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Community recovery from a disaster is a complex process, in which the importance of
different types of infrastructure functionality can change over time. Most of the myr-
iad of metrics available for measuring disaster resilience do not capture the dynamic
importance of functionality explicitly, however. This means that very different recov-
ery trajectories of a given infrastructure can correspond to the same resilience value,
regardless of variations in its utility over time. While some efforts have been made
to integrate features of time dependency into individual facility resilience quantifi-
cation, the resulting metrics either capture only a limited set of temporal instances
throughout the post-disaster phase or do not offer a way to prioritize time steps in
line with variations in the importance of facility functionality. This study proposes a
novel, straightforward metric for component-level post-disaster resilience quantifica-
tion that overcomes the aforementioned limitations. The metric involves a dynamic
weighting component that enables stakeholders to place varying emphasis on different
temporal points throughout the recovery process. The end-user—centered approach to
resilience quantification facilitated by the metric allows for flexible, context-specific
interpretations of infrastructure functionality importance that may vary across different
communities. The metric is demonstrated through a hypothetical case study of infras-
tructure facilities with varying degrees of importance across the post-disaster recovery
period, which showcases its versatility relative to a previously well-established mea-
surement of component-level resilience. The proposed metric has significant potential
for use in stakeholder-driven approaches to decision making on critical infrastructure
(as well as other types of built environment) recovery and resilience.
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1 | INTRODUCTION

and communities, the term is broadly captured by the fol-
lowing United Nations Office for Disaster Risk Reduction

The need for effective disaster resilience is well established
in the literature (Tiernan et al., 2019) and promoted widely
across leading international agencies, such as the World Bank
and the United Nations (Mochizuki et al., 2018). There is
no explicit consensus on the definition of the concept of
resilience (Cai et al., 2018), which features across a range
of different disciplines including ecology and child psychol-
ogy (Ayyub, 2014). However, in the context of disasters

(UNISDR) explanation: “A resilient city is characterized by
its capacity to withstand or absorb the impact of a hazard
through resistance or adaptation, which enable it to main-
tain certain basic functions and structures during a crisis,
and bounce back or recover from an event” (Johnson &
Blackburn, 2012).

Implicit in this interpretation of disaster resilience (par-
ticularly through the word “certain™) is the idea that the

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2024 The Author(s). Risk Analysis published by Wiley Periodicals LLC on behalf of Society for Risk Analysis.

Risk Analysis. 2024;1-9.

wileyonlinelibrary.com/journal/risa 1


https://orcid.org/0000-0002-6699-7312
mailto:g.cremen@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/risa
http://crossmark.crossref.org/dialog/?doi=10.1111%2Frisa.17637&domain=pdf&date_stamp=2024-08-23

l

CREMEN

importance of post-disaster functionality in a given infras-
tructure (facility) may change over time. Some facilities,
like shelters and hospitals or (more fundamentally) those
related to electric power systems, are critical to the emer-
gency response phase and should be immediately functional
for maintaining basic needs (e.g., Hassan & Mahmoud, 2018;
Cimellaro et al., 2010; Vecere et al., 2017; Eyer & Rose,
2019; Wing & Rose, 2020). On the other hand, other services,
such as those related to education, are not required to operate
so soon after a disaster; in fact, the reopening of schools often
marks the transition from response to recovery efforts (Scott
et al., 2023). In addition, the importance of functionality in
different facilities at a certain point in time can vary across
neighborhoods (Dong et al., 2021). For instance, immedi-
ate operation of food assistance services may be critical
for low-income communities, but not necessary for high-
income groups that have sufficient pre-existing resources
to cope without these facilities for a certain period of
time.

Yet, the vast majority of existing metrics for individ-
ual facility (i.e., component-level) resilience do not capture
the dynamic nature of post-disaster functionality importance
(Hosseini et al., 2016). For instance, the resilience triangle
measurement proposed by Bruneau et al. (2003), which is
perhaps the most well-known and widely used metric in this
context, can produce the same resilience result for very dif-
ferent functionality trajectories because each time instant is
treated equally. Thus, a hospital that has minimal function-
ality in the critical emergency phase but recovers quickly
thereafter could have identical resilience to a similar facility
that has significantly more capacity to deal with emergency
casualties but recovers to a fully operational status more
slowly. This limitation of the Bruneau et al. (2003) metric was
identified and addressed by Zobel (2011), Zobel and Khansa
(2014), and Chang and Shinozuka (2004), but the resulting
approaches only focus on functionality at a finite number
of temporal instances (i.e., the beginning and end of recov-
ery processes), such that the importance of performance in
intervening periods cannot be accounted for.

