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In multiple sclerosis clinical trials, MRI outcome measures are typically extracted at a whole-brain level, but pathology is not homoge
neous across the brain and so whole-brain measures may overlook regional treatment effects. Data-driven methods, such as independent 
component analysis, have shown promise in identifying regional disease effects but can only be computed at a group level and cannot be 
applied prospectively. The aim of this work was to develop a technique to extract longitudinal independent component analysis net
work-based measures of co-varying grey matter volumes, derived from T1-weighted volumetric MRI, in individual study participants, 
and assess their association with disability progression and treatment effects in clinical trials. We used longitudinal MRI and clinical 
data from 5089 participants (22 045 visits) with multiple sclerosis from eight clinical trials. We included people with relapsing–remit
ting, primary and secondary progressive multiple sclerosis. We used data from five negative clinical trials (2764 participants, 13 222 
visits) to extract the independent component analysis-based measures. We then trained and cross-validated a least absolute shrinkage 
and selection operator regression model (which can be applied prospectively to previously unseen data) to predict the independent com
ponent analysis measures from the same regional MRI volume measures and applied it to data from three positive clinical trials (2325 
participants, 8823 visits). We used nested mixed-effect models to determine how networks differ across multiple sclerosis phenotypes 
are associated with disability progression and to test sensitivity to treatment effects. We found 17 consistent patterns of co-varying re
gional volumes. In the training cohort, volume loss was faster in four networks in people with secondary progressive compared with 
relapsing–remitting multiple sclerosis and three networks with primary progressive multiple sclerosis. Volume changes were faster in 
secondary compared with primary progressive multiple sclerosis in four networks. In the combined positive trials cohort, eight inde
pendent component analysis networks and whole-brain grey matter volume measures showed treatment effects, and the magnitude 
of treatment–placebo differences in the network-based measures was consistently greater than with whole-brain grey matter volume 
measures. Longitudinal network-based analysis of grey matter volume changes is feasible using clinical trial data, showing differences 
cross-sectionally and longitudinally between multiple sclerosis phenotypes, associated with disability progression, and treatment effects. 
Future work is required to understand the pathological mechanisms underlying these regional changes.
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Graphical Abstract

Introduction
In multiple sclerosis, the main cause of irreversible progres
sive disability is thought to be neurodegeneration.1,2 While 

we have many treatments approved for relapsing–remitting 
(RR) multiple sclerosis, only a few have proven effective in 
progressive multiple sclerosis when there is still evidence 
of focal inflammatory activity. A key question for clinical 
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trials is whether we can slow neurodegeneration that is not 
immediately linked with focal inflammation. Sensitive, and 
clinically relevant, measures of neurodegeneration are 
needed to address this question. Brain atrophy, measured 
with MRI, is the main in vivo marker of neurodegeneration 
used in clinical trials.3-6 However, it is usually measured at a 
whole-brain or whole grey matter (GM) level, but it has been 
shown that atrophy varies substantially between brain re
gions and that this differs between multiple sclerosis clinical 
phenotypes.7

Recently, independent component analysis (ICA) has 
been applied to brain MRI scans to unpick overlapping 
patterns, or networks, of GM atrophy.8,9 Bergsland et al.8

performed a longitudinal study using voxel-wise, network- 
based, ICA-based approach and found patterns including 
structurally or functionally related GM regions. It has 
been postulated that some brain networks (structurally 
or functionally connected brain regions) are more vulner
able to, or specifically targeted by, neurodegenerative path
ologies, which leads to the complex patterns of regional 
brain atrophy that are seen.10 Furthermore, it has been sug
gested that network-based measures may better explain 
clinical outcomes than whole-brain measures and be more 
sensitive to clinically relevant changes in early-phase clinic
al trials.11 For example, we and others have shown that 
MRI measures derived from the motor network are more 
closely associated with Expanded Disability Status Scale 
(EDSS) than the whole-brain MRI measures.12 A crucial and 
unresolved question is whether the dynamics of structural net
work changes differ between multiple sclerosis phenotypes, 
and if so, how this relates to clinical progression. To our 
knowledge, no study has investigated the longitudinal evolu
tion of GM volumes using a data-driven network-based 
approach.

While ICA is well established as a data-driven tool for 
network discovery, producing measures for individuals 
within a cohort, it must be computed simultaneously for 
the whole group. If there are new participants or time 
points, we need to re-estimate the whole ICA model using 
the new sample, which is computationally cumbersome 
and precludes its use prospectively in clinical trials, for ex
ample, to calculate interim outcome measures. Machine 
learning models are adept at mapping complex inputs and 
outputs at an individual level, and such models can be 
used to predict outcomes for new input data (supervised 
learning).13,14 The least absolute shrinkage and selection 
operator (Lasso) method is a machine learning regression 
method that can robustly model a large number of vari
ables, which would not be possible with linear regression 
models.13 This approach is potentially well suited to map 
features extracted at a group level using ICA to measures 
that can prospectively assess individual patient network 
measures, without the need to refit ICA to the whole popu
lation of people when there is a new participant or time 
point. This in turn may be used to assess the effects of treat
ments on longitudinal network-based measures at an indi
vidual level.

