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Scott and Seymour conjectured the existence of a function 
f : N → N such that, for every graph G and tournament 
T on the same vertex set, χ(G) � f(k) implies that 
χ(G[N+

T (v)]) � k for some vertex v. In this note we disprove 
this conjecture even if v is replaced by a vertex set of size 
O(log |V (G)|). As a consequence, we answer in the negative a 
question of Harutyunyan, Le, Thomassé, and Wu concerning 
the corresponding statement where the graph G is replaced 
by another tournament, and disprove a related conjecture of 
Nguyen, Scott, and Seymour. We also show that the setting 
where chromatic number is replaced by degeneracy exhibits a 
quite different behaviour.
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1. Introduction

The question of what structures must appear in graphs of large chromatic number is 
one of the most fundamental in modern graph theory. One obvious reason for a graph 
to have high chromatic number is the presence of a large clique, but constructions from 
the 1940s and 50s of, for example, Tutte [3] and Zykov [14] demonstrate the existence of 
triangle-free graphs of arbitrarily large chromatic number. In particular, there are graphs 
with arbitrarily large chromatic number in which every neighbourhood is independent 
(and hence 1-colourable).

Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, and Thomassé [2]
conjectured that the analogous phenomenon does not occur in tournaments. This was 
confirmed recently in a beautiful paper of Harutyunyan, Le, Thomassé, and Wu [8] in 
which they showed that for every k there exists an f(k) such that every tournament with 
chromatic number2 at least f(k) contains a vertex v such that χ(T [N+(v)]) � k.

Separately, Scott and Seymour [13] (see also [8, Conj. 7]) conjectured a similar result 
for a graph and a tournament on the same vertex set.

Conjecture 1 (Scott and Seymour). For every positive integer k there exists a χ such 
that, for every graph G with χ(G) � χ and every tournament T on the same vertex set, 
there is a vertex v such that χ(G[N+

T (v)]) � k.

This conjecture is supported by the observation [13] that the statement holds when 
chromatic number is replaced by fractional chromatic number (see Section 4 for more 
details). The main result of this note is a disproof of Conjecture 1 for k � 3. In fact, we 
prove something stronger: G and T may be chosen such that the out-neighbourhood3 of 
any set of size at most log |V (T )|

2χ2 is bipartite.

Theorem 2. For every positive integer χ there are arbitrarily large N for which there is a 
triangle-free graph G and a tournament T on the same N -vertex set such that χ(G) = χ

and, for every set U of at most logN
2χ2 vertices, χ(G[N+

T (U)]) � 2.

The fact that G can be taken to be triangle-free will be useful for our proof of Corol-
lary 3. We make two remarks concerning the optimality of Theorem 2.

• It is not possible to replace 2 by 1 in the bound on the chromatic number of 
the out-neighbourhood, even when U consists of a single vertex. Indeed, suppose 
that G[N+

T (v)] is independent for every vertex v. Let xy be an edge of G. No out-
neighbourhood of a vertex of T can contain both x and y, so {x, y} dominates T . 

2 The chromatic number, χ(T ), of a tournament T is the least k for which there is a partition of V (T )
into k parts each of which induces a transitive (acyclic) subtournament of T .
3 The out-neighbourhood, N+(S), of a set S is ⋃v∈S N+(v). This might contain vertices of S.
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But then G is 3-colourable: one colour for each of N+
T (x) and N+

T (y), and a final 
colour for whichever of x and y has not been coloured.

• The bound on the size of U is very close to being best possible. Let S be a dominating 
set of T of size at most �log2 N� (such a set can be constructed greedily). Then N+(S)
contains all vertices of G except perhaps one and so, for any 0 � � � χ − 2, there is 
some U ⊆ S of size at most �log2(N)/�χ−2

� �� with χ(G[N+
T (U)]) > �.

Theorem 2 has the following corollary, which resolves in a strong sense a question 
of Harutyunyan, Le, Thomassé, and Wu [8] concerning the analogous problem for two 
tournaments on the same vertex set.

Corollary 3. For every positive integer χ there are arbitrarily large N for which there are 
tournaments T1 and T2 on the same N -vertex set such that χ(T1) = χ and, for every set 
U of at most logN

8χ2 vertices, χ(T1[N+
T2

(U)]) � 2.

In turn, Corollary 3 has the following immediate consequence which disproves a con-
jecture of Nguyen, Scott, and Seymour [11, 3.4].

