Degree Sequences of Triangular Multigraphs

John Talbot^a Jun Yan^b

Submitted: Oct 31, 2023; Accepted: Aug 9, 2024; Published: Sep 6, 2024 ©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A simple graph is triangular if every edge is contained in a triangle. A sequence of integers is graphical if it is the degree sequence of a simple graph. Egan and Nikolayevsky recently conjectured that every graphical sequence whose terms are all at least 4 is the degree sequence of a triangular simple graph, and proved this in some special cases. In this paper we state and prove the analogous version of this conjecture for multigraphs.

Mathematics Subject Classifications: 05C07

1 Introduction

A graph is simple if it does not contain any loops or multiple edges. A sequence of integers (d_1, \ldots, d_n) is graphical if there exists a simple graph G on vertices v_1, \ldots, v_n such that $\deg(v_i) = d_i$ for all $i \in [n]$. The well-known Erdős-Gallai Theorem provides a complete characterisation of graphical sequences.

Theorem 1 (Erdős-Gallai Theorem [\[2\]](#page-9-0)). A sequence of positive integers $d_1 \geq \cdots \geq d_n$ is graphical if and only if

- $d_1 + \cdots + d_n$ is even and
- $\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{n} \min\{d_i, k\}$ for every $k \in [n]$.

A triangle in a simple graph consists of three distinct vertices that are pairwise adjacent. A simple graph is triangular if every edge is contained in a triangle. Recently, Egan and Nikolayevsky [\[1\]](#page-9-1) conjectured that any positive integer sequence whose terms are all at least 4, and satisfies the obvious necessary condition of being graphical, is the degree sequence of a triangular simple graph. By the Erdős-Gallai Theorem, this is equivalent to the following.

^aDepartment of Mathematics, UCL, U.K. (j.talbot@ucl.ac.uk).

 b Mathematics Institute, University of Warwick, UK. (jun.yan@warwick.ac.uk). Supported by the</sup> Warwick Mathematics Institute Centre for Doctoral Training and funding from the U.K. EPSRC (Grant number: EP/W523793/1).

Conjecture 2 (Egan and Nikolayevsky [\[1\]](#page-9-1)). If $n \geq 3$ and (d_1, \ldots, d_n) is a sequence of integers satisfying

- $\bullet \, d_1 \geqslant \cdots \geqslant d_n \geqslant 4,$
- $d_1 + \cdots + d_n$ is even.
- $\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{i=k+1}^{n} \min\{d_i, k\}$ for every $k \in [n]$,

then it is the degree sequence of a triangular simple graph.

Egan and Nikolayevsky [\[1\]](#page-9-1) proved this conjecture in the case when the degree sequence contains at most two distinct terms.

Theorem 3 (Egan and Nikolayevsky [\[1\]](#page-9-1)). Any graphical sequence of the form (a^p, b^q) , where $a > b \ge 4$ and $p \ge 0, q > 0$ is the degree sequence of a triangular simple graph.

In this paper, we state and prove the analogous version of Conjecture [2](#page-1-0) for multigraphs. A triangle in a multigraph consists of three distinct vertices which are pairwise adjacent. A multigraph is triangular if every edge is contained in a triangle. The following lemma provides two necessary conditions for the degree sequences of triangular multigraphs.

Lemma 4. If $n \geq 3$ and $d_1 \geq \cdots \geq d_n > 0$ is the degree sequence of a triangular multigraph on n vertices, then

- $\sum_{i=1}^n d_i$ is even,
- $d_1 \leqslant \sum_{i=2}^n (d_i 1)$.

