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Abstract
Background and Objectives
The aging population is growing faster than all other demographic strata. With older age comes a
greater risk of health conditions such as obesity and high blood pressure (BP). These car-
diometabolic risk factors (CMRs) exhibit prominent sex differences in midlife and aging, yet their
influence on brain health in females vs males is largely unexplored. In this study, we investigated sex
differences in relationships between BP, bodymass index (BMI), and brain age over time and tested
for interactionswithAPOE e4 genotype (APOE4), a known genetic risk factor of Alzheimer disease.

Methods
The sample included participants from 2 United Kingdom–based longitudinal birth cohorts, the
Lothian Birth Cohort (1936) and Insight 46 (1946). Participants with MRI data from at least 1
time point were included to evaluate sex differences in associations between CMRs and brain age.
The open-access software package brainageR 2.1 was used to estimate brain age for each par-
ticipant. Linear mixed-effects models were used to assess the relationships between brain age,
BMI, BP, and APOE4 status (i.e., carrier vs noncarrier) in males and females over time.

Results
The combined sample comprised 1,120 participants (48% female) with a mean age (SD) of 73
(0.72) years in the Lothian Birth Cohort and 71 (0.68) years in Insight 46 at the time point 1
assessment. Approximately 30% of participants were APOE4 carriers. Higher systolic and
diastolic BP was significantly associated with older brain age in females only (β = 0.43–0.56, p <
0.05). Among males, higher BMI was associated with older brain age across time points and
APOE4 groups (β = 0.72–0.77, p < 0.05). In females, higher BMI was linked to older brain age
among APOE4 noncarriers (β = 0.68–0.99, p < 0.05), whereas higher BMI was linked to
younger brain age among carriers, particularly at the last time point (β = −1.75, p < 0.05).

Discussion
This study indicates sex-dependent and time-dependent relationships between CMRs, APOE4
status, and brain age. Our findings highlight the necessity of sex-stratified analyses to elucidate
the role of CMRs in individual aging trajectories, providing a basis for developing personalized
preventive interventions.
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Introduction
With the global aging population on the rise, addressing the
prevalence of cardiometabolic risk factors (CMRs) such as
hypertension and obesity has become paramount. These
risk factors carry significant implications for health out-
comes in older adults, including an elevated risk of car-
diometabolic diseases,1 accelerated brain aging,2 and
Alzheimer disease (AD).3

Recent cross-sectional studies indicate prominent sex differ-
ences in the impact of both cardiometabolic and genetic risk
factors including APOE e4 (APOE4+) on brain health.4,5

However, the dynamics of these influences over time remain
largely unexplored. By examining the interplay between
CMRs and APOE genotype at different time points in older
adulthood, we can better understand sex-specific risk profiles
associated with brain health in aging.

Previous studies have demonstrated that prediction of the
brain’s biological age provides a sensitive neuroimaging-based
marker for brain health and disease.2,6-9 Brain age gap (BAG)
represents the difference between an individual’s chronological
age and their predicted brain age derived from structural brain
characteristics. Negative BAG values indicate a “younger” brain
age relative to chronological age and are associated with posi-
tive health outcomes, such as better physical health and cog-
nitive function.10,11 Conversely, positive BAG values indicating
an “older” brain agemay reflect the rate of biological aging, with
increasing values over time potentially reflecting accelerated
brain deterioration and aging.12 Positive BAG values have been
associated with cognitive impairments, mortality, and elevated
cardiometabolic and neurodegenerative risk.7,8,11,12

Among the most common CMRs are markers of obesity and
high blood pressure (BP), both of which have been linked to
brain morphological differences.13 While elevated BP has
been consistently associated with steeper rates of brain ag-
ing14 and older brain age2,6,8 for both males and females, the
associations between brain health and body fat exhibit a more
complex pattern across the life course.15 For instance, a large-
scale study showed that body mass index (BMI) measured
more than 20 years before a dementia diagnosis was positively
correlated with dementia risk, whereas BMI measured less
than 10 years before diagnosis was negatively correlated with
dementia risk.15 Thus, although higher BMI in midlife might
predominantly reflect obesity, higher BMI in older age may
reflect overall physical fitness or the absence of degenerative
diseases.

The relationship between body composition and brain health
may also vary between males and females across different life
phases.11 For example, we previously showed in the UK
Biobank study (n > 21,000) that greater BMI, waist-to-hip
ratio (WHR), and body fat percentage (BF%) were consis-
tently linked to older brain age in males across midlife and
older adulthood.4 In females, however, greater WHR, but not
BMI and BF%, was associated with older brain age. These
differential effects were most prominent in the group of oldest
females. Given that body fat serves as the primary source of
estrogen in postmenopausal females, higher levels may po-
tentially offer protection against neurodegenerative pro-
cesses.16 However, low BMI could also indicate signs of frailty,
sarcopenia, or preclinical dementia in later life stages,5,17

which could be reflected in the group of oldest females from
our previous study.

