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We propose iterative algorithms to solve adversarial training problems in a variety of
supervised learning settings of interest. Our algorithms, which can be interpreted as suitable
ascent-descent dynamics in Wasserstein spaces, take the form of a system of interacting
particles. These interacting particle dynamics are shown to converge toward appropriate
mean-field limit equations in certain large number of particles regimes. In turn, we prove
that, under certain regularity assumptions, these mean-field equations converge, in the large
time limit, toward approximate Nash equilibria of the original adversarial learning problems.
We present results for non-convex non-concave settings, as well as for non-convex concave
ones. Numerical experiments illustrate our results.
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1. Introduction

In this paper, we propose and analyze ascent-descent dynamics to find approximate solutions
(interpreted as Nash equilibria) to minmax problems of the form

min max U(r,v), (1.1)
vEP(O)TEP(ZXZ)im=p

where 7, is the first marginal of 7 and p is a fixed probability measure. Our dynamics take
the form of a system of finitely many interacting particles, which we will show converge, under
suitable assumptions, toward a mean-field PDE as the number of particles in the system grows.
We will also analyze the long-time behavior of the limiting mean-field dynamics and explore
their ability to produce approximate Nash equilibria for (1.1). The studied dynamics are a
version of gradient ascent-descent of the payoff function ¢ under a convenient optimal transport
geometric setting, and can be understood as analogous to dynamics studied in [12] and [17].
Through the paper we will think of © as the space of parameters of a learning model,
e.g., a classifier or regression function; Z =X x ) is a space of input to output samples;
U:P(22)xP(O) — R is a function representing a payoff defined over probability measures;
and the inner maximization in (1.1) operates over couplings where the first marginal is kept
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fized and equal to the "clean" data distribution p. As discussed in section 1.1 below and in
Appendix A.1, (1.1) encompasses distributionally robust optimization (DRO) problems of the
form
Vgggl@)ﬂgl&é)l%(uw) C(p, ). (1.2)

These are problems that in applications are used to enhance the robustness of learning models
to adversarial perturbations of data.

In a nutshell, a DRO problem like the one above can be interpreted as a game played by
a learner and an adversary: for the learner, the goal is to choose a distribution of learning
parameters v (implicitly inducing an input to output map) that is able to fare well when facing
the attack of a reasonable adversary (reasonable as modeled by the cost function C') who can
modify the distribution of clean data, here represented by the fixed probability measure yu; the
functional R represents the risk of the classifier /regression function induced by v relative to
the data distribution fi.

A brief discussion on adversarial training with pointers to relevant literature is presented
in section 2.1.

Before we move on with the description of our algorithms and main theoretical results, it
will be convenient to provide a concrete example of a payoff function U that is of interest in
practical settings, in particular, in adversarial machine learning.

1.1. Motivating example: robust supervised learning with shallow neural networks

We examine a specific setting of (1.1) in which the variable v can be directly related to a
shallow, although possibly infinitely wide, neural network; see [18].

Let © CRxRY | Z =R? xR, and write 6 = (a,b) and z = (x,y). We consider the payoff
function

U(m,v) :=R(m,v)—C(m), (1.3)

with the following risk and adversarial cost:
R(mv) ::/ C(h(@),9)dm(2,), () ::/ af(b-z)dv(a,b), (1.4)
ZXZ (C]

where £: R xR — [0,00] is a loss function (e.g., squared-loss or logistics loss), f is an activation
function (e.g., ReLu, sigmoid, or squared-ReLu), and

) = ca/ZXZ|z—Z|2d7T(z,Z), (1.5)

for ¢, a positive parameter. It is easy to verify that the case of an implementable finite neural
network trained with a finite data-set is obtained by choosing discrete probability laws m and
v.

The square Euclidean distance case shown above is one of the many possible choices in
(1.5). Notice that the risk function R only depends on 7 through its second marginal, 7. This
functional is thus the risk associated to the function h, when data points are assumed to be
distributed according to 7s.

The parameter ¢, in the cost C can be interpreted as reciprocal to an adversarial budget
and determines the strength of adversarial attacks. In particular, if ¢, is small, the attacker



can carry out stronger attacks, i.e., can propose new data points that are further away from
clean data points z ~ p, while the opposite is true when ¢, is large.

Remark 1 As discussed in Appendiz A.1, with the choices made above, problems (1.1) and
(1.2) are equivalent if we set

R(ﬂ’ V) = E(i,g)f\a[tw(hu (‘i)ag)L C(M’ﬂ) = CaW22 (Maﬂ)a

where Wao(u, t) is the standard 2- Wasserstein distance between u and fi. The resulting problem
(1.2) is a DRO wersion of adversarial training with an explicit penalty, as opposed to an explicit
constraint; see [45]. One of the main outcomes of our work is precisely to propose an algorithm
to solve this type of adversarial training problems. This intent is manifested in the marginal
constraint we impose in the inner max in (1.1).

Remark 2 In adversarial training, in order to avoid enhancing robustness at the expense of
a considerable loss in accuracy, it is important to tune the adversarial budget appropriately.
Some papers that have studied the trade-off between robustness and accuracy include [47, 55].

1.2. Algorithm

We introduce in Algorithm 1 a discrete in time particle-based scheme for solving the minmax
problem (1.1).

Implicit in the definition of Algorithm 1 is the use of the first variations of the functional
U in the directions v and .

Following Definition 7.12. in [43], we say that the measurable function U, : Z x Z - R is
the first variation of U in the direction 7 at the point (m,v) if for any 7* € P(Z x Z) we have

d *
%(U(ﬂ'+€(ﬂ' —7),v))

:/ Un(m,v;2,2)d(T* — ).
e=0 ZXZ

In general, U, may depend on the point (7,r) at which the first variation is being evaluated,
but we will drop the explicit reference to this dependence whenever no confusion may arise from
doing so, for otherwise we will write all of U, ’s arguments like this: Uy (m,v; 2, Z). Similarly, we
say that the measurable function U, : © — R is the first variation of U/ in the direction v at the
point (m,v) if for any v* € P(0©) we have

d *
%(U(W,V—FG(V —v)))

:/U,,(?T,I/;G)d(l/*—l/).
e=0 ©

Throughout the paper we will assume that the first variations of U are well-defined and satisfy
regularity properties that are stated precisely in Assumptions 8.

In Algorithm 1 the term n;At can be interpreted as a time-dependent transport learning
rate, and kAt as a constant mass-transfer learning parameter. We expose explicitly the term At
to facilitate all comparisons with the continuous-time dynamics below. The projection maps Pz
and Pg are introduced to ensure that iterations remain within the sets Z and ©. The averaging
steps in lines 18-19 will be discussed in section 6; Algorithm 1 is related to algorithms introduced
in [17, 51], in turn related to [13]; a comparison between the content of these papers and ours
is presented in section 2.1.
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Algorithm 1 Wasserstein ascent-descent algorithm

Require: A collection {Zi,O;Wi,O}izl,..‘,n such that %Z?:lwi,oézi,o approximates p.
1: Sett=0

2: Choose  {U0}r=1,..Mm, {ar,0tr=1,...0m, {Zijoti=1,,...mij=1,.N and
{wij,o}i=1,...,n; j=1,...~ with the constraint:
N
sz‘j,o =w; foralli=1,...n.
j=1
3: while Stopping condition has not been satisfied do
4: Set
n N M
N M. _
M= Zzwijvt(s(zi,mgij,t) vy = Zak,téﬂm
i=15=1 1
5: fori=1ton;j=1to N do
6: Zija+1 = Pz (Zije + (e AV U (6,145 26,0 Zij,t))
7: Dijt41 = wij e exp | (kAL) Zj/wijlytuﬂ-(ﬂ't’l/t;zi70’2,ij7t))
&: wij,t-‘rl = %
31 Yigl e+
9: end for
10: for k=1 to M do
11: k41 = Po (It — (me AV olhy (74, v450k1))
12: &k7t+1 = Qg t €XP (_(KAt) Zk’ Oék/ﬂguy(ﬂ't, Vt;ﬁk,t))
13: Qe p41 1= Shti1
' Zk/ dk/,t+1
14: end for
15: t=t+1

16: end while

17: **Calculate time-average**
- 1t - . .

18: Zjj 1= D e—oWij,sZij,s for i=1,....n;5=1,....N
i s z

19: ¥y = fzszoak,sﬁk,s fork=1,....M

2. Main theoretical results

We study the continuous-time version of the dynamics in Algorithm 1 and explore its ability to
produce (approximate) Nash equilibria for the game (1.1). As in many works in the literature
that study training dynamics of neural networks in overparameterized regimes (e.g., see [13, 52])
our analysis is split into two parts: 1) convergence of particle dynamics to a mean field in the
large number of particles limit, and 2) analysis of the mean field equation in the long time
horizon.

Following this general framework, in our first main result we describe the behaviour of the
continuous-time version of Algorithm 1 (a system of coupled ODEs) as the number of particles
grows. To be precise, the collection of iterates in Algorithm 1 can be thought of as a time



discretization of the system of ODEs:
dZi =0
dZZ - 'r]tVEL{ﬂ(WiN,VgV;Zg,ZZ;)dt

oot = 1t (uﬂ(ﬂgwgﬁzg,zg) - / u,r(ﬂgw;z;‘,quﬁy(zqz;)) d

(2.1)
dVi = —mVoldy, (mY vl 98)dt
doi = —kal (Ll,,(m]\\;,l/fv;ﬁi) — /u,,(wiv,ug\’;e’)dug\’(a’)> dt,
with given initial condition (Z}, Zg,wd, 9%, ) (possibly random) and
1 & 1 &
N._ is N._ 1 is
T = N;wté(Zz,Z,ﬁ)’ vy = N_Zlat%z' (2.2)
1= 1=

Here, as well as in our analysis in section 4, we have considered the same number of particles
Z,7Z,9 and we have eliminated the double indexes. This we do for simplicity and in order to
reduce the burdensome notation throughout our analysis; we will only return to the double
indexes when needed.
A simple computation reveals that the empirical measures (7}¥, ) in (2.2) satisfy the PDE

(in weak form)

Btwt = —ntdivz7g(7rt(07Vguﬂ(wt,l/t;z,é))) + KTt (Z/[ﬂ—(ﬂ't,l/t;z,g) - fuﬂ—(’f('t,I/t;Z,f/)d’]Tt(él|Z))

O =mudive (e Voldy (e, 1430)) — kve (Uy (g, v450) — [ Uy (e, v450")din (07)),

(2.3)
initialized at mp = 7Y and vp = 1}". In the above, m;(-|2) must be interpreted as the conditional
distribution of Z given z if the pair (z,%) is assumed to be distributed according to .
In Theorem 12 we show that, under appropriate conditions, including a "well prepared
initialization" assumption, the dynamics (2.3) converge to a mean-field system of non-local
PDEs as N — oco. This mean field system is a solution to the exact same type of equation
(2.3) except that initialized at different measures vg, 7o, formally, the limits of v’ and 7Y
in suitable metrics. We will see that, in contrast to the consistency requirement for g in the
standard 1-Wasserstein sense, the type of well-preparedness condition for the Wév variable is
stronger and closely related to consistency in the Knothe-Rosenblatt optimal transport sense.
The need for this stronger assumption is due to the presence of conditional distributions in
the dynamics (2.3), which must be properly controlled with stronger metrics to carry out a
propagation of chaos analysis. The proof of Theorem 12 thus requires a careful handling of new
technical complications arising from the marginal constraint in (1.1) for the adversary. Our
intermediate analysis will also help us establish the well-posedness of the system of PDEs (2.3)
for arbitrary initializations, a result of interest in its own right.

In our second main result, Theorem 35 (see also Theorem 36), we study the long-time
behavior of the system of PDEs (2.3) when initialized appropriately. In particular, we prove
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that, under suitable assumptions, the time-average of these dynamics eventually reaches an
e-Nash equilibrium of (1.1), a notion that we recall below.

Definition 3 (e-Nash equilibrium)  Given € > 0, we say that (7*,v*) is an e-Nash equilibrium
for problem (1.1) if w5 = p and

sup {U(m,v*)}— inf {U"v)} <e. (2.4)
TEP(ZXZ) s.t. ma=p veEP(O)

Theorem 35 is proved under appropriate assumptions that include the concavity-convexity
of U (in the linear interpolation sense) and a convenient, admittedly strong, assumption on
the initializations of the variables m and v. These strong assumptions, however, are analogous
to ones considered in the study of training dynamics in overparameterized regimes in the
non-adversarial setting. The strong assumption on the initialization of the variable m can be
dropped under an additional Polyak-Lojasiewicz (PL) condition for ¢ in the 7 variable (see
Assumption 39). As discussed in Example 41, this assumption is not unreasonable in practical
settings of interest, and in the scenario described in subsection 1.1 it is satisfied by assuming
that the adversary has a sufficiently small budget (i.e., a sufficiently large ¢,). Under this
additional PL condition, Theorem 42 (see also Theorem 43) states that it is possible to
modify the dynamics in Algorithm 1 to create a gap in speed profiting from the additional
concavity to obtain rapid convergence in the adversarial direction. Intuitively, in the modified
dynamics one can quickly obtain good approximations for the inner maximization problems to
obtain dynamics that resemble those of gradient descent for the outer minimization in (1.1).
The effect of this analysis is that the requirements for convergence toward approximate Nash
equilibria are relaxed.

2.1. Literature review

In this section we provide a brief literature review of the topic of adversarial robustness in
supervised learning settings, focusing on some developments in recent years. Since the literature
in this field has expanded very quickly and spans a variety of disciplines our review is necessarily
non-exhaustive.

Many mathematical approaches that aim to enforce robustness in learning models can be
categorized under the term "Distributionally Robust Optimization" (DRO), as formulated in
(1.2). The DRO formulation has the advantage of clearly casting adversarial robustness in
supervised learning as a minmax game. Several studies have explored adversarial training in
the DRO framework, considering various learning models such as linear regression, neural
networks, and other parametric settings [4, 5, 11, 29, 36, 45, 48]. Other works have focused
on solving the problem by replacing the inner maximization associated with the adversary’s
actions with a regularized risk surrogate. For example, [19, 34, 37, 41, 42, 54] and [22] derived
this surrogate when the adversary is restricted to positions within a distance e from the
training data, expanding the inner maximization objective around € = 0. A few recent studies
have discussed adversarial robustness in the context of agnostic learners, where no modeling
assumptions are made about the learner. This setting can be understood as a limiting case
of a problem with a very expressive family of learning models and provides lower bounds for
more general adversarial robustness problems. Some of these works include: [2, 3, 20, 39, 40].



Another approach is taken in [8, 9, 23, 24], where adversarial robustness in classification settings
is linked to geometric variational problems.

There are other works in the literature that consider the computation of minmax problems
over spaces of probability measures by using particle methods like we do in this paper. In
particular, we would like to highlight our contributions in relation to two papers in this category
that are closely related to ours [17, 51], both of which adapt ideas presented in [12] to minmax
problems. In the work [17] and the very recent work [51] the authors consider minmax problems
with a linear (with respect to the measures) payoff function. Our setting is broader as it covers
not only non-linear objectives but also studies the effect on a coupling constrained by one of the
components being pinned to an input function. This level of generality allows us to study broad
cases of adversaries in the space of measures (DRO version of adversarial training). It is worth
remarking that under the simpler setting in [51], the authors are able to show the exponential
convergence (toward an actual Nash equilibrium), without assuming time separation of scales,
of an algorithm with a similar geometric motivation than ours. In its practical implementation,
both algorithms look very similar. The convergence in [51] is obtained under similar regularity
hypotheses but assuming in addition that the (unique) solution is supported on a discrete set.
Since we do not a priori assume the existence of a unique solution, our results are weaker in
terms of convergence rate, as well as due to the fact that we can only recover approximate
Nash equilibria. Other work of interest in the linear payoff setting, where a KL-regularization
is introduced and then gradually turned off to deduce convergence of dynamics toward the
Nash equilibrium of the original problem, is [33].

We emphasize that by considering the restriction 7, = p in the minmax problem we can
cover a wider variety of settings relevant to the study of adversarial machine learning than
previous works in the literature. This gain in generality naturally comes at the expense of
additional technical challenges. To point at some of these specific challenges, notice that when
the payoff is non-linear its first variations are measure dependent, already suggesting the need
for a more delicate analysis at the moment of proving the convergence of particle dynamics
toward mean-field limits. The difficulties in our analysis are heightened by the presence of
conditional distributions in the evolving systems. In order to handle these additional terms,
we must recur to new ideas and constructions. In the end, the general mean-field analysis that
we present can be also combined with lower-semicontinuity arguments to justify certain steps
in the second part of the paper, i.e., the analysis of the long-time behavior of the mean-field
system, providing in this way alternatives to approaches in the literature that may not be fully
justified; we discuss this in section 5 below.

Moreover, we believe that some of the ancillary results we obtained to support the targeted
level of generality of our model may be of interest in their own right.

