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Abstract

A simple graph is triangular if every edge is contained in a triangle. A sequence
of integers is graphical if it is the degree sequence of a simple graph. Egan and
Nikolayevsky recently conjectured that every graphical sequence whose terms are all
at least 4 is the degree sequence of a triangular simple graph, and proved this in
some special cases. In this paper we state and prove the analogous version of this
conjecture for multigraphs.

Mathematics Subject Classifications: 05C07

1 Introduction

A graph is simple if it does not contain any loops or multiple edges. A sequence of
integers (d1, . . . , dn) is graphical if there exists a simple graph G on vertices v1, . . . , vn
such that deg(vi) = di for all i ∈ [n]. The well-known Erdős-Gallai Theorem provides a
complete characterisation of graphical sequences.

Theorem 1 (Erdős-Gallai Theorem [2]). A sequence of positive integers d1 > · · · > dn is
graphical if and only if

• d1 + · · ·+ dn is even and

•
∑k

i=1 di 6 k(k − 1) +
∑n

i=k+1 min{di, k} for every k ∈ [n].

A triangle in a simple graph consists of three distinct vertices that are pairwise adjacent.
A simple graph is triangular if every edge is contained in a triangle. Recently, Egan and
Nikolayevsky [1] conjectured that any positive integer sequence whose terms are all at
least 4, and satisfies the obvious necessary condition of being graphical, is the degree
sequence of a triangular simple graph. By the Erdős-Gallai Theorem, this is equivalent to
the following.
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Conjecture 2 (Egan and Nikolayevsky [1]). If n > 3 and (d1, . . . , dn) is a sequence of
integers satisfying

• d1 > · · · > dn > 4,

• d1 + · · ·+ dn is even,

•
∑k

i=1 di 6 k(k − 1) +
∑n

i=k+1 min{di, k} for every k ∈ [n],

then it is the degree sequence of a triangular simple graph.

Egan and Nikolayevsky [1] proved this conjecture in the case when the degree sequence
contains at most two distinct terms.

Theorem 3 (Egan and Nikolayevsky [1]). Any graphical sequence of the form (ap, bq),
where a > b > 4 and p > 0, q > 0 is the degree sequence of a triangular simple graph.

In this paper, we state and prove the analogous version of Conjecture 2 for multigraphs.
A triangle in a multigraph consists of three distinct vertices which are pairwise adjacent.
A multigraph is triangular if every edge is contained in a triangle. The following lemma
provides two necessary conditions for the degree sequences of triangular multigraphs.

Lemma 4. If n > 3 and d1 > · · · > dn > 0 is the degree sequence of a triangular
multigraph on n vertices, then

•
∑n

i=1 di is even,

• d1 6
∑n

i=2(di − 1).

Proof.
∑n

i=1 di is even from the well-known handshake lemma. Now suppose for a con-
tradiction that d1 >

∑n
i=2(di − 1) and G is a triangular multigraph on vertices v1, . . . , vn

satisfying deg(vi) = di for all i ∈ [n]. Note that any triangular multigraph is necessarily
loopless. If for every 2 6 i 6 n, vi is adjacent to a vertex that is not v1, then since G
is loopless, deg(v1) 6

∑n
i=2(di − 1) < d1, contradiction. Hence, there must exist some

2 6 i 6 n such that vi is only adjacent to the vertex v1. Since di > 0, the edge v1vi has
positive multiplicity, but cannot be in a triangle, contradicting G is triangular.

Our main result is that the analogue of Conjecture 2 holds for multigraphs. Any
sequence of n > 3 integers, each at least 4, and satisfying the obvious necessary conditions
in Lemma 4 is the degree sequence of a triangular multigraph.

Theorem 5. If n > 3 and (d1, . . . , dn) is a sequence of integers satisfying

(i) d1 > · · · > dn > 4,

(ii)
∑n

i=1 di is even,

(iii) d1 6
∑n

i=2(di − 1),
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then it is the degree sequence of a triangular multigraph.

As evidenced by the following proposition, we cannot replace the number 4 in condition
(i) by a smaller integer.

Proposition 6. The degree sequence given by di = 3 for all i ∈ [n] is the degree sequence
of a triangular multigraph if and only if n is divisible by 4.