In addition to sex differences in associations between CMRs
and brain health across different life phases, the risk of neu-
rodegeneration conferred by the APOE4+ genotype is also
known to differ between males and females5,18 and may in-
teract with markers of cardiometabolic health.19 For example,
in our previous work using the North American PREVENT-
AD cohort of cognitively normal participants, we observed
that the presence of a family history of AD and the APOE4+
genetic risk was associated with older brain age in females
than in males with similar risk levels. In females, higher BMI
was associated with younger brain age, with stronger associ-
ations observed among those with identified AD risk factors.5

While these studies provide evidence of sex differences in the
role of CMRs and APOE genotype in brain health and aging,
the cross-sectional data limit our understanding of how these
patterns may change with increasing age. Hence, longitudinal
investigations could help to identify risk profiles for adverse
brain health and clarify critical age windows where CMRsmay
exert sex-specific and genotype-specific effects on the brain.

In this study, we used longitudinal data from the Lothian Birth
Cohort 1936 (LBC1936)20,21 and Insight 4622 to investigate the
impact of key CMRs on brain age throughout different stages of
the aging process in males and females. These cohorts consist of
participants from the United Kingdom who were born within the
same year (1936 and 1946, respectively), minimizing potential
variations that could be attributed to differences in age. We ap-
plied a previously established brain age model7,23,24 to predict
participants’ brain age across the 3 time points in older adulthood.
Subsequently, we used linear mixed-effects regression models to
examine the relationships between BAG, BMI, systolic/diastolic
BP, and APOE4 status in males and females over time.

Glossary
AD = Alzheimer disease; BAG = brain age gap; BF% = body fat percentage; BMI = body mass index; BP = blood pressure;
CMR = cardiometabolic risk factor; LBC1936 = Lothian Birth Cohort 1936; lmer = linear mixed-effects regressions;WHR =
waist-to-hip ratio.
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Methods
Sample Characteristics

Lothian Birth Cohort 1936
The study cohort comprised participants from the LBC1936,
a community-based sample from Edinburgh and the Lothians,
Scotland.20,21,25 Participants were all born in 1936 and were
selected from the Scottish Mental Survey of 1947, which
aimed to test the intelligence of 70,805 children attending
school in Scotland in June 1947. This sample was assessed in
older adulthood for cognitive, medical, physical, biological,
and lifestyle factors. Between 2004 and 2007, participants
from this larger survey cohort were recruited to wave 1 of the
LBC1936 study, with an average age of 70 years. Subsequent
waves occurred in 2007–10 (wave 2), 2011–13 (wave 3), and
2014–17 (wave 4). On average, there were 3 years between
waves. The inclusion criteria required completion of the
Scottish Mental Survey in 1947 and the absence of neuro-
degenerative diseases at wave 2. T1-weighted MRI scans were
acquired on the same 1.5T using a GE Signa Horizon HDxt
clinical scanner. Comprehensive details on cohort collection
are available in the specified articles by Deary et al.20,25

Insight 46
TheMedical Research Council National Survey of Health and
Development is a birth cohort study, which initially followed
5,362 individuals from Britain since their birth in March
1946.26 A random subsample of participants aged 69–71 years
joined a neuroscience substudy called Insight 46, in which
they underwent assessments including clinical and cognitive
tests and simultaneous MRI and 18F-florbetapir PET imaging.
The selection criteria involved random sampling from par-
ticipants aged 60–64 years who had previously expressed a
willingness to attend a clinic visit in London and for whom
relevant childhood and adulthood data were available. All
assessments took place at a single site, with recruitment oc-
curring in 2015 (time point 1), when participants were around
69 years old. A follow-up assessment took place approxi-
mately 24 months later in 2016, with the scan interval ranging
from 2 to 4.5 years.

In both cohorts, the inclusion criteria included the availability
of at least 1 T1-weighted MRI scan, which passed quality
control. There were no selection criteria for participants at
subsequent MRI time points because the purpose of the study
was to investigate aging trajectories over time without any
constraints. T1-weightedMRI scans were acquired using a 3T
Siemens Biograph mMR combined PET/MRI scanner (Sie-
mens Healthcare, Erlangen, Germany). More information on
the Insight 46 study design and recruitment can be found in
studies by Lane et al. and Mason et al.22,27

Standard Protocol Approvals, Registrations,
and Patient Consents
All participants in both cohorts provided informed written
consent. The LBC1936 study received ethical approval from
the Multicentre Research Ethics Committee for Scotland

(MREC/01/0/56), the Lothian Research Ethics Committee
(LREC/2003/2/29), and the Scotland Research Ethics
Committee (07/MRE00/58). The Insight 46 study received
ethical approval from the National Research Ethics Service
Committee London (14/LO/1173).