Proof. $\sum_{i=1}^{n} d_i$ is even from the well-known handshake lemma. Now suppose for a contradiction that $d_1 > \sum_{i=2}^n (d_i - 1)$ and G is a triangular multigraph on vertices v_1, \ldots, v_n satisfying $\deg(v_i) = d_i$ for all $i \in [n]$. Note that any triangular multigraph is necessarily loopless. If for every $2 \leq i \leq n$, v_i is adjacent to a vertex that is not v_1 , then since G is loopless, $deg(v_1) \leq \sum_{i=2}^n (d_i - 1) < d_1$, contradiction. Hence, there must exist some $2 \leq i \leq n$ such that v_i is only adjacent to the vertex v_1 . Since $d_i > 0$, the edge v_1v_i has positive multiplicity, but cannot be in a triangle, contradicting G is triangular. \Box

Our main result is that the analogue of Conjecture [2](#page-1-0) holds for multigraphs. Any sequence of $n \geq 3$ integers, each at least 4, and satisfying the obvious necessary conditions in Lemma [4](#page-1-1) is the degree sequence of a triangular multigraph.

Theorem 5. If $n \geq 3$ and (d_1, \ldots, d_n) is a sequence of integers satisfying

$$
(i) d_1 \geqslant \cdots \geqslant d_n \geqslant 4,
$$

(ii)
$$
\sum_{i=1}^{n} d_i
$$
 is even,

(*iii*) $d_1 \leq \sum_{i=2}^n (d_i - 1),$

then it is the degree sequence of a triangular multigraph.

As evidenced by the following proposition, we cannot replace the number 4 in condition [\(i\)](#page-1-2) by a smaller integer.

Proposition 6. The degree sequence given by $d_i = 3$ for all $i \in [n]$ is the degree sequence of a triangular multigraph if and only if n is divisible by λ .

Proof. Let G be a triangular multigraph on n vertices, all of which have degree 3. It suffices to show that every connected component of G is isomorphic to K_4 .

Fix a connected component of G . Suppose there exists a vertex v_1 adjacent to three different vertices v_2, v_3, v_4 . As edges v_1v_2, v_1v_3, v_1v_4 all need to be in triangles, we may, without loss of generality, assume edges v_2v_3, v_2v_4 are also in G. If edge v_3v_4 is also in G, then all of v_1, v_2, v_3, v_4 have degree 3, so the connected component containing them is isomorphic to K_4 . Otherwise, vertex v_3 is adjacent to a new vertex v_5 . But since v_1v_5, v_2v_5 are not in G , the edge v_3v_5 is not in a triangle, contradiction.

Suppose now there is no vertex in this connected component that is adjacent to three different vertices. Let v_1 be a vertex in this component. Either there is an edge v_1v_2 of multiplicity 3, which cannot be in a triangle, or we have an edge v_1v_2 with multiplicity 2 and an edge v_1v_3 with multiplicity 1. For edges v_1v_2, v_1v_3 to be in triangles, we must have edge v_2v_3 as well. One of edges v_1v_3 , v_2v_3 must have multiplicity at least 2, as v_3 cannot be adjacent to three different vertices. But then one of v_1, v_2 will have degree at least 4, contradiction. \Box

2 Proof of Theorem [5](#page-1-3)

Suppose $n \geq 3$ and (d_1, \ldots, d_n) is a sequence of integers satisfying [\(i\)](#page-1-2)-[\(iii\)](#page-1-4). The goal of Theorem [5](#page-1-3) is to construct a triangular multigraph G on vertices v_1, \ldots, v_n , such that $\deg(v_i) = d_i$ for all $i \in [n]$. It turns out that $D = \sum_{i=1}^n (-1)^{i-1} d_i$ is a critical quantity that will guide our constructions. Note that D is non-negative by [\(i\)](#page-1-2) and is even by [\(ii\)](#page-1-5).

If $D \geq n-2$, we show in Lemma [7](#page-2-0) that a fan-shaped construction (see Figure [1\)](#page-4-0) works, with v_1 being the central vertex. If $D \leq 4$, we show in Lemma [8](#page-6-0) that a construction based on modifying the square of the length n cycle (see Figure [2\)](#page-6-1) works. Finally, we complete the proof of Theorem [5](#page-1-3) by showing that in the intermediate case, $6 \le D \le n-3$, a combination of the above two constructions, with v_1 being the unique common vertex, works.