While the literature does contain time-dependent
component-level metrics that enable disaster-related
resilience to be examined and/or distinguished for any tem-
poral instance of interest (e.g., Henry & Ramirez-Marquez,
2012; Rose, 2007), there has been no attempt to explicitly
prioritize (weight) time steps in line with the dynamic impor-
tance of facility functionality. Time-dependent weighting
functions have been introduced in the system resilience
domain, reflecting the relative importance of functionality in
one type of facility or component over another (Ghorbani-
Renani et al., 2020; Sharma et al., 2018; Zhang et al., 2021).
However, these types of metrics still treat all time steps with
equal importance for a system composed of only one facility
or component.

This study addresses the crucial gap identified in the state-
of-the-art, by proposing a novel component-level resilience
metric that enables varying emphasis to be placed on dif-
ferent temporal points throughout the recovery process. The

dynamic nature of infrastructure functionality importance
is specifically captured through a time-dependent weight-
ing component that should be calibrated in consultation
with relevant end users (e.g., resilience planning committees,
infrastructure managers, local government authorities). This
end-user—oriented feature of the proposed metric has a num-
ber of advantages. First, it allows for flexible, context-specific
interpretations of recovery importance for different infras-
tructure, addressing possible intercommunity disparities in
post-disaster needs. Second, stakeholder participation in the
post-disaster planning process can lead to greater awareness
of related challenges and higher confidence of being able
to address them (Chandrasekhar, 2012). Ultimately, end-user
involvement results in better informed decision making (e.g.,
Komendantova et al., 2014), which is the final goal of any
resilience assessment.

The rest of the article is organized as follows. Section 2
introduces the proposed resilience metric, and explains how it
may be adapted to consider a system of interdependent facili-
ties. The metric is then demonstrated for a set of hypothetical
infrastructure facilities and stakeholders in Section 3. The
article ends with a discussion and conclusions in Sections 4
and Section 5, which include a commentary on the utility
of the metric and its potential application to infrastructure
recovery decision making.

2 | PROPOSED METRIC

The proposed resilience metric provides a weighted average
value of normalized functionality Q() for an individual facil-
ity between two time instances of interest, #, (typically the
time at which the disaster occurs) and Txg (corresponding to
some subsequent point in the post-disaster phase, which may
or may not align with the restoration of full functionality in
the facility and could be disaster-specific). Q(f) can be inter-
preted as a dynamic measurement of facility performance,
where the minimum value of 0 corresponds to a complete
loss in service, the maximum value of 1 indicates a fully
operational facility, and an intermediate value represents a
proportional degradation in complete functionality (Bruneau
et al., 2003). The metric can be expressed as:

. / OTRE O(1)w(t)dt

- , ()
/l ) w(t)dt

where w(r) is a context-specific weighting that reflects the
relative importance of functionality at time ¢ and ranges
intuitively in value from O to 1. w(¢) = 1 indicates that func-
tionality is as important as at other times when functionality
is expected/required and w(f) = O is used when there is full
preference for functionality at other times (i.e., functionality
at 7 is not necessary).

Note that Q(f) and w(f) can correspond to a given func-
tionality (rather than a facility), in the case of one facility
that performs different functions over time. For instance,
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TABLE 1 Types of typical preference functions p(x) used in the Preference Ranking Organisation Method for Enrichment Evaluation Method
(PROMETHEE) method.
Name p(x) Explanation
. 0, if|x| =0 . . . . . . .
Usual preference function . Ay is fully preferred over A, if there is any difference in a; and a,,; there is no
1, otherwise preference otherwise.
. 0, if|x| <gq . .
U-shape preference function ) Ay is fully preferred over A, once the difference between a; and a,, reaches a threshold
1, otherwise value g; there is no preference otherwise.
0, if|x]=0
V-shape preference function lli}‘, if |x| <p Preference for A over A, linearly increases from O to 1 in line with |x|, such that full
1 otherwise preference for A, is achieved once the difference reaches a threshold value p.
0, if|x] <gq
. [ . . . .
Level preference function it ifg<|x|<p There is no preference between A; and A, if the difference between a; and a,, is below
1. otherwise a threshold value g. For larger values of |x|, there is weak preference for A over A,
until |x| = p, when full preference for A is achieved.
0, if |x] < ¢
Linear preference function \;Iﬁ—: , ifg<Ix|<p There is no preference between Ay and A, if the difference between a; and a,, is below
1 otherwise a threshold value . For larger values of |x|, there is linearly increasing preference for
’ Ay over A, until |x| = p, when full preference for Ay is achieved.
0, if |x] =0
2
Gaussian preference function 1— e*;j otherwise Preference for Ay over A, monotonically increases with |x|, with the level of increase

