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Abstract 

 

Context is fundamental to create a coherent understanding of experience, 

index memories and control generalisation from them. Although context has 

been defined in a variety of ways, clear understanding of how different 

contextual cues interact and interfere with each other is still missing. Here, I 

investigate possible behavioural, computational, and neuronal mechanisms of 

temporal, semantic and spatial context. 

In Chapter 2, I first implemented a modified version of the Deese-Roediger-

McDermott (DRM) paradigm for false memory. This allowed me to investigate 

the interaction and interference of semantic and temporal context in 

recognition and source memory. Moreover, an auto-associative (Hopfield) 

network reproduced the behavioural results and helped me investigate the role 

of semantic context and pattern completion. I then implemented a successor 

representation temporal context model, to test how the temporal context 

interacts with semantic context in free recall. Finally, I developed two 

generative models of false memory within the active inference framework as 

Bayesian optimal behaviour.  

Using magnetoencephalography (MEG), I investigated whether neural 

populations involved in representing spatial context (grid cells) could be 

impaired in patients with schizophrenia [Chapter 3].  We were able to find 6-

fold modulated theta activity in the entorhinal cortex during virtual navigation 

in healthy controls, but not in schizophrenic patients. This suggests that 

impairments in knowledge structuring and relational inference associated with 

schizophrenia may arise from disrupted grid firing patterns.  

Finally [Chapter 4], I developed an fMRI task to investigate whether retrieving 

a list of words corresponds to navigation of a 2-dimensional abstract space, 

whose axes are organised over the temporal and semantic distance between 

words, and whether a grid-like code is used for this.  
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In summary, my work suggests that semantic and episodic memory are deeply 

interconnected, and that different forms of context - spatial, temporal and 

semantic - interact and interfere in memory retrieval. 
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Impact Statement 

 

Modern neuroscience has made incredible progress in understanding the 

mechanisms and brain structures involved in the building blocks of cognition, 

exploring the biological bases and computational processes of human 

thinking. Only very recently, however, this foundational knowledge and new 

methodological developments allowed us to start the exploration of more 

complex, integrated, and multifunctional mechanisms to shed light on the real-

world use of artificially taxonomically separated cognitive processes. Memory, 

navigation, and abstract thinking offered the perfect example of this paradigm 

shift. This work contributes to the field of cognitive and computational 

neuroscience by proposing alternative integrated computational and 

experimental approaches to investigate and interpret the role of space, time, 

and semantics in declarative memory. With rigorous testable hypotheses, my 

computational work guides future computational and experimental work 

towards a mechanistic understanding of declarative memory processes. 

Moreover, this pioneering research bridges the gap between cutting edge 

discoveries in neuroscience of memory and neuropsychiatry research. This 

work opens the way for an exciting new field of study in clinical research, where 

newly discovered neuronal mechanisms of computation can be translationally 

studied in their potential pathophysiological role in a variety of neuropsychiatric 

conditions, starting with Schizophrenia. It also validates computational data 

analysis approaches to study grid cell activity in non-invasive human 

neuroscience across a variety of methodologies, not only in fMRI but also in 

MEG studies. Finally, my fMRI study provides preliminary evidence and 

exciting opportunities for further investigations on the tri-dimensional 

integration of temporal, semantic and spatial information in the brain, naturally 

occurring in untrained simple memory tasks. If validated, this final contribution 

will have a significant impact on supporting the perspective of higher cognitive 

functions as highly integrated and flexibly utilised by the brain beyond single 

domains.  
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Overall, this thesis provides original insights into the most fascinating aspects 

of human cognition, at the crossroad between memory and abstract thinking. 

It contributes to latest advances in computational, methodological, and 

experimental approaches. Moreover, it is one of the very first works to provide 

scientific evidence and new theoretical hypotheses for a pathophysiological 

role of an impairment in grid cell population activity in neuropsychiatric 

conditions, and for the mechanistic biological bases of the multi-dimensional 

integration of temporal and semantics information via spatial mapping in the 

human brain.  
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Chapter 1. General Introduction 

 

This work aims to investigate some of the complex and multifaceted 

mechanisms involved in declarative memory. I will focus on how spatial, 

episodic and semantic memory entail overlapping and interacting processes 

across different experimental and computational studies. The unifying key that 

guided the development of the work included in this thesis is the concept of 

context and contextualisation of memory. The definition of context varies wildly 

across neuroscientific sub-fields of research, depending on the question of 

interest and on the methodology of choice. In this work, the idea of context 

refers to the realm within which remembered experiences are embedded, and 

hence reconstructed, whether this entails temporal, semantic, spatial contexts, 

or a combination of them to create new multi-domain contextual cues. 

In the first part of this thesis (Chapter 2), I introduce the concept of temporal 

and semantic contexts with the aim to explore the underlining computational 

mechanisms responsible for the integration of newly acquired knowledge and 

experiences with the pre-existing contextualised and generalised associations 

between concepts. I approach the problem using a well-known behavioural 

paradigm of induced false memory, the DRM paradigm (Deese, 1959; Rodiger 

and McDermott, 1995), driven by the interference of pre-acquired semantic 

knowledge in newly formed memories, with a new experimental version of the 

DRM and three different computational models. This allows me to investigate 

the issue with mathematical rigour, biologically plausible model structures and 

a well-established and validated memory paradigm.  

First, in Chapter 2.1, I develop a modified version of the DRM paradigm and 

test the false memory effect as pattern completion. In this implemented DRM 

paradigm, I structured the experiment to allow assessment of pattern 

completion of the contents of each list on the basis of its temporal (time 

distance between words and list grouping) or semantic context (words 

belonging to the same semantic group); this implementation preserved the 

original DRM paradigm effect (which was validated across participants), while 

providing more insight in the underline involved mechanism. I then (Chapter 
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2.2) investigate whether a Hopfield network model of auto-associative memory 

encoding and retrieval can provide insight into the neuronal structures likely 

involved in misremembering. This model mirrors the neuronal structure of the 

CA3 area of the hippocampus, which supports the process of pattern 

completion involved episodic memory retrieval (Marr 1971; McClelland, 

McNaughton, O’Reilly, 1995; Horner & Burgess 2013, 2014). I then approach 

modelling these memory ‘mistakes’ with a successor representation version 

(Gershman 2012) of the temporal context model (Howard & Kahana, 2002) 

(Chapter 2.3), by integrating elements of pre-learnt semantic memory. With 

this model I aim to contribute to the successor representation implementation 

of the temporal context model by introducing new hypothesis and 

computational elements towards a future unification of multiple aspects of 

declarative memory within the same computational framework. In Chapter 2 

Appendix 2, I finally explore how the same mechanism can be understood and 

reproduced by hierarchical Bayesian modelling within the active inference 

framework, where I developed two different model approaches to test how 

misremembering might result from Bayesian optimal processes. These 

models’ ability to misremember derives from an adaptive mechanism of 

memory integration between newly learnt temporally contextualised 

information and previously acquired generalised semantic associative 

knowledge, in a similar fashion to real-world experiences. In Chapter 2, I finally 

compared these models’ behaviours and mechanisms to bring new insights 

into the possible cognitive processes involved in semantic-induced false 

memories. 

In the second part of this thesis, I focus on the role of spatial representations 

in memory, including their direct use in encoding spatial context and spatial 

location (in Chapter 3), and their indirect use in representing non-spatial 

semantic context (in Chapter 4). Space is the second fundamental aspect of 

episodic memory, along with time, and understanding of the underlying 

neuronal representations and computations involved in spatial navigation is 

pivotal to further investigate how different contextual domains might be 

integrated into memory processes. 
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Space is possibly the most intuitive and most studied example of contextual 

information in neuroscience. In recent years, this field of study has produced 

an incredibly rich body of evidence and theoretical work that succeeded in 

providing groundbreaking understanding in how the brain navigates space, 

whether this is physical of abstract. Thanks to recent methodological 

advances, it is now possible to explore human navigation with non-invasive 

neuroimaging techniques. Traditionally, the activity of specialised cells 

involved in spatial coding, such as grid cells, has mainly been explored in 

humans in healthy volunteers using fMRI tasks. With a newly developed 

approach, in Chapter 3 I aim to use magnetoencephalography (MEG) data in 

a spatial navigation task in a virtual reality environment to bring new insight 

into the possible pathophysiological role of impaired grid cell activity in 

schizophrenia. I first extracted spectral power as a function of 

movementdirection in MEG data from a spatial navigation task and looked for 

grid-like activity (hexadirectional modulation of power) in theta frequencies; 

this was compared with navigation performance for the first time in MEG. 

When comparing the grid-like signal with navigation performance I found a 

significant correlation between stability of the grid activity and performance in 

the navigation task in control group. Moreover, when comparing controls to 

patients with diagnosis of schizophrenia, I found that the grid-like signal in 

theta frequency was disrupted in the patient group. This work brings new 

insight into one of the most likely causative mechanisms of impaired inferential 

reasoning and thought disturbances in affected individuals. 

Finally, in Chapter 4 I integrate and unify the insights from previous chapters 

to explore whether the brain integrates semantic and temporal dimensions to 

create an abstract 2D space, and whether the same brain mechanisms that 

are responsible for computing spatial information are also involved in this 

process. To test this hypothesis, I created a behaviourally simple task of word 

list memory, carefully built to implicitly create a 2D structure with dimensions 

of temporal and semantic similarity. The prediction that retrieval from these 

lists uses the grid-like representations used for navigation could then be tested 

by looking for grid-like representations in this temporal-semantic space.  

Although preliminary, this final chapter opens the door to future analysis and 
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hypotheses testing towards a more wholistic interpretation of aspects of 

semantic and episodic memory within an integrated declarative memory 

system.  

Each chapter will provide the reader with an independent introduction, to 

facilitate the integration of a diverse set of theoretical backgrounds and 

methodologies, while maintaining a coherent narrative throughout the body of 

work. 
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Chapter 2. Effects of temporal and semantic 

context on false memory 

 

Part of the work presented in Chapter 2.1 and 2.2 has been previously 

presented as a conference poster at the ASSC (Association for the Scientific 

Study of Consciousness) 2023, and at the conference ‘New Perspectives in 

Declarative Memory’ University of East Anglia 2022. 

 

 

Introduction  

 

In this Chapter, I investigate the influence of semantic context (derived from 

pre-learnt semantic associations) on time-embedded memory retrieval. To do 

so, I first implement the DRM paradigm and ran a behavioural experiment to 

compare the semantic and temporal contextual influences on the DRM effect, 

and how this might relate to pattern completion mechanisms (Chapter 2.1). I 

then look at how computational models of memory can explain the DRM 

paradigm, including your new experimental results. 

In the following sub-Chapters (2.2, 2.3, 2.4), I will describe and discuss several 

computational models that can explain the occurrence of false memories 

driven by semantic interference. Computational modelling has proven to be a 

valuable tool in neuroscience (e.g., Wand et al., 2020) to better understand 

human behaviour (e.g., Wilson & Collins, 2019), neuronal processes (e.g., 

Shine et al. 2021) and brain connectivity (e.g., Friston & Dolan, 2010). The use 

of computational models in neuroscience support description, explanation, 

and prediction of biologically plausible mechanisms behind observed 

evidence; it allows us to fit experimental data, and to simulate and test 

hypotheses before collecting new experimental evidence.  
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An intuitive way to think about how different models contribute to 

understanding was offered by Marr (1982), who promoted the idea that 

complex systems such as the brain should be understood at different levels of 

analysis. He proposed to call these the computational, algorithmic and 

implementation levels. The top or computational level describes the problem 

that the brain might be solving. For example, the problem of maximizing 

reward in a task. The algorithmic level describes how this problem is solved. 

For example, reward maximization might be achieved using a specific 

reinforcement learning strategy. Finally, the implementation level describes 

the physical mechanisms that achieves this, for example neurons and 

synapses in the brain.  

In what follows, I develop three separate models of sequential memory and 

false memory as captured by the DRM paradigm (Deese, 1959; Roediger and 

McDermott, 1995). Each model can be placed at a different level of Marr’s 

framework. First, I approached the problem with an auto associative Hopfield 

network model (Hopfield 1982). This model, which would represent the 

implementation level, captures the biologically plausible behaviour of the 

neurons in the CA3 area of the hippocampus. This area is responsible for the 

mechanism of pattern completion (Horner et al., 2015, Marr 1971, McClelland 

et al. 1995), which plays a fundamental role in the holistic retrieval of multiple 

elements that constitute an episode in declarative memory. A core strength of 

this model is its relatively simple structure, which facilitates understanding of 

the underlying computations and of the effect of different parameters on the 

model’s behaviour. Moreover, the model has a direct biologically plausible 

parallelism with a well-defined biological structure, i.e. the CA3 area of the 

hippocampus. This model is a valuable tool to develop directly testable 

hypothesis and predictions on the hippocampal role in memory via pattern 

completion. However, simplicity and well-defined biological mechanisms come 

at the price of lack of flexibility and understanding of the broader aim of the 

observed behaviour. These aspects can be better grasped by a higher level of 

analysis. 
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Encompassing elements of both the algorithmic and computational level, I 

approached the process of misremembering in free recall and recognition 

tasks within the successor representation (SR) and the active inference 

frameworks, respectively. Both models express algorithmic implementations 

of biologically plausible mechanisms, as well as higher order dynamics that 

guide the behavioural goal at the computational level.  

I developed a successor representation (SR) model (Dayan, 1993, Gershman, 

2018) of sequential memory and free recall (Gershman, 2012, Zhou et al., 

2023). This approach reframes the temporal context model (TCM, Howard & 

Kahana, 2002), which hypotheses a distributed temporal context as a 

fundamental component of episodic recall, within the computational framework 

of SR models. The SR framework is rooted in reinforcement learning, in which 

the aim is to maximize reward. That reward-maximization approach offers a 

computational level rationale, while using the SR points to a specific 

algorithmic approach (Stachenfeld et al. 2017, Gardner et al. 2018, Geerts et 

al., 2020, 2023). There has also been a lot of recent work designing 

implementation level models of SR computation in the brain (e.g. Fang et al. 

2023; Georg et al. 2023), but this will not be further discussed in this thesis. In 

conclusion, the SR model presented here fits mostly in the computational and 

algorithmic level of analysis, allowing for interesting predictions at the 

behavioural level.  

In the Appendix of Chapter 2, I approached the DRM task of false recognition 

within the active inference framework, developing two different hierarchical 

models of semi-Markovian decision processes (Smith et al. 2021). Within this 

realm, the higher order goal of the model – of any living organism - is to 

minimise expected free energy (or in other words, to minimise surprise or 

uncertainty) and to maximise the model’s evidence. The model behaviour is 

then explained as being Bayesian optimal to minimise expected free energy 

and improve evidence for the implicit model of the world (Friston, FitzGerald, 

et al. 2017; Friston, Rosch, et al. 2017). At this level of analysis, we can 

conceptualise why an optimal behaviour could still result in false memory 
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based on inference and learning processes, while constraining this cognitive 

process to broader computationally efficient physics principles of any 

organised living thing. 

In conclusion, the different models discussed in this thesis each shed a 

different light on the false memory effect, allowing for predictions at the neural 

and behavioural levels. Future work should build towards an integrative 

approach where false memory formation is understood from the computational 

to implementation level. 
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2.1 A pattern completion account of contextual and 

semantic influences on source (false) memory: A 

modified DRM task. 

 

 

 

Introduction 

 

Misremembering (i.e. the recollection of an event that never occurred) is a 

common phenomenon with several real-world implications. In particular, the 

study of false episodic memories can help to elucidate the constructive nature 

of normal memory function (Schacter et al., 2011).  

Traditionally, episodic and semantic memory have been described as well 

differentiated phenomena (Tulving and Gazzaniga 1995, Tulving 1972, 1983, 

2002). Episodic memory refers to the autobiographical context-dependent re-

experiencing of a multimodal event (where temporal-spatial relationships 

between chronologic events are preserved), while semantic memory provides 

the knowledge of concepts that are independent from subjective experience 

(and from context) and is often associated with the use of language.  

More recently, an increasing body of literature has provided conceptual and 

experimental evidence challenging this view and promoting the idea of 

interdependency between semantic and episodic memory (Greenberg and 

Verfaellie, 2010) 

In neuroscience, the process of memory retrieval has been studied as the 

result of a neural mechanism of pattern completion (e.g., Marr 1971, Hopfield 

1982, Horner et al., 2015), where the retrieval of different elements of the same 

memory reinstates each other via multiple learned associations. In this work, I 

investigate how episodic or context-dependent memory reflects both 

semantics and temporal contributions to source memory. To do so, I validate 
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a modified version of the DRM paradigm (Deese, 1959; Rodiger and 

McDermott, 1995). The DRM paradigm consists of presenting lists of 

semantically related words during encoding, inducing the false memory of a 

not-presented word that is semantically related to the others (a 'lure word' or 

'false memory'). The off-list word (target word, or lure) shows a high degree of 

both recollection and recognition, with no explicit way to distinguish between 

false and true memories (there being a high confidence rate for both true and 

false memories). Although the DRM paradigm has been validated repeatedly, 

the neural mechanisms that generate false memories are not fully understood 

(Gallo, 2010; Boggio et al., 2009; Warren et al., 2014). 

The DRM paradigm has been used to study the construction of false episodic 

memory, where the remembered episode is the presentation of the list during 

the encoding phase. However, the most likely cause of misremembering is the 

semantic relationship between words in each list, which relates to semantic 

memory (pre-acquired associations). This enables us to investigate the 

overlapping boundaries of semantic memory and episodic memory. These two 

forms of memory may be more flexibly interconnected than previously thought 

(Tulving 1972, Greenberg and Verfaellie 2010). By implementing the DRM 

paradigm in a new version that includes context or source memory, I aim to 

bring more understanding to episodic and semantic memory mechanisms. 

In this experiment, I aim to further test whether the misremembering effect can 

be the result of a mechanism of pattern completion driven by the hippocampus, 

where semantically related words may be incidentally retrieved. This incidental 

retrieval of semantically related items subsequently leads to the inception of 

false memories for those items during retrieval – i.e. recently ‘active’ items are 

believed to have been part of the original word list, even though some of those 

items were activated by memory retrieval (i.e. pattern completion) rather than 

sensory input. Hence, I hypothesise that the mechanisms of memory inference 

and of false memory are both supported by hippocampal pattern completion 

processes. The CA3 area of the hippocampus is described as an attractor 

(recurrent) network, where different patterns of neuronal activity are learnt in 

a Hebbian-like manner (Marr 1971; McClelland, McNaughton, O’Reilly, 1995). 

The strengthening of neuronal associations allows pattern completion of the 
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learnt patterns of activity. If we think about the associative aspect of semantic 

structure as a pre-learned pattern of recurrent connectivity, then we can 

imagine how this would interfere with the encoding and retrieval of new 

episodic associations, to allow pattern completion to activate semantically 

similar items as well as those in the original list.  

In the first part of the study (Chapter 2.1), I aimed to validate the results of the 

classic DRM paradigm with shorter lists of words. The DRM literature has 

failed to show any explicit way to recognise the occurrence of false memories 

(e.g. the confidence ratings of the participants for false memory is the same 

as for true recognition). However, there is evidence that the recollection of 

inferred associations in episodic memory tasks is related to an increased 

reaction time (RT) (Coane et al. 2007). I tested the RTs for both lure recognition 

(in the first part of the test) and in paired-associate recollection (second part 

of the test). Previous work showed that the increase of RTs for false vs true 

memory in the DRM task, occurs without an explicit change in metacognitive 

measures (Agosta and Srtori, 2013; Marini et al. 2012). In the second part of 

the testing phase, I aimed to investigate the effects of semantic similarities 

(measured as cosine distances between word vectors in the word embedding 

space Word2Vec), membership of semantic ‘groups’, lists (whether two words 

were part of the same list or not) and temporal distance (distance in time at 

encoding between words) on the source recollection of pairs of words, where 

the list in which they were presented at encoding is the intended source. 

A parallel line of work on episodic memory helps us understand the DRM as 

an inferential task, where the structure for the inferential process is provided 

by the pre-acquired semantic associative memory. In conventional memory 

inference tasks, participants are presented with overlapping pairs of items (i.e. 

A-B, B-C Zeithamova et al., 2012). Later, they are tested on their memory both 

for those direct associations, and for the inferred association that has not been 

directly presented (i.e. A-C). The hippocampus is strongly implicated both in 

associative memory function and inference, which could arise via a process of 

hippocampal pattern completion (Horner et al., 2015). Importantly, the process 

of hippocampal pattern completion has been shown to drive cortical 

reinstatement of non-target items after presentation of a partial cue (i.e. 
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reinstatement of B when presenting A and retrieving C). Moreover, it has been 

demonstrated that functional connectivity between hippocampus and medial 

prefrontal cortex (mPFC) supports memory inference – possibly by aiding 

retrieval of the first association (i.e. A-B) during presentation of the second 

association (i.e. B-C; Backus et al., 2016). The pattern completion mechanism 

can be tested in behavioural experiments with dependency measures (Horner 

& Burgess 2013, 2014), which show whether the memory of an association in 

an event is related to the memory for the other associations within the same 

event (i.e. whether remembering the association A-B relates to the memory of 

the associations B-C and C-A). In this modified version of the DRM paradigm, 

I was able to use the same dependency measures to investigate whether the 

recollection of a pair of words in the same list and of the potential lure word 

associated to them relates to the recollection of the other pairs in the same 

list.  