In order to combine these two constructions in the proof of Theorem [5,](#page-1-3) we will need to state and prove Lemma [7](#page-2-0) and Lemma [8](#page-6-0) in the slightly more general setting where we do not assume d_1 is the largest term of the sequence. Throughout the constructions in this section, the multiplicity of an edge $v_i v_j$ in a multigraph G will be denoted by $m(v_i, v_j)$.

Lemma 7. Let $n \geq 3$ and let (d_1, \ldots, d_n) be a sequence of non-negative integers satisfying

 $\bullet \, d_2 \geqslant \cdots \geqslant d_n \geqslant 4,$

- $d_1 + \cdots + d_n$ is even,
- $d_1 \leqslant \sum_{i=2}^n (d_i 1),$
- $D = \sum_{i=1}^{n} (-1)^{i-1} d_i \geq n-2$,

then there exists a triangular multigraph G with degree sequence (d_1, \ldots, d_n) .

Proof. We separate into two cases depending on the parity of n.

If n is odd, then $D \geq n-1$ as D is even. Let $\bar{d}_{n+2-2i} = d_{n+2-2i} - 2$ for each $1 \leq i \leq \frac{n-1}{2}$ $\frac{-1}{2}$. Using $d_1 \leqslant \sum_{i=2}^n (d_i - 1)$, we have

$$
\frac{1}{2}(D - (n - 1)) = \frac{1}{2} \left(\sum_{i=1}^{n} (-1)^{i-1} d_i - (n - 1) \right)
$$

$$
\leq \frac{1}{2} \left(\sum_{i=2}^{n} d_i + \sum_{i=2}^{n} (-1)^{i-1} d_i - 2(n - 1) \right)
$$

$$
= \sum_{i=1}^{\frac{n-1}{2}} d_{n+2-2i} - (n - 1) = \sum_{i=1}^{\frac{n-1}{2}} \overline{d}_{n+2-2i}.
$$

Hence, there exists an index $1 \leq k \leq \frac{n-1}{2}$ $\frac{-1}{2}$ such that $\sum_{i=1}^{k-1} \overline{d}_{n+2-2i} \leq \frac{1}{2}$ $\frac{1}{2}(D - (n-1)) \leq$ $\sum_{i=1}^{k} \overline{d}_{n+2-2i}$. Let $\delta = \frac{1}{2}$ $\frac{1}{2}(D-(n-1))-\sum_{i=1}^{k-1} \overline{d}_{n+2-2i}$, so $0 \le \delta \le \overline{d}_{n+2-2k} = d_{n+2-2k} - 2$. Consider the multigraph G on n vertices v_1, \ldots, v_n whose edge multiplicities are given as follows (see also Figure [1a\)](#page-4-0). For each $i \in [k-1]$, let $m(v_1, v_{n-2i+2}) = d_{n-2i+2} - 1$, $m(v_1, v_{n-2i+1}) = d_{n-2i+1} - 1$, and $m(v_{n-2i+1}, v_{n-2i+2}) = 1$. For each $k+1 \leq i \leq \frac{n-1}{2}$ $\frac{-1}{2}$, let $m(v_1, v_{n-2i+2}) = 1$, $m(v_1, v_{n-2i+1}) = 1 + d_{n-2i+1} - d_{n-2i+2}$, and $m(v_{n-2i+1}, v_{n-2i+2}) =$ $d_{n-2i+2}-1$. Finally, let $m(v_1, v_{n-2k+2}) = 1+\delta$, $m(v_1, v_{n-2k+1}) = 1+\delta+d_{n-2k+1}-d_{n-2k+2}$, and $m(v_{n-2k+1}, v_{n-2k+2}) = d_{n-2k+2} - 1 - \delta$. Note that every edge mentioned so far has multiplicity at least 1. Let all other potential edges in G have multiplicity 0. It follows that $deg(v_i) = d_i$ for all $2 \leq i \leq n$ and

$$
deg(v_1) = \sum_{i=2}^{n} m(v_1, v_i)
$$

=
$$
\sum_{i=1}^{k-1} (d_{n-2i+1} + d_{n-2i+2} - 2) + \sum_{i=k}^{\frac{n-1}{2}} (d_{n-2i+1} - d_{n-2i+2} + 2) + 2\delta
$$

