity.

Values are represented by mean and standard deviation. On the right, all 9 samples with Parkinson’s were run in quadruplicate

(Welch Two Sample t-test: GG versus GT; t = -3.189, df = 7.3002, p-value = 0.0.01446; GG versus TT; t = -2.8158, df = 13.003,

p-value = 0.01458; GT versus TT; t = 1.7509, df = 9.7545, p-value = 0.1113). A total of two carriers (one heterozygous for GBA1

p.I320S and one heterozygous for GBA1 p.T75del) were removed from further analyses.

Comparative Analysis of GBA1 Locus Variants Across Diverse Populations

In my analysis aimed at unraveling the unique signal found in the GBA1 locus, I compared effect

estimates and the directionality of effects using summary statistics from the multi-ancestry PD GWAS

meta-analysis which included European, Latin American, and East Asian populations (J. J. Kim et al.

2022). The rs3115534-G allele, central to my study, exhibits notably low allele frequencies in European

(0.0015), East Asian (0.0005), South Asian (0.0017), and Ashkenazi Jewish populations (0.0009), as per

the gnomAD database.

Further investigation into the European data from the GP2 initiative revealed that the rs3115534 variant

was inadequately imputed in 13,186 samples (R2 = 0.16, MAF = 0.009). This finding underscores a

significant difference in the GBA1 locus between African, African admixed, and European populations. In

Europeans, the association with PD risk is predominantly driven by two independent signals: rs35749011

(GBA1 E326K) and rs76763715 (GBA1 N370S), both of which are exceedingly rare in individuals of African

and African admixed ancestry (Figure 20B). In contrast to the African populations, the GBA1 locus in East

Asians presents a different scenario. Here, the rs3115534 variant was not imputed in the largest East

Asian GWAS meta-analysis, highlighting population-specific genetic variations (Figure 20C). However,

when examining Amerindian and indigenous populations, which possess higher levels of African

admixture, the differences are less pronounced. This is evident from studies such as the Loesch et al.

GWAS and the Amerindian and indigenous GWAS conducted by 23andMe. In these populations, the

rs3115534-G allele demonstrated odds ratios of 1.13 (95% CI =0.41-1.86, P= 0.72) and 1.56 (95% CI =

1.55-1.88, P= 0.01) respectively, suggesting a stronger presence and potential impact of this allele

compared to European and East Asian populations (Figure 20D).
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Figure 20: LocusZoom plots of GBA1 in (A) AFR/AAC, (B) EUR, (C) EAS, (D) AMR populations

AFR/AAC: African and African admixed; EUR: European; EAS: East Asian; AMR: Amerindian and Latino Indigenous populations

The most extensive GWAS and multi-ancestry GWAS meta-analyses conducted to this date have

collectively identified 104 independent significant PD risk variants (Nalls et al. 2019b; Foo et al. 2020a; (J.

J. Kim et al. 2022). Among these variants, 91 passed through rigorous QC, met imputation criteria, and

were present in the GWAS meta-analysis focusing on African and African admixed populations (Figure 21

and Table 12). Within this subset of 91 variants, 16 were found to be nominally significant (p < 0.05), as

per the African and African admixed meta-GWAS results reported in this study (Supplementary Table

18). While these findings contribute valuable insights, it is crucial to acknowledge a potential limitation

in my study. The data from 23andMe, which formed a part of my analysis, was also used in the

multi-ancestry GWAS meta-analysis by Kim and colleagues. This overlap in data sources could potentially

bias the estimates derived in my study.
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Figure 21: Beta-beta plot comparison of African versus African Admixed estimates for PD known risk loci

identified in Europeans

Comparative Analysis of Polygenic Risk Scores Across African and African Admixed Populations

I conducted an in-depth analysis of 90 SNPs previously linked with PD risk in European populations (Nalls

et al. 2019b; Foo et al. 2020a). Within the African admixed individual-level dataset, 86 out of these 90

risk SNPs passed the QC criteria. The PRS, based on European data, was able to predict PD disease status

in individuals of African admixed ancestry with a notable odds ratio (OR=1.43; 95% CI =1.26-1.61,

P=4.37E-05; Figure 22A). Subsequently, I calculated the PRS for the African individual-level dataset,

where 79 out of the 90 risk loci passed QC. This African-derived PRS also showed predictive ability for

disease status in PD versus healthy controls of African ancestry (OR=1.27; 95% CI =1.16-1.38, P=1.05E-05;

Figure 22B). A marginally higher effect was observed in the African admixed ancestry PRS model, which

could be attributed to either the greater number of SNPs passing QC or a higher proportion of European

admixture within this cohort. Notably, the variant with the most significant effect size in both models

was chr4:89704960:G:A_A (rs356182), located at the SNCA locus. Even after adjusting for rs356182, PRS

differences between PD and controls remained statistically significant (PRSAfrican admixedP =2.21E-05;

PRSAfrican P =0.014). However, as anticipated, these effects were consistently lower compared to those

observed in Europeans (PRS ORtraining dataset =3.74, 95% CI =3.35 –4.18), hinting at the possibility of

additional novel genetic loci influencing PD heritability in African and African admixed populations.

Further analysis was conducted using effect estimates from the AAC 23andMe summary statistics for the

same 90 SNPs. In the combined African and African admixed individual-level datasets from GP2, 77 of
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the 90 risk SNPs passed QC. The PRS, based on these AAC statistics, predicted PD disease status in

African admixed ancestry individuals (OR=1.26; 95% CI =1.15-1.37; P=1.89E-05; Figure 22C). Similarly,

when calculating PRS for African individual-level data, a predictive relationship between PD and healthy

controls was observed (OR=1.42; 95% CI =1.25-1.60; P=6.65E-05; Figure 22D). Intriguingly, when applying

the AAC 23andMe summary statistics, the PRS effect size was slightly more pronounced for the African

individual-level data compared to using the European summary statistics as the reference. This

observation underscores the importance of considering ancestry-specific genetic factors in the

assessment and understanding of PD risk.

Figure 22: Density plots showing polygenic risk score distributions in the African and African Admixed

individuals using the 90 Parkinson’s disease risk loci

A) Nalls et al., 2019 reference estimates on African admixed individual level data; B) 23andMe African admixed reference

estimates on African admixed individual level data; C) Nalls et al., 2019 reference estimates on African individual level data; D)

23andMe African admixed reference estimates on African individual level data

Runs of Homozygosity

In this research, while we did not detect any enrichment of specific ROH spanning the GBA1 locus, a

notable observation was made regarding the length of ROH at a genome-wide level. We found that PD

cases exhibited longer ROH compared to controls. Specifically, an increase in the average number of ROH

segments by 1Mb was associated with an increased risk of PD, with an OR of 1.08 (OR = 1.08; 95% CI =

1.066- 1.11; P = 4.63E-16). Additionally, the total size of these homozygosity regions also differed
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significantly between cases and controls, albeit with a relatively small effect (BETA = 1.69E-05 per kb

increase; SE = 3.531E-06; P = 1.53E-06).

These findings suggest the potential involvement of as-yet-undiscovered recessive variants in the

etiology of PD in the studied populations. The observed association between longer ROH and increased

PD risk implies that these regions might harbor additional genetic variants contributing to the disease's

development.

Conclusions and Discussion

Expanding Research in African and African Admixed Populations

PD genetics within African and African admixed populations has historically been an underexplored area

in medical research. Prior studies, often constrained by small sample sizes with typically fewer than

thirty participants (Ross et al. 2010; McGuire et al. 2011; Clark et al. 2003; Gwinn-Hardy et al. 2001; N. U.

Okubadejo et al. 2022). While these efforts have provided valuable insights, they have been limited in

offering a comprehensive understanding of PD genetics in these specific populations due to their scale.

The current study marks a significant advancement in this field, establishing the largest collection of PD

patients and controls from African and African admixed ancestries to date. This large-scale effort has

enabled a thorough genome-wide assessment of PD genetics, leading to the identification of a novel

African-specific GWAS signal at the GBA1 locus. This signal, significantly associated with both PD risk and

AAO, has emerged as a pivotal risk factor in these populations (Figure 23).

In a refined analysis, I focused exclusively on samples predicted to be of African ancestry and recruited

from Nigeria. This subset comprised 244 controls and 265 cases genotyped using the NeuroChip array,

along with 638 controls and 649 cases genotyped on the enhanced NeuroBooster platform. rs3115534

exhibited significant associations with disease status in both cohorts. Among Nigerian individuals

genotyped on NeuroChip, the MAF was 0.2889 in controls and 0.3698 in cases (p = 0.006155). The

association was even more pronounced in the NeuroBooster cohort, with MAFs of 0.2265 and 0.3374 in

controls and cases, respectively (p = 4.057E-10). This discovery underscores the importance of including

diverse ancestry groups in genetic studies, particularly as a substantially larger sample size was needed

to identify GBA1 as a major PD risk factor in European populations through GWAS (Simón-Sánchez et al.

2009).
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Figure 23: Comparative Odds Ratio Analysis Across Different Cohorts for rs3115534-G Variant in

Parkinson's Disease Studies

AFR: African; AA: African admixed; IPDGC: International Parkinson’s Disease Genomics Consortium

Figure 24: Miami Plot comparing European versus African and African admixed GWAS meta-analysis

Assessing Parkinson’s disease risk that are similarly randomly sampled (ncases= 1,200; ncontrols= 2,445). Randomly sampled 1,200

cases and 2,445 controls from European, African, and African admixed individuals for this analysis to illustrate that at this scale

we are only powered to detect SNPs with the greatest association to increased disease susceptibility. The current European

meta-analysis has 90 independent genome-wide significant risk signals in 78 genomic regions identified by Nalls and colleagues.
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I identified an association between the variant rs3115534 and the AAO of PD. Notably, the genetic

composition at the GBA1 locus shows significant differences between African and African admixed

populations compared to Europeans. In Europeans, the risk of disease is influenced by two distinct

signals: rs35749011 (GBA1 E326K) and rs76763715 (GBA1 N370S) (Figure 24). However, considering this

study’s limited sample size, we lacked statistical power to detect common genetic variants of smaller

effect sizes (Figure 25).

Figure 25: Power calculations for the meta-GWAS in African and African admixed populations

Calculated using the Genetic Association Study (GAS) power calculator provided by the University of Michigan under an additive

model. OR of 1.58 for rs3115534; average of 19.5% disease allele frequency, and a 0.6% estimated prevalence in the African

populations (according to Global, regional, and national burden of Parkinson’s disease [Lancet Neurology 2018])

(A) African admixed (477 cases; >100K controls); (B) African (1,015 cases; 1,296 controls); (C) African and African admixed (1,488

cases; >100K controls)

Novel Mechanisms and RNA Challenges at the GBA1 Locus

GBA1 is a genetically complex locus, exhibiting a variety of coding, structural, and non-coding variants

that impact PD risk differently (A. Singleton and Hardy 2011). Despite the robust effect size of the signal

identified in this study, no associations were found with previously reported or newly discovered GBA1

coding or structural aberrations that could explain this signal (Toffoli et al. 2022; Park et al. 2001; Tayebi

et al. 2000; Mahungu et al. 2020). This suggests that the mechanism underlying this association might

differ from previously identified pathways. Using eQTL data primarily from African American ancestry,

the study found the rs3115534-G risk allele to be associated with increased GBA1 expression levels in

whole blood. However, this increase paradoxically corresponds with a trend toward decreased GCase

activity, potentially due to RNA sequencing challenges at this locus or the presence of multi-mapping

reads between GBA1 and its pseudogene, GBAP1, which are often discarded in standard processing and

do not contribute to gene-level quantification of expression in many publicly available datasets like GTEx

(https://gtexportal.org/). This rs3115534-G allele might increase the expression of a non-functional
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transcript, leading to decreased levels of the transcript responsible for optimal production of the protein

isoform with GCase activity, a possibility supported by common transcript diversity (Gustavsson et al.

2023). This might be novel disease mechanism via expression changes consistent with a trend towards

decreased GCase activity levels. The GBA1 c.1225-34C>A (rs3115534) GWAS hit alters a non-conserved

intronic nucleotide (GERP++ score = -2.04). Splice prediction tools predicted no significant impact on

normal splicing, while rs3115534 has been reported to be an eQTL in several tissues (Raj et al. 2014)4).

Additionally, a large-scale pQTL study in African Americans with chronic kidney disease suggests that at

the protein level the risk allele for PD in our GWAS (rs3115534-G) is associated with a reduction in the

level of GCase protein in blood, as defined by the SOMAscan assay. This finding supports the concept

that the risk allele leads to a partial loss of both GCase protein and GCase enzyme activity

(“Identification of 969 Protein Quantitative Trait Loci in an African American Population with Kidney

Disease Attributed to Hypertension” 2022). This study's large-scale genome-wide association evaluation

of PD risk in individuals of African ancestry has identified the intronic GBA1 variant, rs3115534, not

previously linked with PD risk. Despite the absence of coding or structural variants in short- and

long-read sequencing analyses, fine-mapping prioritized this variant with a posterior probability of over

70%. The frequent occurrence of rs3115534 in West African populations suggests a possible founder

effect, highlighting the significance of ancestral diversity in genetic studies and the potential for novel

RNA-based therapeutic interventions targeting lifetime PD risk reduction.

Implications of the rs3115534-G Allele and Ancestral Genetic Diversity

The high population frequency of the rs3115534 signal and the characteristics of homozygous carriers

suggest that this variant does not cause Gaucher disease. Its rarity in non-AfricanaAfrican admixed

populations suggests an African founder effect, indicating distinct genetic architectures of the GBA1

locus across populations. Comparative analyses with the largest PD GWAS meta-analyses of European

(Nalls et al. 2019b), Latin American (Loesch et al. 2021), and East Asian (Foo et al. 2020a) populations

revealed the rs3115534-G allele to be exceedingly rare, further emphasizing the importance of

considering ancestry-specific genetic factors in PD research. Additionally, the PAR comparison for GBA1

known coding variants in the European and Ashkenazi Jewish populations compared to the novel GBA1

intronic variant identified in the African population in this study demonstrates that while p.N370S has

the highest effect size on PD risk, the rs3115534-GG variant, while less frequent, contributes a larger PAR

(Figure 26).
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Figure 26: Population attributable risk comparison for GBA1 known coding variants in the EUR

population versus the novel GBA1 intronic variant in the AFR population

Polygenic Risk Scores and Genetic Contributors to PD

PRSs were used to predict disease status between PD cases and healthy controls of African and African

admixed ancestry. The PRSs showed slightly better prediction using African admixed summary statistics

on African individual-level data. rs356182, the lead risk variant at the SNCA locus in European and

Amerindian and indigenous ancestry studies, was identified as a major genetic contributor in both

models. This aligns with the partial overlapping directionality of effect observed between PD known risk

alleles predisposing to disease in European and African populations (Nalls et al. 2019b; Loesch et al.