Corollary 4. For every positive integer χ there are arbitrarily large N for which there is an 
N -vertex tournament T and disjoint subsets A, B ⊆ V (T ) such that χ(T [A]), χ(T [B]) �
χ and the following holds. For all A′ ⊆ A and B′ ⊆ B of size at most logN

32χ2 , both 
χ(A ∩N+(B′)) and χ(B ∩N+(A′)) are at most 2.

Finally, we include two results for the setting where chromatic number is replaced 
by degeneracy (or equivalently maximum average degree). Since every graph of high 
chromatic number has high degeneracy, Theorem 2 shows that for every positive integer 
d there is a graph G and a tournament T on the same vertex set such that the degeneracy 
of G is at least d, but the subgraph of G induced on each out-neighbourhood of T is 
bipartite. Our next result strengthens this statement by ensuring that the graph induced 
on the out-neighbourhood is 1-degenerate.

Proposition 5. For every positive integer k, there is a k-regular graph G and a tournament 
T on the same vertex set such that G[N+

T (v)] is a forest for every vertex v.

Despite this result, and in contrast to Theorem 2, if G has high degeneracy and 
T is a tournament on the same vertex set, then there is a two-vertex set whose out-
neighbourhood has high degeneracy.

Theorem 6. For every positive integer k, every graph G with degeneracy at least 12k, 
and every tournament T on the same vertex set, there exist vertices x, y such that 
G[N+({x, y})] has degeneracy at least k − 1.
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2. Proofs of the main theorems

In this section we present the proof of Theorem 2. Our construction is based on the 
classical Schrijver graphs [12].

Definition 7. Let k � 1 and n � 2k be integers. The Kneser graph KG(n, k) is the graph 
whose vertex set is 

([n]
k

)
and in which two distinct sets S1, S2 ∈

([n]
k

)
are adjacent if and 

only if S1 ∩ S2 = ∅. The Schrijver graph SG(n, k) is the induced subgraph of KG(n, k)
whose vertex set consists of all stable sets in 

([n]
k

)
. Here, a set S ∈

([n]
k

)
is called stable 

if it does not include two cyclically consecutive4 elements of [n].

Kneser [9] conjectured that the chromatic number of KG(n, k) is n − 2k + 2. This 
conjecture remained open for two decades and was first proved by Lovász [10] using 
homotopy theory (see also Bárány [1] and Greene [7] for very short proofs). Shortly 
afterwards, Schrijver [12] introduced the graphs SG(n, k) and proved that SG(n, k) is 
vertex-critical with chromatic number χ(SG(n, k)) = χ(KG(n, k)) = n − 2k + 2.

To prove Theorem 2, we will show that for every integer χ � 3 and every sufficiently 
large integer k there exists a tournament T on the same vertex set as SG(2k + χ − 2, k)
such that for every U ⊆ V (T ) which is sufficiently small, the out-neighbourhood of U in 
T induces a bipartite subgraph of SG(2k + χ − 2, k). As χ(SG(2k + χ − 2, k)) = χ, this 
will prove Theorem 2.

In constructing our tournament, we rely on the following combinatorial statement 
which follows directly from the existence of tournaments with high domination number.

Lemma 8. For every positive integer t there is some n0 such that for all integers n � n0
there exists a function f :

([n]
t

)
→ 2[n] with the following two properties:

• for every A, B ∈
([n]

t

)
, at least one of A ∩ f(B) and B ∩ f(A) is empty, and

• for every collection (Ai)i∈I of at most logn
2t sets from 

([n]
t

)
,

⋂

i∈I

f(Ai) 
= ∅.

Proof. By a classical result of Erdős [4] (see [6] for an explicit construction), for every 
sufficiently large n there is an n-vertex tournament in which every set of at most log(n)/2
vertices is dominated by a vertex outside the set. Let n be large enough that this result 
holds and that log(n)/2 � t, and let T be the corresponding tournament. Identify V (T )
with [n] and, for A ∈

([n]
t

)
, define f(A) as

f(A) := {v ∈ [n] \A : v dominates A}.