= $d_1 - D + 2 \sum_{i=1}^{k-1} \overline{d}_{n-2i+2} + (n-1) + 2\delta = d_1,$

where the last equality follows from the definition of δ . Hence, G is a multigraph with degree sequence (d_1, \ldots, d_n) . Moreover, as an edge in G has positive multiplicity if and only if it is of the form v_1v_i for $2 \leqslant i \leqslant n$, or of the form $v_{2i}v_{2i+1}$ for some $1 \leqslant i \leqslant \frac{n-1}{2}$ $\frac{-1}{2}$, we see that G is triangular, completing the proof of the odd case.

(c) *n* even and $k > 1$

Figure 1: The fan-shaped constructions in Lemma [7.](#page-2-0) For simplicity only multiplicities of edges not containing v_1 are labelled. Multiplicities of edges containing v_1 are included in the proof and can be deduced using $\deg(v_i) = d_i$ for all $i \in [n]$.

If n is even, then $d_1 - \sum_{i=2}^n \underline{d}_i$ is also even, and thus $d_1 \leqslant \sum_{i=2}^n d_i - n$. Let $\overline{d}_{n-1} = d_{n-1} - 3$, and for each $2 \leqslant i \leqslant \frac{n-2}{2}$ $\frac{-2}{2}$, let $d_{n+1-2i} = d_{n+1-2i} - 2$. It follows that

$$
\frac{1}{2}(D - (n - 2)) = \frac{1}{2} \left(\sum_{i=1}^{n} (-1)^{i-1} d_i - (n - 2) \right)
$$

$$
\leq \frac{1}{2} \left(\sum_{i=2}^{n} d_i + \sum_{i=2}^{n} (-1)^{i-1} d_i - (2n - 2) \right)
$$

$$
= \sum_{i=1}^{\frac{n-2}{2}} d_{n+1-2i} - (n - 1) = \sum_{i=1}^{\frac{n-2}{2}} \overline{d}_{n+1-2i}.
$$

Hence, there exists an index $1 \leq k \leq \frac{n-2}{2}$ $\frac{-2}{2}$ such that $\sum_{i=1}^{k-1} \overline{d}_{n+1-2i} \leq \frac{1}{2}$ $\frac{1}{2}(D - (n-2)) \leq$ $\sum_{i=1}^{k} \overline{d}_{n+1-2i}$. Let $\delta = \frac{1}{2}$ $\frac{1}{2}(D - (n-2)) - \sum_{i=1}^{k-1} \overline{d}_{n+1-2i}$, so $0 \le \delta \le \overline{d}_{n+1-2k}$.

If $k = 1$, let α, β be any non-negative integers satisfying $\alpha \leq d_n - 3$, $\beta \leq d_{n-1} - d_n$ and $\alpha + \beta = \delta$. Such α, β exists as $d_n - 3 + d_{n-1} - d_n = \overline{d}_{n-1} \geq \delta$. Consider the multigraph G on *n* vertices v_1, \ldots, v_n whose edge multiplicities are given as follows (see also Figure [1b\)](#page-4-0). Let $m(v_1, v_n) = 2 + \alpha$, $m(v_1, v_{n-1}) = 1 + \alpha + \beta$, $m(v_1, v_{n-2}) = d_{n-2} - d_{n-1} + d_n - 1 + \beta$, $m(v_n, v_{n-1}) = d_n - 2 - \alpha$ and $m(v_{n-1}, v_{n-2}) = d_{n-1} - d_n + 1 - \beta$. For each $2 \leq i \leq \frac{n-2}{2}$ $\frac{-2}{2}$, let $m(v_1, v_{n-2i+1}) = 1, m(v_1, v_{n-2i}) = 1 + d_{n-2i} - d_{n-2i+1}, \text{ and } m(v_{n-2i}, v_{n-2i+1}) = d_{n-2i+1} - 1.$ Note that every edge mentioned so far has multiplicity at least 1. Let all other potential edges in G have multiplicity 0. Then, $deg(v_i) = d_i$ for all $2 \leq i \leq n$ and

