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We propose iterative algorithms to solve adversarial training problems in a variety of
supervised learning settings of interest. Our algorithms, which can be interpreted as suitable
ascent-descent dynamics in Wasserstein spaces, take the form of a system of interacting
particles. These interacting particle dynamics are shown to converge toward appropriate
mean-field limit equations in certain large number of particles regimes. In turn, we prove
that, under certain regularity assumptions, these mean-field equations converge, in the large
time limit, toward approximate Nash equilibria of the original adversarial learning problems.
We present results for non-convex non-concave settings, as well as for non-convex concave
ones. Numerical experiments illustrate our results.
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1. Introduction

In this paper, we propose and analyze ascent-descent dynamics to find approximate solutions
(interpreted as Nash equilibria) to minmax problems of the form

min
ν∈P(Θ)

max
π∈P(Z×Z);πz=µ

U(π,ν), (1.1)

where πz is the first marginal of π and µ is a fixed probability measure. Our dynamics take
the form of a system of finitely many interacting particles, which we will show converge, under
suitable assumptions, toward a mean-field PDE as the number of particles in the system grows.
We will also analyze the long-time behavior of the limiting mean-field dynamics and explore
their ability to produce approximate Nash equilibria for (1.1). The studied dynamics are a
version of gradient ascent-descent of the payoff function U under a convenient optimal transport
geometric setting, and can be understood as analogous to dynamics studied in [12] and [17].

Through the paper we will think of Θ as the space of parameters of a learning model,
e.g., a classifier or regression function; Z = X × Y is a space of input to output samples;
U : P(Z2) × P(Θ) → R is a function representing a payoff defined over probability measures;
and the inner maximization in (1.1) operates over couplings where the first marginal is kept
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fixed and equal to the "clean" data distribution µ. As discussed in section 1.1 below and in
Appendix A.1, (1.1) encompasses distributionally robust optimization (DRO) problems of the
form

min
ν∈P(Θ)

max
µ̃∈P(Z)

R(µ̃,ν)−C(µ,µ̃). (1.2)

These are problems that in applications are used to enhance the robustness of learning models
to adversarial perturbations of data.

In a nutshell, a DRO problem like the one above can be interpreted as a game played by
a learner and an adversary: for the learner, the goal is to choose a distribution of learning
parameters ν (implicitly inducing an input to output map) that is able to fare well when facing
the attack of a reasonable adversary (reasonable as modeled by the cost function C) who can
modify the distribution of clean data, here represented by the fixed probability measure µ; the
functional R represents the risk of the classifier/regression function induced by ν relative to
the data distribution µ̃.

A brief discussion on adversarial training with pointers to relevant literature is presented
in section 2.1.

Before we move on with the description of our algorithms and main theoretical results, it
will be convenient to provide a concrete example of a payoff function U that is of interest in
practical settings, in particular, in adversarial machine learning.

1.1. Motivating example: robust supervised learning with shallow neural networks
We examine a specific setting of (1.1) in which the variable ν can be directly related to a
shallow, although possibly infinitely wide, neural network; see [18].

Let Θ ⊆ R×Rd′ , Z = Rd′ ×R, and write θ = (a,b) and z = (x,y). We consider the payoff
function

U(π,ν) := R(π,ν)−C(π), (1.3)
with the following risk and adversarial cost:

R(π,ν) :=
∫

Z×Z
ℓ(hν(x̃), ỹ)dπ(z, z̃), hν(x) :=

∫
Θ

af(b ·x)dν(a,b), (1.4)

where ℓ : R×R → [0,∞] is a loss function (e.g., squared-loss or logistics loss), f is an activation
function (e.g., ReLu, sigmoid, or squared-ReLu), and

C(π) := ca

∫
Z×Z

|z − z̃|2dπ(z, z̃), (1.5)

for ca a positive parameter. It is easy to verify that the case of an implementable finite neural
network trained with a finite data-set is obtained by choosing discrete probability laws π and
ν.

The square Euclidean distance case shown above is one of the many possible choices in
(1.5). Notice that the risk function R only depends on π through its second marginal, πz̃. This
functional is thus the risk associated to the function hν when data points are assumed to be
distributed according to πz̃.

The parameter ca in the cost C can be interpreted as reciprocal to an adversarial budget
and determines the strength of adversarial attacks. In particular, if ca is small, the attacker
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can carry out stronger attacks, i.e., can propose new data points that are further away from
clean data points z ∼ µ, while the opposite is true when ca is large.

Remark 1 As discussed in Appendix A.1, with the choices made above, problems (1.1) and
(1.2) are equivalent if we set

R(µ̃,ν) := E(x̃,ỹ)∼µ̃[ℓ(hν(x̃), ỹ)], C(µ,µ̃) := caW 2
2 (µ,µ̃),

where W2(µ,µ̃) is the standard 2-Wasserstein distance between µ and µ̃. The resulting problem
(1.2) is a DRO version of adversarial training with an explicit penalty, as opposed to an explicit
constraint; see [45]. One of the main outcomes of our work is precisely to propose an algorithm
to solve this type of adversarial training problems. This intent is manifested in the marginal
constraint we impose in the inner max in (1.1).

Remark 2 In adversarial training, in order to avoid enhancing robustness at the expense of
a considerable loss in accuracy, it is important to tune the adversarial budget appropriately.
Some papers that have studied the trade-off between robustness and accuracy include [47, 55].

1.2. Algorithm
We introduce in Algorithm 1 a discrete in time particle-based scheme for solving the minmax
problem (1.1).

Implicit in the definition of Algorithm 1 is the use of the first variations of the functional
U in the directions ν and π.

Following Definition 7.12. in [43], we say that the measurable function Uπ : Z × Z → R is
the first variation of U in the direction π at the point (π,ν) if for any π∗ ∈ P(Z ×Z) we have

d

dϵ
(U(π + ϵ(π∗ −π),ν))

∣∣∣∣
ϵ=0

=
∫

Z×Z
Uπ(π,ν;z, z̃)d(π∗ −π).

In general, Uπ may depend on the point (π,ν) at which the first variation is being evaluated,
but we will drop the explicit reference to this dependence whenever no confusion may arise from
doing so, for otherwise we will write all of Uπ’s arguments like this: Uπ(π,ν;z, z̃). Similarly, we
say that the measurable function Uν : Θ → R is the first variation of U in the direction ν at the
point (π,ν) if for any ν∗ ∈ P(Θ) we have

d

dϵ
(U(π,ν + ϵ(ν∗ −ν)))

∣∣∣∣
ϵ=0

=
∫

Θ
Uν(π,ν;θ)d(ν∗ −ν).

Throughout the paper we will assume that the first variations of U are well-defined and satisfy
regularity properties that are stated precisely in Assumptions 8.

In Algorithm 1 the term ηt∆t can be interpreted as a time-dependent transport learning
rate, and κ∆t as a constant mass-transfer learning parameter. We expose explicitly the term ∆t
to facilitate all comparisons with the continuous-time dynamics below. The projection maps PZ
and PΘ are introduced to ensure that iterations remain within the sets Z and Θ. The averaging
steps in lines 18-19 will be discussed in section 6; Algorithm 1 is related to algorithms introduced
in [17, 51], in turn related to [13]; a comparison between the content of these papers and ours
is presented in section 2.1.
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Algorithm 1 Wasserstein ascent-descent algorithm
Require: A collection {zi,0,ωi,0}i=1,...,n such that 1

n

∑n
i=1 ωi,0δzi,0 approximates µ.

1: Set t = 0
2: Choose {ϑk,0}k=1,...M , {αk,0}k=1,...,M , {z̃ij,0}i=1,,...,n; j=1,...N , and

{ωij,0}i=1,...,n; j=1,...N with the constraint:

N∑
j=1

ωij,0 = ωi,0 for all i = 1, . . .n.

3: while Stopping condition has not been satisfied do
4: Set

πn,N
t :=

n∑
i=1

N∑
j=1

ωij,tδ(zi,0,z̃ij,t) νM
t :=

M∑
k=1

αk,tδϑk,t

5: for i = 1 to n ; j = 1 to N do
6: z̃ij,t+1 = PZ (z̃ij,t +(ηt∆t)∇z̃Uπ(πt,νt;zi,0z̃ij,t))
7: ω̂ij,t+1 := ωij,t exp

(
(κ∆t)

∑
j′ ωij′,tUπ(πt,νt;zi,0, z̃ij,t)

)
8: ωij,t+1 := ω̂ij,t+1∑

j′ ω̂ij′,t+1
9: end for

10: for k = 1 to M do
11: ϑk,t+1 = PΘ

(
ϑk,t − (ηt∆t)∇θUν(πt,νt;ϑk,t)

)
12: α̂k,t+1 := αk,t exp

(
−(κ∆t)

∑
k′ αk′,tUν(πt,νt;ϑk,t)

)
13: αk,t+1 := α̂k,t+1∑

k′ α̂k′,t+1
14: end for
15: t = t+1
16: end while
17: **Calculate time-average**
18: z̄ij := 1

t

∑t
s=0 ωij,sz̃ij,s for i = 1, . . . ,n;j = 1, . . . ,N

19: ϑ̄k := 1
t

∑t
s=0 αk,sϑ̃k,s for k = 1, . . . ,M

2. Main theoretical results

We study the continuous-time version of the dynamics in Algorithm 1 and explore its ability to
produce (approximate) Nash equilibria for the game (1.1). As in many works in the literature
that study training dynamics of neural networks in overparameterized regimes (e.g., see [13, 52])
our analysis is split into two parts: 1) convergence of particle dynamics to a mean field in the
large number of particles limit, and 2) analysis of the mean field equation in the long time
horizon.

Following this general framework, in our first main result we describe the behaviour of the
continuous-time version of Algorithm 1 (a system of coupled ODEs) as the number of particles
grows. To be precise, the collection of iterates in Algorithm 1 can be thought of as a time
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discretization of the system of ODEs:

dZi
t = 0

dZ̃i
t = ηt∇z̃Uπ(πN

t ,νN
t ;Zi

t , Z̃i
t)dt

dωi
t = κωi

t

(
Uπ(πN

t ,νN
t ;Zi

t , Z̃i
t)−

∫
Uπ(πN

t ,νN
t ;Zi

t , z̃′)dπN
t (z̃′|Zi

t)
)

dt

dϑi
t = −ηt∇θUν(πN

t ,νN
t ;ϑi

t)dt

dαi
t = −καi

t

(
Uν(πN

N ,νN
t ;ϑi

t)−
∫

Uν(πN
t ,νN

t ;θ′)dνN
t (θ′)

)
dt,

(2.1)

with given initial condition (Zi
0, Z̃i

0,ωi
0,ϑi

0,αi
0) (possibly random) and

πN
t := 1

N

N∑
i=1

ωi
tδ(Zi

t ,Z̃i
t), νN

t := 1
N

N∑
i=1

αi
tδϑi

t
. (2.2)

Here, as well as in our analysis in section 4, we have considered the same number of particles
Z,Z̃,ϑ and we have eliminated the double indexes. This we do for simplicity and in order to
reduce the burdensome notation throughout our analysis; we will only return to the double
indexes when needed.

A simple computation reveals that the empirical measures (πN
t ,νN

t ) in (2.2) satisfy the PDE
(in weak form){

∂tπt = −ηtdivz,z̃(πt(0,∇z̃Uπ(πt,νt;z, z̃)))+κπt (Uπ(πt,νt;z, z̃)−
∫

Uπ(πt,νt;z, z̃′)dπt(z̃′|z))
∂tνt = ηtdivθ(νt∇θUν(πt,νt;θ))−κνt (Uν(πt,νt;θ)−

∫
Uν(πt,νt;θ′)dνt(θ′)) ,

(2.3)
initialized at π0 = πN

0 and ν0 = νN
0 . In the above, πt(·|z) must be interpreted as the conditional

distribution of z̃ given z if the pair (z, z̃) is assumed to be distributed according to πt.
In Theorem 12 we show that, under appropriate conditions, including a "well prepared
initialization" assumption, the dynamics (2.3) converge to a mean-field system of non-local
PDEs as N → ∞. This mean field system is a solution to the exact same type of equation
(2.3) except that initialized at different measures ν0,π0, formally, the limits of νN

0 and πN
0

in suitable metrics. We will see that, in contrast to the consistency requirement for ν0 in the
standard 1-Wasserstein sense, the type of well-preparedness condition for the πN

0 variable is
stronger and closely related to consistency in the Knothe-Rosenblatt optimal transport sense.
The need for this stronger assumption is due to the presence of conditional distributions in
the dynamics (2.3), which must be properly controlled with stronger metrics to carry out a
propagation of chaos analysis. The proof of Theorem 12 thus requires a careful handling of new
technical complications arising from the marginal constraint in (1.1) for the adversary. Our
intermediate analysis will also help us establish the well-posedness of the system of PDEs (2.3)
for arbitrary initializations, a result of interest in its own right.

In our second main result, Theorem 35 (see also Theorem 36), we study the long-time
behavior of the system of PDEs (2.3) when initialized appropriately. In particular, we prove
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that, under suitable assumptions, the time-average of these dynamics eventually reaches an
ε-Nash equilibrium of (1.1), a notion that we recall below.

Definition 3 (ε-Nash equilibrium) Given ε > 0, we say that (π∗,ν∗) is an ε-Nash equilibrium
for problem (1.1) if π∗

z = µ and

sup
π∈P(Z×Z) s.t. πz=µ

{U(π,ν∗)}− inf
ν∈P(Θ)

{U(π∗,ν)} ≤ ε. (2.4)

Theorem 35 is proved under appropriate assumptions that include the concavity-convexity
of U (in the linear interpolation sense) and a convenient, admittedly strong, assumption on
the initializations of the variables π and ν. These strong assumptions, however, are analogous
to ones considered in the study of training dynamics in overparameterized regimes in the
non-adversarial setting. The strong assumption on the initialization of the variable π can be
dropped under an additional Polyak-Lojasiewicz (PL) condition for U in the π variable (see
Assumption 39). As discussed in Example 41, this assumption is not unreasonable in practical
settings of interest, and in the scenario described in subsection 1.1 it is satisfied by assuming
that the adversary has a sufficiently small budget (i.e., a sufficiently large ca). Under this
additional PL condition, Theorem 42 (see also Theorem 43) states that it is possible to
modify the dynamics in Algorithm 1 to create a gap in speed profiting from the additional
concavity to obtain rapid convergence in the adversarial direction. Intuitively, in the modified
dynamics one can quickly obtain good approximations for the inner maximization problems to
obtain dynamics that resemble those of gradient descent for the outer minimization in (1.1).
The effect of this analysis is that the requirements for convergence toward approximate Nash
equilibria are relaxed.

2.1. Literature review
In this section we provide a brief literature review of the topic of adversarial robustness in
supervised learning settings, focusing on some developments in recent years. Since the literature
in this field has expanded very quickly and spans a variety of disciplines our review is necessarily
non-exhaustive.

Many mathematical approaches that aim to enforce robustness in learning models can be
categorized under the term "Distributionally Robust Optimization" (DRO), as formulated in
(1.2). The DRO formulation has the advantage of clearly casting adversarial robustness in
supervised learning as a minmax game. Several studies have explored adversarial training in
the DRO framework, considering various learning models such as linear regression, neural
networks, and other parametric settings [4, 5, 11, 29, 36, 45, 48]. Other works have focused
on solving the problem by replacing the inner maximization associated with the adversary’s
actions with a regularized risk surrogate. For example, [19, 34, 37, 41, 42, 54] and [22] derived
this surrogate when the adversary is restricted to positions within a distance ϵ from the
training data, expanding the inner maximization objective around ϵ = 0. A few recent studies
have discussed adversarial robustness in the context of agnostic learners, where no modeling
assumptions are made about the learner. This setting can be understood as a limiting case
of a problem with a very expressive family of learning models and provides lower bounds for
more general adversarial robustness problems. Some of these works include: [2, 3, 20, 39, 40].
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Another approach is taken in [8, 9, 23, 24], where adversarial robustness in classification settings
is linked to geometric variational problems.

There are other works in the literature that consider the computation of minmax problems
over spaces of probability measures by using particle methods like we do in this paper. In
particular, we would like to highlight our contributions in relation to two papers in this category
that are closely related to ours [17, 51], both of which adapt ideas presented in [12] to minmax
problems. In the work [17] and the very recent work [51] the authors consider minmax problems
with a linear (with respect to the measures) payoff function. Our setting is broader as it covers
not only non-linear objectives but also studies the effect on a coupling constrained by one of the
components being pinned to an input function. This level of generality allows us to study broad
cases of adversaries in the space of measures (DRO version of adversarial training). It is worth
remarking that under the simpler setting in [51], the authors are able to show the exponential
convergence (toward an actual Nash equilibrium), without assuming time separation of scales,
of an algorithm with a similar geometric motivation than ours. In its practical implementation,
both algorithms look very similar. The convergence in [51] is obtained under similar regularity
hypotheses but assuming in addition that the (unique) solution is supported on a discrete set.
Since we do not a priori assume the existence of a unique solution, our results are weaker in
terms of convergence rate, as well as due to the fact that we can only recover approximate
Nash equilibria. Other work of interest in the linear payoff setting, where a KL-regularization
is introduced and then gradually turned off to deduce convergence of dynamics toward the
Nash equilibrium of the original problem, is [33].

We emphasize that by considering the restriction πz = µ in the minmax problem we can
cover a wider variety of settings relevant to the study of adversarial machine learning than
previous works in the literature. This gain in generality naturally comes at the expense of
additional technical challenges. To point at some of these specific challenges, notice that when
the payoff is non-linear its first variations are measure dependent, already suggesting the need
for a more delicate analysis at the moment of proving the convergence of particle dynamics
toward mean-field limits. The difficulties in our analysis are heightened by the presence of
conditional distributions in the evolving systems. In order to handle these additional terms,
we must recur to new ideas and constructions. In the end, the general mean-field analysis that
we present can be also combined with lower-semicontinuity arguments to justify certain steps
in the second part of the paper, i.e., the analysis of the long-time behavior of the mean-field
system, providing in this way alternatives to approaches in the literature that may not be fully
justified; we discuss this in section 5 below.

Moreover, we believe that some of the ancillary results we obtained to support the targeted
level of generality of our model may be of interest in their own right.

We also highlight our study of the non-convex concave setting delineated in subsection
5.1. Indeed, we may exploit the additional strong concavity that is gained when considering
adversaries with low budget to obtain stronger convergence results toward approximate Nash
equilibria of the adversarial problem. Other papers that have explored this setting include [45],
but the results presented there only guarantee, for the learner, convergence toward stationary
points (although it is worth highlighting that they do not consider the mean-field regime).

In summary, our work is complementary to other papers such as [12, 17, 45, 51] (among
others). Our results can be viewed as analogue to those in works such as [13, 52], which
have studied the global convergence of (non-robust) training of shallow neural networks in the
mean-field regime.
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2.2. Outline

The remainder of the paper is organized as follows.
In section 3 we introduce required definitions and notation, and we briefly discuss the

ascent-descent interpretation of Algorithm 1.
In section 4 we present the mean field analysis of the continuous-time version of our

algorithm, i.e., the system of ODEs (2.1). That is, we state and prove our first main result,
Theorem 12. We also discuss important auxiliary results that are used later in section 5.

In section 5 we discuss the long-time behavior of the mean-field system obtained in Theorem
12 and state conditions under which these mean-field dynamics produce approximate Nash
equilibria for problem (1.1). In the first main result in section 5, Theorem 35, we assume
strong conditions on the initialization of the mean field dynamics for both players. In Theorem
42, on the other hand, we drop the assumption on initialization for the variable π by imposing
an additional PL condition on the payoff function U and by introducing a small modification
to the dynamics discussed in the previous main result.

In section 6 we discuss some numerical results of an implementation of our algorithm when
used in an actual machine learning task. Our main purpose with such an implementation is
to illustrate that the algorithm is effective to obtain adversarially robust classifiers even away
from the asymptotic regimes studied theoretically in the paper.

We wrap up the paper in section 7, where we present some conclusions and discuss future
directions for research.

3. Preliminaries

Throughout this section we introduce some mathematical definitions and notation that we will
use in the remainder. We will also briefly discuss the geometric motivation behind Algorithm
1.

In the sequel, we use the p-Wasserstein distance Wp (with p ≥ 1) to compare probability
distributions over a given metric space (M,d(·, ·)). The metric d(·, ·) that will be used in each
instance will be specified in context. For example, in Assumption 8 the 1-Wasserstein distances
considered are the ones relative to the Euclidean metric in each corresponding Euclidean space.

Definition 4 Given two probability measures υ,υ′ over M, their p-Wasserstein distance
Wp(υ,υ′) is defined according to

W p
p (υ,υ′) := inf

Υ∈Γ(υ,υ′)

∫
M×M

(d(u,u′))pdΥ(u,u′),

where Γ(υ,υ′) is the set of couplings between υ and υ′. We will use P(M) to denote the space
of Borel probability measures over M.