In this study, we aimed to (i) develop a novel longitudinal 
measure of brain structural network changes that could be 
applied to previously unseen data, (ii) assess its potential util
ity by investigating relationships of the network-based mea
sures with disability progression and multiple sclerosis 
phenotypes and (iii) determine if network measures can de
tect a treatment effect in clinical trials.

Materials and methods
Participants
We used longitudinal data from eight randomized, double- 
blind trials in RR multiple sclerosis, secondary progressive 
(SP) multiple sclerosis and primary progressive (PP) multiple 
sclerosis, collected under the auspices of the International 
Progressive Multiple Sclerosis Alliance and the Multiple 
Sclerosis-Secondary Progressive Multi-Arm Randomization 
Trial (MS-SMART) (Supplementary Table 1).5,15-20 We di
vided participants into training and application cohorts. 
The training sample included five clinical trials in RR mul
tiple sclerosis, SP multiple sclerosis and PP multiple sclerosis 
that did not report significant treatment effects at a group le
vel, and we used this cohort to train our models. In the appli
cation sample, we included two clinical trials in RR multiple 
sclerosis and one in PP multiple sclerosis that showed signifi
cant treatment effects. We divided the cohorts in this way to 
reduce the risks that treatment effects could distort model 
training and assess known treatment effects in the applica
tion cohort in greater detail.

MRI processing
We processed MRI data from the training and application 
cohorts as shown in Fig. 1 and detailed below. We used a 
pipeline similar to our previous work21 to process 
T1-weighted MRI scans and obtain GM volumes. We cor
rected T1-weighted scans for scanner inhomogeneities using 
N4 bias field correction toolbox.22 We used a convolutional– 
neural network-based model to automatically segment hy
perintense lesions on T2-FLAIR scans23; the lesion masks 
were manually checked and used to fill T1-weighted hypoin
tense lesions as per Prados et al.24 after registration with the 
Advanced Normalization Tools25; and the resulting images 
were segmented using Geodesic Information Flows version 
3.026 into GM and white matter, and CSF, across 125 brain 
GM regions based on the Neuromorphometric Atlas.27 We 
then obtained regional volumes by multiplying the sum of 
the probability of the segmented tissue voxels in each parcel
lated region with the voxel volume.

Network-based analysis
In the training cohort, we used spatial ICA to identify net
works of co-varying GM regional volumes from GM re
gional volume measures. We applied the FastICA 
algorithm28 implemented in scikit-learn 0.23.1, allowing 
for up to 20 networks of co-varying brain regions volumes 
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to be identified. We decided to include a larger number of 
components compared with previous studies using ICA 
(e.g. Bergsland et al.8 set the number of components to 8) 
to capture potentially interesting but less strong data pat
terns.29 Indeed, empirical studies have suggested that in
cluding a larger number of components, so potentially 
over-fitting rather than under-fitting, is better in terms of er
rors.29 From this, we obtained a network-based measure for 
each participant and each time point in the training cohort 
(Fig. 1).

In the training cohort, we then trained a Lasso regression 
model30 to obtain individual-level network-based measures 
for participants. We used the same regional GM volumes ana
lysed with ICA as the input measures and the ICA network 
loadings as the target output measure. We split the training 

cohort into a training set (70% of the training cohort) and 
cross-validation set (the remaining 30% of the training co
hort), to build and validate the Lasso model. We applied the 
fitted model to the application cohort to obtain individual- 
level network-based measures for each participant and each 
time point without the need to re-estimate the whole model 
parameters (Fig. 1).

While the training and application cohorts were deliber
ately separated based on treatment responses, as discussed 
earlier, we also repeated the ICA in the application cohort 
and performed pairwise spatial cross-correlations between 
components from the training and application cohorts to as
sess their stability. Specifically, we concatenated results from 
the training and application cohorts into two 4D images 
(each volume representing a distinct network) and used 

Figure 1 Study design. We processed all the available images as follows. We corrected T1 images for scanner inhomogeneities, performed 
lesion filling on T1 images, segmented, parcellated the brain and measured brain GM region volumes. We divided the study cohort into training and 
application cohorts based on whether data were obtained from a positive or negative clinical trial. We fitted a spatial ICA on the regional GM 
volume measures data from the training cohort. We fitted a machine learning model, using Lasso, to the ICA measures in the training cohort, and 
then used the fitted model to obtain network-based measures for each participant and time point in the application cohort.
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fslcc31 to determine spatial correlations between each vol
ume of the two images. Additionally, a visual comparison 
was conducted to further validate the results.