Proof. Let G be a triangular multigraph on n vertices, all of which have degree 3. It
suffices to show that every connected component of G is isomorphic to K4.

Fix a connected component of G. Suppose there exists a vertex v1 adjacent to three
different vertices v2, v3, v4. As edges v1v2, v1v3, v1v4 all need to be in triangles, we may,
without loss of generality, assume edges v2v3, v2v4 are also in G. If edge v3v4 is also in
G, then all of v1, v2, v3, v4 have degree 3, so the connected component containing them is
isomorphic to K4. Otherwise, vertex v3 is adjacent to a new vertex v5. But since v1v5, v2v5
are not in G, the edge v3v5 is not in a triangle, contradiction.

Suppose now there is no vertex in this connected component that is adjacent to three
different vertices. Let v1 be a vertex in this component. Either there is an edge v1v2 of
multiplicity 3, which cannot be in a triangle, or we have an edge v1v2 with multiplicity 2
and an edge v1v3 with multiplicity 1. For edges v1v2, v1v3 to be in triangles, we must have
edge v2v3 as well. One of edges v1v3, v2v3 must have multiplicity at least 2, as v3 cannot
be adjacent to three different vertices. But then one of v1, v2 will have degree at least 4,
contradiction.

2 Proof of Theorem 5

Suppose n > 3 and (d1, . . . , dn) is a sequence of integers satisfying (i)-(iii). The goal
of Theorem 5 is to construct a triangular multigraph G on vertices v1, . . . , vn, such that
deg(vi) = di for all i ∈ [n]. It turns out that D =

∑n
i=1(−1)i−1di is a critical quantity that

will guide our constructions. Note that D is non-negative by (i) and is even by (ii).
If D > n− 2, we show in Lemma 7 that a fan-shaped construction (see Figure 1) works,

with v1 being the central vertex. If D 6 4, we show in Lemma 8 that a construction
based on modifying the square of the length n cycle (see Figure 2) works. Finally, we
complete the proof of Theorem 5 by showing that in the intermediate case, 6 6 D 6 n− 3,
a combination of the above two constructions, with v1 being the unique common vertex,
works.

In order to combine these two constructions in the proof of Theorem 5, we will need to
state and prove Lemma 7 and Lemma 8 in the slightly more general setting where we do
not assume d1 is the largest term of the sequence. Throughout the constructions in this
section, the multiplicity of an edge vivj in a multigraph G will be denoted by m(vi, vj).

Lemma 7. Let n > 3 and let (d1, . . . , dn) be a sequence of non-negative integers satisfying

• d2 > · · · > dn > 4,
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• d1 + · · ·+ dn is even,

• d1 6
∑n

i=2(di − 1),

• D =
∑n

i=1(−1)i−1di > n− 2,

then there exists a triangular multigraph G with degree sequence (d1, . . . , dn).

Proof. We separate into two cases depending on the parity of n.
If n is odd, then D > n−1 as D is even. Let dn+2−2i = dn+2−2i−2 for each 1 6 i 6 n−1

2
.

Using d1 6
∑n

i=2(di − 1), we have

1

2
(D − (n− 1)) =

1

2

(
n∑

i=1

(−1)i−1di − (n− 1)

)

6
1

2

(
n∑

i=2

di +
n∑

i=2

(−1)i−1di − 2(n− 1)

)

=

n−1
2∑

i=1

dn+2−2i − (n− 1) =

n−1
2∑

i=1

dn+2−2i.

Hence, there exists an index 1 6 k 6 n−1
2

such that
∑k−1

i=1 dn+2−2i 6 1
2
(D − (n − 1)) 6∑k

i=1 dn+2−2i. Let δ = 1
2
(D − (n− 1))−

∑k−1
i=1 dn+2−2i, so 0 6 δ 6 dn+2−2k = dn+2−2k − 2.