3.1. Gradient ascent-descent interpretation of Algorithm 1
In this section we summarize the geometric motivation behind the system of equations (2.3) and
its discretization in Algorithm 1. The interested reader can find a more detailed discussion in
Appendix B, or consult several related references like [14, 21, 28, 32, 46]. In short, system (2.3)
can be interpreted as the projection of a Wasserstein gradient flow in an appropriate lifted



9

space. It is also possible to interpret the resulting equations as gradient flows relative to a
certain Wasserstein-Fisher-Rao metric over the original probability space (see our Remark 64).
While both interpretations are valid, in the main text we avoid explicitly mentioning the WFR
metric and stick with the Wasserstein interpretation given that several of our computations
take place explicitly on the lifted spaces.

3.1.1. Lifted space
We introduce two projection maps between probability spaces that will play an important role
in our derivations. We use the same name for both of them for convenience, and we expect no
ambiguity given the context.

Let M+(Θ) (respectively M+(Z2)) denote the space of finite positive measures over Θ
(respectively Z2). We consider the projection map from either P(Θ ×R+) onto M+(Θ), or
from P(Z2 ×R+) onto M+(Z2), characterized by the respective identities∫

φ(θ)d(Fσ)(θ) =
∫

αφ(θ)dσ(θ,α);
∫

φ(z, z̃)d(Fγ)(z, z̃) =
∫

αφ(z, z̃)dγ(z, z̃,α) (3.1)

for all regular enough test functions φ from Θ or Z2 into R. The map F allows us to lift an
energy functional defined over M+(Θ) (or M+(Z2)): we can then consider gradient descent
dynamics in the lifted space, and, in turn, these lifted dynamics can be projected down to the
original space of measures to generate an evolution there.

Remark 5 Notice that the function F is a surjection. Indeed, let ν ∈ M+(Θ) and let M =
ν(Θ), which we first assume is non-zero. Consider the probability measure σ = µ

M ⊗ δM . It
is straightforward to show that Fσ = ν. In case M = 0, which means ν is the measure that
is identically equal to zero, we may take σ to be any probability measure over Θ × [0,∞) that
satisfies σ(Θ × {0}) = 1 to conclude that Fσ = ν. Clearly, the same argument holds for F :
P(Z2 ×R+) → M+(Z2). Finally, while F is surjective, it is worth highlighting that it is far
from being one to one.

3.2. Ascent-descent equations in the lifted space
In an Euclidean space, where one has a target payoff function (say U) for which one wishes to
find its saddles, one could consider a system of the form{

q̇t = −∇qU(qt,pt)
ṗt = ∇pU(qt,pt),

or a projected version thereof in case additional constraints on the variables p,q are present.
Analogous systems can be considered in more general Riemannian settings. In particular, by
considering the Riemannian structure for the space P(Θ × [0,∞)) presented in Appendix B,
one obtains the following gradient ascent-descent equations in the space of measures:{

∂tγt = −div(z,z̃),ω(γtvγ(z, z̃,ω)),
∂tσt = divθ,α(σtvσ(θ,α)),

(3.2)

where

vγ(z, z̃,ω) =
(

0,ηt∇z̃Uπ(πt,νt;z, z̃),κω

(
Uπ(πt,νt;z, z̃)−

∫
Uπ(πt,νt;z, z̃′)dπt(z̃′|z)

))
,
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vσ(θ,α) =
(

ηt∇θU(πt,νt;θ),κα(Uν(πt,νt;θ)−
∫

Uν(πt,νt;θ′)dνt(θ′))
)

,

and πt = Fγt, νt = Fσt.
Notice that here we allow the scaling factor η to change in time. This change does not affect

the above discussion but warrants us with additional flexibility that is used in the convergence
analysis. Section 4 is devoted to studying equation (3.2). In particular, we prove well-posedness
and show that system (3.2) can be recovered as a suitable limit of systems of interacting
particles. Looking forward to applications in section 5, in section 4 we will actually study a
slightly more general system than (3.2).

To finally return to the original system (2.3) it now suffices to project the dynamics (3.2)
via the map F as stated in Proposition 6, whose proof is in appendix B.6.

Proposition 6 Suppose that (γ,σ) solves the lifted dynamics (3.2). Then the pair πt =
Fγt, νt = Fσt solves the system (2.3).

The bottom line is that, by studying the system (3.2) and its approximation with particle
systems, we will be implicitly studying the system (2.3) and its approximation with particle
systems. System (3.2), however, has the advantage of having a direct Lagrangian interpretation
that we exploit.

3.2.1. Conservation of mass
Let us now remark that the system (2.3) with arbitrary initialization satisfies certain
conservation of mass properties.

Remark 7 Note that the dynamics in (2.3) imply that the first marginal of π (πz) remains
constant. This can be verified by considering a test function ϕ : Z → R and observing that

d

dt

∫
Z×Z

ϕ(z)dπt(z, z̃) = ηt

∫
Z×Z

∇z,z̃ϕ(z) · (0,∇z̃Uπ)dπt(z, z̃)

+κ

∫
Z×Z

ϕ(z)
(

Uπ(z, z̃)−
∫

Uπ(z, z̃′)dπt(z̃′|z)
)

dπt(z, z̃)

= κ

∫
Z

ϕ(z)
∫

Z

(
Uπ(z, z̃)−

∫
Uπ(z, z̃′)dπt(z̃′|x)

)
dπt(z̃|z)dπt,z(z)

= 0.

Similarly, one can show that νt and πt have a total mass equal to one for all times, provided
ν0,π0 are probability measures.

3.3. Notation
In the sequel, we will use the following notation:

– µ,µ̃ probability measures over Z. µ is the observed data distribution and µ̃ represents an
adversarial perturbation of µ.
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– π is a measure over Z × Z, and we write points in the support of π as (z, z̃). z can be
interpreted as an observed data point, while z̃ corresponds to a perturbed data point.

– πz will be used to denote the first marginal of π, whenever π is a probability measure. π(·|z)
will be used to denote the conditional distribution of the second variable given that the first
one is equal to z.

– γ will represent a probability measure over the lifted space Z2 ×R+.
– ν will represent a measure over Θ.
– σ will denote measures over the lifted space Θ×R+.
– F is the projection map from either P(Θ ×R+) onto M+(Θ), or from P(Z2 ×R+) onto

M+(Z2).
– γ will denote a probability measure over the space C([0,T ],Z ×R+), and σ will be used to

denote probability measures over the space C([0,T ],Θ×R+). The space C([0,T ],Θ×R+) is
the space of continuous functions from the interval [0,T ] into Θ×R+ and C([0,T ],Z2 ×R+)
is defined analogously. These spaces will be endowed with the metric of uniform convergence.

– We will use γ̌ to represent probability measures over the lifted space Z2 ×R2
+ (notice the

additional coordinate), and σ̌ will be used to represent probability measures over the lifted
space Θ×R2

+.
– γ̌ will denote a probability measure over the space C([0,T ],Z ×R2

+), and σ̌ will be used to
denote probability measures over the space C([0,T ],Θ×R2

+).
– U(π,ν) denotes the payoff associated to the measures π and ν, and Uπ and Uν denote the

first variations of U in the coordinates π and ν, respectively.
– We will use H(·||·) to denote the KL-divergence, or Shannon relative entropy, between two

arbitrary probability measures defined over the same space. That is, given υ,υ′ probability
measures, H(υ′||υ) is defined as

∫
log(dυ′

dυ )dυ′, if υ′ ≪ υ, and +∞ otherwise.

4. From particle system to mean-field PDE

Our first result, which describes the large number of particles limit (N → ∞) of the system
(2.3) when initialized at πN

0 and νN
0 , is deduced under the following assumptions on U and its

first variations.

Assumption 8 We assume that there exist constants M,L > 0 such that

• U is bounded and Lipschitz with respect to the 1-Wasserstein distance. That is,

|U(π,ν)| ≤ M ; U(π1,ν1)−U(π2,ν2) ≤ L(W1(π1,π2)+W1(ν1,ν2)).

• The first variations of U are bounded and Lipschitz, i.e.,

|Uπ(π,ν;z, z̃)|+ |Uν(π,ν;θ)| ≤ M

|Uπ(π1,ν1;z1, z̃1)−Uπ(π2,ν2;z2, z̃2)| ≤ L(W1(π1,π2)+W1(ν1,ν2)+ |z1 −z2|+ |z̃1 − z̃2|)

|Uν(π1,ν1;θ1)−Uν(π2,ν2;θ2)| ≤ L(W1(π1,π2)+W1(ν1,ν2)+ |θ1 −θ2|).
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• The gradients of the first variations of U are bounded and Lipschitz, i.e.,

|∇z̃Uπ(π,ν;z, z̃)|+ |∇θUν(π,ν;θ)| ≤ M

|∇z̃Uπ(π1,ν1;z1, z̃1)−∇z̃Uπ(π2,ν2;z2, z̃2)| ≤ L(W1(π1,π2)+W1(ν1,ν2)+ |z1 −z2|+ |z̃1 − z̃2|)

|∇θUν(π1,ν1;θ1)−∇θUν(π2,ν2;θ2)| ≤ L(W1(π1,π2)+W1(ν1,ν2)+ |θ1 −θ2|).

In the above, π,πi ∈ P(Z2), ν,νi ∈ P(Θ), (zi, z̃i) ∈ Z2, and θi ∈ Θ. The sets Θ and Z2 are
compact subsets of the Euclidean spaces Rd and R2d′ , respectively. We assume that these sets
have Lipschitz boundaries.

Since the sets Θ and Z2 have been assumed to be bounded, in order to simplify the writing
of our proofs and guarantee that all the dynamics to be studied in the paper stay within the
domains Θ and Z2 we make the following technical assumption:

Assumption 9 At all points z̃ at the boundary of Z and at all points θ at the boundary of
Θ, it holds that the vector ∇z̃Uπ(π,ν;z, z̃) points toward the interior of Z, regardless of π,ν,z;
and the vector ∇θUν(π,ν;θ) points toward the interior of Θ, regardless of π,ν.

By restricting our attention to compact sets Θ,Z2 we make it simpler to verify the
boundedness and Lipschitz conditions in Assumption 8 as these conditions reduce to weaker
properties like local-Lipschitzness. Notice that in many applications there are natural bounds
on the supports of the desired solution1. Assumption 9, on the other hand, guarantees that all
dynamics considered in the paper remain in the domains Θ and Z2 (e.g., the ODE dynamics
(4.1)) below. For Assumption 9 to make sense one requires the Lipschitz assumption on the
boundary of Θ,Z2 (indeed, the reader is invited to consider the case of Θ or Z2 being a
Cantor set). Now, in order to satisfy the constraint imposed by this assumption, we can
work with a modified functional U that strongly penalizes leaving the domains as we move
closer to their borders. In particular, to a given U satisfying Assumptions 8 we can add,
if needed, an exogenous term of the form

∫
φ2(θ)dν(θ) −

∫
φ1(z̃)dπz̃, where the φ1,φ2 are

confining potentials: they are zero away from the boundary of the domains and grow as one
approaches the boundaries. We reiterate that this assumption is made to simplify the writing
of our proofs by sparing us from introducing additional terms like projection operators. We
emphasize that Assumption 9 does not have an effect on the convexity properties (in linear or
Wasserstein sense) of our loss function and the addition of confining potentials as described
does not play any role in our analysis. Throughout the entire paper we adopt Assumption 9,
even if not mentioned explicitly.

Example 10 In the context of the motivating example in subsection 1.1 we see that when
Θ and Z are bounded balls with respect to the ℓp, p ≥ 1, norm the required conditions on the
spaces would be satisfied, and so all conditions in Assumption 8 are satisfied when one considers
a loss function that is twice differentiable and an activation function whose first derivative is
Lipschitz. This is the case, for example, for the squared-loss and the squared ReLu or sigmoid
activations.

1 To give only one example, images are typically represented by pixels which have a lower and upper values
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Let us now introduce an enlarged system of ODEs closely related to the system (2.1). For
i = 1, . . . ,N , let

dZi
t = 0

dZ̃i
t = ηt∇z̃Uπ(πN

t ,νN
t ;Zi

t , Z̃i
t)dt

dωi
t = κωi

t

(
Uπ(πN

t ,νN
t ;Zi

t , Z̃i
t)−

∫
Uπ(πN

t ,νN
t ;Zi

t , z̃′)dπN
t (z̃′|Zi

t)
)

dt

dϑi
t = −ηt∇θUν(πN

t ,νN
t ;ϑi

t)dt

dαi
t = −καi

t

(
Uν(πN

N ,νN
t ;ϑi

t)−
∫

Uν(πN
t ,νN

t ;θ′)dνN
t (θ′)

)
dt

dβi
t = 0

dϱi
t = 0;

(4.1)

with given initial condition (Zi
0, Z̃i

0,ωi
0,ϑi

0,αi
0,βi

0,ϱi
0) (possibly random) and

γ̌N
t := 1

N

N∑
i=1

δ(Zi
t ,Z̃i

t),ωi
t,βi

t
, γN

t := 1
N

N∑
i=1

δ(Zi
t ,Z̃i

t),ωi
t
, πN

t := F [γN
t ] = 1

N

N∑
i=1

ωi
tδ(Zi

t ,Z̃i
t),

σ̌N
t := 1

N

N∑
i=1

δϑi
t,ωi

t,ϱi
t
, σN

t := 1
N

N∑
i=1

δϑi
t,αi

t
, νN

t := F [σN
t ] = 1

N

N∑
i=1

αi
tδϑi

t
.

(4.2)

The new variables β and ϱ have been added to the system for convenience: in particular, the
extra degrees of freedom that come from the different ways to initialize these variables will come
in useful in the second half of section 4.3. However, as can be seen from (4.1), these variables
do not affect the evolution of the remaining variables, which follow the dynamics (2.1).

Before stating the main result of this section, it is worth introducing one last definition that
we use to characterize the type of consistency requirement for the initialization in the particle
system in the N → ∞ limit.

Definition 11 Given two probability measures γ,γ′ over Z ×Z × [0,∞), we define

W KR
1 (γ,γ′) := inf

υ∈ΓOpt(F [γ]z,F [γ′]z)

∫
W1(γ(·|z),γ′(·|z′))dυ(z,z′).

In the above, F [γ]z is the first marginal of F [γ] (we recall F was introduced in (3.1)) and
F [γ′]z is interpreted analogously; ΓOpt(F [γ]z,F [γ′]z) stands for the set of optimal couplings
between F [γ]z and F [γ′]z that realize the 1-Wasserstein distance between F [γ]z and F [γ′]z;
finally, γ(·|z) (likewise for γ′(·|z)) is the conditional of the second and third variables given the
first one has been fixed.

The above construction is related to the notion of Knothe-Rosenblatt rearrangement (see
chapter 2.3 in [43] and also [6]), and to the notion of fibered optimal transport introduced in
[38].
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We are ready to state our first main result precisely.

Theorem 12 (Convergence particle system) Let T > 0, and suppose that Assumptions 8 and 9
hold. Let π̄0, ν̄0 be probability measures with π̄0,z = µ and suppose that γ0 and σ0 are probability
measures satisfying Fγ0 = π̄0 and Fσ0 = ν̄0, where F is defined in (3.1).

Let γN
t ,σN

t

γN
t := 1

N

N∑
i=1

δ(Zi
t ,Z̃i

t),ωi
t
, σN

t := 1
N

N∑
i=1

δϑi
t,αi

t
,

for initial values ωi
0,αi

0 bounded from above by a constant D (uniformly over N) and Zi
0 in the

support of µ, and evolutions as in (4.1).
Finally, suppose that, as N → ∞,

W KR
1 (γN

0 ,γ0) → 0, and W1(σN
0 ,σ0) → 0, (4.3)

where W KR
1 was introduced in Definition 11.

Then, as N → ∞,
sup

t∈[0,T ]
{W1(πN

t ,πt)+W1(νN
t ,νt)} → 0,

where πt,νt solve (2.3) with initializations π̄0 and ν̄0.

In simple terms, the above theorem states that our particle dynamics are consistent when
their initializations are consistent in a suitable sense. This theorem is a consequence of a
propagation of chaos result that we will develop gradually. Indeed, the structure of the dynamics
in (2.3) involving a conditional contractive term escapes the scope of established results in
mean-field analysis with deterministic trajectories (like Dobrushin’s analysis, see [15]). Our
own analysis revisits and goes beyond the underlying argument behind these known results.
In particular, our propagation of chaos result imposes stronger initialization assumptions,
ultimately reflected in the

stronger consistency guarantee required for the initialization of the variable γ (and thus
also π) in Theorem 12.

Remark 13 (Constructing approximate initializations in Theorem 12) Fix π0 and ν0 and
define γ0 = π0 ⊗ δ1. That is, γ0 is the product of π0 with a Dirac delta at 1. Likewise, let
σ0 = ν0 ⊗ δ1. Evidently, Fγ0 = π0,Fσ0 = ν0.

We use randomization to construct approximate initializations satisfying the assumptions
in Theorem 12. Let ξ1, . . . , ξn, . . . be a sequence of i.i.d. samples from π0,z, and for each i ∈ N
let Z̃i1, . . . , Z̃im, . . . , be i.i.d. samples from π0(·|ξi). Let θ1, . . . ,θn, . . . be i.i.d. samples from ν0.

For fixed n,m and i ≤ n and j ≤ m, set ωij = αij = 1, Zij = ξi, and ϑij = θi. Consider the
measures

πn,m
0 := 1

nm

n∑
i=1

m∑
j=1

δ(Zij ,Z̃ij), γn,m
0 := 1

nm

n∑
i=1

m∑
j=1

δ(Zij ,Z̃ij ,ωij)

and

νn,m
0 := 1

nm

n∑
i=1

m∑
j=1

δϑij
, σn,m

0 := 1
nm

n∑
i=1

m∑
j=1

δ(ϑij ,αij).
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Evidently, Fγn,m
0 = πn,m

0 and Fσn,m
0 = νn,m

0 , and the Zij can be assumed to belong to the
support of π0,z. It is also clear that the measure γn,m

0 has support in Z2 × [0,1] and σn,m
0 has

support in Θ× [0,1].
By Lemma 59 in Appendix A.3, we can conclude that there exists a sequence {(nk,mk)}k∈N

such that, as k → ∞, the measures σ
Nk
0 := σ

nk,mk
0 and γ

Nk
0 := γ

nk,mk
0 satisfy (4.3) with

probability one.

Remark 14 We highlight that in order to satisfy the first condition in (4.3) we need to
consider the iterative sampling for the variables Zij , Z̃ij illustrated in Remark 13, while in
general i.i.d. sampling from π0 does not provide a valid initialization for the particle system.
This is because the first condition in (4.3) is a stronger condition than simply requiring
W1(γN

0 ,γ0) → 0; see Remark 60 in Appendix A.
Finally, we highlight that the assumption on the conditional distributions at initialization

imposed in (4.3) is used to control the conditional distributions of π as the systems evolve in
time.

As mentioned earlier, Theorem 12 relies on the fact that, in the large N limit, system
(4.1) is expected to behave like a system where the interactions in (4.1) have been replaced by
mean-field dynamics. Such a system reads as follows. For i = 1, . . . ,N , let

dZmf,i
t = 0

dZ̃mf,i
t = ηt∇z̃Uπ(πmf

t ,νmf
t ;Zmf,i

t , Z̃mf,i
t )dt

dωmf,i
t = κωmf,i

t

(
Uπ(πmf

t ,νmf
t ;Zmf,i

t , Z̃mf,i
t )−

∫
Uπ(πmf

t ,νmf
t ;Zmf,i

t , z̃′)dπmf
t (z̃′|Zmf,i

t )
)

dt

dϑmf,i
t = −ηt∇θUν(πmf

t ,νmf
t ;ϑmf,i

t )dt

dαmf,i
t = −καmf,i

t

(
Uν(πmf

N ,νmf
t ;ϑmf,i

t )−
∫

Uν(πmf
t ,νmf

t ;θ′)dνmf
t (θ′)

)
dt

dβmf,i = 0

dϱmf,i = 0;
(4.4)

with the same initial conditions as in (4.1), and where πmf
t = F(γt),νmf

t = F(σt) and (γ,σ)
solves (3.2) with initial condition γ0,σ0 (in section 4.1 we prove the well-posedness of this
equation); we recall that the map F has been introduced in Section 3.1. The fundamental
difference between the mean-field system (4.4) and the original particle system (4.1) is that
the measures determining the dynamics in (4.4) can be treated as fixed and independent of the
evolving particles, while in system (4.1) there is an explicit dependence of the driving dynamics
on the empirical measures πN ,νN associated to the underlying evolving particles.