 

Methods 

Participants 

Thirty-two English native-speakers with age range 18-35 years old were 

recruited from the general population. Participants were recruited using the 

Prolific platform (Palan & Schitter, 2018;  https://app.prolific.co/), while the 

experiment was run online using the experiment building platform Gorilla 

(Anwyl-Irvine et al., 2020; https://gorilla.sc). The same participants’ results 

were included in all the performed analyses. The study was approved by the 

UCL Research Ethics Committee and all participants gave informed written 

consent before taking part. 

Materials 

I used the DRM pool of 40 lists of 15 word each with coherent semantics, 

adapted from Sadler et al. (1990).  The words within each of the 40 groups 

were semantically related to each other, and all related to one additional lure 

word for each list. From the original forty 15-word lists, I created sixteen 4-

word lists of coherent (eight lists) or mixed (eight lists) semantics (Fig.2.1.1). 

https://app.prolific.co/
https://cpsyjournal.org/articles/10.5334/cpsy.91#B2
https://gorilla.sc/
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The eight lists with words coming from the same semantic group (related), 

were formed from four semantic categories, so that from each group I derived 

two lists, with different words but paired semantics. The eight lists with mixed 

semantics were created using words from different semantic groups, picked 

randomly from the remaining thirty-six of the original 40.  

 

 

Figure 2.1.1. Creating the 4-word lists. Each column represents one list of the 

original DRM task (semantic group), identified by a capital letter that relates to a 

specific semantic category. The number that follows the letter indicates a different 

word within the list. I picked eight words from four of the original lists (of 15 words 

each), which resulted in eight lists of four words each, with two lists from each 

semantic group. Each of the four semantic groups is associated to a lure word, which 

provides the false memory effect in the DRM task. From the remaining semantic 

groups, I created an additional eight lists with mixed semantics, i.e. with words taken 

from different semantic groups.  
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Procedure 

 

During encoding (Fig. 2.1.2), lists of words were presented in a randomised 

order. Within each list, the words were also randomised in their presentation 

order. The participants were informed that they were going to be presented 

with lists of 4 words each, and they should try to remember them. After having 

read the 16 lists once, the participants performed a recognition task and a 

recollection task. The time gap between words within the list was 250ms, while 

the time gap between lists was 1500ms. Only one word at a time was 

presented on the screen (see Fig. 2.1.2) for 1500ms. The participants were 

asked to read each word out loud. The trial ended when all the sixteen lists 

were presented.  

 

 

Figure 2.1.2. Design for Encoding. a) Example of randomised presentation of two 

different lists at encoding. In the figure the colour of the outline of each box indicates 

the semantics of the word. b) Example of what the participants saw during encoding. 

During the experiment the words were all presented in white on a dark grey screen; 

there was not any difference in colour to suggest a difference in semantics.  

 

The testing phase was divided in two different sections.   

In the first part of testing, I tested the recognition for words that were either 

presented in the lists at encoding or not. In the recognition task (Fig. 2.1.3 a), 
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the participants were presented with an equal number of old words, presented 

at encoding (64) and new words (64), and with 4 lure words (specific for the 4 

selected semantic groups). For each word, the participants were asked to 

decide whether they had read the words in any of the presented lists (‘old’) or 

not (‘new’). The time gap between each word, as the one between questions, 

was 500ms. The order of presentation of all the words was randomised. After 

each choice, no feedback was provided, and the participants were asked to 

rate on a scale from 1 (not sure at all) to 5 (fully sure) the confidence of their 

answer. Then, the task moved to the following word automatically. I recorded 

answers, reaction times and confidence ratings for each answer of each 

participant. 

The second part of the testing was a recollection task. The participants were 

presented with two words on the screen at a time and asked whether the 2 

words were part of the same list at encoding (Fig. 2.1.3 b). The pairs of words 

were matched as summarised in Figure 2.1.4: three pairs of words in the same 

list for each of the sixteen lists (48 pairs); two pairs with one word from the 

corresponding list and the lure word for each semantically consistent list (two 

pairs from each of the eight lists with coherent semantics. 16 pairs in total); six 

pairs from eight different couples of lists (48 pairs), made of words from two 

different lists (each list was paired with another list, so that the list with the 

same semantic group were paired with each other, and the list with mixed 

semantics were associated with another list with mixed semantics). After 

having prepared the pairs of words (112), I randomised the order of 

presentation. The participants were asked to remember whether the two 

presented words were part of the same list of four words at the encoding, and 

they had to answer by using 2 different keys on the keyboard. Each pair was 

presented on the screen until the participant answered the question (either 

remembering the two words in the same list or not). After each answer, the 

participants were asked to rate their confidence between 1 to 5, from the 

lowest to the highest certainty (Fig. 2.1.3). The time gap between each 

question was 500ms. Confidence ratings and reaction times for each question 

were recorded. 
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a                                                                                 

 

b 
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Figure 2.1.3. Design of testing phase. a. Recognition task. Each tested word was 

presented individually on the screen, and the participants were asked to recognise 

whether a word was previously presented in a list or not. b. Recollection task. Two 

words were presented on the screen at the same time, and the participants were 

asked to remember whether the two words were part of the same list. For both tests, 

both choice and reaction times (RTs) were recorded. Eventually, the participants were 

asked to rate the confidence of their choice from 1 to 5. The blue arrow indicates the 

choices in the example. 

 

 

 

 

 

 

Figure 2.1.4. Structure of the pairs of words. Summary of how pairs of words were 

created from the presented lists. All words in the pairs were presented at encoding, 

but the four lure words. The number next to each word indicates the position of each 

word in a list of four items. Only eight of the sixteen lists had an associated lure, with 

the same lure word being associated with two lists from the same semantic group. 
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Results 

 

Recognition 

 

Figure 2.1.5. Behavioural results for DRM recognition task. a. Performance for 

recognition of old, new and lure words. Bar ‘Old Same’ and ‘Old Diff’ show the 

recognition rates for old words (first bar) divided into old words from lists with coherent 

semantics (‘Same’) and mixed semantics (‘Diff’). The recognition rate for lure word 

and old words is not significantly different. However, there is a significant difference 

in recognition performance for old word from lists with coherent semantics and mixed 

semantics. b. Reaction times in milliseconds for recognition task. The average 

reaction time for lure words is significantly longer than the ones for all old words, new 

words and for old words from lists with coherent semantics. c. Confidence ratings for 

difference response types. Participants were more confident for old vs new words 

answers. However, answers for lure words (false memory) didn’t show any significant 

difference in confidence ratings from either or new word. The error bars represent the 

standard error. Legend: * =  p-value < 0.05; ** =  p-value < 0.01; *** =  p-value < 0.001. 
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Thirty participants out of thirty-two were included in the analyses. Two 

participants were excluded since their performance in the recognition task for 

true hits and false alarms (excluding the lure word) were below mean – 2.5 

standard deviations. For the recognition task, I computed the performance for 

the recognition of true memory (old words: M = 0.72 , sd=0.12), false memory 

(lure words: M = 0.7, sd= 0.28) and new words (M= 0.09, sd= 0.08). For old 

words, I analysed the performance for all old words, and for old words from 

lists with coherent semantics and from lists with mixed semantics separately 

(Fig. 2.1.5 a).   

These high false recognition rates are consistent with the literature: the DRM 

paradigm resulted in inducing the misremembering effect in 70% of cases, i.e. 

the lure words were recognised as ‘old’. These result replicates the original 

version of the DRM paradigm, where longer lists of words were used at 

encoding. Recognition rate for lure words and old words was not statistically 

different (t(29)= -0.41, p= 0.69, sd= 0.28). However, the standard deviation for 

lure word recognition was significantly higher than for old words (f(29) = 

0.1868, p<0.001). Recognition for old words from lists with coherent semantics 

was also significantly higher than recognition rate for words from lists with 

mixed semantics (t(29)= 2.7, p= 0.0115 sd= 0.17).  

The reaction times (RTs) (see Fig. 2.1.5 b) were longer for lure words – both 

recognised as ‘old’ or reported as ‘new’, compared to answers for all old words 

(t(29)= -2.37, p= 0.02, sd= 393.82) and new words (t(29)= -2.94, p= 0.0064, 

sd= 455.12). When comparing RTs for lure words vs old words from different 

list types, the RTs for lure words were still higher than the ones for words from 

list with coherent semantics (t(29)= 2.83, p= 0.0083, sd= 397.31), but not 

compared to the ones from mixed semantics (t(29)= 1.74, p=  0.09, sd= 

424.56). No other difference between answer types was significant.  

The confidence ratings (reported on a scale from 1 to 5) show differences 

between old and new word answers, and between old words from lists with 

coherent and mixed semantics (with more confident answers for words from 

coherent semantics). However, the confidence for lure word answers was not 

significantly different from any of the other answer types. This confirms the 
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lack of an explicit metacognitive way to differentiate between false and true 

memories. 

We would expect longer reaction times to be associated with lower confidence 

ratings for that response; in other words, the more confident we are in our 

response, the faster the answer. Here, while the RT associated with (false) 

recognition of the lure word are significantly longer than the RTs for other 

responses, this difference was not captured by confidence rating results. This 

suggests that the participants do not have conscious access to the false 

memory effect, while the recognition of lure words might activate longer 

neuronal pathways.  

 

Recollection 

 

 

Figure 2.1.6. Behavioural results for word pair recollection as a function of their 

relationship. ‘Sem&List’ indicates pairs of words from the same list at encoding and 

coherent semantics; ‘Sem’ represents words from different lists but with similar 
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semantics; ‘List’ indicates words from the same list with mixed semantics; ‘None’ are 

pair of words from different lists with mixed semantics; ‘Lure’ are pairs of words where 

one word was the lure word and one word was from a semantically related list. a. 

Recollection for pairs of words. Rate of recollection for pairs of words coming from 

the same list. ‘Sem&List’: M = 0.61, sd = 0.17; ‘Sem’: M= 0.41, sd = 0.19; ‘List’: M= 

0.53, sd = 0.21; ‘None’: M = 0.33, sd = 0.17; ‘Lure’: M= 0.55 sd = 0.24. b. Reaction 

times for all answers in recollection tasks, in milliseconds. c. Confidence ratings for 

all answers.  Legend: *  p-value < 0.05; **  p-value < 0.01; *** p-value < 0.001.  

To analyse the source memory performance, I averaged the rate of recollection 

for each kind of pair (5 categories) across all the participants (Fig. 2.1.6 a). 

There was not a significant difference in recollection rates between pairs with 

the lure word and pairs of words from the same list, both with coherent 

semantics (t(29)= 1.30, p= 0.20, sd= 0.23) and mixed semantics (t(29)= -1.13, 

p= 0.27, sd= 0.14). However, recollection for lure pairs was significantly 

different from pair of words from different lists, either with coherent semantics 

(t(29)= -2.36, p= 0.03, sd= 0.35) or different semantics (t(29)= -4.51, p<0.001, 

sd= 0.27). There was not significant difference between RTs (Fig. 2.1.6 b) of 

pairs from the same lists and pairs with the lure word. However, there was a 

significant difference between ‘Sem&List’, ‘List’ and ‘Lure’ pairs’ RTs and the 

RTs for pairs of words from different lists. In particular, the RTs of pairs with the 

lure words were higher than the RTs for pairs of words from different lists with 

coherent semantics (t(29)= -4.10, p<0.001, sd= 327.20) and pairs of words 

from different lists with different semantics (t(29)= -3.90, p<0.001, sd= 374.54). 

In the recollection test, the lure word was as a strongly represented in the 

participants memory as words in the semantically related lists and no 

difference could be found in either RTs or confidence ratings. The confidence 

ratings, similarly to the RTs, did not show any significant difference between 

pairs in the same lists and pairs with the lure word; however, these were 

significantly higher than confidence ratings for words from different lists. There 

was no significant difference between confidence (Fig. 2.1.6 c) in responses 

between pairs with the lure word and pair of words from the same list, but there 

was between pairs with lure words and pairs of words from different lists, both 

with coherent semantics (t(29)= 5.1, p<0.001, sd= 0.71) and with mixed 

semantics (t(29)= 4.51, p<0.001 sd= 0.76).  
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To investigate the effect of temporal and semantic distance between words in 

a pair at encoding (i.e. how many words were in between the two words in 

each pair during encoding) on recollection, I ran a generalised estimating 

equation (Liang & Zeger, 1986). The measure for semantic distance between 

words in each pair was computed as the cosine distance in the word2vec 

embedding model, while the temporal distance between words at encoding 

was approximated as the number of words presented between them.  

There was a significant effect of temporal distance on pairs recalled (X2 (df 

=1) = 26.55, p < 0.001, b=-0.019, 95%CI [-0.26 -0.12]), with a reduced 

probability of recalling words as coming from the same list that were further 

apart in time at encoding.  

The semantic distance measured as cosine similarity showed a significant 

effect on pair recollection (X2 (df =1) = 5.89, p =0.015, b=1.34, 95%CI [-0.26 

2.42]).  

Moreover, I tested for effect of list (same vs different list at encoding) and 

semantics (same vs different semantic categories between words in the same 

pair) and found a significant main effect of both list (X2 (df =1) = 107.69, p < 

0.001, b=0.8, 95%CI [0.65 0.95]) and semantics (X2 (df =1) = 20.24, p < 0.001, 

b=0.35, 95%CI [0.2 0.5]). 
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Dependency 

 

 

 

 

Figure 2.1.7. Dependency measures. Different words are represented by different 

numbers.  The dependency measures were ran to test whether recollection of 
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different pairs of words were mutually dependent or independent from each other a. 

Comparison between independent model and dependency in pair recollection of pairs 

from any list. b. Comparison between independent model and dependency in pair 

recollection of pairs from lists with mixed semantics. c. Comparison between 

independent model and dependency in pair recollection of pairs from lists with 

consistent semantics. d. Comparison between independent model and dependency 

in pair recollection of pairs with lure words. The lure word was either presented in 

association with the 1st (pair Lure A) or with the 4th (pair Lure B) word in the associated 

list. ‘Overlapping’ pairs represent pairs of words from the list containing the same 

word presented with the lure pair (1st or 4th word), associated with any other word from 

the same list. Non-overlapping pairs are pairs of words from the semantically 

associated list to the lure word, but that do not include the word presented with the 

lure during testing. . Legend: * =  p-value < 0.05; ** =  p-value < 0.01; *** =  p-value < 

0.001.  

 

Finally, I investigate whether the performances in retrieval of pairs of words 

from the same list (and lure word) depend upon each other; in other words, I 

test if the recollection of one pair in one list depends on the recollection of 

other pairs in the same list, including pairs with the lure word (false memory) 

where all the words in a list are semantically related. A similar approach has 

been used in previous research on associative memory (Horner and Burgess, 

2013; Horner and Burgess, 2014; Horner et al. 2015), where dependency 

measures were developed to investigate whether the memory for one element 

of an episode (as overlapping paired associations of object, location and 

subject), cued by another element from the same episode, depended on the 

cued memory performance of other elements in the same episodes. This 

analysis is usually built with a contingency table, where the retrieval of each 

element of a 3-elements event is cued by the other two elements, and where 

an element retrieves the other two (see table 1, from Horner et al. 2015). In 

this case, I did not retrieve one word by cuing it with another word from the 

same list, but I presented a pair of words on the screen at the same time. What 

I looked for was not the dependency of the memory of one word on the memory 

of the others, but the retrieval of one pair of words as dependent on the 

memory of the other pairs from the same list. Suppose that list A, with all the 
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words from the same semantics category, is made of words A1, A2, A3, A4 at 

encoding, and it is associated with lure LA. The pairs that are presented are: 

A1-A3, A2-A3, A2-A4, A1- LA, LA-A4.  

I use dependency measures to investigate whether the recollection of a pair 

of words within a list was dependent on the rate of recollection of other word 

pairs in the same list and I compared them to measures of dependency in an 

independent model of the data, using an adapted version of the measures 

from Horner et al. (2015). The dependency measure (refer to Horner and 

Burgess, 2013 for details) represents the rate of trials in which two pairs of 

words were both successfully retrieved, or both not retrieved. The scale (0-1 

interval) gives value 1 for full dependence and 0.5 for full independence (below 

0.5 represents an inverse effect between the recollection of the two pairs). 

Across lists (with mixed and same semantics), the recollection of a pair in the 

list was dependent on the recollection of other pairs in the list (Fig. 2.1.7 a), 

with the rate of recollection between overlapping pairs of words more strongly 

mutually dependent (t(29)= 4.37, p<0.001, sd= 0.1187). Analysing the 

dependency measures in pair recollections for lists with mixed semantics (Fig. 

2.1.7 b) and consistent semantics (Fig. 2.1.7 c) separately, the recollection of 

pairs with overlapping words was not independent, while the recollection of 

non-overlapping pairs was not significantly different from the independent 

model.  

The recollection of pairs with lure words was not independent from the 

recollection of other pairs with overlapping non-lure words (t(29)= 3.43, 

p<0.01, sd= 0.11) and non-overlapping non-lure words (t(29)= 3.87, p<0.001, 

sd= 0.07), while was independent from the recollection of other pairs with the 

same lure word (Fig. 2.1.7 d). This means that if a participant recalled more 

pairs of words from a list with coherent semantics, they were more likely to 

recall the lure word in association with another word from the same list. 

However, recalling a lure word paired with a presented word from the coherent 

list did not depend on recalling the lure word paired with another word from the 

same list. This suggests that the event (i.e. list) pattern completion effect drove 

the recollection of the lure word paired with another word from the list; 
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however, the pair with lure per se did not affect the recollection of the lure word 

paired with another word in the list. 

 

Discussion 

 

I investigated the role of episodic and semantic memory in a modified version 

of the DRM paradigm for false episodic memory. These findings open a 

broader discussion on the role and mechanism of ‘context’ - where the 

contributions of both semantic structure and temporal context play an 

important role at retrieval - but keep open the debate on the common or 

separate nature of these two forms of context.  

In the first part of the experiment, the performance results show how the DRM 

experiment can be validated also by using lists of only 4 words each. The lure 

word was recognised as seen before in a high proportion of cases (70%), with 

no statistically significant different from recognition of old words (true hits).To 

better investigate whether we could find a behavioural mark to disentangle 

between true hits and false memory, we then focused our attention on reaction 

times of the responses. The comparison across average reaction times (RTs) 

showed a significant difference between presented words recognised as old 

and false memory. This result was obtained without the use of an implicit 

association test (used by Marini et al. 2012), but just automatically collecting 

the timings of the participants’ answers on the keyboard. This underlines the 

presence of an implicit measure to detect false memory in the DRM task, 

although the confidence ratings did not differentiate between false and true 

memory. The increase in RTs for false memory might result from a pattern 

completion process based on semantic associations. A possible interpretation 

is that the retrieval of lure words reflects pattern completion via semantic 

associations alone, whereas the retrieval of words from the list is faster 

because of the additional associations learned during list presentation (see 

also Staresina and Wimber, 2019). Similarly, a possible role of pattern 

completion mechanism for false memory can be related to conceptual 
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associations (semantic structure) across perceived and not perceived items. 

Alternatively, longer RTs might be suggestive of engagement of processes 

related to reality monitoring or source attribution mechanisms (Ranjan et al., 

2024; Johnson et al., 2024). Further investigation is necessary to investigate 

a potential role of these mechanism during encoding and retrieval.  

The pair recollection test gave me the possibility to better investigate the role 

of temporal distance and semantic context in source memory retrieval. The 

performance analysis showed how the lure words, once recognised, are 

incorporated in the episodic memory, and become indistinguishable from old 

words with the same semantic category. RTs confirmed that no implicit or 

explicit measures can help to identify the lure words in the associative 

recollection task. The lack of either an implicit or explicit way to differentiate 

pairs of old words from the same list with similar semantics and pairs of old 

words with a related lure is most likely due to the interposition of a recognition 

task between encoding and the second source recollection task, creating a 

misinformation effect for the lure words (Loftus and Hoffman, 1989). 

Interpolating the recognition task could indeed provoke the recollection of pairs 

of words with a lure, then indiscernible from true memory. 

It is important to underline that the choice of intercalating the recognition task 

before the pair recollection task might have influenced our results. In this 

experiment, the participants were previously exposed to the lure word in the 

testing phase of the first (recognition) task, and this might have biased them 

towards recognising the lure words in the pair recollection task in a second 

moment. While our results support the hypothesis that recognised lure words 

are embedded in memory for word associations (the RTs difference for lure 

words were indeed lost in the second task), it also prevents us from having 

comparative performance for pair recollection immediately post encoding. 