We also highlight our study of the non-convex concave setting delineated in subsection
5.1. Indeed, we may exploit the additional strong concavity that is gained when considering
adversaries with low budget to obtain stronger convergence results toward approximate Nash
equilibria of the adversarial problem. Other papers that have explored this setting include [45],
but the results presented there only guarantee, for the learner, convergence toward stationary
points (although it is worth highlighting that they do not consider the mean-field regime).

In summary, our work is complementary to other papers such as [12, 17, 45, 51] (among
others). Our results can be viewed as analogue to those in works such as [13, 52], which
have studied the global convergence of (non-robust) training of shallow neural networks in the
mean-field regime.
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2.2. Outline

The remainder of the paper is organized as follows.

In section 3 we introduce required definitions and notation, and we briefly discuss the
ascent-descent interpretation of Algorithm 1.

In section 4 we present the mean field analysis of the continuous-time version of our
algorithm, i.e., the system of ODEs (2.1). That is, we state and prove our first main result,
Theorem 12. We also discuss important auxiliary results that are used later in section 5.

In section 5 we discuss the long-time behavior of the mean-field system obtained in Theorem
12 and state conditions under which these mean-field dynamics produce approximate Nash
equilibria for problem (1.1). In the first main result in section 5, Theorem 35, we assume
strong conditions on the initialization of the mean field dynamics for both players. In Theorem
42, on the other hand, we drop the assumption on initialization for the variable 7 by imposing
an additional PL condition on the payoff function ¢ and by introducing a small modification
to the dynamics discussed in the previous main result.

In section 6 we discuss some numerical results of an implementation of our algorithm when
used in an actual machine learning task. Our main purpose with such an implementation is
to illustrate that the algorithm is effective to obtain adversarially robust classifiers even away
from the asymptotic regimes studied theoretically in the paper.

We wrap up the paper in section 7, where we present some conclusions and discuss future
directions for research.

3. Preliminaries

Throughout this section we introduce some mathematical definitions and notation that we will
use in the remainder. We will also briefly discuss the geometric motivation behind Algorithm
1.

In the sequel, we use the p-Wasserstein distance W), (with p > 1) to compare probability
distributions over a given metric space (M, d(-,-)). The metric d(-,-) that will be used in each
instance will be specified in context. For example, in Assumption 8 the 1-Wasserstein distances
considered are the ones relative to the Euclidean metric in each corresponding Euclidean space.

Definition 4 Given two probability measures v,v’ over M, their p-Wasserstein distance
Wy(v,0") is defined according to

WP(v,0'):=  inf / d(u,u))PdY (u,u’),
pwyi= it )P )

where T'(v,v") is the set of couplings between v and v'. We will use P(M) to denote the space
of Borel probability measures over M.

3.1. Gradient ascent-descent interpretation of Algorithm 1

In this section we summarize the geometric motivation behind the system of equations (2.3) and
its discretization in Algorithm 1. The interested reader can find a more detailed discussion in
Appendix B, or consult several related references like [14, 21, 28, 32, 46]. In short, system (2.3)
can be interpreted as the projection of a Wasserstein gradient flow in an appropriate lifted



space. It is also possible to interpret the resulting equations as gradient flows relative to a
certain Wasserstein-Fisher-Rao metric over the original probability space (see our Remark 64).
While both interpretations are valid, in the main text we avoid explicitly mentioning the WFR
metric and stick with the Wasserstein interpretation given that several of our computations
take place explicitly on the lifted spaces.

3.1.1. Lifted space
We introduce two projection maps between probability spaces that will play an important role
in our derivations. We use the same name for both of them for convenience, and we expect no
ambiguity given the context.

Let M (©) (respectively M (Z22)) denote the space of finite positive measures over ©
(respectively Z2). We consider the projection map from either P(© x R;) onto M (0), or
from P(Z? x Ry) onto M, (22), characterized by the respective identities

/ H(0)d(Fo)(0) = / ap(0)do(6,0); / (2 2)d(Fy)(2,2) = / ap(z2)dr(z,5,0)  (3.1)

for all regular enough test functions ¢ from © or Z2 into R. The map F allows us to lift an
energy functional defined over M (0) (or M4 (Z?)): we can then consider gradient descent
dynamics in the lifted space, and, in turn, these lifted dynamics can be projected down to the
original space of measures to generate an evolution there.

Remark 5 Notice that the function F is a surjection. Indeed, let v € M (©) and let M =
v(0©), which we first assume is non-zero. Consider the probability measure o = 47 ® dpr. It
is straightforward to show that Fo =v. In case M =0, which means v is the measure that
is identically equal to zero, we may take o to be any probability measure over © x [0,00) that
satisfies 0(0 x {0}) =1 to conclude that Fo =v. Clearly, the same argument holds for F :
P(22xRy) — M (22). Finally, while F is surjective, it is worth highlighting that it is far
from being one to one.

3.2. Ascent-descent equations in the lifted space

In an Euclidean space, where one has a target payoff function (say U) for which one wishes to
find its saddles, one could consider a system of the form

4t = —VqU(qt,p¢)
pt = va(qtvpt)7

or a projected version thereof in case additional constraints on the variables p,q are present.
Analogous systems can be considered in more general Riemannian settings. In particular, by
considering the Riemannian structure for the space P(© x [0,00)) presented in Appendix B,
one obtains the following gradient ascent-descent equations in the space of measures:

{8t’7t = —diV(Z75)7W('YtU7(Z7Z,W)), (3 2)

Oior = divg o (0105 (0, 00)),

where

vy (2,2,w) = (O,nthUﬁ(m,ut;z,i),nw (L[W(ﬂ't,ut;z,,%) —/Uﬂ(ﬂt,ut;z,é’)dﬂt(2’|z)>) ,
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ve(0,a) = (ntVQU(m,Vt;9),/<;a(ul,(7rt,l/t;0) —/Z/ll,(m,ut;gl)dutw’))) ,

and Wt:f’)/t, Vt:th.

Notice that here we allow the scaling factor 7 to change in time. This change does not affect
the above discussion but warrants us with additional flexibility that is used in the convergence
analysis. Section 4 is devoted to studying equation (3.2). In particular, we prove well-posedness
and show that system (3.2) can be recovered as a suitable limit of systems of interacting
particles. Looking forward to applications in section 5, in section 4 we will actually study a
slightly more general system than (3.2).

To finally return to the original system (2.3) it now suffices to project the dynamics (3.2)
via the map F as stated in Proposition 6, whose proof is in appendix B.6.

Proposition 6 Suppose that (v,0) solves the lifted dynamics (3.2). Then the pair 7 =
Fye, ve=Foyp solves the system (2.3).

The bottom line is that, by studying the system (3.2) and its approximation with particle
systems, we will be implicitly studying the system (2.3) and its approximation with particle
systems. System (3.2), however, has the advantage of having a direct Lagrangian interpretation
that we exploit.

3.2.1. Conservation of mass
Let us now remark that the system (2.3) with arbitrary initialization satisfies certain
conservation of mass properties.

Remark 7 Note that the dynamics in (2.3) imply that the first marginal of w (7, ) remains
constant. This can be verified by considering a test function ¢ : Z — R and observing that

d

dt |z = P(2)dmi(z,2) = TIt/ V.20(2)-(0,Vily)dmi(z, 2)

ZXZ

+/€/ZXZ¢>(Z) (L{ﬂ(z,i) —/Uﬂ(z,i’)dwt(2'|z)> dmy(z,2)

—k /Z 6(2) /Z (u,,(z,z)— / u,,(z,z’)dm(qu)) dms(2)2)dme0 (2)
—0.

Similarly, one can show that vy and 7w have a total mass equal to one for all times, provided
vy, o are probability measures.

3.3. Notation

In the sequel, we will use the following notation:

1, i probability measures over Z. yu is the observed data distribution and fi represents an
adversarial perturbation of u.
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7 is a measure over Z X Z, and we write points in the support of 7 as (z,Z). z can be
interpreted as an observed data point, while Z corresponds to a perturbed data point.

7, will be used to denote the first marginal of 7, whenever 7 is a probability measure. 7 (+|z)
will be used to denote the conditional distribution of the second variable given that the first
one is equal to z.

~ will represent a probability measure over the lifted space Z2 x R

v will represent a measure over O.

o will denote measures over the lifted space © x R.

F is the projection map from either P(© x R, ) onto M (0©), or from P(Z2 xR, onto
M, (2?).

4 will denote a probability measure over the space C([0,7],Z xRy ), and ¢ will be used to
denote probability measures over the space C([0,T],© x R). The space C([0,7],0 xR4) is
the space of continuous functions from the interval [0, 7] into © x Ry and C([0,T], 2% x R
is defined analogously. These spaces will be endowed with the metric of uniform convergence.
We will use ¥ to represent probability measures over the lifted space Z2 x Ri (notice the
additional coordinate), and ¢ will be used to represent probability measures over the lifted
space © x Ri.

4 will denote a probability measure over the space C([0,7],Z x R?.), and & will be used to
denote probability measures over the space C([0,7],0 x R2).

U(m,v) denotes the payoff associated to the measures 7 and v, and U, and U, denote the
first variations of U in the coordinates m and v, respectively.

We will use H(-||-) to denote the KL-divergence, or Shannon relative entropy, between two
arbitrary probability measures defined over the same space. That is, given v,v’ probability

measures, H(v'||v) is defined as flog )dv if v/ < v, and 400 otherwise.

From particle system to mean-field PDE

Our first result, which describes the large number of particles limit (N — oo) of the system
(2.3) when initialized at 776\7 and Vév , is deduced under the following assumptions on U and its
first variations.

Assumption 8 We assume that there exist constants M,L > 0 such that

U is bounded and Lipschitz with respect to the 1-Wasserstein distance. That is,
U(r )| <M; U ) —U(r?v?) < LW (rt,72?) + WA (v v?)).
The first variations of U are bounded and Lipschitz, i.e.,

|U(7ruzz)| Uy, (m,v;0)| < M
Uy (0t 20 2 — U (72,0722 2 | < LWy (7, 72) + W (vl v?) 4 21 = 22 + |21 — 22))
U, (7t vt ;91)—Z/ly(7r2,1/2;92)\ < LWy (xt,7%) + Wy (v, v2) + |01 — 67)).
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o The gradients of the first variations of U are bounded and Lipschitz, i.e.,

|V Uy (m,v; 2 z)|+|V9U (m,v;0)| <M
Vsl (mh vt 2
|V9MV(71'1,V 0Y) = Vold, (72,0%,6%)| < LWy (xt, 72) + Wy (v, 02) + |01 — 6?)).

In the above, m, 7" € P(Z2), v,v* € P(O), (2,2%) € 22, and 6" € ©. The sets © and Z? are
compact subsets of the Euclidean spaces R® and R2d/, respectively. We assume that these sets
have Lipschitz boundaries.

Since the sets © and Z? have been assumed to be bounded, in order to simplify the writing
of our proofs and guarantee that all the dynamics to be studied in the paper stay within the
domains © and Z? we make the following technical assumption:

Assumption 9 At all points Z at the boundary of Z and at all points 6 at the boundary of
O, it holds that the vector V :Ur(m,v;z,Z) points toward the interior of Z, regardless of m,v,z;
and the vector Vol (m,v;0) points toward the interior of ©, regardless of m,v.

By restricting our attention to compact sets ©,2Z2 we make it simpler to verify the
boundedness and Lipschitz conditions in Assumption 8 as these conditions reduce to weaker
properties like local-Lipschitzness. Notice that in many applications there are natural bounds
on the supports of the desired solution'. Assumption 9, on the other hand, guarantees that all
dynamics considered in the paper remain in the domains © and 22 (e.g., the ODE dynamics
(4.1)) below. For Assumption 9 to make sense one requires the Lipschitz assumption on the
boundary of ©,2? (indeed, the reader is invited to consider the case of © or 2?2 being a
Cantor set). Now, in order to satisfy the constraint imposed by this assumption, we can
work with a modified functional I/ that strongly penalizes leaving the domains as we move
closer to their borders. In particular, to a given L{ satisfying Assumptions 8 we can add,
if needed, an exogenous term of the form fgpg( fcpl )dmz, where the 1,92 are
confining potentials: they are zero away from the boundary of the domains and grow as one
approaches the boundaries. We reiterate that this assumption is made to simplify the writing
of our proofs by sparing us from introducing additional terms like projection operators. We
emphasize that Assumption 9 does not have an effect on the convexity properties (in linear or
Wasserstein sense) of our loss function and the addition of confining potentials as described
does not play any role in our analysis. Throughout the entire paper we adopt Assumption 9,
even if not mentioned explicitly.

Example 10 In the context of the motivating example in subsection 1.1 we see that when
O and Z are bounded balls with respect to the £,, p > 1, norm the required conditions on the
spaces would be satisfied, and so all conditions in Assumption 8 are satisfied when one considers
a loss function that is twice differentiable and an activation function whose first derivative is
Lipschitz. This is the case, for example, for the squared-loss and the squared ReLu or sigmoid
activations.

I To give only one example, images are typically represented by pixels which have a lower and upper values

EY) = Vil (02,0722, 22) | < LW (xh ) + Wh (0! 0?) + |21 = 22+ |2 - 22

)
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Let us now introduce an enlarged system of ODEs closely related to the system (2.1). For
i=1,...,N, let
dZi =0
dZt =V Uy (e W 21, Z1)dt
dwi = Kw! (Uﬂ(withN; Z}, 7)) — /uﬂ(wiv,u,fv; Z},Z’)dw{v(z’w})) dt
dvi = —nVold, (w98 dt (4.1)

da} = —ral (um%,uzv D)= [l sy <9’>) dt

with given initial condition (Zé,Zé,wé,ﬁ%,ag,Bé, 0%) (possibly random) and
1< 1 1
<N . o N ._ L N . _ Ny _ i o
W= 20z zh e W= N 2w T =T = 5 w2y,
i=1 i=1 i=1

1 N 1 N 1 N
~N ,_ § : N ._ § : ) N . _ r Ny _ E S
O ‘= —— ' 619?“’3@’ Oy = . 519%,04, vy = [Ut ] = ' ai%z.
1=1 =1 =1
(4.2)

The new variables 8 and p have been added to the system for convenience: in particular, the
extra degrees of freedom that come from the different ways to initialize these variables will come
in useful in the second half of section 4.3. However, as can be seen from (4.1), these variables
do not affect the evolution of the remaining variables, which follow the dynamics (2.1).

Before stating the main result of this section, it is worth introducing one last definition that
we use to characterize the type of consistency requirement for the initialization in the particle
system in the N — oo limit.

Definition 11  Given two probability measures v, over Z x Z x [0,00), we define

KR AN : / / /
W= et WA A et ).
In the above, F[v], is the first marginal of F[y] (we recall F was introduced in (3.1)) and
F[']. is interpreted analogously; T opt(F (Y2, F[v']2) stands for the set of optimal couplings
between F[y]. and F[y'], that realize the 1-Wasserstein distance between F[v], and F|Y'].;
finally, v(:|z) (likewise for v'(:|z)) is the conditional of the second and third variables given the
first one has been fized.

The above construction is related to the notion of Knothe-Rosenblatt rearrangement (see
chapter 2.3 in [43] and also [6]), and to the notion of fibered optimal transport introduced in
[38].
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We are ready to state our first main result precisely.

Theorem 12 (Convergence particle system) Let T > 0, and suppose that Assumptions 8 and 9
hold. Let T,y be probability measures with 7o , = (v and suppose that o and oo are probability
measures satisfying Fryo = 7o and Foog = vy, where F is defined in (3.1).

Let v, oN

1 Y 1Y
N._1 A N._1 o
T NZ;(S(Z?*ZDW? 7= N;dﬁlva?

1= 1=

for initial values wi, oy bounded from above by a constant D (uniformly over N ) and Z} in the
support of u, and evolutions as in (4.1).
Finally, suppose that, as N — oo,

W (30", 70) = 0, and Wi(af',00) =0, (4.3)

where WEE was introduced in Definition 11.
Then, as N — oo,
sup {Wi(m,m) + Wi(vf¥,ve)} — 0,
te[0,T]

where m, vy solve (2.3) with initializations 7o and Dg.

In simple terms, the above theorem states that our particle dynamics are consistent when
their initializations are consistent in a suitable sense. This theorem is a consequence of a
propagation of chaos result that we will develop gradually. Indeed, the structure of the dynamics
in (2.3) involving a conditional contractive term escapes the scope of established results in
mean-field analysis with deterministic trajectories (like Dobrushin’s analysis, see [15]). Our
own analysis revisits and goes beyond the underlying argument behind these known results.
In particular, our propagation of chaos result imposes stronger initialization assumptions,
ultimately reflected in the

stronger consistency guarantee required for the initialization of the variable v (and thus
also 7) in Theorem 12.