In order to deduce a propagation of chaos result for the system (4.1), we need to show that
the mean-field system (4.4) is well-defined and that we can control how far the evolutions (4.1)
and (4.4) are from each other; we show this under Assumptions 8. To this aim, it is convenient
to introduce some extra mathematical structure that will allow us to use standard analytical
arguments: we will work on spaces of measures over continuous paths on Z2 ×R2

+ and Θ×R2
+
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and eventually use a fixed point argument to establish well-posedness of a mean-field equation.
We start by introducing a family of particle evolutions that will play an important role in our
analysis.

Let us fix T > 0, and let AT be the set of pairs (γ̌, σ̌) ∈ P(C([0,T ],Z2 ×R2
+))×P(C([0,T ],Θ×

R2
+)) such that:

1. Fσt and Fγt are probability measures for all t ∈ [0,T ].
2. F [γt](·×Z) = F [γ0](·×Z) ∀t ∈ [0,T ].

Here, as well as in the remainder, for a given γ̌ we denote by γ the pushforward of γ̌ by the
map {(zt, z̃t,ωt,ϱt)} 7→ {(zt, z̃t,ωt)}, and abusing notation slightly, in the remainder we may
use F γ̌t and Fγt indistinctly; we can analogously relate σ̌ and σ.

Associated to (γ̌, σ̌) ∈ AT , we consider the multidimensional ODE:

dZ γ̌,σ̌
t = 0

dZ̃ γ̌,σ̌
t = ηt∇z̃Uπ(πt,νt;Z γ̌,σ̌

t , Z̃ γ̌,σ̌
t )dt

dωγ̌,σ̌
t = κωt

(
Uπ(πt,νt;Z γ̌,σ̌

t , Z̃ γ̌,σ̌
t )−

∫
Uπ(πt,νt;Z γ̌,σ̌

t , z̃′)dπt(z̃′|Z γ̌,σ̌
t )

)
dt

dϑγ̌,σ̌
t = −ηt∇θUν(πt,νt;ϑγ̌,σ̌

t )dt

dαγ̌,σ̌
t = −καt

(
Uν(πt,νt;ϑγ̌,σ̌

t )−
∫

Uν(πt,νt;θ′)dνt(θ′)
)

dt

dβγ̌,σ̌
t = 0

dϱγ̌,σ̌
t = 0

πt = F(γt), νt = F(σt),

(4.5)

with initial conditions

((Z γ̌,σ̌
0 , Z̃ γ̌,σ̌

0 ),ωγ̌,σ̌
0 ,ϱγ̌,σ̌

0 ) = ((ξ, ξ̃),ω0,ϱ0) ∼ γ̌0, (ϑγ̌,σ̌
0 ,αγ̌,σ̌

0 ,βγ̌,σ̌
0 ) = (ϑ,α0,β0) ∼ σ̌0. (4.6)

Note that with the condition (γ̌, σ̌) ∈ AT we can make sense of the term πt(·|Z γ̌,σ̌
t ) in equation

(4.5). Indeed, let us denote by πt,z the marginal on the z coordinate of πt. By assumption,
πt,z = π0,z, while Z γ̌,σ̌

t = Z γ̌,σ̌
0 can be assumed to be in the support of π0,z without the

loss of generality. The conditional distribution πt(·|Z γ̌,σ̌
t ) is thus well-defined thanks to the

disintegration theorem.
Equation (4.5) is a multidimensional classical ODE describing an isolated particle following

dynamics driven by an exogenous measure. A key observation is that, under Assumptions
8, equation (4.5) is driven by Lipschitz coefficients and so is well-posed by Caratheodory’s
existence theorem (see Theorem 5.3 in [27]). Assumption 8 and Gronwall’s inequality further
imply a bound on ωγ̌,σ̌ and αγ̌,σ̌. We summarize these observations in the next proposition for
easy reference.
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Proposition 15 Under Assumption 8, there exists a unique solution to (4.5) for any fixed
initialization. Moreover, we have

ωγ̌,σ̌
t ∈ [0,ω0e2κMt], αγ̌,σ̌

t ∈ [0,α0e2κMt]; ∀T ≥ t > 0.

For a given T > 0, let us now consider the map:

ΨT : AT 7→ P(C([0,T ],Z2 ×R2
+))×P(C([0,T ],Θ×R2

+))

defined by

ΨT (γ̌, σ̌) = (Ψ1
T (γ̌, σ̌),Ψ2

T (γ̌, σ̌)) := (Law[(Z γ̌,σ̌, Z̃ γ̌,σ̌),ωγ̌,σ̌,ϱγ̌,σ̌],Law[ϑγ̌,σ̌,αγ̌,σ̌,βγ̌,σ̌]),

i.e., ΨT maps paths in the space of measures in the lifted space to itself. Moreover, ΨT maps
AT into itself, as we state in the next lemma.

Lemma 16 Under Assumption 8, it follows

ΨT (AT ) ⊆ AT .

Moreover, for every (γ̌, σ̌) ∈ AT we have

F [(Ψ1
T (γ̌, σ̌))t](·×Z) = F [γ̌t](·×Z).

Proof This result is immediate from Remark 7 and the fact that dZ γ̌,σ̌
t = 0. □

For technical reasons, it will be convenient to introduce a version of the set AT whose
elements have supports satisfying a certain boundedness condition. Precisely, for a given T > 0
and D > 0, we let AT,D be the set

AT,D := {(γ̌, σ̌) ∈ AT s.t. γ̌t(Z2 × [0,De2κMt]×[0,D]) = 1, σ̌t(Θ×[0,De2κMt]×[0,D]) = 1, ∀t ∈ [0,T ]}.

In particular, for (γ̌, σ̌) ∈ AT,D, the weights (ω0,ϱ0) and (α0,β0) obtained as in (4.6) can
be assumed to belong to [0,D]2. Combining with Proposition 15, we can deduce that for
(γ̌, σ̌) ∈ AT,D the weights ωγ̌,σ̌

t ,αγ̌,σ̌
t in the dynamics (4.5) can be bounded above by De2κMt.

We summarize this in the following lemma.

Lemma 17 For every T,D > 0 we have ΨT (AT,D) ⊆ AT,D.

Under Assumptions 8, we prove that we can control the distance between the image ΨT of
two pairs (γ̌1, σ̌1) and (γ̌2, σ̌2) in AT,D with their own distance. Given p ≥ 1, we use

W p
t,p(υ,υ′) := inf

Υ∈Γ(υ,υ′)

∫
sup

s∈[0,t]
|us −vs|pdΥ(x,y), (4.7)

to compare two probability measures over the same path space. In particular, we will use these
distances to compare measures over paths in any of the lifted spaces.
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First, we show a continuity property for the map F when considering a restriction of its
domain.

Lemma 18 Let σ,σ′ be two probability measures over Θ× [0,D], where D is a fixed constant,
and suppose that Fσ and Fσ′ are also probability measures.

Then
W p

p (F(σ),F(σ′)) ≤ CΘ,p,DWp(σ,σ′),
where the constant CΘ,p,D can be written as CΘ,p,D = diam(Θ)p−1(diam(Θ)+D).

In particular, when its domain has been restricted, the map F is Lipschitz in the
1-Wasserstein sense.

Proof Let us start by noticing that the measures σ for which Fσ is a probability measure are
precisely the measures satisfying

∫
αdσ(θ,α) = 1.

We first prove the result for p = 1.
Assume that σ and σ′ take the form σ = σn = 1

n

∑n
i=1 δ(θi,αi) and σ′ = σ′

n = 1
n

∑n
i=1 δ(θ′

i
,α′

i
).

It is well known that in that case there exists a permutation T : {1, . . . ,n} 7→ {1, . . . ,n} such
that W1(σn,σ′

n) = 1
n

∑n
i=1 |(θi,αi) − (θ′

T (i),α
′
T (i))|. Now, we can write the measures Fσn and

Fσ′
n as

Fσn = 1
n

n∑
i=1

min{αi,α
′
T (i)}δθi

+ 1
n

n∑
i=1

(αi −min{αi,α
′
T (i))}δθi

and

Fσ′
n = 1

n

n∑
i=1

min{αi,α
′
T (i)}δθ′

i
+ 1

n

n∑
i=1

(α′
T (i) −min{αi,α

′
T (i))}δθ′

i
.

Notice that the mass from 1
n

∑n
i=1 min{αi,α

′
T (i)}δθi

can be used to cover for the mass
demanded in 1

n

∑n
i=1 min{αi,α

′
T (i)}δθ′

i
. We carry out the following mass transfer: for

each i, we send min{αi,α
′
T (i)} units of mass from θi to θ′

T (i). The total cost of
this mass transfer is 1

n

∑n
i=1 min{αi,α

′
T (i)}|θi − θ′

T (i)| ≤ DW1(σn,σ′
n). Finally, the mass

1
n

∑n
i=1(αi −min{αi,α

′
T (i))}δθi

can be used to cover for the mass demanded in 1
n

∑n
i=1(α′

T (i) −
min{αi,α

′
T (i))}δθ′

i
. This mass transfer can be carried out in any way, the important point being

that the total cost of such a mass transfer will not be larger than the total amount of mass to
be transferred 1

n

∑n
i=1(αi −min{αi,α

′
T (i)}) (which is less than W1(σn,σ′

n)) times the diameter
of the set Θ. The bottom line is that W1(Fσn,Fσ′

n) ≤ (D +diam(Θ))W1(σn,σn).
We can extend to arbitrary probability measures σ,σ′ by noticing that: 1) any probability

measure σ can be approximated in the weak sense by empirical probability measures σn for
growing n; 2) the map F is continuous in the weak sense (as can be verified directly); 3) given
that all measures are supported on a fixed bounded set, Wasserstein metrics are continuous
with respect to weak convergence.

Finally, to extend to arbitrary p ≥ 1, notice that W1(σ,σ′) ≤ Wp(σ,σ′), while W p
p (Fσ,Fσ′) ≤

diam(Θ)p−1W1(Fσ,Fσ′). □

Remark 19 Lemma 18 also holds, mutatis mutandis, for F when it acts on measures γ ∈
Z2 × [0,D].
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We now deduce an a priori control on the difference between solutions to (4.5) for two
different pairs of measures (γ̌i, σ̌i), i = 1,2.

Lemma 20 Let T,D > 0. Suppose that Assumption 8 holds. For i = 1,2, let (γ̌i, σ̌i) ∈ AT,D,
and denote by

ζi = (Z γ̌i,σ̌i
, Z̃ γ̌i,σ̌i

,ωγ̌i,σ̌i
,ϑγ̌i,σ̌i

,αγ̌i,σ̌i
,βγ̌i,σ̌i

,ϱγ̌i,σ̌i
)

the corresponding evolution determined by (4.5). We assume that Z γ̌i,σ̌i

0 (although possibly
random) belongs to the support of πi

0,z, the marginal on the z coordinate of πi
0. We also assume

that ωi
0,ϱi

0,αi
0,βi

0 ∈ [0,D].
Then there exists a constant KT,D, depending only on T , D, the function η, κ, and on the

constants in Assumption 8, such that for all t ∈ [0,T ] we have

E|ζ1
t − ζ2

t | ≤ E[ sup
0≤s≤t

|ζ1
s − ζ2

s |]

≤ KT,D

(
E|ζ1

0 − ζ2
0 |+

∫ t

0
{W1(γ̌1

s, γ̌2
s)+W1(σ̌1

s, σ̌2
s)+E

(
W1(π2

s(·|Z γ̌2,σ̌2

0 ),π1
s(·|Z γ̌1,σ̌1

0 ))
)

}ds

)
.

In the above, the expectation is taken over the prescribed (joint) initializations of the two
systems.

Proof From (4.5) and the Lipschitzness and boundedness conditions in Assumption 8 we get

| d

dt
(Z̃ γ̌1,σ̌1

t − Z̃ γ̌2,σ̌2

t )| = ηt

∣∣∣∣∇z̃Uπ(π1
t ,ν1

t ;Z γ̌1,σ̌1

t , Z̃ γ̌1,σ̌1

t )−∇z̃Uπ(π2
t ,ν2

t ;Z γ̌2,σ̌2

t , Z̃ γ̌2,σ̌2

t ))
∣∣∣∣

≤ ηtL{|Z γ̌1,σ̌1

t −Z γ̌2,σ̌2

t |+ |Z̃ γ̌1,σ̌1

t − Z̃ γ̌2,σ̌2

t |+W1(π1
t ,π2

t )+W1(ν1
t ,ν2

t )}.

By performing a similar analysis on the other components of the systems, and using the
assumption (γ̌i, σ̌i) ∈ AT,D and Assumption 8, we deduce that we can find a constant CT,D

such that for all t ∈ [0,T ]

|ζ1
t − ζ2

t | ≤ |ζ1
0 − ζ2

0 |

+CT,D

∫ t

0

{
|ζ1

s − ζ2
s |+W1(π1

s ,π2
s)+W1(ν1

s ,ν2
s )+W1(π1

s(·|Z γ̌1,σ̌1
s ),π2

s(·|Z γ̌2,σ̌2
s ))

}
ds.

Thus, using Gronwall’s inequality, we get that for all t ∈ [0,T ]

|ζ1
t − ζ2

t | ≤ sup
0≤s≤t

|ζ1
s − ζ2

s | (4.8)

≤ eCT,DT

(
|ζ1

0 − ζ2
0 |+CT,D

∫ t

0

{
W1(π1

s ,π2
s)+W1(ν1

s ,ν2
s )+W1(π1

s(·|Z γ̌1,σ̌1
s ),π2

s(·|Z γ̌2,σ̌2
s ))

}
ds

)
.
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Now, from the fact that Z γ̌i,σ̌i

s = Z γ̌i,σ̌i

0 , it follows

E
(

W1(π2
s(·|Z γ̌2,σ̌2

s ),π1
s(·|Z γ̌1,σ̌1

s ))
)

= E
(

W1(π2
s(·|Z γ̌2,σ̌2

0 ),π1
s(·|Z γ̌1,σ̌1

0 ))
)

.

From this and (4.8) it then follows that for all t ∈ [0,T ]

E[|ζ1
t − ζ2

t |] ≤ E[ sup
0≤s≤t

|ζ1
s − ζ2

s |]

≤ eCT,DT

(
|ζ1

0 − ζ2
0 |+CT,D

∫ t

0
W1(π1

s ,π2
s)+W1(ν1

s ,ν2
s )+E

(
W1(π2

s(·|Z γ̌2,σ̌2

0 ),π1
s(·|Z γ̌1,σ̌1

0 ))
)

ds

)
.

To conclude, we apply Proposition 15 and Lemma 18. □

In general, the terms E
(

W1(π2
s(·|Zγ2,σ2

0 ),π1
s(·|Zγ1,σ1

0 ))
)

cannot be bounded above by the
Wasserstein distance between π2

s and π1
s . We thus use a similar construction as in Definition

11. Given two collections π1 := {π1
s}0≤s≤T and π2 := {π2

s}0≤s≤T , we define their cost W̃t,1 by

W̃t,1(π1,π2) := sup
s∈[0,t]

inf
υs∈ΓOpt(π1

s,z,π2
s,z)

{∫
W1(π2

s(·|z2),π1
s(·|z1))dυs(z1,z2)

}
; (4.9)

in the above, we interpret πi
s,z as the marginal in the z coordinate of the measure πi

s, and
ΓOpt(π1

s,z,π2
s,z) is the set of optimal couplings realizing the 1-Wasserstein distance between

π1
s,z and π2

s,z.
With this notion in hand, we can state and prove the following corollary of Lemma 20.

Corollary 21 Suppose the assumptions in Lemma 20 hold. Assume further that γ̌1
0 = γ̌2

0 and
σ̌1

0 = σ̌2
0. Then there exists a constant C̃T,D depending only on M,L,T,D,κ,η such that for all

t ∈ [0,T ]

Wt,1(Ψ1
T (γ̌1, σ̌1),Ψ1

T (γ̌2, σ̌2))+Wt,1(Ψ2
T (γ̌1, σ̌1),Ψ2

T (γ̌2, σ̌2))+W̃t,1(Ψ1
T (π1),Ψ1

T (π2))

≤ tC̃T,D{Wt,1(γ̌1, γ̌2)+Wt,1(σ̌1, σ̌2)+W̃t,1(π1,π2)}.

Here we are abusing notation slightly to denote the collection of measures {F((Ψ1
T (γ̌i, σ̌i))s)}s∈[0,T ]

by Ψ1
T (πi).

Proof Take ζi for i = 1,2 in Lemma 20 with identical initial conditions, sampling (Z1
0 , Z̃1

0 ,ω1
0 ,ϱ1

0)
from γ̌0 and (ϑ1

0,α1
0,β1

0) from σ̌0. By the definition of the Wasserstein distance it follows

Wt,1(Ψ1
T (γ̌1, σ̌1),Ψ1

T (γ̌2, σ̌2))+Wt,1(Ψ2
T (γ̌1, σ̌1),Ψ2

T (γ̌2, σ̌2)) ≤ E sup
0≤s≤t

|ζ1
s − ζ2

s |.

Now, since γ̌1
0 = γ̌2

0 and (γ̌1, σ̌1),(γ̌2, σ̌2) ∈ AT , the optimal couplings υs in W̃t,1(π1,π2) are all
the identity coupling for the measure π1

0,z; the exact same is true for W̃t,1(Ψ1
T (π1),Ψ1

T (π2)). It
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follows that

Wt,1(Ψ1
T (γ̌1, σ̌1),Ψ1

T (γ̌2, σ̌2))+Wt,1(Ψ2
T (γ̌1, σ̌1),Ψ2

T (γ̌2, σ̌2))

≤ E sup
0≤s≤t

|ζ1
s − ζ2

s | ≤ KT,D

∫ t

0
{W1(γ̌1

s, γ̌2
s)+W1(σ̌1

s, σ̌2
s)+W̃s,1(π1,π2)}ds

≤ KT,D

∫ t

0
{Ws,1(γ̌1, γ̌2)+Ws,1(σ̌1, σ̌2)+W̃s,1(π1,π2)}ds

≤ tKT,D{Wt,1(γ̌1, γ̌2)+Wt,1(σ̌1, σ̌2)+W̃t,1(π1,π2)}.

Likewise,
W̃t,1(Ψ1

T (π1),Ψ1
T (π2)) ≤ E sup

0≤s≤t
|ζ1

s − ζ2
s |.

Putting together the above estimates we obtain the desired result. □

4.1. Well-posedness of mean-field PDE
We now look for a system of ODEs characterizing the solution of the system (3.2). The natural
candidate is given by the mean-field equation

(Zmf , Z̃mf ,ωmf ,ϑmf ,αmf ,βmf ,ϱmf ) := (Z γ̌,σ̌, Z̃ γ̌,σ̌,ωγ̌,σ̌,ϑγ̌,σ̌,αγ̌,σ̌,βγ̌,σ̌,ϱγ̌,σ̌);

with γ̌ = Law[((Zmf , Z̃mf ),ωmf ,ϱmf )], σ̌ = Law[(ϑmf ,αmf ,βmf )].
(4.10)

Indeed, assuming that such mean-field equation exists, we verify that setting

γ = Law[((Zmf , Z̃mf ),ωmf )], and σ = Law[(ϑmf ,αmf )]

we satisfy (3.2). Consider two arbitrary testing functions ϕ,φ. We have

d

dt
E[ϕ(Zmf

t , Z̃mf
t ),ωmf

t )] = E
[
∇(z,z̃),ωϕ((Zmf

t , Z̃mf
t ),ωmf

t ) · [( d

dt
Zmf

t ,
d

dt
Z̃mf

t ), d

dt
ωmf

t ]⊤
]

,

and

d

dt
E[φ(ϑmf

t ,ωmf
t )] = E

[
∇θ,αφ(ϑmf

t ,αmf
t ) · [ d

dt
ϑmf

t ,
d

dt
αmf

t ]⊤
]

.

Using the dynamics (4.5) with π,ν as defined, we obtain precisely (3.2) in a weak sense. Note
that, since the measure driving the dynamics comes from the distribution of the dynamics
itself, our previous argument does not immediately apply. However, the matter is settled by
establishing the well-posedness of the system of ODEs (4.10). The proof is based on Banach’s
fixed-point theorem, which simultaneously guarantees the existence and uniqueness of the
solution to this system.

Theorem 22 Let D > 0, and suppose that γ̌0 and σ̌0 are two probability measures such that
γ̌0(Z2 × [0,D]2) = 1, σ̌0(Θ× [0,D]2) = 1, and such that F σ̌0 and F γ̌0 are probability measures.
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Then, under Assumption 8, there exists a unique solution to the mean-field system (4.10) with
initial distributions (γ̌0, σ̌0).