Future research might be needed to repeat the pair recollection task after list 

presentation, without the intercalated word recollection task, to investigate 

how the lure word is incorporated into source memory without being ever 

presented to the participants. 
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The manipulation of the DRM task to include testing whether paired associates 

were from the same list allows us to examine the role of semantics and 

temporal elements in the retrieval of associated items. The time-related 

variables, time distance and list, can be interpreted as the continuous flow of 

experience and its fragmentation into separate episodes. The subdivision of 

time points in the lists is driven both by the instructions given to the participants 

at encoding (their goal is to remember lists of 4 words each) and by the 

progressive change in temporal context, informed by a longer time gap 

between lists and by the change in semantic context between lists (Howard 

and Kahana, 2001, 2002).  I included, for semantic analysis, both the semantic 

distance between word vectors (as cosine of the angle between word vectors 

in Word2Vec) and the semantic category of the different groups of words 

(discrete measure). If, on one hand, the continuous semantic distance 

between words can be interpreted as the tendency of words with similar 

semantics to appear in similar context, on the other the categorical 

classification provides a more interpretable correspondence with the 

hypothesis of a semantic category (namely, as a pattern of activity linked to 

recurrent associations across words in the same category; the category itself 

can indeed result from the array of overlapping associations).  

The dependency analysis adds another element of support for the presence 

of a semantically related pattern completion mechanism. This, in association 

with the main effect of both semantics and time (i.e. the words being presented 

in the same list) for recollection of words coming from the same list with the 

same semantics, suggests that remembering the lure word as part of the list 

facilitates the memory for the lure word in association to both semantically 

related words. The reverse is also true, if the lure word is not remembered. 

The behavioural results suggest the presence of a semantic-based pattern 

completion mechanism, which supports the presence of false episodic 

memory. 

Interestingly, these findings relate to previous work in memory research 

(Howard and Kahana,2002; Naim et al. 2020). In particular, the presence of 

two aspects involved in memory retrieval – semantic and temporal distance 
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(or context) – had been studied in experiments of free recall of lists of random 

words. In free recall, both conditional response probability (the probability of 

two words being recalled in close proximity) and conditional response latency 

(the distance in seconds between two recalled words) could be expressed as 

a function of the semantic similarity between words (measured as LSA cos θ) 

and as a function of the distance between words at the encoding, with the two 

components playing a role both at retrieval. 

The core question that arises from these results is the role and the neural 

correlates of different contextual cues. Semantic and temporal context might 

be integrated in the temporal context theory, with one resulting context that 

can include both systems of ‘coordinates’. Alternatively, the presence of 

semantic factors in episodic memory could result from two different 

mechanisms of contextual knowledge, which both facilitate memorisation and 

result in false memory induced by the DRM task. 

In summary, this work provides evidence for a pattern completion mechanism 

responsible for semantically driven false memory. Indeed, the results of the 

dependency analysis support the hypothesis of the involvement of a pattern 

completion mechanism. The hypothesis that the hippocampus plays a role in 

semantic associations and conceptual context, poses further questions, which 

could be tested with further neuroimaging and behavioural studies. Further 

investigations are also needed to better explore the role and meaning of 

‘episode’ and ‘context’ in memory encoding and retrieval, and whether the role 

of the hippocampus in memory is not purely episodic (Ekstrom and 

Ranganath, 2017; Mok and Love, 2019), but more broadly responsible for 

patterns of associations in different dimensions (time, space, semantics). 
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2.2 An Auto-associative Hopfield Network Model of 

Pattern Completion for False Memory. 

 

The results of pair recollection and the dependency analysis in Chapter 2.1 

provide new insight on a potential mechanism of pattern completion in false 

memory for an event. The dependency measures suggest that pattern 

completion based on semantic associations could be responsible for the 

presence of false memory in a source memory task. To investigate whether 

the dependency findings could result from the associative neural network of 

the hippocampus, I built a Hopfield network model of associative memory 

(developed from Horner et al., 2015). In the pre-experimental learning phase, 

the fully recurrent neurons learned associations between word-related 

neurons coming from the same semantic group. During encoding, the network 

learned associations based on the presented lists (one word after the other). 

When recalling pairs of words, two neurons were partially activated (simulating 

the two presented words at encoding); the recollection of the pair of words 

together was achieved by the full activation of both neurons over a set 

threshold, driven by the auto-associative network of learnt associations.   

 

Methods 

The simple network was made of rate-coded neurons (Equation 2.2.1). The N 

neurons formed a fully recurrent network (Horner et al. 2015). I set a time 

constant 𝜏𝑟 = 25𝑚𝑠  and used a sigmoidal function (Equation 2.2.2) with 

external current and recurrent synaptic current to obtain the firing rate 𝑟𝑖  of 

the neurons. I used a threshold for input firing rate 𝑟𝑡 = 10  and a peak firing 

rate 𝑟𝑚𝑎𝑥 = 10𝐻𝑧. The firing rates were initially set to zero. Each word was 

associated with a unique neuron, and I included all the words presented during 

encoding plus one lure word for each semantic group.  
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𝜏𝑟 
𝑑𝑟𝑖

𝑑𝑡
= −𝑟𝑖 + 𝑓(𝐼𝑖,𝑒𝑥𝑡 + 𝐼𝑖,𝑠𝑦𝑛)                                    [2.2.1] 

𝑓(𝑥) =
𝑟𝑚𝑎𝑥

1+exp (𝑟𝑡−𝑥)
                                            [2.2.2]                                                                                                                                           

With my simulation, I tested 4 semantic groups and 8 lists of 4 words each for 

30 participants. To test all the kinds of pairs tested, I created 4 lists of words 

from the same semantic group, an additional 2 lists from the first 2 semantic 

groups but with different words and 2 lists with words from the last 2 semantic 

groups (mixed semantics). The synaptic connections were set to zero for all 

synapses before the simulation of the encoding phase. To simulate pre-leant 

semantic similarities, we provided the model with pre-encoded connections. 

The pre-encoding semantic learning was introduced using a probability-based 

system, where the probability of potentiating a synapsis was changed 

randomly for each trial from a standard uniform distribution between 0 and 1. 

The probability of having a pre-encoded synaptic connection between 

semantically related words was 0.3. If the Hebbian condition was met, there 

was a random chance of increasing the connection weight to 1.1.  The 

semantic group was recreated by setting a pre-task knowledge for association 

across words in the same semantic group and between lure word and related 

words. These pre-encoding associations simulate the presence of semantic 

memory. To assign these pre-encoded associations, I used different 

probabilities for learnt associations between words from the same semantic 

group (0.4) and for lure word and related words (0.3). All learnt associations 

for pre-task knowledge of associations had strength =1.1. At encoding, I kept 

the same structure of the behavioural experiment by presenting one word at 

the time, with 1500msec of presentation for each word and 1500msec gap 

without words between different lists. I ran the model with two different 

methods for encoding: a) a learning dynamic based on the Hebbian learning 

rule for association between presented word and previous one; b) probability-

based for each trial, with probability of strengthening a connection that 

changes across trials. 

For the Hebbian encoding method, I used an Hebbian learning function 

(Equation 2.2.3). I set the time constant for the firing rate decay to 25msec 
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(time gap between words in the same list), and the learning constant k to 

0.005. The external stimulus for each word was set as a constant current of 7 

milliAmps for a period of 1500msec. The associations were learnt thanks to 

the overlaps in activation between the previous and following words 

(modulated by the decay constant). The same dynamics were run again 

between different lists for a time gap of 1500msec, without any external 

stimulus. 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝑘 ∗ 𝑟𝑖 ∗ 𝑟𝑗                                            [2.2.3] 

                                        

The second encoding method used a probability-based system, similarly to the 

methods used for pre-learnt semantic associations, where the probability of 

potentiating a synapsis was changed randomly for each trial from a standard 

uniform distribution between 0 and 1. The probability threshold to learn 

associations between words from the same list was 0.55. Over time, the 

probability of learning associations between words was decayed by decay 

constant= 0.3. When the model moved from one list to the next, the probability 

of encoding association was further decreased by decay constant, so that the 

probability of learning associations between words in the same list was higher 

than the probability of learning associations between the last word of a list and 

the first word of the following list (taking into account the longer time gap 

between lists). Once learnt, each association was assigned strength of 1.1. 

 

The retrieval phase was prepared with randomised presentation of different 

pairs of words: pairs of words from same list with the same semantic group, 

from the same list with different semantic groups, from different lists with the 

same semantic group, from different lists with different semantic groups, and 

pairs with a lure word and a related word from same semantic group. For each 

pair, I induced a constant current for both word-related neurons of 9 for a 

period of 1500msec. The time constant for firing rate decay at retrieval was set 

to 25msec. The dynamics included an additional recurrent synaptic current 
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(see Equation 2.2.1). The recurrent current is the product of the firing rates of 

the connected neurons and the associated synaptic weights (Equation 2.2.4). 

                     

𝐼𝑖,𝑠𝑦𝑛 = ∑ 𝑤𝑖𝑗𝑟𝑗𝑗                                     [2.2.4] 

For each trial, I look at the final firing rates of the two neurons associated with 

the words in the pair as a measure to identify successful retrieval. I used a 

threshold of 8Hz; if both neurons had a firing rate higher than the threshold, 

the answer for the trial was recorded as ‘yes, the two words were presented 

together’, otherwise as ‘not in the same list at encoding’.  

 

Results 

 

 

Figure 2.2.1.  Simulated pair recollection as a function of their relationship, 

using methods a and b at encoding. The graphs show the average rate (in 

percentage) of recollection for different pairs of words for method a (a, Hebbian 

learning) and b (b, probability-based): from same list with same semantics 

(‘Sem&List’), words with same semantics from different lists (‘Semantic), words from 

same list with different semantics (‘List’), pairs with no relationship (‘None’), pairs with 

lure words (‘Lure’). 
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Using both method a (Fig. 2.2.1 a) and b (Fig. 2.2.1 b), the model was able to 

reproduce a similar pattern of pair recall performance to the one of the 

participants, with highest rates of recollection for words from the same list with 

same semantics, followed by pairs with lure words, words from same list with 

different semantics, words with same semantics from different lists, and finally 

words with no relationship. Overall, the model shows a better performance 

than the behavioural experiment for retrieval, with higher rates of true hits and 

lower rates of false recollection for pairs from different lists. This result is 

explained by the lack of any response bias. 

I repeated the dependency measures analysis for the model simulation, both 

with method a and b at encoding. Both model versions found a significant 

difference between dependency measures of the data and predicted 

independent measure only for recall of pairs with lure word (p<0.05), while all 

the other pairs recalled did have a significant difference in dependency 

measure from the predicted independent measure.  

 

Discussion  

 

The Hopfield associative network simulations, in which semantic associations 

aid pattern completion, succeeded in capturing the results. These results 

support the significant role of semantics for episodic memory retrieval, both as 

continuous semantic distance between words and as abstract categorical 

semantic context. The temporal context model (TCM, Howard and Kahana, 

2001), can be accommodated with the evidence of episodic retrieval as a 

pattern completion mechanism. The mechanism of pattern completion might 

potentially be performed by the auto-associative connections between 

neurons of the CA3 area of the hippocampus (Horner et al. 2015). The 

temporal context model is based on the progressively changing mapping 

between temporal context and presented items (whose identity is embedded 

in the semantic memory). However, the theory lacks an atemporal structure 
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referring to the presence of a semantic mapping (or context) between related 

items. A later development of the theory (Howard et al. 2009) proposes a 

predictive temporal context model (pTCM) for the progressive learning of 

semantic representations through episodes. While this model uses the idea of 

a gradually changing temporal context to explain the progressive 

‘semanticisation’ of experience, further studies are needed to explore a model 

for the role of pre-acquired semantic structure in episodic encoding, 

consolidation, and retrieval. 

The results of the model simulation reproduce the behavioural performance 

found in the pair recollection test. The auto-associative structure of the model 

makes the retrieval of the two pairs of words containing the lure dependent 

upon the presence of an ‘episodic’ effect. Interestingly, in this case the 

‘episodic’ effect – as defined by Horner et al. 2015 – is not related to the 

overlapping paired associations between elements presented in the same 

episode, but on pre-learnt semantic associations between them (confirmed by 

the fact that the lure word was not presented at encoding). The selection of 

the model parameters was based on biologically plausible values, as per 

previous work in the field (Horner et al., 2015; Binte et al., 2020). The results 

of this model bring additional support to the hypothesis that a mechanism of 

pattern completion could be involved in the retrieval of semantic memory as 

associations between concepts, and that this mechanism might interfere with 

episodic memory. the Hopfield associative network simulations, in which 

semantic associations aid pattern completion, succeeded in capturing the 

results.   
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2.3 A Successor Representation approach to Semantic 

Interference in Temporal Context Model. 

 

Introduction  

 

In the two preceding sections, I have shown that the false memory effect 

observed in the DRM paradigm can be reproduced by a Hopfield network 

model. A second way of looking at the false memory effect is that it might arise 

because of the way that semantic memory interacts with memory of recent 

temporal context. This motivates the following section, in which I investigate 

the temporal context model (TCM), which proposes that episodic recall is 

guided by a distributed representation of “temporal context” (Howard & 

Kahana, 2002). TCM has successfully reproduced many behavioural 

phenomena observed in free recall tasks, as well as providing a biologically 

plausible explanation for why these phenomena arise. I hypothesised that the 

false memory effect seen in the DRM paradigm can also be explained within 

the framework of TCM.    

 

TCM was initially proposed as a descriptive model to capture the rich body of 

experimental evidence that temporal context plays an important role in 

memory encoding and retrieval. This rich body of evidence, both in animal 

models (Mankin et al. 2015, Cai et al. 2016, Rubin et al. 2015, Eichenbaum 

2014) and human research (El-Kalliny et al. 2019, Chien et al. 2020, Hsieh et 

al. 2014), showed how different brain structures and neuronal populations 

encode temporal relationships between stimuli and process information on the 

temporal structure of experience. In human cognitive neuroscience, the 

influence of temporal context becomes apparent in free recall and serial 

learning tasks (Murdock 1962, Howard and Kahana 1999, Kahana 1996), 

where recency, contiguity and asymmetry effects provide direct insight into 
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how the temporal context impacts human cognition. As better defined in the 

next paragraph, these typical characteristics, resulting from the effect of 

temporal encoding in human cognition, are referred to as temporal context 

effects. Moreover, beyond free recall and serial learning tasks, multiple studies 

have proposed evidence for temporal context effects in a variety of other 

behavioural findings (Howard et al. 2005, Hamid et al. 2010, Smith D.E. et al. 

2022, Howard 2017, Wang et al. 2017). 

 

One of the most used tests for memory performance in human participants is 

free recall of a list of items or words. This kind of task allows us to detect some 

key aspects of human memory. Experimental findings and theoretical models 

of memory alike have been seeking explanations for some of these key 

principles: primacy, recency, contiguity, and asymmetry. Primacy refers to the 

phenomenon whereby the first item in the list has a higher probability of being 

recalled, likely due to rehearsal (Howard and Kahana, 2002). Recency refers 

to better recall of recently presented items. Memory for an item in the list is 

helped by the correct recollection of other items that were presented close in 

time during encoding; this effect is called contiguity. Traditionally, contiguity is 

measured by the conditional response probability (CRP) as function of time 

(temporal distance between items at encoding). CRP is a measure of the 

probability of recalling an item after another item is recalled. When calculated 

as a function of the relative time distance (lag) between items at encoding, 

CRP provides a useful measure of lag-recency, or contiguity. This function 

peaks at 1 lag, and progressively decreases over incremental lag between 

items. Moreover, this effect is asymmetrical, with forward lags having higher 

CRPs than backward ones. Asymmetry is another key feature of free recall 

and serial recall (Kahana & Caplan 2002, Li & Lewandowsky, 1993, 1995; 

McGeoch, 1936; Raskin & Cook, 1937).   

 

The temporal context model (Howard & Kahana, 2002) accounts for the 

memory effects described above by hypothesizing that recollection of an item 

is accompanied by recall of the contextual cues associated with the item at 

encoding. During encoding, the presented items inform the contextual 

information, which is used by the model to update a drifting contextual 
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representation as well as learning a context-to-item association matrix. During 

retrieval, the combination of this drifting contextual representation and the 

learned association mean that previously recalled memories work as cues for 

progressive recalls of items associated with similar context states, i.e. that 

were presented close in time during encoding. 

 

The original TCM works as a descriptive model. More recently, the temporal 

context model of episodic memory has been reconciled with the broader 

reinforcement learning literature, providing an alternative interpretation in 

terms of reward-maximization and planning. Making use of the temporal 

difference learning algorithm (Sutton & Barto, 1998), Gershman (2012) and 

Zhou et al. (2023) propose an adaptation of the temporal context model by 

showing that under some conditions, TCM is equivalent to use of the 

“successor representation” (SR) (Dayan, 1993). This line of work successfully 

provides a different description of the TCM, while providing new experimental 

predictions.  

 

Here, I adapt the SR version of the TCM by Gershman (2012) by equipping 

the model with pre-learnt semantic knowledge. This allows us to reproduce the 

false memory effect seen in the DRM paradigm, and to develop further new 

experimental predictions, which we aim to test in the future. In the remainder 

of this section, I will first formally describe the canonical TCM framework, as 

well as the SR-based variant. I will then use this model to simulate several 

experiments, including the DRM paradigm.  

 

 

Methods: Model description 

 

 

According to TCM, the brain maintains and updates a slowly drifting 

representation of temporal context, which it uses to facilitate retrieval of 

relevant memories. For example, during learning in a free recall paradigm, the 

theory states that each item in the list is added to a contextual representation 
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of past items, weighted by their recency. During learning (encoding of new 

memories), each stimulus contributes to the context update, and associations 

between the context and each item are learned. At retrieval, the likelihood of 

retrieving a particular item depends on the current temporal context, as well 

as the learned associations between items and this context. Together, the 

context and learned associations serves as a temporal cue to trigger retrieval 

of specific items. Once an item is retrieved, the context is updated, taking into 

account the previous contextual cues associated with the item, which embeds 

information on other nearby stimuli learnt at encoding. The recall pattern thus 

recreates the sequential retrieval of words presented closer in time in the list. 

 

More formally, the model is initiated with a pre-experimental (pre-encoding) 

temporal context vector, ct
IN , at time t. Each stimulus x is represented at 

encoding by a one-hot vector xt , and by the vector xi during retrieval. Time 

steps during encoding are represented by t ∈ {1, …, T}, while retrieval time 

steps are expressed as i ∈ {1, …, N}. In TCM, two matrices drive contextual 

encoding and retrieval; MCS represents learnt context-to-stimulus 

associations, while MSC denotes stimulus-to-context associations. The function 

of MCS in the model is to connect a contextual cue to an item, so that the 

context vector can trigger retrieval of an associated item. On the other hand, 

MSC triggers retrieval of associated contexts by the presentation of an item.  

 

 

MCS is reset to zero at the beginning of each encoding trial. For clarity, this 

matrix is the result of the sum over encoding time steps {1, …, T} of the outer 

products of all the presented items’ vectors at encoding and their associated 

context vectors:  

 

𝑀𝐶𝑆   =   ∑ 𝑥𝑡
 
𝑡  𝑐𝑡

𝑇        [2.3.1] 

 

Which is equivalent to updating the matrix at each time step with the: 

 

𝑀𝑡+1 
𝐶𝑆 ← 𝑀𝑡

𝐶𝑆 + 𝛼𝑐𝑡+1𝑥
𝑇
𝑡+1   [2.3.2] 
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Intuitively,𝑀𝐶𝑆 represents how each item has been associated with each 

dimension of the temporal context vector in the recent past. Equation 2.3.2 

represents the Hebbian learning rule for 𝑀𝐶𝑆 . 

 

When a stimulus is presented, the stimulus-to-context matrix 𝑀𝑆𝐶  drives the 

retrieval of contextual cues associated with the stimulus. The input to the 

temporal context, 𝑐𝐼𝑁, may therefore include weighted components of 

previously presented stimuli if the item has already been presented at earlier 

time points:  

 

𝑐𝑡
𝐼𝑁  =  𝑀𝑆𝐶𝑥𝑡      [2.3.3] 

 

In practice, in many cases 𝑀𝑆𝐶   is set to the identity matrix I, in which case 

𝑐𝐼𝑁 = 𝑥𝑡. When 𝑀𝑆𝐶 is not set to the identity matrix, it has been defined as the 

transpose of 𝑀𝐶𝑆, which encodes backwards stimulus-to-context transitions 

(Zhou et al. 2023).  

 

 

When a stimulus is presented, the temporal context is updated by the stimulus, 

weighted by a constant beta and possibly by 𝑀𝑆𝐶 , and decaying the previous 

context with a time constant 𝜌 :  

 

𝑐𝑡  =  𝜌𝑐𝑡−1  +  𝛽𝑐𝑡
𝐼𝑁       [2.3.4] 

 

Where 𝑐𝑡 is set to be a unit vector via setting of parameters 𝜌  and β. 

When 𝑀𝑆𝐶 = 𝐼,  𝑐𝑡
𝐼𝑁 takes the form of a vector, with value 1 for the item 

presented at time 𝑡 . The context vector at any given time is obtained by the 

context vector at the previous time step and the input to the temporal context.  

 

During retrieval, the context-to-item association matrix 𝑀𝐶𝑆    is multiplied by 

the current context vector to get a predicted stimulus 𝑥𝑖: 
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𝑥𝑖 = 𝑀
𝐶𝑆𝑐𝑡      [2.3.5] 

 

Where the context-to-item matrix drives the reinstatement of learnt items using 

the context vector as cue. 