Remark 13 (Constructing approximate initializations in Theorem 12) Fiz Ty and 7y and
define vo =T ® 1. That is, o is the product of Tg with a Dirac delta at 1. Likewise, let
09 =T ®01. Evidently, Fyg=T7g,Fog=7g.
We use randomization to construct approximate initializations satisfying the assumptions
in Theorem 12. Let &1,...,&n,... be a sequence of i.i.d. samples from 7o ., and for each i € N
let Zi1,..., Zim,..., be i.i.d. samples from To(-|&;). Let 01,...,0p,... be i.i.d. samples from Tg.
For fized n,m and i <n and j <m, set w;j = a5 =1, Z;; =&, and ¥;; = 0;. Consider the

measures
n m n m
my "= 1 E E 4] 5 "= L E E 1) 5
O T nm (Zij,Zi;)> 10 "7 om (Zij:Zij,wiz)
i=1j5=1 1=1j5=1

and

1 L\~
e L3S e LSS

i=1j=1 i=15=1
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Evidently, Fry™ =my"" and Foy'™ =vy"™, and the Z;; can be assumed to belong to the
support of mg . It is also clear that the measure 'yg’m has support in 22 x [0,1] and Ug’m has
support in © x [0,1].

By Lemma 59 in Appendiz A.3, we can conclude that there exists a sequence {(ng,mg)}keN
such that, as k — oo, the measures aév’“ = o,®"™* and 'yév =" satisfy (4.3) with
probability one.

Remark 14 We highlight that in order to satisfy the first condition in (4.3) we need to
consider the iterative sampling for the variables Zij,Zij illustrated in Remark 13, while in
general i.i.d. sampling from Ty does not provide a valid initialization for the particle system.
This is because the first condition in (4.3) is a stronger condition than simply requiring
Wi (v¥,70) — 0; see Remark 60 in Appendiz A.

Finally, we highlight that the assumption on the conditional distributions at initialization
imposed in (4.3) is used to control the conditional distributions of w as the systems evolve in
time.

As mentioned earlier, Theorem 12 relies on the fact that, in the large N limit, system
(4.1) is expected to behave like a system where the interactions in (4.1) have been replaced by
mean-field dynamics. Such a system reads as follows. For i =1,..., N, let

dz™ =0
dZ;nf,i = ntvéuvr(ﬁlnf,l/an;Zan’i,ZZ”f’i)dt

Qo = (uﬁ(ﬂ;ﬂf wmd s g gmiiy / Uy (xS s 75 g (z'|ztmfﬂ')) at

dﬂ;nf’i = —ntveu,j(ﬂmf,umf;ﬂmf’i)dt

do = —gat (U ( L (wmd g /Z,{ Z”f;ﬂ’)dyflf(ﬁ’)) dt
do™ = 0;

(4.4)
with the same initial conditions as in (4.1), and where ﬂ'lnf = .F(fyt),uznf = F(o¢) and (v,0)
solves (3.2) with initial condition ~g,0¢ (in section 4.1 we prove the well-posedness of this
equation); we recall that the map F has been introduced in Section 3.1. The fundamental
difference between the mean-field system (4.4) and the original particle system (4.1) is that
the measures determining the dynamics in (4.4) can be treated as fixed and independent of the
evolving particles, while in system (4.1) there is an explicit dependence of the driving dynamics
on the empirical measures 7,V associated to the underlying evolving particles.

In order to deduce a propagation of chaos result for the system (4.1), we need to show that
the mean-field system (4.4) is well-defined and that we can control how far the evolutions (4.1)
and (4.4) are from each other; we show this under Assumptions 8. To this aim, it is convenient
to introduce some extra mathematical structure that will allow us to use standard analytical
arguments: we will work on spaces of measures over continuous paths on Z% x R? and © x R%.
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and eventually use a fixed point argument to establish well-posedness of a mean-field equation.
We start by introducing a family of particle evolutions that will play an important role in our
analysis.

Let us fix T > 0, and let A7 be the set of pairs (¥,6) € P(C([0,T], 2% xR2.)) x P(C([0,T],© x
R2)) such that:

1. Fo and Fr, are probability measures for all ¢ € [0,T].
2 Fivl(x 2) = Flyol(- x 2) Vi€ [0,T].

Here, as well as in the remainder, for a given 4 we denote by =y the pushforward of 4 by the
map {(z¢,Z¢,we,0t)} — {(2¢,2¢,we) }, and abusing notation slightly, in the remainder we may
use 4, and Fv; indistinctly; we can analogously relate ¢ and o.
Associated to (¥,0) € Ar, we consider the multidimensional ODE:
dzZ}? =0
AZY% = eV Uy (g, 00 2%, 20 ) dt
dw® = kuwy (uﬂ(wt,ut;zj*’,zgw) - /uw(m,yt;zjf’,z’)dm(z’Zj"”)) dt

AT = —n Vol (my,vg; 97 ) dt

(4.5)
do)® = —koy (L{V(m,l/t;ﬁ?’&) /L{V(wt,ut;ﬁ')dz/t(ﬁ')> dt
dpyre =0
dg?’& =0
e =F (V) v = F(o1),
with initial conditions
((Zg’6>23’6)7w3’6a93’&) = ((575),%790) N’V)'oy (1937&,@67’6., 8”&) = (ﬁ,ao,ﬁo) ~ 5’0. (4.6)

Note that with the condition (¥,8) € A7 we can make sense of the term 7rt(-|Z?’&) in equation
(4.5). Indeed, let us denote by 7 , the marginal on the z coordinate of 7. By assumption,

T, = T0,z, while Z?’6 = Zg,& can be assumed to be in the support of mg . without the

loss of generality. The conditional distribution Wt(-\Z? ) is thus well-defined thanks to the
disintegration theorem.

Equation (4.5) is a multidimensional classical ODE describing an isolated particle following
dynamics driven by an exogenous measure. A key observation is that, under Assumptions
8, equation (4.5) is driven by Lipschitz coefficients and so is well-posed by Caratheodory’s
existence theorem (see Theorem 5.3 in [27]). Assumption 8 and Gronwall’s inequality further
imply a bound on w?? and a¥9. We summarize these observations in the next proposition for
easy reference.
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Proposition 15 Under Assumption 8, there exists a unique solution to (4.5) for any fized
initialization. Moreover, we have

2}@Mt]

w?’é € [0,woe , oz?’& € [O,aoe%Mt]; VT >t>0.

For a given T > 0, let us now consider the map:
U Ar = P(C([0,T],2% x R2)) x P(C([0,T],0 x R%))
defined by

\IIT('%&) = (W%‘(;ﬁ&)’ \IJ%('%&)) = (La‘w[<Z’?7é7 Z’?’é)’w;”é>Q‘?yb]aLaW[ﬁ%6>a%676%6])’

i.e., U7 maps paths in the space of measures in the lifted space to itself. Moreover, Y7 maps
Ar into itself, as we state in the next lemma.

Lemma 16 Under Assumption 8, it follows
\I/T(.AT) CAr.
Moreover, for every (§,6) € Ar we have

FUTT(5,6))e)(- x 2) = FIFH:](- x 2).

Proof This result is immediate from Remark 7 and the fact that dZ:' 9—0. O

For technical reasons, it will be convenient to introduce a version of the set A7 whose
elements have supports satisfying a certain boundedness condition. Precisely, for a given T' > 0
and D > 0, we let A7 p be the set

A7 p:={(§,6) € Ar s.t. 4, (22 x [0, De**M! ] % [0,D]) =1, &:(©x[0,De2*Mx[0,D])=1, Vte[0,T]}.

In particular, for (§4,6) € Ar p, the weights (wo,00) and (ag,Bo) obtained as in (4.6) can
be assumed to belong to [0,D]?. Combining with Proposition 15, we can deduce that for
(§,0) € Ar,p the weights w?’é,a?’& in the dynamics (4.5) can be bounded above by De2*M?,
We summarize this in the following lemma.

Lemma 17 For every T,D > 0 we have Y7 (A1 p) C Ar p.

Under Assumptions 8, we prove that we can control the distance between the image Up of
two pairs (’71,6’1) and (’72,6’2) in Ap p with their own distance. Given p > 1, we use

W, (v,0') = Te%r(% U/)/ sup |us —vs[PdY (x,y), (4.7)

s€[0,t]

to compare two probability measures over the same path space. In particular, we will use these
distances to compare measures over paths in any of the lifted spaces.
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First, we show a continuity property for the map F when considering a restriction of its
domain.

Lemma 18 Let 0,0’ be two probability measures over © x [0, D], where D is a fized constant,
and suppose that Fo and Fo' are also probability measures.
Then
WE(F(0),F(0) < Ce,p,pWp(0,0"),

where the constant Co , p can be written as Ce p p = diam(©)P~1(diam(©) + D).
In particular, when its domain has been restricted, the map F is Lipschitz in the
1-Wasserstein sense.

Proof Let us start by noticing that the measures o for which Fo is a probability measure are
precisely the measures satisfying [ ado(6,a) = 1.

We first prove the result for p = 1.

Assume that o and o’ take the form o =0, = 2 31 | 0(6;,0;) and 0’ = 07, = IS 8(01,a)-

It is well known that in that case there exists a permutation T : {1,...,n} — {1,...,n} such
that Wi (oy,00) =250 1 (0;,05) — (07(1y> @ (;))|- Now, we can write the measures Foy, and
Fol, as

1o 1

Fop = - Zmin{ai,a}(i)}égi + - Z(ai —min{a;, O/T(i))}égi
i=1 i=1
and . .
1 . 1 .
Fol = - me{ai,a}(i)}ég; + Z(a'T(i) fmm{ai,a’T(i))}Sg;.
i=1 i=1

Notice that the mass from 137, min{ai,a}(i)}%i can be used to cover for the mass
demanded in %Z?:1 min{ai,a}(i)}égg. We carry out the following mass transfer: for
each i, we send min{ai,o/T(i)} units of mass from 6; to 9%(i). The total cost of
this mass transfer is 237, min{ai,a’T(i)}Wi - (‘)ﬁ[(i)| < DWi(op,0,,). Finally, the mass
LS (o —min{ay, O‘IT(i))}59i can be used to cover for the mass demanded in £ Z?:l(o/T(i) -
min{a;, o/T(i))}(Sg(. This mass transfer can be carried out in any way, the important point being
that the total cost of such a mass transfer will not be larger than the total amount of mass to
be transferred %Z?:l(ai —min{ay, O/T(i)}) (which is less than Wi (o,,,0),)) times the diameter
of the set ©. The bottom line is that W1 (Fop,Fol,) < (D +diam(0))Wi(op,0m).

We can extend to arbitrary probability measures 0,6’ by noticing that: 1) any probability
measure ¢ can be approximated in the weak sense by empirical probability measures o, for
growing n; 2) the map F is continuous in the weak sense (as can be verified directly); 3) given
that all measures are supported on a fixed bounded set, Wasserstein metrics are continuous
with respect to weak convergence.

Finally, to extend to arbitrary p > 1, notice that Wy (o,0") < W) (o,0”), while W} (Fo, Fo') <
diam(©)P~tWy(Fo,Fo'). O

Remark 19 Lemma 18 also holds, mutatis mutandis, for F when it acts on measures v €
Z?2x[0,D].
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We now deduce an a priori control on the difference between solutions to (4.5) for two
different pairs of measures (¥*,6"), i =1,2.

Lemma 20 Let T, D > 0. Suppose that Assumption 8 holds. Fori=1,2, let ('?i,&i) € Ar.p,
and denote by

A

. ~ X0 sl ) X i X0 A
Cl = (Z'Y 7 ’Z’Y i ,W’r 7 3197 7 70[*/ 7 757 d ,97 7 )

the corresponding evolution determined by (4.5). We assume that Zgl’él (although possibly
random) belongs to the support of 70, the marginal on the z coordinate of my. We also assume
that w, ob, ad, B € [0, D].

Then there exists a constant Kp p, depending only on T, D, the function n, k, and on the
constants in Assumption 8, such that for all t € [0,T] we have

El¢f =GPl <E[ sup [¢; —¢2]]
0<s<t
1_ /2 ! o1 x2 L1 22 2017467 11,4 6"
SKTaD EKO_CO‘—'_ 0{Wl('st’Ys)+W1(asvas)+E<Wl(7Ts('|ZO )77rs('|Z0 ))>}d8 .

In the above, the expectation is taken over the prescribed (joint) initializations of the two
systems.

Proof From (4.5) and the Lipschitzness and boundedness conditions in Assumption 8 we get

~x1 L1 ~x2 22 1 21 1 L1 2 22 A x2 L2
LG ) |Vt el 28 2 Ve (w0 20 21 )

1 L1 2 2 ~x1 <1 ~x2 22
<neL{|Z) 7 —Z7 T | +|Z] 7 =27 |+ Wiy ) + Wa(vg ) )
By performing a similar analysis on the other components of the systems, and using the

assumption (ﬁi,éi) € Ar,p and Assumption 8, we deduce that we can find a constant Cr p
such that for all ¢ € [0,T)

G-I <G -

t 1 .1 2 22
+Crp [ {1t =G Wil o) + Wi o)+ Wi (w122 #2127 s

Thus, using Gronwall’s inequality, we get that for all ¢ € [0,7

It —¢2| < sup [¢1—¢2 (4.8)
0<s<t

t
<crot (G- @+ Crp [ {Wiehard) + Widod)+ (e (1279 w2028 ") }as ).
0



20 C. AND N. GARCIA TRILLOS

Now, from the fact that Z?Z"'V'Z = Zgz’éz, it follows

=1

52 22 51 52 1 L1
E(Wi(r2(127 "), 7l (127°9)) =B (Wa(=2(128 7 ),mb (123 ).
From this and (4.8) it then follows that for all ¢ € [0,T]

E[¢} — ¢ |]<IE[ sup_ ICs — 2]

t 2 2 1 21
<eCroT (|<3—<3|+0T,D/ Wil ) + Wi d2) 4 B (Wi 20120 ) 1259 ds)
0
To conclude, we apply Proposition 15 and Lemma 18. [J

2 02 1 01
In general, the terms E (Wl (2(:|Zz3 %), w123 ))) cannot be bounded above by the

Wasserstein distance between 72 and 7. We thus use a similar construction as in Definition
11. Given two collections m! := {7l }o<s<r and 7% := {72}o<s<7, we define their cost W; 1 by

Wir (' w?) = sup inf {/W1 ;(-|z1))dvs(z1,z2)}; (4.9)

[0 t] USeFOpt(‘[rs z77T5 z

in the above, we interpret wéyz as the marginal in the z coordinate of the measure 7, and
Lopt(ms ., 72 ) is the set of optimal couplings realizing the 1-Wasserstein distance between
7r§7z and 7r§7z

With this notion in hand, we can state and prove the following corollary of Lemma 20.

Corollary 21 Suppose the assumptions in Lemma 20 hold. Assume further that 5'(1) :5'(2) and
6’6 zé'%. Then there exists a constant Cr p depending only on M,L,T,D,x,n such that for all
t€0,7)
Wit (W (F,60), V1 (5,62) + Wi 1 (W (7,61), W5 (5°,6%)) + Wi 1 (W ('), Ui (w%))
<tCr,p{Wi1 (¥ 2)+Wt 1(61,6%) + Wy (xt, 7))

Here we are abusing notation slightly to denote the collection of measures {]:((\IllT('?i,&i))s)}se[o’T]
by Wi (n").

Proof Take ¢* for i = 1,2 in Lemma 20 with identical initial conditions, sampling (Zé , Z&,wé, g(l))
from 4, and (19(1)70[6,53) from &¢. By the definition of the Wasserstein distance it follows

Wea (U7 (31,61), 5 (5,6%) + We i (V7 (5',61), 97 (7, V2))<]E sup \Cs ¢l

Now, since 4 =42 and (¥',6'),(§%,6%) € A, the optimal couplings vs in Wy 1 (7!, w2) are all

™
the identity coupling for the measure 7} _; the exact same is true for Wy,1 (¥4 (x!), Uh(x2)). It
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follows that
Wi (UE(EY6Y), Vh(32,6%) + Wi 1 (P7(5,6), 95 (3%, 67))

t
<E sup |¢}— G| < Krop / (W1 (5L42) + W1 (81,62) + W1 (' 72) ) ds
<s<t 0

¢
SKT,D/ (Wi (35 5°%) + Wea(64,6%) + W, 1 (nh,7) Vs
0
12 Sl 22y | TR 1.2
<tKr p{Wi 1 (¥, F°)+Wii(6",6°)+ Weai(m ,m°)}.