controlled by the inflexion point defined from s.

schools may be used as emergency shelters in the immediate
aftermath of a disaster, before returning to their primary edu-
cational purpose later on in the recovery phase (e.g., Hassan
et al., 2020).

2.1 | Quantifying w(f)

w(t) is characterized from discussions with relevant facil-
ity stakeholders, which may involve reference to recovery
goals set in community resilience plans (e.g., Scott et al.,
2023; Poland, 2009). It could be determined using any
decision-making methodology that facilitates the articulation
and modeling of preferences. I propose that w(¢) is quanti-
fied based on concepts from the PROMETHEE (Preference
Ranking Organisation Method for Enrichment Evaluation
Method) multicriteria decision-making approach (Vincke
& Brans, 1985). For each C; criterion under considera-
tion, PROMETHEE involves defining a preference function
P(A,A,) = p(x) € {0,1} for alternative A over A, based
on the difference in their associated values x = a; —a,. A
number of standard p(x) functions have been established for
different decision-making contexts, which are summarized in
Table 1. PROMETHEE is suggested because p(x) assumes
the same range of values as that proposed for w(z), the p(x)
standard functions may be intuitively linked with the concept
of w(f) (details to follow), and from a practical perspec-
tive, p(x) may be derived using relatively straightforward
questioning of stakeholders involving pairwise comparison

(e.g., Guitouni & Martel, 1998). However, alternative meth-
ods (such as multiattribute utility theory) could be used
as long as the corresponding preference formulation can
be mapped to w(f) and the mode of eliciting preferences
from stakeholders is deemed appropriate for the context of
interest.

In this case, Ay and A, are considered analogous to the
functionality of the facility at time tE)k (i.e., a time when
functionality is expected/required, just before or after the dis-
aster) and ¢, respectively, and the criterion of interest can be
thought of as their time of occurrence, such that a; = t; =
0, a, =1, and x =0—1¢t= —¢. Then, w(t) = 1 — P(Ak,Ap) =
1 — p(x). This means that w(t) = 1 —p(x) = 1 —0 = 1 when
a stakeholder is indifferent to (i.e., places equal importance
on) functionality at both times, whereas w(t) = 1 — p(x) =
1 — 1 = 0 when they strongly prefer having functionality at
time #; than at 7. For many applications where the impor-
tance of functionality remains stable (e.g., in the case of a
healthcare facility) or increases over time from a low point
after the disaster (e.g., in the case of an educational facility),
t?; =1, which refers to the final instant of “normal times”
just before the disaster strikes. For other applications where
the importance of functionality decreases over time (e.g., in
cases where emergency facilities are deployed on a temporary
basis and later become unnecessary), t(’)" = tg , wWhich refers
to the moment directly after the disaster strikes. In the case
where an emergency facility becomes unnecessary, w(f) = 0
for the time when conditions are restored to a more permanent
state.
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The first step in characterizing w(f) is to determine
t(’; according to whether the importance of functionality
increases, remains stable, or decreases in the post-disaster
period. Then, the parameters ¢, p, and s that define p(x) (see
Table 1) should be assessed, through discussions with stake-
holders that involve successive approximations of their values
until satisfactory ones are achieved. For instance, in the case
of increasing functionality preference over time, the stake-
holder should initially be presented with: (1) a very small
potential value for ¢ that is progressively increased until
q =1y the first time instance at which the stakeholder no
longer holds a full preference for functionality at 7; (2) a
very large potential value for p that is gradually decreased to
p = t,, the farthest time instance at which the stakeholder has
some preference for functionality at 7*; and possibly—if the
stakeholder has managed to define p and g but is not entirely
happy with their concept—(3) a value of s that is increased
from ¢ to a maximum of p, until the Gaussian curve reflects
the functionality preferences of the stakeholder.