Consider the multigraph G on n vertices v1, . . . , vn whose edge multiplicities are given
as follows (see also Figure 1a). For each i ∈ [k − 1], let m(v1, vn−2i+2) = dn−2i+2 − 1,
m(v1, vn−2i+1) = dn−2i+1 − 1, and m(vn−2i+1, vn−2i+2) = 1. For each k + 1 6 i 6 n−1

2
,

let m(v1, vn−2i+2) = 1, m(v1, vn−2i+1) = 1 + dn−2i+1 − dn−2i+2, and m(vn−2i+1, vn−2i+2) =
dn−2i+2− 1. Finally, let m(v1, vn−2k+2) = 1 + δ, m(v1, vn−2k+1) = 1 + δ+dn−2k+1−dn−2k+2,
and m(vn−2k+1, vn−2k+2) = dn−2k+2 − 1 − δ. Note that every edge mentioned so far has
multiplicity at least 1. Let all other potential edges in G have multiplicity 0. It follows
that deg(vi) = di for all 2 6 i 6 n and

deg(v1) =
n∑

i=2

m(v1, vi)

=
k−1∑
i=1

(dn−2i+1 + dn−2i+2 − 2) +

n−1
2∑

i=k

(dn−2i+1 − dn−2i+2 + 2) + 2δ

= d1 −D + 2
k−1∑
i=1

dn−2i+2 + (n− 1) + 2δ = d1,

where the last equality follows from the definition of δ. Hence, G is a multigraph with
degree sequence (d1, . . . , dn). Moreover, as an edge in G has positive multiplicity if and
only if it is of the form v1vi for 2 6 i 6 n, or of the form v2iv2i+1 for some 1 6 i 6 n−1

2
,

we see that G is triangular, completing the proof of the odd case.
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v2 vn

vn−1v3

vn−2k−1

vn−2k

vn−2k+4

vn−2k+3

vn−2k+2vn−2k+1

v1
...

...

d3 − 1 1

1

dn−2k+2 − 1 − δ

dn−2k − 1

(a) n odd

vn

vn−1
vn−2

vn−3

vn−4

v2

v3

· · ·
. . . . .

.
v1

dn − 2 − α dn−1 − dn + 1 − β

dn−3 − 1d3 − 1

(b) n even and k = 1

vn
vn−1 vn−2

vn−3

vn−4

v2

v3

vn−2k−2

vn−2k−1

vn−2k+3

vn−2k+2

vn−2k+1vn−2k

v1 ...
...

1 1

1

1

dn−2k+1 − 1 − δ

dn−2k−1 − 1

d3 − 1

(c) n even and k > 1

Figure 1: The fan-shaped constructions in Lemma 7. For simplicity only multiplicities of
edges not containing v1 are labelled. Multiplicities of edges containing v1 are included in
the proof and can be deduced using deg(vi) = di for all i ∈ [n].
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If n is even, then d1−
∑n

i=2 di is also even, and thus d1 6
∑n

i=2 di−n. Let dn−1 = dn−1−3,
and for each 2 6 i 6 n−2

2
, let dn+1−2i = dn+1−2i − 2. It follows that

1

2
(D − (n− 2)) =

1

2

(
n∑

i=1

(−1)i−1di − (n− 2)

)

6
1

2

(
n∑

i=2

di +
n∑

i=2

(−1)i−1di − (2n− 2)

)

=

n−2
2∑

i=1

dn+1−2i − (n− 1) =

n−2
2∑

i=1

dn+1−2i.

Hence, there exists an index 1 6 k 6 n−2
2

such that
∑k−1

i=1 dn+1−2i 6 1
2
(D − (n − 2)) 6∑k

i=1 dn+1−2i. Let δ = 1
2
(D − (n− 2))−

∑k−1
i=1 dn+1−2i, so 0 6 δ 6 dn+1−2k.

If k = 1, let α, β be any non-negative integers satisfying α 6 dn− 3, β 6 dn−1− dn and
α+ β = δ. Such α, β exists as dn − 3 + dn−1 − dn = dn−1 > δ. Consider the multigraph G
on n vertices v1, . . . , vn whose edge multiplicities are given as follows (see also Figure 1b).
Let m(v1, vn) = 2 + α, m(v1, vn−1) = 1 + α + β, m(v1, vn−2) = dn−2 − dn−1 + dn − 1 + β,
m(vn, vn−1) = dn− 2−α and m(vn−1, vn−2) = dn−1− dn + 1−β. For each 2 6 i 6 n−2

2
, let

m(v1, vn−2i+1) = 1, m(v1, vn−2i) = 1 + dn−2i− dn−2i+1, and m(vn−2i, vn−2i+1) = dn−2i+1− 1.
Note that every edge mentioned so far has multiplicity at least 1. Let all other potential
edges in G have multiplicity 0. Then, deg(vi) = di for all 2 6 i 6 n and

deg(v1) = 2 + 2α + 2β + dn−2 − dn−1 + dn +

n−2
2∑

i=2

(2 + dn−2i − dn−2i+1)

= 2 + 2δ + d1 −D + (n− 4) = d1.