Likewise,

Wi (Wi ('), U (x?)) <E sup [¢; (2.
0<s<t

Putting together the above estimates we obtain the desired result. [

4.1. Well-posedness of mean-field PDE

We now look for a system of ODEs characterizing the solution of the system (3.2). The natural
candidate is given by the mean-field equation

(zmf gmd gmf gmf qmf gmf gy . (718 V8 4 g1 (N8 g1 1)

b

with 4= Law[((2™/,Z™),w™  o™)], &= Law|[(W™/,a™ gm7)]. (4.10)
Indeed, assuming that such mean-field equation exists, we verify that setting
v =Law[((z™F,Z™F),w™)], and o = Law[(9™, a™)]
we satisfy (3.2). Consider two arbitrary testing functions ¢, . We have
G 2 =B |V o (20 20 (G 2 200 e T
dt dt dt dt
and

d m m m m d oms d m
ST W = [ Vaapl0] o) Lo T

Using the dynamics (4.5) with 7, as defined, we obtain precisely (3.2) in a weak sense. Note
that, since the measure driving the dynamics comes from the distribution of the dynamics
itself, our previous argument does not immediately apply. However, the matter is settled by
establishing the well-posedness of the system of ODEs (4.10). The proof is based on Banach’s
fixed-point theorem, which simultaneously guarantees the existence and uniqueness of the
solution to this system.

Theorem 22 Let D > 0, and suppose that Yo and &g are two probability measures such that
§0(22x1[0,D)?)=1, &0(0©x[0,D])?)=1, and such that F&o and F¥o are probability measures.
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Then, under Assumption 8, there exists a unique solution to the mean-field system (4.10) with
ingtial distributions (%9,50).

Proof Consider the set Ar p(§0,60) :={(¥,0) € Ar.p s.t. 49 =0, &0 =0Jo}. As shown, for
example, in [7], we can deduce that the set Ap endowed with the metric Wy 1 (3',4%) +
Wr1(6',6%) is a complete metric space given that C([0,77], 22 x R%) (respectively C([0,77],© x
R2) ) is complete with respect to the distance function d(u,v):= SUpgeo,7] [ts — sl It is
straightforward to see that this property is inherited by Az p(%0,50). Note also that by
Corollary 21 one can find 7' > 0 small enough so that ¥ contracts the quantity Wy 1 (¥*,4%) +
WT’1(61,6’2) + WT,l(')rl,')rg) in the space A7 p(Y0,00). Now, the latter quantity dominates the
metric in the space At p(§0,50). Hence, there is a unique solution (%,d) € Ar p(¥0,50) to the
fixed point equation

\Il(o% &) = (5”6’)

By definition, the mean-field system (4.10) is then satisfied and is well-posed in the interval
[0,T]. By continuation, well-posedness can be arbitrarily extended. O

Remark 23 Since (3.2) is well-defined, we can also conclude that the system of mean-field
particles (4.4) is well-defined given that it can be obtained by plugging in the mean-field law,
except that the initial condition is not sampled from %o,50 but taken as in the system (4.1).

4.2. Propagation of chaos

Before stating our propagation of chaos result we first present a lemma.

Lemma 24 Let (39,50) be such that §0(Z2 x [0,D])?) =1, &¢(0 x [0, D]?) =1, and such that
F&o and Fo are probability measures. Let (§,8) be the law of (4.10) with (§4,60) = (F0,50)-
Let z{, and zy be two arbitrary points in the support of o .. Then for every t € [0,T] we have

St[lop]Wl(ws('IZ())ﬂrs(-\Zo)) < Kr,p(W1(mo(+[20),m0(-|20)) + |20 — 20)- (4.11)
se|0,t

Proof Consider one particle as in (4.4) that we denote by ¢ and that we initialize at Zo = 2o
and (Zo,wo, 00) ~¥o(-[20) and (Yo, 0, B80) ~ 6. Likewise, consider another particle as in (4.4)
that we denote by ¢’ and that we initialize at Z, = z{, (Z{,w{, 00) ~ %o (-|z0), and (95, &), B) =
(90,0, B0). At this point we leave unspecified the joint distribution for the initializations of the
variables Z,w, g, but it is understood that one such coupling has been fixed in the computations
below.
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An application of Lemma (20) deduces that for every ¢ € [0,7]

t

E[ sup [¢"—([] < K7,pE[ — Gol +KT,D/ Wi (ms(:|20), s (-|20) ) ds.
0<s<t 0

By definition of the Wasserstein distance, the left hand side of the above expression can be

bounded from below by Wi (ms(-|2(),ms(:|20)) for any s € [0,¢], and thus

t
Sl[lp]Wl(ﬂs(-|Z6)77rs(~|Zo)) < Kr,pE|¢) — (ol +KT,D/ Wi (ms(+[20), ms(+|20))ds.
se|0,t 0

By using the fact that the coupling between the distributions for the variables (Z,w, ) was
arbitrary we can conclude that

1
Sl[lp ] Wi(ms(-|25),ms(-|20)) < KT,D(Wl(ﬂo('IZf))a?To('IZo))+|Zo*26|)+KT7D/ Wi(ms(-|20),ms(-|20) ) ds.
s€(0,t 0

At this stage we can apply a Gronwall-type argument to obtain the desired result.
O

Theorem 25 (Propagation of chaos) Let T,D >0, and suppose that Assumption 8 holds. Let
(%0,50) be such that 50(22 x [0,D]?) =1 and &o(© x [0,D]?) = 1, and suppose that F&o and
Fo are probability measures.

For N € N consider the system (4.1) associated to a sequence {(%',58")}nen satisfying
V(22 x[0,D]?) =1 and 55 (© x [0,D]?) =1 for all large enough N, and suppose that F&’
and .7-"%\7 are probability measures. We also assume that the Z} belong to the support of the
measure m .

Assume further that as N — oo we have

inf /W1(%V(-|zg),%(.|zo))duz(zg,zo) — 0, and Wi(58,50) = 0. (4.12)
’UzerOpt(ﬂ'é\jzaWO,z)
Then 3
Wri(3V,4) =0,  Wri(@",6) =0, Wri(xV,m) -0,

where (%4,6) are the laws of the mean-field system (4.10) with initial conditions drawn from
(F0,60)-

Proof We assume without loss of generality that for every N and every i =1,..., N, the weights
wi, oy belong to [0, D]. From Gronwall’s inequality and Assumption 8 we can then see that the
weights w}, ot belong to [0, De?M#t). Tt follows that (§,6") € Az p.

In what follows we let (* denote the path of all variables of the i-th particle in the system
(4.1), and ¢™F the corresponding particle in (4.4); we recall that these particles are assumed
to be initialized at the same location. We consider

sN.mf

<N, ._
Vi =

1 & 1
N E . 6(Ztmf’i,Z;"f’i),w:"f‘i,g;"f’i and 7} N § . (%an,i’a;nfyiﬁznf,i,
1= 1=

that is, the empirical measures of the mean-field system of particles.
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From the triangle inequality we have

We 134N+ Wi (6,6™) < W (7™ 4™ + Wi 1 (6™ M) W1 (7,4 ™ ) + Wi (6,67 ™))
(4.13)

We now claim that a similar inequality holds for the term Wy 1 (w,aV). Namely, we prove

that
Wi (m,a™) < Wy (m, w0 + Wy q (aNomd 2. (4.14)

To see this, recall that the z coordinates of all dynamics remain unchanged and that the

initializations of ¢* and ¢(™/+ are the same. Tt follows that W.‘;\f , = W(])\j .= 71'(])\’, ;mf = Wé\jgmf , and

thus T'opt (Wé\f,’sz,ﬂé\’lz) consists exclusively of the identity coupling. Let v € T'opt (ﬂs,z,wé\;) =
Copt (o, 2,7ré\" . ). From the triangle inequality for W; we deduce

/W1(Ws('|z)77fév('|2’))dv(27Z’) < /(Wl(Ws('|z)77fﬁv’mf('|2’))+W1(Wiv’mf('\2'),W§V('|2')))dv(272')
< [ Walmate) I (o) 4 [ Wale ™ (el () ()
< /Wl (75 (-] 2), 7N (| 2))dv (2, 2") + Wiy (a7 F 2V,

ﬁor e\;ery s €]0,t]. Taking the inf over v on both sides and then the sup over s € [0,t], we obtain

4.14).

We use again the fact that the particles ¢* and ¢"/»* have the same initialization to proceed
as in the proof of Corollary 21 and conclude that for every ¢ € [0,T]

t
Wi (3™ 4N+ W1 (6N 6N < Kr p / W 1(3,4Y) + Wi 1(6,6N) + Wi 1 (m, 7)) }ds,
0
as well as
t
Wi (V) a2V < KT,D/ (W13, AN) + W 1(8,6Y) + Wi 1 (m,a) }ds.
0

We can now combine the previous two inequalities with (4.13) and (4.14) to conclude that
Wi (3AN) + Wi (5,67) + Wi (m,a) <
{Wea (3™ 3) + Wi (6N, 6) + Wi (e )}

t
+Krp / (Wer (1.4 + War (8,8 + War () }ds.
0

Combining with Gronwall’s inequality, the above implies
Wit (1 A™)+ Wi (8,6™) + Wt (m,a™) < e B2 {We g (3,4 4 Wi (6,6 ) 4 Wi ()}

To complete the proof we must show that the right hand side of the above expression

goes to zero as NN — oo. For that purpose we compare the evolutions of Cg‘f .
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(zmti zmibi ymbi gmfi) and me (zmf, zmf wmf omF)| and then, separately, compare
the evolutions of Cmfl = (9t omFi gmhity and Cmf (9™ amf g™, For the first pair
of evolutions, we proceed as in the proof of Lemma 20 to conclude

t .
e ¢t = ¢BT| < Ky opl¢E2 Yy = B+ Koo / Wi (ms(120"),ms (1 257)) ds.
0

We can then use Lemma 24 to obtain

0ozt B0 =Bl < KrplCB " = Bl + Kr,pWi(mo(-1 25" ) mo (125 )).
<s<

Combining the above pathwise estimate with the freedom to choose the coupling for the
initializations, we can conclude that

WT,1(’?,’?N’mf),WTJ(ﬂ'JTN’m}c) < KT,DWI(TK-OJ?WéVz)

+Kpp  inf / WG (120,50 (-120))dvs (2h, 20)-

vz€lopt (7"0 220, 2)

By assumption (4.12), Remark 60, and Lemma 18, it follows that the right hand side of the
above expression goes to zero as N — co. For the pair of evolutions (' I and (o 7 we proceed
as in the proof of Lemma 20, this time noticing that we can write

s €80 = 8| < Kr,p|cd " — &l

Combining the above pathwise estimate with the freedom to choose the coupling for the
initializations, we can conclude that

W1 (5,6V™) < Kp pWi(60,68) — 0. (4.15)
0

4.3. Proof of Theorem 12 and other corollaries of Theorem 25

In this section we establish some important results that are implied by Theorem 25. The first
one is Theorem 12.

Proof of Theorem 12 Let (yp,00) be such that Fyo =7y and Fog =7y and such that (4.3)
holds. We introduce the measures g := vyo ® d1(dp), and &g := 09 ® §1(dS). That is, Fo is the
product of vg and a Dirac delta at the value 1 for the p coordinate; &g is defined analogously.
Likewise, we define (¥ :=7{¥ ® 1 and 5{¥ := o ® 1. It is clear that with these definitions we
have (4.12) and thus we can invoke Theorem 25 to deduce

Wr (AN, 4) +Wr (6N ,&) =0,

where (¥V,6") is the measure in path space induced by the particle system (4.1) with
initializations as described in the statement of the theorem and with 83 = ofy =1 for all ¢;
(§,0), on the other hand, is the law in (4.10) with initialization (%4,&0) = (Yo,50)-
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Using Lemma 18, we conclude that for every ¢ € [0,T]
Wa(m m) = Wi(Fy Fye) < KrpWi(yi' .08 ) < KrpWi3: 4:) < Kr.pWra (3", 9).

Likewise,
W1(I/£V,l/t) < KT’DWTJ((VTN,(}).

Taking the sup over all t € [0,7] in the sum of the above two expressions we get

S[UP]{Wl(ﬂiwvﬁt)JFWl(ViNth)}SKT,D(WT,I('V)'Na’VY)JFWT,I(&Na&))a
te[0,T

from where the desired result now follows.
O

Corollary 30 and Remark 31 below, which we will use in section 5, are the other important
consequences of Theorem 25 that we discuss in this section. In section 5 we consider an evolution
{(D¢,7¢) }+ closely related to (2.3) that is given by

Oy = mediv(DeVoldy (¢, v430)),  Opity = —ndiv(7e (0, Vsldr (74,145 (2, 2)))), (4.16)

with initializations 7g, g that are absolutely continuous with respect to vy and mg, respectively.
It is at this stage that we use the extra coordinates 3,0 in (4.1). Indeed, these variables have
been introduced to accommodate for the changes of measure between Iy and vy and between
7o and mg. We will be able to use the general purpose Theorem 25 to prove the consistency of
particle approximations for the system (4.16).

We start with a preliminary result.

Proposition 26 Let v}¥ = %Z?:lai(t)&gi(t) and T = %Ei\;l wi(t)0( 7, (1), 2: (1)) be as in

(4.2).
Let B1,...,8n and o1,...,0Nn be two collections of non-negative scalars satisfying
1 N N
Nzlﬂzaz(o)zla N;szz(o)—l
1= 1=

Let 19{\/ and frg\r be the probability measures defined as

n N
. 1 Z . 1
i =1

Then
8tﬁ,fv = ntdiv(ﬁ,fvvtguu(ﬂiv,ugv;f))), 5’tﬁ'f\] = —ntdiv(frfv(O,VgL{W(ﬁtN,ng; (2,2)))) (4.17)

in the weak sense.
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Proof Let ¢(0) be an arbitrary test function. From (4.1) we see that

l d 1 & .
/ o(0)d," Ngjﬁi%(o)w(ﬁi(t)): N;ﬁiai(O)V¢(ﬁi(t))~19i(t)
N
— =23 B (O)V6(0(0)) - Valdy (nl¥ 17¥30(1)

— s / Vo(0) - Voldy (¥ 1 0)do (6).

This shows that 7V solves equation (4.17) in the weak sense. The equation for #% is deduced
similarly. [

We will now proceed to relate (4.17) with (4.16). We first introduce some additional
mathematical tools that will help us in this aim.
Let 7 : P(2? x R%) — M (Z?) be the map defined via the identity

/ o(0 / aB6(0)d5 (0,0, 8),

for all test functions ¢. Analogously, define F' as a map F : P(© x R2) — M (©), substituting
any appearance of &,0,a, in the above with ¥,(z,%),w, 0. Notice that F&is a probability
measure provided that [aBdd(6,«,3) =1, while an analogous statement holds when F acts
on 7.

Let us now introduce a map G :C([0,7],22 x R%) — C([0,T], 2% x R2) defined as:

G {(2t, Zt,wr, 00) eeo, ) = { (285 2t w0, 00) becjo,1)- (4.18)

That is, G is the map that freezes the coordinates w, o of a given path, setting them to be equal to
their initializations. Naturally, G induces, via pushforward, a map from P(C([0,7], 2% x R%)))
into itself; we will abuse notation slightly and will also use G to denote this induced map.
Furthermore, we will also think of G as a map G : C([0,T7],0 x Ri) — C([0,T],© x Ri) that
freezes the coordinates «a, 3 of a given path, setting them to be equal to their initializations; we
will also denote by G the map induced via pushforward from P(C([0,7],0 x R%)) into itself.
Which of the interpretations for G will be used in each instance should be clear from context.

Remark 27 Notice that #N and 0 in Proposition 26 can be written as F((G¥™)¢) and
f((gé'N)t), respectively.

Lemma 28 Let (7,0) be the law of the process (4.10) initialized at a pair (Yo0,60). Then
{0 = F((Go)t) beejo, ) and {7t := F((GY)t) beejo,1) solve the PDEs (4.16), where my = F(vt)
and vy = F (o).
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Proof Consider the mean-field ODE (4.10). For every smooth test function ¢ we have

/ 6(0)d0,(9) = / aB6(6)d(G): (6,0, B) = Elovoo(01)].

In particular,

5 [ #(0d91(0) = S Elanpoo(0:)) = ~ElmaoBe Vo) - Fatdy(ri,v1i00)

=M /V¢(0> . ng{,,(m,yt;G)dﬁt(G).

This proves that ¥ satisfies the desired equation. The equation for # is obtained similarly.
O

Remark 29 Notice that iy and 7ty are probability measures if Dy and 7y are.

In what follows, we use Theorem 25 to show that, under appropriate assumptions on
initializations, the system in (4.17) can be recovered from suitable particle approximations.

Corollary 30 Let Vg and o be arbitrary, and let 0y and 7o be probability measures such that
Do K Uy, g K 7o, with g—gg € L>(vy) and 3%3 € L>®(7p). Let 49 and 5o be as in Theorem 25
and additionally assume they satisfy Fyo =g, Foo = Vg, and .7}% = o, F&o = Dop.

Consider approximating particle systems as in Theorem 25 with the additional assumption
that ﬁév ,frév are probability measures.

Then

sup {Wl(ﬁf{vvﬁt)+wl(ﬁ—gvaﬁt)}4>o7 sup {Wl(VtNth)+Wl(7rijtv’7rt)}*>07
te[0,T] t€[0,T]

as N — co. In the above, we use the same notation as in Lemma 28 and Remark 27.