These stakeholder discussions and the type of facility of
interest will determine the appropriate functional form of
p(x) to be selected from Table 1. If ¢ cannot be defined, the
choices for p(x) are limited to the usual or V-shape prefer-
ence functions. If p cannot be defined (i.e., in cases where
the importance of functionality remains constant with time),
then p(x) is the usual preference function. If p and g are not
entirely satisfactory for the stakeholder, then p(x) is the Gaus-
sian function (which represents a certain monotonic increase
or decrease in w() that is defined in line with s). The U-shape
function (which represents a sudden change in functionality
preference from w(¢) = 0 to w(¢) = 1, or vice versa, at g) may
be useful in cases where facilities become redundant in the
longer term. The V-shape function (which represents consis-
tently increasing values of w(#) from 0 to 1 until p, or vice
versa) would be useful if small time steps yield notable differ-
ences in the importance of functionality. The level preference
function (which provides w(f) values of 1 or O until # = g and
t > p, and w(r) = 0.5 from ¢ = g until r = p) would be suit-
able if there is a consistently weak degree of preference for
functionality at certain times. The linear preference function
(which represents consistently increasing values of w(#) from
0 to 1 after t = g until ¢ = p, or vice versa) would be appro-
priate if functionality gradually decreases in importance and
becomes redundant after some length of post-disaster period.
Figure | provides sample w(¢) values associated with each
p(x) functional form.

The expression for w(t) associated with a given facil-
ity may depend on the severity of a disaster. For instance,
the importance of functionality in an emergency shelter
may last longer for events that cause substantial residential
damage than those that have minimal effect on a region’s
housing stock. On the other hand, the time at which edu-
cational facilities should reach full capacity may be later
for high-impact events that require a protracted post-disaster
emergency phase. w(#) should also account for any resilience
tactics (e.g., Rose & Huyck, 2016) associated with the

facility of interest that can be used to supplement or as
a substitute for its functionality over a prescribed period
of time. For example, w(f) may be zero for an industrial
premises during the time period that the associated busi-
ness can operate with employees working from home (e.g.,
Cremen et al., 2020).

2.2 | Comparison with existing metrics

2.2.1 | Component-level metrics

R is a modified version of the straightforward well-known
resilience triangle concept (herein referred to as R*) pro-
posed by Bruneau et al. (2003) and subsequently updated
by Cimellaro et al. (2005). The inclusion of the integral on
the denominator of R normalizes the metric, analogous to

the TL component of the formulation proposed by Cimel-

laro eLtcal. (2005), where T refers to a specific time period
of interest (equivalent to Txr in Equation (1)). R reduces to
R* for w(r) = C, where C is some constant between 0 and 1,
that is, the two metrics are equivalent when an equal amount
of importance is placed on the functionality of the facility
of interest across the time {#j, Trg}. This may arise in the
case of some facility that is required to successfully oper-
ate under all conditions, such as a critical bridge in a road
network.

2.2.2 | System-level metrics

Individual facilities are just one component within a com-
plex set of intricately interdependent physical, social, and
economic infrastructure that typically comprise a commu-
nity (e.g., Koliou et al.,, 2020; Wang et al., 2022). It is
therefore important to illustrate how R can be expanded to
account for system-level resilience and support decision mak-
ing at a more holistic level. The proposed metric assumes a
similar functional form to the system-level resilience mea-
surements provided in eq. (1) of Ghorbani-Renani et al.
(2020) and eq. (8) of Zhang et al. (2021), which also incorpo-
rate a dynamic weighting component that accounts for the
time-dependent importance of infrastructure functionality.
However, a crucial difference between these measurements
and the metric proposed in this study is the manner in
which relative importance is quantified. The Ghorbani-
Renani et al. (2020) and Zhang et al. (2021) approaches
measure the importance of functionality in a given infras-
tructure facility at 7 relative to that of all other infrastructure
facilities within the system or network of interest at the
same time (i.e., “inter-infrastructure” or “facility-to-facility”
functionality importance; Almoghathawi & Barker, 2019;
He & Cha, 2021). These approaches therefore reduce to
a time-independent measurement analogous to R*, if only
one individual facility is considered. On the other hand,
R measures relative functionality importance in an “intra-
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(A) 1 ¢ - (B) 1=y
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FIGURE 1 Sample w(?) trajectories corresponding to each p(x) functional form, in the case of (A) increasing (or stable) and (B) decreasing preference

for functionality with time since the disaster. Note that p, g, and s are defined in Table 1.