We applied ComBat to harmonize GM network-based 
measures and whole-brain GM volume for the effect of dif
ferent MRI vendors and sites using the neuroCombat pack
age (version 1.0.13) in R.

Statistical analysis
We used R (version 4.2) for statistical analysis. We corrected 
all analyses described below for multiple comparisons using 
false discovery rate using Benjamini–Hochberg procedure.

ICA and Lasso model characteristics
ICA components are not necessarily parallel to the measures 
underlying them (for an individual ICA, both positive and 
negative loading can represent lower GM volumes), and so 
we performed Pearson correlations between the ICA and 
Lasso loading for each network and the whole-brain GM vol
ume measures. To aid readability, we inverted the sign of the 
loading for a network so that for the final results a negative 
loading equated to lower GM volumes. We used R2 to evalu
ate model fit. We assessed intra-class correlations between the 
ICA network measures and measures predicted through Lasso 
both for the training and the application cohort.

Clinical associations with GM network-based 
measures
To investigate differences in GM network measures at base
line and over time across multiple sclerosis phenotypes, in 
the training cohort (which included RR multiple sclerosis, 
SP multiple sclerosis and PP multiple sclerosis), we used 
mixed-effect models with Lasso loading factors of each net
work as the dependent variable. The independent variables 
included multiple sclerosis phenotype with SP multiple scler
osis as reference group, time (years from baseline) and the 
interaction between multiple sclerosis phenotype and time 
as fixed effects, baseline age, sex, disease duration, total 
intracranial volume and treatment as covariates. We used 
nested random effects models, in which visit was nested 
within each subject. We also repeated the analysis with RR 
multiple sclerosis as reference group. For context, we also re
peated the analysis using whole-brain GM volume measures. 
To confirm that the Lasso model outputs effectively mirrored 
the ICA loading factors, we repeated these analyses using the 
loading factors of networks obtained using ICA.

To determine whether network loading factors could ex
plain disability progression, in the training cohort, we built 
mixed-effect models with EDSS as the dependent variable. 
We selected eight GM networks involving brain regions 
(cerebellum, basal ganglia, premotor, associative, temporal 
and parietal cortices, pons and brainstem) known to be im
paired and associated with disability in multiple sclerosis 
(i.e. Networks 2, 3, 11, 12, 13, 14, 18 and 19).7,21,32-35

These models included GM network loading factor (as 
z-scores), time and the interaction between them: baseline 

age, sex, disease duration, total intracranial volume and 
treatment as independent, fixed-effect variables. Again, we 
repeated these analyses using both the Lasso model outputs 
and the source ICA-based loading factors to determine if 
they were consistent.

To determine the independent predictive ability of 
network-based measures, in the training cohort, we under
took a stepwise linear regression starting with all the 
network-based measures that were significant in the 
mixed-effect models, along with whole-brain GM volumes, 
and correcting for baseline age, sex, disease duration, treat
ment line, total intracranial volume and number of visits. 
The stepwise models were run separately for baseline EDSS 
scores and longitudinal EDSS changes.

Detecting treatment effects
In the application cohort, to determine whether network- 
based measures could detect treatment effects, we built a 
mixed-effect model with the interaction between time and 
treatment arm, baseline age, sex and total intracranial vol
ume as fixed-effect variables and network measures as 
outcomes.

We repeated these analyses using Lasso- and ICA-network 
measures to determine their consistency. For all the signifi
cant measures, we estimated the difference in each measure 
between the first and last visits, computed the effect size by 
taking the difference between the placebo and treated and 
ran a sample size calculation (P = 0.05, power = 0.80, pwr 
package).

Results
Demographics
We included clinical and MRI data for 5089 participants 
with multiple sclerosis (22 045 visits). The training cohort 
included data from 2764 participants (1060 RR multiple 
sclerosis, 1282 SP multiple sclerosis and 422 PP multiple 
sclerosis), 13 222 visits, with a mean follow-up of 3.4 
(SD = 2.5) years. The application cohort comprised data 
from 2325 participants (1624 RR multiple sclerosis and 
701 PP multiple sclerosis), 8823 visits, with a mean 
follow-up of 2.1 (0.7) years. Table 1 shows the demo
graphic and clinical characteristics of cohorts.