2021).

Limitations and Future Perspectives

Despite the insights provided, the study faces several limitations, including the need for a larger cohort

to explore susceptibility genetic risk and phenotypic relationships comprehensively. The absence of

well-powered, African-specific RNA sequencing datasets and the challenge posed by multi-mapping

reads between GBA and GBAP1 complicate the full elucidation of the potential novel functional

mechanism suggested by the study's findings. Additionally, while I used ancestry-matched controls for

the analyses, the predominance of Nigerian cases does not fully represent the genetic diversity across

the African continent.

In conclusion, this study is the first GWAS-based insights into the genetics of PD in African and African

admixed populations. This comprehensive genome-wide assessment examines PD risk and age at onset,

delving into ancestry-specific risk profiling, haplotype structures, and genetic admixture. Using the

unique genetic makeup of these populations, I have uncovered a novel association signal in the GBA1

gene, which encodes the lysosomal enzyme GCase. This association has led to the revelation of a novel

disease mechanism linked to decreased glucocerebrosidase activity levels, which correlates with an

increased risk of PD. This study offers crucial insights into the construction of African ancestral
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haplotypes and potential novel pathogenic mechanisms underlying PD etiology. The GP2 initiative, under

which this study was conducted, has generated key data to understand PD's molecular mechanisms.

These findings could pave the way for future clinical trials and therapeutic interventions targeting GBA1

and other PD-related genes. Future studies should aim to expand cohort sizes, integrate *omics data,

and evaluate population-specific associations to enhance our understanding of PD genetics and its

clinical implications.
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Chapter 5: Integrating Multi-Omics with Machine

Learning for Early Diagnosis Predictions

Overview and Broader Relevance

This study addresses the critical need for global, scalable, early, and precise PD diagnosis, which is most

effective when applied during the disease's early stages. Using a data-driven approach, this study

employs cost-effective methodologies to diagnose PD proactively, often before patients manifest

noticeable symptoms. Central to this work is the use of multi-modal PD datasets and the creation of a

custom Python package, GenoML, both integral to the development of predictive models for PD

diagnosis.

The study leverages data from the first release of the Accelerating Medicines Program - Parkinson’s

Disease (AMP-PD) and uses GenoML's open-source automated ML software for analysis. This approach

ensures reproducibility, transparency, and adherence to open science principles. GenoML's capabilities

are harnessed to create and refine peri-diagnostic models that effectively predict PD risk. These models

nominate key features that are then used to construct unbiased genetic networks. These networks not

only elucidate the biological pathways involved in PD onset but also highlight potential therapeutic

targets.

The resultant model from this study marks a significant improvement over previous efforts in this

domain. It demonstrates enhanced performance metrics, both in current cross-validation on withheld

samples and, in some instances, surpasses the training phase metrics of prior studies. This advancement

in PD risk prediction models underscores the potential of data-driven, machine learning approaches in

medical diagnostics.

This work has been published here:

Makarious MB, Leonard HL, Vitale D, Iwaki H, Sargent L, Dadu A, Violich I, Hutchins E, Saffo D,

Bandrés-Ciga S, Kim JJ, Song Y, Maleknia M, Bookman M, Nojopranoto W, Campbell RH, Hashemi

SH, Botia JA, Carter JF, Craig DW, Keuren-Jensen KV, Morris HR, Hardy JA, Blauwendraat C,

Singleton AB, Faghri F, Nalls MA: “Multi-Modality Machine Learning Predicting Parkinson’s

Disease” npj Parkinson’s disease (2022); https://doi.org/10.1038/s41531-022-00288-w

The accompanying package created and distributed for this work, GenoML, is available on arXiv:

Makarious MB, Leonard HL, Vitale D, Iwaki H, Saffo D, …, Singleton AB, Nalls MA, Faghri F:

“GenoML: Automated Machine Learning for Genomics” arXiv (2021);

https://arxiv.org/abs/2103.03221

GenoML is available on GitHub, which, at time of writing, has ~16,000 downloads at time of writing:

https://github.com/GenoML/genoml2
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Introduction

Within the challenging landscape of progressive neurodegenerative disorders, the critical need for timely

and precise diagnosis is particularly pronounced in PD. This urgency is driven by the imperative to

develop and apply novel therapeutic interventions at a juncture where the disease is most susceptible to

treatment. Our research significantly contributes to this goal through the adoption of economical and

data-centric methodologies for early detection. This approach is fundamentally designed to detect,

analyze, and manage the disease proactively, ideally before patients exhibit noticeable symptoms (Nalls

et al. 2015; Paulsen et al. 2013).

In this endeavor, I employed GenoML, an innovative, open-source automated machine learning

(auto-ML) tool I developed, to perform extensive analyses of multimodal genomic and clinical data,

thereby making such analyses more accessible and widespread (Makarious et al. 2021). Aligning with the

National Human Genome Research Institute's strategic vision, our work contributes to the anticipated

routine integration of epigenetics and transcriptomics into models that predict phenotypic outcomes

from genotypic data by 2030 (Green et al. 2020). This initiative is further propelled by remarkable strides

in the automation of ML processes and the proliferation of extensive datasets encompassing clinical,

demographic, and genomic information. These developments are pivotal in enhancing early disease

detection and remotely pinpointing individuals at elevated risk of PD (Sudlow et al. 2015).

It is noteworthy that the accuracy of initial clinical diagnoses in PD is around 80%, even when confirmed

pathologically (Rizzo et al. 2016). Traditional approaches in biomarker research for neurodegenerative

diseases have predominantly used conventional statistical techniques and linear models. However,

current research has branched into diverse methods using ML, investigating modalities like cerebrospinal

fluid biomarkers, imaging techniques, RNA analysis, and movement metrics, including data derived from

wearable sensors (Prashanth et al. 2016; D. A. Lee et al. 2021; Mei et al. 2021; Chen-Plotkin 2018;

Uehara et al. 2021; Noyce et al. 2014; Palmerini et al. 2017). Our research seeks to push the boundaries

in this area, focusing on developing predictive models grounded in nonlinear machine learning

techniques. These models use cost-effective and readily available data, either remotely collected or

derived from existing biobanked sources, thereby eliminating the need for further clinic visits or

expensive protocols.

In our study, we used a variety of publicly accessible, multimodal PD datasets alongside GenoML. By

comparing the top ML algorithms as outlined in the 2020 Kaggle executive summary, I developed an

effective peri-diagnostic model for assessing PD risk. This methodology also aided in constructing

unbiased gene networks, shedding light on biological pathways and identifying potential therapeutic

targets linked to the onset of PD. Our models, rigorously validated against publicly available datasets,

have demonstrated enhanced performance metrics in comparison to prior studies, thereby making a

significant contribution to the realms of clinical trial recruitment and drug development in PD research

(Nalls et al. 2015; Makarious et al. 2021).
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In conclusion, by harnessing the extensive availability of varied datasets and leveraging advancements in

ML, our research introduces a sophisticated and cost-effective model for the early detection of PD. This

model not only enhances the accuracy of disease risk prediction but also provides vital biological

insights, highlighting its substantial potential to influence PD research and improve patient care

strategies.

Methods

GenoML

I have been closely involved in the development of GenoML, a Python open-source autoML platform.

This innovative tool, which I have had the privilege to design and expand on during my studentship, is

specifically designed to streamline and enhance the analysis of multifaceted genomics and clinical data.

My team and I aimed to make GenoML not only powerful but also accessible, democratizing the complex

field of genomics analysis. We drew upon a carefully selected list of the top dozen ML algorithms, as

identified in the 2020 executive summary by Kaggle (Makarious et al. 2021). This list, refined through

expert review, ensures a diverse and effective set of methods for supervised prediction in biomedical

research. We have made GenoML available on its official website and GitHub, offering detailed

documentation and insights into its functionalities.

In my work, I have emphasized GenoML's role as more than just an autoML Python package. It is a

solution designed to navigate the complexities of genomics, integrating genetics with multi-omics data

analysis under an open science framework. Our mission with GenoML has always been to make machine

learning for genomics and clinical data accessible even to those without extensive expertise in the field.

We have achieved this by automating the entire development, evaluation, and deployment process,

thereby simplifying tasks that traditionally require deep knowledge in both machine learning and

genomics. The GenoML package encapsulates not just data processing and analysis, but also the tuning,

validation, and interpretation of results, taking into account the unique biological aspects and limitations

of the underlying data collection, protocols, and technology.

Our aim was to bridge the growing gap between the demand for machine learning expertise and the

current supply, especially in the specialized area of genomics. In GenoML, I combine the use of software

geneticists are familiar with such as PLINK, with Python’s scikit-learn package, and implement custom

Python scripts for the pre-processing of the data. PLINK is commonly used in the field of genetic data

analysis for its efficiency and versatility in managing large-scale genomic data. It allows users to perform

a wide range of complex genetic analyses, including but not limited to: association studies, population

stratification, and haplotype block identification (Purcell et al. 2007). By integrating PLINK, GenoML is

equipped to handle the intricacies of genetic data in a similar manner that a geneticist would in their

own analyses, providing defaults for new users. Complementing PLINK's functionality, I incorporated

Python’s scikit-learn package, a powerful tool for machine learning. Scikit-learn provides a

comprehensive array of algorithms and models, including classification, regression, clustering, and
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dimensionality reduction, among others (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel,

Blondel, Prettenhofer, Weiss, Dubourg, and Others 2011). Its integration into GenoML allows the

application to leverage and auto-compete advanced machine learning techniques, thereby enhancing its

capability to identify patterns and make predictions based on genetic data. This gap has been previously

addressed by other user-friendly software, yet they often fall short when it comes to genomics data,

which require significant domain expertise for tasks such as data cleaning, preprocessing, and quality

control. By providing an end-to-end framework for genomic datasets, GenoML facilitates not only the

more straightforward aspects of ML workflows, like model training and tuning, but also the more

intricate processes such as data preprocessing and cleaning.

In conclusion, GenoML represents an advancement in making machine learning workflows for genomics

and multi-omics more accessible and efficient. By relying on other open-source packages, it integrates

smoothly into existing systems and analytical protocols, fostering broader adoption and community

contributions. Our vision for GenoML extends beyond its current capabilities as an autoML tool,

anticipating its evolution into a more expansive framework of machine learning tools tailored for

genomics and beyond. GenoML can be accessed through the website (https://genoml.com/) or directly

on GitHub (https://github.com/GenoML/genoml2). An overview of the current functionality included in

GenoML can be found in the arXiv preprint (Makarious et al. 2021), as well as Figure 27.
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Figure 27: GenoML Workflow

All current functionality in the GenoML open-source Python package. Blue indicates required inputs and features, while purple

indicates optional inputs and features. GWAS: Genome-wide association study; AUC: area under the curve; UMAP: Uniform

manifold approximation and projection; VIF: variance inflation factor; MLP: multi-layer perceptron networks; XGBoost: an

extreme gradient boosting.

Overview of Supervised Machine Learning

Supervised ML algorithms learn from labeled training data, allowing them to predict outcomes or

categorize data. In the context of this multi-modal PD risk prediction study, the dataset comprises patient

samples, each labeled as either "has PD" or "does not have PD". Supervised ML algorithms trained in this

study aim to discern the patterns in the features that distinguish PD patients from neurologically-healthy

controls.

General ML Approach

1. Preprocessing or Munging: This stage involves cleaning and organizing the data. For example,

handling missing values or normalizing data ranges.

2. Feature Selection: Here, the algorithm selects the most important features for the model,

reducing complexity and improving performance by eliminating irrelevant data.
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3. Training: Here, the algorithm learns from the labeled dataset. It involves optimizing parameters

to best fit the data, usually by minimizing a loss function.

4. Testing and Validation: This phase tests the trained model's performance on unseen data,

helping to assess its generalization ability.

5. Cross-validation and Tuning: Cross-validation aids in model generalization by using different data

subsets for training and testing, while tuning adjusts hyperparameters to optimize model

performance.

6. Presentation and Interpretation of Results: The outcomes of the ML model are interpreted and

presented in a meaningful way, often involving statistical analysis and visualizations.

7. Replication and Follow-up Investigation of Results: This step involves verifying the results

through repeated experiments or extended studies.

Machine Learning Metrics

AUC

The Area Under the Curve (AUC) metric, particularly the Receiver Operating Characteristic (ROC) AUC, is

an essential metric for assessing the performance of classification models. It gauges how effectively a

model can differentiate between various classes. A higher AUC value suggests that the model is more

adept at accurately identifying true positives while reducing false positives. The AUC value varies

between 0 and 1, where a score of 0.5 signifies a model's inability to discriminate between classes.

Accuracy

Accuracy reflects the proportion of correctly predicted instances compared to the total number of

observations. It offers an immediate and simple assessment of a model's overall effectiveness, especially

in datasets with balanced class distributions. However, in cases of imbalanced datasets, where one class

predominates over another, relying on accuracy as an indicator can be unreliable.

Balanced Accuracy

Balanced accuracy compensates for dataset imbalances by averaging the sensitivity (true positive rate)

and specificity (true negative rate). This metric offers a more detailed perspective on a model's

effectiveness across different classes, particularly useful in situations with uneven class distribution.

Log Loss

Log loss, also known as logistic loss, evaluates a classification model's accuracy by assigning a penalty to

incorrect predictions. A lower log loss value signifies superior model performance, with an ideal model

achieving a log loss of 0. This measure is especially important when evaluating models that yield

probability predictions instead of discrete classes.