Proof Consider the set AT,D(γ̌0, σ̌0) := {(γ̌, σ̌) ∈ AT,D s.t. γ̌0 = γ̌0, σ̌0 = σ̌0}. As shown, for
example, in [7], we can deduce that the set AT endowed with the metric WT,1(γ̌1, γ̌2) +
WT,1(σ̌1, σ̌2) is a complete metric space given that C([0,T ],Z2 ×R2

+) (respectively C([0,T ],Θ×
R2

+) ) is complete with respect to the distance function d(u,v) := sups∈[0,T ] |us − vs|. It is
straightforward to see that this property is inherited by AT,D(γ̌0, σ̌0). Note also that by
Corollary 21 one can find T > 0 small enough so that Ψ contracts the quantity WT,1(γ̌1, γ̌2)+
WT,1(σ̌1, σ̌2)+W̃T,1(π1,π2) in the space AT,D(γ̌0, σ̌0). Now, the latter quantity dominates the
metric in the space AT,D(γ̌0, σ̌0). Hence, there is a unique solution (γ̌, σ̌) ∈ AT,D(γ̌0, σ̌0) to the
fixed point equation

Ψ(γ̌, σ̌) = (γ̌, σ̌).

By definition, the mean-field system (4.10) is then satisfied and is well-posed in the interval
[0,T ]. By continuation, well-posedness can be arbitrarily extended. □

Remark 23 Since (3.2) is well-defined, we can also conclude that the system of mean-field
particles (4.4) is well-defined given that it can be obtained by plugging in the mean-field law,
except that the initial condition is not sampled from γ̌0, σ̌0 but taken as in the system (4.1).

4.2. Propagation of chaos
Before stating our propagation of chaos result we first present a lemma.

Lemma 24 Let (γ̌0, σ̌0) be such that γ̌0(Z2 × [0,D]2) = 1, σ̌0(Θ× [0,D]2) = 1, and such that
F σ̌0 and F γ̌0 are probability measures. Let (γ̌, σ̌) be the law of (4.10) with (γ̌0, σ̌0) = (γ̌0, σ̌0).
Let z′

0 and z0 be two arbitrary points in the support of π0,z. Then for every t ∈ [0,T ] we have

sup
s∈[0,t]

W1(πs(·|z′
0),πs(·|z0)) ≤ KT,D(W1(π0(·|z′

0),π0(·|z0))+ |z0 −z′
0|). (4.11)

Proof Consider one particle as in (4.4) that we denote by ζ and that we initialize at Z0 = z0
and (Z̃0,ω0,ϱ0) ∼ γ̌0(·|z0) and (ϑ0,α0,β0) ∼ σ̌0. Likewise, consider another particle as in (4.4)
that we denote by ζ ′ and that we initialize at Z′

0 = z′
0, (Z̃′

0,ω′
0,ϱ′

0) ∼ γ̌0(·|z0), and (ϑ′
0,α′

0,β′
0) =

(ϑ0,α0,β0). At this point we leave unspecified the joint distribution for the initializations of the
variables z̃,ω,ϱ, but it is understood that one such coupling has been fixed in the computations
below.
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An application of Lemma (20) deduces that for every t ∈ [0,T ]

E[ sup
0≤s≤t

|ζ ′ − ζ|] ≤ KT,DE|ζ ′
0 − ζ0|+KT,D

∫ t

0
W1(πs(·|z′

0),πs(·|z0))ds.

By definition of the Wasserstein distance, the left hand side of the above expression can be
bounded from below by W1(πs(·|z′

0),πs(·|z0)) for any s ∈ [0, t], and thus

sup
s∈[0,t]

W1(πs(·|z′
0),πs(·|z0)) ≤ KT,DE|ζ ′

0 − ζ0|+KT,D

∫ t

0
W1(πs(·|z′

0),πs(·|z0))ds.

By using the fact that the coupling between the distributions for the variables (z̃,ω,ϱ) was
arbitrary we can conclude that

sup
s∈[0,t]

W1(πs(·|z′
0),πs(·|z0)) ≤ KT,D(W1(π0(·|z′

0),π0(·|z0))+ |z0 −z′
0|)+KT,D

∫ t

0
W1(πs(·|z′

0),πs(·|z0))ds.

At this stage we can apply a Gronwall-type argument to obtain the desired result.
□

Theorem 25 (Propagation of chaos) Let T,D > 0, and suppose that Assumption 8 holds. Let
(γ̌0, σ̌0) be such that γ̌0(Z2 × [0,D]2) = 1 and σ̌0(Θ × [0,D]2) = 1, and suppose that F σ̌0 and
F γ̌0 are probability measures.

For N ∈ N consider the system (4.1) associated to a sequence {(γ̌N
0 , σ̌N

0 )}N∈N satisfying
γ̌N

0 (Z2 × [0,D]2) = 1 and σ̌N
0 (Θ × [0,D]2) = 1 for all large enough N , and suppose that F σ̌N

0
and F γ̌N

0 are probability measures. We also assume that the Zi
0 belong to the support of the

measure π0,z.
Assume further that as N → ∞ we have

inf
υz∈ΓOpt(πN

0,z,π0,z)

∫
W1(γ̌N

0 (·|z′
0), γ̌0(·|z0))dυz(z′

0,z0) → 0, and W1(σ̌N
0 , σ̌0) → 0. (4.12)

Then
WT,1(γ̌N , γ̌) → 0, WT,1(σ̌N , σ̌) → 0, W̃T,1(πN ,π) → 0,

where (γ̌, σ̌) are the laws of the mean-field system (4.10) with initial conditions drawn from
(γ̌0, σ̌0).

Proof We assume without loss of generality that for every N and every i = 1, . . . ,N , the weights
ωi

0,αi
0 belong to [0,D]. From Gronwall’s inequality and Assumption 8 we can then see that the

weights ωi
t,α

i
t belong to [0,De2Mκt]. It follows that (γ̌N , σ̌N ) ∈ AT,D.

In what follows we let ζi denote the path of all variables of the i-th particle in the system
(4.1), and ζmf,i the corresponding particle in (4.4); we recall that these particles are assumed
to be initialized at the same location. We consider

γ̌N,mf
t := 1

N

N∑
i=1

δ(Z
mf,i
t ,Z̃

mf,i
t ),ω

mf,i
t ,ϱ

mf,i
t

and σ̌N,mf
t := 1

N

N∑
i=1

δ
ϑ

mf,i
t ,α

mf,i
t ,β

mf,i
t

,

that is, the empirical measures of the mean-field system of particles.
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From the triangle inequality we have

Wt,1(γ̌, γ̌N )+Wt,1(σ̌, σ̌N ) ≤ {Wt,1(γ̌N,mf , γ̌N )+Wt,1(σ̌N,mf , σ̌N )}+{Wt,1(γ̌, γ̌N,mf )+Wt,1(σ̌, σ̌N,mf )}.
(4.13)

We now claim that a similar inequality holds for the term W̃t,1(π,πN ). Namely, we prove
that

W̃t,1(π,πN ) ≤ W̃t,1(π,πN,mf )+W̃t,1(πN,mf ,πN ). (4.14)

To see this, recall that the z coordinates of all dynamics remain unchanged and that the
initializations of ζi and ζmf,i are the same. It follows that πN

s,z = πN
0,z = πN,mf

0,z = πN,mf
s,z , and

thus ΓOpt(πN,mf
s,z ,πN

s,z) consists exclusively of the identity coupling. Let υ ∈ ΓOpt(πs,z,πN
s,z) =

ΓOpt(π0,z,πN
0,z). From the triangle inequality for W1 we deduce∫

W1(πs(·|z),πN
s (·|z′))dυ(z,z′) ≤

∫
(W1(πs(·|z),πN,mf

s (·|z′))+W1(πN,mf
s (·|z′),πN

s (·|z′)))dυ(z,z′)

≤
∫

W1(πs(·|z),πN,mf
s (·|z′))dυ(z,z′)+

∫
W1(πN,mf

s (·|z′),πN
s (·|z′))dπN

s,z(z′)

≤
∫

W1(πs(·|z),πN,mf
s (·|z′))dυ(z,z′)+W̃t,1(πN,mf ,πN ),

for every s ∈ [0, t]. Taking the inf over υ on both sides and then the sup over s ∈ [0, t], we obtain
(4.14).

We use again the fact that the particles ζi and ζmf,i have the same initialization to proceed
as in the proof of Corollary 21 and conclude that for every t ∈ [0,T ]

Wt,1(γ̌N,mf , γ̌N )+Wt,1(σ̌N,mf , σ̌N ) ≤ KT,D

∫ t

0
{Ws,1(γ̌, γ̌N )+Ws,1(σ̌, σ̌N )+W̃s,1(π,πN )}ds,

as well as

W̃t,1(πN,mf ,πN ) ≤ KT,D

∫ t

0
{Ws,1(γ̌, γ̌N )+Ws,1(σ̌, σ̌N )+W̃s,1(π,πN )}ds.

We can now combine the previous two inequalities with (4.13) and (4.14) to conclude that

Wt,1(γ̌, γ̌N )+Wt,1(σ̌, σ̌N )+W̃t,1(π,πN ) ≤

{Wt,1(γ̌N,mf , γ̌)+Wt,1(σ̌N,mf , σ̌)+W̃t,1(πN,mf ,π)}

+KT,D

∫ t

0
{Ws,1(γ̌, γ̌N )+Ws,1(σ̌, σ̌N )+W̃s,1(π,πN )}ds.

Combining with Gronwall’s inequality, the above implies

Wt,1(γ̌, γ̌N )+W 1
t,1(σ̌, σ̌N )+W̃t,1(π,πN ) ≤ etKT,D {Wt,1(γ̌, γ̌N,mf )+Wt,1(σ̌, σ̌N,mf )+W̃t,1(π,πN,mf )}.

To complete the proof we must show that the right hand side of the above expression
goes to zero as N → ∞. For that purpose we compare the evolutions of ζmf,i

Z :=
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(Zmf,i, Z̃mf,i,ωmf,i,ϱmf,i) and ζmf
Z := (Zmf , Z̃mf ,ωmf ,ϱmf ), and then, separately, compare

the evolutions of ζmf,i
Θ := (ϑmf,i,αmf,i,βmf,i) and ζmf

Θ := (ϑmf ,αmf ,βmf ). For the first pair
of evolutions, we proceed as in the proof of Lemma 20 to conclude

sup
0≤s≤t

|ζmf,i
Z,s − ζmf

Z,s| ≤ KT,D|ζmf,i
Z,0 − ζmf

Z,0|+KT,D

∫ t

0
W1(πs(·|Zmf

0 ),πs(·|Zmf,i
0 ))ds.

We can then use Lemma 24 to obtain

sup
0≤s≤t

|ζmf,i
Z,s − ζmf

Z,s| ≤ KT,D|ζmf,i
Z,0 − ζmf

Z,0|+KT,DW1(π0(·|Zmf
0 ),π0(·|Zmf,i

0 )).

Combining the above pathwise estimate with the freedom to choose the coupling for the
initializations, we can conclude that

WT,1(γ̌, γ̌N,mf ),WT,1(π,πN,mf ) ≤ KT,DW1(π0,z,πN
0,z)

+KT,D inf
υz∈ΓOpt(πN

0,z,π0,z)

∫
W1(γ̌N

0 (·|z′
0), γ̌0(·|z0))dυz(z′

0,z0).

By assumption (4.12), Remark 60, and Lemma 18, it follows that the right hand side of the
above expression goes to zero as N → ∞. For the pair of evolutions ζmf,i

Θ and ζmf
Θ we proceed

as in the proof of Lemma 20, this time noticing that we can write

sup
0≤s≤t

|ζmf,i
Θ,s − ζmf

Θ,s| ≤ KT,D|ζmf,i
Θ,0 − ζmf

Θ,0|.

Combining the above pathwise estimate with the freedom to choose the coupling for the
initializations, we can conclude that

WT,1(σ̌, σ̌N,mf ) ≤ KT,DW1(σ̌0, σ̌N
0 ) → 0. (4.15)

□

4.3. Proof of Theorem 12 and other corollaries of Theorem 25
In this section we establish some important results that are implied by Theorem 25. The first
one is Theorem 12.

Proof of Theorem 12 Let (γ0,σ0) be such that Fγ0 = π0 and Fσ0 = ν0 and such that (4.3)
holds. We introduce the measures γ̌0 := γ0 ⊗ δ1(dϱ), and σ̌0 := σ0 ⊗ δ1(dβ). That is, γ̌0 is the
product of γ0 and a Dirac delta at the value 1 for the ϱ coordinate; σ̌0 is defined analogously.
Likewise, we define γ̌N

0 := γN
0 ⊗δ1 and σ̌N

0 := σN
0 ⊗δ1. It is clear that with these definitions we

have (4.12) and thus we can invoke Theorem 25 to deduce

WT,1(γ̌N , γ̌)+WT,1(σ̌N , σ̌) → 0,

where (γ̌N , σ̌N ) is the measure in path space induced by the particle system (4.1) with
initializations as described in the statement of the theorem and with βi

0 = ϱi
0 = 1 for all i;

(γ̌, σ̌), on the other hand, is the law in (4.10) with initialization (γ̌0, σ̌0) = (γ̌0, σ̌0).
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Using Lemma 18, we conclude that for every t ∈ [0,T ]

W1(πN
t ,πt) = W1(FγN

t ,Fγt) ≤ KT,DW1(γN
t ,σN

t ) ≤ KT,DW1(γ̌N
t , γ̌t) ≤ KT,DWT,1(γ̌N , γ̌).

Likewise,
W1(νN

t ,νt) ≤ KT,DWT,1(σ̌N , σ̌).

Taking the sup over all t ∈ [0,T ] in the sum of the above two expressions we get

sup
t∈[0,T ]

{W1(πN
t ,πt)+W1(νN

t ,νt)} ≤ KT,D(WT,1(γ̌N , γ̌)+WT,1(σ̌N , σ̌)),

from where the desired result now follows.
□

Corollary 30 and Remark 31 below, which we will use in section 5, are the other important
consequences of Theorem 25 that we discuss in this section. In section 5 we consider an evolution
{(ν̂t, π̂t)}t closely related to (2.3) that is given by

∂tν̂t = ηtdiv(ν̂t∇θUν(πt,νt;θ)), ∂tπ̂t = −ηtdiv(π̂t(0,∇z̃Uπ(πt,νt; (z, z̃)))), (4.16)

with initializations ν̂0, π̂0 that are absolutely continuous with respect to ν0 and π0, respectively.
It is at this stage that we use the extra coordinates β,ϱ in (4.1). Indeed, these variables have
been introduced to accommodate for the changes of measure between ν̂0 and ν0 and between
π̂0 and π0. We will be able to use the general purpose Theorem 25 to prove the consistency of
particle approximations for the system (4.16).

We start with a preliminary result.

Proposition 26 Let νN
t = 1

N

∑n
i=1 αi(t)δϑi(t) and πN

t = 1
N

∑N
i=1 ωi(t)δ(Zi(t),Z̃i(t)) be as in

(4.2).
Let β1, . . . ,βN and ϱ1, . . . ,ϱN be two collections of non-negative scalars satisfying

1
N

N∑
i=1

βiαi(0) = 1,
1
N

N∑
i=1

ϱiωi(0) = 1.

Let ν̂N
t and π̂N

t be the probability measures defined as

ν̂N
t := 1

N

n∑
i=1

βiαi(0)δϑi(t), π̂N
t := 1

N

N∑
i=1

ϱiωi(0)δ(Zi(t),Z̃i(t)) t ≥ 0.

Then

∂tν̂
N
t = ηtdiv(ν̂N

t ∇θUν(πN
t ,νN

t ;θ)), ∂tπ̂
N
t = −ηtdiv(π̂N

t (0,∇z̃Uπ(πN
t ,νN

t ; (z, z̃)))) (4.17)

in the weak sense.
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Proof Let ϕ(θ) be an arbitrary test function. From (4.1) we see that

d

dt

∫
ϕ(θ)dν̂N

t (θ) = 1
N

N∑
i=1

βiαi(0) d

dt
ϕ(ϑi(t)) = 1

N

N∑
i=1

βiαi(0)∇ϕ(ϑi(t)) · ϑ̇i(t)

= − ηt

N

N∑
i=1

βiαi(0)∇ϕ(ϑi(t)) ·∇θUν(πN
t ,νN

t ;ϑi(t))

= ηt

∫
∇ϕ(θ) ·∇θUν(πN

t ,νN
t ;θ)dν̂N

t (θ).

This shows that ν̂N solves equation (4.17) in the weak sense. The equation for π̂N is deduced
similarly. □

We will now proceed to relate (4.17) with (4.16). We first introduce some additional
mathematical tools that will help us in this aim.

Let F̌ : P(Z2 ×R2
+) → M+(Z2) be the map defined via the identity∫

ϕ(θ)d(F̌ σ̌)(θ) =
∫

αβϕ(θ)dσ̌(θ,α,β),

for all test functions ϕ. Analogously, define F̌ as a map F̌ : P(Θ×R2
+) → M+(Θ), substituting

any appearance of σ̌,θ,α,β in the above with γ̌,(z, z̃),ω,ϱ. Notice that F̌ σ̌ is a probability
measure provided that

∫
αβdσ̌(θ,α,β) = 1, while an analogous statement holds when F̌ acts

on γ̌.
Let us now introduce a map G : C([0,T ],Z2 ×R2

+) → C([0,T ],Z2 ×R2
+) defined as:

G : {(zt, z̃t,ωt,ϱt)}t∈[0,T ] 7→ {(zt, z̃t,ω0,ϱ0)}t∈[0,T ]. (4.18)

That is, G is the map that freezes the coordinates ω,ϱ of a given path, setting them to be equal to
their initializations. Naturally, G induces, via pushforward, a map from P(C([0,T ],Z2 ×R2

+))
into itself; we will abuse notation slightly and will also use G to denote this induced map.
Furthermore, we will also think of G as a map G : C([0,T ],Θ ×R2

+) → C([0,T ],Θ ×R2
+) that

freezes the coordinates α,β of a given path, setting them to be equal to their initializations; we
will also denote by G the map induced via pushforward from P(C([0,T ],Θ ×R2

+)) into itself.
Which of the interpretations for G will be used in each instance should be clear from context.

Remark 27 Notice that π̂N
t and ν̂N

t in Proposition 26 can be written as F̌((Gγ̌N )t) and
F̌((Gσ̌N )t), respectively.

Lemma 28 Let (γ̌, σ̌) be the law of the process (4.10) initialized at a pair (γ̌0, σ̌0). Then
{ν̂t := F̌((Gσ̌)t)}t∈[0,T ] and {π̂t := F̌((Gγ̌)t)}t∈[0,T ] solve the PDEs (4.16), where πt = F(γt)
and νt = F(σt).
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Proof Consider the mean-field ODE (4.10). For every smooth test function ϕ we have∫
ϕ(θ)dν̂t(θ) =

∫
αβϕ(θ)d(Gσ)t(θ,α,β) = E[α0β0ϕ(ϑt)].

In particular,
d

dt

∫
ϕ(θ)dν̂t(θ) = d

dt
E[α0β0ϕ(ϑt)] = −E[ηtα0β0∇ϕ(ϑt) ·∇θUν(πt,νt;ϑt)]

= −ηt

∫
∇ϕ(θ) ·∇θUν(πt,νt;θ)dν̂t(θ).

This proves that ν̂ satisfies the desired equation. The equation for π̂ is obtained similarly.
□

Remark 29 Notice that ν̂t and π̂t are probability measures if ν̂0 and π̂0 are.

In what follows, we use Theorem 25 to show that, under appropriate assumptions on
initializations, the system in (4.17) can be recovered from suitable particle approximations.

Corollary 30 Let ν0 and π0 be arbitrary, and let ν̂0 and π̂0 be probability measures such that
ν̂0 ≪ ν0, π̂0 ≪ π0, with dν̂0

dν0
∈ L∞(ν0) and dπ̂0

dπ0
∈ L∞(π0). Let γ̌0 and σ̌0 be as in Theorem 25

and additionally assume they satisfy F γ̌0 = π0, F σ̌0 = ν0, and F̌ γ̌0 = π̂0, F̌ σ̌0 = ν̂0.
Consider approximating particle systems as in Theorem 25 with the additional assumption

that ν̂N
0 , π̂N

0 are probability measures.
Then

sup
t∈[0,T ]

{W1(ν̂N
t , ν̂t)+W1(π̂N

t , π̂t)} → 0, sup
t∈[0,T ]

{W1(νN
t ,νt)+W1(πN

t ,πt)} → 0,

as N → ∞. In the above, we use the same notation as in Lemma 28 and Remark 27.

Proof First of all, let us notice that the condition dν̂0
dν0

∈ L∞(ν0) and dπ̂0
dπ0

∈ L∞(π0) is used
to guarantee that we can indeed build σ̌0 and γ̌0 with bounded supports; see the first part of
Remark 31 below.