The training and application cohorts significantly differed 
in baseline age, disease duration and EDSS (P < 0.0001). 
This result was expected because we split the cohort assign
ing the positive trials to the application cohort as we were in
terested in testing the treatment effect. Compared with the 
training cohort, at baseline, participants in the application 
cohort were significantly younger [mean 39.4 (9.5) versus 
mean 45.0 (10.5)], with shorter disease duration [mean 3.6 
(4.5) years versus mean 8.7 (8.1) years], and more clinically 
impaired [median EDSS 4.5 (interquartile rage: 3.0–6.0) ver
sus median EDSS 3.5 (2.0–4.5)], all P < 0.0001, and included 
more males (P < 0.005) (Table 1).
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The ICA-identified components were 
consistent between cohorts
We identified 20 networks of co-varying GM regions (Fig. 2). 
Spatial cross-correlations between the ICA networks from 
the training and application cohorts ranged from 0.53 to 
1.00 (see Supplementary Table 2). For 17 of these networks, 
the coefficient of correlation was ≥0.8, and for the remaining 
three, the coefficient of correlation ranged from 0.53 to 0.75. 
For a complete description of brain regions involved in each 
network, see Supplementary Table 3.

The Lasso model replicated ICA 
loading factors at an individual level
Intra-class correlation coefficients for Lasso model were greater 
than 0.99 for all networks. We, therefore, present findings from 
the Lasso model outputs below, unless otherwise specified.

Group comparison of GM network 
measures at baseline, and changes 
over time, across multiple sclerosis 
phenotypes
See Supplementary Table 4 for the coefficients and P-values 
for each network. In the training cohort at baseline, the 
Lasso model-derived loading factors in two networks (13 
and 17) significantly differed between people with SP mul
tiple sclerosis and PP multiple sclerosis, and between people 
with PP multiple sclerosis and RR multiple sclerosis, but not 
between people with RR multiple sclerosis and SP multiple 
sclerosis. The loading factor of Network 5 differed between 
people with RR multiple sclerosis and PP multiple sclerosis 
and between people with RR multiple sclerosis and SP mul
tiple sclerosis, but not between people with SP multiple scler
osis and PP multiple sclerosis. In addition, the loading factor 
of four networks (7, 11, 12 and 15) differed between people 
with RR multiple sclerosis and people with SP multiple scler
osis. Whole-brain GM volumes also differed between RR 

multiple sclerosis and SP multiple sclerosis and between PP 
multiple sclerosis and RR multiple sclerosis.

Figure 3 shows an exemplar of how the loading factor rate 
changes across multiple sclerosis phenotypes. Over time, three 
of the identified networks showed greater volume loss in people 
with PP multiple sclerosis than those with SP multiple sclerosis 
and RR multiple sclerosis (Networks 4, 9 and 19), and two 
showed a greater volume loss in SP multiple sclerosis than in peo
ple with RR multiple sclerosis and PP multiple sclerosis 
(Networks 13 and 17). In two of these networks (3 and 12), vol
ume loss was faster in SP multiple sclerosis than in RR multiple 
sclerosis, and the annual change in the loading factor of Network 
8 was faster in SP multiple sclerosis and RR multiple sclerosis 
than in PP multiple sclerosis. Network 14 should have a greater 
volume loss in people with RR multiple sclerosis than SP multiple 
sclerosis, Network 7 a faster volume loss in people with SP mul
tiple sclerosis than in PP multiple sclerosis and Network 17 in 
people with RR multiple sclerosis than in PP multiple sclerosis 
(Supplementary Table 4, Fig. 3, and Supplementary Fig. 1).

Substituting the Lasso-generated network measures for 
the original ICA loading factors yielded very similar results 
(Supplementary Table 5).

GM network measures are associated 
with disability and clinical progression 
in multiple sclerosis
Using the Lasso loading factors, in the training cohort at base
line, network measures were not associated with clinical dis
ability (Table 2), while baseline EDSS scores were associated 
with whole-brain GM volume [β = −0.03, 95% confidence 
interval (CI) (−0.05:−0.01), P < 0.05] (Table 2 and Fig. 4).

When we looked at associations between GM network 
measures and EDSS over time, five networks (2, 3, 13, 14 
and 19), and whole-brain GM volumes, were associated 
with EDSS changes over time [Network 2: β = −0.01, 95% 
CI (−0.02:−0.002), P < 0.01; Network 3: β = −0.011, 
95% CI (−0.02:−0.004), P < 0.005; Network 13: β =  
−0.02, 95% CI (−0.02:−0.01), P < 0.0001; Network 14: 
β = −0.009, 95% CI (−0.02:−0.001), P < 0.05; Network 

Table 1 Demographics

Entire cohort  
(N = 5089)

Training cohort (N = 2764; 54%) Application cohort (N = 2325; 46%)