$$
deg(v_1) = 2 + 2\alpha + 2\beta + d_{n-2} - d_{n-1} + d_n + \sum_{i=2}^{\frac{n-2}{2}} (2 + d_{n-2i} - d_{n-2i+1})
$$

= 2 + 2\delta + d_1 - D + (n - 4) = d_1.

If $k > 1$, consider the multigraph G on n vertices v_1, \ldots, v_n whose edge multiplicities are given as follows (see also Figure [1c\)](#page-4-0). Let $m(v_1, v_n) = d_n - 1$, $m(v_1, v_{n-1}) = d_{n-1} - 2$, $m(v_1, v_{n-2}) = d_{n-2} - 1$, and $m(v_n, v_{n-1}) = m(v_{n-1}, v_{n-2}) = 1$. For each $2 \leq i \leq k-1$, $m(v_1, v_{n-2i+1}) = d_{n-2i+1} - 1$, $m(v_1, v_{n-2i}) = d_{n-2i} - 1$, and $m(v_{n-2i}, v_{n-2i+1}) = 1$. For each $k+1 \leqslant i \leqslant \frac{n-2}{2}$ $\frac{-2}{2}$, $m(v_1, v_{n-2i+1}) = 1$, $m(v_1, v_{n-2i}) = 1 + d_{n-2i} - d_{n-2i+1}$, and $m(v_{n-2i}, v_{n-2i+1}) = d_{n-2i+1} - 1$. Finally, let $m(v_1, v_{n-2k+1}) = 1 + \delta$, $m(v_1, v_{n-2k}) =$ $1 + \delta + d_{n-2k} - d_{n-2k+1}$, and $m(v_{n-2k}, v_{n-2k+1}) = d_{n-2k+1} - 1 - \delta$. Note that from assumptions, every edge mentioned so far has multiplicity at least 1. Let all other potential edges in G have multiplicity 0. Then $\deg(v_i) = d_i$ for all $2 \leq i \leq n$ and

$$
\deg(v_1) = d_n + d_{n-1} + d_{n-2} - 4 + \sum_{i=2}^{k-1} (d_{n-2i+1} + d_{n-2i} - 2) + \sum_{i=k}^{\frac{n-2}{2}} (d_{n-2i} - d_{n-2i+1} + 2) + 2\delta
$$

= $d_1 - D + 2 \sum_{i=1}^{k-1} \overline{d}_{n-2i+1} + (n-2) + 2\delta = d_1.$

Figure 2: The constructions in Lemma [8.](#page-6-0) Every edge here with no labelled multiplicity has multiplicity 1.

Therefore, regardless of whether or not $k = 1$, G is a multigraph with degree sequence (d_1, \ldots, d_n) . Moreover, we have that an edge in G has positive multiplicity if and only if it is of the form v_1v_i for $2 \leq i \leq n$, or of the form $v_{2i}v_{2i+1}$ for some $1 \leq i \leq \frac{n-2}{2}$ $\frac{-2}{2}$, or it is $v_{n-1}v_n$. Hence, G is triangular, proving the even case. П

Lemma 8. Let $n \geq 5$ and let (d_1, \ldots, d_n) be a sequence of non-negative integers satisfying

- $\bullet \, d_2 \geqslant \cdots \geqslant d_n \geqslant 4,$
- $D = \sum_{i=1}^{n} (-1)^{i-1} d_i$ is equal to 4 if n is odd, and one of 0, 2, 4 if n is even,

then there exists a triangular multigraph G with degree sequence (d_1, \ldots, d_n) .