 

A key aspect of TCM is that the context gets updated not only during encoding 

but also during retrieval. This means that a key prediction of the theory is that 

retrieval of items should increase the probability of retrieving items that were 

experienced close in time. 

 

TCM succeeds in reproducing recency and contiguity effects in free recall 

(Howard & Kahana 2002). Moreover, it describes the asymmetry observed in 

free recall tasks, since the retrieved context associated with an item 

contributes to weighting the drifting temporal context at subsequent time steps, 

but not in preceding ones.  

 

 

Methods: Model Implementation 

 

Recently, theorists have reframed TCM in terms of reinforcement learning (RL; 

Sutton & Barto 1998) and successor representations (SR; Dayan 1993, White 

1995; Gershman 2012, Zhou et al. 2023). In the Chapter 2 Appendix 1, I 

introduce some key concepts of RL and SR, to then progress towards a 

description of the work of Gershman (2012) and Zhou (2023), which serves as 

skeleton to the new proposed implementation.  

 

The SR provides an efficient and biologically plausible account of episodic 

memory and free recall tasks. Although the model can reproduce sequence 

learning and free recall behaviour, previous versions of it do not account for 

semantic learning or previously learnt associations, which plays an important 

role in free recall and memory tasks when the learnt items are words (Morton 

& Polyn 2016, Howard & Kahana 2002b, Polyn et al. 2005, Romney et al. 

1993, Bousfield 1953, Glanzer 1969). In humans, investigating how words are 
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encoded, learnt and retrieved enables to directly test hypotheses on how 

episodic and semantic memory interact and interfere with each other, and how 

systems typically associated with only one of the two mechanisms are more 

broadly involved in an interconnected complex system, where episodic, 

semantic memory and planning share mechanisms and anatomical structures.  

 

In further work, Howard et al. (2011) proposed a version of the TCM, the 

predictive TCM (pTCM) that makes use of the TCM machinery to create new 

learnt semantic representations from repeated associations over time. This 

proposition underlines how other aspects of declarative memory can be 

implemented into the TCM, and at the same time how the TCM alone does not 

suffice, in its current formulation, to provide a holistic model of memory 

functions. Here, I propose a further implementation of the SR TCM, where the 

model is equipped with previously learnt semantic knowledge. This 

implementation succeeds in reproducing the DRM paradigm, while providing 

new testable hypotheses and predictions that we aim to investigate in future 

work. 

 

Differently from pTCM, my work focuses on how pre-learnt semantic 

associations interfere with encoding and retrieval of sequential memory rather 

than on how new semantic knowledge is consolidated over time. To do this, 

𝑀𝐶𝑆 and 𝑀𝑆𝐶   are paired with an additional matrix 𝑆, which encodes the pre-

learned semantic relationship between words. In our model implementation, 

𝑀𝑆𝐶   is set to the identity matrix I (Equation 2.3.3 of the main text); however, 

the model is equipped with both matrices to allow for simulations beyond this 

special case. The values assigned to 𝑆 are not random values, but they are 

based on cosine semantic distances between selected words calculated using 

word2vec (Mikolov et al. 2013); this makes the model directly testable with 

real-word behavioural tasks and easy to adapt to any set of words. Each entry 

of the 𝑆 matrix represents the cosine semantic distance between words in the 

semantic space for word embedding. The values are then transformed into 

probabilities via the softmax function, so that each column (word to word 

transitions) sums to 1.  



56 
 

 

𝑆 =
𝑒(𝛽𝑆)

∑𝑒(𝛽𝑆)
     [2.3.6] 

 

Where 𝛽 is an “inverse temperature parameter” which regulates how peaky 

this distribution is. 

  

Before retrieval, the 𝑀𝐶𝑆 matrix in the model is replaced by a weighted matrix, 

𝑄, obtained by a linear transformation of the context to item matrix 𝑀𝐶𝑆 and of 

the semantic association matrix 𝑆 as follows:  

 

𝑄 = 𝜇𝑀𝐶𝑆 + (1 −  𝜇) 𝑆                                [2.3.7] 

 

 

Where 𝜇 ∈ [0 1]. If the value of 𝜇 is 1, the model behaviour is equivalent to 

Gershman (2012) since the semantic association component would bring no 

contribution to the SR matrix  𝑄. When, however, 𝜇 = 0, the model retrieves 

items in free recall without considering any contribution from the encoded 

order of words in the presented list, but only based on pre-learned semantic 

associations. Values between 0 and 1 thus modulate the contribution of 

temporal and semantic associations with hybrid simulated behavioural results. 

 

The encoding (Equations 2.3.1 and 2.3.4) and retrieval process (Equations 

2.3.5 and Equation 2.6A1) follow the same dynamic of previously published 

studies (Gershman 2012, Zhou et al. 2023), replacing 𝑀𝐶𝑆 with 𝑄. 

To avoid that the model recalled the same word more than once, we set the 

activation of each recalled word (𝑥𝑖 in Equation 2.3.5) to 0 before moving to 

the next recalled word.  

The model was tested to reproduce the typical free recall effects described 

previously, as well as additional properties of the integration of semantic 

knowledge into the SR matrix. 
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Results 

 

Each simulation was performed, and the results averaged over 500 trials. Each 

trial simulated the encoding and free recall of a single list of 30 words. At the 

beginning of each trail, the SR matrix and context vector were reset to 

baseline, so that learning and retrieval were independent across trials. At the 

beginning of each trial, the only pre-learnt contribution to SR came from the 

matrix of semantic associations 𝑆. 

The model was presented with a list of 30 words. The words were selected 

from a pool of high frequency nouns 

(https://memory.psych.upenn.edu/Word_Pools), and controlled to have a 

balanced distribution of semantic distances between words (as cosine 

distance in word2vec, Mikolov et al. 2013) at different serial position distances, 

so that the distance in serial position did not covary with the degree of 

semantic distance in word2vec.  

First, simulations were run to reproduce the SR TCM behaviour described by 

Gershman (2012) and Howard and Kahana (2002). To do so, the 𝑄 matrix was 

reduced to the 𝑀𝐶𝑆 matrix by setting 𝜇 = 1 (Fig.2.3.1). 

 

 

 

 

Figure 2.3.1. The results of our first simulations reproduced the effect of asymmetry 

and contiguity (A) and recency (B and C). A) shows the simulated lag-CRP of the 

model averaged over 500 trials. CRP (conditional response probability) is presented 

as function of the distance in position within the presented list (Lag) between words 

recollected in sequence; B) shows the absolute probability of recalling individual 

words in each serial position. Words in later serial positions are more likely to be 

https://memory.psych.upenn.edu/Word_Pools
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recalled, a recency effect (because their associated context is closer to the temporal 

context of the retrieval testing time). Similarly, C visualises the probability of each 

word being the first one to be recalled during simulated free recall. Words that were 

presented later in the list are more likely to be recalled first.  

 

The same simulations were ran modulating the value of 𝜇 ∈

[0  0.25  0.5  0.75  1], progressively moving from a semantic-only weighted 𝑄 to 

a temporal context-only SR matrix 𝑀𝐶𝑆 (Fig 2.1A1).  

 

 

 

As our simulations show, the linear weighting of temporal and semantic 

components in the model result in a behaviour that is progressively more or 

less driven by 𝑀𝐶𝑆 , which encodes learnt temporal associations, or by 𝑆, which 

expresses the contribution of previously learnt semantic relationships between 

words.  

 

We then tested our model to simulate the DRM effect. To do so, we provided 

the model with a list of 15 semantically related words (Roediger & McDermott 

1995). The 𝑆 matrix was prepared using the same word2vec cosine distance 

value between words, as described above. To reproduce the false memory 

effect, while the presented list had 15 items, the 𝑆 matrix encoded pre-learnt 

semantic knowledge for 16 items: the 15 included in the list and one additional 

word (lure word), semantically related to all the words in the list but not 

presented at encoding. We ran our simulations as above, with 𝜇 ∈

[0 0.25 0.5 0.75 1].  

 

Our model was able to reproduce the false memory effect of the DRM 

paradigm (Fig.2.3.3), with the lure word (false memory), not presented at 

encoding, never being recalled in the trials for 𝜇 = 1. These simulations show 

how the model not only recall the 15 words presented at encoding, but also 

the lure word (false memory) semantically related to them via the 𝑆 matrix 

when 𝜇 < 1.  In case of 𝜇 < 1, the model includes the weighted effect of the 



59 
 

semantic associations, and recalls the lure word with higher probability the 

smaller the value of 𝜇 (shown as the 16th word on the x axes, ‘lure’, in 

Fig.2.3.3).  

The effect of contiguity, asymmetry and recency where preserved. Moreover, 

the false memory effect (i.e. the probability of recalling the lure word) tended 

to happen at the end of the recalled list of words, which is consistent with 

behavioural evidence (Roediger & McDermott 1995). In our model, this is 

explained by the fact that after being recalled, each word activation (𝑥𝑖 in 

Equation 2.3.5, main text) is set to 0 after a word was recalled. By the end of 

the recalled sequence, the lure word is one of the few choices left for the model 

to recall. When the value of 𝜇 is set to lower values, the lure word is 

progressively recalled in a more distributed manner over the recalled order. 

For simplicity, I here reported only 5 examples of the simulations with values 

of 𝜇 ∈ [0 0.25 0.5 0.75 1]. While the model behaviour is quite similar for 𝜇 ∈

[0.25,0.5, 0.75], with a hybrid behaviour between temporal context-driven and 

semantic association effect, it is clear how extreme values of 𝜇 = 0 and 𝜇 = 1 

deviates from the rest of the simulations. 
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Figure 2.3.3. Simulation results for DRM effect. The model was presented with 15 

words at encoding. The plots columns B and C, respectively probability of recall and 

probability of first recall for all words, represent the lure word (false memory) as the 

16th word on the x axis, since this word was not presented at encoding. In this case, 

the lure word is the 16th words on the x axis of the second and third column, where 

recall probability and probability of a word being recalled in first position are shown. 

Row 1 shows the results for 𝜇 = 1 (only temporal context effect, without any 

contribution from semantic associations), while row 5 includes results for 𝜇 = 0, when 

the effect of temporal context is fully removed. The lag-CRP graph (A) shows how the 

effect of contiguity and asymmetry are preserved in the model. Similarly, B and C 

show the recency effect, with the overall higher chance of recalling words presented 

A                                                                           B                                                                        C                                                                           D 
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later in the list at encoding (B) and of recalling later words in first position (C). 

Interestingly, down-weighting the effect of 𝑀𝐶𝑆 with smaller values of 𝜇 quickly 

removed the temporal context-related behavioural effects of recency, contiguity, and 

asymmetry. Column D shows where the false memory (recall of the lure word) 

happens in the recalled list, if the lure word is recalled. 

 

 

 

Discussion 

  

In Chapter 2.3 I tested how the SR formulation of the TCM can capture effects 

of underlying semantic knowledge on the encoding and free recall of lists of 

words. Previous work (Gershman 2012, Zhou et al. 2023) already showed how 

TCM and its SR formulation can reproduce typical effects, such as contiguity, 

recency, and asymmetry. With this work, I modulated the temporal context 

encoding in the 𝑀𝐶𝑆  with pre-existing semantic associations between stimuli, 

found in 𝑆. This means that temporal associations between stimuli are not 

learnt in a naïve manner, but they are encoded overlaying the substrate of pre-

acquired mapping between stimuli from previous experience.  

My contribution to this existing body of work explores another fundamental 

aspect of declarative memory, which often interact and interfere with episodic 

memory, i.e., pre-acquired semantic knowledge. Although not conclusive yet, 

this is a first step towards the unification of aspects of semantic and episodic 

memory in one flexible and coherent model, which can be directly 

behaviourally tested. Moreover, the use of SR allows to place the investigation 

of episodic memory dynamics within the realm of future planning and 

prediction, as well as context-dependent behaviour (Geerts et al. 2023, 

Gershman 2018). 

This model’s implementation preserves the ability to simulate the effects of 

contiguity, asymmetry, and recency. It does not, however, reproduce primacy. 

The choice of not implementing the model with a primacy effect was justified 

by the will to keep the model as relevant as possible and as simple as possible 

for encoding and retrieval processes. The effect of primacy can be quite easily 
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induced in the model by adding a rehearsal (Tan & Ward 2000) or attention-

like element to it. The temporal context model per se does not entails the 

primacy effect. However, in previous versions of free recall models (Sederberg 

et al. 2008), primacy was induced by additionally boosting the learning rate at 

encoding of the first words in the list (which can be interpreted as a proxy for 

attention), which is then decayed over later serial positions. Since inducing 

primacy in our simulations would have not contributed to the current purpose 

of the model, we decided not to do so at this time. However, if inducing primacy 

effect will be needed in future applications of the model, this can be done 

following Sederberg et al. (2008) as follows: 

𝛼𝑖 = 𝛼𝑡0𝑒
−𝛼𝑑(𝑖−1) + 1                                   [2.3.7] 

 

Where 𝛼 is the learning rate, 𝛼𝑑 is the decay of learning rate over time and 

𝛼𝑡0 + 1 determines the strength of boost in learning rate for the word in serial 

position one (adapted from Sederberg et al. 2008). 

This work shows how a relatively simple implementation of the model with pre-

acquired semantic knowledge (embedded as pre-learnt associations between 

items) can provide a descriptive account of false memory in the DRM 

paradigm. However, these first simulations open to new theoretical questions 

and testable hypotheses. Firstly, this first proof of principle used a linear 

combination of the SR matrix and the pre-learnt semantic association matrix. 

However, this assumption can be challenged by exploring other mathematical 

non-linear combinations of the two matrices, where the modulatory effect of 

pre-learnt knowledge on the temporal context can follow more complex 

dynamics.  

In future work, we aim to develop different implementations of the model, with 

non-linear alternatives, and to test the predicted behaviours fitting real-world 

data. This can be done with standard behavioural tasks, such as the DRM 

paradigm in free recall, as well as with more complex experiments (see below), 

where an event boundary element can help disentangle different predictions. 

It is interesting how the 𝑆 matrix was not created by providing a set of random 

values to the learnt semantic associations, but these were based on word2vec, 
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a commonly used model of word embedding trained on real-world data. This 

makes the model ready to be used for real world testing and applications, 

where the matrix can be easily adapted to the specific stimuli presented during 

encoding.  

In the current work, our interest focused on pre-learnt semantic knowledge. 

However, given that the model is a learning algorithm, it would be interesting 

to test how the SR implementation of TCM would perform if used as an 

algorithm to learn new semantic associations. In a similar way to the pTCM 

(Howard et al. 2012), Gershman (2012) version, basing learning on predictions 

rather than Hebbian plasticity, would be a natural candidate to reproduce the 

long-term effects of repeated presentation of items (such as repeated 

presentation of related words, which induce over time semantic knowledge) 

on the pre-encoding SR algorithm. This longer time scale acquisition of 

associative knowledge would replace in the current implementation the 

externally integrated word2vec distances with an internal SR-generated 

structure. Not only SR is a promising approach to model the contribution of 

pre-learnt knowledge to episodic (as in temporally embedded) learning, but it 

already proved itself relevant to language structure acquisition (Stoewer et al. 

2022), towards a more unifying approach to memory, navigation, planning, and 

language and thought organisation.  

Previous work had implemented the TCM to account for the semantic 

component of presented items. In the Context Maintenance and Retrieval 

(CMR) model by Polyn et al. (2009), the classical TCM model is equipped with 

pre-experimental (pre-learnt semantic associations) and experimental (based 

on temporal sequence learning) associations between items and context. In 

the CMR, an additional feature layers play a critical role in representing the 

stimuli (items) and associating them with temporal context during both 

encoding and retrieval. These feature layers encode the properties of the items 

presented during an experimental task (e.g., a word list in a free recall 

experiment), and they interact with the context layer to facilitate memory 

encoding and retrieval. The feature layer serves as a representation of stimuli 

at a perceptual or semantic level, while the context layer captures temporal 

information. Together, they form an associative memory system that binds 
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features (the content of the memories) to the context (the temporal aspect). 

During encoding, the feature layer (representing the current stimulus) helps to 

shape the current context by modifying the context vector, linking the item’s 

features with the temporal context. During retrieval, the context layer guides 

the reactivation of feature representations, with the system retrieving items 

based on the similarity of the current context to the context stored in memory 

traces. In CMR, the context is a distinct representation from the feature layer, 

and the key interaction in CMR is the binding of items to their temporal context, 

facilitating the retrieval of the original memory trace through context 

reinstatement. Similarly to the CMR for the TCM model, conceptually, our 

model aims to provide a similar implementation of the pre-learnt semantic 

knowledge to the SR TCM of Gersham. However, unlike CMR, our model does 

not explicitly introduce a further feature layer but delegates the semantic 

information to the S matrix. Via the SR matrix, our model learns state 

transitions that predicts the future states (or items) likely to follow from the 

current state, informed by pre-acquired semantic knowledge (S matrix); there 

is no explicit binding between individual features and context. Instead, the 

model predicts future states based on the current state. Both CMR and our 

model successfully reproduce the effect of recency, asymmetry and contiguity. 

However, this foundational work did not account for investigating predictions 

and model fitting of our model compared to the CMR. However, we aim to 

continue this work with further model comparison between CMR and our 

model, and model fitting on new experimental data. 

To investigate what kind of computation better explains the degree and nature 

of the interaction between SR leaning and pre-learnt associations, we plan to 

test our model starting with behavioural tasks (Fig.2.3.4). Informed by 

previously published experimental work (Smith et al. 2013, Pu et al. 2022), I 

am first planning to test the basic model dynamics to inform further 

implementations. In their study, Pu et al. (2022) investigated the mechanism 

of event boundaries in temporal order memory with a series of behavioural 

tests and a computational model of temporal context. While their work defined 

event boundaries as changes in the frame colour of the presented items, the 

definition of context can entail a variety of features, depending on the focus. 
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In the case of language, context can also be interpreted as semantic context 

of words related by meaning. Our model is well suited to answer whether 

semantic context interacts with the drifting temporal context in a similar way 

as environmental cues do. We aim to adapt the behavioural tasks utilised by 

Pu et al. (2022) by organising the ordered items using abstract event 

boundaries, with the change of context defined by the change from one 

semantic realm to another (such as ‘cold’-related words followed by ‘music’-

related words). This implicit semantic context would replace the visual 

(environmental) change in the colour of the frame surrounding the items in the 

original experimental conditions. This test will provide insight on what the 

nature of context, the role of abstract contexts in learning and memory, and 

possibly the possible computations guiding the integration of complementary 

systems of knowledge, or complementary aspects of the same system. 

When focusing on the role of context in memory and learning, the context 

repetition effect  (Smith et al. 2013) - i.e. the fact that the recollection of stimuli 

experienced in the past is enhanced by the repetition of the context in which 

they were experienced without the repetition of the stimulus per se - figures as 

a testable mechanism with theory-driven experimental predictions. Based on 

the temporal-different SR model (TD-SR, Dayan 1993), Smith et al. (2013) use 

the idea of context as repeated presentation of temporally contiguous items to 

show how the repetition of the same context enhanced memory for items 

previously associated to them (and hence predicted when the context is 

presented), when the items themselves are not represented. The context 

repetition effect, was tested using both images and words as presented items. 

Our implementation of the SR model with pre-learnt semantic structures allows 

to test further characteristics of the repetition context effect when this interacts 

with underlying semantic structures and abstract contexts. While the repetition 

of the same two words can provide the contextual element to boost memory 

for a third associated item (Smith et al. 2013), we wonder if at a higher level of 

conceptual hierarchy, the repetition of different words from the same semantic 

context would boost memory for items originally presented in association to 

those words, only thanks to the reinstatement of closely related concepts. This 
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would suggest that higher level of abstraction can contribute to lower-level 

predictions and directly contribute to how memory is formed and retrieved.  

 

Figure 2.3.4. Future experiments. Experiment 1 (adapted from Pu et al., 2022) will 

test performance for order recollection of words presented in a list. The experiment 

will have two conditions. In the semantic context boundary condition, the list is 

organised so that words are grouped based on semantic categories. In the control 

conditions, words will be presented in random order without semantic grouping. 

Participants will then be asked to remember which word between a tested pair was 

presented later. The pairs of words tested will be picked as per Pu et al (2022). 

Experiment 2 will test the CRE effect, as in Smith et al. (2013) experiment, where the 

first two items of a 3-item series represent the contextual cue, and the third item is 

the target. We will also test whether a similar CRE effect will be elicited not only by 

the repeated context provided by the same two words, but also by the presentation 

of two different individual words from the same semantic group (category) of 

previously presented contextual cues (animal category in the example above). Refer 

to Pu et al. (2022) and Smith et al. (2013) for further details on experimental design 

for experiment 1 and 2, respectively. 

 

These future experimental tests will help to better understand the nature of the 

interaction between semantic and episodic memory, as well as the mutual 

contributions of the temporal context in memory processes and language 
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processing. This further part of the work will also contribute to develop 

additional model implementation. In particular, it will bring new understanding 

on the nature of the computational nature of the combined contribution of SR 

learning (𝑀𝐶𝑆) and pre-acquired semantic knowledge (𝑆), where different 

linear and non-linear combination of the matrices can be tested via model 

fitting. 