Whole

RR multiple 
sclerosis  

(N = 1060, 
39%)

SP multiple 
sclerosis  

(N = 1282, 
46%)

PP multiple 
sclerosis  

(N = 422, 15%) Whole

RR multiple 
sclerosis  

(N = 1624, 
70%)

PP multiple 
sclerosis  
(N = 701, 

30%)

Age (years) 42.4 (10.4) 45.0 (10.5) 37.5 (9.1) 49.5 (8.5) 49.9 (8.9) 39.4 (9.5) 37.1 (9.2) 44.6 (8.0)
Sex (M/F) 1873/3216 966/1798 293/767 464/818 209/213 907/1418 554/1070 353/348
Disease duration (years) 6.4 (7.1) 8.71(8.1) 4.9 (5.2) 13.5 (8.4) 4.0 (4.3) 3.6 (4.5) 4.0 (4.9) 2.8 (3.1)
Total N visits 22 045 13 222 5197 6183 1842 8823 6072 2751
N visits 4.3 (1.9) 4.8 (2.3) 4.9 (2.7) 4.8 (2.3) 4.4 (1.7) 3.8 (0.8) 3.7 (0.8) 3.9 (0.8)
Follow-up (years) 2.8 (2.0) 3.4 (2.5) 5.3 (3.1) 2.2 (0.9) 2.2 (0.6) 2.1 (0.7) 2.2 (0.8) 2.1 (0.6)
Baseline EDSSa 4.0 [2.5–5.5] 4.5 [3.0– 

6.0]
2.5 [1.5–3.5] 6.0 [5.5–6.5] 5.0 [3.5–6.0] 3.5 [2.0–4.5] 2.5 [2.0–3.5] 4.5 [3.5–6.0]

EDSS, Expanded Disability Status Scale; PP, primary progressive; RR, relapsing–remitting; SP, secondary progressive. aMedian and first and third interquartile.
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19: β = −0.015, 95% CI (−0.02:−0.01), P < 0.0001; whole- 
brain GM: β = −0.01, 95% CI (−0.02:−0.01), P < 0.05] 
(Table 2 and Fig. 4).

Results were similar when using the ICA network mea
sures rather than Lasso loading factors (Supplementary 
Table 6).

In stepwise regression models, the final model explaining 
the disability progression, the final model explaining the dis
ability progression included two networks (13 and 19), 
whole-brain GM volume, baseline age and disease duration 
(adjusted R2: 0.37). A regression model including only 
whole-brain GM volume, baseline age and disease duration 
had an adjusted R2 of 0.35.

When we repeated the analyses in the application cohort, 
both with Lasso network measures (trained using the ICA 
loading factors from the training cohort) and ICA loading 
factors (from the ICA in the application cohort), consistently 
the loading factor of Network 19, and whole-brain GM mea
sures were associated with baseline disability. Disability pro
gression was not associated with factor loadings or 
whole-brain GM volume measures (Supplementary Tables 
7 and 8).

GM network-based measures are 
sensitive to treatment effects
Using the Lasso network measures, in the application cohort, 
changes in eight GM networks, and whole-brain GM volumes, 
differed between the treated and the comparator groups 
(Fig. 5; Supplementary Table 9). Participants in the treated 
group, compared with comparator arm, had significantly low
er annual percentage reductions in GM volumes in Network 2 

(1.03% versus 2.17%), 3 (0.46% versus 0.70%), 11 (0.66% 
versus 0.88%), 12 (1.23% versus 1.58%), 13 (0.29% versus 
0.82%), 18 (0.52% versus 0.75%), 19 (0.60% versus 
0.83%) and 20 (0.99% versus 1.29%). The magnitude of 
treatment–placebo differences in the network-based measures 
was consistently greater for the GM networks compared with 
whole-brain GM volume measures (GM network treated ver
sus placebo differences ranging from 1.14% to 0.22%, com
pared with 0.14% at a whole-brain level). Results were 
similar when using the loading factors derived from the ICA 
in this cohort (Supplementary Table 10). Sample size esti
mates, based on the observed differences between treated 
and comparator arm groups, over an average of 2.1 (0.9) 
years, with an alpha of 0.05 and power 80%, were lower in 
five of the eight Lasso-derived network-based measures 
(from 227 to 565 participants per arm) compared with whole- 
brain GM volume measures (753 participants per arm) 
(Supplementary Table 11).

Discussion
Using ICA, we identified multiple networks of co-varying 
GM volumes that differ between multiple sclerosis pheno
types at baseline and evolve more rapidly over time in PP 
multiple sclerosis and SP multiple sclerosis than in RR mul
tiple sclerosis. Multiple network measures were associated 
with baseline clinical disability and disability progression. 
A Lasso model, based on the ICA network measures, when 
prospectively applied to unseen data from positive clinical 
trials was able to detect treatment effects that were of greater 
magnitude than those seen with whole-brain measures.