It is straightforward to check that G is a Lipschitz map, i.e.,

WT,1(Gσ̌,Gσ̌′) ≤ 2WT,1(σ̌, σ̌′), WT,1(Gγ̌,Gγ̌′) ≤ 2WT,1(γ̌, γ̌′).

In addition, we can find a constant CT,D such that for every t ∈ [0,T ]

W1(F̌((Gσ̌)t), F̌((Gσ̌N )t)) ≤ CT,DW1((Gσ̌)t),(Gσ̌N )t) ≤ CT,DWT,1(Gσ̌,Gσ̌N ),

where the first inequality follows from a very similar approach to the one in Lemma 18. Similarly,

W1(F̌((Gγ̌)t), F̌((Gγ̌N )t)) ≤ CT,DWT,1(Gγ̌,Gγ̌N ).

We may now combine the above inequalities with Theorem 25, which allows us to obtain

WT,1(γ̌N , γ̌)+WT,1(σ̌N , σ̌) → 0,

to deduce the desired convergence.
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□

Remark 31 (Constructing initializations) Let π0 and ν0 be arbitrary, and let ρν = dν̂0
dν0

and
ρπ = dπ̂0

dπ0
, which we assume satisfy ρν ∈ L∞(ν0) and ρπ ∈ L∞(π0); we further assume that

π̂0,z = π0,z. The latter assumption implies that
∫

ρπ(z, z̃)dπ0(z̃|z) = 1, for all z in the support
of π0,z.

Let γ̌0 and σ̌0 be the measures γ̌0 := hγ♯π0, σ̌0 := hσ♯ν0, hγ : (z, z̃) 7→ (z, z̃,1,ρπ(z, z̃)),
hσ : θ 7→ (θ,1,ρν(θ)). Notice that F γ̌0 = π0 and F̌ γ̌0 = π̂0, while F σ̌0 = ν0 and F̌ σ̌0 = ν̂0.

We use the same objects and notation as in Remark 13 and introduce the extra variables
βij = ρν(ϑij) and ϱij = ρπ(Z̃ij ,Zij); notice that the uniform boundedness on ρν and ρπ is
imposed to guarantee that the weights ϱij and βij are uniformly bounded. Consider the measures

γ̌n,m
0 := 1

nm

n∑
i=1

m∑
j=1

δ(Zij ,Z̃ij ,ωij ,ϱij), σ̌n,m
0 := 1

nm

n∑
i=1

m∑
j=1

δ(ϑij ,αij ,βij).

From Lemma 59 we can find a sequence {(nk,mk)}k∈N such that, almost surely, the induced
sequence of pairs γ̌

Nk
0 := γ̌

nk,mk
0 , σ̌

Nk
0 := σ̌

nk,mk
0 satisfies conditions (4.12). Moreover, thanks

to the law of large numbers and Lemma 61 in Appendix A this subsequence can be assumed to
be such that

lim
k→∞

1
nk

nk∑
i=1

∣∣∣∣∣ 1
1

mk

∑mk
j=1 ρπ(Zij , Z̃ij)

−1

∣∣∣∣∣= 0, lim
k→∞

1
nk

nk∑
i=1

∣∣∣∣∣ 1
1

mk

∑mk
j=1 ρν(ϑij)

−1

∣∣∣∣∣= 0. (4.19)

We make a slight modification to the weights ϱij and βij , normalizing them so that
1

mk

∑
j ϱij = 1 for all i, as well as 1

nkmk

∑
ij βij = 1. From (4.19) we can directly show that

condition (4.12) continues to hold after the normalization of weights. The resulting measures
π̂

Nk
0 =

∑
j ϱijδ(Zij ,Z̃ij) and ν̂

Nk
0 =

∑
ij βijδϑij

can be seen to converge, in the Wasserstein
sense, respectively, toward ν̂0 and π̂0, while the measures π

Nk
0 = 1

nkmk

∑
ij δ(Zij ,Z̃ij) and

ν
Nk
0 = 1

nkmk

∑
ij δϑij

converge toward π0 and ν0, respectively.
Moreover, another application of the law of large numbers implies that

H(ν̂Nk
0 ||νNk

0 ) = ( 1
nkmk

∑
ij

ρν(ϑij))−1 1
nkmk

∑
ij

log(ρν(ϑij))ρν(ϑij)− log

 1
nkmk

∑
ij

ρν(ϑij)


converges, as k → ∞, toward

∫
Θ log(ρν(θ))ρν(θ)dν0(θ), which is precisely H(ν̂0||ν0). Likewise,

we can see that H(π̂Nk
0 ||πNk

0 ) → H(π̂0||π0), as k → ∞.
The above convergence of relative entropies will be used in the next section.

5. Long term behavior of mean-field equation and approximate Nash equilibria of (1.1)

In this section we study the long time behavior of the system of equations (2.3) appropriately
initialized at some measures (π0,ν0). Our aim is to study the ability of system (2.3) (or slight
modifications thereof) to generate approximate Nash equilibria for problem (1.1).
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We start by imposing additional convexity-concavity assumptions on U , where convexity-
concavity must be interpreted in the linear interpolation sense.

Assumption 32 We assume that U is convex in ν and concave in π in the linear interpolation
sense. That is,

U(τπ +(1− τ)π̂,ν) ≥ τU(π,ν)+(1− τ)U(π̂,ν)
and

U(π,τν +(1− τ)ν̂) ≤ τU(π,ν)+(1− τ)U(π, ν̂),
for all τ ∈ [0,1] and all probability measures π, π̂ ∈ P(Z ×Z), and ν, ν̂ ∈ P(Θ).

Assuming that U has the form (1.3), the above conditions are equivalent to analogous
convexity-concavity assumptions on R(π,ν), given that C is linear in π.

Remark 33 The fact that U is convex-concave according to linear interpolation (i.e., as
introduced in Assumptions 32) does not imply that U is geodesically convex-concave with respect
to the geometry that induces the dynamics (2.3) (see section 3.1 for a discussion on the
geometric interpretation of equations (2.3)), so that convergence to a global Nash equilibrium
or an approximate Nash equilibrium is not immediate. Due to this, despite Assumptions 32,
without any further assumptions we will think of problem (1.1) as non-convex non-concave.
We contrast this setting with the one in section 5.1, which we will refer to as the non-convex
concave setting.

As expected, the long-term convergence of the mean-field PDE to an equilibrium point is
associated with the convex-concave nature of U . It is worth noting that both the ascending and
descending parts of the PDE dynamics in (3.2) can be broken down into two components:
a transport term and a mass-transfer term. Intuitively, the linear interpolation type of
convexity-concavity aligns with the mass-transfer term but not the transport term. Consequently,
convergence requires dynamics primarily dominated by the mass-transfer term, as demonstrated
in Theorem 35

In contrast, the non-convex-concave setting detailed in section 5.1 introduces a form of
concavity that is compatible with the transfer term. Therefore, in this scenario, convergence
imposes dynamics dominated by the transport term for the adversary, as exhibited in Theorem
42.

Example 34 In the context of the motivating example in subsection 1.1, we see that
Assumption 32 is satisfied provided that the loss function ℓ is a convex function in its first
coordinate. This is certainly the case for both the squared-loss and the logistic loss.

We separate our discussion into two distinctive cases: 1) a rather general non-convex non-
concave setting, and 2) a non-convex concave setting. Recall that by non-convex/non-concave
here we mean not geodesically convex/concave relative to the optimal transport geometry
driving the dynamics, while we do assume convexity/concavity in the linear interpolation sense
as in Assumption 32.

Let us start by stating the result in the non-convex non-concave setting.

Theorem 35 (Long-time behavior mean-field PDE) Let ϵ > 0. Suppose that Assumptions 8,
9, and 32 hold. Assume that ν0 and π0 are probability measures (with π0,z = µ) such that ν0
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and π0(·|z) are absolutely continuous with respect to Lebesgue measure (in each corresponding
space) and their densities are lowered-bounded by some k > 0: i.e., there exists k > 0 for which
dν0
dθ (θ) > k, and dπ0

dz̃ (z̃|z) > k for all z in the support of µ.
Finally, assume that the learning rate η satisfies η ∈ C0([0,∞)) and is such that

lim
t→∞

1
t

∫ t

0

∫ s

0
ητ dτds = η̄ (5.1)

for η̄ satisfying
4(L+M)2η̄ < ϵ.

Then there exists T ∗ such that for all t > T ∗

sup
π∗∈P(Z2) s.t π∗

z =µ

U(π∗, ν̄t)− inf
ν∗∈P(Θ)

U(π̄t,ν
∗) ≤ ϵ,

where πt := 1
t

∫ t
0 πsds and νt := 1

t

∫ t
0 νsds, and (πt,νt) solve (2.3), when initialized at π0,ν0 as

above.

As it turns out, we can prove a very similar result if ν0 and π0(·|z) are assumed to be
empirical measures that are well spread out and have a sufficiently large number of support
points.

Theorem 36 Let ϵ > 0. Suppose that Assumptions 8, 9, and 32 hold. Assume that ν0 and π0
take the form

ν0 = νM
0 = 1

M

M∑
i=1

δθi
; π0 = πN

0 = µ⊗ ( 1
N

N∑
j=1

δz̃j ),

where θ1, . . . ,θM and z̃1, . . . , z̃N are i.i.d. samples from the uniform distributions over Θ and
Z, respectively. Assume, also, that M and N are large enough so that

CΘ
log(M)pd

M1/d
+CZ

log(N)pd′

N1/d′ ≤ ϵ

for suitable constants CΘ and CZ and a power pd that takes the form pd = 3/4 if d = 2 and
pd = 1/d if d ≥ 3. Finally, assume that the learning rate η satisfies the same assumptions as in
Theorem 35.

Then, with probability at least 1− 1
M2 − 1

N2 (on the samples θ1, . . . ,θM and z̃1, . . . , z̃N ), there
exists T ∗ such that for all t > T ∗

sup
π∗∈P(Z2) s.t π∗

z =µ

U(π∗, ν̄t)− inf
ν∗∈P(Θ)

U(π̄t,ν
∗) ≤ 2ϵ,

where πt := 1
t

∫ t
0 πsds and νt := 1

t

∫ t
0 νsds, and (πt,νt) solve (2.3), when initialized at π0,ν0 as

above.

Remark 37 The assumptions on the initializations π0 and ν0 in Theorems 35 and 36
effectively suggest that the particles in Algorithm 1 need to be well spread out throughout the
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domains at time zero. This is certainly a strong assumption, but it is not unlike other theoretical
assumptions in the literature studying, mathematically, the training process of neural networks;
see [13, 17, 51, 52, 53]. In the next section we discuss how the strong assumption on π0 can be
removed when one restricts the adversarial budget in the setting described in section 1.1.

Let us emphasize that Theorem 36 implies that the convergence toward approximate Nash
equilibria also holds for dynamics induced by a finite particle system, provided that the particles
are well spread out at initialization and the number of particles is sufficiently large.

Remark 38 The assumption on η is easily satisfied and essentially imposes a decay rate. For
instance, given λ > 0, we have that aexp(−λt) and a(t+1)−(1+λ) satisfy (5.1).

Let us highlight that the statement does not impose restrictions on the parameter κ. It
is possible, via a change of time, to lower the requirements in the upper bound on η̄ by
instead adding lower bounds for the parameter κ that grow as ϵ decreases. This is analogous to
treatments in other contexts as in [17]. Either way, the crucial point is that the mass transfer
term should clearly dominate the dynamics. This is consistent with the intuition on the effects
of the assumed linear convexity-concavity as highlighted in Remark 33. Note in passing that the
situation when stronger concavity is assumed as presented in Theorems 42 and 43 is not the
same (see Remark 44).

5.1. The non-convex and strongly concave case
In contrast to Theorem 35, the results in this subsection hold under no assumptions on the
initialization π0 but at the expense of additional assumptions on the payoff function U and a
slight modification of the dynamics (2.3). These additional assumptions on U are not unnatural.
For instance, in the motivating example from subsection 1.1, they are linked to the strength
given to the adversarial cost function C.

Assumption 39 We assume the following uniform PL (Polyak-Lojasiewicz) condition on the
functions U(·,ν): There exists λ > 0 such that for all ν ∈ P(Θ) and all π ∈ P(Z2) with πz = µ
we have ∫

|∇z̃Uπ(π,ν;z, z̃)|2dπ(z, z̃) ≥ λ(m∗
ν −U(π,ν)),

where m∗
ν := supπ̃ s.t. π̃z=µ U(π̃,ν).

Remark 40 For simplicity, we will refer to the setting when Assumption 39 holds as the
strongly concave setting, as it is often the case that one can deduce the PL condition from
strong (geodesic) concavity; see Proposition 57 in Appendix A.2.

Example 41 Suppose that the payoff function U has the form (1.3) for R and C as in (1.4)
and (1.5), respectively. As we show in Proposition 57 in Appendix A.2, if the set Z is convex (a
reasonable assumption in applications), the activation and loss functions are twice continuously
differentiable, and, importantly, the parameter ca is large enough, then Assumption (39) is
satisfied.

To exploit the additional concavity on U(·,ν), it will be useful to consider a slight variation
of (2.3) where we slow down time in the descent equation and where we remove the scaling
factor η in the equation for πt. Precisely, given K ≥ 1 we consider the system
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{
∂tνt = ηt

K divθ(νt∇θUν(πt,νt;θ))− κ
K νt (Uν(πt,νt;θ))−

∫
Uν(πt,νt;θ′)dνt(θ′))

∂tπt = −divz,z̃(πt(0,∇z̃Uπ(πt,νt;z, z̃)))+κπt (Uπ(πt,νt;z, z̃)−
∫

Uπ(πt,νt;z, z̃′)dπt(z̃′|z)) ,

(5.2)
initialized at an arbitrary π0 ∈ P(Z2) with π0,z = µ and at some ν0. Well-posedness for this
equation under Assumptions 8 and 9 can be established as for equation (2.3); we omit the
details. To reflect the variations introduced in (5.2) in our Algorithm 1, it suffices to remove
the η in the update for the variables z̃ij and to allow for the for loop over i, j to be repeated a
number of times (quantity that can be tuned) before entering the loop over k.

We prove the following result.

Theorem 42 Suppose Assumptions 8, 9, 32, and 39 hold. Assume further that there exists
k > 0 such that dν0

dθ > k, and let π0 be an arbitrary probability measure with π0,z = µ. Finally,
assume that

lim
t→∞

1
t

∫ t

0

∫ s

0
ητ dτds = η̄ < ∞.

Fix ϵ > 0. Then there exists K0, r0, r1, t0 > 0 such that, if K ≥ K0 and η/K ≤ r1, then for
all t ≥ max{t0,K/r0}, we have

sup
π̃∈P(Z2) s.t. π̃z=µ

U(π̃, ν̄t)− inf
ν̃∈P(Θ)

U(π̄t, ν̃) ≤ ϵ.

In the above, πt := 1
t

∫ t
0 πsds and νt := 1

t

∫ t
0 νsds, and (πt,νt) solve (5.2) initialized at ν0,π0 as

above.

Just like Theorem 35, Theorem 42 has a version where ν0 is only assumed to be an empirical
measure that has a support that is well spread out.

Theorem 43 Let ϵ > 0. Suppose Assumptions 8, 9, 32, and 39 hold. Let π0 be an arbitrary
probability measure with π0,z = µ and assume that ν0 takes the form

ν0 = νM
0 = 1

M

M∑
i=1

δθi
,

where θ1, . . . ,θM are i.i.d. samples from the uniform distribution over Θ. Assume, also, that M
is large enough so that

CΘ
log(M)pd

M1/d
≤ ϵ

for a suitable constant CΘ and a power pd that takes the form pd = 3/4 if d = 2 and pd = 1/d
if d ≥ 3. Finally, assume that the learning rate η satisfies the same assumptions as in Theorem
42.
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There exists K0, r0, r1, t0 > 0 such that, if K ≥ K0 and η/K ≤ r1, then, with probability at
least 1− 1

M2 (on the samples θ1, . . . ,θM ), for all t ≥ max{t0,K/r0} we have

sup
π̃∈P(Z2) s.t. π̃z=µ

U(π̃, ν̄t)− inf
ν̃∈P(Θ)

U(π̄t, ν̃) ≤ 2ϵ.

In the above, πt := 1
t

∫ t
0 πsds and νt := 1

t

∫ t
0 νsds, and (πt,νt) solve (5.2) initialized at ν0,π0

as above.

Remark 44 As announced, the additional concavity assumptions bring important benefits to
the algorithm, since there is no assumptions that we must impose on π0 in either of the previous
theorems. Moreover, the parameter K allows us to avoid a smallness condition on η̄ as long as
K and the search time are long enough.

5.2. Proofs of Theorem 35 and 36
To begin our analysis, we first discuss the relationship between the system (2.3) and an
associated "hat" process as in Lemma 28. The study of similar systems has been considered in
works like [17]. However, here we present an alternative approach that allows us to fully justify
our derivations; see Remark 48 below for more details. Our approach makes use of the larger
structure that we studied in section 4. Indeed, we use the particle approximation in Remark
31 to understand the time evolution of the relative entropy between ν̂ and ν, and π̂ and π, for
arbitrary initializations. As a first step, we study the time evolutions of relative entropies when
the measures (νNk

t ,π
Nk
t ) and (ν̂Nk

t , π̂
Nk
t ) are initialized at empirical measures as in Remark 31.

Proposition 45 Let π0 and ν0 be arbitrary, and let π̂0 and ν̂0 be as in Remark 31. For a
fixed k ∈ N, let ν

Nk
t , ν̂

Nk
t ,π

Nk
t , π̂

Nk
t be as in Proposition 26 when initialized as in Remark 31.

Then
d

dt
H(ν̂Nk

t ∥ν
Nk
t ) = κ

∫
Θ

Uν(πNk
t ,ν

Nk
t ;θ)d(ν̂Nk

t −ν
Nk
t ) (5.3)

and
d

dt
H(π̂Nk

t ∥π
Nk
t ) = −κ

∫
Z×Z

Uπ(πNk
t ,ν

Nk
t ;z, z̃)d(π̂Nk

t −π
Nk
t ).

Proof Notice that

d

dt
H(ν̂Nk

t ∥ν
Nk
t ) = d

dt

 1
nkmk

nk∑
i=1

mk∑
j=1

log
(

βij(0)αij(0)
αij(t)

)
βij(0)αij(0)


= − 1

nkmk

nk∑
i=1

mk∑
j=1

d

dt
log(αij(t))βij(0)αij(0)

= κ

nkmk

nk∑
i=1

mk∑
j=1

(Uν(πNk
t ,ν

Nk
t ;ϑij(t))−Uν)βij(0)αij(0),
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where to go from the second to the third line we have used equation (4.1) for αij(t). We have
also used the shorthand notation Uν =

∫
Θ Uν(πNk

t ,ν
Nk
t ;θ)dν

Nk
t (θ). Identity (5.3) now follows.

The identity for d
dtH(π̂N

t ∥πN
t ) follows from similar considerations, but now we rely on the

fact that the weights ϱij are normalized along every row:

d

dt
H(π̂Nk

t ∥π
Nk
t ) = d

dt

 1
nkmk

nk∑
i=1

mk∑
j=1

log
(

ϱij(0)ωij(0)
ωij(t)

)
ϱij(0)ωij(0)


= − 1

nkmk

nk∑
i=1

mk∑
j=1

d

dt
log(ωij(t))ϱij(0)ωij(0)

= − κ

nkmk

nk∑
i=1

mk∑
j=1

(Uπ(πNk
t ,ν

Nk
t ;Zij , Z̃ij)−Uπ,i)ϱij(0)ωij(0).

In the above we have used the shorthand notation Uπ,i =
∫

Z×Z Uπ(πNk
t ,ν

Nk
t ;Zij , z̃)dπ

Nk
t (z̃|Zij);

recall that in our construction Zij does not depend on j. □

Next, we add one ingredient to the approximation result from Corollary 30 in search of a
relationship similar to (45) but for general initializations.

Proposition 46 Let π0 and ν0 be arbitrary, and let π̂0 and ν̂0 be as in Remark 31. Let
(ν̂, π̂) be the dynamics in Lemma 28 when initialized as in Remark 31. For every k ∈ N, let
ν

Nk
t , ν̂

Nk
t ,π

Nk
t , π̂

Nk
t be as in Proposition 26 when initialized as in Remark 31.