Although purely theoretical, the SR TCM and its implementations provide 

biologically plausible hypotheses on the neurobiological structures and 

mechanisms contributing to these computations in humans (Geerts et al. 2023, 

Gershman 2018). Human neuroimaging methods have been developed to 

investigate SR-like representations in the human brain, which are providing a 

growing body of evidence to support the hypothesis of SR models being better 

suited to explain neuronal activities and human cognitive processes (Garvert 

et al. 2017, Ekman et al. 2023, Russek et al. 2017, Russek et al. 2021)  In 

future work, informed by the above mentioned and further hypothesis-driven 

tests, the biological plausibility of the SR TCM and of its interaction with 

semantic memory and language could be investigated via ad hoc 

neuroimaging work to provide understanding on the anatomical structures and 

the temporal dynamics contributing to contextual and ordered memory in 

humans. 
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2.4 – General Discussion of Chapter 2 

 

Overall, Chapter 2 proposed new behavioural and computational approaches 

to investigate the role of semantic and temporal context in false memory. It 

also developed new testable hypotheses for the possible involved 

mechanisms. 

In Chapter 2.1, I first studied the interplay between temporal and semantic 

contexts using the Deese-Roediger-McDermott (DRM) paradigm. These 

behavioural experimental findings suggest that pattern completion 

mechanisms, like the ones usually studied in episodic memory in the 

hippocampal formation, might be responsible for the semantic-driven false 

memory effect. This inspired the development of a Hopfield associative 

network model (Chapter 2.2), which was able to reproduce the findings of 

Chapter 2.1 and proposed a realistic mechanistic understanding of a possible 

role of the CA3 area of the hippocampus in inducing false memories in healthy 

individuals. The way in which the sequence of words is learnt in the Hopfield 

model is based on a Hebbian-like learning process. This is based on the 

temporal correlation between word-associated simulated neuronal activity. 

This mechanism mirrors a form of temporal context at the neuronal level, not 

dissimilar to the one proposed by the TCM theory. However, in the case of the 

Hopfield network, the temporal context is not explicitly represented in the 

model as an independent factor, but it is implicitly resulting as the effect of 

concatenated neuronal activities via learnt associations of sequential neuronal 

firing.  

This insight motivated the development of a more sophisticated model of 

temporal context using the SR computational framework in Chapter 2.3. In this 

case, I looked at the problem of false memory via semantic interference from 

the perspective of SR models from reinforcement learning (see Chapter 2 

Appendix 1) and studied the ability of the SR version of TCM to encapsulate 

the influence of pre-existing semantic knowledge on word list encoding and 

free recall. In this case, the temporal context was explicitly represented in the 

model and used for memory retrieval via eligibility traces. This work explores 
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how pre-learnt semantic associations modulate temporal context encoding 

through a linear combination approach between contextual cues. As 

mentioned, future implementation of the model will explore non-linear 

combinations, aiming to uncover more complex interactions between semantic 

knowledge and temporal context. Although the SR aims to reproduce the false 

memory mechanism at a higher level of description, it accomplishes so while 

encapsulating biologically plausible neuronal mechanisms that are easily 

conceptually related to the same medial temporal cortex structures 

responsible for both memory encoding and retrieval, as well as future planning.  

This approach to the computational study of the interaction between semantic 

and temporal contexts has proven fruitful to develop and test different 

hypotheses via in silico simulations and real-world experiments. The validity of 

this approach was further investigated using another computational approach, 

within the active inference framework (see Chapter 2 Appendix 2), and will be 

additionally put under test in the future with behavioural human experiments 

and model fitting (see also Chapter 2.3), to better understand the complex 

dynamics of contexts integration in human cognition. 
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Chapter 2 Appendix 1.  TCM in Reinforcement Learning   

 

 

Here, I provide the theoretical background to describe how the TCM has been 

integrated computationally in the reinforcement learning, and in the successor 

representation framework. This computational approach to TCM served as the 

foundation to my model implementation.  

 

The goal of RL models is to maximise cumulative reward or value, which 

guides learning and behaviour of the RL agent. Broadly, RL models can be 

classified as model-based and model-free (Sutton & Barto, 1998). Model-

based RL agents are equipped with an internal model of the world, which 

informs policies based on predictions about which actions lead to which states. 

The internal model of the world can be updated with new evidence on 

associations between states, and between states and reward in the 

environment. Model-free agents, on the other hand, do not implement a 

flexible model of the surrounding environment, but rely on decisions based on 

simple associations between states and future expected rewards. In many 

model-free methods, this involves estimating the “value function”, which maps 

from states to expected future rewards. This learning is often mediated by a 

reward prediction error (RPE), which has been linked to dopamine neurons in 

the mid-brain (Schultz, Dayan & Montague; 1997).  

 

In addition to the dichotomy between model-free and model-based methods, 

there are hybrid models, which incorporate elements of both model-based and 

model-free learning. One strategy is to learn a “successor representation” (SR; 

Dayan 1993), a representation of states in terms of the future states they 

predict. RL methods based on the SR represent a middle ground between 

traditional model-based and model-free methods, because they incorporate 

some information about an environment’s transition structure, while not 

requiring offline simulation for planning. Interestingly, some theorists have 

drawn parallels between aspects of the SR and neural firing patterns in the 
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hippocampal formation (Stachenfeld et al. 2017), the dopamine system 

(Gardner et al. 2018), as well as aspects of human and animal behaviour 

(Momennejad, Russek, et al. 2017, Russek et al. 2021, Piray & Daw 2021, 

Geerts et al. 2020, Geerts et al. 2023).  

 

The key idea of SR models (Dayan 1993, Gershman 2018) is to learn an SR 

matrix of expected future occupancy of each state from each other state. The 

SR matrix (𝑀 ) works as a predictive map between each state and the other 

states over time. More formally, 𝑀 expresses the discounted cumulative 

number of time steps for which a future state 𝑠′ is expected to be occupied by 

the agent, under a policy 𝜋 starting from state 𝑠  (Russek et al. 2017, 

Gershman 2012): 

 

 

𝑀𝜋(𝑠, 𝑠′) =  𝔼[   ∑ 𝛾𝑡∞
𝑡=0 𝛿(𝑠𝑡, 𝑠

′)|𝑆0 = 𝑠 |]                           [2.1A1] 

 

= 𝔼 [𝛿(𝑡, 𝑗) + 𝛾𝑀𝑡𝑗|𝑠𝑛 = 𝑖|]                                       [2.2A1] 

 

=  ∑ 𝑇𝑖𝑡[𝛿(t, 𝑗) + 𝛾𝑀𝑡𝑗]
 
𝑡                                              [2.3A1] 

 

Here, the Kronecker delta function 𝛿(𝑛,𝑚) assumes value of 1 if 𝑛 = 𝑚 and 

the value of 0 otherwise. Where 𝑖 represents the current state, 𝑗  the occupancy 

of future states, 𝑡 indexes all possible future states.  

 

One of the strengths of the SR model is that the value function can be easily 

(linearly) computed, given the SR and an estimate R of the rewards found in 

each state.: 

 

𝑉(𝑖)  = ∑ 𝑀(𝑖, 𝑗)𝑅(𝑗) 
𝑗                                   [2.4A1] 

 

In the SR reward function, 𝑉(𝑖) , is decomposed as the dot product of the 

rewards 𝑅  and the predictive state occupancy matrix 𝑀 . The 𝑀(𝑖,  𝑗) vector 

represents the cumulative (averaged over possible trajectories starting in state 
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𝑖 ) discounted occupancy of state  𝑗  under a policy 𝜋. The factorisation of the 

value function into 𝑀 and 𝑅  provides the SR model with a higher degree of 

flexibility: a change in reward can be learnt independently from an update of 

the transition dynamics over state occupancy, which are slower to re-estimate. 

These features of the SR algorithms are particularly beneficial when reward 

changes over time, while state transitions are stable. 

 

The SR cumulates state occupancies, rather than rewards. Similarly to TD 

learning of value, SR updates via a TD prediction error (𝑃𝐸 ) resulting from 

differences between expected and observed state occupancy (Russek et al. 

2017, Gershman 2018): 

 

𝑃𝐸𝑡(𝑗)  =  𝛿(𝑠𝑡, 𝑗)  +  𝛾𝑀(𝑠𝑡+1,   𝑗)  −  𝑀(𝑠𝑡,  𝑗)               [2.5A1] 

 

The first argument on the right-hand side can assume value 1 if 𝑠𝑡 = 𝑗 , and 0 

if 𝑠𝑡 ≠ 𝑗; 𝛾 is a discount factor with values ∈  [0,1]. 𝑀 is updated via TD learning 

rule (equation 2.7A1), as a result of 𝑃𝐸𝑡, modulated by learning rate and 

eligibility trace, which informs the model on recent state occupancy (equation 

2.6A1). The model updates its prediction of the time spent at each state via a 

vector that represents expectation for all future states, increasing the expected 

occupancy following positive prediction error, and reducing it in case of 

negative prediction error.  

In both model-free RL and when estimating the SR, learning can be sped up 

using “eligibility traces”. These traces allow for credit assignment to recent past 

states, weighted by recency. Once a state is occupied at trial 𝑡 , the eligibility 

trace 𝑒𝑡(𝑖) for that state 𝑖  is reinforced and the traces of other states decay 

exponentially. As noted by Gershman (2012), the eligibility trace 𝑒𝑡(𝑖) 

corresponds, mathematically and conceptually, to the temporal context vector 

in TCM (equation 2.3.4). Formally, 𝑒𝑡(𝑖) is defined as: 

 

𝑒𝑡(𝑖) = {
𝛾𝜆𝑒𝑡−1(𝑖)              𝑖𝑓 𝑖 ≠ 𝑠𝑡
𝛾𝜆𝑒𝑡−1(𝑖) + 1      𝑖𝑓  𝑖 = 𝑠𝑡

                         [2.6A1] 
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Where the decay parameter 𝜆 ∈ [0,1] modulates the states that will be 

updated, with higher values of 𝜆 allowing for more ancient state to be eligible. 

This informs the model on recent state occupancy, with a corresponding role 

to 𝑐𝑡.  

 

When using eligibility traces, the SR matrix is updated in each component as 

(Gershman 2012): 

 

𝑀𝑖𝑗 ← 𝑀𝑖𝑗 + 𝛼 [ 𝛿(𝑠𝑡+1, 𝑗)  +  𝛾𝑀𝑠𝑡+1, 𝑗 −𝑀𝑠𝑡𝑗] 𝑒𝑡(𝑖)               [2.7A1] 

 

Where the learning rate α takes values between 0 and 1. The eligibility trace 

acts as the context vector. By multiplying it by 𝑀, 𝑒𝑡(𝑖) predicts the probability 

of each item of being retrieved.  

 

 

At the same time, the model learns not only state occupancy via 𝑀 , but also 

rewards  𝑅  at each state to obtain the value function 𝑉(𝑖) using equation 

2.4A1. 

 

The SR affords more flexibility in decision-making than simple model-free 

learning because value is generalised over all the states that predict similar 

futures. Since representations of reward and transitions are factorised, 

changes in the reward function can be flexibly adapted to. However, it is not 

as flexible as model-based algorithms, because changes in the transition 

functions will have to be slowly relearned.  

 

These computational characteristics matched with its biological plausibility 

makes SR a promising approach to test existing theories and models of 

neuronal and behavioural mechanisms.  

 

Gershman (2012) successfully pointed out how TCM can be expressed in 

equivalent terms by the TD learning rule of SR. In particular, the SR learning 



74 
 

rule corresponds to TCM learning of sequences of items in the case in which 

each item is presented only once, without repetitions. 

In its simplified form, item-to-context associations in TCM update via a 

Hebbian rule as follows:  

 

𝑀𝑖𝑗
  ←  𝑀𝑖𝑗   + 𝛼𝑥𝑡+1,𝑗  𝑐𝑡, 𝑖                           [2.8A1] 

 

So that each item is bound to the context vector at the time when it was 

presented. This is equivalent to equation 2.3.2 for 𝑀𝐶𝑆 Hebbian learning.  

In case items are presented only once, the SR learning rule can be reduced 

to: 

 

𝑀𝑖𝑗 ← 𝑀𝑖𝑗 + 𝛼 𝛿(𝑠𝑡+1,  𝑗) 𝑐𝑡,𝑖                        [2.9A1] 

 

Which is equivalent to Equation 2.8A1 in the special case where items are 

never repeated. The difference between the traditional TCM vs SR learning 

rule becomes apparent only when items are presented more than once, with 

TCM being based on Hebbian associative learning, while SR learning uses 

prediction error on state occupancy to update 𝑀 . This means that, while in 

TCM the strength of learnt associations increases every time two items are 

presented close to each other in time, in SR the update is proportional to the 

prediction error computed at each transition. This results in experimental 

predictions that would disentangle the different behaviour between TCM in its 

original form and the SR TD adaptation proposed by Gershman: if two items 

are presented in sequences during encoding multiple times, the Hebbian 

learning in TCM would consistently strengthen the association between two 

items, while SR predicts a limit for increase in association strength between 

repeated items. This is due to the SR learning via prediction error (Equation 

2.8A1). Once the repetition of two items is learnt and highly predictable (i.e., 

the prediction error tends to 0), the agent’s learning of the association would 

plateau. 
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Gershman’s proposition of the TCM using SR TD learning can be summarised 

as follows, in encoding and retrieval. The model simulations of free recall 

reproduce the same effects of recency, asymmetry, and contiguity in free recall 

that the TCM of Howard and Kahana succeeded in reproducing. During 

encoding, a list of items is presented in order. At the beginning of each trial, 

the SR matrix 𝑀 and the eligibility trace (context vector) 𝑐𝑡 are initiated to all 0 

values. When an item is presented, the eligibility trace is updated as per 

Equation 2.3.4, main text, while the SR matrix is updated following Equation 

2.8A1. At the end of encoding, the SR matrix is learnt. At retrieval, the current 

temporal context (eligibility trace 𝑐𝑡) is used to prompt encoded items 

associated with similar temporal context. Mathematically, this is obtained by 

the product between the eligibility trace 𝑐𝑡 and the SR matrix 𝑀. The result of 

this operation is a vector with a strength distribution across all items. This 

vector of stimulus activations then needs to be turned into an actually retrieved 

item. In Gershman (2012), this is achieved by feeding the vector into a linear 

ballistic accumulator applied to each item (LBA; Brown & Heathcote 2008) with 

a set threshold. In Gershman’s model, the LBA’s noise and slope are set via 

random numbers for each item, which results in different times to cross the set 

threshold. The first item that passes the accumulator threshold is recalled by 

the model. In our implementation of the model, following Zhou et al. (2023), 

the model simply normalises the activation vector to obtain a probability 

distribution of future items, and samples from this distribution.  

 

Once an item is retrieved, the eligibility trace is updated as per Equation 2.6A1. 

In this case, the context update is driven by both the features of the presented 

item, and by the reinstated context associated with it. New items are then 

retrieved by the updated context. Intuitively, this retrieval mechanism already 

brings understanding on how the model will reproduce the asymmetry and 

contiguity effects. At encoding, the item-to-context learning enables each new 

items to retain information on previously presented items, since the context 

associated with each new presentation has been updated by the previously 

seen elements. At retrieval, once an item is retrieved with and the context is 

updated, this serves as cue to retrieve items with similar contexts at encoding. 
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Since only following items but not preceding ones in the encoding phase are 

embedded in contextual information about preceding items, it is more likely for 

the model to retrieve items presented in later positions rather than earlier 

positions in the list (asymmetry), with the ones closer in time more likely to be 

retrieved (contiguity). 
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Figure 2.1A1. Each row reports the result of one set of simulations with a specific 

value of 𝜇: in order, from top to bottom row: 𝜇 = 0;   𝜇 = 0.25;   𝜇 = 0.5;   𝜇 = 0.75;   𝜇 =

1. .Column A reports lag-CRP, column B shows probability of recall, column C 

represents probability of first recall, while column D shows the effect of semantic 

cosine distance between two words on the CRP. It is clear how the closer 𝜇 is to 0, 

the smaller the influence of the temporal context over recall, but the higher the effect 

of the semantic associations between words. When the value of 𝜇 progressively 

moves closer to 1, the model behaves more as temporal context driven.  

 

  

A                                                                            B                                                                      C                                                                                D                                                 
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Chapter 2 Appendix 2. A Bayesian account of Episodic 

memory and misremembering. 

 

Introduction 

 

This appendix concerns the computational anatomy of episodic memory. It 

introduces a neuronally plausible belief updating scheme — based on active 

inference — to reproduce a canonical false memory (DRM) paradigm in silico. 

Crucially, this model is based upon a first principles account of what it means 

to remember, and the requisite generative model of successive episodes. The 

ensuing model generates neuronal and behavioural responses, in the form of 

local field potentials, reaction times and choice behaviour. These synthetic 

responses can, in principle, be used to disambiguate distinct generative 

models or architectures that underwrite episodic (and false) memories. In this 

foundational chapter, we consider two mechanisms for episodic memory: first, 

an implicit mechanism that rests upon perceptual learning; where recently 

encountered stimuli are inferred with greater precision or confidence. Second, 

equipping the generative model with an explicit representation of time, to 

enable inferences about when a particular stimulus or episode was 

encountered. Both models reproduce the basic phenomenology of the false 

memory paradigm, with some subtle nuances in belief updating and 

accompanying neuronal (electrophysiological) correlates. 

Here, I consider episodic memory under the active inference framework — 

and describe a first attempt to address some key characteristics of declarative 

memory and pre-learned associations (semantic memory). This approach is 

both integrative and simplifying, in that it integrates elements of different 

models of episodic memory, such as models based upon attractor networks 

(Burgess et al. 2002), scene construction (Hassabis and Maguire, 2007, 

2009), and simulation theory (Zeidman et al. 2015). At the same time, it uses 

a simple generative model to account for core aspects of episodic memory. 



79 
 

These core aspects emerge when making sense of the world under certain 

kinds of generative models.  

We focus on a core aspect of episodic memory, namely, its sensitivity to 

context as revealed by the Deese-Roediger-McDermott (DRM) paradigm — a 

paradigm designed to reveal the effect of (semantic) context through a kind of 

false memory effect. Using the DRM paradigm, we tested two plausible 

generative models that entail memory. The former builds upon a typical 

(Markov decision processes) model used to illustrate active inference in 

working memory tasks (Parr & Friston, 2017) based upon the implicit learning 

of recent associations. The second model includes learning to encode 

temporality; i.e., the explicit order of events over time.  

Both models reformulate episodic memory as an inference process: the agent 

infers which past episode offers the best account for the current experience. 

Our work builds upon four stipulative aspects of declarative memory. First, the 

process of retrieval is a process of inference: the agent infers that the 

experience happened in the past. Second, episodes presuppose temporal 

(ordinal) organisation. Third, retrieval is necessary for declarative memory. 

Finally, remembering, as inference, is essentially a (re)constructive process. 

The reconstructive nature of memory means that the inference in the present 

not only depends on the immediate precedents, but also on a more remote 

past. This (semi-Markovian) aspect differentiates our work from most models 

based on the Markovian assumption. Under an active inference perspective, 

memory could be embedded solely by updating (Bayesian) beliefs about 

hidden states, or by learning the parameters of the mapping between states 

and observations. The key difference between the two is that the former 

represents the inference about states of the world, while the latter entails 

learning the parameters of the generative model along with inference about 

the states. Retrieving an episode under the latter necessitates both forms of 

belief updating (about the hidden states and model parameters) with an 

inferential component that rests on working memory. In neurobiological terms, 

to simulate episodic memory, the retrieval must therefore depend upon both 

perceptual inference and experience dependent plasticity. 
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In what follows, I first briefly summarise the core principles of active inference, 

focusing on the difference between inference and learning under this 

framework. We then describe two distinct generative models, emphasising 

their similarities and differences. Equipped with these generative models, the 

DRM task can then be reproduced in silico, by (i) specifying a particular 

generative model — in terms of how hidden states generate observable 

outcomes, and (ii) using standard marginal message passing schemes to 

simulate belief updating (and implicit decisions). Finally, we use the results of 

the simulations — based on implicit and explicit generative models — to 

illustrate the behavioural correlates of episodic retrieval. Using two generative 

models can be read as evaluating the face validity of two foundational 

hypotheses for the computational anatomy of episodic memory in the human 

brain; namely, with and without an explicit representation of time. 

 

Active Inference 

Active inference provides a unifying account of action, perception and 

learning, based on the notion that the brain performs approximate Bayesian 

inference under a generative model of the world, under which it tries to 

maximise model evidence (or minimise variational free energy, or surprise). 

The basic assumption is that any living organism maximises the evidence for 

its implicit model of the world or, equivalently, minimises variational free energy 

(Friston, FitzGerald, et al. 2017; Friston, Rosch, et al. 2017), building on the 

predictive brain hypothesis (Hinton, Dayan, Frey, Neal 1995; Rao and Ballard 

1999). In short, the goal of an active inference agent is to behave in a Bayes 

optimal fashion by selecting actions that minimise free energy over time, and 

implicitly garner evidence for its own existence. This is sometimes referred to 

as self-evidencing (Hohwy, 2016).  