MRI Data Preparation and Brain Age Prediction
The brain age of each participant was estimated using brain-
ageR 2.1,24 an open-source software program that generates
brain-predicted age from raw T1-weighted MRI scans. The
brainageR model was previously trained using a Gaussian
Process Regression to predict age from brain volumetric maps
of 3,377 healthy individuals (mean age = 40.6 years, SD =
21.4, age range 18–92 years) across 1.5T and 3T scans from 7
publicly available data sets. The trained model was then tested
on 857 holdout participants (mean age = 40.1 years, SD =
21.8, age range 18–90 years) originating from the 7 data sets
with model performance as follows: Pearson correlation be-
tween chronological age and brain-predicted age: r = 0.97,
mean absolute error = 3.93 years, and R2 = 0.95. The model
was also tested using an independent data set, CamCAN,
which included 611 participants aged 18–90 years with model
performance demonstrating r = 0.95 and mean absolute error
= 4.90 years. Thus, brainageR has demonstrated high pre-
diction accuracy through internal and external validation and
across different scanner strengths.7,23,24 The LBC1936 and
Insight 46 data were not used in the training or validation of
brainageR. The rotation matrix from the pretrained model
was applied to the new imaging data to predict age in our
sample.

Before prediction, the images were segmented and normal-
ized with SPM12 software. During this preprocessing stage,
the FSL slicesdir function28 generated 2-dimensional slices of
the segmentation and normalization outputs for quality
control. Subsequently, visual quality control was performed
resulting in the removal of n = 7 images from the LBC1936
due to motion artifacts. The normalized images were then
converted to gray matter, white matter, and CSF vectors.
These vectors were masked using 0.3 threshold based on the
mean image template from the brainageR training data set and
then concatenated.7

Next, the brainageR model was applied to the masked study
images to predict age. For each image, brain-predicted age
with 95% CIs was calculated, and the BAG was obtained by
subtracting chronological age from brain-predicted age.

Cardiometabolic Risk Factors
The CMRs were BMI, systolic BP, and diastolic BP. These
measures were chosen because of their consistent availability
and measurement methods in both data sets, enabling the
reliable combination of samples to attain a larger sample.
Previous research has found sex differences in the levels of
BMI and BP,29 further justifying our exploration into their
influence on brain health in this study. Participants with BMI
≥40 (n = 36) were excluded because these values may reflect
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morbid obesity and risk of serious health comorbidities.30 BP
was measured while participants were sitting, standing, or
lying down. For Insight 46 participants, we used the average of
2 BP measurements that were taken at the same time point
while participants were lying down. For LBC1936 partici-
pants, although multiple BP readings were taken during each
appointment, we used the first available BP measurement
while participants were sitting down to maximize the use of
available data from this cohort. The correlations between
BMI, systolic BP, and diastolic BP for the combined sample
are displayed in eFigure 1.

APOE Genotyping
APOE4 carrier status was identified by assessing 2 APOE
single-nucleotide variants (rs7412 and rs429358) through
the application of TaqMan technology.22 APOE4 status was
classified as “carrier” for the combinations of e2/e4, e3/e4,
and e4/e4 and “noncarrier” for the combinations of e2/e2,
e2/e3, and e3/e3. The percentage of e4 carriers remained
relatively consistent at approximately 30% across time
points.

Statistical Analyses
The statistical analyses were performed using R version
3.6.2. We ran linear mixed-effects regressions (lmer)31 with
participant ID as a random intercept to test for (1) main
effects of sex, time point, APOE4 status, and each CMR
individually on BAG and (2) sex differences in associations
between CMRs, APOE4 status, time point, and BAG. Post
hoc pairwise comparisons were conducted using the
“emmeans” package in R.32 We conducted the main analyses
by combining both data sets, to increase sample size and
capture information on the third time point available from
the LBC1936.

The CMRs (BMI, systolic BP, and diastolic BP) were stan-
dardized by subtracting the mean and dividing by the standard
deviation across all available measures from the combined
data at each time point. Sex (2: male, female), APOE4 status
(2: carrier, noncarrier), time point (3: time point 1, time point
2, time point 3), and data set (2: LBC1936, Insight 46) were
treated as categorical variables in the primary analyses. We
used time point as a categorical variable to capture and
compare differences in associations between age periods,
simplifying the interpretation of the results—particularly for
the complex 3-way interaction models. To account for the
variations in participants’ ages within and across time points
across data sets, we included the age of participants at each
time point as a covariate in our models.

To account for multiple comparisons, we adjusted the p-
values using false discovery rate correction according to the
Benjamini-Hochberg method with a significance threshold
set at 0.05.33 We used F-tests to interpret the models in-
cluding categorical variables with more than 2 levels. We
calculated the F-statistics using the anova wrapper func-
tion with the type set to “III” to compute type-III sum of

squares for each of the lmermodels. While CMRs and brain
health measures may exhibit nonlinear relationships over
the adult life course, we tested for linear relationships be-
tween BAG and the independent variables, given the nar-
row age range of the participant cohorts.34 Finally, we used
the “effects” package in R to visualize findings obtained from
the models.35

We first tested for the main effects of sex, time point, APOE
genotype, BMI, systolic BP, and diastolic BP on BAG using
the separate lmer models for each variable of interest:

Model  1 : BAG = β0 + β1x + β2Age + β3Dataset + u + ε

where BAG represents the BAG values from both males and
females, x represents the variable of interest (sex, time point,
APOE genotype, BMI, systolic BP, or diastolic BP), Age
represents the participants’ age at each time point, Dataset
represents whether the participant was from the LBC1936 or
Insight 46 data set, u represents the modelling of participant
ID as a random intercept, and ε is the error term. The global
intercept is denoted by β0 while the regression coefficients
for x, Age, and Dataset are denoted as β1, β2, and β3,
respectively.