Sensitivity

Sensitivity, often referred to as the true positive rate or recall, assesses the percentage of actual positive

cases that are correctly identified. This metric is particularly important in situations where failing to
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detect a positive case (like a disease) has more severe consequences than mistakenly identifying a false

positive.

Specificity

Specificity, also known as the true negative rate, measures the percentage of actual negative cases that

are accurately identified by a model. High specificity implies that the model is effective at correctly

rejecting non-relevant cases, thereby minimizing the risk of unnecessary interventions. In contexts

where the costs or implications of a false positive are high, prioritizing specificity ensures more reliable

and safe decision-making based on the model's predictions.

PPV

The Positive Predictive Value (PPV), or precision, calculates the percentage of correct positive predictions

out of all positive identifications made by a model. This metric is relevant in contexts where the

repercussions of false positives are significant. PPV is essential for ensuring the reliability of a model in

accurately identifying true positive cases.

NPV

The Negative Predictive Value (NPV) measures the accuracy of a model in correctly identifying negative

cases among all the identified negative instances. This metric is relevant in scenarios where correctly

determining the non-existence of a condition or characteristic is critical. NPV is essential for ensuring the

model's effectiveness in accurately confirming true negative outcomes.

Supervised Machine Learning Algorithms Implemented in GenoML

The majority of the development of GenoML has centered around classification. Classification aims to

categorize objects into predefined labels. In this research, it involves categorizing individuals as either

having PD or not.

Logistic Regression

Logistic regression is a statistical model for estimating the probability of a binary outcome. It is expressed

by the logistic function:
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interpretability. However, it assumes that there is a linear relationship between the independent

variables and the log odds of the dependent variable, which limits its use when trying to identify

complex relationships between the features.
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Decision Trees

Decision Trees are a non-parametric supervised learning method used for classification and regression.

The model predicts the value of a target variable by learning simple decision rules inferred from the data

features. Decision Trees are easy to understand and interpret, and can handle both numerical and

categorical data. However, they are prone to overfitting, especially if the tree is allowed to grow complex

without pruning.

Random Forest Classification

Random forest classification is an ensemble of decision trees, improving classification accuracy and

control over-fitting. It is an ensemble learning method for classification that constructs a multitude of

decision trees at training time. It outputs the class that is the mode of the classes of the individual trees.

Random forests correct for decision trees' habit of overfitting to their training set. However, they can be

slow to create predictions once trained. Their complexity can also make them harder to interpret than a

single decision tree.

AdaBoost Classification

AdaBoost (Adaptive Boosting) is an ensemble technique that combines multiple weak classifiers to form

a strong classifier. It sequentially focuses on misclassified instances by increasing their weights, guiding

subsequent weak learners to concentrate on harder cases. The final model is a weighted sum of these

weak classifiers. Ada Boost is sensitive to noisy data and outliers; however, it is less prone to overfitting

compared to some other algorithms.

Gradient Boosting Classification

Gradient Boosting builds models sequentially, with each new model correcting errors made by the

previous ones. It optimizes a loss function, and each new tree helps to correct errors made by previously

trained trees. While gradient boosting often produces highly predictive models, a major drawback is its

tendency to overfit and its sensitivity to noisy data. Moreover, training generally takes longer because

trees are built sequentially.

Stochastic Gradient Descent (SGD Classification)

Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to fitting linear classifiers and

regressors under convex loss functions such as linear Support Vector Machines and Logistic Regression.

Even though SGD has been successfully applied to large-scale and sparse machine learning problems

often encountered in text classification and natural language processing, the main disadvantage of SGD

is that it requires a number of hyperparameters such as the regularization parameter and the number of

iterations.

Support Vector Machine Classification (SVC)

Support Vector Machine (SVC) is a powerful and versatile classification method. It works by finding the

hyperplane that best divides a dataset into classes. It is effective in high-dimensional spaces and for

cases where the number of dimensions is greater than the number of samples. However, SVC can be
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inefficient on large datasets and does not perform well when the data set has more noise i.e., target

classes are overlapping.

MLP Classification

Multi-layer Perceptron (MLP) is a class of feedforward artificial neural network (ANN). An MLP consists of

at least three layers of nodes: an input layer, a hidden layer, and an output layer. MLP uses

backpropagation for training the network. MLPs are well-suited for complex pattern recognition tasks,

but they require a large amount of data, and their complex architecture can make them prone to

overfitting. Also, determining the right number of layers and the number of nodes in each layer can be

challenging.

KNeighbors Classification

K-Nearest Neighbors (KNN) classification uses feature similarity to predict the values of new datapoints,

which means that new data points are assigned a value based on how closely they resemble the points in

the training set. While KNN is simple and easy to implement, its performance can significantly degrade

with high-dimensional data due to the curse of dimensionality. It is also computationally expensive for

large datasets.

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a method used in statistics, pattern recognition, and machine

learning to find a linear combination of features that characterizes or separates two or more classes of

objects or events. It is simple, easy to implement, and interpretable. However, LDA assumes that the

variables are normally distributed and have the same variance-covariance matrix across groups, which

might not always be the case.

Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is similar to LDA but allows for the covariance matrices to differ

between classes. This means it can model a wider range of datasets compared to LDA. The downside is

that QDA can be more prone to overfitting, especially when the number of training samples is small

compared to the number of features.

Bagging Classification

Bagging (Bootstrap Aggregating) is an ensemble machine learning algorithm that fits multiple models

(typically of the same type) on different sub-samples of the dataset and then combines their predictions.

While it reduces variance and helps to avoid overfitting, bagging can be computationally expensive and

less interpretable compared to a single model.

XGBoost Classification

eXtreme Gradient Boosting (XGBoost) is an efficient and scalable implementation of gradient boosting. It

has proven to be a highly effective ML algorithm, widely used in data science competitions and
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real-world applications. XGBoost is known for its performance and speed, but like other gradient

boosting methods, it can be prone to overfitting and requires careful tuning of its parameters.

Additional Features Implemented in GenoML

Additional Pre-processing Options

One of the key features I employed was leveraging PLINK and it’s pruning algorithms, which is a method

to reduce the complexity of genomic data by removing correlated variants, thereby minimizing

redundancy and potential bias in the dataset.

To optimize the performance of models generated by GenoML, I implemented the option for users to

choose their performance metrics. The tool allowed me to focus on maximizing either the AUC or

balanced accuracy, depending on my specific research needs. Balanced accuracy, importantly, is a metric

that considers both sensitivity and specificity, providing a more nuanced measure of model performance

especially in imbalanced datasets. Additionally, I conducted basic ML preparations including imputation

for missing values. GenoML facilitates this by offering options to replace missing data using either the

median or mean of the respective feature, which helped in maintaining the integrity of the dataset.

Users can also focus on specific metrics like maximizing sensitivity or specificity. Implementing this

feature was particularly useful in scenarios where detecting true positives (sensitivity) or true negatives

(specificity) is more critical, allowing for tailored model optimization based on the unique requirements

of user’s research. Furthermore, I developed GenoTools to internally to drop columns with zero variance,

which are features that do not change across the dataset and thus do not contribute to the predictive

power of the model.

Another critical aspect of GenoML was developing a way during data pre-processing that allowed for the

adjusting and normalizing the features using PCA. This step was crucial to account for genetic population

substructure, which can be a significant confounder in genetic association studies. By incorporating PCA

when users use genetic data ensures that the models are robust and less likely to be biased by

population stratification.

Feature Selection with ExtraTrees Classification

Feature Selection with ExtraTrees Classifier is a type of ensemble machine learning algorithm that uses

randomized decision trees. By selecting important features, it can improve the interpretability of the

model, reduce overfitting, and enhance model performance. However, the randomness in tree

construction can lead to variability in the importance assigned to the features, and it can be

computationally intensive with large datasets and many trees.

Hyperparameter Tuning and Optimization

To further refine the performance of GenoML models, I incorporated hyperparameter tuning and

optimization strategies. Hyperparameters, otherwise known as the external configurations of the model,

significantly influence the learning process and the resultant model performance. I employed a grid

search approach, systematically working through multiple combinations of hyperparameters and using
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cross-validation to evaluate their effectiveness. This exhaustive search ensured that the model was not

just fitted to the training data but also generalized well to new, unseen data. By leveraging scikit-learn’s

optimization of hyperparameters such as the learning rate, number of trees in ensemble methods, and

regularization techniques, GenoML is able to significantly auto-enhance the model's accuracy and

efficiency.

Interpretability with Shapley values

I used Shapley values, a concept from cooperative game theory, to enhance the interpretability of my

GenoML models. My work involved analyzing complex datasets that comprised various genotypes, gene

expression levels, and some clinico-demographic data and Shapley values helped in understanding the

contribution of each individual feature to the model's predictions. Shapley values adapt their game

theory role to measure each feature's contribution to model predictions. This method treats the

prediction task as a “game", where features are “players” and the prediction output resembles the

game's “payout”. Shapley values assess every possible combination of features, determining the impact

of each on the prediction. This process then allocates equitable “credit” or “blame” among features

based on their influence on the final decision.

While useful for aiding interpretability of otherwise “black box” ML models, in high-dimensional spaces

like genomics, this calculation is resource-intensive, especially in models with numerous features, due to

the need for retraining with every feature combination. The result is a set of values for each feature,

indicating its average impact on predictive accuracy. I used SHAP to approximate a feature's influence on

the model, focusing on the bi-directional changes of that feature relative to all others in the model

(Lundberg et al. 2018, 2020). To further validate the model's efficacy, I trained a surrogate XGBoost

model on 70% of the data and subsequently tested on the remaining 30% of withheld data.

Conceptually, Shapley values can be likened to the relative importance measures derived from standard

regression in terms of their interpretative value.

Study Participants

The data referenced in this study were sourced from the AMP PD Knowledge Platform. Updated details

about the study can be found at https://www.amp-pd.org. Each participant in the respective cohorts

gave their written informed consent for participation. The study's design and the data sharing agreement

were jointly developed by AMP PD and the NIH, adhering to the NIH's standard ethical approval

guidelines. Furthermore, all individuals participating in the AMP PD initiative consented to the use of

their data in research pertinent to their respective cohorts.

In my research, I used clinical, demographic, and genome-wide DNA and RNA sequencing data from

baseline visits of participants in the Parkinson’s Progression Marker Initiative (PPMI) and the Parkinson’s

Disease Biomarkers Program (PDBP). These participants included individuals with PD and controls

without neurological diseases. I focused on features present in at least 80% of the training and validation

cohorts on the AMP PD platform, aligning with the inclusion criteria from previous modeling efforts and

prioritizing *omic data that could be passively collected.
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For this analysis, I chose RNA sequencing data from baseline visits, as these represent the time point

closest to diagnosis, given that RNA signatures vary with disease stages. PPMI, with its recruitment of

unmedicated individuals within one year of diagnosis, served as the training cohort. My retrospective

model specifically analyzed refined PD diagnoses, excluding samples with conflicting diagnostic data over

a decade of follow-up. This exclusion criterion also applied to cases with additional neurological

diagnoses or retracted PD diagnoses, as well as controls who developed PD or other neurodegenerative

diseases post-enrollment.

Furthermore, I omitted a subset of PD cases and controls from PPMI, specifically those from targeted

recruitment efforts focusing on carriers of known genetic risk mutations (LRRK2 and GBA1). The analysis

was limited to unrelated individuals of European ancestry. For the AMP PD sample PRS, I used weights

based on the latest European ancestry GWAS data. I identified participants for inclusion in my study

based on their clinical, demographic, and genomic data, including DNA and RNA sequencing. Those with

excessive missing data (over 15% per feature) were excluded. Each study involved adhered to the ethical

guidelines set by their respective institutional review boards, and all participants had given informed

consent for their inclusion in the original cohorts as well as in subsequent studies.

For this study, I collected clinical and demographic data, including the age at diagnosis for PD cases and

the age at baseline visit for controls. I also included family history as a feature, specifically if a first or

second-degree relative was diagnosed with PD, and inferred if individuals were of Ashkenazi Jewish

ancestry. The latter was inferred using PCA, comparing our samples to a genetic reference series from

GSE23636 at the Gene Expression Omnibus. Additionally, I ascertained sex clinically and confirmed it

using X chromosome heterozygosity rates. The University of Pennsylvania Smell Inventory Test (UPSIT)

was incorporated into the modeling. In total, the training cohort from PPMI consisted of 427 cases and

171 controls, and the validation cohort from PDBP consisted of 804 cases and 442 controls. For a

detailed summary of the basic clinical and demographic features, see Table 15.

Study Status

Age at

Baseline

(mean, SD)

UPSIT Score

(mean, SD) Male (%)

Positive Family

History of PD

(%)

Inferred

Ashkenazi

Ancestry (%)

PPMI Case 61.75 (9.69) 23.48 (8.35) 65.57 25.53 6.09

Control 60.61 (10.43) 34.18 (4.71) 63.74 5.85 11.11

PDBP Case 64.59 (8.99) 19.65 (8.01) 64.18 24.88 3.61

Control 62.87 (10.96) 32.52 (5.98) 45.25 8.14 4.07

Table 15: Descriptive statistics of studies included for multi-modal predictions from AMP-PD Release 1

All data included in this analysis following quality control using the first release of data made available by AMP-PD. AMP-PD:

accelerating medicines partnership in Parkinson’s disease; PPMI: Parkinson’s progression marker initiative; PDBP: Parkinson’s

disease biomarker program; PD: Parkinson’s disease; SD: standard deviation; UPSIT: University of Pennsylvania smell

identification test.
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Training Cohort - PPMI

PPMI, launched in 2010, represents a significant effort in the study of PD, sponsored by The Michael J.

Fox Foundation and backed by various industry partners. This longitudinal study, involving over 1,500

participants at 33 clinical sites worldwide, aims to discover clinical, imaging, and biological markers

crucial for the progression of PD. Participants, followed for durations ranging from five to thirteen years,

contribute extensive clinical data, imaging results, and biological samples. The study’s primary goal is to

create a comprehensive dataset and biological samples to analyze the mean rates and variability of

clinical, imaging, and *omic outcomes in early PD patients, those at prodromal stages, and subjects with

specific genetic mutations in LRRK2, GBA1, or SNCA.