If k > 1, consider the multigraph G on n vertices v1, . . . , vn whose edge multiplicities
are given as follows (see also Figure 1c). Let m(v1, vn) = dn − 1, m(v1, vn−1) = dn−1 − 2,
m(v1, vn−2) = dn−2 − 1, and m(vn, vn−1) = m(vn−1, vn−2) = 1. For each 2 6 i 6 k − 1,
m(v1, vn−2i+1) = dn−2i+1 − 1, m(v1, vn−2i) = dn−2i − 1, and m(vn−2i, vn−2i+1) = 1. For
each k + 1 6 i 6 n−2

2
, m(v1, vn−2i+1) = 1, m(v1, vn−2i) = 1 + dn−2i − dn−2i+1, and

m(vn−2i, vn−2i+1) = dn−2i+1 − 1. Finally, let m(v1, vn−2k+1) = 1 + δ, m(v1, vn−2k) =
1 + δ + dn−2k − dn−2k+1, and m(vn−2k, vn−2k+1) = dn−2k+1 − 1 − δ. Note that from
assumptions, every edge mentioned so far has multiplicity at least 1. Let all other potential
edges in G have multiplicity 0. Then deg(vi) = di for all 2 6 i 6 n and

deg(v1) = dn + dn−1 + dn−2 − 4 +
k−1∑
i=2

(dn−2i+1 + dn−2i − 2) +

n−2
2∑

i=k

(dn−2i − dn−2i+1 + 2) + 2δ

= d1 −D + 2
k−1∑
i=1

dn−2i+1 + (n− 2) + 2δ = d1.
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v1
vn

vn−1

vn−2

vn−3v5

v4

v3

v2

· · ·

1 +Dn

1 +Dn−1

1 +Dn−21 +D5

1 +D4

1 +D3

1 +D2

(a) n odd, or n even and D = 0

v1
vn

vn−1

vn−2

vn−3v5

v4

v3

v2

· · ·

1 +Dn

1 +Dn−1

1 +Dn−21 +D5

1 +D4

1 +D3

2 +D2 2

(b) n even and D = 2

v1
vn

vn−1

vn−2

vn−3v5

v4

v3

v2

· · ·

1 +Dn

1 +Dn−1

1 +Dn−21 +D5

1 +D4

1 +D3

3 +D2 2

(c) n even and D = 4

Figure 2: The constructions in Lemma 8. Every edge here with no labelled multiplicity
has multiplicity 1.

Therefore, regardless of whether or not k = 1, G is a multigraph with degree sequence
(d1, . . . , dn). Moreover, we have that an edge in G has positive multiplicity if and only if
it is of the form v1vi for 2 6 i 6 n, or of the form v2iv2i+1 for some 1 6 i 6 n−2

2
, or it is

vn−1vn. Hence, G is triangular, proving the even case.

Lemma 8. Let n > 5 and let (d1, . . . , dn) be a sequence of non-negative integers satisfying

• d2 > · · · > dn > 4,

• D =
∑n

i=1(−1)i−1di is equal to 4 if n is odd, and one of 0, 2, 4 if n is even,

then there exists a triangular multigraph G with degree sequence (d1, . . . , dn).

Proof. For each i ∈ [n], let d′i = di − 4. For each 2 6 i 6 n, let Di =
∑n

j=i(−1)j−id′j, and
note that Di > 0.