We then tested whether there were sex differences in the
effects of CMRs (BMI, systolic BP, diastolic BP) on BAG
while accounting for the time point:

Model  2 : BAG = β0 + β1CMR × Sex + β2Timepoint

+ β3Age + β4Dataset + u + ε

We ran additional analyses to investigate the interaction be-
tween sex and APOE4 status and sex and time point on BAG.

Because our primary goal was to investigate the association
between sex and CMRs over time, leveraging the use of the
longitudinal data, the following lmer models were used to
test the 3-way interactions between sex, CMRs, and time
point:

Model  3 : BAG = β0  + β1Sex + β2CMR + β3Timepoint

+ β4CMR × Sex ×Timepoint

+ β5Age + β6Dataset + u + ε

where β4 represents the interaction terms of interest.

To derive the values for the associations between each
CMR and BAG by time point within each sex, we performed
the following post hoc lmer models in males and females
separately:

Model  4 : BAG = β0  + β1CMR + β2Timepoint + β3CMR ×Timepoint

+ β4Age + β5Dataset + u + ε

We then tested whether there was an interaction effect of
CMR and APOE4 status with time point on BAG, using sex-
specific subsamples of participants with genotype information
available:
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Table 1 Sample Demographics at Time Point 1 for LBC1936 and Insight 46

LBC1936 (n = 654) Insight 46 (n = 466) Combined (n = 1,120)

Male Female Male Female Male Female

N (%) 347 (53) 307 (47) 240 (52) 226 (48) 587 (52) 533 (48)

Baseline age, y 72.63 (0.71) 72.73 (0.74) 70.66 (0.68) 70.67 (0.68) 71.82 (1.20) 71.86 (1.24)

APOE4 status, n (%)

«4 carrier 96 (29) 86 (29) 77 (32) 63 (28) 173 (30) 149 (29)

«4 noncarrier 235 (71) 207 (71) 161 (68) 163 (72) 396 (70) 370 (71)

«2/«2 1 1 0 0 1 1

«2/«3 42 35 33 33 75 68

«2/«4 7 6 6 5 13 11

«4/«3 192 171 128 130 320 301

«3/«4 82 74 66 51 148 125

«4/«4 7 6 5 7 12 13

APOE4 status unavailable 16 14 2 6 18 14

Education, y 10.78 (1.17) 10.86 (1.11)

No qualifications 24 31

Vocational only 19 18

O level or equivalent 40 56

A level or equivalent 84 83

Higher 73 38

Education: combineda

Low 246 205

Medium 224 257

High 117 71

MMSE 28.59 (1.58) 29.02 (1.15) 29.18 (1.03) 29.34 (0.91) 28.83 (1.41) 29.15 (1.07)

Social class/Townsend index 2.47 (1.00) 2.18 (0.82) −1.12 (2.37) −0.78 (3.18)

SES: combineda

Low 206 80

Medium 102 181

High 267 257

Unavailable 5 11

BMI, kg/m2 27.75 (3.65) 27.39 (4.13) 27.76 (3.68) 27.10 (4.57) 27.75 (3.66) 27.27 (4.32)

Systolic BP, mm Hg 153.25 (19.58) 151.15 (20.86) 139.84 (16.51) 136.29 (17.30) 147.78 (19.52) 144.85 (20.76)

Diastolic BP, mm Hg 80.26 (9.94) 78.73 (10.08) 74.20 (10.15) 73.98 (10.15) 77.79 (10.45) 76.72 (10.37)

Diabetesa Yes: 46
No: 301

Yes: 19
No: 288

Yes: 23
No: 217

Yes: 19
No: 206

Yes: 69
No: 518

Yes: 38
No: 494

Strokea Yes: 22
No: 325

Yes: 24
No: 283

Yes: 14
No: 224

Yes: 6
No: 215

Yes: 36
No: 549

Yes: 30
No: 498

Cardiovascular diseasea Yes: 114
No: 233

Yes: 61
No: 246

Yes: 26
No: 208

Yes: 17
No: 207

Yes: 140
No: 441

Yes: 78
No: 453

Abbreviations: BMI = body mass index; BP = blood pressure; LBC1936 = Lothian Birth Cohort 1936; MMSE = Mini-Mental State Examination; SES = socio-
economic status.
Mean (SD) for key demographic variables.
a Refer to eMethod 2 for the calculation of education and SES combined, in addition to details on how additional cardiometabolic risk factors (diabetes, stroke,
cardiovascular disease) were assessed.
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Model  5 : BAG = β0  + β1CMR + β2APOE+ β3Timepoint

+ β4CMR ×APOE×Timepoint

+ β5Age + β6Dataset + u + ε

We report the main results from the analyses based on the
combined cohorts in the Results section and present detailed
post hoc analyses in eTables 3–16.