Proof First of all, let us notice that the condition %‘; € L™ (7p) and %8 € L*°(7g) is used
to guarantee that we can indeed build g and g with bounded supports; see the first part of
Remark 31 below.

It is straightforward to check that G is a Lipschitz map, i.e.,

Wr.1(96,G6") < 2Wr1(6,6"), Wri(G%.97) <2Wr1(%.7)-
In addition, we can find a constant Cr p such that for every t € [0,T]
Wi(F((G6)e), F((G6™ 1)) < Cr.pW1((G6):).(G6™)e) < Or,pWr1(G6,G8™),
where the first inequality follows from a very similar approach to the one in Lemma 18. Similarly,
Wi(F((G7)0), F(G4™)0) < Cr.pWra(97,7Y).
We may now combine the above inequalities with Theorem 25, which allows us to obtain
Wri (™. 9) + Wra(6™,6) =0,

to deduce the desired convergence.
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O

Remark 31 (Constructing initializations) Let To and Ty be arbitrary, and let p, = % and
Pr = ‘%g, which we assume satisfy p, € L (Vp) and pr € L™°(Tg); we further assume that

#t0,» = mo,.. The latter assumption implies that [ p(z,Z)dmo(2|z) =1, for all z in the support
Of 70,z -

Let %9 and Go be the measures Yo := hyyTo, 00 := hoyD0, hy i (2,2) = (2,2,1,px(2,2)),
he : 0 (0,1,p,()). Notice that F3o =70 and FXo = #o, while F&o =g and Féo = Dp.

We use the same objects and notation as in Remark 153 and introduce the extra variables
Bij = pu(¥i5) and g5 = pﬂ(Zij7Zij),' notice that the uniform boundedness on p, and pp is
imposed to guarantee that the weights g;; and B;; are uniformly bounded. Consider the measures

n m n m

~xn,m  __ 1 6 ~ 6_n7m R 1 5

Yoo = nm ZZ (Zij,Zij,wij,0i5)° o T am ZZ (Vij,a5.8i5)"
i=1j=1 i=1j=1

From Lemma 59 we can find a sequence {(ng,mg)}ken such that, almost surely, the induced
sequence of pairs ’yév’“ =g* ™, &év’“ =™k satisfies conditions (4.12). Moreover, thanks
to the law of large numbers and Lemma 61 in Appendiz A this subsequence can be assumed to

be such that

Nl ng
1 1 1
lim — _——1/=0, lim — ~1|=0. (4.19)
k—oo M i=1 7”11@ Z;nzkl pﬂ'(Z’L]7Zl]) k—roony i=1 T71k Z;n:kl pl’(ﬁl])

We make a slight modification to the weights o;; and B;;, mormalizing them so that
%kzj 0ij =1 for all i, as well as mzu Bij = 1. From (4.19) we can directly show that
condition (4.12) continues to hold after the normalization of weights. The resulting measures

ANk _ L. - ANk _ L. . .
To* =2, ‘de(zz’j,zz’j) and Dy* =37, Bijdy,; can be seen to converge, in the Wasserstein
. ~ ~ . N 1 B
sense, respectively, toward Do and 7o, while the measures my " = mzij 5(Z¢j,Z¢j) and
Ny 1 = = ;
Vo ' = e Zij 519”, converge toward 7o and Ty, respectively.

Moreover, another application of the law of large numbers implies that

. 1 1 1
g 106™) = (o D W)™ o 3 108 (935))pu (91) Lo > ()
i i i

nEgmg

converges, as k — oo, toward [glog(p,(0))p,(0)dvo(0), which is precisely H(Do||Po). Likewise,

we can see that H(ﬁé\’kﬂwé\[’“) — H(#ol|T0), as k — oo.
The above convergence of relative entropies will be used in the next section.

5. Long term behavior of mean-field equation and approximate Nash equilibria of (1.1)

In this section we study the long time behavior of the system of equations (2.3) appropriately
initialized at some measures (mg,vp). Our aim is to study the ability of system (2.3) (or slight
modifications thereof) to generate approximate Nash equilibria for problem (1.1).
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We start by imposing additional convexity-concavity assumptions on U/, where convexity-
concavity must be interpreted in the linear interpolation sense.

Assumption 32 We assume thatU is convex in v and concave in 7 in the linear interpolation
sense. That s,
U(rr+ (1 —7)r,v) > 7U(T,v)+ (1 —7)U(F,v)

and
U(m,mv+ (1 —1)0) <7U(m,v)+ (1 —17)U(m, D),

for all 7 € [0,1] and all probability measures w,7# € P(Z x Z), and v,0 € P(O).
Assuming that U has the form (1.3), the above conditions are equivalent to analogous
convexity-concavity assumptions on R(m,v), given that C is linear in .

Remark 33 The fact that U is convex-concave according to linear interpolation (i.e., as
introduced in Assumptions 32) does not imply that U is geodesically convex-concave with respect
to the geometry that induces the dynamics (2.3) (see section 3.1 for a discussion on the
geometric interpretation of equations (2.3)), so that convergence to a global Nash equilibrium
or an approximate Nash equilibrium is not immediate. Due to this, despite Assumptions 32,
without any further assumptions we will think of problem (1.1) as mon-conver non-concave.
We contrast this setting with the one in section 5.1, which we will refer to as the non-convex
concave setting.

As expected, the long-term convergence of the mean-field PDE to an equilibrium point is
associated with the convex-concave nature of U. It is worth noting that both the ascending and
descending parts of the PDE dynamics in (3.2) can be broken down into two components:
a transport term and a mass-transfer term. Intuitively, the linear interpolation type of
convexity-concavity aligns with the mass-transfer term but not the transport term. Consequently,
convergence requires dynamics primarily dominated by the mass-transfer term, as demonstrated
in Theorem 35

In contrast, the non-convex-concave setting detailed in section 5.1 introduces a form of
concavity that is compatible with the transfer term. Therefore, in this scenario, convergence
imposes dynamics dominated by the transport term for the adversary, as exhibited in Theorem
42.

Example 34 In the context of the motivating evample in subsection 1.1, we see that
Assumption 32 is satisfied provided that the loss function € is a convex function in its first
coordinate. This is certainly the case for both the squared-loss and the logistic loss.

We separate our discussion into two distinctive cases: 1) a rather general non-convex non-
concave setting, and 2) a non-convex concave setting. Recall that by non-convex/non-concave
here we mean not geodesically convex/concave relative to the optimal transport geometry
driving the dynamics, while we do assume convexity/concavity in the linear interpolation sense
as in Assumption 32.

Let us start by stating the result in the non-convex non-concave setting.

Theorem 35 (Long-time behavior mean-field PDE) Let € > 0. Suppose that Assumptions 8,
9, and 32 hold. Assume that vy and mo are probability measures (with mo , = p) such that vy
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and mo(-|z) are absolutely continuous with respect to Lebesgue measure (in each corresponding
space) and their densities are lowered-bounded by some k > 0: i.e., there exists k >0 for which
%(9) >k, and dfgo (2|z) > k for all z in the support of p.

Finally, assume that the learning rate n satisfies n € C°([0,00)) and is such that

1 t S
tl;rgo;/o /0 Nrdrds =1 (5.1)

for n satisfying
4L+ M7 <e.

Then there exists T* such that for all t > T*

sup U™, ) — inf  U(m,v") <e,
T*EP(Z2) s.t mi=p v*eP(0) 7

_ t _ t T,
where Ty 1= %fo wsds and Uy := %fo vsds, and (mg,vy) solve (2.3), when initialized at mo,vo as
above.

As it turns out, we can prove a very similar result if vy and mg(-|z) are assumed to be
empirical measures that are well spread out and have a sufficiently large number of support
points.

Theorem 36 Let € > 0. Suppose that Assumptions 8, 9, and 32 hold. Assume that vy and mg
take the form

1 & 1
N
Vo =1 7MZ(591’ T = T :,LL®(NZ($5J)5
=1 j=1
where 01,...,0p and 21,...,ZN are i.i.d. samples from the uniform distributions over © and

Z, respectively. Assume, also, that M and N are large enough so that

log(M)?s . log(N)"e

Co— [1/d z—yiT S

€

for suitable constants Co and Cz and a power pg that takes the form pg=3/4 if d =2 and
pq=1/d if d > 3. Finally, assume that the learning rate n satisfies the same assumptions as in
Theorem 35.

Then, with probability at least 1 — # - ﬁ (on the samples 01,...,0p and Z1,...,ZN ), there
exists T* such that for all t > T*

sup U(T* o) —  inf  U(T,v") < 2,
T*€EP(22) s.t ni=p v*eP(0)

_ t _ t T,
where Ty := %fo wsds and Uy := %fo vsds, and (my,vy) solve (2.3), when initialized at mo,vo as
above.

Remark 37 The assumptions on the initializations wy and vy in Theorems 35 and 36
effectively suggest that the particles in Algorithm 1 need to be well spread out throughout the
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domains at time zero. This is certainly a strong assumption, but it is not unlike other theoretical
assumptions in the literature studying, mathematically, the training process of neural networks;
see [13, 17, 51, 52, 53]. In the next section we discuss how the strong assumption on mg can be
removed when one restricts the adversarial budget in the setting described in section 1.1.

Let us emphasize that Theorem 36 implies that the convergence toward approximate Nash
equilibria also holds for dynamics induced by a finite particle system, provided that the particles
are well spread out at initialization and the number of particles is sufficiently large.

Remark 38 The assumption on n is easily satisfied and essentially imposes a decay rate. For
instance, given \ >0, we have that aexp(—At) and a(t+ 1)~ satisfy (5.1).

Let us highlight that the statement does not impose restrictions on the parameter k. It
is possible, via a change of time, to lower the requirements in the upper bound on 7 by
instead adding lower bounds for the parameter Kk that grow as € decreases. This is analogous to
treatments in other contexts as in [17]. Either way, the crucial point is that the mass transfer
term should clearly dominate the dynamics. This is consistent with the intuition on the effects
of the assumed linear convexity-concavity as highlighted in Remark 33. Note in passing that the
situation when stronger concavity is assumed as presented in Theorems 42 and 43 is not the
same (see Remark 44).

5.1. The non-convez and strongly concave case

In contrast to Theorem 35, the results in this subsection hold under no assumptions on the
initialization 7y but at the expense of additional assumptions on the payoff function &/ and a
slight modification of the dynamics (2.3). These additional assumptions on I are not unnatural.
For instance, in the motivating example from subsection 1.1, they are linked to the strength
given to the adversarial cost function C.

Assumption 39 We assume the following uniform PL (Polyak-Lojasiewicz) condition on the
functions U(-,v): There exists A >0 such that for all v € P(©) and all 7 € P(Z?) with 7, = 1
we have

[ 1V sthe(,v52,2) Pt 2) 2 A, U, ),
where my, 1= supz g 4 z_—, U(T,v).

Remark 40 For simplicity, we will refer to the setting when Assumption 39 holds as the
strongly concave setting, as it is often the case that one can deduce the PL condition from
strong (geodesic) concavity; see Proposition 57 in Appendiz A.2.

Example 41 Suppose that the payoff function U has the form (1.3) for R and C as in (1.4)
and (1.5), respectively. As we show in Proposition 57 in Appendiz A.2, if the set Z is convez (a
reasonable assumption in applications), the activation and loss functions are twice continuously
differentiable, and, importantly, the parameter c, is large enough, then Assumption (39) is
satisfied.

To exploit the additional concavity on U(-,v), it will be useful to consider a slight variation
of (2.3) where we slow down time in the descent equation and where we remove the scaling
factor 7 in the equation for m;. Precisely, given K > 1 we consider the system
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Oy = Fdive(veVeldy (e, v4:0)) — feve (U (e, v4:0)) — [ Uy (e, 140" )dve (67))
atﬂ't = —divz,g(m((), Vguﬂ(m, Vt; Z,g))) + K¢ (Z/[ﬂ—(ﬂ't, Vs 2, 2) — fuﬂ—(’frt, Vi 2, 2/)d7'('t(§,|2:)) ;
(5.2)

initialized at an arbitrary mg € P(ZQ) with g, = p and at some vy. Well-posedness for this
equation under Assumptions 8 and 9 can be established as for equation (2.3); we omit the
details. To reflect the variations introduced in (5.2) in our Algorithm 1, it suffices to remove
the 7 in the update for the variables Z;; and to allow for the for loop over 4,j to be repeated a
number of times (quantity that can be tuned) before entering the loop over k.

We prove the following result.

Theorem 42 Suppose Assumptions 8, 9, 32, and 39 hold. Assume further that there exists
k>0 such that % >k, and let my be an arbitrary probability measure with mo , = p. Finally,
assume that

1 t S
tlggog/o /0 nrdrds =1 < 00.

Fiz e > 0. Then there exists Ko,ro,r1,to >0 such that, if K > Ko and /K <11, then for
all t > max{to,K/ro}, we have

sup U(Tt,p)— inf  U(T, D) <e.
FTEP(22) s.t. Tr=p vEP(O)

In the above, Ty :== %fot meds and Uy = %fé vsds, and (my,vy) solve (5.2) initialized at vy, m as
above.

Just like Theorem 35, Theorem 42 has a version where v is only assumed to be an empirical
measure that has a support that is well spread out.

Theorem 43 Let € > 0. Suppose Assumptions 8, 9, 32, and 39 hold. Let oy be an arbitrary
probability measure with mo ., = i and assume that vy takes the form

1 M
1Z0) ZU(J)M = MZ(SQW
=1

where 01,...,0p; are i.i.d. samples from the uniform distribution over ©. Assume, also, that M
is large enough so that
log(M)Pd
ConmT =€

for a suitable constant Co and a power py that takes the form pg=3/4 if d=2 and pg=1/d
if d > 3. Finally, assume that the learning rate n satisfies the same assumptions as in Theorem
42.
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There eacz'sts Ko,r0,71,t0 > 0 such that, if K > Ky and 1/ K <ry, then, with probability at

least 1 — == (on the samples 01,...,0yr), for all t > max{ty, K/ro} we have
sup U(T, o) —  inf U, D) < 2e.
FEP(Z2) s.t. Ty=p veP(O)

In the above, Ty := %fg weds and Uy 1= %fg vsds, and (m,v) solve (5.2) initialized at vy, mo
as above.

Remark 44 As announced, the additional concavity assumptions bring important benefits to
the algorithm, since there is no assumptions that we must impose on g in either of the previous
theorems. Moreover, the parameter K allows us to avoid a smallness condition on 1 as long as
K and the search time are long enough.

5.2. Proofs of Theorem 35 and 36

To begin our analysis, we first discuss the relationship between the system (2.3) and an
associated "hat" process as in Lemma 28. The study of similar systems has been considered in
works like [17]. However, here we present an alternative approach that allows us to fully justify
our derivations; see Remark 48 below for more details. Our approach makes use of the larger
structure that we studied in section 4. Indeed, we use the particle approximation in Remark
31 to understand the time evolution of the relative entropy between © and v, and # and 7, for
arbitrary initializations. As a first step, we study the time evolutions of relative entropies when
the measures (V,fv k ,ﬂ'iv k) and (ﬁtN k,ﬁ'iv k) are initialized at empirical measures as in Remark 31.

Proposition 45 Let mg and Uy be arbitrary, and let 79 and Dy be as in Remark 31. For a
fized k € N, let v, ’“, oIV wiv’“, Aiv’“ be as in Proposition 26 when initialized as in Remark 31.
Then

GHES ) = [ Ul s 0)aol —) (5.3

and

d_, . N Ny N o\ /N Ny,
%’H(Wt k||7rt )= *“/ U (my kth kEZ,Z)d(Wt . — T ).
ZXZ

Proof Notice that

77_[(ANI€|| )_% 1 Z:Zlog <W> Bi;(0)ei; (0)

i=1j=1
NnE Mg
= nkmkzz dthg i (t))Bi;(0)i; (0)
=1j=1
NnEe mg

nkmk ZZ 191']( ) —Uy)Bij(0)eij (0),

1=175=1
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where to go from the second to the third line we have used equation (4.1) for a;;(t). We have
also used the shorthand notation U, = [ U, N’“ ,fV ’“;G)thN k(0). Identity (5.3) now follows.

The identity for jt'H( |7 follows from snnilar considerations, but now we rely on the
fact that the weights g;; are normalized along every row:

fH(ANkH )= ZZI <Q” WZ;(O))Qij(O>Wij(O)

dt nEm
UL et

N Mg

1=1j5=1

nE Mg

N .
= ZZ TR v Zig, Zig) —Un.i) 015 (0)wi; (0).

nEem
k k’tl]l

In the above we have used the shorthand notation U ; = fZXZZ/{ﬂ (ﬂi\f’“ , l/ivk AT 5)d7TtNk (21Zi5);
recall that in our construction Z;; does not depend on j. [

Next, we add one ingredient to the approximation result from Corollary 30 in search of a
relationship similar to (45) but for general initializations.