For PD subjects, inclusion criteria encompass having at least two primary PD symptoms (such as resting

tremor, bradykinesia, or rigidity), a PD diagnosis for no more than two years, and being in the early

stages (Hoehn and Yahr stage I or II) at baseline. These subjects must not be expected to need PD

medication within six months from the baseline. Exclusion criteria are extensive, including current or

recent use of specific PD medications, treatments that interfere with dopamine transporter imaging, and

conditions that contraindicate safe lumbar puncture procedures. In addition to PD subjects, the study

includes healthy controls, SWEDD subjects, prodromal subjects, and specific genetic cohorts, each with

their own set of detailed inclusion and exclusion criteria.

PD subjects in the genetic cohort must meet similar criteria to the general PD cohort but also require

confirmation of mutations in LRRK2, GBA1, or SNCA. They are eligible if diagnosed with PD for less than

seven years and are in the earlier stages of the disease (Hoehn and Yahr stage less than 4). Unaffected

individuals in the genetic cohort include those aged 45 or older with LRRK2 or GBA1 mutations or those

aged 30 or older with SNCA mutations. These participants may also be first-degree relatives of mutation

carriers. Both affected and unaffected individuals in these cohorts must be willing to undergo genetic

testing and, if necessary, abstain from certain medications before imaging procedures. Exclusion criteria

for these groups mirror those of the PD subjects, focusing on precluding factors for lumbar puncture and

the use of certain medications. For detailed PPMI recruitment and biorepository information, please see

the official study website https://www.ppmi-info.org/.

Validation Cohort - PDBP

The National Institute of Neurological Disorders and Stroke (NINDS) launched the PDBP to expedite the

identification of novel diagnostic and progression biomarkers for PD. PDBP supports a range of research

activities, from basic and translational studies to clinical research including hypothesis testing, target and

pathway discovery, biomarker development, and disease modeling. PDBP shares data and biospecimens

generated under the program, encompassing demographics, family history, medication history, and

various clinical assessments and genetic information from 1,604 participants who met the AMP PD

minimum clinical data criteria.

PDBP establishes clear inclusion and exclusion criteria for all participants. Individuals aged 21 or older,

capable of consenting (or having an appropriate surrogate), and able to participate in study activities
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without hardship or adverse health effects are included. Exclusions are primarily based on medical

conditions or treatments that might interfere with the safe performance of routine procedures like

lumbar punctures, history of certain mental health conditions, or use of investigational drugs shortly

before the baseline visit. For PD cases, the inclusion criteria specifically require a clinical diagnosis of PD,

while exclusions apply if the diagnosis is uncertain at enrollment. Control participants, on the other

hand, are excluded if they have a significant neurological disorder or a family history of

neurodegenerative diseases. For detailed PDBP recruitment and biorepository information, please see

the official study website https://pdbp.ninds.nih.gov/. Age distribution comparisons between PPMI and

PDBP, the training and validation datasets respectively, can be found in Figure 28.

Figure 28: PPMI and PDBP Age Distribution

PDBP: Parkinson’s Disease Biomarker Program; PPMI: Parkinson’s Progression Markers Initiative

Data Pre-processing

DNA and RNA Sequencing

In this study, I used the generated DNA sequencing data using the standard short-read technology from

Illumina. AMP-PD aligned this data using the Broad Institute’s functional equivalence pipeline, and

conducted joint genotyping of the sequencing data using the standard GATK pipeline (Regier et al., n.d.).

These processes have been documented, from sample preparation to variant calling, in a comprehensive

manuscript that details the AMP-PD whole-genome DNA sequencing effort (Iwaki et al. 2021).

For quality control of the samples, we set stringent inclusion criteria based on the genetic data output

from the pipeline. These criteria included matching the genetically determined gender with the clinically

ascertained one, achieving a call rate greater than 95% at both the sample and variant levels,

maintaining a heterozygosity rate below 15%, and ensuring a freemix estimated contamination rate less

than 3%. Additionally, we required a transition:transversion ratio above 2, no genetic relation closer than
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a first cousin (IBD less than 12.5%), and confirmation of European ancestry through comparison with the

HapMap project. I included WGS data in our study only if the variants passed the basic quality control

checks of the initial sequencing (indicated by the PASS flag from the joint genotyping pipeline) and met

specific criteria including non-palindromic alleles, missingness by case-control status with a P-value over

1E-4, a Hardy-Weinberg p-value above 1E-4, and a minor allele frequency in cases over 5%, as reported

in the largest European PD meta-GWAS (Nalls et al. 2019b). Additionally, for our genetic modeling, we

incorporated PRS from this meta-GWAS, ensuring that our testing and training samples were excluded

from the weights (Nalls et al. 2019b).

In parallel, I also used the generated RNA sequencing data made available on AMP-PD from whole blood

samples, a process carried out by the Translational Genomics Research Institute using standard protocols

for Illumina NovaSeq technology (Hutchins et al. 2021). Our focus was specifically on blood samples

collected at baseline. I adjusted variance stabilized counts for experimental covariates using the

established limma pipelines (Ritchie et al. 2015). Our analysis centered on gene expression counts for

protein-coding genes, and calculated differential expression p-values between PD cases and controls

using logistic regression, adjusting for sex, plate, age, ten PCs, and the percentage of usable bases.

Although the effects of non-coding RNA on PD have been explored in other studies (Lv et al. 2020), we

chose to focus on protein-coding genes due to their established data quality, relevance in drug

development, and the robust annotations available.

Data Preparation and Principle Component Analysis

The methodological overview and statistical analysis approach of this project are shown in Figure 29,

which outlines the workflow and data. The initial phase involved data pre-processing at the baseline visit

of individual-level data. Concentrating on baseline data was crucial to align the PDBP closely with

individuals enrolled in PPMI, given that PPMI encompasses newly diagnosed and drug-naïve patients,

whereas PDBP includes participants at various stages of PD.

The initial phase of the study concentrated on data preparation, involving both DNA and RNA sequencing

datasets. For DNA sequencing, a specific subset of 10,000 variants was selected after LD pruning. This

process involved retaining variants with an r2 < 0.1 within a 1MB range, thereby excluding areas known

for extensive LD (Abraham, Qiu, and Inouye, 2017). Notably, these variants were not chosen based on

their p-values in recent GWA studies, but to avoid regions with known high LD, such as the HLA region.

This refinement process removed SNPs in high LD tracts while preserving those with known genetic risks

within these regions. In RNA sequencing, PCA was employed using read counts for all protein-coding

genes from each sample, creating a distinct set of ten PCs.

Subsequent to the preparation phase, features representing genetic variations from sequencing data

were adjusted using the PCs derived from DNA sequencing. This adjustment aimed to mitigate the

impact of identifiable European population substructures on the genetic features. This method aligns

with the approach of adjusting for PCs in common variant regression models used in GWAS. Similarly,

RNA sequencing data underwent parallel adjustments using RNA-derived PCs. The primary aim of these
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adjustments was to statistically account for latent population substructures and experimental variables

at the feature level, thus enhancing the applicability of the study across diverse datasets.

Post-adjustment, all continuous features underwent Z-transformation to ensure standardization with a

mean of zero and a standard deviation of one, facilitating consistency across numerical scales. This

standardization was crucial for preparing the data for subsequent phases of analysis.

Figure 29: Workflow and Data Summary for Multi-omics of PD Risk Prediction using ML Study

Scientific notation in the workflow diagram denotes minimum p-values from reference GWAS or differential expression studies

as a pre-screen for feature inclusion. Blue indicates subsets of genetics data (also denoted as “G”), green indicates subsets of

transcriptomics data (also denoted as *omics or “O”), yellow indicates clinico-demographic data (also denoted as C+D), and

purple indicates combined data modalities.

PD: Parkinson’s Disease; AMP-PD: Accelerating Medicines Partnership in Parkinson’s Disease; PPMI: Parkinson’s Progression

Marker Initiative; PDBP: Parkinson’s Disease Biomarker Program; WGS: whole genome sequencing; GWAS: Genome-wide

association study; QC: quality control; MAF: minor allele frequency; PRS: polygenic risk score

Algorithm Training, Validation, and Application

The data from PPMI was then partitioned into a 70% training set and a 30% testing set, randomly. This

separation allowed for the distinct phases of algorithm training on the training set and subsequent
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validation on the testing set. We evaluated 12 machine learning algorithms known for their robust

performance, aiming to ascertain which could maximize the AUC for the classification of cases and

controls. The selection of these algorithms was influenced by their demonstrated success in various

domains, compatibility with Python’s scikit-learn package, and their capability to output

probability-based predictions (“Extremely Randomized Trees” 2010; Pedregosa, Varoquaux, Gramfort,

Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, et al. 2011). This facilitated

more straightforward training, testing, and interpretation of the model. The algorithms included logistic

regression (LogisticRegression), random forests (RandomForestClassifier), adaptive boosting

(AdaBoostClassifier), gradient boosting (GradientBoostingClassifier), stochastic gradient descent

(SGDClassifier), support vector machines (SVC), multi-layer perceptron neural networks (MLPClassifier),

k-nearest neighbors (KNeighborsClassifier), linear discriminant analysis (LinearDiscriminantAnalysis),

quadratic discriminant analysis (QuadraticDiscriminantAnalysis), bagging (BaggingClassifier), and

extreme gradient boosting (XGBClassifier). These methods represented a comprehensive range of

techniques, from conventional linear models typically used in genetic prediction analyses to more

complex tree-based, kernel-based, and deep learning approaches.

Feature selection was re-emphasized using the extremely randomized trees classifier algorithm

(extraTrees) to minimize redundant features that could contribute to model overfitting. Following the

feature selection process, the algorithm that demonstrated the highest AUC and balanced accuracy in

the testing set (30% of PPMI data) was chosen for further tuning and cross-validation. This leading

algorithm, AdaBoostClassifier in this case, was subjected to intensive hyperparameter tuning across the

entire PPMI dataset. The tuning involved 25 random iterations of 5-fold cross-validation for each

iteration, adjusting the number of potential predictors (estimators) from 1 to 1000, to ensure the

robustness and reliability of the model.

This procedure was replicated 49 times, with varying thresholds of p-value-based feature inclusion. The

thresholds were iteratively applied across all combinations of p-value thresholds [1E-2, 1E-3, 1E-4, 1E-5,

1E-6, 1E-7, 1E-8], derived from genetic data from the latest European meta-GWAS and transcriptomic

data from differential expression studies (Nalls et al. 2019b). Due to structural and analytical differences

between genetic and transcriptomic data, each modality underwent separate feature selection phases.

At each of the 49 threshold combinations, the model maximizing the AUC metric was selected. The final

model was chosen based on a blend of metrics including balanced accuracy, sensitivity, and specificity, to

appropriately address case-control imbalance.

Prior to training, p-values were filtered using the largest meta-analysis of 17 datasets from PD GWAS in

European ancestry samples (Nalls et al. 2019b). The training set from PPMI represents a small fraction of

the most recent GWAS study, and the feature selection approach described above was considerably

conservative, thus minimizing potential data leakage. This study primarily focuses on a model with a

maximum p-value of 1E-5 for genetic data inclusion and 1E-2 for transcriptomic data inclusion, reflecting

a careful balance between inclusivity and specificity in feature selection.
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Feature and Model Selection and Refinement

Once the features were adjusted and normalized, internal feature selection was conducted using

decision trees (extraTreesClassifier) within the PPMI training dataset. This process aimed to identify

features to ensure optimal information extraction from the features (Lopez et al. 2020), while mitigating

the risk of overfitting. Overfitting, defined as a model's tendency to overperform in training yet

underperform in validation datasets, is often due to the inclusion of correlated or insignificant features

(“Extremely Randomized Trees” 2010; Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel,

Prettenhofer, Weiss, Dubourg, Vanderplas, et al. 2011). The implementation of decision trees in feature

selection played a crucial role in eliminating redundant and low-impact features, refining the feature set

for more efficient modeling. This selection process was applied to combined data modalities to prevent

potential inflation of model accuracy due to redundant feature contributions. The extraTrees classifier

further provided estimates of features in order of their likely contribution to the final model, thereby

streamlining the model construction process.

Subsequently, I used GenoML for algorithm competition and feature selection within the PPMI dataset,

adhering to a 70:30 training-to-testing data split. Among the top 5% of features identified in the Shapley

analysis, the mean feature correlation was less than 5%, with a maximum of 36% (Figure 30). By

employing correlation-based pruning and an extraTrees classifier in the data munging stage, this limited

the potential for overfitting but also ensured a more conservative model approach.
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Figure 30: Correlation matrix of top 5% contributing features in ML model

Model Improvements and Feature Interpretation

Class Imbalance Post-hoc Optimization

I performed a post-hoc optimization process addressing class imbalance. This refitting uses an optimized

threshold for case probability, derived from Youden’s J statistic, to enhance the model's ability to manage

case-control imbalance, consequently improving balanced accuracy and associated metrics (Ruopp et al.

2008).

Specifically, for PDBP, case probabilities are generated using the same model, features, and parameters

as those used in the training and tuning phases of PPMI. However, a critical distinction is made in the

PDBP cohort; the probability threshold for identifying a case is uniquely adjusted to address the specific

imbalance found in PDBP. This adjustment represents a targeted post-hoc probabilistic optimization that

deliberately avoids any reweighting or prioritization of features in both datasets, thus preserving the

integrity of a standalone validation phase.
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Network Communities

I explored constructing gene networks potentially relevant to PD, using features identified by the top ML

classifiers. The primary objective was to determine whether any drug-related annotations were

disproportionately represented in my network communities, based on correlated gene expression in

cases, compared to other protein-coding genes identified as potential classifiers of case-control status.