We conducted a series of supplementary analyses to ensure the
consistency of our findings with the primary analyses (eMethods
1). These analyses involved excluding brain age outliers, con-
ducting separate analyseswithin each data set, performing analyses
after excluding the third time point from the LBC1936 cohort,
and including only participants with data from 2 or more time
points.We also conducted analyses accounting for covariates such
as the presence of diabetes, alcohol intake, socioeconomic status,
education level, and hormone therapy and excluding participants
with dementia diagnosis and cognitive scores potentially indicative
of mild cognitive impairment (eMethods 2).

Data Availability
Access to Insight 46 data can be requested at skylark.ucl.ac.uk/
NSHD/doku.php?id=home. To request access to LBC1936 data,
visit lothian-birth-cohorts.ed.ac.uk/data-access-collaboration.

Results
Participants
The LBC1936 initially included 1,091 participants during
wave 1. From this cohort, we selected 654 participants (mean
age = 72.68 years, SD = 0.72) at wave 2 (referred to as time
point 1 in our study) who had MRI data and relevant de-
mographic information available. At wave 3, there were 471
participants (i.e., time point 2; mean age = 76.37 years, SD =
0.65), and there were 376 participants at wave 4 (i.e., time
point 3; mean age = 79.44 years, SD = 0.65).

The Insight 46 included a sample of 502 participants collected
at Phase 1. From this sample, 466 participants (i.e., time point
1; mean age = 70.53 years, SD = 0.63) at Phase 1 and 368
participants (i.e., time point 2; mean age = 72.48 years, SD =
0.59) at Phase 2 were eligible for our study. The combined
sample comprised a total of 1,120 participants (48% female)
at baseline. In both cohorts combined, the average number of
years between time points is 3 years. Additional details on key
demographic variables at time point 1 are presented in Table 1
and at subsequent time points in eTables 1 and 2 in the
Supplement. eFigure 2 provides a flowchart of participant
selection from the original birth cohorts.

Figure 1 Relationships Between Predicted and Chronological Age and CMRs With BAG

Longitudinal observations derived from a random sample of 50% of participants, depicting the relationships between participants’ predicted and chrono-
logical age and CMRs with BAG, respectively. BAG = brain age gap; BMI = body mass index; BP = blood pressure; CMR = cardiometabolic risk factor.
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Main Effects of Sex, Time Point, and CMRs on
BAG (Model 1)
In Figure 1, longitudinal data from a random sample of 50% of
participants illustrates the relationship between participants’
predicted and chronological age and CMRs with BAG, re-
spectively, capturing all time points for each participants. Table 2
gives the main effects of sex, time point, and CMRs on BAG
(model 1) for the combined data set. The results showed sig-
nificant main effects of sex, revealing higher BAG values in males
compared with females (eTable 3, eFigure 3a). Time point also
showed a significant effect on BAG, with lower BAG values at
time point 1 compared with later time points (eTable 3,
eFigure 3b). Greater BMI, systolic BP, and diastolic BP were all
significantly associated with higher BAG values (eTable 3).

Interaction of Sex, CMRs, and Time Point on
BAG (Models 2–4)
Our analyses revealed significant 2-way interaction effects
between sex and CMRs on BAG (model 2). Supplementary
analyses further revealed significant interactions involving sex
and APOE4 status and sex and time point on BAG. eTable 4
in the Supplement presents ANOVA outputs investigating the
2-way interactions on BAG.

Our analyses assessing sex differences in the associations be-
tween BAG and CMRs by time point (model 3) revealed
significant 3-way interaction effects for all 3 CMRs, as shown
in Table 3 (eTable 5 for the regression outputs of model 3).
As shown in eTable 6, within-sex post hoc analyses clarifying
the interactions between CMRs and time point (model 4)
showed significant interactions for all 3 CMRs in females and
only for BMI in males. eTables 7–9 provide the regression
outputs for each sex for model 4.

In females, higher BMI was associated with higher BAG at
time point 1 (Figure 2, eTable 7). Post hoc pairwise com-
parisons indicated that the association between BMI and BAG
was significantly stronger at time point 1 compared with
subsequent time points, although these differences were small
(eTable 10).

In males, BMI was positively associated with BAG at the first 2
time points (Figure 2, eTable 7). Post hoc pairwise compar-
isons revealed no significant differences in the association
between BMI and BAG between time points (eTable 10).