4 By this we mean a pair i, i + 1 where 1 � i < n or the pair n, 1.
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We claim f satisfies the two properties of the lemma statement. Firstly, let A, B ∈
([n]

t

)

and suppose for a contradiction that A ∩ f(B) and B ∩ f(A) are both non-empty. Then 
there is some a ∈ A \ B that dominates B and some b ∈ B \ A that dominates A. 
This implies that a and b are distinct, and the edge between them is oriented in both 
directions, which is a contradiction. Next, let (Ai)i∈I be a collection of at most logn

2t sets 
from 

([n]
t

)
. Let A =

⋃
i∈I Ai which is a set of size at most log(n)/2. By the definition of 

T some vertex x 
∈ A dominates A, but then x ∈
⋂

i∈I f(Ai), as required. �
Before giving the proof of Theorem 2, let us fix the following notation: for a set 

S ∈
([n]

k

)
, we denote by gap(S) the set of “left-elements” of cyclically consecutive pairs 

of [n] that are disjoint from S. Concretely, r ∈ gap(S) if and only if {r, r + 1} ∩ S = ∅, 
where addition is to be understood modulo n (that is, n + 1 is identified with 1). Pause 
to note that every stable set S ⊆ [n] of size k (that is, every vertex of the Schrijver graph 
SG(n, k)) satisfies |gap(S)| = n − 2k. Every S ∈

([n]
k

)
can be recovered from gap(S) and 

so |V (SG(n, k))| �
(

n
n−2k

)
.

Proof of Theorem 2. The result is trivial for χ � 2, so let χ � 3 be an integer, t := χ −2, 
and n0 be as given by Lemma 8. Pick some positive integer k > t such that 2k + t � n0, 
set n := 2k+t, and set G := SG(n, k). Note that G is triangle-free, has chromatic number 
χ and, for any S ∈ V (SG(n, k)), gap(S) ∈

([n]
t

)
. Hence, N := |V (SG(n, k))| �

(
n
t

)
� nt.

Let f :
([n]

t

)
→ 2[n] be the function from Lemma 8. Define a directed graph D on 

the same vertex set as G that has a directed edge from a vertex S1 to a vertex S2 if 
and only if f(gap(S1)) ∩ gap(S2) = ∅. Note, by the first property of f guaranteed by 
Lemma 8, that any two distinct vertices of D are connected by an arc in at least one of 
the two possible directions. Hence, there exists a spanning subdigraph T of D which is 
a tournament.

Let U be any set of at most logN
2χ2 � logN

2t2 � logn
2t vertices. To finish the proof we 

will show that the out-neighbourhood N+
D(U) induces a bipartite subgraph of G (and 

hence the same is true for the out-neighbourhood N+
T (U) ⊆ N+

D (U) in T ). Write U =
{S1, . . . , S|U |}. By the second property of f guaranteed by Lemma 8, there is some r ∈ [n]
common to all the f(gap(Si)). By the definition of D, any S ∈ N+

D (U) satisfies r /∈ gap(S)
and so S∩{r, r+1} 
= ∅. Colouring all the vertices in the out-neighbourhood that include 
the element r with one colour and all the remaining vertices (which necessarily contain 
r + 1) with another colour provides a proper 2-colouring of G[N+

D(S)]. This concludes 
the proof of the theorem. �

We can convert the graph G from Theorem 2 to a tournament: pick any linear order 
on the vertices of G and construct a tournament T1 whose back-edge graph is G. We will 
show that χ(G) and χ(T1) are closely related, and thus prove Corollary 3.

Proof of Corollary 3. Let K := 2χ and n be sufficiently large. By Theorem 2 there is 
a triangle-free graph G with chromatic number K and a tournament T on the same 



A. Girão et al. / Journal of Combinatorial Theory, Series B 168 (2024) 86–95 91
N -vertex set such that, for every set U of at most logN
8χ2 vertices, χ(G[N+

T (U)]) � 2. Let 
(V (G), ≺) be a linear order and define a tournament T1 with vertex set V (G) as follows: 
there is an arc from vertex u to vertex v in T1 if either v ≺ u and uv ∈ E(G) or u ≺ v

and uv /∈ E(G). We further set T2 := T and claim that the pair (T1, T2) of tournaments 
satisfies the statement of the corollary.

Let W ⊆ V (G) be any set of vertices where T1[W ] is transitive. Note that if v1v2v3
is a path in G (so v1v3 /∈ E(G) by triangle-freeness) and v1 ≺ v2 ≺ v3, then v1v2v3 is 
a cyclic triangle in T1 and so v1, v2, v3 are not all in W . In particular, the partition 
W = W1 ∪W2 where

W1 := {w ∈ W : there is w′ ∈ W such that w′ ≺ w and w′w ∈ E(G)},
W2 := {w ∈ W : there is no w′ ∈ W such that w′ ≺ w and w′w ∈ E(G)},

gives a proper 2-colouring of the vertices of G[W ]. Since this holds for any W where 
T1[W ] is transitive, we have χ(T1) � χ(G)/2 = χ.