The initial step involved extracting RNA feature counts for 597 genes, recognized as significant RNA

sequencing-derived features during the training phase. I then refined this dataset to include only case

samples and computed the correlation between gene-level transcriptomic data for these nominated

genes. This process led to the construction of a network graph, setting a minimum correlation coefficient

(r) threshold of 0.8 for connections between gene nodes. Following this, I employed the Leiden

algorithm with default settings to cluster the genes into related communities within the larger network.

The quality of these network clusters was assessed by calculating a modularity score (Traag, Aldecoa, and

Delvenne 2015). To investigate potential therapeutic connections within these network communities, I

used webGestalt’s R package, specifically its over-representation analysis function

(https://www.webgestalt.org/). This tool helped in exploring the enrichment of druggable targets for

network genes within two drug databases: DrugBank and GLAD4U (Y. Liao et al. 2019; Wishart et al.

2008; Jourquin et al. 2012). The analysis was conducted under default settings and were accessed on

February 23rd, 2021.

Initially, the 300 genes forming our network communities, derived from the background of all 598 genes

identified in the initial feature selection phase, were queried. This comparison aimed to discern the

enrichment of genes within my network communities, which show high correlation in cases, against

genes implicated in case-control differences. Additionally, a similar analysis was conducted comparing all

597 genes differentiating cases and controls with over 18,000 protein-coding genes. This step was

repeated for our 300 network community genes to investigate the over-representation of druggable

targets against the entire set of protein-coding genes.

Results

Integrating Various Modalities Results in More Accurate Predictions

In this study, I have demonstrated that employing a combination of various data modalities significantly

enhances the accuracy of predicting PD diagnosis, especially when compared to models relying on a

single modality. Specifically, our multi-modality model, incorporating diverse data types, achieved a

notably higher AUC of 89.72%. This is an improvement over models based solely on clinico-demographic

data (87.52% AUC), genetics-only approaches using genome sequencing data and PRS (70.66% AUC), and

transcriptomics-only methods employing genome-wide whole blood RNA sequencing data (79.73%

AUC). These results were evident in withheld samples from PPMI (summarized in Table 16 and

Figure 31).
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Data Modality Stage Algorithm AUC (%) Accuracy (%)
Balanced

accuracy (%)
Log Loss Sensitivity Specificity PPV NPV

Number of

Features

Genetics

(P<1E-5)

Training in

PPMI (70:30)
MLPClassifier 70.66 70 60.64 0.83 0.83 0.38 0.77 0.48 233

Clinico-

demographic

Training in

PPMI (70:30)

Logistic

Regression
87.52 79.44 75.27 0.39 0.85 0.65 0.86 0.64 6

Transcriptomics

(P<1E-2)

Training in

PPMI (70:30)
SVC 79.73 73.89 54.6 0.48 0.97 0.12 0.75 0.6 678

Combined
Training in

PPMI (70:30)

AdaBoost

Classifier
89.72 85.56 82.41 0.63 0.89 0.76 0.91 0.73 713

Table 16: Performance metric summaries comparing training in withheld samples in PPMI

PPMI: Parkinson’s progression marker initiative; PDBP: Parkinson’s disease biomarker program; AUC: Area under the curve; Log

loss: Logarithmic loss; PPV: Positive Predictive Value; NPV: Negative Predictive Value; MLPClassifier: Multi-Layer Perceptron

Classifier; SVC: Support Vector Classifier; AdaBoost Classifier: AdaBoost (Adaptive Boosting) Classifier.
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Figure 31: Receiver operating characteristic curves and case probability density plots in withheld training

samples at default thresholds comparing performance metrics in different data modalities from the PPMI

dataset

P-values mentioned indicate the threshold of significance used per data type, except for the inclusion of all clinico-demographic

features. A) PPMI combined *omics dataset (genetics p-value threshold = 1E-5, transcriptomics p-value threshold = 1E-2, and

clinico-demographic information); B) PPMI genetics only dataset (p-value threshold = 1E-5); C) PPMI clinico-demographics only

dataset; D) PPMI transcriptomics only dataset (p-value threshold = 1E-2). Note that x-axis limits may vary as some models

produce less extreme probability distributions than others inherently based on fit to the input data and the algorithm used.

PPMI: Parkinson’s Progression Marker Initiative; ROC: Receiver Operating Characteristic curve.

Further fine-tuning of the model yielded better outcomes. Initially, the untuned model in the PPMI

dataset had a mean AUC of 80.75, with a standard deviation of 8.84, ranging from 69.44 to 88.51.

Post-tuning, the mean AUC in PPMI improved to 82.17, with a standard deviation of 8.96 and a range of

70.93 to 90.17 (Table 17). This improvement was also mirrored in validations using the PDBP dataset,

where the AUC of the combined modality model was 83.84% before tuning (summarized in Table 18 and

Figure 32).

Data Modality Genetics (P<1E-5)

Clinico-

demographic

Transcriptomics

(P<1E-2) Combined

Stage Tuning in PPMI Tuning in PPMI Tuning in PPMI Tuning in PPMI

Algorithm

MLP

Classifier

Logistic

Regression SVC

AdaBoost

Classifier

AUC at training (%) 70.66 87.52 79.73 89.72

Mean, AUC during CV for baseline model

(%) 69.44 88.51 78.05 86.99

Standard deviation, AUC during CV for

baseline model (%) 4.46 2.17 4.27 2.3

Min, AUC during CV for baseline model

(%) 62.45 86.19 71.49 84.27

Max, AUC during CV for baseline model

(%) 75.73 91.98 82.62 90.7

Mean, AUC during CV for tuned model (%) 70.93 88.55 79.01 90.17

Standard deviation, AUC during CV for

tuned model (%) 5.39 2.2 4.71 1.64

Min, AUC during CV for tuned model (%) 61.29 86.33 70.88 88.06

Max, AUC during CV for tuned model (%) 76.71 92.15 84.01 92.73

Variance, AUC during CV for baseline

model (%) 19.89 4.73 18.2 5.29

Variance, AUC during CV for tuned model

(%) 29.03 4.82 22.18 2.7
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Table 17: Performance metric summaries comparing at tuned cross-validation in withheld samples in

PPMI

PPMI: Parkinson’s progression marker initiative; Min: minimum; Max: maximum; AUC: Area under the curve; CV:

cross-validation; PPV: Positive Predictive Value; NPV: Negative Predictive Value; MLPClassifier: Multi-Layer Perceptron Classifier;

SVC: Support Vector Classifier; AdaBoost Classifier: AdaBoost (Adaptive Boosting) Classifier.

Data Modality Stage Algorithm AUC (%) Accuracy (%)

Balanced

accuracy (%) Log Loss Sensitivity Specificity PPV NPV

Combined

Untuned in PPMI

as reference AdaBoostClassifier 89.72 85.56 82.41 0.63 0.89 0.76 0.91 0.73

Combined;

Untuned

Validation in

PDBP AdaBoostClassifier 83.84 75.81 69.31 0.64 0.93 0.46 0.75 0.78

Combined;

Tuned

Validation in

PDBP AdaBoostClassifier 85.03 75 68.09 0.67 0.93 0.43 0.74 0.78

Table 18: Performance metric summaries comparing combined tuned and untuned model performance

on PDBP validation dataset

PPMI: Parkinson’s progression marker initiative; PDBP: Parkinson’s disease biomarker program; AUC: Area under the curve; Log

loss: Logarithmic loss; PPV: Positive Predictive Value; NPV: Negative Predictive Value; AdaBoost Classifier: AdaBoost (Adaptive

Boosting) Classifier.
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Figure 32: Receiver operating characteristic and case probability density plots in the external dataset

(PDBP) at validation for the trained and then tuned models at default thresholds

Probabilities are predicted case status (r1), so controls (a status of 0) skews towards more samples on the left, and positive PD

cases (a status of 1) skews more samples on the right. A) Testing in PDBP the combined *omics model (genetics p-value

threshold = 1E-5, transcriptomics p-value threshold = 1E-2, and clinico-demographic information) developed in PPMI prior to

tuning the hyperparameters of the model; B) Testing in PDBP the combined *omics model (genetics p-value threshold = 1E-5,

transcriptomics p-value threshold = 1E-2, and clinico-demographic information) developed in PPMI after tuning the

hyperparameters of the model. PPMI: Parkinson’s Progression Marker Initiative; PDBP: Parkinson’s Disease Biomarker Program;

ROC: Receiver Operating Characteristic curve

Importantly, the multi-modal model exhibited the lowest rates of false positives and negatives when

compared to models focusing on a single modality. This was consistent across both the withheld test set

in PPMI and the PDBP validation set. Thus, transitioning from a single data modality to a multi-modal

approach not only enhanced the AUC but also improved other performance metrics, underscoring the

effectiveness of integrating multiple data types in predictive modeling for PD diagnosis.

Comparison of the Refined Multi-Modal Model with Earlier Models

Previous work conducted by Nalls and colleagues had developed a strong classifier using the UPSIT-only

model within the same PPMI training set (Nalls et al. 2015). Their model achieved a high AUC of 90.1%.

However, according to DeLong’s test, a statistical method used to compare the areas under two

correlated ROC curves often used in medical research when comparing the diagnostic accuracy of two
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tests or models, an integrative model they proposed proved to be more informative. While the

UPSIT-based model showed high predictive power, it had inherent limitations. Specifically, a decline in

smell identification is not exclusively indicative of PD; it can also signal general neurodegeneration,

aging, or environmental impacts.

The advantage of employing a multi-modal approach lies in the varied predictive strengths of different

modalities. In this context, leveraging a diversity of data types enhanced both the sensitivity and

specificity of our predictions. The final multi-modal model constructed in this study, applied to withheld

PPMI data, demonstrated superior performance over single-modality models. It achieved higher

accuracy and balanced accuracy rates of 85.56% and 82.41% respectively, along with a sensitivity of

89.31% and a specificity of 75.51% (Table 18), complete performance metrics for best combined method

comparing training in withheld samples in PPMI can be found in Supplementary Table 20.

To further quantify the effectiveness of our approach, I compared the distribution of AUCs across all

cross-validation iterations using a T-test. This comparison revealed that our combined model consistently

outperformed the clinico-demographic model in the PPMI dataset, with a significant statistic of |10.23|

and a p-value of 9.95E-23. Improved balanced accuracy is particularly crucial in binary classifiers,

especially when predicting classes that are rarer in the general population, like PD.

137



Figure 33: Feature importance plots for top 5% of features in XGBoost surrogate of best combined

*omics model

Plot on the left have lower values indicated by the color blue, while higher values are indicated in red compared to the baseline

risk estimate. Plot on the right indicates directionality, with features predicting for cases indicated in red, while features better

predicting controls are indicated in blue.

SHAP: Shapley values; UPSIT: University of Pennsylvania Smell Identification Test; PRS: Polygenic risk score

Also in this study, special emphasis was placed on validating our model. This included interpreting and

visualizing the top features that assist in classification prediction using Shapley values (Figure 33). We

also focused on tuning the model prior to developing hypothesis-free transcriptomic communities and

exploring potential drug-gene interactions.

Advantages of Using Machine Learning for Developing Multi-Modal Prediction Models

I leveraged GenoML to construct and fine-tune model parameters and handle non-linear associations,

offering a distinct advantage over traditional regression-based methods in disease prediction. This

approach is particularly evident in the performance of our best model, which used the strengths of the

AdaBoost classifier. By integrating all available data, this model exhibited an AUC ranging from 88.06% to

92.70% during 5-fold cross-validation, with an average of 90.20% and a standard deviation of 2.3%, as

observed in the PPMI dataset (Table 17).

Further validation of this model in the PDBP dataset revealed an AUC of 85.03%, along with a high

sensitivity of 93.12% and specificity of 43.07%. Notably, these metrics showed additional improvement

following post-hoc optimization of case probability thresholds.

To address the sample imbalance between case and control groups, I opted to calculate Youden’s J

statistic instead of traditional methods like upsampling or downsampling. By using Youden’s J to find the

optimal threshold, I adjusted the case-control threshold from the default 50% to a more tailored 51%.

This threshold adjustment enhanced the specificity for the PDBP cohort during validation. Applying this

optimized threshold to the withheld PPMI samples, the model's balanced accuracy in the training phase

was elevated to 83.95%. Similarly, the balanced accuracy improved to 77.97% when applying the model

to the PDBP validation data (see Table 19 for an overview of other related metrics and a contrast

between optimized and default thresholds). Overall, this optimization of thresholds strategy generally

enhanced classifier performance with only a slight increase in computational expense.
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Dataset Model Optimization

Case Probability

Threshold (%) Accuracy (%)

Balanced

accuracy (%) Log loss Sensitivity Specificity PPV NPV

PPMI, withheld

samples Training phase optimized 51 85 83.95 0.05 0.86 0.82 0.93 0.69

PPMI, withheld

samples Training phase default 50 85.56 82.41 0.05 0.89 0.76 0.91 0.73

PDBP, external

test samples Tuned model optimized 51 78.58 77.97 0.07 0.8 0.76 0.85 0.68

PDBP, external

test samples Tuned model default 50 75 68.09 0.09 0.93 0.43 0.74 0.78

Table 19: Optimizing the AUC threshold in withheld training samples and in the validation data

Optimization in this scenario is referring to using Youden’s J statistic to account for case/control imbalance and more

appropriately define the threshold. PPMI: Parkinson’s progression marker initiative; PDBP: Parkinson’s disease biomarker

program; Log loss: Logarithmic loss; PPV: Positive Predictive Value; NPV: Negative Predictive Value.

Predictive Performance is Primarily driven by UPSIT and PRS

In developing the combined predictive model, I included a comprehensive range of features: 51 SNPs,

418 protein-coding transcripts, along with key demographics, age, family history, olfactory function, and

previous genome-wide significant PRS (Nalls et al. 2019b). The importance of these features was

analyzed using Shapley explanations and visualized in Figure 33, which was based on withheld training

data.

A closer examination of the SHAP values, both in training and testing phases, revealed that the UPSIT

scores and PRS were the most influential in driving the model’s predictive power. However, the accuracy

of the model was further enhanced by the inclusion of numerous smaller effect transcripts and risk SNPs.