In females, higher systolic and diastolic BP levels were asso-
ciated with higher BAG (Figure 2, eTables 8 and 9 provide
regression outputs for each group per time point). Post hoc
pairwise comparisons revealed no significant differences in
the association between systolic BP and BAG between time

Table 3 Sex Differences in the Associations Between Brain
Age Gap and BMI, SBP, DBP, and TP (Model 3)

Interaction β F p Value pcorr

Sex × BMI × TP 6.55 7.65 × 10−7* 2.30 × 10−6*

Male × BMI × TP1 0.99

Male × BMI × TP2 0.97

Male × BMI × TP3 0.71

Female × BMI × TP1 0.67

Female × BMI × TP2 0.23

Female × BMI × TP3 −0.35

Sex × SBP × TP 3.14 0.005* 0.005*

Male × SBP × TP1 0.38

Male × SBP × TP2 0.13

Male × SBP × TP3 −0.02

Female × SBP × TP1 0.62

Female × SBP × TP2 0.32

Female × SBP × TP3 0.50

Sex × DBP × TP 3.79 0.0009* 0.001*

Male × DBP × TP1 0.52

Male × DBP × TP2 0.27

Male × DBP × TP3 0.21

Female × DBP × TP1 0.67

Female × DBP × TP2 0.32

Female × DBP × TP3 0.07

Abbreviations: BMI = bodymass index; BP = blood pressure; DBP = diastolic
BP; pcorr = false discovery rate–adjusted p values; SBP = systolic BP; TP =
time point.
Participant sample size = 1,120 at baseline. Beta values represent the co-
efficients derived from the regression outputs (eTable 5 for full output).
p Values <0.05 are marked with *.

Table 2 Main Effects of Sex, TP, BMI, Systolic BP, Diastolic
BP, and APOE4 Status on Brain Age Gap (Model 1)

Main effect β F p Value pcorr

Sex −2.31 39.87 3.88 × 10−10* 1.16 × 10−9*

TP 22.34 2.79 × 10−10* 1.16 × 10−9*

TP2 vs TP1 1.51

TP3 vs TP1 1.59

BMI 0.61 16.20 5.91 × 10−5* 1.18 × 10−4*

Systolic BP 0.35 12.18 0.0005* 7.20 × 10−4*

Diastolic BP 0.38 14.84 0.0001* 1.50 × 10−4*

APOE4* −0.14 0.11 0.74 0.74

Abbreviations: APOE4 = APOE e4 carrier or noncarrier; BMI = body mass
index; BP = blood pressure; pcorr = false discovery rate–adjusted p values;
TP = time point.
Participant sample size = 1,120 at baseline; n = 1,088 with APOE genotype
available. Beta values represent the coefficients derived from the regression
outputs (eTable 3 for full output). The reference category for sex ismale. The
reference category for APOE4 is noncarriers.
p Values <0.05 are marked with *.

Neurology.org/N Neurology | Volume 103, Number 6 | September 24, 2024
e209744(7)

http://neurology.org/n


points (eTable 10). However, the association between di-
astolic BP and BAG was significantly stronger at time point 1
compared with time point 3, although these differences were
small (eTable 10). In males, the 2-way interactions of the
relationship between BAG and BP and time point were not
statistically significant (eTable 6).

Sex-Specific Interactions of CMR, Time Point,
and APOE4 Status on BAG (Model 5)
In females only, there was a significant interaction effect of
APOE4 status with time point across all 3 CMRs (Table 4,
Figure 3). eTables 11–13 provide the regression outputs for
each sex used in model 5.

Higher BMI was associated with higher BAG in female noncar-
riers, but with lower BAG in female carriers, particularly at time
point 3 (eTable 11). Post hoc pairwise comparisons indicated
small but significant differences in associations betweenBAG and
BMI as a function of APOE4 status and time point (eTable 14).

A positive association between systolic/diastolic BP and
BAG was observed across female carriers and noncarriers
(Table 4, Figure 3, eTables 12 and 13). Post hoc pairwise
comparisons revealed that in noncarriers, the association
between diastolic BP and BAG was stronger at time point 1
compared with time point 3, although this difference was
small. There were no other significant differences in these

associations as a function of APOE4 status or time point
(eTables 15 and 16).

In males, the 3-way interactions examining the relationships
between BAG and CMRs, APOE4 status, and time point did
not reach statistical significance (Table 4, eFigure 4).

Supplementary sensitivity and covariate analyses were con-
sistent with our primary analyses (eMethods 1 and 2, eTables
17–74).

Discussion
This longitudinal study leveraged over 1,100 cognitively normal
older participants from 2 unique narrow-age cohorts, identifying
sex differences in relationships between CMRs,APOE genotype,
and BAG over time. Specifically, the results indicate stronger
correlations between CMRs and BAG in females compared with
males, with the associations between BMI and BAG further
varying by APOE4 status exclusively in females.