If n is odd, then by assumption D = 4. Consider the multigraph G on n vertices
v1, . . . , vn with edge multiplicities m(vi, vj) given as follows (see also Figure 2a), where we
use addition mod n in the indices. For each i ∈ [n− 1], let m(vi, vi+1) = 1 + Di+1, and
let m(vn, v1) = 1. For each i ∈ [n], let m(vi, vi+2) = 1. Let all other potential edges in G
have multiplicity 0. Note that for each 2 6 i 6 n− 1,

deg(vi) = m(vi, vi−2) +m(vi, vi−1) +m(vi, vi+1) +m(vi, vi+2)

= 1 + (1 +Di) + (1 +Di+1) + 1
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= 4 + d′i = di,

and similarly

deg(v1) = 4 +D2 = 4 +
n∑

j=2

(−1)jd′j = 4 +
n∑

j=2

(−1)jdj = 4 + d1 −D = d1,

deg(vn) = 4 +Dn = 4 + d′n = dn.

Hence, G is a multigraph with degree sequence (d1, . . . , dn). Furthermore, since an edge in
G has positive multiplicity if and only if it connects vertices whose indices have difference
1 or 2 mod n, we see that G is triangular, completing the proof when n is odd.

If n is even, then by assumption D could be 0, 2 or 4. Let G be the multigraph with the
same definition as in the case when n is odd (see also Figure 2a). The same calculations
show deg(vi) = di for all 2 6 i 6 n, while

deg(v1) = 4 +D2 = 4 + (d′2 − d′3) + · · ·+ (d′n−2 − d′n−1) + d′n
= 4 + (d2 − d3) + · · ·+ (dn−2 − dn−1) + (dn − 4) = 4 + d1 −D − 4 = d1 −D.

Hence, if D = 0, then G is a triangular multigraph with degree sequence (d1, . . . , dn), as
required.

If D = 2, let G′ be the multigraph obtained from G by increasing m(v1, v2) and
m(v1, vn) by 1, and decreasing m(v2, vn) by 1 to 0 (see also Figure 2b). Note that G′ is a
multigraph with degree sequence (d1, . . . , dn). As edge v1v2 is in triangle v1v2v3 and edge
v1vn is in triangle v1vnvn−1, G

′ is still triangular.
If D = 4, let G′′ be the multigraph obtained from G by increasing m(v1, v2) by 2

and m(v1, vn) by 1, increasing m(v1, v4) from 0 to 1, and decreasing both m(v2, vn) and
m(v2, v4) by 1 to 0 (see also Figure 2c). Note that G′′ is a multigraph with degree sequence
(d1, . . . , dn). As edges v1v2 and v2v3 are in triangle v1v2v3, edge v3v4 is in triangle v3v4v5,
edge v1v4 is in triangle v1v3v4, and edge v1vn is in triangle v1vnvn−1, G

′′ is still triangular.
This completes the proof when n is even.

As a final preparation, we deal with the n = 3 and n = 4 cases of Theorem 5 in the
following lemma.

Lemma 9. If n = 3 or n = 4 and (d1, . . . , dn) is a sequence of positive integers satisfying
conditions (i)-(iii) of Theorem 5, then there exists a triangular multigraph G with degree
sequence (d1, . . . , dn).

Proof. If n = 3, then D = d1 − d2 + d3 > d3 > 4 > 3− 2. Hence, we may apply Lemma 7
to find such a triangular multigraph G.

If n = 4 and D = d1 − d2 + d3 − d4 > 2 = 4− 2, then we may again apply Lemma 7 to
find such a triangular multigraph G. Since D is even, the only remaining case is D = 0,
which can only happen if d1 = d2 and d3 = d4. Consider the multigraph G on v1, v2, v3, v4
given by m(v1, v2) = d1 − 2, m(v3, v4) = d3 − 2, and m(v1, v3) = m(v1, v4) = m(v2, v3) =
m(v2, v4) = 1. Then G has degree sequence (d1, d2, d3, d4) and is triangular, completing
the proof.
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vn−1

vn vn−2k+1

vn−2k+2

v2

v3

v4 vn−2k−2

vn−2k−1

vn−2k

v1

· · ·

· · ·

(a) n odd

vn−1

vn

vn−2
vn−3vn−4

vn−2k

vn−2k+1

v2

v3

v4 vn−2k−3

vn−2k−2

vn−2k−1

v1

. . .

· · ·

(b) n even

Figure 3: The constructions in Theorem 5. Edge multiplicities are omitted here for
simplicity.

We are now ready to prove Theorem 5.