Proposition 46 Let 7y and Uy be arbitrary, and let g and Dy be as in Remark 31. Let

(0,7t) be the dynamics in Lemma 28 when initialized as in Remark 31. For every k € N, let
Vivk,ﬁivk,wivk,friv’“ be as in Proposition 26 when initialized as in Remark 31.

Then

kli}rrolo/uy(ﬂévk,uévkﬁ)d(ﬁévk — k) = /L{,,(WS,VS;Q)d(ﬁS—VS) (5.4)
as well as
lim U (nNk VN 2 2)d(7NE — 7Nk = — Ur(ms,vs;2,2)d(frs — Ts)- (5.5)
k—oo Jzywz ZXZ

Proof From Assumptions 8 and Corollary 30 we have

’/U Ty N VNk G)d( —I/Nk /Z/{ Ts,Vs;0)d(D; Ni _ ) < L(Wh(vs,v; )+W1(7TS,7rNk))—>0,

as k — oo. On the other hand, since the function U, (s, Vs, ) is continuous with at most linear
growth in |6], and since W1 (v, vg) = 0, W1 (02%, 04) — 0 as k — oo by Corollary 30, it follows
that

lim ‘/Uy(ws,us;G)d(ﬁévk —Vé\]’“)—/uy(ws,us;H)d(ﬁs—1/5) =0.

k—oc0

Equation (5.4) readily follows. (5.5) is obtained similarly.
]
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Proposition 47 Let Ty and Dy be arbitrary, and let 7y and Dy be as in Remark 31. Let (0, 7)
be the dynamics in Lemma 28 when initialized as in Remark 31.
Then the following inequalities hold:

el l) — o 7o) < o [ t ([wtmvitiiv - )as. wizo. 6o

and

H (e[ m2) — H (ol o) < /1/ (/u 7o vsi 2, 5) (s —775)(2,2)>d5, W>0.  (57)

. Ny 5Ny _Np AN . . , o
Proof For every k € N, consider v, *,0," % 7,"* @,"® be as in Proposition 26 when initialized as

in Remark 31. Notice that thanks to Corollary 30 we have Wl(z/;N’“,Vs) =0, W (ﬁév’“,z?s) —0,
as k — oo.
From Proposition (45) we have

H(ONE Ny = H (@ vy / /u 7 Ne yNE:0)d(o Nk — p Nk s,

We may now use the joint lower semi-continuity of the relative entropy w.r.t weak
convergence to obtain:

H (24| |ve) < liminf H(5, *||v}'*) = liminf & (/u e LNk 9)d(D Nk—ugvk)(e)> ds
k—00 k—o0
3 AV E k
—i—khm H(VO HI/O ).

¢

zliminfﬁ/ </Z/ly(7révk,uévk;0)d(ﬁévk —Vév’f)(a)> ds
k—o0 0

+H(2ol[vo)-

(5.8)

Using Proposition (46) and the approximation properties discussed in Remark 31 we obtain
(5.6). Inequality (5.7) is obtained similarly. O

Remark 48 In contrast to the analysis presented in [17], here we have used our mean-field
limit results from section J and the lower semi continuity properties of the relative entropy
to fully justify the one-sided identities (5.6) and (5.7). As we will see below, these one-sided
identities are sufficient for our analysis. Following our approach, we can sidestep the strategy
considered in [17] for analyzing a similar problem. Their strategy relies on the assumption of
existence and reqularity of solutions to a certain PDE describing the evolution of the change of
measure between processes similar to the v and U considered here. Unfortunately, such PDE is
not even well-defined in general, as it becomes apparent when one considers flows initialized at
empirical measures. While this technical difficulty is acknowledged in [17], no solution for it is
provided; see Page 29 in [17].
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With Proposition (47) in hand, and following similar steps as in [17], we can now derive
results controlling exploitability under Assumptions 8 and 32.

Lemma 49 Let 7,v be the solution of equation (2.3) initialized at probability measures mo, v
with m , = p. Let ©*,v* be arbitrary probability measures over Z x Z and O, respectively, and
suppose that 75 = . Let

1
(o, 7)== inf ™ — 7|5 + =H(#F||m0)},
Ou(ronir) = int _ {ln* ~#llpe + H(r{mo)}

where ||-||;;;, denotes the dual of the BL (Bounded Lipschitz) norm ||-||gr = || - ||oo + Lip(-).
Consider also Q,(vp,v*;T) defined as

1
0,057 i= it (" =l + (P 0)).
Q. vi7) = inf ("~ + (o))

Suppose that Assumptions 8 and 32 hold. Then
2B2 t ps
U™ 5(8) —UFE), 1) < B(Qﬂ(ﬂo,w*;fth)+QV(V0,V*;nBt))+T/ / nrdrds,
0 Jo

where B:= M+ L (see Assumption 8 for the meaning of L and M ). In the above, Ty := %fg Tsds
and Uy = %fé veds.

Proof Consider two arbitrary probability measures g and 7y with 7o < mo,00 < 19, 7o,z =

1y % € L*(vp), and % € L>(mp). We consider the dynamics (7¢,0¢) and (m,14) as in

Proposition 47.

1. Step 1: From the concavity of U in its first coordinate (with respect to linear interpolation)
it follows that

U™, 1) SU(?Tt,Vt)—|—/Z/{7r(7rt,ut;z,2)d(7r* —Tt)
=U (T, vt) +/U7r(7rt,ut;z,2)d(7r* —7t)
—i—/Uﬂ(ﬂt,Vt;z,é)d(ﬁt—m).
Using the BL (bounded Lipschitz) norm, we get from Proposition 47 that
t t t
|t wds— [ Utrewis < [ (e(ravs) ln® =l )ds
0 0 0
t
+ /Uﬂ(ws,ys;z,é)d(frs —7s)ds
0 (5.9)
t
S/ ([[hr (s, vs; ) BLllm™ — 75 )ds
0

_%(H(ﬁt\|m)—7-l(ﬁo||7m))~
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A similar argument using the convexity of U in its second coordinate deduces

t t t
/ Z/[(T('S,V*>d8—/ U(rs,vs)ds 2—/ (U (s, vs; M BLIIV — D5l 1) ds
0 0 0 (5.10)
1 N N
= (H(ullve) — Hool )
Using again the concavity and convexity of U, we get:

1/t 1 [t
U(Te,v™) > Z/ U(rs,v™)ds, U™, ) < ;/ U(r*,vs)ds.
0 0

Combining the above with (5.9), (5.10), and the fact that H(D¢||ve), H(F¢||m) > 0 we
conclude that

_ _ 1/t . .
U(w*,w)fu(m,v*)%/ (1thy (s, vs; M BLIV = Dsl B L + U (75, vs; ) BLIT = 7|1 )ds
0

L % (H(00]|0) + H (0] |m0))

B t * PNITE * A * 1 N A
S;/O (" =25l + 7" = sl )ds + — (H(Pol[vo) + H(Fol|mo))
(5.11)
Step 2: Observe that both U, and U, have their BL norm bounded by B = M + L. To

conclude, it remains to remark that

I . . Lt
¢ I = mlieds < =l + [ o= #ulpeds

1t
:HW*_%O”E’L‘F;/ { sup /fd(ﬁs—fro)}ds
0 (lIfllBr<1;feCt

B t s
<lin* ol + 7 [ [ nedrds
tJo Jo

and similarly,

1 t B t s
i [ =ayds < ol + 7 [ [ edrds
0 0 JO

Replacing in (5.11), it follows that

U™, ) =U(T,v™) < B([[v" = Dol + 17 = 7ol BL) (5.12)

1 2B% [t [®
+ — (H(Dol|vo) + H(7o||m0)) + 7/ / nrdrds.
Kt t 0 0

Recall that 7y and 79 were arbitrary measures with densities with respect to mg and
vy belonging to L°°. From a simple density argument we may now conclude the desired
estimate.
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O
The following Lemma is taken from [17] which in turn follows the arguments in [13].

Lemma 50 Suppose that Assumptions 8 and 32 hold. Assume further that there exists k >0
such that %(0) >k, and suppose that |By .NO| > k'e¢? uniformly in 6 € ©, where By . is the
Euclidean ball of radius € centered at 6. Then,

d

0, ni7) < £ {110 () b 2 (- togh) gk

Proof We obtain a bound for the min in the definition of Q, . For a fixed € > 0 we introduce a
probability measure v€ given by

|BgeﬂA|
“(A):= = dv*(0).
V( ) /®|B(9,em@| V()

We now calculate Wy (v*,v¢). Consider the coupling:

|Bg,€ﬂA/|

YA, A) = [ DA
AA):= | Byonel

dv*(6).
Indeed, one easily verifies T(0,4") =v¢(A’) and YT(A,0) = v*(A). Thus,
Wy (v 1) g/ / 10— 0'|dc(8,6') :/ / 1By 0| |0— 0|6’ dv* (6) < c.
eJoe ©.J0'eBy .NO

Since for any measure v € P(0) we have that |[v* —v||;;, < Wi(r*,v), we obtain a bound of €
for the first term in 9, .
We now turn to the relative entropy term. Observe that the definition of v and Fubini’s
theorem gives
dv¢
de

() = /@ By 0] 15, ne(6)dv” (8):

thus, by convexity of the function x — zlog(x), Jensen’s inequality and Fubini’s theorem, we
have

., ‘il”a (0)log<ciiy6 (9)) do < /@/@|89/76ﬂ@|*1150,76(9)10g(|89/76ﬂ@|71)du*(0’)d9 (5.13)

<~ [ og([Byr.NON)d* () < ~log(K) - dlog(e),
(S

where we have used the convention 0 x —oco = 0.
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On the other hand, by assumption,

/@ ‘Z’; (6)log <Cilyao(9)> df = /elog (i;;(@) dve(0) > log(k). (5.14)

From the above it follows

H(v|[v°) < —log(k) —log(k") — dlog(e).

Hence,
1
Qvo,v7;7) < €~ —(dlog(e) +log (k) +log(k)),

for every € > 0. Choosing € = %, the minimizer of the right hand side of the above expression,
we get the desired result. [

Remark 51 The condition |Bg N O[> k'€ uniformly over 6 € © is implied by the fact that
the boundary of © was assumed to be Lipschitz; see Assumptions 8.

A posteriori, we can generalize Lemma 50 to allow for empirical measures that approximate
in a suitable sense a measure v satisfying the assumptions in Lemma 50. This is the content
of the next result.

Lemma 52 Let 01,...,0 € © be M distinct points in ©, and let Vév" = ﬁ sz\il dg,;. Suppose
that vy and © are as in Lemma 50. Then, for every T >0, we have

d

0,08 v57) = Waslonrd) + & {110 (2) }+ 2 tou(h) ~tor(a")

where Wy denotes the oo-Wasserstein distance between vy and I/é\/f.

In particular, if 01,...,0p; are sampled independently from a vy with a density with respect
to the Lebesgue measure that is bounded and bounded away from zero, then, with probability at
least 1 —1/M?,

log(M)Pd d d 1
M | x, P o =1l _ el S _ /
Q.(vy ,v*T)<C V[ +T 1—1log - +T{ log(k) —log(k")},

for a constant C that depends on vy, and a power pg that takes the form pg=3/4 if d=2 and
pa=1/d if d > 3.

Proof Fix 7 > 0 and let v* € P(O) be an arbitrary probability measure. By Lemma 50 for any
given € > 0 we can find o, € P(0) such that

1 d d 1
ol + —H@r o) < e+ Sd1—log (L) 4 2 {—log(k) —log(k")}.
" = el + 200 ) < 2+ 2 {1 tog (£) }+ 2~ log(h) ~ log()}

Let T:0 — {01,...,0p} be an co-OT map between vy and V(J]V", which exists thanks to
the assumptions on vy and the main result in [10]. In particular, T' can be taken to satisfy
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Tyvg = Vév" and

sup |0 —T(6 )\—WOO(VO,V(J)V[);
€O

notice that we can indeed take an actual supremum on the left hand side of the above expression,
and not just an essential supremum, thanks to the assumptions on vy and the domain ©. Having
introduced the map T, we define the measure

=3 o0,

which is an empirical version of 7. In what follows we bound [|v* — oM |5, + 2H(OM||[W).
First,

I — oM < " = or s+ 107 — M 51
< v =L + Wa(or, 0M)
< v = e+ /@ 10— T(6) (o, (6) (5.15)
< |[v* — 231+ sup |0 —T(6)|
0cO
10" = 5 [+ Woo (0,28,

where in the second to last inequality we have used the fact that, as can be easily verified,
Tyo, = oM

M
On the other hand, a straightforward application of Jensen’s inequality reveals that

H(o ") < H(r||vo)-

Combining the above inequalities we conclude that for every € >0

Q0! 57) —e < Wox ) + & {110 (2) 14 L= tom(h) - o),

which of course implies the desired bound.
When the points 61,...,0; are sampled from a distribution vy satisfying the specified

additional assumptions, Theorem 1.1 in [26] allows us to bound W (I/O,VO ) by C%
with very high probability. [

Lemma 53 Suppose that Assumptions 8§ and 32 hold. Let mg be such that mo . = u and suppose
that there exists k > 0 such that %(2) >k for all z in the support of p. Suppose further
that |Bz cNZ| > ke uniformly in Z € Z. Then, for oll ©* with 7% = u, we have

On(mo.n*im) < & {1-tog (£ ) b+ (- togh) - og().
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Proof Since all measures of interest must have the same first marginal (i.e., u) we proceed as
in Lemma 50, but this time only regularizing conditional distributions. More precisely, for a
given z in the support of Z we define the measure 7¢(-|z) as follows:

€ o |85760A‘ * [~
(A]2) '_/ZBZ,Emzd” (32).

We then define the measure 7€ as:

dm(z,2) = dm (2|2)dp(2).

Notice that the measure 7€ is such that 7§ = p. Moreover, it is straightforward to show
(repeating similar computations as in the proof of Lemma 50) that Wi(n€,7*) < e and
H(m¢||mp) < —log(k) —log(k') — d’log(e). The desired result now follows as in Lemma 50. [

Lemma 54 Let 1,...,2y be N distinct points in Z, and let 7} == p® (% Zfil d3,). Suppose
that fig is a probabzlzty measure over Z that has a denszty with respect to the Lebesgue measure
satzsfymg O >k and Z is such that |B, .NO| > ke d uniformly in z € Z. Then

Qr (0, 7%57) < W (0 = chzz {1—1og(d')}+i{—log<k>—1og<k'>}.

In particular, if Z21,...,Zn are sampled independently from a fig with a density with respect
to the Lebesgue measure that is bounded and bounded away from zero, then, with probability at
least 1 —1/N?,

log(N)Pa  d’ & 1
N __x, = _ - _ I
Qn(nfY757) < OB + = 81 —log (£ ) b+ —{—Tog(k) ~log(k")},

for a constant C' that depends on fig, and a power py that takes the form py =3/4 if d =2
and pg =1/d" if d' > 3.

Proof The proof follows the same ideas as the ones in the proof of Lemma 52 and thus we skip
the details. [

Proof of Theorem 35 On the one hand, by assumption, we can find 77 such that for all ¢ > T}

1t 3
|2327/ / Nududs| < —e.

On the other hand, Lemmas 50 and 53 imply that there exists T5 such that, for all ¢ > T5 and
arbitrary 7* with 7} = p and v*, we have

(Q(mo, ;£ Bt) 4 (Q(vo,v"; £ Bt) < é'
We conclude by taking T* = Ty VT» and using Lemma 49. [

Proof of Theorem 36 The proof is as the proof of Theorem 35 except that we use Lemmas 52
and 54 instead of Lemmas 50 and 53. O
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5.3. Proofs of Theorems 42 and 43
In this section we present the proofs of Theorems 42 and 43.

Proof of Theorem 42 Throughout this proof we use mj to denote the quantity

mj = sup U(m, ).
Ts.t.ma=pn

From concavity-convexity of U in the linear interpolation sense we have for all arbitrary 7
(with 77, = p) and :

t
U7 ~U(mD) < 1 [ WE) ~Ulm)s

- %/0 (U(fr,us)—m:)ds-i-%/o (mg —U(ms,7))ds

t
gilkm;uhmes o
- % /0 (m —u<ws,us)>ds+% /0 U (s, vs) =U(ms, 7)) ds.
=T+

In the above, the second inequality follows from the definition of m}. We will now control each
of the terms Z; and Z> on the right-hand side of the above expression.