Then
lim

k→∞

∫
Uν(πNk

s ,νNk
s ;θ)d(ν̂Nk

s −νNk
s ) =

∫
Uν(πs,νs;θ)d(ν̂s −νs) (5.4)

as well as

lim
k→∞

∫
Z×Z

Uπ(πNk
s ,νNk

s ;z, z̃)d(π̂Nk
s −πNk

s ) = −
∫

Z×Z
Uπ(πs,νs;z, z̃)d(π̂s −πs). (5.5)

Proof From Assumptions 8 and Corollary 30 we have∣∣∣∣∫ Uν(πNk
s ,νNk

s ;θ)d(ν̂Nk
s −νNk

s )−
∫

Uν(πs,νs;θ)d(ν̂Nk
s −νNk

s )
∣∣∣∣≤ L(W1(νs,νNk

s )+W1(πs,πNk
s )) → 0,

as k → ∞. On the other hand, since the function Uν(πs,νs, ·) is continuous with at most linear
growth in |θ|, and since W1(νNk

s ,νs) → 0, W1(ν̂Nk
s , ν̂s) → 0 as k → ∞ by Corollary 30, it follows

that
lim

k→∞

∣∣∣∣∫ Uν(πs,νs;θ)d(ν̂Nk
s −νNk

s )−
∫

Uν(πs,νs;θ)d(ν̂s −νs)
∣∣∣∣= 0.

Equation (5.4) readily follows. (5.5) is obtained similarly.
□
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Proposition 47 Let π0 and ν0 be arbitrary, and let π̂0 and ν̂0 be as in Remark 31. Let (ν̂, π̂)
be the dynamics in Lemma 28 when initialized as in Remark 31.

Then the following inequalities hold:

H(ν̂t||νt)−H(ν̂0||ν0) ≤ κ

∫ t

0

(∫
Uν(πs,νs;θ)d(ν̂s −νs)(θ)

)
ds, ∀t ≥ 0, (5.6)

and

H(π̂t||πt)−H(π̂0||π0) ≤ −κ

∫ t

0

(∫
Uπ(πs,νs;z, z̃)d(π̂s −πs)(z, z̃)

)
ds, ∀t ≥ 0. (5.7)

Proof For every k ∈ N, consider ν
Nk
t , ν̂

Nk
t ,π

Nk
t , π̂

Nk
t be as in Proposition 26 when initialized as

in Remark 31. Notice that thanks to Corollary 30 we have W1(νNk
s ,νs) → 0, W1(ν̂Nk

s , ν̂s) → 0,
as k → ∞.

From Proposition (45) we have

H(ν̂Nk
t ∥ν

Nk
t ) = H(ν̂Nk

0 ∥ν
Nk
0 )+

∫ t

0

∫
Θ

Uν(πNk
s ,νNk

s ;θ)d(ν̂Nk
s −νNk

s )ds.

We may now use the joint lower semi-continuity of the relative entropy w.r.t weak
convergence to obtain:

H(ν̂t||νt) ≤ liminf
k→∞

H(ν̂Nk
t ||νNk

t ) = liminf
k→∞

κ

∫ t

0

(∫
Uν(πNk

s ,νNk
s ;θ)d(ν̂Nk

s −νNk
s )(θ)

)
ds

+ lim
k→∞

H(ν̂Nk
0 ||νNk

0 ).

= liminf
k→∞

κ

∫ t

0

(∫
Uν(πNk

s ,νNk
s ;θ)d(ν̂Nk

s −νNk
s )(θ)

)
ds

+H(ν̂0||ν0).

(5.8)

Using Proposition (46) and the approximation properties discussed in Remark 31 we obtain
(5.6). Inequality (5.7) is obtained similarly. □

Remark 48 In contrast to the analysis presented in [17], here we have used our mean-field
limit results from section 4 and the lower semi continuity properties of the relative entropy
to fully justify the one-sided identities (5.6) and (5.7). As we will see below, these one-sided
identities are sufficient for our analysis. Following our approach, we can sidestep the strategy
considered in [17] for analyzing a similar problem. Their strategy relies on the assumption of
existence and regularity of solutions to a certain PDE describing the evolution of the change of
measure between processes similar to the ν and ν̂ considered here. Unfortunately, such PDE is
not even well-defined in general, as it becomes apparent when one considers flows initialized at
empirical measures. While this technical difficulty is acknowledged in [17], no solution for it is
provided; see Page 29 in [17].
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With Proposition (47) in hand, and following similar steps as in [17], we can now derive
results controlling exploitability under Assumptions 8 and 32.

Lemma 49 Let π,ν be the solution of equation (2.3) initialized at probability measures π0,ν0
with π0,z = µ. Let π∗,ν∗ be arbitrary probability measures over Z ×Z and Θ, respectively, and
suppose that π∗

z = µ. Let

Qπ(π0,π∗;τ) := inf
π̂∈P(Z×Z), π̂z=µ

{∥π∗ − π̂∥∗
BL + 1

τ
H(π̂||π0)},

where ∥·∥∗
BL denotes the dual of the BL (Bounded Lipschitz) norm ∥ · ∥BL := ∥ · ∥∞ + Lip(·).

Consider also Qν(ν0,ν∗;τ) defined as

Qν(ν0,ν∗;τ) := inf
ν̂∈P(Θ)

{∥ν∗ − ν̂∥∗
BL + 1

τ
H(ν̂||ν0)}.

Suppose that Assumptions 8 and 32 hold. Then

U(π∗, ν̄(t))−U(π̄(t),ν∗) ≤ B(Qπ(π0,π∗;κBt)+Qν(ν0,ν∗;κBt))+ 2B2

t

∫ t

0

∫ s

0
ητ dτds,

where B := M +L (see Assumption 8 for the meaning of L and M). In the above, πt := 1
t

∫ t
0 πsds

and νt := 1
t

∫ t
0 νsds.

Proof Consider two arbitrary probability measures π̂0 and ν̂0 with π̂0 ≪ π0, ν̂0 ≪ ν0, π̂0,z =
µ, dν̂0

dν0
∈ L∞(ν0), and dπ̂0

dπ0
∈ L∞(π0). We consider the dynamics (π̂t, ν̂t) and (πt,νt) as in

Proposition 47.

1. Step 1: From the concavity of U in its first coordinate (with respect to linear interpolation)
it follows that

U(π∗,νt) ≤U(πt,νt)+
∫

Uπ(πt,νt;z, z̃)d(π∗ −πt)

=U(πt,νt)+
∫

Uπ(πt,νt;z, z̃)d(π∗ − π̂t)

+
∫

Uπ(πt,νt;z, z̃)d(π̂t −πt).

Using the BL (bounded Lipschitz) norm, we get from Proposition 47 that∫ t

0
U(π∗,νs)ds−

∫ t

0
U(πs,νs)ds ≤

∫ t

0
(∥Uπ(πs,νs; ·)∥BL∥π∗ − π̂s∥∗

BL)ds

+
∫ t

0

∫
Uπ(πs,νs;z, z̃)d(π̂s −πs)ds

≤
∫ t

0
(∥Uπ(πs,νs; ·)∥BL∥π∗ − π̂s∥∗

BL)ds

− 1
κ

(H(π̂t||πt)−H(π̂0||π0)).

(5.9)



38 C. AND N. GARCÍA TRILLOS

A similar argument using the convexity of U in its second coordinate deduces∫ t

0
U(πs,ν∗)ds−

∫ t

0
U(πs,νs)ds ≥−

∫ t

0
(|Uν(πs,νs; ·)∥BL∥ν∗ − ν̂s∥∗

BL)ds

+ 1
κ

(H(ν̂t||νt)−H(ν̂0||ν0)).
(5.10)

Using again the concavity and convexity of U , we get:

U(π̄t,ν
∗) ≥ 1

t

∫ t

0
U(πs,ν∗)ds, U(π∗, ν̄t) ≤ 1

t

∫ t

0
U(π∗,νs)ds.

Combining the above with (5.9), (5.10), and the fact that H(ν̂t||νt),H(π̂t||πt) ≥ 0 we
conclude that

U(π∗, ν̄t)−U(π̄t,ν
∗) ≤1

t

∫ t

0
(∥Uν(πs,νs; ·)∥BL∥ν∗ − ν̂s∥∗

BL +∥Uπ(πs,νs; ·)∥BL∥π∗ − π̂s∥∗
BL)ds

+ 1
κt

(H(ν̂0||ν0)+H(π̂0||π0))

≤B

t

∫ t

0
(∥ν∗ − ν̂s∥∗

BL +∥π∗ − π̂s∥∗
BL)ds+ 1

κt
(H(ν̂0||ν0)+H(π̂0||π0)) .

(5.11)

2. Step 2: Observe that both Uπ and Uν have their BL norm bounded by B = M + L. To
conclude, it remains to remark that

1
t

∫ t

0
∥π∗ − π̂s∥∗

BLds ≤∥π∗ − π̂0∥∗
BL + 1

t

∫ t

0
∥π̂0 − π̂s∥∗

BLds

=∥π∗ − π̂0∥∗
BL + 1

t

∫ t

0

{
sup

∥f∥BL≤1;f∈C1

∫
fd(π̂s − π̂0)

}
ds

≤∥π∗ − π̂0∥∗
BL + B

t

∫ t

0

∫ s

0
ητ dτds,

and similarly,

1
t

∫ t

0
∥ν∗ − ν̂s∥∗

BLds ≤ ∥ν∗ − ν̂0∥∗
BL + B

t

∫ t

0

∫ s

0
ητ dτds.

Replacing in (5.11), it follows that

U(π∗, ν̄t)−U(π̄t,ν
∗) ≤ B(∥ν∗ − ν̂0∥∗

BL +∥π∗ − π̂0∥∗
BL) (5.12)

+ 1
κt

(H(ν̂0||ν0)+H(π̂0||π0))+ 2B2

t

∫ t

0

∫ s

0
ητ dτds.

Recall that π̂0 and ν̂0 were arbitrary measures with densities with respect to π0 and
ν0 belonging to L∞. From a simple density argument we may now conclude the desired
estimate.
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□

The following Lemma is taken from [17] which in turn follows the arguments in [13].

Lemma 50 Suppose that Assumptions 8 and 32 hold. Assume further that there exists k > 0
such that dν0

dθ (θ) > k, and suppose that |Bθ,ϵ ∩ Θ| ≥ k′ϵd uniformly in θ ∈ Θ, where Bθ,ϵ is the
Euclidean ball of radius ϵ centered at θ. Then,

Qν(ν0,ν∗;τ) ≤ d

τ

{
1− log

(
d

τ

)}
+ 1

τ
{− log(k)− log(k′)}.

Proof We obtain a bound for the min in the definition of Qν . For a fixed ϵ > 0 we introduce a
probability measure νϵ given by

νϵ(A) :=
∫

Θ

|Bθ,ϵ ∩A|
|Bθ,ϵ ∩Θ|

dν∗(θ).

We now calculate W1(ν∗,νϵ). Consider the coupling:

Υ(A,A′) :=
∫

A

|Bθ,ϵ ∩A′|
|Bθ,ϵ ∩Θ|

dν∗(θ).

Indeed, one easily verifies Υ(Θ,A′) = νϵ(A′) and Υ(A,Θ) = ν∗(A). Thus,

W1(ν∗,νϵ) ≤
∫

Θ

∫
Θ

|θ −θ′|dζ(θ,θ′) =
∫

Θ

∫
θ′∈Bθ,ϵ∩Θ

|Bθ,ϵ ∩Θ|−1|θ −θ′|dθ′dν∗(θ) ≤ ϵ.

Since for any measure ν ∈ P(Θ) we have that ∥ν∗ −ν∥∗
BL ≤ W1(ν∗,ν), we obtain a bound of ϵ

for the first term in Qν .
We now turn to the relative entropy term. Observe that the definition of νϵ and Fubini’s

theorem gives
dνϵ

dθ
(θ) =

∫
Θ

|Bθ′,ϵ ∩Θ|−11Bθ′,ϵ∩Θ(θ)dν∗(θ′);

thus, by convexity of the function x 7→ x log(x), Jensen’s inequality and Fubini’s theorem, we
have∫

Θ

dνϵ

dθ
(θ) log

(
dνϵ

dθ
(θ)
)

dθ ≤
∫

Θ

∫
Θ

|Bθ′,ϵ ∩Θ|−11Bθ′,ϵ
(θ) log(|Bθ′,ϵ ∩Θ|−1)dν∗(θ′)dθ (5.13)

≤ −
∫

Θ
log(|Bθ′,ϵ ∩Θ|)dν∗(θ′) ≤ − log(k′)−d log(ϵ),

where we have used the convention 0×−∞ = 0.
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On the other hand, by assumption,∫
Θ

dνϵ

dθ
(θ) log

(
dν0
dθ

(θ)
)

dθ =
∫

Θ
log
(

dν0
dθ

(θ)
)

dνϵ(θ) ≥ log(k). (5.14)

From the above it follows

H(νϵ||ν0) ≤ − log(k)− log(k′)−d log(ϵ).

Hence,
Q(ν0,ν∗;τ) ≤ ϵ− 1

τ
(d log(ϵ)+ log(k′)+ log(k)),

for every ϵ > 0. Choosing ϵ = d
τ , the minimizer of the right hand side of the above expression,

we get the desired result. □

Remark 51 The condition |Bθ,ϵ ∩ Θ| ≥ k′ϵd uniformly over θ ∈ Θ is implied by the fact that
the boundary of Θ was assumed to be Lipschitz; see Assumptions 8.

A posteriori, we can generalize Lemma 50 to allow for empirical measures that approximate
in a suitable sense a measure ν0 satisfying the assumptions in Lemma 50. This is the content
of the next result.

Lemma 52 Let θ1, . . . ,θM ∈ Θ be M distinct points in Θ, and let νM
0 := 1

M

∑M
i=1 δθi

. Suppose
that ν0 and Θ are as in Lemma 50. Then, for every τ > 0, we have

Qν(νM
0 ,ν∗;τ) ≤ W∞(ν0,νM

0 )+ d

τ

{
1− log

(
d

τ

)}
+ 1

τ
{− log(k)− log(k′)},

where W∞ denotes the ∞-Wasserstein distance between ν0 and νM
0 .

In particular, if θ1, . . . ,θM are sampled independently from a ν0 with a density with respect
to the Lebesgue measure that is bounded and bounded away from zero, then, with probability at
least 1−1/M2,

Qν(νM
0 ,ν∗;τ) ≤ C

log(M)pd

M1/d
+ d

τ

{
1− log

(
d

τ

)}
+ 1

τ
{− log(k)− log(k′)},

for a constant C that depends on ν0, and a power pd that takes the form pd = 3/4 if d = 2 and
pd = 1/d if d ≥ 3.

Proof Fix τ > 0 and let ν∗ ∈ P(Θ) be an arbitrary probability measure. By Lemma 50 for any
given ε > 0 we can find ν̂τ ∈ P(Θ) such that

∥ν∗ − ν̂τ ∥∗
BL + 1

τ
H(ν̂τ ||ν0) ≤ ε+ d

τ

{
1− log

(
d

τ

)}
+ 1

τ
{− log(k)− log(k′)}.

Let T : Θ → {θ1, . . . ,θM } be an ∞-OT map between ν0 and νM
0 , which exists thanks to

the assumptions on ν0 and the main result in [10]. In particular, T can be taken to satisfy
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T♯ν0 = νM
0 and

sup
θ∈Θ

|θ −T (θ)| = W∞(ν0,νM
0 );

notice that we can indeed take an actual supremum on the left hand side of the above expression,
and not just an essential supremum, thanks to the assumptions on ν0 and the domain Θ. Having
introduced the map T , we define the measure

ν̂M
τ :=

M∑
i=1

ν̂τ (T −1(θi))δθi
,

which is an empirical version of ν̂τ . In what follows we bound ∥ν∗ − ν̂M
τ ∥∗

BL + 1
τ H(ν̂M

τ ||νM
0 ).

First,

∥ν∗ − ν̂M
τ ∥∗

BL ≤ ∥ν∗ − ν̂τ ∥∗
BL +∥ν̂τ − ν̂M

τ ∥∗
BL

≤ ∥ν∗ − ν̂τ ∥∗
BL +W1(ν̂τ , ν̂M

τ )

≤ ∥ν∗ − ν̂τ ∥∗
BL +

∫
Θ

|θ −T (θ)|dν̂τ (θ)

≤ ∥ν∗ − ν̂τ ∥∗
BL + sup

θ∈Θ
|θ −T (θ)|

= ∥ν∗ − ν̂τ ∥∗
BL +W∞(ν0,νM

0 ),

(5.15)

where in the second to last inequality we have used the fact that, as can be easily verified,
T♯ν̂τ = ν̂M

τ .
On the other hand, a straightforward application of Jensen’s inequality reveals that

H(ν̂M
τ ||νM

0 ) ≤ H(ν̂τ ||ν0).

Combining the above inequalities we conclude that for every ε > 0

Qν(νM
0 ,ν∗;τ)−ε ≤ W∞(ν0,νM

0 )+ d

τ

{
1− log

(
d

τ

)}
+ 1

τ
{− log(k)− log(k′)},

which of course implies the desired bound.
When the points θ1, . . . ,θM are sampled from a distribution ν0 satisfying the specified

additional assumptions, Theorem 1.1 in [26] allows us to bound W∞(ν0,νM
0 ) by C log(M)pd

M1/d

with very high probability. □

Lemma 53 Suppose that Assumptions 8 and 32 hold. Let π0 be such that π0,z = µ and suppose
that there exists k > 0 such that dπ0(z̃|z)

dz̃ (z̃) > k for all z in the support of µ. Suppose further
that |Bz̃,ϵ ∩Z| ≥ k′ϵd′ uniformly in z̃ ∈ Z. Then, for all π∗ with π∗

z = µ, we have

Qπ(π0,π∗;τ) ≤ d′

τ

{
1− log

(
d′

τ

)}
+ 1

τ
{− log(k)− log(k′)}.
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Proof Since all measures of interest must have the same first marginal (i.e., µ) we proceed as
in Lemma 50, but this time only regularizing conditional distributions. More precisely, for a
given z in the support of Z we define the measure πϵ(·|z) as follows:

πϵ(A|z) :=
∫

Z

|Bz̃,ϵ ∩A|
|Bz̃,ϵ ∩Z|

dπ∗(z̃|z).

We then define the measure πϵ as:

dπϵ(z, z̃) = dπϵ(z̃|z)dµ(z).

Notice that the measure πϵ is such that πϵ
z = µ. Moreover, it is straightforward to show

(repeating similar computations as in the proof of Lemma 50) that W1(πϵ,π∗) ≤ ϵ and
H(πϵ||π0) ≤ − log(k)− log(k′)−d′ log(ϵ). The desired result now follows as in Lemma 50. □

Lemma 54 Let z̃1, . . . , z̃N be N distinct points in Z, and let πN
0 := µ⊗( 1

N

∑N
i=1 δz̃i). Suppose

that µ̃0 is a probability measure over Z that has a density with respect to the Lebesgue measure
satisfying dµ̃0

dz ≥ k and Z is such that |Bz,ϵ ∩Θ| ≥ k′ϵd′ uniformly in z ∈ Z. Then

Qπ(π0,π∗;τ) ≤ W∞(µ̃0,
1
N

N∑
i=1

δz̃i)+ d′

τ

{
1− log

(
d′

τ

)}
+ 1

τ
{− log(k)− log(k′)}.

In particular, if z̃1, . . . , z̃N are sampled independently from a µ̃0 with a density with respect
to the Lebesgue measure that is bounded and bounded away from zero, then, with probability at
least 1−1/N2,

Qπ(πN
0 ,π∗;τ) ≤ C

log(N)pd′

N1/d′ + d′

τ

{
1− log

(
d′

τ

)}
+ 1

τ
{− log(k)− log(k′)},

for a constant C that depends on µ̃0, and a power pd′ that takes the form pd′ = 3/4 if d′ = 2
and pd′ = 1/d′ if d′ ≥ 3.

Proof The proof follows the same ideas as the ones in the proof of Lemma 52 and thus we skip
the details. □

Proof of Theorem 35 On the one hand, by assumption, we can find T1 such that for all t > T1

|2B2 1
t

∫ t

0

∫ s

0
ηududs| ≤ 3

4ϵ.

On the other hand, Lemmas 50 and 53 imply that there exists T2 such that, for all t > T2 and
arbitrary π∗ with π∗

z = µ and ν∗, we have

(Q(π0,π∗;κBt)+(Q(ν0,ν∗;κBt) ≤ ϵ

4B
.

We conclude by taking T ∗ = T1 ∨T2 and using Lemma 49. □

Proof of Theorem 36 The proof is as the proof of Theorem 35 except that we use Lemmas 52
and 54 instead of Lemmas 50 and 53. □
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5.3. Proofs of Theorems 42 and 43
In this section we present the proofs of Theorems 42 and 43.

Proof of Theorem 42 Throughout this proof we use m∗
t to denote the quantity

m∗
t := sup

π s.t. πz=µ
U(π,νt).

From concavity-convexity of U in the linear interpolation sense we have for all arbitrary π̃
(with π̃z = µ) and ν̃:

U(π̃,νt)−U(πt, ν̃) ≤ 1
t

∫ t

0
(U(π̃,νs)−U(πs, ν̃))ds

= 1
t

∫ t

0
(U(π̃,νs)−m∗

s)ds+ 1
t

∫ t

0
(m∗

s −U(πs, ν̃))ds

≤ 1
t

∫ t

0
(m∗

s −U(πs, ν̃))ds

= 1
t

∫ t

0
(m∗

s −U(πs,νs))ds+ 1
t

∫ t

0
(U(πs,νs)−U(πs, ν̃))ds.