Proof. For each $i \in [n]$, let $d'_i = d_i - 4$. For each $2 \leqslant i \leqslant n$, let $D_i = \sum_{j=i}^n (-1)^{j-i} d'_j$, and note that $D_i \geqslant 0$.

If n is odd, then by assumption $D = 4$. Consider the multigraph G on n vertices v_1, \ldots, v_n with edge multiplicities $m(v_i, v_j)$ given as follows (see also Figure [2a\)](#page-6-1), where we use addition mod *n* in the indices. For each $i \in [n-1]$, let $m(v_i, v_{i+1}) = 1 + D_{i+1}$, and let $m(v_n, v_1) = 1$. For each $i \in [n]$, let $m(v_i, v_{i+2}) = 1$. Let all other potential edges in G have multiplicity 0. Note that for each $2 \leq i \leq n-1$,

$$
deg(v_i) = m(v_i, v_{i-2}) + m(v_i, v_{i-1}) + m(v_i, v_{i+1}) + m(v_i, v_{i+2})
$$

= 1 + (1 + D_i) + (1 + D_{i+1}) + 1

$$
= 4 + d_i' = d_i,
$$

and similarly

$$
deg(v_1) = 4 + D_2 = 4 + \sum_{j=2}^{n} (-1)^j d'_j = 4 + \sum_{j=2}^{n} (-1)^j d_j = 4 + d_1 - D = d_1,
$$

$$
deg(v_n) = 4 + D_n = 4 + d'_n = d_n.
$$

Hence, G is a multigraph with degree sequence (d_1, \ldots, d_n) . Furthermore, since an edge in G has positive multiplicity if and only if it connects vertices whose indices have difference 1 or 2 mod n, we see that G is triangular, completing the proof when n is odd.

If n is even, then by assumption D could be 0, 2 or 4. Let G be the multigraph with the same definition as in the case when n is odd (see also Figure $2a$). The same calculations show $\deg(v_i) = d_i$ for all $2 \leq i \leq n$, while

$$
deg(v_1) = 4 + D_2 = 4 + (d'_2 - d'_3) + \dots + (d'_{n-2} - d'_{n-1}) + d'_n
$$

= 4 + (d_2 - d_3) + \dots + (d_{n-2} - d_{n-1}) + (d_n - 4) = 4 + d_1 - D - 4 = d_1 - D.

Hence, if $D = 0$, then G is a triangular multigraph with degree sequence (d_1, \ldots, d_n) , as required.

If $D = 2$, let G' be the multigraph obtained from G by increasing $m(v_1, v_2)$ and $m(v_1, v_n)$ by 1, and decreasing $m(v_2, v_n)$ by 1 to 0 (see also Figure [2b\)](#page-6-1). Note that G' is a multigraph with degree sequence (d_1, \ldots, d_n) . As edge v_1v_2 is in triangle $v_1v_2v_3$ and edge v_1v_n is in triangle $v_1v_nv_{n-1}$, G' is still triangular.

If $D = 4$, let G'' be the multigraph obtained from G by increasing $m(v_1, v_2)$ by 2 and $m(v_1, v_n)$ by 1, increasing $m(v_1, v_4)$ from 0 to 1, and decreasing both $m(v_2, v_n)$ and $m(v_2, v_4)$ by 1 to 0 (see also Figure [2c\)](#page-6-1). Note that G'' is a multigraph with degree sequence (d_1, \ldots, d_n) . As edges v_1v_2 and v_2v_3 are in triangle $v_1v_2v_3$, edge v_3v_4 is in triangle $v_3v_4v_5$, edge v_1v_4 is in triangle $v_1v_3v_4$, and edge v_1v_n is in triangle $v_1v_nv_{n-1}$, Gⁿ is still triangular. This completes the proof when *n* is even. \Box

As a final preparation, we deal with the $n = 3$ and $n = 4$ cases of Theorem [5](#page-1-3) in the following lemma.