We found 20 networks of co-varying GM regional vo
lumes, 17 of which were highly (r ≥ 0.8) consistent between 
the training and application cohorts. In the training cohort, 
at baseline, the loading factors in two networks differed be
tween people with SP multiple sclerosis and PP multiple scler
osis and between people with PP multiple sclerosis and RR 
multiple sclerosis. Additionally, the loading factors of five 
networks differed between people with RR multiple sclerosis 
and those with progressive multiple sclerosis, while four net
works differed between participants with RR multiple scler
osis and SP multiple sclerosis. Over time, people with SP 
multiple sclerosis showed greater volume loss than those 
with RR multiple sclerosis in four networks and those with 
PP multiple sclerosis in four networks. Participants with PP 
multiple sclerosis had greater volume loss than those with 
SP multiple sclerosis in three networks and those with RR 
multiple sclerosis in other three networks. People with RR 
multiple sclerosis had a faster volume rate in Network 14 
than people with SP multiple sclerosis and in the loading fac
tors of two networks than those with PP multiple sclerosis. If 
GM atrophy can be attributed to a single process affecting the 
whole brain, albeit progressing at different rates regionally, 
then we would have expected the same networks to differen
tiate multiple sclerosis phenotypes cross-sectionally and to 
change longitudinally, but this is not what we have observed. 

Table 2 Cross-sectional and longitudinal association of 
clinical disability (EDSS) with GM network-based 
measures (obtained using Lasso), and whole-brain GM 
measures, in the training cohort

Entire cohort (β, 95% CI, P)

Network 2 Baseline −0.004, −0.029:0.022, P = 0.78
Rate of change −0.009, −0.016:−0.002, P < 0.01*

Network 3 Baseline −0.030, −0.070:0.009, P = 0.14
Rate of change −0.011, −0.018:−0.004, P < 0.005*

Network 11 Baseline −0.017, −0.058:0.023, P = 0.40
Rate of change −0.004, −0.011:0.004, P = 0.32

Network 12 Baseline −0.036, −0.070:−0.002, P < 0.05
Rate of change −0.006, −0.014:0.001, P = 0.08

Network 13 Baseline −0.024, −0.059:0.011, P = 0.19
Rate of change −0.015, −0.022:−0.007, P < 0.0001*

Network 14 Baseline −0.026, −0.056:0.005, P = 0.10
Rate of change −0.009, −0.016:−0.001, P < 0.05*

Network 18 Baseline −0.017, −0.059:0.025, P = 0.43
Rate of change −0.002, −0.010:0.005, P = 0.53

Network 19 Baseline −0.045, −0.081:−0.009, P < 0.05
Rate of change −0.015, −0.022:−0.007, P < 0.0001*

GM volume Baseline −0.18, −0.25:−0.11, P < 0.0001*
Rate of change −0.009, −0.016:−0.001, P < 0.05*

*P-values that remained significant after correcting for multiple comparisons with the 
false discovery rate using Benjamini-Hochberg procedure.
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Figure 3 Examples of the rate of GM volume loss across multiple sclerosis phenotypes over time (see Supplementary Fig. 1 for all 
networks). We report here an example of the different rates of change in GM networks among multiple sclerosis phenotypes over time. To 
investigate differences in GM networks measures over time across multiple sclerosis phenotypes, in the training cohort, we used mixed-effect 
models with Lasso loading factors of each network as the dependent variable. The independent variables included multiple sclerosis phenotype, 
time (years from baseline) and the interaction between multiple sclerosis phenotype and time as fixed effects, baseline age, sex, disease duration, 
total intracranial volume and treatment as covariates. We used nested random effects models, in which visit was nested within each subject. 
Network 3 differed between participants with SP multiple sclerosis and RR multiple sclerosis, showing a greater annual percentage change in 
network loading (more GM atrophy) in people with SP multiple sclerosis than in RR multiple sclerosis (annual percentage change: 0.75% versus 
0.42%, β: 0.003, CI [0.002:0.005], P < 0.0001). Networks 4 and 19 over time differed between people with PP multiple sclerosis and those with RR 
multiple sclerosis and SP multiple sclerosis, with a faster volume loss rate in people with PP multiple sclerosis [Network 4: annual percentage 
change of 1.22% versus −0.17% versus −0.15%, β: −0.014, CI (−0.018:0.009), P < 0.0001; β: −0.014, CI (−0.018:0.009), P < 0.0001; Network 19: 
annual percentage change of 0.72% versus 0.42% versus 28%, β: −0.004, CI (−0.007:−0.002), P < 0.005; β: −0.003, CI (−0.005:−0.001), P < 0.05]. 
Network 12 differed between participants with SP multiple sclerosis and RR multiple sclerosis, showing a greater annual percentage change in 
network loading in people with SP multiple sclerosis than in RR multiple sclerosis [Network 12: annual percentage change of 1.14% versus 0.67%, β: 
0.005, CI (0.003:0.007), P < 0.005]. Network 13 differed between participants with SP multiple sclerosis and those with RR multiple sclerosis and 
PP multiple sclerosis, with a faster volume loss rate in people with SP multiple sclerosis [Network 13: annual percentage change of −0.02% versus 
−0.35% versus −0.49%, β: 0.003, CI (0.001:0.005), P < 0.005; β: 0.005, CI (0.001:0.009), P < 0.05). Whole-brain GM volume did not differ among 
multiple sclerosis phenotypes after correcting for multiple comparisons. ****P < 0.0001; ***P < 0.005; **P < 0.01; and *P < 0.05. β, beta coefficient; 
CI, confidence interval; GM, grey matter; MS, multiple sclerosis; RRMS, relapsing–remitting multiple sclerosis; SPMS, secondary progressive 
multiple sclerosis; PPMS, primary progressive multiple sclerosis.
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Instead, our results suggest that, while there are some com
mon regional effects, there are some that are at least partly in
dependent and phenotypically specific. It is possible that 
tract-mediated effects of white matter lesions could explain 
this, and it is already known that the distribution of white 
matter lesion differs between multiple sclerosis phenotypes.36