To finish the proof, consider any set U of at most logN
8χ2 = logN

2K2 vertices. Note that 
G[N+

T (U)] = G[N+
T2

(U)] is bipartite. Let I1, I2 be two disjoint independent sets in G
such that I1 ∪ I2 = N+

T2
(U). Now consider any two vertices u, v ∈ Ij for some j ∈ {1, 2}

and note that since uv /∈ E(G), there is an arc from u to v in T1 if and only if u ≺ v. 
Hence T1[I1] and T1[I2] are transitive tournaments and so χ(T1[N+

T2
(U)]) � 2. �

To prove Corollary 4, we can now take the two tournaments T1 and T2 from Corollary 3
and combine them appropriately: we simply orient the edges within A and B according 
to T1, and the edges between A and B according to T2.

Proof of Corollary 4. Let χ be a positive integer. By Corollary 3, for arbitrarily large 
N there exist tournaments T1 and T2 on the same N -vertex set V with χ(T1) = 2χ and 
χ(T1[N+

T2
(U)]) � 2 for every U ⊆ V of size at most logN

32χ2 . Partition V into sets A and B
such that χ(T1[A]), χ(T1[B]) � χ, then construct a new tournament T on V by orienting 
the edge between u, v ∈ V to agree with T1 if u, v ∈ A or u, v ∈ B, and orienting it to 
agree with T2 otherwise. It is not difficult to see that T satisfies the conditions of the 
corollary. �
3. Degeneracy

In this section we consider the setting in which degeneracy replaces chromatic number. 
We first show that there is a tournament on the vertex set of the k-dimensional hypercube 
such that each out-neighbourhood induces a forest in the hypercube, proving Proposi-
tion 5. Therefore, having high degeneracy does not imply that some out-neighbourhood 
has high degeneracy.

Proof of Proposition 5. For each k, let Gk be the hypercube on 2k vertices. We will 
actually prove something stronger than Proposition 5, namely that the closed in- and out-
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neighbourhoods5 Gk[N−
T [v]] and Gk[N+

T [v]] are both forests for every vertex v ∈ V (Gk). 
We proceed by induction on k. For k = 1 the result is immediate, so given k � 1 let Tk

be a tournament on V (Gk) with the desired property. We will view Gk+1 as the union 
of two copies of Gk, say G1

k and G2
k, connected via the matching consisting of all edges 

of the form x1x2, where x1 ∈ V (G1
k) and x2 ∈ V (G2

k) denote the copies of a vertex 
x ∈ V (Gk). For each S ⊆ V (Gk), we will write S(1) and S(2) for the corresponding sets 
of vertices in G1

k and G2
k respectively.

Now define a tournament Tk+1 on vertex set V (Gk+1) as follows. First orient the edges 
within each of V (G1

k) and V (G2
k) according to Tk, in the canonical way. Then for each 

x ∈ V (Gk), orient every edge between x1 and N−
Tk

[x](2) away from x1 and every edge 

between x1 and N+
Tk

(x)(2) towards x1. This completes the construction of Tk+1. Observe 

that for each x ∈ V (Gk), the edges between x2 and N−
Tk

(x)(2) are oriented away from x2

and the edges between x2 and N+
Tk

[x](2) are oriented towards x2.
Let x ∈ V (Gk) and note that N+

Tk+1
[x1] = N+

Tk
[x](1) ∪ N−

Tk
[x](2). By the induction 

hypothesis, N+
Tk

[x] and N−
Tk

[x] both induce forests in Gk, so N+
Tk

[x](1) and N−
Tk

[x](2)

do the same in Gk+1. Since there is exactly one edge in Gk+1 between these two sets, 
namely x1x2, the graph Gk+1[N+

Tk+1
[x1]] is acyclic. Analogous arguments show that 

Gk+1[N−
Tk+1

[x1]], Gk+1[N+
Tk+1

[x2]], and Gk+1[N−
Tk+1

[x2]] are all acyclic too. Since every 
vertex of Gk+1 is of the form x1 or x2 for some x ∈ V (Gk), this completes the proof. �

However, we will now show that, unlike with chromatic number, having high degen-
eracy implies that there are two vertices x and y such that the out-neighbourhood of 
{x, y} has high degeneracy.