Previous cross-sectional studies4,5,36 align with our longitu-
dinal study findings, confirming contrasting relationships
between CMRs and brain health in females and males. Our
findings clarify that these associations are not solely attributed
to generational or cohort-related effects but also may stem

Figure 2 Relationships Between CMRs and BAG in females and males

Fitted linear relationships between BAG and BMI, systolic BP, and diastolic BP in females andmales, with their corresponding 95% CIs (model 3). BAG = brain
age gap; BMI = body mass index; BP = blood pressure; CMR = cardiometabolic risk factor.
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from dynamic differences in how CMRs relate to brain health
over time. In females, greater BMI was linked to higher BAG
in APOE4 noncarriers, but lower BAG in carriers, a difference
that was more pronounced at the last observation compared
with those at younger ages. Because participants at higher risk
of AD may be more vulnerable to frailty or weight loss,5,17

higher BMI in female APOE4 carriers may signal healthy fat/
muscle and preserved brain health37 while lower BMI could
indicate preclinical neurodegeneration.17 However, our re-
sults were consistent after excluding participants with a de-
mentia diagnosis and MMSE scores indicative of cognitive
impairments. Future studies should explore sex differences in
associations between CMRs and brain health in cohorts in-
cluding larger patient groups to clarify potential links to ob-
served sex differences in dementia prevalence.38 Furthermore,
body fat in postmenopausal females may serve as an endog-
enous source of estrogen, compensating for the menopause-

related decline in estrogen production in the ovaries.16

Sex-specific metabolomic differences, influenced by body fat,
may also affect brain health.39 For example, a recent study
involving over 9,000 older adults showed that differences in
circulating metabolites and lipid measures were associated
with variations in white matter hyperintensity volume in
males vs females.40

In males, greater BMI was associated with higher BAG across
carriers and noncarriers, consistent with our previous UK
Biobank study showing similar associations regardless of
APOE4 status.4 Although the brain-body relationships in
males contrasted with the patterns observed in females, the
associations observed in females were also independent of
APOE4 status in the UK Biobank cohort.4 Cohort charac-
teristics, such as age, may influence APOE4 status effects on
brain age. One strength of the cohorts in this study is that

Table 4 The Interaction Between Cardiometabolic Risk Factors (BMI, SBP, DBP), APOE4 Status, and TP on Brain AgeGap in
females and males Separately (Model 5)

Interaction

Female Male

β F p Value pcorr β F p Value pcorr

BMI × TP × APOE4 6.16 2.63 × 10−6* 7.89 × 10−6* 2.26 0.04* 0.06

BMI × TP1 × APOE42 0.99 0.83

BMI × TP2 × APOE42 0.68 0.60

BMI × TP3 × APOE42 0.04 0.41

BMI × TP1 × APOE4+ −0.13 0.31

BMI × TP2 × APOE4+ −0.79 0.81

BMI × TP3 × APOE4+ −1.75 0.99

SBP × TP × APOE4 2.24 0.04* 0.04* 1.25 0.28 0.28

SBP × TP1 × APOE42 0.50 0.26

SBP × TP2 × APOE42 0.15 0.32

SBP × TP3 × APOE42 0.27 −0.08

SBP × TP1 × APOE4+ 0.51 0.47

SBP × TP2 × APOE4+ 0.25 −0.34

SBP × TP3 × APOE4+ 0.93 0.01

DBP × TP × APOE4 2.81 0.01* 0.02* 2.60 0.02* 0.06

DBP × TP1 × APOE42 0.66 0.38

DBP × TP2 × APOE42 0.11 0.31

DBP × TP3 × APOE42 −0.18 0.52

DBP × TP1 × APOE4+ 0.34 1.13

DBP × TP2 × APOE4+ 0.39 0.43

DBP × TP3 × APOE4+ 0.40 −0.19

Abbreviations: BMI = body mass index; BP = blood pressure; DBP = diastolic BP; pcorr = false discovery rate-adjusted p values; SBP = systolic BP; TP = time
point.
Participant sample size = 1,088 at baseline. Beta values represent the coefficients derived from the regression outputs (eTables 11–13 for full output).
p Values <0.05 are marked with *.
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participants were all born in the same year—1936 for
LBC1936 and 1946 for Insight 46. The distinct advantage of
such narrow-age cohorts, as showcased in our study, is the
reduced potential for age-related confounding effects on the
findings. Further research is required to clarify our findings,
particularly regarding APOE dosage, such as comparing the
effects in participants with 2 e4 alleles with those with 1.
Unfortunately, we were unable to conduct these analyses here
because of the small subsamples within each APOE group.

In females specifically, higher BP was generally linked to
higher BAG. These findings align with previous research
demonstrating the detrimental impacts of hypertension on
brain health in females.41 While we accounted for medication
use in our supplementary analyses, data on the type of med-
ication (e.g., cardiovascular-related vs other health-related)
could further clarify the relationship between BP, APOE4
status, and brain health in males and females over time. Fur-
thermore, the potential influence of other unexplored CMRs,
such as a history of coronary heart disease, may have a sig-
nificant impact on brain structure.42 Future research could
investigate a broader range of CMRs,2,43 exploring their
complex interactions and potential nonlinear influences on
brain health in males and females with age. Although we
observed statistically significant differences in associations
between CMRs and BAG between time points, the differences
were small, likely due to the short time interval between time
points in a cognitively normal cohort. This underscores the

necessity for longitudinal cohorts with longer time frames in
future studies.