=: I1 +I2

(5.16)

In the above, the second inequality follows from the definition of m∗
s . We will now control each

of the terms I1 and I2 on the right-hand side of the above expression.
In order to control I1, we start by using the chain rule (e.g., see section 10.1.2 in [1]) to

obtain an expression for d
dsU(πs,νs):

d

ds
U(πs,νs) =

∫
|∇z̃Uπ(πs,νs;z, z̃)|2dπs(z, z̃)+κ

∫
Uπ(πs,νs;z, z̃)(Uπ(πs,νs;z, z̃)−Uπ,z)dπs(z, z̃)

− ηt

K

∫
|∇θUν(πs,νs;θ)|2dνs(θ)− κ

K

∫
Uν(πs,νs;θ)(Uν(πs,νs;θ)−Uν)dνs(θ);

(5.17)

in the above, we use the shorthand notation Uπ,z to denote
∫

Uπ(πs,νs;z, z̃′)dπs(z̃′|z), and
Uν to denote

∫
Uν(πs,νs;θ′)dνs(θ′). Assumption 39 implies that the first term on the right-

hand side of (5.17) is bounded from below by λ(m∗
s − U(πs,νs)). On the other hand, Jensen’s

inequality implies that the second term is non-negative. Finally, Assumptions 8 imply that the
last terms can be bounded from below by −∥η∥∞

K M2 − 2κ
K M2. It follows that for all t ≥ 0

U(πt,νt) =U(π0,ν0)+
∫ t

0

d

dr
U(πr,νr)dr

≥U(π0,ν0)− t

K
B̃ +λ

∫ t

0
(m∗

s −U(πs,νs))ds,
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where B̃ := (∥η∥∞ + 2κ)M2. Subtracting m∗
t from both sides of the above inequality, we get,

thanks to Assumptions 8,

U(πt,νt)−m∗
t ≥ −2M − t

K
B̃ +λ

∫ t

0
(m∗

s −U(πs,νs))ds.

Equivalently,

m∗
t −U(πt,νt) ≤ 2M + t

K
B̃ −λ

∫ t

0
(m∗

s −U(πs,νs))ds.

We thus see that the function f(t) := m∗
t −U(νt,πt) satisfies

f(t) ≤ 2M + B̃

K
t−λ

∫ t

0
f(s)ds,

and from Lemma 62 in Appendix A.4 we conclude that

I1 ≤ B̃

Kα
+ A

t
,

for A := 1
λ |2M − B̃

Kλ |.
To estimate I2 in (5.18), we follow similar computations to those in the proof of Lemma 49

to conclude that∫ t

0
U(πs,νs)ds−

∫ t

0
U(πs, ν̃)ds ≤

∫ t

0
(|Uν(πs,νs; ·)∥BL∥ν̃ − ν̂s∥∗

BL)ds

−
∫ t

0

(∫
Uν(πs,νs;θ)d(ν̂s −νs)(θ)

)
ds,

(5.18)

where now we use a modified hat process ν̂ satisfying

∂tν̂t = ηt

K
divθ(ν̂t∇θUν(πt,νt;θ)),

initialized at an arbitrary ν̂0 ≪ ν0 with density in L∞(ν0). Following a straightforward
adaptation of Proposition 47, we can then see that

H(ν̂t||νt)−H(ν̂0||ν0) ≤ κ

K

∫ t

0

(∫
Uν(πs,νs;θ)d(ν̂s −νs)(θ)

)
ds, ∀t ≥ 0,

from where it now follows that

I2 ≤ 1
t

∫ t

0
(∥Uν(πs,νs; ·)∥BL∥ν̃ − ν̂s∥∗

BL)ds+ K

κt
H(ν̂0||ν0)

≤ B∥ν̃ − ν̂0∥∗
BL + B2

Kt

∫ t

0

∫ s

0
ητ dτds+ K

κt
H(ν̂0||ν0).
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From the above we can deduce

I2 ≤ BQν(ν0, ν̃; κ

K
Bt))+ B2

Kt

∫ t

0

∫ s

0
ητ dτds.

Putting all our estimates together we obtain

U(π̃,νt)−U(πt, ν̃) ≤ B̃

Kλ
+ A

t
+BQν(ν0, ν̃; κ

K
Bt))+ B2

Kt

∫ t

0

∫ s

0
ητ dτds.

At this stage we can use the specific properties of ν0 and use Lemma 50 to conclude that
there are r0(ϵ),K0(ϵ), t0(ϵ), r1(ϵ) such that, if K

t ≤ r0(ϵ), K ≥ K0(ϵ), t ≥ t0(ε), η/K ≤ r1(ϵ),
then

sup
π̃∈P(Z2) s.t. π̃z=µ

U(π̃,νt)− inf
ν̃∈P(Θ)

U(πt, ν̃) ≤ ϵ.

□

Proof of Theorem 43 The proof is the same as the proof of Theorem 42, except that in the last
step we use Lemma 52 instead of Lemma 50. □

6. Numerical examples

We illustrate our results numerically in the context of image classification on the MNIST
database [30]. Our main purpose is to illustrate the effectiveness of the algorithm to obtain
adversarially robust classifiers even away from the asymptotic regimes that we studied.

In this framework, we take the particles representing the distribution ν to be the training
parameters (i.e. weights and biases) for simple convolutional networks with fixed widths and
depths2; while the particles representing the distribution π are pairs of images where the first
component is an image from the original database, and the second is an adversarial image built
during the training process. We consider the square loss with an adversarial cost given by the
Wasserstein-2 distance, i.e.

R(π,ν) =
∫

Z×Z

∫
Θ

|hθ(x̃)− ỹ|2dν(θ)dπ(z, z̃); C(π) = ca

∫
Z×Z

|z − z̃|2dπ(z, z̃)

where, hθ(x) is the outcome of the convolutional network for the input x when setting the
parameters of the network to be θ.

Given the nonlinear structure of the convolutional architecture, it would be extremely
memory-consuming to apply directly the time average step 19 in Algorithm 1, as it would
require us to keep track of copies of all intermediate networks in the training process. A
possible solution, proposed for example in [17], is to calculate the time average on the weights
only, while keeping the last position of the network-parameter particles. We implement also an
alternative approach based on the resampling methods used in particle filters (see [31] for a
review): we keep in memory at most a maximum number of network parameters (M ′). At each

2 Two layers with a convolutional kernel of size 5 and output channel sizes of 32 and 64 respectively, ReLu
activation functions, and maxpool; and two linear layers at the end with respective output sizes 1000 and 10.
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update time, we use residual systematic resampling (RSR) to pick M ′ parameters to keep from
the list of the M ′ already contained in memory and the new bunch of M particles. Details of
the (RSR) method can be found in [31] (see for example code 4 in Table 2). The time-average
calculation of adversarial images is done similarly.

To illustrate our main result, we compute a proxy for the ratios

ra :=
supπ̃∈P(Z2) s.t. π̃z=µ U(π̃,ν⋆)

U(π⋆,ν⋆) , and rm :=
inf ν̃∈P(Θ) U(π⋆, ν̃)

U(π⋆,ν⋆) ,

where (π⋆,ν⋆) are the time-averaged distributions for the networks and adversarial images
obtained after training. According to our results, we should reach an approximate Nash
equilibrium, so we expect both ratios to be closed to zero. The proxy is computed as follows:
we approximate the supremum in rm by fixing ν⋆ while training each one of the networks
representing π⋆ with stochastic gradient descent for a fixed number of epochs (weights are kept
constant). We compute then the relative change in total risk after this procedure. The proxy for
ra is computed analogously. We present a summary of the parameters used for the numerical
experiments 3 and the results obtained in Table 1.

Model parameters
N 4
M 2
ηt 0.1(t+1)−1

κ 0.25
ca 10

Implementation parameters
Dataset MNIST
Batch size 64
Training epochs 4

Results
Accuracy

Time avg. on weights Resampling
Clean 96.34% 93.53%

PGD (20 steps) 62.21% 58.49 %
Relative change of loss at solution - 5 additional training epochs

Time avg. on weights Resampling
ra 0.21% 0.03 %
rm 1.82% 3.5%

Table 1 Parameters and results of numerical experiment.

3 The code used to run these experiments can be found at https://github.com/camgt/robust_learning

https://github.com/camgt/robust_learning
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Intuitively, we expect that the classification provided by the final time-averaged
distributions of networks should be both effective and robust. To test this idea, we evaluate the
accuracy of this classifier with a clean test sample, independent of the original distribution, and
with an adversarial version constructed via modification of the latter using projected gradient
descent (PGD) with 20 steps and a step size of 0.04. PGD constructs adversarial images by
repeatedly perturbing each pixel in the image by a fixed amount choosing the sign of the
perturbation to be the same as the sign of the gradient of the loss function with respect to the
entry. See for example [35]. Results of this test are also included in Table 1. We observe that
the overall procedure has degraded a bit the clean performance of the network but significantly
improved the resistance to adversarial attacks. For reference, a baseline obtained by a simple
training of a network with the same characteristics obtains in the same number of epochs a
clean accuracy of 98.41% but an accuracy after the PGD attack of only 0.68% (compare also
with the results in [22]). Table 1 shows that in the tested case, calculating the time average on
the weights only is not just simpler but also has better results than the resampling procedure.
However, there may be settings, not explored here, where the latter approach may be more
advantageous. Exploring this would be an interesting research direction.

7. Conclusions

In this paper we have studied minmax problems over spaces of probability measures with a
payoff structure motivated by adversarial training problems in supervised learning settings; we
have studied gradient ascent-descent dynamics aimed at solving these problems. The dynamics
that we have studied take the form of an evolutionary system of PDEs that can be discretized
using systems of finitely many interacting particles. Under some reasonable assumptions on the
payoff structure of the game, we can show that the proposed particle systems are consistent
and recover the solution of the original PDE as the number of particles in the system scales
up. We have also discussed the behavior of our evolutionary system of PDEs as time tends
to infinity, showing that in a certain sense (see below) the system can produce approximate
Nash equilibria for the adversarial game. Our results are stated under suitable assumptions on
initialization in two settings of interest: 1) for non-convex non-concave payoffs (convexity and
concavity understood in a suitable OT-sense), and 2) non-convex strongly-concave problems
(again, in a suitable OT sense). Both settings are realistic in adversarial learning games for
supervised learning tasks, while in general convexity can only be enforced by introducing
additional (exogenous) regularization penalties in the payoff function.

Due to the lack of convexity of the payoff in our problem (w.r.t. the metric inducing the
dynamics of our ascent-descent dynamics), we can only guarantee that time averages of the
measures produced by our PDE system become approximate Nash equilibria in the t → ∞
limit. For our algorithms to follow more closely our theoretical results, it was thus important
to discuss strategies for constructing surrogate time averages that do not incur in memory
overload and that can still recover approximate Nash equilibria for the game, at least in some
benchmark learning tasks.

There are several directions for research that our work motivates. Here we mention a few.

First, the theoretical analysis that we have presented in this paper presupposes that the
optimization updates take into account all (perturbed) data points, but in practice a natural
strategy is to use batches of data to compute the loss (and its gradient) at each iteration. We
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thus believe that it is of interest to study how the use of stochastic gradient descent (SGD)
affects the resulting PDE system.

Another interesting direction for future research is the exploration of broader frameworks
for adversarial learning covering multiclass classification settings (as opposed to regression
problems as considered in this paper or just binary classification problems). In principle, one
could even consider situations where prior information on the similarity of classes in a learning
problem is available (e.g. the class "guitar" may be considered more similar to class "violin"
than to class "baseball") as in those situations it may be beneficial to use such information to
construct more nuanced models for risk and admissible adversarial attacks; for example, the
work [44] discusses the advantages of using similarity or hierarchical structures between classes
in different learning tasks; the work [16] explicitly discusses how to build similarities between
labels using their semantic content. Our framework indeed seems better suited for regression
problems, since in that setting the cost function C for the adversary can be naturally defined
using something like the Wasserstein distance over the feature space times the label space, where
the latter space is simply the real line. When the response variable has a discrete structure,
it is less obvious how one can still define a reasonable (from the modelling perspective) cost
structure for the adversary in such a way that the resulting adversarial game can still be solved
using an ascent-descent scheme as explored in this paper.

Data Availability Statement
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experiments in section 6 can be found at https://github.com/camgt/robust_learning.
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A. Auxiliary results and computations

A.1. Equivalence between (1.1) and DRO problems
In this section we assume that the payoff U has the form (1.3) and that

R(π,ν) = R(πz̃,ν), C(µ,µ̃) = inf
π∈Γ(µ,µ̃)

C(π), C(π) =
∫

c(z, z̃)dπ(z, z̃). (A.1)

In other words, we assume that R’s dependence on π is only through π’s second marginal, C is
an average cost, and C(µ,µ̃) is the optimal transport problem between measures µ and µ̃ for
the cost c in the definition of C. We will show that under these assumptions problems (1.1) and
(1.2) are equivalent. By this we mean that it is possible to easily construct approximate Nash
equilibria for one of the problems from approximate Nash equilibria for the other.

Definition 55 We say that (µ̃∗,ν∗) is an ε-Nash equilibrium for (1.2) if

sup
µ̃∈P(Z)

{R(µ̃,ν∗)−C(µ,µ̃)}− inf
ν∈P(Θ)

{R(µ̃∗,ν)−C(µ,µ̃∗)} ≤ ε.

Proposition 56 Suppose U has the form (1.3) and R,C,C are as in (A.1). If (π∗,ν∗) is an
ε-Nash equilibrium for problem (1.1) (see Definition 3), then (π∗

z̃ ,ν∗) is an ε-Nash equilibrium
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for (1.2). Conversely, if (µ̃∗,ν∗) is an ε-Nash equilibrium for (1.2) and π∗ ∈ Γ(µ,µ̃) realizes
the cost C(µ,µ̃∗), then (π∗,ν∗) is an ε-Nash equilibrium for (1.1).

Proof Let (π∗,ν∗) be an almost Nash equilibrium for (1.1) and let µ̃∗ = π∗
z̃ . For arbitrary

µ̃ ∈ P(Z), assume for simplicity that there is π̂ ∈ Γ(µ,µ̃) that achieves the cost C(µ,µ̃), i.e.,
C(π̂) = C(µ,µ̃). Also, let ν̃ ∈ P(Θ) be arbitrary. We see that:

R(µ̃∗, ν̃)−C(µ,µ̃∗)+ε ≥ R(π∗
z̃ , ν̃)−C(π∗)+ε = U(π∗, ν̃)+ε

≥ U(π̂,ν∗)
= R(µ̃,ν∗)−C(π̂)
= R(µ̃,ν∗)−C(µ,µ̃).

Given that µ̃ and ν̃ were arbitrary, we conclude that

sup
µ̃∈P(Z)

{R(µ̃,ν∗)−C(µ,µ̃)}− inf
ν∈P(Θ)

{R(µ̃∗,ν)−C(µ,µ̃∗)} ≤ ε,

which is what we wanted to prove.
Conversely, suppose that (µ̃∗,ν∗) is an ε-Nash equilibrium for (1.2) and suppose π∗ ∈

Γ(µ,µ̃∗) realizes C(µ,µ̃∗). Consider arbitrary π,ν with πz = µ and let µ̃ = πz̃. Then

U(π∗,ν)+ε = R(µ̃∗,ν)−C(π∗)+ε

= R(µ̃∗,ν)−C(µ,µ̃∗)+ε

≥ R(µ̃,ν∗)−C(µ,µ̃)
≥ R(µ̃,ν∗)−C(π)
= U(π,ν∗).

Since π (with πz = µ) and ν were arbitrary, we conclude that (π∗,ν∗) is an ε-Nash equilibrium
for (1.1), as we wanted to prove. □

A.2. On the PL condition of Assumption 39
Proposition 57 Suppose that Z is a convex set and that we select an activation function
and a loss function in the setting in 1.1 that are twice continuously differentiable. Then the
function U in (1.3), with R and C as in (1.4) and (1.5), satisfies the condition in Assumption
39 for all large enough ca.

Proof A straightforward computation reveals that in this case

Uπ(π,ν;z, z̃) = ℓ(hν(x̃), ỹ)− ca|z − z̃|2 =: U(ν;z, z̃).

Assuming that the loss function ℓ and the activation function f are at least twice continuously
differentiable, we can conclude that the function z̃ ∈ Z 7→ U(ν;z, z̃) (for fixed z and ν) is strongly
concave (for all z and ν), provided that ca is large enough. Indeed, this is simply because we
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can bound, uniformly over z,ν, the second derivatives of the first term in U(ν;z, z̃). Thanks to
this and Theorem 5.15 ii) in [49], we deduce that there is λ > 0 such that for every z ∈ Z and
Υ ∈ P(Z) we have∫

Z
|∇z̃U(ν;z, z̃)|2dΥ(z̃) ≥ λ( sup

Υ̂∈P(Z)

∫
Z

U(ν;z, z̃)dΥ̂(z̃)−
∫

Z
U(ν;z, z̃)dΥ(z̃)).

In particular, for a given π ∈ P(Z ×Z) with π0,z = µ, we have∫
Z

|∇z̃U(ν;z, z̃)|2dπ(z̃|z) ≥ λ( sup
Υ̂∈P(Z)

∫
Z

U(ν;z, z̃)dΥ̂(z̃)−
∫

Z
U(ν;z, z̃)dπ(z̃|z)),

for all z ∈ Z and all ν ∈ P(Θ). Integrating over z with respect to µ on both sides of the above
inequality, we get∫

Z×Z
|∇z̃Uπ(π,ν;z, z̃)|2dπ(z, z̃) =

∫
Z×Z

|∇z̃U(ν;z, z̃)|2dπ(z, z̃)

≥ λ

(∫
Z

(
sup

Υ̂∈P(Z)

∫
Z

U(ν;z, z̃)dΥ̂(z̃)
)

dµ(z)−U(π,ν)
)

≥ λ

(
sup

π̂∈P(Z2) s.t. π̂z=µ

U(π̂,ν)−U(π,ν)
)

.

□

A.3. Auxiliary lemmas for the construction of approximate initializations in Theorems 12 and
25

Proposition 58 Let A,B be two bounded Borel subsets of Rd and Rd′ , respectively. Let
µ ∈ P(A), and let u ∈ A 7→ µu(·) ∈ P(B) be a measurable map.

For every sequence {Υn}n∈N ⊆ Γ(µ,µ) satisfying

lim
n→∞

∫
A×A

|u−u′|dΥn(u,u′) = 0,

we have
lim

n→∞

∫
A×A

W1(µu,µu′)dΥn(u,u′) = 0.

Proof Sequences {Υn}n∈N satisfying the hypothesis in the proposition are called stagnating
sequences of transport plans; see [25].

Let ε > 0. For such ε > 0 we can build a finite partition {Bl}l=1,...,L of the set B in such a
way that each set Bl has diameter less than ε/3; this partition can be constructed by simply
intersecting a grid of boxes in Rk′ of diameter less than ε/3 with the set B. Select now a point
vl in each of the Bl. Associated to each l = 1, . . . ,L, we define a function hl ∈ L1(µ) as follows:
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for every u in the support of µ, we define hl(u) := µu(Bl). We now consider the measures
µ̂u :=

∑L
l=1 hl(u)δvl

. Notice that these are probability measures satisfying W1(µ̂u,µu) ≤ ε/3.
In particular, using the triangle inequality for W1 we deduce∫

A×A
W1(µu,µu′)dΥn(u,u′) ≤

∫
A×A

W1(µu, µ̂u)dΥn(u,u′)+
∫

A×A
W1(µ̂u, µ̂u′)dΥn(u,u′)

+
∫

A×A
W1(µ̂u′ ,µu′)dΥn(u,u′).

≤ 2
3ε+

∫
A×A

W1(µ̂u, µ̂u′)dΥn(u,u′).

Let us now find an upper bound for the term
∫

A×A W1(µ̂u, µ̂u′)dΥn(u,u′). By the Kantorovich
duality for the W1 distance, we have

W1(µ̂u, µ̂u′) = sup
Lip(f)≤1

{
∫

f(v)dµ̂u(v)−
∫

f(v)dµ̂u′(v)}.

Since the set B is bounded, and the argument inside the sup is invariant under addition of
a constant to a given f , we can further assume that the sup is taken over functions f whose
supremum norm is bounded by a fixed constant C. For such a function f we have∫

f(v)dµ̂u(v)−
∫

f(v)dµ̂u′(v) =
L∑

l=1
(hl(u)−hl(u′))f(vl) ≤ C

L∑
l=1

|hl(u)−hl(u′)|.