It would be of interest to see if a disconnectome analysis37 re
veals spatially concordant cortical GM regions that also differ 
between multiple sclerosis phenotypes. However, it is also 
possible that multiple mechanisms are at work, including 
some regionally targeted neurodegenerative processes.9,38,39

Further work is now required to understand the pathological 
processes underlying these dynamic network-based differ
ences and whether they represent multiple sclerosis pheno
type-specific treatment targets.

We found that some, but not all, networks of GM volume 
loss could explain disability progression, as assessed by 

EDSS. When we consider that the EDSS is essentially a lower 
limb motor score in the range covered by the cohort included 
in this study (median EDSS 4.0, range 2.5–5.5), we would ex
pect pathology affecting the motor network to be most rele
vant. Of the networks that correlated with disability, three 
out of five overlapped with motor network regions, spanning 
the cerebellum, thalamus, putamen, pallidum, supplementary 
motor cortex and supramarginal and postcentral gyri. This 
result suggests that pathology needs to occur in a clinically 
eloquent network to have detectable effects, and so not all at
rophy will necessarily correlate with a given clinical outcome 
measure.

Eight GM network-based measures showed treatment ef
fect with a lower percentage annual change in participants 
from the treated arm than those in the comparator group, 
and for five of these, the estimated cohort sizes were lower 
than for whole-brain GM volumes. This was most noticeable 

Figure 4 Networks of co-varying GM regional volumes and whole-brain GM volume measures explain disability over time. 
Figure shows associations between clinical disability (EDSS) and MRI measures. To determine whether network loading factors could explain 
disability progression, in the training cohort, we built mixed-effect models with EDSS as the dependent variable and GM network loading factor (as 
z-scores), time and the interaction between them; baseline age, sex, disease duration, total intracranial volume and treatment as independent, 
fixed-effect variables. Over time, five GM networks (2, 3, 13, 14 and 19) and the volume of the whole-brain GM were associated with the 
progression of disability (higher EDSS score) [Network 2: β = −0.01, 95% CI (−0.02:−0.002), P < 0.01; Network 3: β = −0.011, 95% CI (−0.02: 
−0.004), P < 0.005; Network 13: β = −0.02, 95% CI (−0.02:−0.01), P < 0.0001; Network 14: β = −0.009, 95% CI (−0.02:−0.001) P < 0.05; 
Network 19: β = −0.015, 95% CI (−0.02:−0.01), P < 0.0001; whole-brain GM: β = −0.01, 95% CI (−0.02:−0.01), P < 0.05]. ****P < 0.0001;  
***P < 0.005; **P < 0.01; and *P < 0.05. β, beta coefficient; CI, confidence interval; EDSS, Expanded Disability Status Scale; GM, grey matter; MRI, 
magnetic resonance imaging.
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for Networks 11 and 13 (requiring cohorts of 477 and 227, 
respectively, compared with 753 for whole-brain GM vo
lumes), which span brain regions involved in sensory and 
motor functions, suggesting that such targeted measures 
are potentially substantially more sensitive treatment effects 
in multiple sclerosis. The whole-brain measure used in this 
study was obtained using Geodesic Information Flows, mak
ing it directly comparable with the network-based measures, 
but in many clinical studies whereas SIENA is used, which 
assesses volume changes directly between images, rather 
than computing volumes and then subtracting, and this yields 
potentially more sensitive measures and, therefore, reduces 
the required sample size. However, using SIENA for this study 
would not be feasible (5089 participants over 22 045 visits). 
This is because pairwise comparisons between all visits for 
each patient are required, and for example, a patient with 
five visits would introduce more than 10 pairwise comparisons. 
Using volumetric information with mixed-effect models is more 
statistically efficient, which is why we chose to use it.