While our focus was on participant sex, gender may further
clarify the relationships between CMRs, APOE4 status, and
brain age over time.44 Gender-related factors, such as the
increased caregiving responsibilities often shouldered by
womales, might be linked to higher stress levels and increased
risk of hypertension, compounded by other lifestyle and
psychosocial challenges.45 Our samples predominantly con-
sisted of White participants from the United Kingdom,
restricting the generalizability of our results to more diverse
cohorts. In addition, the cohorts displayed relatively high
levels of educational achievements, suggesting that partici-
pants with varied socioeconomic backgrounds may have been
underrepresented in this study.46 The limited diversity in our
samples emphasizes the need for further exploration and re-
search within more diverse cohorts.44 Future work should also
consider sex-related and gender-related group differences in
rates of attrition. Approximately 20% of participants dropped
out between time points in each cohort, with previous studies
indicating characteristics such as lower cognition, socioeco-
nomic status, and physical fitness as key reasons for
dropout.21,47 While these attrition rates are comparable with
those of other longitudinal aging studies,48,49 investigating
potential sex-specific biases in participant retention might
further clarify observed differences in cardiometabolic risk
and impacts on brain health over time.

Figure 3 Interactions Between CMRs, APOE4 Status, and Time Point on BAG in females

The fitted interaction between BMI (top), systolic BP (middle), and diastolic BP (bottom); APOE4 status; and time point on BAG in females, with their
corresponding 95% CIs (model 4). BAG = brain age gap; BMI = body mass index; BP = blood pressure; CMR = cardiometabolic risk factor.
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In summary, this study highlights sex differences in the associa-
tions between CMRs and APOE4 status on brain age, empha-
sizing the importance of conducting sex-stratified analyses to
examine aging trajectories in females and males. All 3 CMRs
showed associations with brain health in females while BMI was
the primary CMR relating to brain health in males. The associa-
tions between BMI and BAG further depended on APOE4 status
exclusively in females. These sex-specific patterns in the associa-
tion between CMRs and brain health may contribute to divergent
aging trajectories and neurodegenerative disease risks. Notably,
studies focusing on sex differences in cardiometabolic risk and
brain health are largely lacking. Given the increasing prevalence of
older adult demographics and the higher risk of neurodegenera-
tive diseases with sex-specific etiologies,50 our findings provide
further motivation to clarify the sex-specific associations between
cardiometabolic and brain health over the adult lifespan.
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31. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using
lme4. J Stat Softw. 2015;67(1):1-48. doi:10.18637/jss.v067.i01

32. Lenth RV. emmeans: estimated marginal means, aka least-squares means. 2023.
Accessed February 1, 2023. CRAN.R-project.org/package=emmeans.

33. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57(1):289-300.
doi:10.1111/j.2517-6161.1995.tb02031.x

34. Ji H, Kim A, Ebinger JE, et al. Sex differences in blood pressure trajectories over the life
course. JAMA Cardiol. 2020;5(3):19-26. doi:10.1001/jamacardio.2019.5306

35. Fox J. Effect displays in R for generalised linear models. J Stat Softw. 2003;8(15):1-27.
doi:10.18637/jss.v008.i15

36. Patel A, Chad JA, Chen JJ. Is adiposity associated with white matter microstructural
health and intelligence differently in males and females? Obesity. 2023;31(4):
1011-1023. doi:10.1002/oby.23686

Appendix (continued)

Name Location Contribution

Sarah-Naomi
James, PhD

Dementia Research
Centre, University College
London, United Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content

Carole H. Sudre,
PhD

Dementia Research
Centre, University College
London, United Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content

Frederik Barkhof,
MD, PhD

Centre for Medical Image
Computing, University
College London, United
Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content; major role in
the acquisition of data

Marcus Richards,
PhD

MRC Unit for Lifelong
Health and Ageing,
University College
London, United Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content; major role in
the acquisition of data

Janie Corley, PhD Department of
Psychology, University of
Edinburgh, United
Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content

Tom C. Russ, MD,
PhD

Department of
Psychology, University of
Edinburgh, United
Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content

Simon R. Cox, PhD Department of
Psychology, University of
Edinburgh, United
Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content; major role in
the acquisition of data

Jonathan M.
Schott, MD

Dementia Research
Centre, University College
London, United Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content; major role in
the acquisition of data

JamesH. Cole, PhD Centre for Medical Image
Computing, University
College London, United
Kingdom

Drafting/revision of the
manuscript for content,
including medical writing
for content; study
concept or design;
analysis or interpretation
of data

Ann-Marie G. de
Lange, PhD

Department of Clinical
Neuroscience, Lausanne
University Hospital and
University of Lausanne,
Switzerland

Drafting/revision of the
manuscript for content,
including medical writing
for content; study
concept or design;
analysis or interpretation
of data

Neurology | Volume 103, Number 6 | September 24, 2024 Neurology.org/N
e209744(12)

https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans
http://neurology.org/n
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