infrastructure” sense, that is, the importance of functionality
in a given infrastructure facility at ¢ is measured relative to
the importance of the same facility at different times. In other
words, the Ghorbani-Renani et al. (2020) and Zhang et al.
(2021) approaches are top-down in nature—where the sets
of weightings used across different infrastructure reflect the
perspectives or rules of one high-level (or generic) decision
maker in an autocratic process (e.g., “Restoration of the elec-
tric power system must be prioritized, because functionality
of the water supply system relies on it”)—whereas the R met-
ric is inherently bottom-up, facilitating bespoke stakeholder
priorities related to each unique piece of infrastructure it is
applied to (e.g., “Functionality in the electric power system
is more important at day 10 than at day 9, because of the
increasing risk of fuel depletion in the backup generator with
time”).

If necessary, R could be integrated explicitly into a sys-
tem resilience quantification R, combining the top-down
and bottom-up approaches through a formulation such as
Cimellaro et al. (2014):

_XR,

Rsys -N

2

where N is the number of infrastructure (facilities) within the
system of interest. R, is the resilience of the nth facility in
the system that could be expressed as an adapted version of R
according to:

/mT . 0w, (t )Wsys,n(t )t

T,
L wawy (0t

, 3)

where wy, ,,(t) quantifies the nth facility’s inter-infrastructure
importance (0 < wyy,, (1) < 1), w,(f) is equivalent to w(r)
(i.e., intra-infrastructure importance) in Equation (1), and all
other variables are as previously defined. To avoid double
counting in this case, it is important that w,,(f) is defined inde-
pendent of the facility’s functional interdependencies across
the considered system.

1+ —
|
0.8 !
|
0.6 = -water "
Ny shelter I
0.4 school |
|
02 [ |
|

0 s fa— )
0 5 10 15
t(days)

FIGURE 2 Hypothetical w() for a water supply service, an

emergency shelter, and a school.

3 | CASE STUDY DEMONSTRATION

I provide a simple hypothetical case study demonstration of
R for three independent infrastructure facilities of interest: a
water supply service, an emergency shelter, and a school. 1
assume that the time of interest is between #, = 0 and Try =
15 days after an “expected” disaster (i.e., a disaster that is
reasonably expected to occur once during the life of an urban
system, which is typically set as a 50-year period; Poland,
2009). Hypothetical w(f) values for the three infrastructure,
which are plotted in Figure 2 and provided in Table 2, are
quantified in line with the PROMETHEE approach, assum-
ing that stakeholders and their associated disaster resilience
plans would: (1) consider the importance of functionality in
the emergency shelter to decrease over time to zero at t = 30
days; (2) deem functionality of the school to be insignifi-
cant at f;, but increase over time to reach full importance
at approximately ¢ = 30 days; and (3) assign no importance
to functionality of the water supply until = 14 days, which
approximately corresponds to the duration of capacity in the
backup water system. (1) and (2) are represented using the
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TABLE 2  w(z) and resulting R values associated with the hypothetical
case study water supply service, emergency shelter, and school, computed
for the three hypothetical Q(¢). The best R value for each facility is denoted
in bold.

Facility W(t) R#l R#Z R#3
0, ifr<14
Water 0.89 0.82 0.93
1, otherwise
11—, if0<r<30
Shelter 30 0.80 0.82 0.81
0, otherwise
L, if0<r<30
School 30 0.88 0.82 0.86
1, otherwise
1 ‘
08F = =/ = mumewt o o o o
0.6
=
Q
0.4}
functionality trajectory #1
0.2} = =functionality trajectory #2
----- functionality trajectory #3
0 L L
0 5 10 15
t(days)
FIGURE 3 Three hypothetical functionality trajectories Q(r) with

identical R* values.

V-shape p(x) function with p = 30. (3) is described with the
U-shape p(x) function where ¢ = 14.