The SHAP plots also indicated a clear trend: lower UPSIT scores, shown in blue, were strongly associated

with a higher likelihood of PD, corroborating findings from earlier studies that used the smell

identification test for PD diagnosis (Doty et al. 1984; Morley et al. 2018; Picillo et al. 2014).

An interesting observation from the SHAP analysis was the varied directionality of genetic features. This

variation implies that the overexpression of certain genes is associated with healthy controls, while for

others, it indicates the opposite. Regarding sex, coded as "MALE" in the dataset, it was initially included

but was not a determining factor in the final model due to a balanced distribution of sexes in the PPMI

training dataset. This resulted in sex being excluded during feature selection, leading to a SHAP value of

zero for this feature. Detailed SHAP values for all predictive features in the top-performing model are

available in Supplementary Table 21. Moreover, the inclusion of SNPs beyond those in the PRS hints at

potential compensatory or risk-modifying interactions with the PRS, as further detailed in Figure 30.
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QTL analysis was conducted on each SNP and transcript combination among the top features in the final

model, using linear regression on the adjusted dataset. This analysis revealed that no SNP and transcript

combination passed multiple test corrections, highlighting the effectiveness of our feature selection

process in eliminating redundant or correlated features (Supplemtary Table 22). Additionally, an analysis

of the independence of these top features showed correlations ranging from a minimum of 1.40E-05 to a

maximum of 0.364, with an average of 0.045 and a standard deviation of 0.049. These results, fully

detailed in Figure 30 confirm that the features in the top-performing model are largely independent of

each other.

Predictive Performance is Primarily driven by UPSIT and PRS

After choosing the best multi-modal model, I focused on constructing some preliminary gene expression

network communities, which were built using RNA sequencing data obtained from positive PD cases. The

genes included in this analysis were specifically selected through a feature selection process. These

communities represent unique PD-specific networks, identified within whole blood RNA sequencing

data. Conceptually, these networks can be likened to biological pathways. They comprise genes whose

expression is highly correlated within the case-only transcriptomics dataset, and the communities are

essentially subgroups of these genes that are closely interrelated within the larger network. I identified

13 such network communities, encompassing 300 genes, characterized by an Erdős–Rényi modularity

score of 0.794. This score being closer to 1, which is a measure used to assess the strength of division of

a network into modules or communities, indicates a strong model fit. A graphical representation of these

findings are detailed in Figure 34.
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Figure 34: Network plot of nominated genes following best combined multi-model ML prediction model

Panel A provides a macro-level view of the distance between communities. Panel B is a micro-level view of connectivity within

and between network community modules. The colors of communities in Panel A correspond to those in panel B.

In analyzing the genes from these network communities, I also explored their potential

overrepresentation as known drug target genes. A comparative analysis between the genes in the

network communities (300 genes) and those included as features in the case-control model build (598

genes) revealed significant enrichments. Specifically, genes related to fostamatinib showed a notable

enrichment (FDR adjusted p-value of 2.21E-4 for MYLK, EPHA8, HCK, DYRK1B, and BUB1B-PAK6) as per

DrugBank annotations. Fostamatinib is known for its role in modulating immune responses and

inflammation, with the enrichment of these genes suggests potential therapeutic targets for reducing

inflammation in PD (M. W. Kim et al. 2022).

Similarly, genes associated with copper were also overrepresented (FDR adjusted p-value of 0.0286 for

HSP90AA, CBX5, and HSPD1). An additional query in the GLAD4U database indicated a significant

overrepresentation of L-lysine annotated genes (FDR adjusted p-value of 0.0057 for DDX50, UBA2,

ESCO1, CDC34, ANKIB1, PCMT1, DNAJA1, PRMT3, ASPSCR1, BRDT, LOXL4, CBX5, HAT1, MARCH1,

HSP90AA1, KPNB1, KMT5B, PSIP1, XPOT, SLC7A9, ZNF131, DDX18, RBBP5, and MSL1). L-lysine, an

essential amino acid, enrichment in these networks might possibly be related to protein aggregation or

neurotransmitter synthesis, suggesting new pathways or mechanisms in PD pathology (R. Wang et al.

2020).

However, other variations of our drug target enrichment analyses did not yield any significant

overrepresentation of drugs after adjusting for multiple tests, although gamma hydroxybutyric acid

consistently emerged as the top unadjusted result (p-values ranging from 0.0056 to 0.0001 for SLC16A7,

SLC16A3, and GABBR1). Gamma hydroxybutyric acid, known for its impact on sleep and mood, could

have neuroprotective qualities, and could be a therapeutic avenue to explore when managing non-motor

symptoms like sleep disturbances in PD (Dornbierer et al. 2019).

Conclusions and Discussion

Integrating Diverse Data Modalities for Enhanced Parkinson's Disease Prediction

In the current landscape of research, where there is an increase in genomic and clinico-demographic

data, the construction of multi-modal models leveraging these varied data modalities, will continue to

enhance performance and scope.

Numerous studies have explored PD risk and onset using varied data types, such as gait analysis

(Palmerini et al. 2017), fall detection techniques (Silva de Lima et al. 2017), other motor data (Noyce et

al. 2014), and sleep behavior analysis (Campabadal et al. 2021). This study takes a unique approach,

integrating adjusted transcriptomics, genetics, and clinical data into a single predictive model. This

model, framed within ML, seeks to complement existing studies, such as those focusing on imaging for
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predicting REM sleep behavior disorder (Mei et al. 2021; D. A. Lee et al. 2021) and cognitive deficits

(Rahayel et al. 2018). My approach offers the advantage of lower resource requirements for model

implementation.

I see potential in merging this model with existing studies through transfer or ensemble learning

techniques, which could be highly beneficial. In fact, this work has already been replicated elsewhere (J.

Zhang et al. 2023). However, I faced limitations in this study due to data scarcity and the availability of

potential features in public datasets. Previous research identified UPSIT as a critical predictive feature in

PD, as demonstrated by Prashanth and colleagues, who trained a model on CSF biomarkers (Prashanth et

al. 2016). Building on this, my study aims to develop a model based on data that are remotely accessible

or commonly found in biobanked samples, avoiding the need for costly and logistically challenging

specialist clinical visits.

A comprehensive review in this space examined studies employing ML in PD diagnosis, highlighting a key

distinction of this study: the focus on specific modalities and commitment to training, tuning, and

validating using publicly available cohorts. This ensures transparency, reproducibility, and applicability in

transfer learning (Mei, Desrosiers, and Frasnelli 2021).

This study underscores the effectiveness of integrating diverse data modalities in predictive modeling,

with broad implications for healthcare data utility. This approach is pivotal in areas like clinical trial

enrollment and stratification. We describe a methodology that not only enables accurate, early PD

diagnosis but is also potentially cost-effective for biobanks and established healthcare systems. The

model-building process has successfully developed robust models for peri-diagnostic PD, the period

around the time of diagnosis of disease, simultaneously generating novel gene network communities

correlated with PD that could inform therapeutic development. A key strength of this multi-modal

approach is its compensatory mechanism, where various modalities balance each other out, some

excelling in predicting case status, others in classifying controls.

Machine Learning to Develop Adjunct Screening Models

While this study introduces a novel approach to PD diagnosis, it should be emphasized that the model’s

role is a supplementary tool rather than a replacement for current diagnostic methods. The primary aim

is to assist in identifying individuals at high risk, particularly useful in large-scale biobank or study

recruitment settings. To fully understand the model's efficacy in early PD detection, further studies are

necessary, especially to differentiate early PD cases from other diseases in high-risk groups.

Regarding the prevalence of PD in an aging population, approximately 2% are affected (Alves et al.,

2008). Within this context, our optimized model, based on the PPMI data (Table 19), demonstrates a PPV

of 8.75% and a NPV of 99.66%. However, the model exhibits a high false discovery rate (FDR) of 91.26%

and a low false omission rate (FOR) of 0.34%. This low FOR implies that in a scenario of screening 1000

individuals deemed as healthy, 3 to 4 might actually have PD. The model, therefore, is more effective for

identifying broader groups for monitoring within health registries or biobanks, rather than pinpointing
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individual cases. Despite its lower specificity, the model's high sensitivity makes it valuable for large-scale

biobank contributions and trial recruitments, targeting individuals at risk.

My study's strength lies in its high balanced accuracy in differentiating between PD cases and controls.

The PPMI dataset, which focuses on patients close to diagnosis and pre-treatment, differs from the PDBP

in aspects such as recruitment style and patient medication status. For instance, PPMI involves

unmedicated patients diagnosed within a year (confirmed by DatScan), whereas PDBP includes patients

diagnosed within five years, regardless of medication status and without DatScan confirmation. These

differences are reflected in the mean age and UPSIT scores between the cohorts, affecting model

performance (Table 15 and Table 20). Notably, the clinico-demographic model, with UPSIT as a top

predictor, performs well in the PDBP cohort. However, the multi-modal approach, trained on PPMI data,

is more suited for identifying high-risk individuals at the point of diagnosis.

Data Modality Stage Algorithm AUC (%) Accuracy (%)

Balanced

accuracy (%) Log Loss Sensitivity Specificity PPV NPV

Genetics (P<1E-5)

Training in

PPMI (70:30) MLPClassifier 70.66 70.00 60.64 0.83 0.83 0.38 0.77 0.48

Clinico-

demographic

Training in

PPMI (70:30) LogisticRegression 87.52 79.44 75.27 0.39 0.85 0.65 0.86 0.64

Transcriptomics

(P<1E-2)

Training in

PPMI (70:30) SVC 79.73 73.89 54.60 0.48 0.97 0.12 0.75 0.60

Combined

Training in

PPMI (70:30) AdaBoostClassifier 89.72 85.56 82.41 0.63 0.89 0.76 0.91 0.73

Genetics (P<1E-5)

Validation in

PDBP MLPClassifier 53.67 60.27 52.20 1.16 0.80 0.24 0.66 0.40

Clinico-

demographic

Validation in

PDBP LogisticRegression 87.65 80.26 75.74 0.44 0.91 0.60 0.81 0.79

Transcriptomics

(P<1E-2)

Validation in

PDBP SVC 63.62 65.50 53.32 0.65 0.97 0.09 0.65 0.67

Combined

Validation in

PDBP AdaBoostClassifier 83.84 75.81 69.31 0.64 0.93 0.46 0.75 0.78

Combined; tuned
Validation in

PDBP
AdaBoostClassifier 85.03 75.00 68.09 0.67 0.93 0.43 0.74 0.78

Table 20: Performance metric summaries comparing best model in training in withheld samples in PPMI

on PDBP validation dataset

PPMI: Parkinson’s progression marker initiative; PDBP: Parkinson’s disease biomarker program; AUC: Area under the curve; Log

loss: Logarithmic loss; PPV: Positive Predictive Value; NPV: Negative Predictive Value; MLPClassifier: Multi-Layer Perceptron

Classifier; SVC: Support Vector Classifier; AdaBoost Classifier: AdaBoost (Adaptive Boosting) Classifier.

Furthermore, chromosomes X and Y were not included in the AMP PD version 1 release, and recent

research suggests no correlation between autosomal risk factors and PD sex differences (Blauwendraat

et al. 2021). The combined model, incorporating both dynamic (age, UPSIT, RNA sequencing) and static
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(family history, genetics) features, is most accurate at diagnosis, having been trained on newly

diagnosed, imaging-confirmed, unmedicated PPMI cases. This precision makes it an ideal tool for

healthcare systems to identify at-risk individuals for monitoring and potentially nominating them for

low-cost preventative interventions or prodromal clinical trial enrollments. Additionally, combining

clinical and algorithmic insights to refine participant group phenotypes could enhance trial recruitment

efficacy. Since this model is designed to target early-stage PD, it holds promise in facilitating timely

interventions or treatments, potentially preventing irreversible damage. By identifying large pools of

at-risk individuals, this approach enables proactive follow-up and monitoring, anticipating symptom

onset and aiding in early intervention (Leonard et al. 2020).

Exploring the Top Predictive Features

Our team have developed an interactive web-based application to facilitate the exploration of key factors

in this PD prediction model, which incorporates multiple data modalities. Some of these metrics,

abbreviated in Supplementary Table 20, provides users with the flexibility to explore various model

variations, including transcriptomics-only models and models excluding clinico-demographic features. A

significant feature of this application is its ability to generate decision plots. These plots are particularly

insightful, as they allow users to understand the reasoning behind the classification of individuals,

especially those who were challenging to categorize as either PD cases or controls.

Figure 35: Misclassified case as a healthy control using the best multi-modal model

UPSIT: University of Pennsylvania Smell Identification Test; PRS: Polygenic risk score
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My analysis highlights that the UPSIT score is a predominant factor in determining whether an individual

is classified as a PD case or a healthy control (Figure 33). However, it's important to note that while

UPSIT is a general indicator of neurodegeneration, incorporating diverse data types, especially genetic

data, enhances disease specificity. For instance, one decision plot illustrates an individual clinically

diagnosed with PD being initially classified as a case by the model, but an unexpectedly high UPSIT score

led to a misclassification as a healthy control (Figure 35). This exemplifies the complex role UPSIT plays in

this model, being both advantageous and challenging in terms of model performance. My analysis also

highlights the impact of genes and variants on the model’s performance and potentially on PD biology.

Many top features are transcriptomic, likely due to the PRS capturing a significant portion of the genetic

aspects of PD risk. Genetics data, being static and unchanging over time, contrasts with the dynamic

nature of clinical or transcriptomic data. These genetic contributions are numerous but individually have

smaller effects compared to the few but large effects seen in time-varying clinical data.

The genetics and PRS data in this model, derived from well-established knowledge of PD, may result in

some degree of overfitting. However, the top-ranked features from the transcriptomics data offer

intriguing biological insights. For example, the expression of HS3ST3A1, implicated in alpha-synuclein

aggregation in PD cellular models, has recently been associated with white matter hyperintensity and

cognitive decline in the elderly (Lehri-Boufala et al. 2015; “Genome-Wide Association Study of White

Matter Hyperintensity Volume in Elderly Persons without Dementia” 2020). OTOL1, another top feature,

is a potential genetic modifier of familial PD (Hill-Burns et al. 2016). CHFR has been associated with

rotenone-related PD risk (Cabeza-Arvelaiz and Schiestl 2012) and CASP7's involvement in apoptosis and

neuroprotection, along with its link to late-onset familial Alzheimer’s disease (X. Zhang et al. 2019;

Magalingam et al. 2015), are also notable.