From the above it follows∫
A×A

W1(µ̂u, µ̂u′)dΥn(u,u′) ≤ C
L∑

l=1

∫
A×A

|hl(u)−hl(u′)|dΥn(u,u′).

We now invoke Lemma 3.10 in [25] to conclude that the right-hand side of the above expression
converges to zero as n → ∞. In particular, there exists N large enough such that for all n ≥ N
we have C

∑L
l=1
∫

A×A |hl(u)−hl(u′)|dΥn(u,u′) ≤ ε
3 . In turn, we conclude that if n ≥ N , then∫

A×A
W1(µu,µu′)dΥn(u,u′) ≤ ε.

This establishes the desired result. □

Lemma 59 Let A,B be two bounded Borel subsets of Rd and Rd′ , respectively. Let µ ∈ P(A),
and let u ∈ A 7→ µu(·) ∈ P(B) be a measurable map.

Let u1, . . . ,un, . . . be a sequence of i.i.d. samples from µ, and for each i ∈ N, let
vi1, . . . ,vim, . . . , be i.i.d. samples from µui(·). For each n and m consider the (random) measures

µn,m := 1
nm

n∑
i=1

m∑
j=1

δ(ui,vij), µn := 1
n

n∑
i=1

δui ,

and let µn,m(·|u) be the conditional distribution, according to µn,m, of the variable v given the
value u of the first coordinate.



55

Then

lim
n→∞

lim
m→∞

E

[
inf

Υn∈ΓOpt(µn,µ)

∫
W1(µn,m(·|u),µu′)dΥn(u,u′)

]
= 0.

In particular, there is a sequence {(nk,mk)}k∈N such that

lim
k→∞

E

[
inf

Υk∈ΓOpt(µnk ,µ)

∫
W1(µnk,mk (·|u),µu′)dΥk(u,u′)

]
= 0,

and a subsequence (not relabeled) such that

lim
k→∞

inf
Υk∈ΓOpt(µnk ,µ)

∫
W1(µnk,mk (·|u),µu′)dΥk(u,u′) = 0,

almost surely.

Proof Let Υn ∈ ΓOpt(µn,µ). By Corollary 5.22 in [50] this random measure can be chosen in a
measurable way over the tacitly defined sample space giving support to the random variables
in the problem.

From the triangle inequality for W1 we have∫
W1(µn(·|u),µu′)dΥn(u,u′) ≤

∫
W1(µn(·|u),µu)dΥn(u,u′)+

∫
W1(µu,µu′)dΥn(u,u′)

= 1
n

n∑
i=1

W1(µn,m(·|ui),µui)+
∫

W1(µu,µu′)dΥn(u,u′).

(A.2)

In what follows we analyze each of the terms on the right-hand side of the above expression.
We start with the second term.

Let us introduce Υ̂n := E[Υn], the (deterministic) measure that acts on test functions ϕ
according to ∫

ϕ(u,u′)dΥ̂n(u,u′) = E[
∫

ϕ(u,u′)dΥn(u,u′)].

It is straightforward to see that Υ̂n ∈ Γ(µ,µ). Now, due to the boundedness of the space A and
the fact that µn converges weakly to µ almost surely, we know that, almost surely,

lim
n→∞

∫
|u−u′|dΥn(u,u′) = lim

n→∞
W1(µn,µ) = 0.

By the dominated convergence theorem it thus follows

lim
n→∞

∫
|u−u′|dΥ̂n(u,u′) = lim

n→∞
E[
∫

|u−u′|dΥn(u,u′)] = 0.
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In particular, {Υ̂n}n∈N is a stagnating sequence of transport plans for µ, and thus, from Lemma
58 it follows that

lim
n→∞

E[
∫

W1(µu,µu′)dΥn(u,u′)] = lim
n→∞

∫
W1(µu,µu′)dΥ̂n(u,u′) = 0.

We now study the first term on the right-hand side of (A.2). To avoid introducing
cumbersome notation, we will assume for simplicity that all the ui are different so that in
particular µn,m(·|ui) = 1

m

∑m
j=1 δvij . We then have

lim
m→∞

E[ 1
n

n∑
i=1

W1(µn,m(·|ui),µui)] = E[ lim
m→∞

1
n

n∑
i=1

W1(µn,m(·|ui),µui)]

= E[E[ lim
m→∞

1
n

n∑
i=1

W1(µn,m(·|ui),µui)|u1, . . . ,un]]

= 0,

(A.3)

where we have used the dominated convergence theorem in the first line, and the fact that
1
m

∑m
j=1 δvij converges almost surely in the Wasserstein sense toward µui in the last line. □

Remark 60 Let {µn}n∈N be a sequence of probability measures over A × B and let µ be a
probability measure. We show that the condition

inf
Υn∈ΓOpt(µn

u,µu)

∫
W1(µn(·|u),µ(·|u′))dΥn(u,u′) → 0

implies
W1(µn,µ) → 0,

while the converse is not true in general; in the above, µn
u and µu denote the first marginals

of µn and µ, respectively. Indeed, suppose that the first condition holds, and for each u,u′

let Υu,u′ be a coupling between µn(·|u) and µ(·|u′) realizing the W1 distance. Also, choose
Υn in ΓOpt(µn,µ) such that

∫
W1(µn(·|u),µ(·|u′))dΥn(u,u′) → 0 , and consider the measure

dπn((u,v),(u′,v′)) := dΥu,u′(v,v′)dΥn(u,u′). It is straightforward to verify that πn ∈ Γ(µn,µ)
and that

∫
|(u,v)− (u′,v′)|dπn → 0. This implies W1(µn,µ) → 0.

As we stated earlier, the converse statement is not true. For example, taking
A = [0,1], B = [0,1], µ the uniform measure on [0,1]2, and µn = 1

n

∑
j δ(uj ,vj)

with (u1,v1), . . . ,(un,vn) i.i.d. samples from µ, we see that W1(µn,µ) → 0, while
infΥn∈ΓOpt(µn

u,µu)
∫

W1(µn(·|u),µ(·|u′))dΥn(u,u′) = 1 for all n.

Lemma 61 Consider the same setting and notation as in Lemma 59. Let ρ : A × B → [0,D]
be a measurable function satisfying ∫

ρ(u,v)dµu(v) = 1,

for all u in the support of µ. Then, with probability one,

lim
n→∞

lim
m→∞

1
n

n∑
i=1

∣∣∣∣∣ 1
1
m

∑m
j=1 ρ(ui,vij)

−1

∣∣∣∣∣= 0.
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Proof This is a direct consequence of the law of large numbers. □

A.4. Auxiliary lemmas for section 5
The following result follows from a Gronwall-type argument.

Lemma 62 Let B̃,M,K,λ > 0, and suppose h : [0,∞) → [0,∞) is a function satisfying

h(t) ≤ 2M + B̃

K
t−λ

∫ t

0
h(s)ds,

for all t. Then, for all T > 0,
1
T

∫ T

0
h(s)ds ≤ B̃

Kλ
+ A

T
,

where A := 1
λ |2M − B̃

Kλ |.

Proof The condition on h can be equivalently written as

h(t)− B̃

Kλ
≤ (2M − B̃

Kλ
)−λ

∫ t

0
(h(s)− B̃

Kλ
)ds.

Let H(t) :=
∫ t

0 (h(s)− B̃
Kλ )ds. The above condition can thus be written as

H ′(t) ≤ (2M − B̃

Kλ
)−λH(t).

From this it follows that
d

dt
(H(t)eλt) ≤ (2M − B̃

Kλ
)eλt.

Integrating the above expression, we get:

H(t)eλt ≤ (2M − B̃

Kλ
) 1
λ

(eλt −1),

or what is the same
H(t) ≤ (2M − B̃

Kλ
) 1
λ

− (2M − B̃

Kλ
) 1
λ

e−λt.

Recalling the definition of H, we deduce that

1
T

∫ T

0
h(s)ds ≤ B̃

Kλ
+ 1

T
(2M − B̃

Kλ
) 1
λ

− 1
T

(2M − B̃

Kλ
) 1
λ

e−λT ≤ B̃

Kλ
+ A

T
.

□

B. Riemannian structure for P(Θ× [0,∞))

In this section we review the Riemannian structure for the space P(Θ× [0,∞)) that motivates
the PDE dynamics given in (2.3).
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B.1. A metric on the lifted space
We start by defining a metric tensor over the space Θ× (0,∞) according to:

g(θ,α)((v,s),(ṽ, s̃)) := α

η
⟨v, ṽ⟩+ 1

κα
ss̃,

where ⟨·, ·⟩ denotes the standard inner product in Euclidean space, and κ and η are two positive
parameters. In what follows we use the notation |(v,s)|2(θ,α) := g(θ,α)((v,s),(v,s)).

It is straightforward to verify that the gradient of a scalar function ϕ(θ,α) with respect to
the inner product g, which we denote by ∇ϕ, can be written as

∇ϕ = ( η

α
∇θϕ,κα∂αϕ), (B.1)

where ∇θϕ(θ,α) is the usual gradient of ϕ in the θ variable and ∂αϕ(θ,α) is the partial derivative
of ϕ with respect to α. Notice that ∇ϕ is a vector in Rp ×R.

Relative to the base metric g in Θ×(0,∞), we define a Wasserstein metric, in dynamic form,
over the space of probability measures P(Θ× [0,∞)]). More precisely, for σ,σ′ ∈ P(Θ× [0,∞))
we consider

W 2
2,g(σ, σ̂) = inf

{(βt,σt)}t∈[0,1]∈CE(σ,σ̃)

∫ 1

0

∫
|∇βt(θ,α)|2θ,αdσt(θ,α)dt, (B.2)

where the set CE(σ, σ̃) consists of all solutions t ∈ [0,1] 7→ (βt,σt) to the (intrinsic) continuity
equation {

∂tσt +div(σt∇βt) = 0,

σ(0) = σ, σ(1) = σ′;
(B.3)

in particular, div denotes the divergence in the space Θ×(0,∞) when endowed with the metric
g. In general, equation (B.3) has to be interpreted in the weak sense, i.e., it must hold that

d

dt

∫
ϕ(θ,α)dσt(θ,α) =

∫
g(θ,α)(∇βt(θ,α),∇ϕ(θ,α))dσ(θ,α)

for all t ∈ (0,1) and all ϕ regular enough test functions.
More than the metric (B.2) itself, from formula (B.2) we are interested in the implicit formal

Riemannian structure that we can endow P(Θ× [0,∞)) with and that can be used to motivate,
heuristically, gradient descent or projected gradient descent dynamics in the space P(Θ ×
[0,∞)]). As is standard when interpreting optimal transport from a Riemannian geometric
perspective, one can think of the set Tσ := {∇β s.t. β : Θ × (0,∞) 7→ R} as a formal tangent
plane to the formal manifold P(Θ× [0,∞)) at the point σ, and over this formal tangent plane
one can define an inner product ⟨·, ·⟩σ according to

⟨∇β,∇β′⟩σ :=
∫

g(θ,α)(∇β(θ,α),∇β′(θ,α))dσt(θ,α).

Before we finish this section, we state a result that we use in the sequel and that allows
us to write the continuity equation (B.3) in terms of basic Euclidean divergence and gradient
operators.
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Proposition 63 The intrinsic continuity equation from (B.3) can be written, in terms of the
Euclidean divergence divθ,α in Rp ×R, as

∂tσt +divθ,α(σtvσt) = 0,

where vσ is the vector field

vσ(θ,α) := ( η

α
∇θβ(θ,α),κα∂αβ(θ,α)).

Proof This is a consequence of the following simple observation. For all regular enough test
functions ϕ we have

d

dt

∫
ϕdσt =

∫
g(θ,α)(∇β,∇ϕ)dσt

=
∫ ( η

α
∇θϕ ·∇θβ +κα∂αϕ∂αβ

)
dσt

=
∫

⟨∇θ,αϕ,vσ⟩dσt,

where in the above we use ⟨·, ·⟩ to denote the standard Euclidean inner product in Rp ×R and
∇θ,αϕ to denote the standard gradient in Rp ×R.

□

B.2. Vertical and horizontal vector fields in P(Θ× [0,∞))
We now introduce and discuss some relevant subspaces of the formal tangent plane Tσ. We will
use these subspaces later on.

The horizontal space T h
σ at σ is defined as

T h
σ := {∇β s.t. β(θ,α) = αφ(θ) for some φ},

and the vertical space T v
σ as

T v
σ := {∇β s.t. ⟨∇β,∇β′⟩σ = 0, for all ∇β′ ∈ T h

σ }.

The vertical space T v
σ represents the directions that infinitesimally leave Fσ invariant, while

the horizontal space is T v
σ ’s orthogonal complement.

Let us denote by N = {σ s.t.Fσ ∈ P(Θ)}. For σ ∈ N , we consider the subspace TσN of Tσ

defined as
TσN := {∇ϕ s.t.

∫
α∂αϕ(θ,α)dσ = 0}.

The subspace TσN can be interpreted as the space of tangent vectors of all curves passing by
σ that stay in N .

Remark 64 The space M+(Θ) can be endowed with a metric, the Wasserstein-Fisher-Rao
metric, that makes the map F into a Riemannian submersion. Indeed, notice that for two
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potentials of the form αφ(θ) and αφ′(θ) (i.e., two potentials inducing horizontal vector fields
at a point σ), we have the identity

⟨∇(αφ),∇(αφ′)⟩σ =
∫

Θ×[0,∞)
α(η∇θφ·∇θφ′ +κφφ′)dσ(θ,α) =

∫
Θ

(η∇θφ·∇θφ′ +κφφ′)dFσ(θ).

In other words, the above inner product in fact does not depend on the specific σ, but only on
Fσ.

We refer the reader to the references [14, 21, 28, 32, 46] for details about the Wasserstein-
Fisher-Rao geometry.

B.3. Gradient flows of lifted energies
We introduced in section 3.1.1 a projection mapping F characterised by equation (3.1). We
are interested in describing a Riemannian-like metric for the lifted space P(Θ × [0,∞)) with
respect to which we will define gradient flows of J .

Let us start by hihlighting that to lift a functional J : M+(Θ) → (−∞,∞] to a functional on
P(Θ× [0,∞)), we simply consider the composition of J with the projection map F as follows:

J (σ) := J(Fσ), σ ∈ P(Θ× [0,∞)). (B.4)

In particular, if J has the form

J(ν) =
∫

j(θ,ν)dν(θ), ν ∈ M+(Θ),

then
J (σ) =

∫
αj(θ,Fσ)dσ(θ,α).

Given an arbitrary energy J : P(Θ× [0,∞)) → (−∞,∞] (not necessarily of the form (B.4)),
the gradient (descent) flow of J with respect to the Riemannian geometry introduced in section
B.1 takes the form:

∂tσt −div(σt∇Jσt) = 0, (B.5)
where Jσ is the first variation of J at the point σ, defined as we did in the beginning of section
1.2. For more details on the interpretation of (B.5) as a gradient flow see Chapter 8.2 in [49].

In case J has the structure of a lifted energy as in (B.4), its first variation can be computed
as follows. Let σ,σ∗ and let ν = Fσ and ν∗ = Fσ∗. Using the linearity of the map F (which is
evident from its definition) we get:

d

dε
|ε=0J (σ +ε(σ∗ −σ)) = d

dε
|ε=0J(F(σ +ε(σ∗ −σ)))

= d

dε
|ε=0J(Fσ +ε(Fσ∗ −Fσ))

=
∫

Θ
Jν(θ)d(ν∗ −ν)

=
∫

Θ×[0,∞)
αJν(θ)d(σ∗ −σ),

where Jν is the first variation of J at the point ν. In other words, the first variation of J at
σ takes the form αJν , where Jν is the first variation of J ; this specific form for Jν should not
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be surprising, since the function J is constant along vertical vector fields and thus its gradient
should be a horizontal vector field. Plugging this expression back in (B.5), we conclude that
the gradient flow of a lifted energy J takes the form:

∂σt −div(σt∇(αJνt)) = 0; Fσt = νt,

which, after using Proposition (63), can also be written as{
∂tσt −divθ,α(σtvσ) = 0;
vσ(θ,α) = (η∇θJνt(θ),καJνt(θ)) ; νt = F(σt).

(B.6)

B.4. Projected gradients
In general, σt from (B.6) may not belong to N for t > 0, even if initialized at a σ0 ∈ N . If
we want to guarantee that νt = Fσt ∈ P(Θ) for all t, we must then project the (Wasserstein)
gradient of the energy J driving the dynamics (B.6) onto the subspace TσN .

Given σ and ν = Fσ, we write the potential αJν as

αJν(θ) = α(Jν(θ)−
∫

Jν(θ′)dν(θ′))+α

∫
Jν(θ′)dν(θ′).

A direct computation shows that

⟨∇(α
∫

Jν(θ′)dν(θ′))),∇ϕ(θ,α)⟩σ = 0,

for all ∇ϕ ∈ TσN ; this means that ∇(α
∫

Jν(θ′)dν(θ′))) ∈ TσN ⊥. Another direct computation
shows that ∇(α(Jν(θ) −

∫
Jν(θ′)dν(θ′))) ∈ TσN . From this we can then see that ∇(α(Jν(θ) −∫

Jν(θ′)dν(θ′))) is the projection of ∇(αJν) onto TσN .
Using Proposition (63), we can thus conclude that{

∂tσt −divθ,α(σtvσ) = 0;
vσ(θ,α) = (η∇θJνt(θ),κα(Jνt(θ)−

∫
Jνt(θ′)νt(θ′))) ; νt = F(σt),

(B.7)

represents projected (onto N ) gradient descent dynamics of the lifted energy J .

B.5. An analogous geometric structure for M+(Z ×Z)
There is a similar geometric structure to the one we discussed in the previous sections that the
space M+(Z × Z) can be endowed with. In what follows we use γ to denote elements in the
lifted space P(Z ×Z × [0,∞)) and represent elements in Z ×Z × [0,∞) with triplets of the form
(z, z̃,ω). The space P(Z × Z × [0,∞)) is endowed with a Wasserstein metric just as in (B.2),
obtained by changing any appearance of θ with (z, z̃) and any appearance of α with ω. We will
use F (we use the same notation as in section 3.1.1 for simplicity) to denote the projection map
F : P(Z ×Z × [0,∞)) → M+(Z ×Z). An arbitrary functional J : M+(Z ×Z) → (−∞,∞] can
be lifted to P(Z ×Z × [0,∞)) by composition with F (we use J as in the previous sections to
denote this composition). The structure of the first variation of J is ωJπ, where Jπ is the first
variation of J at π = F(γ).
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Since problem (1.1) forces us to restrict to measures π with first marginal equal to µ, we
consider evolution equations that can be seen as suitable (projected) gradient ascent versions
of the gradient ascent flow of a lifted energy J w.r.t. the Wasserstein metric discussed above.
Such evolution equation takes the form:{

∂tγt +div(z,z̃),ω(γtvγ) = 0,

vγ(z, z̃,ω) = (0,η∇z̃Jπ(z, z̃),κω (Jπ(z, z̃)−
∫

Jπ(z, z̃′)dπt(z̃′|z))) ; πt = Fγt.
(B.8)

To motivate the zero in the first component of vγ(z, z̃,ω), suppose that t 7→ πt has the form

πt =
N∑

i,j=1
ωij,tδ(zij,t,z̃ij,t),

where πt solves the evolution equation

∂tπt +divz,z̃(πtV⃗t) = 0

for some vector field V⃗t(z, z̃) = (V1,t(z, z̃),V2,t(z, z̃)) that changes smoothly in time. We claim
that if π1

t is constant in time, then V1,t must be equal to zero at all points in the support of π1
t

(and thus of the support of π1
0). Indeed, it is enough to notice that if V0,t(zij , z̃ij) was different

from 0, then for all small enough t > 0 we would have that zij,t is different from zi′j′,0 for all
i′j′, implying that the support of π1

t is different from the support of π1
0 for small enough t > 0.

This would contradict the assumption that π1
t was constant in time.

B.6. Dynamics in lifted and non-lifted space
We end this appendix by proving the connection between the dynamics in the lifted and non-
lifted space.

Proof of Proposition 6 Taking a test function ϕ(θ) we see that

d

dt

∫
ϕ(θ)dνt = d

dt

∫
αϕ(θ)dσt(θ,α) = ηt

∫
α∇θϕ(θ) ·∇θU(πt,νt;θ)dσt(θ,α)

+κ

∫
α(Uν(πt,νt;θ)−

∫
Uν(πt,νt;θ′)dνt(θ′))dσt(θ,α)

= ηt

∫
∇θϕ(θ) ·∇θU(πt,νt;θ)dνt(θ)

+κ

∫
(Uν(πt,νt;θ)−

∫
Uν(πt,νt;θ′)dνt(θ′))dνt(θ),

which is the weak form of the second equation in (2.3). The equation for π is deduced similarly.
□
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