These functionality requirements approximately reflect
some real-life resilience planning strategies and goals. For
instance, after an expected earthquake in the San Francisco
Bay area, emergency shelters should be available within 24
h, housing should be restored within 30 to 60 days, and pub-
lic schools should be open and in session within 30 days
(Poland, 2009). Following a magnitude 9 Cascadia Earth-
quake (with a non-negligible probability of occurrence during
the next 50 years), the Oregon Resilience Plan stipulates that
a 30-day recovery time-frame for educational institutions is
preferable, and that potable water system supplies should be
restored within 1 to 2 weeks in the Willamette Valley (Ore-
gon Seismic Safety Policy Advisory Commission, 2013). A
14-day backup water supply is also in keeping with the emer-
gency water supply planning guidelines of the United States
Environmental Protection Agency (American Water Works
Association and others, 2011), for instance.

I specifically compare the value of R for three contrast-
ing hypothetical functionality trajectories (see Figure 3) that
provide the same value of R*, that is,

15
Hdt
R* = fo% = 0.82. (@)

Trajectory #1 linearly increases from 35% functionality at
t =ty to a maximum of 89% functionality at r = 3.8 days.
Trajectory #3 involves a less steep functionality increase from
a higher initial functionality level than trajectory #1 (70%) but
reaches 94% functionality within Tgg. Trajectory #2 remains
constant at 82% functionality, independent of time. The R val-
ues for each recovery trajectory (R4 to Ry3) and each facility
are included in Table 2.

Functionality trajectory #1 produces the highest R value
for the school, since it aligns well with the increasing impor-
tance of school functionality over time, and provides more
functionality than #3 during most days of the post-disaster
period examined. However, the trajectory produces the low-
est R value for the emergency shelter, since it provides very
little functionality in the immediate aftermath of the disaster.

Functionality trajectory #2 produces identical values of
R = R* for each infrastructure facility, since it does not
change dynamically. It leads to the highest R value for the
emergency shelter and the lowest R value for the water sup-
ply service. This is because it provides adequate functionality
in the period immediately after the disaster when the shelter
is most required, but its functionality is outperformed by that
of #1 and #3 when a fully functional water supply service is
critical at a later stage.

Functionality trajectory #3 provides the highest value of
R for the water supply service. This result is explained by
the fact that the trajectory provides the largest functionality
(across the three examined trajectories) at the most important
time for the water supply service to be operational (i.e., r > 14
days). It is interesting to note that the value of R changes
considerably between trajectories for the water supply sys-
tem; the R value for trajectory #3 is 14% larger than that for
trajectory #2 in this case.

In summary, the results indicate that the proposed
resilience metric R can distinguish the best functionality tra-
jectory for bespoke infrastructure stakeholder needs, among a
set that produces the same level of resilience according to tra-
ditional measurements. It is important to note that the results
are specific to the considered time period. For example, func-
tionality trajectory #3 provides a higher R value for the school
(= 0.93) than trajectory #1 (Ry; = 0.89) if Txp = 30 days,
given the superior functionality performance of trajectory #3
across the extended time period considered.

4 | DISCUSSION

By accounting for dynamic end-user functionality prefer-
ences, the proposed metric inherently transforms the concept
of resilience quantification from an objective to a subjective
measurement. The fundamental implication of this is that two
facilities with identical (objective) Q(¢) but different (subjec-
tive) w(?) are no longer assigned the same resilience value.
Resilience is often described as a combination of three capac-
ities: (1) absorptive, (2) adaptive, and (3) restorative (e.g.,
Vugrin et al., 2010). I argue that the use of w(¢) to distin-
guish between the resilience of facilities with the same Q(¢)
enables the adaptive capacity element to be more thoroughly
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captured, as it helps to reveal how well w(f) = 1 and Q(¢) =
1 align; in other words, how well stakeholder functional-
ity planning goals correspond with necessary adjustments
in functionality.

An inherent feature of the proposed metric is that it will
assign a resilience value of O for ¢ values with w(f) =0,
regardless of Q(¢). Thus, the resilience of a facility that recov-
ers to full functionality relatively quickly could be small if the
largest w(t) values occur in the more immediate post-disaster
period. This may seem counterintuitive, but the advantages of
this characteristic can be illustrated through a simple exam-
ple. Assume a facility is required to function as an emergency
shelter in the immediate aftermath (i.e., within 2 days) of a
disaster and would be replaced with more longer term shel-
tering arrangements after this time. Setting w(¢) = 0 (and
therefore R = 0) for r > 2 days captures the specific nuance
of the facility being essentially useless (and its resilience
meaningless) after only a short period of time.