Lemma 9. If $n = 3$ or $n = 4$ and (d_1, \ldots, d_n) is a sequence of positive integers satisfying conditions [\(i\)](#page-1-2)-[\(iii\)](#page-1-4) of Theorem [5,](#page-1-3) then there exists a triangular multigraph G with degree sequence (d_1, \ldots, d_n) .

Proof. If $n = 3$, then $D = d_1 - d_2 + d_3 \geq d_3 \geq 4 \geq 3 - 2$. Hence, we may apply Lemma [7](#page-2-0) to find such a triangular multigraph G.

If $n = 4$ and $D = d_1 - d_2 + d_3 - d_4 \geq 2 = 4 - 2$, then we may again apply Lemma [7](#page-2-0) to find such a triangular multigraph G. Since D is even, the only remaining case is $D = 0$, which can only happen if $d_1 = d_2$ and $d_3 = d_4$. Consider the multigraph G on v_1, v_2, v_3, v_4 given by $m(v_1, v_2) = d_1 - 2$, $m(v_3, v_4) = d_3 - 2$, and $m(v_1, v_3) = m(v_1, v_4) = m(v_2, v_3) =$ $m(v_2, v_4) = 1$. Then G has degree sequence (d_1, d_2, d_3, d_4) and is triangular, completing the proof. \Box

Figure 3: The constructions in Theorem [5.](#page-1-3) Edge multiplicities are omitted here for simplicity.

We are now ready to prove Theorem [5.](#page-1-3)

Proof of Theorem [5.](#page-1-3) Recall that [\(i\)](#page-1-2) and [\(ii\)](#page-1-5) implies that $D = \sum_{i=1}^{n} (-1)^{i-1} d_i$ is a nonnegative even integer. If $n = 3$ or $n = 4$, we are done by Lemma [9.](#page-7-0) Now assume $n \ge 5$. If $D \geq n-2$, we are done by Lemma [7.](#page-2-0) If $D \leq 4$ and n is even, then $D = 0, 2, 4$ and we are done by Lemma [8.](#page-6-0) If $D \leq 4$ and n is odd, then since $D = (d_1 - d_2) + \cdots + (d_{n-2} - d_{n-1}) + d_n \geq$ 4, we must have $D = 4$ and so we are done by Lemma [8](#page-6-0) as well. Hence, it suffices to consider the case when $n \geq 5$ and $6 \leq D \leq n-3$, which can only happen if $n \geq 9$. Let $k=\frac{1}{2}$ $\frac{1}{2}(D-4)$ and $d_i' = d_i - 4$ for all $i \in [n]$. Note that $k \geq 1$ and $n - 2k \geq 7$. Again, the triangular multigraph G we construct differs slightly depending on the parity of n .