In order to control Z;, we start by using the chain rule (e.g., see section 10.1.2 in [1]) to
obtain an expression for %L{ (ms,Vs):

dilxl(ws,ys):/|V5L{ﬂ(7rs,us;2,2)|2d7rs(z,2)+/<;/L{,r(7rs,Vs;z,é)(l/{ﬂ(ﬂs,us;z,é)—Hmz)dws(z,é)
s

= [ (90O Ps(0) = 3 [ U 20) U i) ~ U 0

(5.17)

in the above, we use the shorthand notation U, , to denote JUx(s,v552,2")dms(Z']2), and
U, to denote [U,(ms,vs;0")dvs(0"). Assumption 39 implies that the first term on the right-
hand side of (5.17) is bounded from below by A(m} —U(ms,vs)). On the other hand, Jensen’s
inequality implies that the second term is non-negative. Finally, Assumptions 8 imply that the
last terms can be bounded from below by —%M2 — %’“M? It follows that for all ¢ >0

t
d
U(Ty,1t) :L{(WO,VO)—i—/ —U(my, vy )dr
0 dr

*t

>U(mo,10) %

t
B+A/Xm;—um&%»m,
0



44 C. AND N. GARCIA TRILLOS

where B := (||n]|oo +2#)M?. Subtracting m; from both sides of the above inequality, we get,
thanks to Assumptions 8,

. t
U(T,ve) —my > —2M — EBJr)\/ (mi —U(rs,vs))ds.
0
Equivalently,
¢ t
my —U(m, ) < 2M + ?B— )\/ (mk—U(ms,vs))ds.
0

We thus see that the function f(t) :=mj —U (v, ;) satisfies

B t
f) <2M+ —t—)\/ f(s)ds,
K 0
and from Lemma 62 in Appendix A.4 we conclude that

LA
t?

B
T < —
1_Ka

for A:= %|2M— %|
To estimate Zy in (5.18), we follow similar computations to those in the proof of Lemma 49
to conclude that

t t t
/u(ws,ys)ds—/ U(ws,ﬂ)dsg/ Uy (70,753 Y | 17— D[ )dis
0 0 0

- t ([wtmvitato. —vy0))as,

where now we use a modified hat process U satisfying

(5.18)

Oriry = %diw(ﬁtveuy(m,ut;e)),

initialized at an arbitrary Dy < vy with density in L°°(rg). Following a straightforward
adaptation of Proposition 47, we can then see that

t
H(olln) - P10 < 72 [ [ty @) )as. wz0,
0
from where it now follows that
1/t e K_, .
T <5 | (Wt (ms,vs; )l BLlP = D5 pL)ds + = H(Pollvo)
0

B2 t S K
< Bllo—pollhs + 7= /0 /0 edrds = H (o] o).
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From the above we can deduce

P BQ t s
I < BQV(I/(),ﬁ;?Bt))-F ?t/o /0 nrdrds.

Putting all our estimates together we obtain

- _ . B A K B% [t s
U, 7)) —U (T, D) < X + n + B9, (vy,7; EBt)) + E/o /0 nrdrds.
At this stage we can use the specific properties of vy and use Lemma 50 to conclude that
there are ro(e), Ko(€),to(€),r1(€) such that, if % <ro(e), K > Ko(e),t > to(e), 1/K <ri(e),
then
sup U, 7)) — inf U(T, D) <e.
FEP(22) s.t. Tr=p vEP(O)

O

Proof of Theorem 43 The proof is the same as the proof of Theorem 42, except that in the last
step we use Lemma 52 instead of Lemma 50. [

6. Numerical examples

We illustrate our results numerically in the context of image classification on the MNIST
database [30]. Our main purpose is to illustrate the effectiveness of the algorithm to obtain
adversarially robust classifiers even away from the asymptotic regimes that we studied.

In this framework, we take the particles representing the distribution v to be the training
parameters (i.e. weights and biases) for simple convolutional networks with fixed widths and
depths?; while the particles representing the distribution 7 are pairs of images where the first
component is an image from the original database, and the second is an adversarial image built
during the training process. We consider the square loss with an adversarial cost given by the
Wasserstein-2 distance, i.e.

R(F,V)ZLXZ/GMQ(@)—m dv(0)dn(z,%); C(ﬂ):ca/z |2 — 52dr (2, 2)

XZ

where, hg(z) is the outcome of the convolutional network for the input z when setting the
parameters of the network to be 6.

Given the nonlinear structure of the convolutional architecture, it would be extremely
memory-consuming to apply directly the time average step 19 in Algorithm 1, as it would
require us to keep track of copies of all intermediate networks in the training process. A
possible solution, proposed for example in [17], is to calculate the time average on the weights
only, while keeping the last position of the network-parameter particles. We implement also an
alternative approach based on the resampling methods used in particle filters (see [31] for a
review): we keep in memory at most a maximum number of network parameters (M'). At each

2 Two layers with a convolutional kernel of size 5 and output channel sizes of 32 and 64 respectively, ReLu
activation functions, and maxpool; and two linear layers at the end with respective output sizes 1000 and 10.
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update time, we use residual systematic resampling (RSR) to pick M’ parameters to keep from
the list of the M’ already contained in memory and the new bunch of M particles. Details of
the (RSR) method can be found in [31] (see for example code 4 in Table 2). The time-average
calculation of adversarial images is done similarly.

To illustrate our main result, we compute a proxy for the ratios

 SUPsep(22) st 7=y UT,V) _ infyepe) U(T*, D)

a = y d = )
" U(m*,v*) anc rm U(m*,v*)

where (7*,0*) are the time-averaged distributions for the networks and adversarial images
obtained after training. According to our results, we should reach an approximate Nash
equilibrium, so we expect both ratios to be closed to zero. The proxy is computed as follows:
we approximate the supremum in r,, by fixing v* while training each one of the networks
representing 7* with stochastic gradient descent for a fixed number of epochs (weights are kept
constant). We compute then the relative change in total risk after this procedure. The proxy for
7o 18 computed analogously. We present a summary of the parameters used for the numerical
experiments 2 and the results obtained in Table 1.

| Model parameters |

N 4

M 2

e | 0.1(t+1)7t
K 0.25

Ca 10

| Implementation parameters |

Dataset MNIST
Batch size 64
Training epochs 4
| Results |
Accuracy
Time avg. on weights Resampling
Clean 96.34% 93.53%
PGD (20 steps) 62.21% 58.49 %
Relative change of loss at solution - 5 additional training epochs
Time avg. on weights Resampling
Ta 0.21% 0.03 %
Tm 1.82% 3.5%

TABLE 1 Parameters and results of numerical experiment.

3 The code used to run these experiments can be found at https://github.com/camgt/robust_ learning
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Intuitively, we expect that the classification provided by the final time-averaged
distributions of networks should be both effective and robust. To test this idea, we evaluate the
accuracy of this classifier with a clean test sample, independent of the original distribution, and
with an adversarial version constructed via modification of the latter using projected gradient
descent (PGD) with 20 steps and a step size of 0.04. PGD constructs adversarial images by
repeatedly perturbing each pixel in the image by a fixed amount choosing the sign of the
perturbation to be the same as the sign of the gradient of the loss function with respect to the
entry. See for example [35]. Results of this test are also included in Table 1. We observe that
the overall procedure has degraded a bit the clean performance of the network but significantly
improved the resistance to adversarial attacks. For reference, a baseline obtained by a simple
training of a network with the same characteristics obtains in the same number of epochs a
clean accuracy of 98.41% but an accuracy after the PGD attack of only 0.68% (compare also
with the results in [22]). Table 1 shows that in the tested case, calculating the time average on
the weights only is not just simpler but also has better results than the resampling procedure.
However, there may be settings, not explored here, where the latter approach may be more
advantageous. Exploring this would be an interesting research direction.

7. Conclusions

In this paper we have studied minmax problems over spaces of probability measures with a
payoff structure motivated by adversarial training problems in supervised learning settings; we
have studied gradient ascent-descent dynamics aimed at solving these problems. The dynamics
that we have studied take the form of an evolutionary system of PDEs that can be discretized
using systems of finitely many interacting particles. Under some reasonable assumptions on the
payoff structure of the game, we can show that the proposed particle systems are consistent
and recover the solution of the original PDE as the number of particles in the system scales
up. We have also discussed the behavior of our evolutionary system of PDEs as time tends
to infinity, showing that in a certain sense (see below) the system can produce approximate
Nash equilibria for the adversarial game. Our results are stated under suitable assumptions on
initialization in two settings of interest: 1) for non-convex non-concave payoffs (convexity and
concavity understood in a suitable OT-sense), and 2) non-convex strongly-concave problems
(again, in a suitable OT sense). Both settings are realistic in adversarial learning games for
supervised learning tasks, while in general convexity can only be enforced by introducing
additional (exogenous) regularization penalties in the payoff function.

Due to the lack of convexity of the payoff in our problem (w.r.t. the metric inducing the
dynamics of our ascent-descent dynamics), we can only guarantee that time averages of the
measures produced by our PDE system become approximate Nash equilibria in the t — oo
limit. For our algorithms to follow more closely our theoretical results, it was thus important
to discuss strategies for constructing surrogate time averages that do not incur in memory
overload and that can still recover approximate Nash equilibria for the game, at least in some
benchmark learning tasks.

There are several directions for research that our work motivates. Here we mention a few.

First, the theoretical analysis that we have presented in this paper presupposes that the
optimization updates take into account all (perturbed) data points, but in practice a natural
strategy is to use batches of data to compute the loss (and its gradient) at each iteration. We
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thus believe that it is of interest to study how the use of stochastic gradient descent (SGD)
affects the resulting PDE system.

Another interesting direction for future research is the exploration of broader frameworks
for adversarial learning covering multiclass classification settings (as opposed to regression
problems as considered in this paper or just binary classification problems). In principle, one
could even consider situations where prior information on the similarity of classes in a learning
problem is available (e.g. the class "guitar" may be considered more similar to class "violin"
than to class "baseball") as in those situations it may be beneficial to use such information to
construct more nuanced models for risk and admissible adversarial attacks; for example, the
work [44] discusses the advantages of using similarity or hierarchical structures between classes
in different learning tasks; the work [16] explicitly discusses how to build similarities between
labels using their semantic content. Our framework indeed seems better suited for regression
problems, since in that setting the cost function C for the adversary can be naturally defined
using something like the Wasserstein distance over the feature space times the label space, where
the latter space is simply the real line. When the response variable has a discrete structure,
it is less obvious how one can still define a reasonable (from the modelling perspective) cost
structure for the adversary in such a way that the resulting adversarial game can still be solved
using an ascent-descent scheme as explored in this paper.

Data Availability Statement
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experiments in section 6 can be found at https://github.com/camgt/robust_ learning.
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A. Auxiliary results and computations

Al. Equivalence between (1.1) and DRO problems
In this section we assume that the payoff U has the form (1.3) and that

R(m,v) = R(nz,v), C(u, )= inf C(n), C(m)= /c(z,i)dw(z,i). (A1)
mel (p,ft)

In other words, we assume that R’s dependence on 7 is only through 7’s second marginal, C is

an average cost, and C(u, i) is the optimal transport problem between measures p and fi for

the cost ¢ in the definition of C. We will show that under these assumptions problems (1.1) and

(1.2) are equivalent. By this we mean that it is possible to easily construct approximate Nash

equilibria for one of the problems from approximate Nash equilibria for the other.

Definition 55 We say that (i*,v*) is an e-Nash equilibrium for (1.2) if

sup {R(f,v*)~Clp. )}~ inf {R(i*,v)~C(p.i*)} <e.
REP(Z) vEP(O)

Proposition 56 Suppose U has the form (1.3) and R,C,C are as in (A.1). If (7*,v*) is an
e-Nash equilibrium for problem (1.1) (see Definition 3), then (n%,v*) is an e-Nash equilibrium
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for (1.2). Conwversely, if (i*,v*) is an e-Nash equilibrium for (1.2) and 7* € I'(u, i) realizes
the cost C(u,i*), then (7*,v*) is an e-Nash equilibrium for (1.1).

Proof Let (n*,v*) be an almost Nash equilibrium for (1.1) and let i* = n%. For arbitrary
it € P(Z), assume for simplicity that there is # € I'(u, 1) that achieves the cost C'(u, 1), i.e
C(7t) = C(u,1). Also, let 7 € P(O) be arbitrary. We see that:

Given that i and ¥ were arbitrary, we conclude that

sup {R(p,v") —C(p, i)} — inf {R(A",v)—C(n,i")}<e,
REP(Z) vEP(O)

which is what we wanted to prove.
Conversely, suppose that (i*,v*) is an e-Nash equilibrium for (1.2) and suppose 7* €
T(w, 1*) realizes C'(u,i*). Consider arbitrary m,v with 7, = u and let i =mz. Then

U(T* v)+e=R(p*,v)—C(r*)+¢
= R(i*,v) —C(u,i*) +¢
> R(fi,v*) = C(p, 1)
> R(fi,v*) —C(m)
=U(m,v").

Since w (with 7, = u) and v were arbitrary, we conclude that (7*,v*) is an e-Nash equilibrium
for (1.1), as we wanted to prove. [

A.2. On the PL condition of Assumption 39

Proposition 57 Suppose that Z is a conver set and that we select an activation function
and a loss function in the setting in 1.1 that are twice continuously differentiable. Then the
function U in (1.3), with R and C as in (1.4) and (1.5), satisfies the condition in Assumption
39 for all large enough cg.

Proof A straightforward computation reveals that in this case
Ur(mt,1;2,2) = U(hy (2),5) — calz — 2|? = U(v; 2, 2).

Assuming that the loss function ¢ and the activation function f are at least twice continuously
differentiable, we can conclude that the function z € Z +— U(v; z, £) (for fixed z and v) is strongly
concave (for all z and v), provided that ¢, is large enough. Indeed, this is simply because we
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can bound, uniformly over z,v, the second derivatives of the first term in U(v;z,Z). Thanks to
this and Theorem 5.15 ii) in [49], we deduce that there is A > 0 such that for every z € Z and
T € P(Z) we have

/|VZ/{1/zz)|dT( > A( sup /Uuzsz /Uuzsz (2)).
Tep(2)

In particular, for a given m € P(Z x Z) with mg_, = u, we have
/ |V:U(v;z,2)|%dn(2]2) > A sup / U(v; 2z, 2)dY(3) 7/ U(v;z,2)dm(Z|z)),
Z Yep(z)/2 Z

for all z € Z and all v € P(O). Integrating over z with respect to p on both sides of the above
inequality, we get

/ |V5U7r(7r,1/;z,2)|2d7r(2,2) :/ |V2U(V;z,2)\2d7r(z,2)
ZXZ ZXZ

A su L{z/;z,id'fé du(z) —U(m,v
> (é(Tep?z)L( ) <>> ) —U >>

>)\< sup L[(ﬁ,u)—U(w,V)) .

7EP(22) s.t. o=p
|

A.3. Auziliary lemmas for the construction of approzimate initializations in Theorems 12 and
25

Proposition 58 Let A,B be two bounded Borel subsets of R and Rd/, respectively. Let
weP(A), and let u € A py(-) € P(B) be a measurable map.
For every sequence {Yp}nen C (1, p) satisfying

lim |U*U/‘d’rn(u7ul) =0,
n— oo AXA
we have
lim W1 (prass g )Y (u, ) = 0.

n—oo AxXA

Proof Sequences {Y,,}nen satisfying the hypothesis in the proposition are called stagnating
sequences of transport plans; see [25].

Let € > 0. For such € > 0 we can build a finite partition {B;};—1 . 1 of the set B in such a
way that each set B; has diameter less than €/3; this partition can be constructed by simply
intersecting a grid of boxes in RF’ of diameter less than e /3 with the set B. Select now a point
vy in each of the B;. Associated to each [ =1,..., L, we define a function h; € L'(p) as follows:
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for every w in the support of u, we define hj(u) := py(B;). We now consider the measures
fly = Zlel hi(u)d,,. Notice that these are probability measures satisfying Wi (fiy, ) < €/3.
In particular, using the triangle inequality for W7 we deduce

WI(UU7/1'u’)dTn(uaul) < Wl(ﬂmﬂu)d'rn(uvul)+ Wl(ﬂuvﬂu’)dTn(u7u/)
AxA AxA AxA

+ Wi (ﬂu’ ) Uu’)dTn (ua u/)'
AxA
2

<zt [ Wl )d T (uu).
AxA

Let us now find an upper bound for the term [, , Wi (fiw, s )d Yy (u,u’). By the Kantorovich
duality for the W distance, we have

Wi(husfi) = sup { [ F0)dfiu(v /f Ydfi (v
Lip(f)<1

Since the set B is bounded, and the argument inside the sup is invariant under addition of
a constant to a given f, we can further assume that the sup is taken over functions f whose
supremum norm is bounded by a fixed constant C. For such a function f we have

L L
/ F@)dj(v) - / F@)df (0) =Y (ha(w) = hy(u')) f(vr) < C Y [y (u) = by ().
=1

=1

From the above it follows

Wi (i, fig ) A () <OZ Ry (u) — by ()] d X (u, ).
AxXA AxXA

We now invoke Lemma 3.10 in [25] to conclude that the right-hand side of the above expression
converges to zero as n — oo. In particular, there exists N large enough such that for all n > N
we have C’Zle Jaxa i (u) = hy(u)|dYp (u,u’) < §. In turn, we conclude that if n > N, then

W1 (g g )Y (u, ) < €.
AxA

This establishes the desired result. O

Lemma 59 Let A, B be two bounded Borel subsets of R and Rd/, respectively. Let p € P(A),
and let u € A py () € P(B) be a measurable map.