Active inference reframes the problem of action and perception under the 

assumption that actions aim to minimise surprise. The agent is equipped with 

a generative model of observed outcomes that serves to assimilate available 

sensory evidence to form optimal predictions, via Bayesian belief updating. In 

other words, the agent is presented with sensory information (observations or 
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outcomes) and the generative model furnishes expectations — and ensuing 

predictions — about the unobserved causes (i.e., hidden states) of observed 

outcomes. This belief updating minimises variational free energy. These states 

generating outcomes are ‘hidden’ in that they are not observable and can only 

be inferred based on (usually limited and sparse) observations.  

Variational free energy represents an upper bound on the negative logarithm 

of Bayesian model evidence (a.k.a., self information or surprise), so that 

minimising free energy, maximises model evidence (a.k.a., marginal 

likelihood) and implicitly reduces surprise. Learning, planning, and perception 

all minimise free energy. This minimisation can be read as updating model 

parameters, beliefs about policies and beliefs about hidden states, 

respectively. This results in a progressive improvement in the ability to infer 

hidden states given sensory information (i.e., perception), and the selection of 

the optimal behaviour (i.e., action), to minimise predicted surprise (Kaplan et 

al., 2018; Botvinick et al., 2012; Attias et al., 2003). Operationally, this means 

that the agent evaluates different policies (i.e., sequences of actions) in terms 

of their expected free energy when planning forward, and the policy with the 

least expected free energy is selected.. In other words, much of our behaviour 

is driven to resolve uncertainty about hidden states – e.g., “what caused that?” 

– or model parameters – e.g., “what would happen if I did that?”. 

Variational free energy is a functional of a probabilistic generative model and 

approximate posterior distribution over the hidden causes (e.g., states, 

policies, parameters, etc.). Free energy can be derived from Jensen’s 

inequality (Parr and Friston, 2019), and expressed in different complementary 

ways (Friston et al., 2016):  

𝑄(𝑥) = arg𝑚𝑖𝑛𝑄(𝑥) 𝐹 

 ≈ 𝑃(𝑥|𝑜) 

𝐹 = 𝐸𝑄[𝑙𝑛𝑄(𝑥) − 𝑙𝑛𝑃(𝑥, 𝑜)] 

= 𝐸𝑄[𝑙𝑛𝑄(𝑥) − 𝑙𝑛𝑃(𝑥|𝑜) − 𝑙𝑛𝑃(𝑜)] 

= 𝐸𝑄[𝑙𝑛𝑄(𝑥) − 𝑙𝑛𝑃(𝑜|𝑥) − 𝑙𝑛𝑃(𝑥)] 

                                 = 𝐷[𝑄(𝑥)‖𝑃(𝑥|𝑜)] − 𝑙𝑛𝑃(𝑜)  (upper bound on neg. log evidence) 
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                                          = 𝐷[𝑄(𝑥)‖𝑃(𝑥)] − 𝐸𝑄[𝑙𝑛𝑃(𝑜|𝑥)] (complexity – accuracy) 

Where 𝑄(𝑥) is the approximate posterior over the hidden causes 𝑥 given 

observations o. Here, we have lumped together different sorts of hidden 

causes in 𝑥 = (𝑠, 𝜋, γ), where 𝑠, 𝜋 and 𝛾 correspond to states, policies and 

model parameters, respectively. 

Free energy is an upper bound on surprise or negative log evidence. This can 

be seen clearly in the penultimate equation above, where the free energy is 

expressed in terms of negative model evidence and a KL-divergence term 

(which cannot be less than zero). The KL divergence expresses the 

dissimilarity between the approximate and the true posterior distributions over 

the hidden causes. Free energy minimisation suppresses the divergence 

between the approximate and true posterior distributions, which is why the 

former becomes an approximation to the true posterior. Free energy can also 

be expressed in terms of complexity and accuracy (see the last equation 

above). This means that minimising free energy is also equivalent to 

minimising the complexity of an accurate explanation for observed data. Note 

that negative free energy in physics is exactly the same as the free energy 

used in machine learning, where it is known as evidence lower bound or ELBO 

(Winn et al., 2005.; MacKay et al., 1995; Hinton et al., 1993) 

Policies (trajectories of actions over time) are evaluated in terms of their 

expected free energies, where an action is sampled from the policy with the 

least expected free energy (Friston et al. 2016, Parr and Friston, 2018). The 

expected free energy can be decomposed into two main components, namely 

epistemic and extrinsic value. Epistemic value allows the agent to evaluate 

different policies in terms of how much information they can solicit from the 

world. This means that the agent will try to avoid the states that would produce 

uninformative or ambiguous outcomes (Schwartenbeck et al., 2013). Extrinsic 

value depends upon prior beliefs about future outcomes (i.e., prior 

preferences). These prior beliefs express how much one outcome is preferred 

relative to another, given the kind of agent in question. The more likely policies 

are those that generate preferred outcomes, such as positive primary 
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reinforcement. Expected free energy is derived from the variational free energy 

and can be expressed as follows (Mirza et al., 2018): 

𝐺(𝜋) =∑𝐺(𝜋, 𝜏)

𝜏

 

𝐺(𝜋, 𝜏) ≈ −𝔼𝑄[log𝑄(𝑠𝜏|𝑜𝜏 , 𝜋) − log𝑄(𝑠𝜏|𝜋)]⏟                      
𝐸𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐 𝑣𝑎𝑙𝑢𝑒

− 𝔼𝑄[log𝑃(𝑜𝜏)]⏟        
𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑣𝑎𝑙𝑢𝑒

 

 

Where 𝑄 = 𝑃(𝑜𝜏|𝑠𝜏)𝑄(𝑠𝜏|𝜋) and 𝑄(𝑜𝜏|𝑠𝜏 , 𝜋) = 𝑃(𝑜𝜏|𝑠𝜏). Note that expected 

free energy is effectively the variational free energy expected under the 

predicted outcomes given a policy. Because these outcomes have yet to be 

observed, they become random variables. This has the important — if curious 

— consequence that minimising expected free energy entails maximising the 

expected KL divergence. This expected KL divergence corresponds to the 

information gained or epistemic value, sometimes known as intrinsic value in 

robotics (Barto et al., 2013; Schmidhuber et al., 2010; Oudeyer et al., 2007). 

 

The Generative Model  

Generative models express how observed outcomes are generated. In Markov 

decision process models of discrete states, this involves specifying some 

probability distributions that express the dynamics of the hidden causes (e.g., 

hidden state transitions) and the mapping between the hidden states and 

outcomes. Given some observed outcomes, perception corresponds to the 

inversion of the generative model to infer the hidden states that generated the 

outcomes. Similarly, the optimisation of beliefs about policies (from which 

actions are sampled) rests upon Bayesian beliefs about hidden states. Active 

inference can thus be interpreted as generalisation of planning as inference 

(Kaplan et al., 2018; Botvinick et al., 2012; Attias et al., 2003; Mirza et al., 

2016). In summary, a generative model is a probabilistic description of how 

(unobservable) causes generate (observable) consequences, while model 

inversion recovers the causes from the consequences in a Bayes optimal 

fashion. 
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The generative model can be described in terms of the following factorisation: 

 

𝑃(õ, 𝑠̃, 𝜋, 𝛾 )  

=   𝑃(õ1|𝑠̃1, … , 𝑠̃𝑁)…𝑃(õ𝑀|𝑠̃1, … , 𝑠̃𝑁) 𝑃(𝑠̃1|𝜋)…𝑃(𝑠̃𝑁|𝜋)𝑃(𝜋|𝛾)𝑃(𝛾) 

where õ = (𝑜1, … , 𝑜𝑡)  and 𝑠̃ = (𝑠1, … , 𝑠𝑡)  are observations and hidden states 

over time. 

The generic structure of the ensuing generative model is based upon two main 

sets of matrices, which specify action-dependent transitions among hidden 

states and the mapping from hidden states to outcomes. In practice, the 

agent’s beliefs about the state of the world and policies (as trajectories of 

actions) are updated or optimised at each unit time as new outcomes are 

sampled.  

What follows is a brief explanation of the main components that specify the 

generative model. Am is the likelihood matrix for the m-th outcome modality. 

This matrix expresses a probabilistic mapping from hidden states to the 

outcomes of the m-th modality. Different outcome modalities correspond to 

different kinds of observations, for instance different perceptual senses. The 

second set of matrices Bn(π) expresses the transition probabilities among the 

hidden states of the n-th hidden state factor. Crucially, the agent has control 

over some of its states, and the transitions among those states depend upon 

the policy π (or action u = π(t)). Different kinds of hidden states represent 

different attributes of the world, which together generate the outcomes (for 

instance, what and where hidden states generate what would be observed 

when sampling a visual scene in which a particular object was in a particular 

location). Moreover, the model has prior beliefs over the initial state of the 

world Dn vector, and prior preferences over outcomes in the matrix Cm (Mirza 

et al., 2016). Dn encodes the prior beliefs about the initial states (n represents 

the dimension of the hidden states), while Cm represents the preferences over 

outcomes (m ∈ {1..number of outcome modalities}) . 

 

As noted above, an agent is equipped with prior beliefs that it will pursue 

policies that minimise expected free energy. This can be seen in the final 
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equation below, which expresses the prior beliefs over the policies as a 

SoftMax function of (negative) expected free energy.  

𝑃(𝑜𝜏|𝑠𝜏) = 𝐶𝑎𝑡(𝑨) 

𝑃(𝑠𝜏+1|𝑠𝜏 , 𝜋) = 𝐶𝑎𝑡 (𝑩(𝑢 = 𝜋(𝜏))) 

𝑃(𝑜𝜏) = 𝐶𝑎𝑡(𝑪𝜏) 

𝑃(𝑠1) = 𝐶𝑎𝑡(𝑫) 

𝑃(𝜋|𝛾) = 𝜎(−𝛾. 𝑮) 

In this formulation, Cat represents the categorical distribution, 𝛾 is the inverse 

temperature (precision of beliefs about policy) and G is the expected free 

energy for each policy and sigma is a softmax function.  

 

Learning 

Both inference and learning can be cast as belief updating (about hidden 

states and parameters, respectively). The distinction between inference and 

learning is of key importance for the purpose of this work. While inference is 

the optimisation of Bayesian beliefs about hidden states, policies and 

precision, learning is expressed by the optimisation of model parameters (see 

Friston et al. 2016 for a full discussion). The generative model contains prior 

beliefs about its parameters. These are usually parametrised in terms of 

Dirichlet parameters (FitzGerald et al., 2015), namely, parameters that 

represent the number of co-occurrences of hidden states and related 

outcomes in the past (Friston et al. 2016, Parr 2019). The model includes prior 

beliefs about likelihood (a) and transition concentration parameter matrices 

(b). In this work, learning applies to the Dirichlet parameters of the likelihood 

concentration matrix (a). This can be formalised as follows:  

(Prior beliefs) 

𝑃(𝑨|𝑎) = 𝐷𝑖𝑟(𝑎) = {

𝐸𝑃(𝑨|𝑎)[𝑨𝑖𝑗] =
𝑎𝑖𝑗

∑ 𝑎𝑘𝑗𝑘

𝐸𝑃(𝑨|𝑎)[𝑙𝑛𝑨𝑖𝑗] = 𝜓(𝑎𝑖𝑗) − 𝜓(∑ 𝑎𝑘𝑗)
𝑘
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(Learning) 

 

𝐚𝑚 = 𝑎𝑚 +∑ 𝑜𝑡
𝑚 𝑠𝜏

1 𝑠𝜏
2 …

𝜏
 

Where ψ is a digamma (logarithmic derivative of a gamma) function. Here, i 

and j indicate the mapping between hidden states and outcomes where each 

entry of a is normalised (see top equation). Here,  indicates the Kronecker 

tensor product. The Dirichlet parameters are accumulated over time to 

assimilate new observations (increasing the parameter relating a particular 

outcome to an inferred state). This increases the parameters that encode the 

mapping between states and the sampled outcome. Strengthening the 

mapping between two variables if they manifest at the same time relates to 

Hebbian plasticity (Hebb, 1949). In short, this kind of learning corresponds to 

experience-dependent — or associative — synaptic plasticity.  

 

 

Generative Model Specification 

In this work, I use two versions of a generative model, which simulate memory 

for lists of words. This approach offers a different interpretation of attractor and 

recurrent neural network models (Botvinick and Plaut, 2006; Huh and Todorov, 

2009; Maass et al., 2002; Martinet et al., 2011; Whittington et al., 2019): the 

attracting points represent the states that encode posterior beliefs about latent 

causes that minimise variational free energy (i.e., maximise marginal 

likelihood) (Friston, Lin et al., 2017a). The first version (implicit model one) 

performs the task using inference over hidden states in a working memory-like 

manner. The second version (explicit model two) includes learning via update 

of the Dirichlet parameters associated to the likelihood matrix A at the higher 

level of the model, to furnish an explicit encoding of stimuli in time. 

The generative models used in this work are both hierarchical. Hierarchical 

(i.e., deep) models allow for deep temporal structure, where different levels of 

the hierarchy model state transitions over different time scales (slower for the 

higher levels) (George et al., 2009; Friston et al., 2017b). The specification of 
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hierarchical models is generally in terms of the A, B, C and D matrices at each 

level, where higher level states provide a context for the transitions among 

lower level states. 

In our case, the connection between hierarchical levels means that the initial 

states at the lower level are caused by the hidden states of the level above. In 

other words, the priors over the initial hidden states 𝑃(𝑠1
𝑖) at lower level i is 

replaced by 𝑃(𝑠1
𝑖 |𝑠𝑖+1). The ascending messages from the lower level 

correspond to the posterior beliefs about the initial hidden states. These enter 

the higher level as evidence for the contextual hidden state at the level above. 

In other words, the states at the higher level contextualise the initial states of 

lower levels. This means that a context specifies the beginning of a trajectory 

of state transitions at the lower level, thereby enabling a separation of temporal 

scales.  

This also means that the agent has an explicit representation of the state of 

affairs at the beginning of a sequence of state transitions and at the end of that 

sequence (memory). Specifically, the setup of our models makes use of the 

hierarchical structure to reproduce the effect of learnt semantic associations 

between words on the DRM recognition memory task. As explained in the 

discussion, if we were not interested in the semantic effect (lure recognition), 

the same task could have been reproduced by using only one level of the 

models (in this case the higher level). Figure 2.1A2 shows the form of the 

hierarchical MDP used in this work. 
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Figure 2.1A2. Scheme of Hierarchical Markov decision process. A represents the 

likelihood matrix, B the transition matrix, D the prior believes over initial states, and C 

the preference over outcomes.  

 

The DRM paradigm involves two successive phases, namely encoding and 

retrieval. In the encoding phase, the agent is presented with a list of four 

words. In this phase, the agent can only wait and observe the words. In the 

retrieval phase, one word is presented, and the agent has to report whether 

she saw the word before or not (‘yes’ or ‘no’ choice). Crucially, I presented 

three lists, two of them contain semantically related words (cold-related words 

for the first list, and sleep-related words for the second); the third list contained 

words that do not have any semantic relationship. The agent is tested with 

three kinds of words: words that were presented before (old), words that were 

not presented before (new), and words that were not presented before but that 

belong to the same semantic group of words as in the list (‘lure’ words, to test 
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for false memory effect). The two models share the same structure of the lower 

level (level 1) but are structurally different at the higher level (level 2).  

The two levels are linked via the ‘word’ outcome modality at the second level 

and ‘word’ hidden state factor at the first level (see Figure 2.1A2). The word 

outcome on level 2 determines the initial word (hidden) state on level 1. The 

expectations about the outcomes (word) at the higher level is passed down to 

the lower level as empirical priors over the hidden state ‘word’. Posterior 

beliefs about the hidden state ‘word’ at the lower level are passed upwards to 

the higher level as evidence for the (semantic) context in play. 

 

Level 1 

The lower level of the model allows us to simulate the semantic effect 

responsible for the false memory effect, or intrusions. The lower level involves 

a single outcome modality and hidden state factor, namely word outcomes and 

hidden states. The word state factor has nineteen levels: null (for fixation 

cross), four words for each of the three list, two lure words (one for each 

semantically related list), four words not presented in any list, used in testing 

(see Figure 2.2A2 left panel). The likelihood matrix A maps the word states to 

the word outcomes. In the generative process, there is an identity mapping 

between word states and outcomes (see Figure 2.2A2 top right panel). In the 

generative model, the prior likelihood concentration parameters entail a form 

of semantic knowledge, i.e., pre-learnt associations between words (Figure 

2.2A2 bottom right panel).  

 

Semantic knowledge is implemented by assigning non-zero Dirichlet 

parameters to semantically related words and assigning relatively higher 

parameters to the diagonal entries.  This is conceptually equivalent to the 

semantic associations matrices in the Hopfield network (Chapter 2.2) and TCM 

models (Chapter 2.3). For instance, in the generative model, the most likely 

outcome under the state ‘rest’ is again the word ‘rest’, but the semantically 

related words ‘sleep’, ‘dream’, ‘nap’ and ‘bed’ also have non-zero 

concentration parameters. While the identity mapping applies to any word, 
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only the words in lists cold and sleep (i.e., lists containing semantically related 

words), including their respective lure words (false memory) had non-zero 

concentration parameters (see Figure 2.2A2 bottom right panel). The 

concentration parameters are converted to probabilities by normalising each 

column of the likelihood matrix. At this level, the same word is observed over 

successive time points (at most five) until a certain threshold is achieved in 

terms of confidence in inferences about the word states. The successive time 

points at the lower-level maps onto a single time step at the higher level. We 

will later use the number of time points — before reaching the confidence 

threshold at the lower level — as reaction time.  

 

 

Figure 2.2A2. Level 1 of Model 1 and Model 2. The panels on the right illustrate 

normalised likelihood Dirichlet parameters. Each column of the matrix sums up to 1. 

 

Level 2  

The higher level of the hierarchy is responsible for the heavy lifting of the 

implicit mnemonics. Here, we describe the higher level of model 1 (working 

memory-like model) and model 2 (with explicit encoding of temporal context) 

separately. The outcomes of the second level specify the initial states of the 

first level. In brief, the agent observes four words (encoding), is then presented 
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with a test word (probe) and asked whether she saw the word during the 

encoding or not (‘wait’, ‘yes’ or ‘no’). After the answer, the agent receives 

feedback. 

Implicit Model 1  

The second level contains four hidden state factors and two outcome 

modalities (see Figure 2.3A2). The task starts with a fixation cross, 

represented as a ‘null word’ in the model. The first hidden state factor ‘list’ 

represents the list presented at the encoding phase and it has three levels 

(i.e., three possible lists). The second hidden state ‘When’ represents time and 

it has eight levels, each corresponding to one time step in the task (null – word 

– word – word – word – null – probe word – null). The third hidden state ‘Testing 

Words’ indicates the word (probe) that is presented for testing after encoding 

(eighteen levels, namely all the words but the null word). The fourth hidden 

state ‘Decision’ maps the choice of the agent. This has three levels, ‘wait’, 

‘yes’, ‘no’, where the agent is encouraged to wait during encoding but can 

make a choice — either yes (i.e. ’the word was in the list’) or no (i.e. ‘the word 

was not in the list’) — after being presented with the probe word (time step 

seven). 
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Figure 2.3A2. Level 2 of model 1. 

 

There were two outcome modalities: word (𝑜1) and feedback (𝑜2). The first 

outcome modality (word) has nineteen levels (4 words for each of the three 

lists + 2 lure words + 4 new unrelated words + null word), while the second 

outcome modality has three levels (‘undecided’, ‘correct’, ‘incorrect’). The 

generative model likelihood matrix for the word modality was such that the 

words associated with each list state (e.g., snow, ice, chilly, frost, cold for the 

first list) and the new unrelated words were assigned equal probabilities while 

the other words had a probability of zero for the time points associated with 

the encoding phase (except the first time point). This allowed the model to infer 

the list state upon observing a word in the encoding phase. There was an 

identity mapping from the testing word states to the probe words at the seventh 

time point in the retrieval phase. Finally, there was a precise mapping to the 

null words when a ‘null’ word was presented. 

We assigned positive and negative log probabilities for the correct and 

incorrect outcomes under the feedback modality to define the model’s prior 

preferences over the outcomes. The agent received ‘correct’ feedback if it 

answered ‘yes’ when presented with a previously seen (i.e., from the encoding 
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phase) probe word, ‘no’ for words that were not previously seen. The feedback 

was ‘incorrect’ if the agent answered ‘no’ when tested with a previously seen 

probe word, ‘yes’ when presented with new words (including lure words). If the 

agent chose to ‘wait’ after seeing the probe, it received ‘undecided’ feedback. 

We also encouraged the agent to choose ‘wait’ in the encoding phase by giving 

‘incorrect’ feedback to any action but ‘wait’ in the first five time points. 

The only factor under active control is the fourth factor (‘Decision’). There are 

three policies over the progression of the task: ‘wait’ at the first six-time steps 

(encoding), followed by either the answer ‘yes’ or ‘no’. The transitions among 

the list and testing word states are precluded (i.e. identity matrices), and the 

progression of time steps is pre-determined — from one time step to the next. 