Proof of Theorem 5. Recall that (i) and (ii) implies that D =
∑n

i=1(−1)i−1di is a non-
negative even integer. If n = 3 or n = 4, we are done by Lemma 9. Now assume n > 5. If
D > n− 2, we are done by Lemma 7. If D 6 4 and n is even, then D = 0, 2, 4 and we are
done by Lemma 8. If D 6 4 and n is odd, then since D = (d1−d2)+· · ·+(dn−2−dn−1)+dn >
4, we must have D = 4 and so we are done by Lemma 8 as well. Hence, it suffices to
consider the case when n > 5 and 6 6 D 6 n− 3, which can only happen if n > 9. Let
k = 1

2
(D − 4) and d′i = di − 4 for all i ∈ [n]. Note that k > 1 and n− 2k > 7. Again, the

triangular multigraph G we construct differs slightly depending on the parity of n.
If n is odd, let (a1, an−2k+1, an−2k+2, . . . , an) and (b1, b2, . . . , bn−2k) be degree sequences

defined as follows. Let a1 = 2k +
∑n

i=n−2k+1(−1)idi and ai = di for all n− 2k + 1 6 i 6 n.

Let b1 = 4+
∑n−2k

i=2 (−1)idi and bi = di for all 2 6 i 6 n−2k. Then an−2k+1 > · · · > an > 4,
a1 +

∑n
i=n−2k+1 ai is even, a1 6

∑n
i=n−2k+1(ai − 1) and a1 +

∑n
i=n−2k+1(−1)i−1ai = 2k >

(2k + 1) − 2. Thus, by Lemma 7, there exists a triangular multigraph G1 on vertices
v1, vn−2k+1, . . . , vn with degree sequence (a1, an−2k+1, . . . , an). We also have b2 > · · · >
bn−2k > 4, and

∑n−2k
i=1 (−1)i−1bi = 4. Thus, by Lemma 8, there exists a triangular

multigraph G2 on vertices v1, . . . , vn−2k with degree sequence (b1, . . . , bn−2k). Let G =
G1∪G2. Since a1+b1 = 2k+4+

∑n
i=2(−1)idi = 2k+4+d1−D = d1, G is a multigraph with

vertices v1, . . . , vn and degree sequence (a1+b1, b2, . . . , bn−2k, an−2k+1, . . . , an) = (d1, . . . , dn).
Moreover, G is triangular as both G1, G2 are and they only share a single vertex v1. This
proves the odd case.

If n is even, let (a1, an−2k, an−2k+1, . . . , an) and (b1, b2, . . . , bn−2k−1) be degree sequences
defined as follows. a1 = 2k +

∑n
i=n−2k(−1)idi and ai = di for all n − 2k 6 i 6 n.

b1 = 4+
∑n−2k−1

i=2 (−1)idi and bi = di for all 2 6 i 6 n−2k−1. Then an−2k > · · · > an > 4,
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a1 +
∑n

i=n−2k ai is even, a1 6
∑n

i=n−2k(ai − 1) and a1 +
∑n

i=n−2k(−1)i−1ai = 2k >
(2k + 2) − 2. Thus, by Lemma 7, there exists a triangular multigraph G1 on vertices
v1, vn−2k, . . . , vn with degree sequence (a1, an−2k, . . . , an). We also have b2 > · · · > bn−2k−1
and

∑n−2k−1
i=1 (−1)i−1bi = 4. Thus, by Lemma 8, there exists a triangular multigraph

G2 on vertices v1, . . . , vn−2k−1 with degree sequence (b1, . . . , bn−2k−1). Let G = G1 ∪ G2.
Since a1 + b1 = 2k + 4 +

∑n
i=2(−1)idi = 2k + 4 + d1 −D = d1, G is a multigraph with

vertices v1, . . . , vn and degree sequence (a1+b1, b2, . . . , bn−2k−1, an−2k, . . . , an) = (d1, . . . , dn).
Moreover, G is triangular as both G1, G2 are and they only share a single vertex v1. This
proves the even case.

Acknowledgements

We would like to thank Domenico Mergoni Cecchelli for bringing Conjecture 2 to our
attention during a workshop, and Amedeo Sgueglia, Kyriakos Katsamaktsis and Shoham
Letzter for organising said workshop in University College London.

References

[1] B. Egan and Y. Nikolayevsky. On triangular biregular degree sequences. Discrete
Mathematics, 347(2):13778, 2024.
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