Furthermore, it is important to note that, similar to the
original resilience triangle metric proposed by Bruneau
et al. (2003), the proposed metric could produce identical
resilience values for very different Q(r). However, this could
only happen if: (1) different w(#) values are assigned to the
various Q(t) (and therefore the individual Q(f) — w() com-
binations represent separate resilience challenges, for which
identical resilience values are likely irrelevant); (2) w(t) = C,
meaning that a stakeholder explicitly places equal impor-
tance on functionality at all time steps (i.e., they have no
dynamic preferences), and identical resilience values for dif-
ferent recovery trajectories would be a reasonable outcome;
or (3) there happen to be exactly compensating trade-offs
between Q(f) and w(¢) for the different Q(f), which seems
unlikely to be a common occurrence. The key strength of the
proposed metric over the resilience triangle approach is that
it is better able to distinguish the best recovery trajectory for
discerning stakeholders with dynamic w(¢) (as demonstrated
in the case study).

S | CONCLUSIONS

This study has proposed a new metric for measuring post-
disaster resilience that explicitly accounts for dynamic fluc-
tuations in the criticality of infrastructure functionality across
the post-disaster period. The time-dependency of functional-
ity importance is reflected in a dynamic weighting function
that can be calibrated through relevant stakeholder feed-
back, facilitating an end-user—oriented approach to flexible,
context-specific resilience assessment. The metric is specifi-
cally designed for component-level applications, but could be
easily extended to a system-level context—contributing to the
ever-growing efforts to capture community-level resilience
(Gu et al., 2023)—using some sort of weighted aggregation
approach, as discussed in the text.

I have demonstrated the metric using three hypothet-
ical infrastructure components and associated stakeholder

input on functionality importance (designed to reflect real-
istic disaster planning protocols), to identify the best (most
resilient) functionality trajectory for each case, among a
synthetic set of three. Each of the investigated function-
ality trajectories yield the same resilience value computed
according to the traditional triangular-based metric first intro-
duced by Bruneau et al. (2003), despite having significantly
different shapes. On the contrary, the proposed metric pro-
vides reasonably different values for the trajectories, in line
with stakeholder functionality requirements. For instance,
the highest resilience value is assigned to the trajectory
with the most initial post-disaster capacity if stakeholders
prioritize emergency-phase functionality (i.e., in the case
of an emergency shelter), whereas trajectories with maxi-
mum functionality later on in the recovery process produce
the highest resilience values if stakeholders do not perceive
immediate functionality to be essential (i.e., in the case of
a school or a water supply for which there are temporary
backup resources).

Although the case study demonstration is hypothetical in
nature and does not involve real stakeholder feedback, it still
indicates that the metric can naturally distinguish diverse
optimum recovery trajectories for different infrastructure,
based on bottom-up underlying stakeholder needs rather than
(at least exclusively) relying on top-down autocratic com-
parisons of functionality importance across different types
of infrastructure. This is a useful feature of the proposed
metric that could be leveraged to effectively coordinate
the post-disaster recovery process across different types of
infrastructure and various relevant stakeholders (e.g., civic
agencies, utility infrastructure operators, and nongovern-
mental organizations) in a given urban system, in the face
of limited recovery resources, investment, and time (e.g.,
Olshansky et al., 2012; Choi et al., 2019; Pant et al., 2014).
This type of coordination process would first involve design-
ing a series of bespoke recovery trajectories that account
for unavoidable constraints (e.g., construction worker short-
ages) across time. The proposed metric could then be used
to appropriately assign each trajectory to a corresponding
infrastructure facility, in accordance with the dynamic impor-
tance of its functionality. The metric is similarly useful for
facilities with multiple purposes over time; in this case,
it can help to determine suitable functionality trajectories
for each use. In summary, the proposed metric for post-
disaster resilience quantification across individual facilities
possesses promising potential as an effective tool for facil-
itating informed stakeholder-oriented decision making on
post-disaster infrastructure recovery. Future work will focus
on applying the metric to more expansive case studies involv-
ing real stakeholders and exploring its extension to a more
explicit consideration of system-level resilience.
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