The word outcomes are generated in the following way: the list states 

generated the words in the first five time points (i.e., encoding phase). With 

reference to the onset of the retrieval phase, the list states can only generate 

the previously seen words (e.g., snow, chilly, etc.). On the sixth time point, a 

new fixation cross (i.e., null word) is presented to cue the onset of the retrieval 

phase. At the seventh time point the testing word states determined the probe 

word. This meant that any word from any list can be tested (except the null 

word, i.e. fixation cross) and the choice of action depends upon the 

combination of list (which defines the previously seen words) and testing word 

(probe) states. If the agent believed that the probe word was part of the list, it 

would choose ‘yes’, to realise its preferred outcomes, otherwise it would 

choose ‘no’. Note that the hidden states at the higher level (i.e., list, and testing 

words) determined the word states at the lower level. The implicit separation 

of temporal scales means that evidence for states of a contextual sort at the 

second level can be accumulated over time, given the evidence from the lower 

level. 

The behaviour under this generative model can be summarised as follows: in 

the encoding phase, the agent accumulates evidence for words drawn from a 

given list at the lower level of the hierarchy and infers the list state at the higher 

level. At the lower level, the concentration parameters associated with the 

observed words (diagonal entries) increase to a larger extent compared to the 
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semantically related words as each word is correctly inferred. When tested 

with the probe word in the retrieval phase, the agent infers whether the word 

was part of the list presented at the encoding or not. If she infers that the probe 

was part of the same list she saw during the encoding, she will answer ‘yes’, 

otherwise she would answer ‘no’. In other words, this memory retrieval is 

simply an action that reports the inference that her experiences are consistent 

with her memory of the recent episode (list).  

In short, this account of episodic memory rests upon short term plasticity 

modelled in terms of accumulating Dirichlet parameters during recent 

perceptual processing. The implicit increase in the precision or confidence — 

when inferring the cause of a subsequently presented word — enables the 

agent to infer she has seen that word recently. 

When presented with a probe word, the inference over the previously seen 

words is more precise than the lure words. This is because the concentration 

parameters associated with the previously seen words are updated in the 

encoding phase at the lower level of the model, leading to greater confidence 

in the inferred word. In contrast, the inference over the lure word is less precise 

because the evidence for the word states is distributed among the semantically 

related words to a larger extent. The model makes precise inferences over the 

new unrelated words as they are not semantically related to any other words. 

We therefore expected the model to be least confident about its responses, in 

terms of inferred policies, when a lure word was presented. 

 

Explicit Model 2  

This version of the model equips the agent with working memory by learning 

at both levels. Here, the representation of the past plays a different role from 

the first model. The ‘when’ hidden state can be thought of as generating 

outcomes in some mnemonic space — in the same way in which 

representations of spatial location underwrite scene construction. In other 

words, we model episodic memory as a form of scene construction over time, 

to generate outcomes from latent (i.e., hidden) what and when causes (Friston 
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et al., 2016). 

We imagine that a short temporal scene (narrative or episode) can be 

constructed by associating unique content with a specific point in time. If the 

association of ‘what’ and ‘when’ is unique, we can infer when something 

occurred just by knowing what occurred. This simple observation is the basis 

of episodic memory in this explicit model. Focusing only on the recent past, 

we can encode all the combinations of ‘what’ and ‘when’ presented during the 

encoding phase. The co-occurrences of what happened when can be 

‘remembered’ by accumulating co-occurrences. Computationally, this 

corresponds to the accumulation of Dirichlet parameters in the model, which 

models experience-dependent learning or associative plasticity. This means 

that the model includes an explicit representation of where in time an event 

occurred. 

We initialised the likelihood concentration matrices with uniform and small 

concentration parameters (except for when a null word is presented). This 

means the agent expected any word at any time point. In this setup, the first 

eight time points generated the words presented in the encoding phase, 

whereas the last three time points generated the words presented in the 

retrieval trials, which could be old, new or lure words. 

The problem of deciding whether something has been seen in the past can be 

reframed as inferring when something was observed. In this setting, the agent 

is presented with a sequence of stimuli. In the encoding phase, the learning 

happens via the accumulation of Dirichlet parameters over the likelihood 

mapping, based on the posterior beliefs about the ‘time’ states and the 

observed word outcome. For example, if the word ‘chill’ was presented at the 

second time point, the concentration parameters associated with the second 

level of the time factor and the word ‘chill’ in the first modality would increase 

in the likelihood mapping. In the retrieval phase, the role of the time factor 

changes such that the agent infers when a word was presented to discern 

whether it saw the word before, based on the learned likelihood mapping in 

the encoding phase. In other words, in the encoding phase, the agent infers 

the time and learns when a word was presented whereas in the retrieval 
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phase, the agent only infers when a word was presented. The agent will refuse 

the probe word if the inferred time is not associated with any of the precedent 

time steps. See Figure 2.4A2 for the structure of this MDP model. 

 

 

Figure 2.4A2. Level 2 of model 2. Although the choice of hidden factors at the higher 

level of this model might seem equivalent to the previous version, the mechanics of 

the task differs in the role of the second hidden state through the update of the model’s 

Dirichlet’s parameters. The higher level of this model has the same two outcome 

modalities (‘word’ and ‘feedback’), and four hidden states as the first model. The first, 

third and the fourth hidden state factors, ‘list’, ‘testing words’ (probes) and ‘choice’ 

respectively, play the same role as in model 1. However, this model learns when a 

word was presented by updating its Dirichlet parameters in the likelihood mapping 

from the time or temporal encoding factor to the word outcomes. In this model, the 

task was split into encoding and retrieval trials. The encoding trial comprised eight 

time steps (null –word – null – word – null – word – null – word). After the encoding 

trial, the agent is presented with a retrieval trial (null – word – null). Each retrieval trial 

is made of three time steps (null-testing word - null). Crucially, in this model the agent 

was allowed to update its likelihood (over A matrix) concentration parameters at the 

end of the encoding phase; however, these updates were precluded at the end of the 

retrieval trials. 
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There is a key difference between this model and the previous model. In the 

explicit model 2, accumulation of Dirichlet parameters was allowed at the end 

of the encoding trial at the higher level of the model. This changes the way the 

‘time’ hidden states are interpreted, such that model 2 allows (simulated) 

experience-dependent synaptic plasticity in the form of parameter updates. 

This means that the Dirichlet parameters — mapping from ‘time’ states to 

‘word’ outcome — are updated, and the model learns the temporal order of the 

presented words. The agent starts the retrieval trials with the likelihood 

concentration parameters that are updated at the end of the encoding trial, but 

not after each retrieval trial. Therefore, the order of the retrieval trials does not 

affect the answer of the agent. 

In summary, this simple generative model simulates retrieval in a recognition 

memory task via accumulation of Dirichlet parameters in the likelihood 

mapping (i.e., experience-dependent learning). For every combination of 

hidden states and outcome, a Dirichlet count is added to the appropriate entry 

in the likelihood mapping. By starting each trial with a small number of (a priori) 

Dirichlet parameters, any conjunction of outcomes and combinations of hidden 

states are accumulated, leading to a form of declarative memory (Parr et al., 

2020)  

An interesting question now arises: namely, what would happen if we 

presented a lure from the same category as the recent episode, which was not 

a previously encountered exemplar? (i.e., the word ‘cold’ for list cold and the 

word ‘sleep’ for list sleep). Having specified the generative models, we are now 

able to use standard message passing schemes to simulate perceptual 

inference, learning and choice behaviour to dissect the computational 

anatomy of the DRM paradigm and answer this question, with and without an 

explicit encoding of time.  
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Results 

We first tested whether both models could successfully complete the 

recognition task, i.e. if they were both able to recognise the previously seen 

words in the retrieval phase and reject new words. We then tested for an effect 

of false memory (induced by the DRM task). Note that misremembering — 

although not correct in terms of behavioural performance — is still Bayes 

optimal: the use of pre-learned associations (i.e., semantic memory) might 

simplify the brain’s model of the world (i.e., maximise model evidence by 

minimising the complexity in the above equations). In this sense, learning 

patterns of stimuli can result in a coarse-grained explanation for stimuli, so that 

the number of hidden states required by the system for successful encoding 

might be smaller than the number of observable outcomes. This means that 

more than one observation could be sufficiently explained by the same cause. 

If a stimulus is similar enough (in this case, semantically related) to the stimuli 

presented in the list at the encoding, the agent would then recognise the 

stimulus as already seen.  

 

The false memory effect associated with the lure rests upon prior beliefs about 

the way words are generated (in relation to other words). As such, a parallel 

can be drawn between false memories and illusions: both are the most 

plausible a posteriori inferences based on prior beliefs, although not veridical 

causal explanations for observations. This leads to the interesting notion that 

a false memory is a mnemonic illusion, and, in principle, all our memories are 

illusory to a greater or lesser extent. In other words, using this kind of 

generative model means that retrieval corresponds to selecting an episode 

that has the greatest posterior probability of accounting for current experience. 

This places both prior beliefs of a semantic nature and time sensitive (episodic) 

priors at the heart of retrieval. In what follows, we review the results of 

numerical simulations to verify these hypotheses and illustrate the different 

behaviours that unfold under different prior beliefs. 

 

When comparing the synthetic electrophysiological and psychophysical 

responses for the two models, some subtle differences were apparent. 
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Although both formulations were able to reproduce the basic phenomenology 

of the DRM paradigm, the explicit model was able to reproduce empirical 

reaction time results more faithfully, with some clear, disambiguating, 

electrophysiological correlates. In more detail, while the implicit model bases 

its electrophysiological activity on coded list recognition, the explicit model’s 

electrophysiological responses mirror biologically plausible time-to-item learnt 

associations. In other words, the explicit model synthetic electrophysiological 

activity reflects lower confidence on the episodic embedding of the lure word 

at the time when the learnt list was presented.  

 

Implicit Model 1 

The first model simulates the DRM task using a working memory-like process, 

which does not entail learning about timing at the higher level. The model 

recognises whether a word was presented in the list at the encoding trial, or 

not, based on inference about the list at the higher level and learning of the 

presented words at the lower level. We also tested for an effect of lure words. 

The recognition of lure words ‘cold’ and ‘sleep’ recapitulates a false memory 

effect with a mean recognition rate of about 60% (Figure 2.5A2).  

In our simulations, misremembering (false memory effect) is expressed by the 

model answering ‘yes’ to words that were not presented at encoding but were 

semantically related to the words in the list (lure word). Correct recognition 

indicates that the agent answered ‘yes’ to probe words that were part of the 

list, while correct rejection indicates answer ‘no’ to new words, not present in 

the list at encoding. Misremembering is licensed by the growing expectation 

that the semantically related words in the same list cause the lure word. The 

list with semantically unrelated words’ did not elicit any false memory effect, 

as expected.  We ran 32 trials at recognition for each list and type of probe 

word (i.e., old, new and lure). We ran the same simulation and tested for false 

memory at retrieval.  

We also tested whether our model could reproduce the longer reaction times 

for false memory, found in experimental work (Figure 2.5A2 C). Model 1 was 
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not able to reproduce the longer reaction time for false memory, showing 

equivalent reaction times for all three types of recognition trials. 

 

 

 

Figure 2.5A2.  Simulated behavioural responses for implicit Model 1. A) Average 

behavioural responses (i.e., whether the agent answers ‘yes’, recognising the word 

as seen before, ‘no’ for never seen before words, or undecided) for probes ‘New 

word’, ‘Old  word’ (i.e. words presented in the list at encoding) and ‘Lure word (i.e.  

false memory) in list 1 (cold-related). The average is calculated over 32 trials. In these 

simulations, the value of the context-related prior was set to 1, while the Dirichlet 

parameters for the identity mapping was set to 2 in the lower level likelihood matrix. 

The new word and old context words are reported as never seen and seen 100% of 

the trials, respectively. The lure (new context) word is reported as seen before on 63% 

of the trials. B) Average behavioural responses for list 3 (mixed word list). In this case, 

the New context word is not semantically related to the words in the list, and the 

performance is indeed consistent with the one seen for new words. C) This panel 

shows the reaction times for the three probe words are the same. The reaction time 

was calculated as the number of time points required at the lower level of the model 

to minimise uncertainty over states (please see software note). The simulations at the 

lower level were terminated once the uncertainty about the word states was 
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minimised. This was implemented by computing the entropy of the posterior 

distribution over the word states at each unit time and terminating the simulations 

once the entropy is smaller than a pre-determined confidence threshold (chi 

parameter set to 1.5). D) These panels show the posterior probability of the policy 

‘Yes’ (i.e., ‘Seen’) when three kinds of probe words are presented for each list. The 

posterior probability of the policy ‘Yes’ is 1 for old words and 0 for new words in all 

lists. The posterior probability of the policy ‘Yes’ is non-zero only when a new word is 

semantically related to the lists (i.e., list 1 and 2, where the false memory effect is 

reproduced).  

The rate of false memory can be modulated by changing the value of the 

context-related Dirichlet parameters relative to the strength of the diagonal 

(identity) concentration parameter in the likelihood mapping: the stronger the 

association between semantically related words (context-related prior), the 

higher the rate of false memory (Figure 2.6A2). In this case, inference entails 

recognising the specific list presented during encoding, and on the identity of 

the word tested as the probe, which could be part, or not, of the presented list. 

The relative strength of the word identity (diagonal) vs associated words 

(context-related) Dirichlet parameters over the likelihood matrix modulates 

how shallow the attractor states afforded by the likelihood matrix are, i.e., the 

higher the context-related parameters, the easier it is for the model to 

mistakenly fall into an associated word state and recognise (infer) the lure 

word as part of the presented list. 
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Figure 2.6A2.  (A) Visual representation of the parameters’ change in the simulation 

for list ‘cold’. The ‘identity’ parameter modulates the strength of the diagonal in the 

generative model, while the ‘Semantic association’ parameter modulates the Dirichlet 

parameter strength for semantically associated words. Rate of recognition (‘Yes’ 

answer) for new words (B), old words (C) and lure word (false memory) (D) for list 1 

(cold-related).  The recognition rate is shown as functions of the context-related prior 

(off diagonal non-zero entries) and of the identity prior (diagonal entries) of the 

likelihood matrix at lower level. The identity prior is changed proportionally to the 

context-related prior: context-related prior ×1 (S*1), ×1.5 (S*1.5), ×2 (S*2), ×2.5 

(S*2.5) and ×3 (S*3). The context-related prior took values: [0.5 1 1.5 2]. Rates of 

recognition for old and new words (B and C) was not affected by the change of priors. 

However, the rate of recognition for lure word (false memory) indeed showed a 

dramatic change (D). In particular, the relative strength of word identity prior vs 

(semantic) context-related prior modulates the rate of false recognition: the bigger the 

ratio between identity prior and context prior, the lower the rate of false memory. 

Finally, we simulated electrophysiological responses (LFPs). The basic 

assumption is that depolarisation of distinct neuronal populations reflects 

belief updating about hidden states when new evidence (i.e., a stimulus) is 

presented. These simulated neuronal activities are used to produce simulated 
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LFPs (Friston, FitzGerald et al., 2017). Technically, these synthetic neuronal 

responses correspond to a gradient flow on variational free energy, which 

underscores the neuronal plausibility of the belief updating scheme used to 

simulate active inference. Each trial comprises eight epochs (5 for encoding 

and 3 for testing). The amplitude of the simulated LFPs is associated with the 

extent of belief updates, c.f., prediction errors over hidden states, where 

technically, free energy gradients correspond to prediction errors.  

Convergence time reflects the time needed for new posterior beliefs to be 

formed, when the LFPs settle to zero: i.e., free energy is minimised such that 

free energy gradients are zero at the minima of free energy attractors. Higher 

peaks and faster convergence times result from more precise beliefs. In Figure 

2.7A2, we report exemplar simulated LFPs for the three different kinds of 

probes (new words, old words and lure word). These simulations are run for 

‘cold’-related list, with identity parameter set to 2 and semantic association 

parameter set to 1, as in Figure 2.5A2.  

Interestingly, the LFPs for new words yield higher peaks, reflecting greater 

confidence. Old word and false memory have similar amplitude peaks. 

However, the false memory probe shows multiple word-associated responses 

with relatively higher peaks. The word-related curves converge slower for the 

lure word compared to the old words, with peaks at later time points for the 

lure word. The slower convergence for the lure words compared to the old 

context word might be due to the increased Dirichlet parameters (i.e., increase 

in synaptic efficacy) — at the lower level of the model — at the end of the 

encoding phase for old words compared to lure word at the time point when 

the probe is presented. For semantically related words — presented at 

encoding (not for the lure word) — the model has a more precise mapping 

compared to the lure word at the lower level.  

This reflects an inherently different kind of simulated neuronal behaviour that 

distinguishes between correct responses for old words and false memory 

(incorrect recognition for lure word). Namely, the model infers that the lure 

word was indeed part of the presented list, but this is driven via accumulated 

evidence for semantically associated words (i.e. the context-associated priors 
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affect the hidden state mapping so that an outcome can be explained — 

although less strongly — by multiple hidden states representing associated 

words). During encoding, the Dirichlet parameters associated with the 

presented words (old words) increase in the lower level of the model, leading 

to a more precise mapping from word states to outcomes. This is not the case 

with the lure word. 

 

 

Figure 2.7A2.  Simulated electrophysiological responses Model 1, for new word 

probes (A), old word probes (B) and false memory probe (C). In particular, the relevant 

hidden state responsible for the model’s answer is the recognition of the probe word, 

as part of the presented list, or not. Column 1 (left) shows the expectation about 

hidden states at each unit time and epoch. An epoch represents a time that could be 

in the past, present or the future and these are shown on the y-axis. The above 
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diagonal entries represent the beliefs about the states in the past epochs, while the 

below diagonal entries represent the beliefs in the future epochs compared to the 

diagonal entries which represent the beliefs at the present. In this panel, each cell 

shows the way the posterior beliefs about a set of 18 words change during gradient 

descent for a given epoch and time point. The x-axis shows the progression of time 

as the agent makes new observations. The central column represents the firing rates 

associated with each possible hidden state (word) entry, i.e., each word from each 

epoch is assigned a different colour and line. Finally, the right column LFP is simulated 

as the rate of change in beliefs on hidden states; in other words, as the gradient of 

the firing rate curves (central column). The rate of belief update for new word (A) 

shows higher peaks compared to both old words (B) and false memory (C). This 

reflect higher precision in expectation when the word presented as probe was not part 

of the list at encoding. Interestingly, false memory (C) has higher firing rate (central 

column) than old word probes (B). However, in case of false memory, the local field 

potentials (right column) appear to have a slower convergence implying, possibly, a 

lower level of confidence in beliefs. 

  

Explicit Model 2 

As with the first model, the second series of simulations reproduces the 

behavioural findings from the DRM task. This model’s responses depend on 

its beliefs about the mapping from the temporal point (i.e., time) states to word 

outcomes. The presented words during the encoding (old words) are strongly 

associated with an earlier moment in time, compared to the word presented at 

retrieval only (new words). The presence of a hidden state — that reflects a 

form of biologically plausible temporal context (Umbach et al., 2020) — is the 

key element that allows the model to perform the recognition task, depending 

on whether the probe word is most likely to be associated with one of the first 

eight time steps which encodes the previously seen words or the last three 

(only seen at retrieval, as new word). 

This model updates the Dirichlet parameters of the likelihood mapping from 

time states to word outcomes at the end of the encoding phase. As visualised 

in Figure 2.8A2, the model learns the time points when the words from the list 

‘cold’ are presented. The model starts the testing phase with updated 
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concentration parameters. The presence of a delay period after encoding (null 

word at 𝑡 = 6) shows that the agent can retain information about the first part 

of the task that underwrites her answer to the probe word. 

 

 

Figure 2.8A2.  Dirichlet parameters associated with the likelihood mapping from time 

states to word outcomes at the higher level. A) This matrix represents the Dirichlet 

parameters of the likelihood mapping before the trial starts. The mapping from time 

states to word outcomes are initialised with small but uniform concentration 

parameters except for the time points when the null words are presented. The model 

was equipped with precise beliefs that there would be null words (fixation cross) 

between words (i.e., high concentration parameters). This was introduced only to 

resemble the typical structure of the DRM paradigm and to test whether the model 

could reproduce the behavioural responses even with the presence of time delays 

between learnt stimuli. B) An example of a learned likelihood mapping at the end of 

the encoding phase for weak semantic association parameter (0.5). In this case, the 

temporal order of the presented words is clearly encoded. C) Another example of the 

learned likelihood mapping at the end of the encoding phase, with a stronger semantic 

association parameter (2). The model has stronger expectations that the four words 

presented in the list and the lure word (i.e., cold) were indeed associated with the 

encoding time points of the trial. After learning, the model starts the testing phase with 

the updated Dirichlet parameters (B and C) to discern whether a word was seen 

before or not.  