It would be of interest to combine direct measures of change 
in regional cortical volumes (this is not currently a function of 
SIENA) and a network-based approach, to see if this further in
creases potential sensitivity to treatment effects.

Recalling that ICA can only be run at a whole cohort level, 
i.e. it cannot be applied to unseen data, we developed a Lasso 
model to replicate the ICA network measures from the 
source GM regional volumes. The Lasso model achieved 
intra-class correlation scores of 0.99 with the ICA network 
measures, and the results (multiple sclerosis phenotype dif
ferences, associations with disability and treatment effects) 
using both Lasso and ICA network measures were materially 
the same. Further, the Lasso model (trained on a separate co
hort) could be applied to another to look for treatment ef
fects, and again results were materially the same as those 
derived from an ICA in the application cohort. While ideally 
an ICA would be undertaken when the whole cohort com
pletes a study, the results suggest that the Lasso model mea
sures are a reasonable substitute, and they have the 
advantage that they can be used in interim analyses or 
decision-making (for example in multi-arm clinical trials40).

This study was based on clinical trial data, using multiple 
treatment agents, studied over many years, MRI scanners 
and sites. This will have added variability to the imaging 
and clinical data that could have reduced sensitivity to re
gional atrophy and clinical associations, but equally it gives 
us confidence that the regional networks of GM atrophy we 
have identified are not artefacts of specific cohorts or MRI 
scanners and that it is realistic to expect that the method 
we have developed can be used in clinical trials. The training 
and application cohorts were deliberately different, as con
sidered earlier. This meant that the Lasso model built using 
the ICA loading factors from the training cohort would not 
have been optimized for the application cohort, and this 
could have reduced sensitivity to clinical associations. In 
practice, this effect appears to have been small, given that 
we were able to replicate all the findings from the Lasso ana
lyses with loading factors from an ICA run in the application 

cohort despite the demographic differences in cohorts. 
Moreover, we decided to use data from clinical trials that 
did not report a positive effect in the training cohort and 
those that showed a treatment effect in the validation co
hort because we did not want results to be biased by the 
treatment effect. While mixing the trials would provide im
proved performance, there is a risk that this would come 
from over-fitting rather than from a true improvement.41

Moreover, mixing patients from the same trial across the 
train and test sets would introduce several issues: (i) it af
fects the underlying randomization process, and this would 
provide biased treatment effects or even misleading ones; 
(ii) data leakage: by separating the train and test, our ap
proach ensures that our models not only generalize to 
new groups or cohorts (generalizability) but also have 
‘transportability’ meaning that they can be applied in com
pletely new settings. We applied ICA to regional GM volume 
measures, rather than running voxel- and surface-based ana
lysis. A voxel or surface-based analysis may increase sensitivity 
to regional effects that do not match one of the 
Neuromorphometric Atlas regions; however, this approach 
also has drawbacks. For example, they require images to be re
gistered to a common space (which can also reduce sensitivity 
to regional effects due to image smoothing) and they would 
have required a considerably higher computational power 
(which would currently be impractical for clinical studies). 
Because we included relatively more data from participants 
with progressive than RR multiple sclerosis, our cohort was 
older than the general multiple sclerosis population and net
work measures might also have been influenced by the effect 
of ageing. While we corrected all statistical analysis for the ef
fect of age, future studies should investigate the age-specific dy
namics in network measures and address network measures 
after stratifying the cohort according to age.

Conclusion
In conclusion, the significant differences in GM network- 
based atrophy measures observed between multiple 
sclerosis phenotypes and their associations with clinical 
progression suggest that multiple pathological processes 
may underlie neurodegeneration in multiple sclerosis. 
Differences between the RR multiple sclerosis and SP mul
tiple sclerosis groups suggest that SP multiple sclerosis is 
not simply a continuation of patterns of pathology seen in 
RR multiple sclerosis. Further work will be needed to deter
mine the processes underlying these patterns and how they 
can best be targeted with treatments. Practically, this work 
shows that longitudinal network-based analyses of GM at
rophy are feasible using clinical trials data and that they 
show treatment effects.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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