If *n* is odd, let $(a_1, a_{n-2k+1}, a_{n-2k+2}, \ldots, a_n)$ and $(b_1, b_2, \ldots, b_{n-2k})$ be degree sequences defined as follows. Let $a_1 = 2k + \sum_{i=n-2k+1}^{n} (-1)^i d_i$ and $a_i = d_i$ for all $n-2k+1 \leq i \leq n$. Let $b_1 = 4 + \sum_{i=2}^{n-2k} (-1)^i d_i$ and $b_i = d_i$ for all $2 \leq i \leq n-2k$. Then $a_{n-2k+1} \geq \cdots \geq a_n \geq 4$, $a_1 + \sum_{i=n-2k+1}^{n} a_i$ is even, $a_1 \leq \sum_{i=n-2k+1}^{n} (a_i - 1)$ and $a_1 + \sum_{i=n-2k+1}^{n} (-1)^{i-1} a_i = 2k \geq 0$ $(2k+1) - 2$. Thus, by Lemma [7,](#page-2-0) there exists a triangular multigraph G_1 on vertices $v_1, v_{n-2k+1}, \ldots, v_n$ with degree sequence $(a_1, a_{n-2k+1}, \ldots, a_n)$. We also have $b_2 \geqslant \cdots \geqslant$ $b_{n-2k} \geq 4$, and $\sum_{i=1}^{n-2k} (-1)^{i-1} b_i = 4$. Thus, by Lemma [8,](#page-6-0) there exists a triangular multigraph G_2 on vertices v_1, \ldots, v_{n-2k} with degree sequence (b_1, \ldots, b_{n-2k}) . Let $G =$ $G_1 \cup G_2$. Since $a_1 + b_1 = 2k+4+\sum_{i=2}^n (-1)^i d_i = 2k+4+d_1-D = d_1$, G is a multigraph with vertices v_1, \ldots, v_n and degree sequence $(a_1+b_1, b_2, \ldots, b_{n-2k}, a_{n-2k+1}, \ldots, a_n) = (d_1, \ldots, d_n).$ Moreover, G is triangular as both G_1, G_2 are and they only share a single vertex v_1 . This proves the odd case.

If n is even, let $(a_1, a_{n-2k}, a_{n-2k+1}, \ldots, a_n)$ and $(b_1, b_2, \ldots, b_{n-2k-1})$ be degree sequences defined as follows. $a_1 = 2k + \sum_{i=n-2k}^{n} (-1)^i d_i$ and $a_i = d_i$ for all $n-2k \leqslant i \leqslant n$. $b_1 = 4 + \sum_{i=2}^{n-2k-1} (-1)^i d_i$ and $b_i = d_i$ for all $2 \leq i \leq n-2k-1$. Then $a_{n-2k} \geq \cdots \geq a_n \geq 4$,

 $a_1 + \sum_{i=n-2k}^{n} a_i$ is even, $a_1 \leqslant \sum_{i=n-2k}^{n} (a_i - 1)$ and $a_1 + \sum_{i=n-2k}^{n} (-1)^{i-1} a_i = 2k \geqslant$ $(2k + 2) - 2$. Thus, by Lemma [7,](#page-2-0) there exists a triangular multigraph G_1 on vertices $v_1, v_{n-2k}, \ldots, v_n$ with degree sequence $(a_1, a_{n-2k}, \ldots, a_n)$. We also have $b_2 \geqslant \cdots \geqslant b_{n-2k-1}$ and $\sum_{i=1}^{n-2k-1}(-1)^{i-1}b_i = 4$. Thus, by Lemma [8,](#page-6-0) there exists a triangular multigraph G_2 on vertices v_1, \ldots, v_{n-2k-1} with degree sequence $(b_1, \ldots, b_{n-2k-1})$. Let $G = G_1 \cup G_2$. Since $a_1 + b_1 = 2k + 4 + \sum_{i=2}^n (-1)^i d_i = 2k + 4 + d_1 - D = d_1$, G is a multigraph with vertices v_1, \ldots, v_n and degree sequence $(a_1+b_1, b_2, \ldots, b_{n-2k-1}, a_{n-2k}, \ldots, a_n) = (d_1, \ldots, d_n).$ Moreover, G is triangular as both G_1, G_2 are and they only share a single vertex v_1 . This proves the even case. \Box

Acknowledgements

We would like to thank Domenico Mergoni Cecchelli for bringing Conjecture [2](#page-1-0) to our attention during a workshop, and Amedeo Sgueglia, Kyriakos Katsamaktsis and Shoham Letzter for organising said workshop in University College London.

References

- [1] B. Egan and Y. Nikolayevsky. On triangular biregular degree sequences. Discrete Mathematics, 347(2):13778, 2024.
- [2] P. Erdős and T. Gallai. Gráfok előírt fokú pontokkal. Matematikai Lapok, 11:264–274, 1960.