Furthermore, the genetic variant rs4238361 near the coding gene VPS13C, known for harboring PD

variants (Lesage et al. 2016; Rudakou et al. 2020), and the gene PHF14, which is suggested to be

downregulated in neurodegenerative diseases (Ibáñez et al. 2014), are of interest. Recent studies

connecting SQLE with dopamine stress responses in PD (“Single-Cell Transcriptomics of Parkinson’s

Disease Human In Vitro Models Reveals Dopamine Neuron-Specific Stress Responses” 2020) and the

suggested association of MMP9 overexpression with neuronal cell death in neurodegeneration (He et al.

2013) indicate plausible biological relevance of these findings.

Leveraging Network Analysis in Therapeutic and Biomarker Research

In this study, I have found that incorporating feature selection from model building into network

community analyses results in the creation of networks with relatively low bias. This is in contrast to

networks derived from literature and text mining, which often contain inherent biases (Gillis, Ballouz,

and Pavlidis 2014; Haynes, Tomczak, and Khatri 2018). Notably, the networks formed through this

method reveal nodes that indicate potential shared effects in genetically targeted drugs. This insight is

crucial for drug development, as drugs linked to genetic or genomic data generally demonstrate higher

success rates in clinical trials (Nelson et al. 2015; King, Davis, and Degner 2019). In addition to building

classifiers, these modeling techniques aid in pinpointing drug targets during feature selection and
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network construction phases. The network community we constructed from case-only expression data

included only two quantitative trait loci identified in blood from Mendelian randomization in previously

published PD GWAS (Supplementary Table 23). These two genes are ZBTB4 and FCF1. Moreover, our

analysis of transcriptomic data revealed an enrichment of drug targets within the genes nominated.

These networks, based on genes highly correlated in PD cases, naturally led to clusters of genes with

similar expression patterns among these cases.

Of note were the overrepresentation of genes targeted by existing drugs within these network

communities. For instance, we identified an interaction between gamma hydroxybutyric acid and the

genes SLC16A7, SLC16A3, and GABBR1. The SLC16A7 and SLC16A3 genes belong to a family of drug

transporter genes known as monocarboxylate transporters, which are involved in various stages,

including the absorption, distribution, and elimination of drug molecules (Halestrap 2013). The GABBR1

gene, which encodes a receptor for gamma-aminobutyric acid (GABA) and is implicated in several

neurobehavioral disorders, interacts with gamma hydroxybutyric acid, a GABA-B receptor agonist

(Halestrap 2013; Ngo and Vo 2019). This interaction suggests potential pathways for therapeutic

intervention and optimization.

Overcoming Challenges and Embracing Innovations

In conducting this research, the primary limitation was the lack of diversity in our sample series. The

effectiveness of genetic predictive models is known to vary significantly across different genetic ancestry

groups, as indicated by current research (A. R. Martin et al., n.d.). To address this in future studies, I plan

to leverage the resources of the GP2 and federated learning (Global Parkinson’s Genetics Program 2021;

(Riley, AU Riley, and Schekman 2021). This collaboration aims to expand our modeling efforts to include a

wider array of genetic ancestry groups and generally larger sample series.

Furthermore, I acknowledge that finding an optimal dataset for validating our findings is challenging due

to the specific design of PPMI, which focuses on unmedicated, recently diagnosed PD cases. Additionally,

significant predictors such as constipation and REM sleep behavior disorder (RBD) were not included in

our analysis. In previous studies, constipation did not meet the criteria for feature selection and was

consequently omitted (Nalls et al., 2015). Although RBD is a recognized predictor of PD, comparable to

the smell identification test, its data was available only for a subset of samples, which could have led to

issues with sparse data and data harmonization challenges. The RBD questionnaire has also been

deemed insufficient for screening idiopathic PD (Halsband et al. 2018). However, the ongoing expansion

of the PPMI study is expected to facilitate further advancements in this area.

While advanced computational techniques may promise improved accuracy, they also introduce

increased complexity, reduced interpretability, and potential implementation challenges. The scientific

and medical communities value parsimony - the idea that simpler models should be preferred when they

adequately describe the phenomenon at hand. Therefore, the marginal benefits of ML in this setting

should be carefully weighed against the added complexity and resource requirements. Nonetheless,

these findings do not negate ML's potential utility in clinical settings. Rather, they emphasize that ML's
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practical value in healthcare depends on achieving a balance of improved predictive accuracy,

user-friendliness, computational efficiency, and cost-effectiveness. Optimal clinical implementation of

ML should enhance decision-making while seamlessly integrating into existing workflows without

imposing undue burdens on healthcare providers or systems.

Despite these challenges, I believe this work provides a conceptual and practical framework building on

previous efforts. The combined multi-modal classifier exhibits improved performance, broader

applicability, and high reproducibility. Moreover, the transparency of our approach and the inclusion of

various data types move us towards more clear and interpretable models.

This research represents a study that is part of the shift away from the traditional focus on single

biomarkers in biomedical research. By using and competing several ML algorithms to explore complex

relationships between features, I have attempted to maximize data value across multiple modalities.

These models in the future that are developed with growing diverse datasets will be ethical and

generalizable to the population, enhancing risk prediction in PD for precision medicine.
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Chapter 6: Conclusions and Horizons in PD Genetics

Research
PD is a complex neurodegenerative disorder expected to affect 12-17 million by 2040 (The Lancet 2024),

and presents a significant challenge in healthcare due to its varied manifestations and unclear etiology.

Through comprehensive analysis, I aimed to uncover the genetic landscape of PD and its implications for

diagnosis and treatment. My dissertation evaluates the genetic underpinnings of PD, focusing on the

examination of rare variants, structural variants, common variants, and culminates in the development

of advanced diagnostic model leveraging ML and multi-omics data.

A pivotal aspect of understanding PD's genetic landscape is the study of specific genes implicated in the

disease. One such gene is SNCA, known for its significant role in PD pathology (Morris et al. 2024). In

Chapter 2, I investigated the frequency and nature of SNCA structural variants, such as duplications,

deletions, and complex rearrangements, using data from the UK Biobank. Despite SNCA's known links to

familial and sporadic PD, there remains an unclear impact of these variants in the general population.

Notably, none of the participants with known pathogenic SNCA missense mutations or CNVs had PD,

though some had prodromal symptoms or a noted family history of the disease. This could be due to

early sampling bias of the UK biobank, as it does not have targeted disease recruitment.

I also reported potential mosaic events in SNCA. While these have been linked to PD in other studies,

their role in disease progression remains uncertain. Interestingly, a significant number of individuals with

mosaic SNCA events also had blood-based cancers, showing the connection between large genetic

changes in DNA derived from blood and cancer risk. However, the effects of these mosaic events on gene

and protein expression, especially in relation to PD, are still not fully understood. These findings highlight

the need for further research to fully grasp the implications of SNCA variation and mosaicism in PD. This

could involve monitoring individuals with these genetic alterations over time to see if PD symptoms

develop or including them in clinical trials for preventative therapies. Another limitation of the study was

relying on EHRs for PD diagnosis and the potential of overlooking smaller or more complex genetic

variations. EHRs, particularly those based on ICD-10 coding, might not capture every aspect of a patient's

health history, especially more subtle symptoms or conditions that are not routinely coded. This could

lead to underreporting or misclassification of PD cases. Another major challenge was the lack of

immediate access to DNA samples, which restricted our ability to use Multiplex Ligation-dependent

Probe Amplification (MLPA) for direct validation of identified CNVs. Instead, we relied on exome

sequencing data, which, while informative, is not as targeted for CNV detection as MLPA. This meant that

the validation of genomic events was only partial. Furthermore, my methodological approach, which

included manual interpretation of visualized genetic data, raised the risk of missing certain types of

genetic variations. Smaller deletions or complex genomic rearrangements, which might be crucial in

understanding PD but less apparent in the data, could have been inadvertently overlooked.

Building on the limitations identified in my study, there are several areas for future work and

improvements. Daida and colleagues highlight the importance of long-read sequencing in identifying
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complex structural variants, especially in the PRKN gene related to young-onset PD. Their discovery of a

novel inversion in PRKN in monozygotic twins with dystonia-parkinsonism illustrates the crucial role of

advanced sequencing techniques in resolving intricate genetic variations in PD (Daida et al. 2023). There

is a need to develop more advanced screening techniques that can accurately detect structural variants

in SNCA, and other genes (such as PRKN) across diverse populations. Longitudinal studies are also crucial.

By conducting studies that track the progression of PD in individuals with identified SNCA variants over

time, we can gain a deeper understanding of how these genetic alterations influence the development

and progression of the disease. This would enhance our ability to identify individuals at risk for PD more

efficiently and inclusively and eventually prioritize them for targeted therapies for more effective

treatment.

Looking forward, it would be beneficial to replicate this SNCA analysis using the newly released UK

Biobank data as well as the AllofUs data, which might provide additional insights given the larger sample

size and confirm previous findings. Relevant work by Billingsley and colleagues provide a significant

contribution to this field. Their study focused on identifying structural variants associated with PD risk

using whole-genome sequencing samples. They discovered three novel deletion SVs linked to PD,

including a significant deletion within LRRN4 (Billingsley et al. 2023). This research underscores the value

of genome-wide analysis in understanding PD genetic risk and complements my study's findings. There is

also the potential in leveraging automated, machine-learning-powered algorithms for enhanced CNV

detection, prioritization, and nomination across different ancestries in a large-scale manner across all

genes, an active project we have at GP2. This approach could address the current limitation of

potentially missing smaller or complex variations.

Moving from the study of structural variants, I shift my focus to the impact of rare genetic variants on

PD. Beyond the focus on specific genes like SNCA, I conduct a comprehensive genetic analysis on the

impact of rare variants in all genes, which might hold pivotal insights into the multifaceted nature of PD.

In Chapter 3, I analyzed a large sample comprising 7,184 PD cases, 6,701 proxy-cases, and 51,650

controls to conduct rare variant gene burden tests for PD. My meta-analysis reinforced the association of

rare variants in GBA1 and LRRK2 with PD risk in individuals of European ancestry. Additionally, I identified

several novel PD-associated genes, including B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10, and

TREML1, though their significance varied across datasets. A key finding was the strong evidence of a

novel rare variant association in B3GNT3, primarily driven by the Genentech and UK Biobank parent

proxy datasets. However, these variants were absent in the AMP-PD and NIH genomes, suggesting the

need for more data to confirm their PD risk association. The rarity of these variants and their absence in

other datasets indicate the challenges in studying rare genetic variants in PD and underscore the need

for further validation.

I also assessed rare variants in previously suggested PD GWAS loci, but found no significant associations.

This aligns with similar findings in East Asian populations and raises questions about the mechanisms at

these loci. Notably, genes commonly associated with autosomal recessive early-onset PD, such as PINK1

and PRKN, were absent in my study, likely due to the algorithms used being more attuned to autosomal
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dominant and high-risk variants. The rarity of certain disease-causing variants, like pathogenic missense

variants in SNCA, also presented a challenge, as these mutations are scarce in the broader population

and likely underrepresented in my datasets. My results led me to investigate the role of immune

response and microtubule defects in PD, highlighting genes like B3GNT3, TUBA1B, and TREML1.

B3GNT3's role in lymphocyte homing and TUBA1B's involvement in microtubule function suggest their

potential connection to PD pathology. TREML1's increasing implication in neurodegenerative disorders

and ADH5's controversial association with PD risk also warrant further exploration. However, the

connections between PD and the functions of AUNIP, OR1G1, and CAPN10 remain unclear, necessitating

additional studies with genetic support and functional data.

Despite being the largest effort to identify rare genetic variants in PD, my study had limitations, primarily

its focus on individuals of European ancestry. Future research should include diverse populations and

various age-at-onset ranges. The study’s limitation to four variant classes may overlook other disease

mechanisms, such as gain-of-function mutations, as those are more difficult to detect. Additionally, the

study's power to detect associations in genes with a small percentage of functional variants was limited.

The absence of certain genes in my analysis, notably PINK1 and PRKN, anticipated due to the nature of

the burden testing algorithms, highlights the need for more comprehensive approaches. The clinical

heterogeneity within PD cases also necessitates further validation of the pathogenicity of rare or

ultra-rare variants. In conclusion, while my study reaffirms the role of GBA1 and LRRK2 in PD and

nominates several new genes, it emphasizes the need for more research, particularly focusing on familial

PD cases and diverse populations, to deepen our understanding of PD genetics.

In the future, the enhancement of imputation of rarer variants with greater confidence would improve a

future iteration of this study. This will involve broadening genetic screening to encompass a global

perspective on PD, recognizing that rare genetic variants may be relevant across diverse populations.

Incorporating detailed clinical phenotyping with genomic data regarding rare variants is a critical step, as

that will establish the foundation for scalable precision medicine strategies and potential for

personalized treatment. This integration will enable a better understanding of genotype-phenotype

correlations, aiding in the development of therapeutics targeting pathways affected by identified rare

variants.

Extending the analysis of rare variants to include underrepresented populations once enough samples

are collected will be crucial. This expansion is vital to uncover novel variants and associations that might

be specific to these groups. Advanced computational predictors, like AlphaMissense (Cheng et al. 2023)

and AlphaFold (Jumper et al. 2021), will be employed to predict the immediate functional impact of rare

genetic variants in tandem with existing prediction tools. Improved imputation of rare variants, scalable

and ancestry-aware, will power statistical tests and enhance their accuracy. The use of

population-specific reference panels, as demonstrated in studies with Estonian individuals, shows

significant promise in improving imputation confidence and accuracy for low-frequency and rare variants

(Mitt et al. 2017). Additionally, it is worth exploring advanced statistical methods like the aggregated

Cauchy association test (ACAT) for its robust power in sequencing studies, especially in situations where

only a small number of variants are causal (Liu et al. 2019).
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The work in this study has also been replicated by Pitz and colleagues, where they assessed over 27,590

PD cases and 3 million controls, illustrating the complexities of studying rare variants in large-scale

cohorts. They successfully replicated five significant variants, including those in GBA1 and LRRK2, and

identified eight strong candidate variants for association with PD (Pitz et al. 2024). This approach

underscores the importance of large databases in confirming and discovering new variants linked to PD.