Let uy,...,un,... be a sequence of i.i.d. samples from p, and for each i € N, let
Vilye- s Vim, .-, be i.i.d. samples from iy, (-). For each n and m consider the (random) measures
1 n m " 1 n
:%Zza(u“v”)v lu :ﬁzéu“
i=1j5=1 i=1

and let ™™ (-|u) be the conditional distribution, according to p™™, of the variable v given the
value u of the first coordinate.
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Then

n—o0 m—00

lim lim E| inf / W (1™ (), g YT (') | = 0,
T EFOpt(H":/'L)

In particular, there is a sequence {(ng,mg)}tren such that

lim E

k—o0

| /W T (. W)y oy dY U,Ul :Ov
T1EL opi (™ 1) 1(p (), pry )AL g ( )]

and a subsequence (not relabeled) such that

lim inf W ("% (|w), gy )d X g (u,u') = 0,
Jim it WG ) )T )

almost surely.

Proof Let Y,, € Topt(p", it). By Corollary 5.22 in [50] this random measure can be chosen in a
measurable way over the tacitly defined sample space giving support to the random variables
in the problem.

From the triangle inequality for W; we have

/W1 (-Ju0), s AT (110" /W1 (-[u0), )T (10, ) /W1 s i ) A (111"

7ZW nm( |u1) U’u, /Wl oy ooy )dT (U u)
=1

(A.2)
In what follows we analyze each of the terms on the right-hand side of the above expression.
We start with the second term.

Let us introduce T, := E[Y},], the (deterministic) measure that acts on test functions ¢
according to

/¢uudT(uu /(buud'f(uu)]

It is straightforward to see that T, € I'(u,11). Now, due to the boundedness of the space A and
the fact that u™ converges weakly to p almost surely, we know that, almost surely,

lim /|u—u’|dTn(u,u/): li_>m Wi (p™,p) =0.
n oo

n—o0

By the dominated convergence theorem it thus follows

n—o0

lim /|u_u’|d?n(u,u’)= lim E[/\u—u’mn(u,u’)] 0,
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In particular, {Tn}neN is a stagnating sequence of transport plans for y, and thus, from Lemma
58 it follows that

11*>H1 ]E[/W1<Mua,uu’)d’rn(uau/)] = lim /WI(NuaMu’)d’Tn(u7ul):0-

n—0oQ

We now study the first term on the right-hand side of (A.2). To avoid introducing
cumbersome notation, we will assume for simplicity that all the u; are different so that in
particular p™™(-|u;) = - > 721 0u,;- We then have

lim BLSS Wy (0 (i) )] = E[ lim fZW 1 ) )
=1

m—oo N m—oo N
(A.3)
= EIE] iy VA ) ]
(]

where we have used the dominated convergence theorem in the first line, and the fact that
% Z;nzl (5%. converges almost surely in the Wasserstein sense toward pi,,; in the last line. [

Remark 60 Let {u"}nen be a sequence of probability measures over Ax B and let p be a
probability measure. We show that the condition

inf / Wa (™ (). ()T () 5 0

Yn€T ops (12 Hu)
implies
Wi (4", 1) = 0,

while the converse is not true in general; in the above, p;, and p, denote the first marginals
of u™ and p, respectively. Indeed, suppose that the first condition holds, and for each u,u’
let TuU be a coupling between p (|u) and p(-|u') realizing the Wy distance. Also, choose
Ty in Tope(p™, 1) such that S Wi (™ (Jw), p(-|u)d Y (u,u') = 0, and consider the measure
drmn ((u,v), (v, 0")) == d¥™ u' (v,v )dTn( w,u'). It is straightforward to verify that m, € T'(u™, u)
and that [ |(u,v) — (u',v")|dm, — 0. This implies W1 (u™,pu) — 0.

As we stated earlier, the converse statement is mnot true. For example, taking
A =10,1, B =101, u the uniform measure on [0,1]?, and u" = %Z] O(uj;)
with  (u1,v1)y..., (Un,vp) i.4.d. samples from p, we see that Wi(u",u) — 0, while
infy, er g, (un ) S Wi (™ (w), p(-|u")dY p (u,u') =1 for all n.

Lemma 61 Consider the same setting and notation as in Lemma 59. Let p: Ax B — [0, D]
be a measurable function satisfying

[ ptueddnae) 1.

for all w in the support of u. Then, with probability one,
n

lim lim fE
n—00M—00 7 4 7
1=

1
1

-1/ =0.
m 2aj= 1p(uzavz])
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Proof This is a direct consequence of the law of large numbers. [

A4, Auziliary lemmas for section 5

The following result follows from a Gronwall-type argument.
Lemma 62 Let B, M, K, )\ >0, and suppose h : [0,00) — [0,00) is a function satisfying
B t
h(t) <2M+ —t— )\/ h(s)ds,
K 0

for all t. Then, for all T >0,

1 B
where A := 5 |2M — 2|

Proof The condition on h can be equivalently written as

) ) . i
h(t) — % < (2M — %) f/\/o (h(s) — %)ds.

Let H(t):= fot(h(s) - Ig)ds. The above condition can thus be written as

!
< _
H'(t) < (2M K/\) AH(t)
From this it follows that ~
d At B At
il < _
g (H(t)e™) < (2M K)\)e

Integrating the above expression, we get:

1
H(t)eM < (2M — —(eM-1
(DM < @M - )2 -1),
or what is the same ~ ~
B .1 B .1
H(t) < (2M — —)= — (2M — —)~e .
H=( K KR
Recalling the definition of H, we deduce that
17 B 1 B. 1 1 B 1 B A
— [ h(s)ds< —+=(2M — —)=— = - )—e M < — 4 =,
T ), Meds < g5 F 7 3Tl 2 ST

B. Riemannian structure for P (O x [0,00))

In this section we review the Riemannian structure for the space P(© x [0,00)) that motivates
the PDE dynamics given in (2.3).
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B.1. A metric on the lifted space

We start by defining a metric tensor over the space © x (0,00) according to:

- o, 1
9(0,04)((”,5)7 (’U,S)) = E<U7U> + assv
where (-,-) denotes the standard inner product in Euclidean space, and x and 7 are two positive
parameters. In what follows we use the notation |(v7s)|%97a) = 9(0,0)((v,5),(v,5)).
It is straightforward to verify that the gradient of a scalar function ¢(,a) with respect to
the inner product g, which we denote by V¢, can be written as

Vo = (14, rada0). (B.1)

where Vy¢(0,a) is the usual gradient of ¢ in the 6 variable and 9,,¢(6, @) is the partial derivative
of ¢ with respect to . Notice that V¢ is a vector in RP x R.

Relative to the base metric g in © x (0,00), we define a Wasserstein metric, in dynamic form,
over the space of probability measures P(© X [0,00)]). More precisely, for 0,0’ € P(0 x [0,00))
we consider

1
W2 (0,6) = inf / /Vﬂ 0,0)|2 ,do(0,a)dt, B.2
5.4(0,6) (Bron e €CE@) Jo VB8, )5, o dot (6, ) (B.2)

where the set CE(0,d) consists of all solutions ¢ € [0,1] — (B¢,0+) to the (intrinsic) continuity
equation

8t0t —i—E(Uth ) (B3)
o(0)=0, o(l)=
in particular, div denotes the divergence in the space © x (0,00) when endowed with the metric
g. In general, equation (B.3) has to be interpreted in the weak sense, i.e., it must hold that

% / 6(0,0)dos (0, 0) = / 90,00 (V51(6,0), T(6,0))do (6. )

for all t € (0,1) and all ¢ regular enough test functions.

More than the metric (B.2) itself, from formula (B.2) we are interested in the implicit formal
Riemannian structure that we can endow P(0 x [0,00)) with and that can be used to motivate,
heuristically, gradient descent or projected gradient descent dynamics in the space P(O X
[0,00)]). As is standard when interpreting optimal transport from a Riemannian geometric
perspective, one can think of the set T, := {V3 s.t. 8:0 x (0,00) — R} as a formal tangent
plane to the formal manifold P(© x [0,00)) at the point o, and over this formal tangent plane
one can define an inner product (-,), according to

(V5,8 = / 00,0 (TB(6,0), 95 (8, 0))dor(6,0).

Before we finish this section, we state a result that we use in the sequel and that allows
us to write the continuity equation (B.3) in terms of basic Euclidean divergence and gradient
operators.
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Proposition 63 The intrinsic continuity equation from (B.3) can be written, in terms of the
Euclidean divergence divg o in RP xR, as

0oy +divg o (01vs,) =0,

where v, 1s the vector field

Vo (0,a) := (gV95(0,a),/£048a5(0,a)).

Proof This is a consequence of the following simple observation. For all regular enough test
functions ¢ we have

d —_— —
£/¢d0’t:/g(97a)(Vﬁ’v¢)dat

:/(ZV9¢-V95+fsa(9a¢8a5) doy
:/<V97a¢,vo.>dat,

where in the above we use (-,-) to denote the standard Euclidean inner product in R x R and
Vg o to denote the standard gradient in R” x R.
O

B.2. Vertical and horizontal vector fields in P(© x [0,00))

We now introduce and discuss some relevant subspaces of the formal tangent plane T,. We will
use these subspaces later on.
The horizontal space T at o is defined as

Th .= {V§ s.t. B(8,a) = ap(h) for some ¢},
and the vertical space T as
T :={VBs.t. (VB,VB)e =0, forall VB eTh}.

The vertical space T represents the directions that infinitesimally leave Fo invariant, while
the horizontal space is TY’s orthogonal complement.

Let us denote by N = {os.t. Fo € P(0)}. For o € N, we consider the subspace ToN of T,
defined as

ToN = {V¢ s.t./a@agb(ﬂ,a)da =0}.

The subspace TN can be interpreted as the space of tangent vectors of all curves passing by
o that stay in V.

Remark 64 The space M4 (©) can be endowed with a metric, the Wasserstein-Fisher-Rao
metric, that makes the map F into a Riemannian submersion. Indeed, notice that for two
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potentials of the form ap(0) and ap’(0) (i.e., two potentials inducing horizontal vector fields
at a point o), we have the identity

(V(ap), T(ag'))y = /

ox| )a(nvewvaw’ﬁw’)da(@»a)=/@(Wes@-vew’Jrnw’)dfa(@)
X [0,00

In other words, the above inner product in fact does not depend on the specific o, but only on
Fo.

We refer the reader to the references [14, 21, 28, 32, 46] for details about the Wasserstein-
Fisher-Rao geometry.

B.3. Gradient flows of lifted energies

We introduced in section 3.1.1 a projection mapping F characterised by equation (3.1). We
are interested in describing a Riemannian-like metric for the lifted space P(© x [0,00)) with
respect to which we will define gradient flows of 7.

Let us start by hihlighting that to lift a functional J : M1 (0) — (—00, 0] to a functional on
P(O x [0,00)), we simply consider the composition of J with the projection map F as follows:

J(0):=J(Fo), o€P(Ox][0,00)). (B.4)

In particular, if J has the form

() = / J(O.0)Av(0), ve M, (O),

then
J(o) = /aj(@,]:a)da(ﬂ,a).

Given an arbitrary energy J : P(O x [0,00)) — (—00,00] (not necessarily of the form (B.4)),
the gradient (descent) flow of J with respect to the Riemannian geometry introduced in section
B.1 takes the form:

8tat —E(O’tvja-t) = 0, (B5)
where 7, is the first variation of J at the point o, defined as we did in the beginning of section
1.2. For more details on the interpretation of (B.5) as a gradient flow see Chapter 8.2 in [49].

In case J has the structure of a lifted energy as in (B.4), its first variation can be computed
as follows. Let 0,0* and let v = Fo and v* = Fo*. Using the linearity of the map F (which is
evident from its definition) we get:

Lecod (0 +e(0" ~0)) = om0 (Flo +£(0” ~ )

_ %|5:0J(}—U+E(}—U* _ Fo))
=/ J,(0)d(v* —v)
©

:/ aJ,(8)d(c" — o),
Ox[0,00)

where J, is the first variation of J at the point v. In other words, the first variation of J at
o takes the form a.J,,, where J, is the first variation of J; this specific form for 7, should not
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be surprising, since the function 7 is constant along vertical vector fields and thus its gradient
should be a horizontal vector field. Plugging this expression back in (B.5), we conclude that
the gradient flow of a lifted energy J takes the form:

9o, ~AV(0eV (i) =0 For =,

which, after using Proposition (63), can also be written as
0o —divg o (04v5) = 0; (B.6)
Vo (0,00) = MV Ju, (0), 5ty (0));  ve = F(ow).

B.4. Projected gradients

In general, o, from (B.6) may not belong to N for ¢ > 0, even if initialized at a o9 € N. If
we want to guarantee that vy = Foy € P(O) for all ¢, we must then project the (Wasserstein)
gradient of the energy J driving the dynamics (B.6) onto the subspace T, N.

Given o and v = Fo, we write the potential aJ, as

ady(0) = a(J (0) — / T (0)dv(0)) + a / T (0)dv (@),

A direct computation shows that
(Tl [ 246)a0())),F6(6. ) =0,

for all V¢ € T, N; this means that V(« [ J,(0")dv(0'))) € T,N+. Another direct computation
shows that V(a(J,(0) — [ J,(0)dv(#'))) € ToN. From this we can then see that V(a(J,(0) —
[ J,(60")dv(6"))) is the projection of V(7)) onto T,N.

Using Proposition (63), we can thus conclude that

{8,50,5 —divg,o(0tvs) =0;
vd(eva) = (anJVt (9)7KQ(JW (9) - fJVt (9/)7/75(9/))); Vi = f(at)a

represents projected (onto N') gradient descent dynamics of the lifted energy 7.

B.5. An analogous geometric structure for M4 (Z x Z)

There is a similar geometric structure to the one we discussed in the previous sections that the
space My (Z x Z) can be endowed with. In what follows we use v to denote elements in the
lifted space P(Z x Z x [0,00)) and represent elements in Z x Z x [0,00) with triplets of the form
(2,Z,w). The space P(Z x Z x [0,00)) is endowed with a Wasserstein metric just as in (B.2),
obtained by changing any appearance of 8 with (z,2) and any appearance of o with w. We will
use F (we use the same notation as in section 3.1.1 for simplicity) to denote the projection map
F:P(ZxZx[0,00)) > M4(Zx Z). An arbitrary functional J : M4 (Z x Z) = (—00,00] can
be lifted to P(Z x Z x [0,00)) by composition with F (we use J as in the previous sections to
denote this composition). The structure of the first variation of J is w.Jy, where J is the first
variation of J at m = F(v).
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Since problem (1.1) forces us to restrict to measures m with first marginal equal to u, we
consider evolution equations that can be seen as suitable (projected) gradient ascent versions
of the gradient ascent flow of a lifted energy J w.r.t. the Wasserstein metric discussed above.
Such evolution equation takes the form:

{&t% + diV(z,g),w(’YtUw) =0, (B.8)

Uy (2,2,w) = (0,nV3Jr(2,2), kw (Jr(2,2) — [ Jx (2,2 )dme (2 |2))); 7 = Fy.
To motivate the zero in the first component of v, (z, Z,w), suppose that ¢ +— m; has the form
N
= Z wijvté(zij,t»Ez'j,t)7
ij=1
where 7 solves the evolution equation

8t’ﬂ't+divzyg(7l't‘_/’t) = O

for some vector field Vi(z,2) = (V1.¢(z,%), Va.¢(2,%)) that changes smoothly in time. We claim
that if 7} is constant in time, then V1,+ must be equal to zero at all points in the support of 7rt1
(and thus of the support of 7}). Indeed, it is enough to notice that if Vg ¢(2;;,%;) was different
from 0, then for all small enough ¢ > 0 we would have that z;;; is different from z;; ¢ for all
i’4', implying that the support of 7} is different from the support of 77(% for small enough ¢ > 0.
This would contradict the assumption that 7} was constant in time.

B.6. Dynamics in lifted and non-lifted space

We end this appendix by proving the connection between the dynamics in the lifted and non-
lifted space.

Proof of Proposition 6 Taking a test function ¢(6) we see that
d d
ﬁ/d)(ﬁ)dw = £/a¢(9)d0t(9,a) :nt/and)(G) -Vold (7, v4;0)doe (0, )
+/<;/a(ul,(7rt,ut;9)—/Z/{l,(wt,ut;ﬁl)dut(ﬁl))dat(&a)
— i [ V00(6)- Vold (. v1:6)d(0)
+n/(b{l,(7rt,1/t;9)f/Z/ly(wt,Vt;H’)th(H’))dz/t(H),

which is the weak form of the second equation in (2.3). The equation for 7 is deduced similarly.
O
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