Proof of Theorem 6. Let H be a bipartite subgraph of G with δ(H) � 6k and let A ∪B be 
a bipartition of H with |A| � |B|. Define T1 = T [A] and T2 = T [B]. Pick x ∈ A satisfying 
|N+

T1
[x]| � |A|/2 and define A′ = N+

T1
[x]. Now let H1 = H[A′, B]. It can be shown using 

linear programming duality that every tournament has a probability distribution on 
its vertex set which assigns weight at least 1/2 to every closed in-neighbourhood (see 
[5, Sec. 1.2]). Let w be such a probability distribution for T2. Take a random vertex 
y ∈ B according to w and note that P (u ∈ N+

T2
[y]) � 1/2 for every u ∈ B. Let H2 =

H1[A′, N+
T2

[y]] so that for every e ∈ E(H1), P [e ∈ E(H2)] � 1/2. We have E[e(H2)] �
e(H1)/2 � 3k|A′| � k(|A′| + |B|), from which it follows, since |N+

T2
[y]| � |B|, that there 

exists y ∈ B such that e(H2) � k|V (H2)|. Removing x and y from H2, we obtain a 
subgraph G′ of G[N+

T ({x, y})] with e(G′) � (k − 2)|V (G′)|. Thus G′, and therefore also 
G[N+({x, y})], has degeneracy greater than k − 2. �
5 The closed in-neighbourhood of a vertex v in tournament T is N−

T [v] := {v} ∪ N−
T (v). The closed 

out-neighbourhood is defined analogously.
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4. Fractional chromatic number

We remind the reader that a graph G has fractional chromatic number χf (G) � r if 
and only if there is a probability distribution on the independent sets of G such that the 
random independent set I obtained satisfies P (v ∈ I) � 1/r for every vertex v. In this 
section we demonstrate that the modified version of Conjecture 1 in which chromatic 
number is replaced by fractional chromatic number is true, as observed by Scott and 
Seymour [13] without proof.

Theorem 9. For c � 1, let G be a graph and T be a tournament on the same vertex set 
such that χf (G[N+

T (v)]) � c for every vertex v. Then χf (G) � 2(c + 1).

Proof. Let w be a probability distribution on the vertex set of T that assigns weight at 
least 1/2 to every closed in-neighbourhood. For each vertex v, since χf(G[N+

T (v)]) � c, 
there is a random independent set Iv of G[N+

T (v)] such that P (u ∈ Iv) � 1/c for every 
u ∈ N+

T (v).
We sample a random independent set I of G as follows. First pick a vertex v according 

to w. Then with probability 1/(c + 1) take I = {v} and with probability c/(c + 1) take 
I = Iv. Note that, for any vertex u, if v ∈ N−

T [u], then u ∈ I with probability at 
least 1/(c + 1). Hence, by the defining property of w, P (u ∈ I) � 1/(2c + 2) and so 
χf (G) � 2(c + 1). �
5. Closing remarks

We have been unable to determine whether high chromatic number forces an out-
neighbourhood with high degeneracy, and we would be interested to know if this is the 
case.

Question 10. Does there exist, for each integer d, an integer χ such that for every graph 
G with χ(G) � χ and every tournament T on the same vertex set, there is a vertex v
for which G[N+

T (v)] has degeneracy at least d?

We do, however, suspect that this is true for d = 2, that is, it should be possible to 
force some out-neighbourhood to contain a cycle.

Conjecture 11. For every graph G with sufficiently large chromatic number, and every 
tournament T on the same vertex set, there exists a vertex v such that G[N+

T (v)] contains 
a cycle.

We have shown that for certain very structured tournaments T there are graphs on 
the same vertex set with large chromatic number, in which every out-neighbourhood of 
T induces a bipartite subgraph. We conjecture that (with high probability) we cannot 
replace T with a random tournament.
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Conjecture 12. For every positive integer k, there exists a χ such that if T is the uniformly 
random tournament on vertex set [N ], then with high probability (as N → ∞), for every 
graph G on [N ] with χ(G) � χ there is a vertex v ∈ [N ] for which G[N+

T (v)] � k.

Finally, as remarked after the statement of Theorem 2, if χ(G) � χ, then there is a 
collection of at most �log2(N)/�χ/2 − 1�� out-neighbourhoods whose union induces a 
subgraph of chromatic number at least 3. It would be interesting to know if o(log(N)/χ)
(as χ → ∞) out-neighbourhoods suffice here. In particular, we conjecture the following.

Conjecture 13. There exists f(N) satisfying f(N) = o(logN) such that for every N -
vertex graph G with χ(G) � f(N), and every tournament T on the same vertex set, 
there is a vertex v for which χ(G[N+

T (v)]) � 3.
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No data was used for the research described in the article.
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