By building upon these methodologies and findings, my future research aims to expand our

understanding of rare variants in PD, overcoming the current limitations and paving the way for more

effective diagnosis and treatment strategies.

I extend the genetic investigation from rare to common variants, addressing the gap in genetic diversity,

crucial for a holistic understanding of PD. The multi-ancestry meta-analysis and fine-mapping in

Alzheimer’s Disease (Lake et al. 2023) and the large-scale multi-ancestry meta-analysis in PD (J. J. Kim et

al. 2024) both highlight the importance of incorporating diverse genetic backgrounds into

neurodegenerative disease research. These studies have identified novel loci and fine-mapped causal

variants, demonstrating the value of including diverse ancestries in genetic studies of PD and Alzheimer’s

disease. I explored the genetics of PD in African and African admixed populations, a relatively

underexplored area. In Chapter 4, I conducted the first extensive genome-wide assessment in these

populations, analyzing data from 197,918 individuals from various cohorts, including GP2 and 23andMe.

I focused on identifying ancestry-specific genetic risk factors and exploring coding and structural

variations. My study revealed a novel common risk factor at the GBA1 locus, unique to African ancestry

populations, that was significantly associated with both PD risk and age at onset. This discovery

underscores the importance of large-scale studies in diverse populations, as larger sample sizes were

needed to identify GBA1 as a major PD risk factor in European populations. GBA1 is a complex locus with

various coding, structural, and non-coding variants affecting PD risk. Despite the robust effect size of the

signal identified, no associations were found with known or newly discovered GBA1 coding or structural

variation. Instead, eQTL data suggested that the rs3115534-G risk allele is associated with increased

GBA1 expression but paradoxically corresponds to decreased GCase activity. This work highlights the

importance of including diverse ancestries in genetic research and opens new avenues for RNA-based

therapeutic strategies and inclusive clinical trial designs. As a follow-up to this study, the study by Ojo

and colleagues on the GBA1 variant and REM sleep behavior disorder (RBD) in the Nigerian population

highlights the importance of investigating specific non-coding variants in African populations. Their

findings suggest a significant association between the GBA1 rs3115534 variant and possible RBD

symptoms, even in the absence of PD, underscoring the need for more in-depth research in this area

(Oluwadamilola Omolara Ojo et al. 2024).

Despite its contributions, my study faces limitations such as the need for larger cohorts and the

challenges posed by multi-mapping reads between GBA1 and its pseudogene, GBAP1. These limitations

highlight the necessity for future research to comprehensively explore susceptibility genetic risk and

phenotypic relationships. In conclusion, this research provides vital GWAS-based insights into PD

genetics in African and African admixed populations and sets the stage for future clinical trials and

therapeutic interventions targeting GBA1 and other PD-related genes. Future studies should expand
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cohort sizes, integrate omics data, and evaluate population-specific associations to enhance our

understanding of PD genetics and its clinical implications.

Building on the current work, my future research will focus on expanding the understanding of local

ancestry for each individual, offering insights into the unique genetic variations that occur due to the

historical admixture of different populations. Additionally, GWAS in various subpopulations across Africa

as well as extending these GWAS to other global populations will identify novel loci and enhance our

comprehension of PD's genetic landscape. With the identification of ancestry-specific genetic risk

factors, there is an opportunity to create scalable precision medicine interventions that are effective

across different genetic backgrounds. This approach could lead to more personalized and effective

treatments for PD patients worldwide.

In my future work, I plan to build upon the foundational efforts of GP2, as outlined in their publication

(Global Parkinson’s Genetics Program 2021). GP2 aims to enhance global PD genetic research,

emphasizing data democratization and diversity, which aligns with my goal of expanding understanding

in underrepresented populations, as they have a deep commitment to integrate cohorts into GP2 for

global PD research, detailed in their protocol developed by Towns and colleagues (Towns et al. 2023).

GP2 uses the Illumina NeuroBooster array, developed for the GP2 and the Center for Alzheimer’s and

Related Dementias, as described by Bandrés-Ciga and colleagues (Sara Bandres-Ciga et al. 2023). This

tool is designed to address disparities in representing diverse genetic variations in neurological research

and will be instrumental in identifying low-frequency variants and imputing common variants across

various populations.

Building on the technological and methodological advancements facilitated by GP2, the need for further

refining our understanding of genetic risk factors across diverse ancestries becomes evident. This

necessity is highlighted by the work of Saffie-Awad and colleagues, who evaluated PRS models across

different populations. Their findings reveal significant disparities in risk estimates and allele patterns,

emphasizing the limitations of current PRS models that are predominantly biased towards European

populations (Saffie-Awad et al. 2023). This underscores the urgent need for larger, more diverse cohorts

to enhance the precision and inclusivity of genetic predictions in PD research across all ancestries.

Building upon the genetic findings, I explored the application of these insights in developing

generalizable ML models. This transition highlights the practical implementation of genetic research in

PD, moving from theoretical understanding to actionable diagnostic tools. In Chapter 5, I address the

urgent need for global, scalable, early, and precise PD diagnosis, focusing on the disease's early stages.

Central to my approach is the use of multi-modal PD datasets and the development of GenoML, a

custom Python package integral to creating innovative diagnostic models. Using data from AMP-PD and

employing GenoML's open-source automated machine learning software, I ensure reproducibility,

transparency, and adherence to open science principles. The models I developed effectively predict PD

risk and identify key features for constructing unbiased genetic networks, illuminating biological

pathways involved in PD onset and potential therapeutic targets. The model shows a significant

improvement over previous efforts, demonstrating enhanced performance metrics in current
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cross-validation and even surpassing the training phase metrics of some prior studies. In my study, I

integrated adjusted transcriptomics, genetics, and clinical data into a single predictive model. This model

complements existing studies that focus on imaging for predicting REM sleep behavior disorder and

cognitive deficits. My study underscores the effectiveness of integrating diverse data modalities in

predictive modeling, with broad implications for healthcare data utility. However, I encountered

limitations due to data scarcity and the availability of potential features in public datasets. My goal is to

develop a model based on data that are remotely accessible or commonly found in biobanked samples,

thus avoiding the need for costly and logistically challenging specialist clinical visits. The methodology I

describe not only enables accurate, early PD diagnosis but is also potentially cost-effective for biobanks

and established healthcare systems. The multi-modal approach balances out various modalities, some

excelling in predicting case status, others in classifying controls, making it valuable for large-scale

biobank contributions and trial recruitments. Despite a high false discovery rate, the model's high

sensitivity and balanced accuracy in differentiating between PD cases and controls make it an effective

tool for identifying high-risk individuals for monitoring and early intervention. While the methodology

demonstrates significant improvements in PD risk prediction and highlights key genetic networks

involved in PD onset, it is not without limitations that suggest future research directions.

One major limitation lies in the availability and diversity of data. Despite integrating transcriptomics,

genetics, and clinical data, the study faces challenges due to data scarcity and a limited range of features

in public datasets. Future studies could expand the dataset to include more diverse and extensive

features, potentially overcoming this limitation. Additionally, integrating other forms of data, such as

environmental or lifestyle factors, could enhance the model’s predictive power. Addressing the high false

discovery rate identified in the study is also crucial. Future iterations of the model should aim to reduce

this rate to improve the accuracy and reliability of PD predictions. Advanced ML techniques and a more

comprehensive dataset might help in achieving this.

Another direction for future research involves the model's application and integration with existing

healthcare systems and studies. While the current model is less resource-intensive and shows potential

for merging with other studies through techniques like transfer or ensemble learning, further research is

needed to fully realize this integration. The model's usage in clinical settings warrants further

exploration. While it shows promise in identifying high-risk individuals for early intervention, assessing

its practicality and effectiveness in real-world healthcare settings is essential.

The next phase of this research will concentrate on several innovative methodologies and applications to

enhance the precision and applicability of PD diagnosis. The use of newer and improved releases of the

AMP-PD data will be crucial in this endeavor. This will ensure that the models are developed using the

most up-to-date and comprehensive data available, enhancing their predictive accuracy and relevance.

The development of GenoML will be expanded to include multi-class predictions, aimed at enhancing

GenoML's capabilities, making it a more versatile tool in PD research and improving predictions beyond

PD case and control.
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In response to the need for more generalizable models, there will be an exploration of generating

models with fewer features. This approach aims to increase the models' applicability across diverse

populations, addressing one of the key limitations of current predictive models. Furthermore, the

application of federated ML will be pivotal for analyzing locally-restricted samples and data silos, offering

a solution to privacy and logistic challenges in genomic studies by continuously updating a central model

with weights and redistributing the model to the silos.

Alongside this, network community clustering with transcriptomics will be employed to gain deeper

insights into the pathways associated with PD. This method will help in identifying key genetic networks

and the effects of their potential perturbations. The use of in silico network perturbations will offer a

novel approach to understanding the impact of genetic changes on PD. This technique will simulate the

effects of various genetic alterations, providing valuable insights into potential therapeutic targets.

Additionally, a focus on proteomics and the longitudinal progression of PD across different ancestries will

help in understanding the disease's progression and developing more effective treatment strategies.

Regarding personalized treatment strategies, leveraging ML to develop tailored approaches based on

individual genetic and clinical profiles will be a major goal. This personalized approach promises to

revolutionize PD treatment, making it more effective and reducing the likelihood of adverse effects. The

integration of additional data types, such as proteomics and metabolomics, will enhance the predictive

power and accuracy of the models. A global perspective will be maintained, ensuring that these

advanced diagnostic tools are accessible worldwide, particularly in regions with limited resources. This

holistic approach aims not just at early and precise diagnosis but also at developing targeted, effective

treatment strategies for individuals suffering from PD.

The landscape of PD research is evolving rapidly, with the future pointing towards the development of

novel diagnostic and therapeutic methods. Central to this progression is the focus on non-invasive

diagnostic tools, like blood tests that can be carried out with relative ease. These innovative methods are

targeted at detecting early PD biomarkers, potentially before the manifestation of clinical symptoms. The

importance of this early detection cannot be overstated, as it allows individuals access to timely

interventions that could improve their outcome.

An active area of research is understanding the interaction between environmental and lifestyle factors

with genetic variants associated with PD. Studies are increasingly exploring how exposure to certain

toxins, dietary habits, or levels of physical activity and how any one of these factors influence the risk

and progression of PD. Quantifying and accurately predicting these factors have the potential to inform

public health strategies and individual lifestyle changes, mitigating PD risk or decelerate its progression.

Epidemiological studies, particularly in underrepresented populations, provide essential insights into the

prevalence and incidence of PD across various ethnic and geographic groups. This research is key to

uncovering population-specific risk factors and disease patterns, which in turn can inform targeted public

health interventions and inform healthcare policy-making, appropriate resource allocation, and

healthcare planning.
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In the therapeutic domain, gene therapy emerges as a promising approach, aiming to correct genetic

variants, has the potential to offer targeted and possibly curative treatments. However, its efficacy and

safety require thorough investigation. Complementing this, drug repurposing offers an efficient

framework to discover new PD treatments. By exploring the potential of existing drugs to modulate

biological pathways implicated in PD, researchers can expedite the development of new therapeutic

applications. Efforts such as OmicSynth, an open multi-omic community resource developed by Alvarado

and colleagues, allows for evidence-based identification of therapeutic targets for neurodegenerative

diseases. In PD, 46 target genes that pass multiple test corrections were identified, presenting new

avenues for drug discovery and development. These targets are categorized based on their druggability

and existing approved therapeutics, highlighting 41 novel targets, 3 known targets, and 115 difficult

targets, with a significant portion expressed in disease-relevant cell types (Alvarado et al. 2024).

Another significant stride in PD research is the implementation of patient stratification in clinical trials

based on genetic profiles. A study performed by Leonard and colleagues identified that genetic diversity

within clinical trials that do not match participants genetically could obscure the actual effects of the

therapy, as anticipated. Clinical trials should incorporate genetic considerations before starting, or

minimum conduct post-trial genetic adjustments and analyses, especially in cases where the trials do not

meet their intended outcomes (Leonard et al. 2020). This strategy enhances the personalization and

efficacy of treatments, potentially leading to more effective and safer therapeutic options. By aligning

treatments with patients' genetic backgrounds, researchers can identify which individuals are more likely

to benefit from specific treatments.

Finally, global health initiatives are critical for enhancing PD care and management in low-resource

settings. By leveraging genetic insights, these initiatives aim to reduce the global PD burden, facilitating

the exchange of knowledge and best practices, and ultimately improving health outcomes for PD

patients worldwide. This holistic approach, encompassing innovative research and global collaboration,

paves the way for a future where PD management is more effective, equitable, personalized, and

accessible across the globe.

A significant emphasis must be placed on advancing precision medicine for NDDs, particularly PD.

Precision medicine's potential to tailor treatments based on individual genetic profiles and disease

manifestations offers a promising avenue to enhance treatment efficacy and patient outcomes. By

integrating patient-specific genetic data, biomarker discovery, and the elucidation of disease

heterogeneity, we can move towards developing targeted interventions, finding the right patient at the

right time and using the right therapeutic intervention (Leonard et al. 2024). This approach not only

aligns with the goal of addressing the unique aspects of PD in diverse populations but also sets the stage

for the next phase of research focused on implementing precision medicine frameworks. Such strategies

will be critical in overcoming the current limitations of PD treatments and in paving the way for more

personalized, effective therapeutic options.

In summary, this dissertation presents a multifaceted exploration of PD, from its genetic underpinnings

to the innovative use of ML in diagnostics. It emphasizes the need for global and scalable approaches in
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PD research, paving the way for precision medicine and personalized treatment strategies, contributing

to a deeper understanding of the disease and opening new avenues for research and clinical application.
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