Preparation and Rheological Characterization of Dilute Polydisperse Bubble Suspensions

Stamatina Mitrou^{1,2}, Luca Mazzei¹, and Panagiota Angeli¹

ThAMeS Multiphase Group | Department of Chemical Engineering

EPSRC CASE studentship supported by GSK | Health Partner

LUCL

Motivation

- Air is entrapped during the manufacturing of toothpastes due to the high-shear mixing of the components.
- Bubbles have been shown to affect the viscosity of the ambient fluid, inducing complex viscoelastic phenomena and leading to density changes and inconsistencies during filling.
- This project aims to investigate the rheology of polydisperse bubble suspensions and help to understand how aeration affects the viscosity during the manufacturing of formulations.

Introduction

For steady shear states, the capillary number (Ca) is defined as follows:

$$Ca = \frac{\eta_0 r}{\sigma} \dot{\gamma} = \lambda/t_d$$

 λ : relaxation time of the bubbles; t_d : deformation time of the bubbles.

Fig.1: Rheological behaviour of monodispersed bubble suspensions.

- ❖ Ca>>1→ bubbles deform significantly and the flow around them is facilitated.
- ❖ Ca<<1→ bubbles deform negligibly (being almost spherical) and the flow around them is hindered.
- ❖ Ca~1 → onset of shear-thinning behaviour for monodispersed suspensions.

Experimental design

- Aeration systems used: porous membrane set up, coupled with a high shear mixer.
- Ambient fluids tested: viscous mineral oil (9.4 Pa*s)
- The rheology was investigated using an Anton Paar rotational viscometer and simple shear tests.
- Challenge: i) low bubble volume fractions. Normal stress differences could not be measured. Ii) no control over achieved volume fraction.
- Solution: design of a new propeller aerator able to increase aeration efficiency.

Fig.2: Porous membrane aeration

Fig.3: Propeller aerator

Results

- The produced bubble suspensions were found highly polydisperse.
- Double power law decay of viscosity.
- Time sweep and rheo-PIV tests revealed bubble coalescence for shear rates larger than 5 s⁻¹.
- ❖ The polydisperse bubble suspensions exhibited a more gradual shear-thinning behaviour, which spanned over a range of <Ca> between 0.001 and 0.01. The bubbles do not deform equally and simultaneously due to their different sizes. When larger bubbles have reached <Ca>=1 and their shear-thinning contribution begins to appear, smaller bubbles are still spherical and resist the flow.
- The elastic character of the suspension increases with the bubble volume fraction.
- For dynamic capillary numbers slightly larger than one, we observed a decrease of the relative viscosity with the bubble volume fraction. The decrease does not follow the suggested trend for the relative infinite-shear complex viscosity, i.e. $\eta r *= 1 (5/3) \varphi$.