We ran simulations of 32 trials for each kind of tested probe for each of the 3 

lists. Examples of the behavioural responses are summarised in Figure 2.9A2. 
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Figure 2.9A2.  Simulated behavioural responses for Model 1. A) Average behavioural 

responses for probes ‘New word’, ‘Old context word’ (i.e. words presented in the list 

at encoding) and ‘New context word’ (i.e. lure word, or false memory) in list 1 (cold-

related). The average is calculated over 32 trials. In these simulations, the value of 

the context-related prior was set to 2, while the identity prior was set to 2.5. The model 

has a 100% accuracy for new words, 85% accuracy for old words, while it recognised 

the lure word as seen before in 65% of trials. B) Average behavioural responses for 

list 3 (mixed word list). In this case, the New context word is not semantically related 

to the words in the list, and the performance is consistent with the new words. C) 

Reaction times for the lure words were longer than the old context words, which were 

longer than the new words for list 1 and 2 (cold- and sleep-related), while they were 

the same for all probe words in list 3. D) This panel shows the posterior probability of 

the policy ‘Seen’ (i.e. ‘Yes’) for three kinds of probes for list 1 (cold-related), list 2 

(sleep-related) and list 3 (mix list). The posterior probability of the policy ‘Seen’ was  

0.9 for the old words in semantically coherent lists, and 1 for old words in the mixed 

list, while it was 0 for the new words in all lists. The posterior probability of ‘Seen’ was 

about 0.65 when presented with the lure words from lists 1 and 2 (i.e., lists with 

semantically related words) and 0 for list 3 (semantically unrelated words).  

To simulate how both learning rate and relative strengths of the identity and 

context-related prior Dirichlet parameters affect the simulated responses of the 

model (Figure 2.10A2), we set the context-related prior to values [0.5 1 1.5 2], and 
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modulate the identity prior proportionally to the context-related prior: context-related 

prior ×1 (S*1), ×1.5 (S*1.5), ×2(S*2), ×2.5 (S*2.5) and ×3 (S*3), as per model 1.  

 

 

 

Figure 2.10A2.  Rate of recognition (‘Yes’ answer) for new words (A), old words (B) 

and lure words (false memory, C) for list 1 (cold-related).  The recognition rate is 

shown as a function of the context-related prior (off diagonal non-zero entries) and of 

the identity prior (diagonal entries) of the likelihood matrix at the lower level. The 

identity prior is changed proportionally to the context-related prior: context-related 

prior x1 (S*1), ×1.5 (S*1.5), ×2 (S*2), ×2.5 (S*2.5) and ×3 (S*3). The context-related 

prior Dirichlet parameter (semantic association) took values of [0.5 1 1.5 2]. Rates of 

recognition for old words (A) did not change as a function of the priors. However, the 

rate of recognition for the old and lure words changed (B and C), depending on both 

parameters described above. A weaker difference between identity prior and 

semantic associations with other words (see S*1) reduced and increased the rate of 

recognition for old words (B) and lure words (C), respectively.  

Finally, we simulated electrophysiological responses (Figure 2.11A2). The 

agent has precise beliefs that the new word was presented in the testing phase 

(top left panel). The agent believes that the old word was presented both in 

the encoding and testing phases, but the combined probability associated with 

the encoding phase outweighs the testing phase (middle left panel). In the 

case of the lure word, there is a considerable probability mass associated with 

the time points when a semantically relevant word was presented in the 

encoding phase, and a substantial probability mass at the time point when the 

lure word was presented in the testing phase (bottom left panel).  

Focusing on the encoding phase, the model specifically believes that the old 

word was presented at the fourth time point. In contrast, there are roughly 

equal probabilities assigned to the time points when semantically relevant 
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words were presented when testing with the lure word. This shows that the 

model recollects the episode when the old word was presented but there is no 

unique episode with which the model can associate the lure word. The firing 

rates for the new word (A) shows higher peaks between 0.5 − 1 (𝑠) compared 

to both old words (B) and false memory (C), expressing higher confidence 

about when the word was presented (compare centre panels).  Future studies 

employing brain imaging techniques could potentially test the validity of the 

simulated responses and the subtle differences between probe words as 

shown here. 

 

 

Figure 2.11A2. Simulated electrophysiological responses of the second model are 

illustrated during the testing phase (i.e., the last three time points) for the new word 

(A), old word (B) and false memory (C). The agent observes the probe word at the 

second time point (on the x-axis), reports if the word was seen before and gets 
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feedback at the third time point. The panels on the left show the expectations about 

the when hidden states. The panels at the centre represent the firing rates associated 

with the when states where each state and epoch is shown with a different colour and 

line. Finally, the right column shows simulated LFPs in terms of the rate of change in 

beliefs on hidden states; in other words, as the gradient of the firing rate curves 

(central column). The highlighted areas in the left plots show the model’s beliefs about 

when the probe word was presented, where the red and yellow shades correspond 

to the time points in the encoding and testing phases, respectively. 

 

Discussion  

In this work, we reproduced the phenomenology elicited by the DRM task for 

semantics-induced false memory. These models are minimal models of 

recognition memory (the first or implicit model) and episodic memory (the 

second or explicit model), with only one episode per trial. Both are set up to 

accommodate further hierarchical extensions, to accommodate more 

expressive models of memory recollection and consolidation.  

In these hierarchical models, the first level is used to account for the 

semantics-induced misremembering. Future work on episodic memory per se 

could build upon the structure of the second level; for example, extending the 

number of episodes. One can also imagine a further hierarchical extension 

where a third level of the hierarchy provides empirical priors over temporal 

states of the lower levels. In this way, the high-level states may become an 

explicit representation of multiple episodes (using a similar hidden state to the 

‘temporal points’ states in the explicit model), which index a particular 

succession of states that are unique to the episode in question at the lower 

level.  

In this kind of generative model, high-level states provide an index for a 

particular episode. Technically, episodes become latent states upon which 

state transitions at a lower level are conditioned. One can see how episodes 

of episodes can be constructed to any hierarchical depth. The special aspect 

of this deep model — for episodic memories — is that they contextualise 

learning. In other words, given a particular episode, the state transitions (i.e., 
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succession of states) — and likelihood mappings to the lower-level or 

outcomes — are uniquely encoded for the episode in question. In exactly the 

same way that outcomes are ‘remembered’ in the first nine time steps of the 

second model, higher levels can ‘remember’ sequences of episodes via a 

temporal encoding by superordinate hidden states. Furthermore, if we enable 

learning of the probability transitions, the ordinal or sequential unfolding of 

episodes can be remembered.  

In the first (implicit) model, the likelihood matrices had no explicit encoding of 

temporal mapping related to a ‘time’ hidden state in the second (explicit) 

model. In the implicit model, we considered a simplistic narrative model such 

that observing a single word (e.g., snow) was enough for the model to infer the 

list state in the encoding phase. Because the list factor encodes which words 

were presented in the encoding phase, the model could report the other words 

from the list (e.g., ice, chilly, frost), as seen before, even if it has not seen them 

before. A more complex version of this model could account for which words 

were presented, from a given list, by adding a further hidden state factor at the 

higher level and providing feedback accordingly. This additional hidden state 

factor would have as many levels as the combination of words in the list, so 

that the model can infer the seen words (for example, this additional hidden 

state would have factors ‘snow null null null’, ‘snow ice null null’, ‘snow ice 

chilly null’, ‘snow ice chilly frost’ for the list of cold-related words). 

In the second model, the explicit representation of the mapping between the 

moment in time and word (‘when’ and ‘what’) reproduces a similar sort of 

mapping to the one proposed by the temporal context model, associated with 

the medial temporal lobe (Hasselmo et al., 2005). Interestingly, the structure 

of the likelihood matrix of level one can be interpreted as a simplified version 

of the auto-associative network in area CA3 of the hippocampus. Our 

preliminary behavioural results from human participants, suggest evidence for 

its contribution in item-to-item associations in semantic spaces. 

The above formulation foregrounds a challenging issue: namely, if every new 

episode is represented as a unique episode, then we would need a large 

number of hidden states to encode every episode encountered. This suggests 
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that episodes are amalgamated or consolidated, if sufficiently similar, such that 

there is a finite repertoire of episodes available for encoding the current 

experience. This further suggests that it will become impossible to 

disambiguate similar episodes in the past, if they have become consolidated 

under the same superordinate hidden (episodic) state.  

Technically, the issue of when to induce a completely new state — as opposed 

to reusing a previously indexed episode — is closely related to structure 

learning, of the sort addressed by nonparametric Bayes (Goldwater, 2006; 

Salakhutdinov et al., 2013; Gershman et al., 2017; Tervo et al., 2016). Indeed, 

the consolidation referred to above is an emergent property of active inference 

at the level of Bayesian model selection. This has been illustrated previously 

in the context of abstract rule learning using Bayesian model reduction 

(Friston, Lin et al., 2017). In brief, the marginal likelihood of observations can 

be increased by removing redundant parameters, which looks as if certain 

representations are merged or consolidated, to provide a simpler model of the 

sensorium. This reading of structure learning or Bayesian model reduction 

offers a simple account for consolidation: it is simply the optimisation of model 

evidence (a.k.a., marginal likelihood) through the minimisation of complexity 

inherent in the removal of redundant model parameters. This underwrites the 

ability of any generative model to generalise to new sensory data — at the 

price of providing an accurate account of previously observed data. In the 

present setting, this means that there is an inevitable forgetting of episodic 

memories that is entirely Bayes optimal, in accord with Occam's principle — 

and entailed by the minimisation of variational free energy. 

Future steps related to this work could focus on model fitting to human 

behavioural data and deep hierarchical models of multiple episodes (as noted 

above), where different levels in the hierarchical structure can account for a 

range of time scales and temporal encoding. In other words, we can adjust the 

parameters and priors of the generative model until the likelihood of empirical 

choices is maximised. This enables one to computationally phenotype any 

given subject in terms of their prior beliefs (Schwartenbeck et al., 2016, Parr 

et al., 2018). Future developments of this work will entail constructing a deep 
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hierarchical model for retrieval of multiple episodes. A hierarchical extension 

of these models could emulate the encoding and indexing of multiple episodes, 

their reduction to simpler narratives over time (Bayes model reduction) and 

how experiences that happened before and after the episodes can affect the 

way in which we reconstruct them.  

 

Software Note  

 

The (MATLAB) routines used in the numerical experiments reported above can 

be downloaded as part of the open (academic) SPM software from: SPM · 

GitHub. These are generic routines that simulate belief updating and the 

accompanying neuronal responses using standard (variational) schemes: in 

this instance, the variational message passing implemented in 

spm_MDP_VB_X.m. The only thing that the user has to supply is a generative 

model specified in terms of the A, B, C ,and D matrices described in the main 

text. MATLAB routines specifying these models are available on request from 

the corresponding author. 
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Chapter 3. Reduced grid-like theta modulation 

in schizophrenia 

 

Introduction 

 

In this chapter, I focus on how spatial memory and specialised neuronal 

populations involved in spatial coding can be studied in virtual reality (VR) 

using magnetoencephalography (MEG), in healthy controls and 

neuropsychiatric populations.  

O’Keefe and Dostrovsky (1971) provided fundamental advances in the field 

with the discovery of place cells, specialised pyramidal cells located in the CA1 

and CA3 areas of the hippocampus (O’Keefe, 1976; Kjelstrup et al., 2008; 

Henze et al., 2000), with the ability to fire in correspondence with the animal’s 

location in the environment. Place cell populations have been found across 

mammals (Rotenberg et al., 1996, Ulanovsky and Moss, 2007; Yartsev and 

Ulanovsky, 2013), and persist in humans (Ekstrom et al., 2003). Each place 

cell covers a specified area of the environment, called place field. Grid cells 

populations in the hippocampus present a dorso-ventral gradient organisation, 

with incrementally bigger place fields moving from the dorsal to the ventral 

HPC (Jung et al., 1994; Kjelstrup et al., 2008) to represent the environment at 

different resolutions (van Strien et al., 2009). Interestingly, place fields change 

across environments, with the same cell firing at different locations depending 

on the context (remapping, Muller and Kubie, 1987). Thanks to their unique 

function, place cells encode a map of the environment and contribute to the 

creation of cognitive maps (O’Keefe and Nadel, 1978; O’Keefe and Nadel, 

1979).  

The study of neuronal space mapping saw another breakthrough with the 

discovery of another specialised cell population, in the dorsolateral entorhinal 

cortex (ERH): grid cells. These cells firing pattern maps the environment by 

having each cell firing at multiple locations in a periodic fashion following a 
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hexagonal grid (Fyhn et al., 2004; Hafting et al., 2005, Moser et al., 2014; 

Sargolini et al., 2006). The space mapping provided by grid cells allow for 

computing environmental metrics (Bush et al., 2015; Kraus et al., 2015; 

Dordek et al., 2016). Similarly to place cells, grid cells fields’ dimensions are 

organised over the dorso-ventral axis of the ERH, with anatomical connections 

between ERH grid cells and HPC place cells with similar scales (Zhang et al., 

2013). The scale, in other words the distance between grid fields, is thus 

organised to represent the environment at different magnitudes. Crucially, the 

input from HPC place cells to ERH seems to be responsible for the formation 

of the grid code in ERH (Bonnevie et al., 2013).  

Recent advance into the study of neural representations of spatial context and 

spatial navigation in humans comes from the use of fMRI in healthy volunteers 

(Doeller et al. 2010), and of intra-cranial recording in epilepsy patients 

performing a spatial virtual navigation task (Jacobs et al., 2013; Nadasdy et 

al., 2017), to detect grid-like processing. With this study, I aim to investigate 

whether grid like coding in healthy volunteers can be detected non-invasively 

as a modulation of theta power using MEG. Moreover, I ask how this could be 

used to gain insight into the differences in cognitive processing in patients with 

diagnosis of schizophrenia.  

Overall, the aim of this chapter is to coherently translate recent discoveries in 

basic neuroscience to improve mechanistic understanding of the neuronal and 

cognitive processes impaired in schizophrenia. 

Schizophrenia is characterised by distortion of thoughts and perception 

including delusions, hallucinations, disorganised or catatonic behaviour, and 

diminished emotional expression or motivation (DSM-5, 2013). Several 

studies suggest a role for the hippocampal formation in the pathophysiology 

of schizophrenia (Adams et al. 2020, Harrison 2004, Heckers 2011, Heckers 

2002, Lieberman et al. 2018). Specifically, patients exhibit structural changes 

in entorhinal cortex (Baiano et al., 2008; Prasad et al., 2004; Roalf et al., 2016) 

and reduced functional connectivity between the medial temporal lobe (MTL) 

and medial prefrontal cortex (mPFC) (Adams et al., 2020; Dickerson et al., 

2010; Ellison-Wright et al., 2009; Sigurdsson et al., 2010; Weinberger et al., 
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1992). The hippocampal formation plays a fundamental role in episodic 

memory and spatial navigation (Bird et al., 2008; Burgess et al., 2002). 

Consistent with this, patients with schizophrenia also exhibit impaired 

performance in a range of spatial navigation tasks (Ledoux et a., 2014; 

Mohammadi et al., 2018; Salgado-Pineda et al., 2016; Wilkins et al., 2019; 

Wilkins et al., 2013).  

Spatial cognition appears to depend on specialised populations of neurons 

including grid cells (Hafting et al., 2005), originally identified in the rodent 

medial entorhinal cortex and subsequently found in the human entorhinal 

cortex and mPFC in direct intracranial recordings (Jacobs et al., 2013). Grid 

cells exhibit periodic spatial firing fields with six-fold (or ‘hexadirectional’) 

rotational symmetry. Grid cells are thought to support accurate spatial 

navigation (Bush et al., 2015; Gil et al., 2018; Tennant et al., 2018) and may 

also contribute to relational memory (Aronov et al., 2017; Constantinescu et 

al., 2016) and the acquisition of structural knowledge (Behrens et al., 2018). 

Hence, we examined whether grid cell activity patterns might be disrupted in 

schizophrenia.  

In rodents, grid cell firing patterns appear to depend on movement-related 

theta band oscillations (Brandon et al., 2011; Koenig et al., 2011; Winter et al., 

2015). There is also evidence for movement-related theta oscillations in 

human intracranial local field potentials (Aghajan et al., 2017; Bohbot et al., 

2017; Kahana et al., 1999)., particularly during movement initiation (Bush et 

al. 2017). Hexadirectional modulation of theta band activity, consistent with the 

presence of grid cell firing patterns, has also been observed in intracranial 

EEG recordings from the entorhinal cortex during virtual navigation (Chen  et 

al., 2018; Maidenbaum et al., 2018), building on observations of similar 

patterns in BOLD signal throughout the default mode network (Doeller et al., 

2010). We therefore asked participants with a diagnosis of schizophrenia (half 

of whom were unmedicated) and a matched control group to complete an 

established spatial navigation task inside a magnetoencephalography (MEG) 

scanner (Adams et al., 2020; Kaplan et al., 2014; Kaplan et al., 2012). We then 

looked for hexadirectional modulation of theta band oscillatory activity during 

virtual movement. 
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Materials and methods 

 

Participants 

This study re-analyses MEG data first presented in Adams et al. (2020). The 

study was approved by the local NHS research ethics board (REF: 

17/LO/0027), and all participants gave informed consent. Age, sex, IQ, digit 

span, handedness, and years in education information was collected from all 

participants. Participants with a schizophrenia diagnosis also completed the 

Positive and Negative Symptoms Scale (Kay et al., 1987; First et al., 2007), a 

saliva recreational drugs test (see Supplementary Table 3.1 in Adams et al., 

2020), and documented their medication. To be included, participants must 

have been educated in English, not be using benzodiazepines or 

anticonvulsants, have normal (or corrected to normal) vision, and be under 60 

years old. The patient group was recruited based on DSM-IV criteria for 

schizophrenia, with 18 participants in total. Patients had no other psychiatric 

diagnoses, based on the structured clinical interview for DSM-IV-TR axis I 

disorders41. The control group were recruited to match the age, sex, and IQ of 

the patient group as closely as possible, with 35 participants in total. Controls 

were excluded if they had history of a psychiatric or neurological condition. In 

addition, one patient and twelve control participants were excluded due to 

excessive MEG artefacts, interruption of the experiment due to nausea or 

sleep, or loss of fiducial markers. This left 17 patients (14 males) and 23 

controls (17 males). All participants were asked not to consume caffeine or 

smoke on the testing day.  

 

 

Spatial memory task 

Inside the MEG scanner, participants performed a spatial memory task in a 

virtual reality environment (Doeller et al., 2008). constructed using the Unity 
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game engine (Unity Technologies Ltd). During the task, participants navigated 

freely around up to three different virtual reality environments and were asked 

to learn – and subsequently recall – the locations of four different objects in 

each environment (Fig. 3.1A). Movement was directed using three buttons 

controlling left and right rotation and forward translation (via rapid acceleration 

to a fixed maximum speed). The environments were 100 virtual metre (vm) 

square arenas delineated by a solid boundary and surrounded by distant 

landmarks. Each environment was distinguished by the surface textures used 

for the floor and boundary, the location and identity of distal cues, and the 

location and identity of the objects being memorised. At the start of each block 

(in each different environment), participants were placed in the centre of the 

environment facing in the same direction (north). 

During encoding, one of four objects was visible in the environment in each 

trial, and participants were instructed to remember the location of that object. 

Once they were happy that they had remembered its location, they collided 

with the object to move to the next trial. There were two encoding trials for 

each object, in a pseudorandom order, giving eight encoding trials in each 

environment. Object locations were selected from 16 possible locations, so 

that each environment contained two objects close to the middle of the arena, 

one close to a corner and one near the middle of a boundary, to match difficulty 

across environments (with object locations not used more than once across 

environments).  

During retrieval, each trial began with a 3 s fixation cross, followed by a 3 s 

cue period in which a single target object was presented on screen. 

Participants were then placed at a random location and orientation within the 

environment and asked to navigate to the location of that object and make a 

button press response. Participants subsequently received feedback on their 

performance, i.e. the cued object appeared in its correct location, and the next 

trial began when they collided with the object. Performance in each trial was 

quantified using the inverse of the distance between the remembered object 

location and its actual location (such that larger values correspond to better 

performance, as used in Doeller et al., 2010). There were eight retrieval trials 

for each object, giving 32 retrieval trials in each environment. Controls and 
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patients completed 2.70 ± 0.56 and 2.88 ± 0.33 (mean ± SD) task blocks (i.e. 

environments), respectively. 

MEG data collection and pre-processing 

MEG data were acquired using a 275-channel axial gradiometer system (CTF 

Omega, VSM MedTech) at a sample rate of 480 Hz. During the recording, 

head position coils (attached to nasion and left and right pre-auricular sites) 

were used for anatomical co-registration, and eye tracking was performed 

using an Eyelink 1000 system (SR Research). Raw MEG data were imported 

into SPM12 (Litvak et al., 2011) and downsampled to 200 Hz before eye blink 

and heartbeat artefacts were manually identified and removed using ICA 

implemented in FieldTrip (Oostenveld et al., 2011) and EEGLAB (Delorme et 

al. 2004). Finally, a fifth order, zero phase Butterworth filter was used to 

remove slow drift (1 Hz high-pass) and mains noise (48-52 Hz notch) from the 

recordings.  

Our analyses focussed on periods of movement onset and complete 

immobility in the virtual environment. Movement onset ‘epochs’ were defined 

as [-3 3] s windows around the onset of continuous translational movements 

that lasted ≥1 s and were preceded by ≥1 s of complete immobility (consistent 

with previous studies (Bush et al., 2017)). This captured 25.4 ± 6.9% and 25.5 

± 6.4% of the task data for controls and patients, respectively. Stationary 

‘epochs’ were defined as [-2.5 3.5] s windows around the onset of ≥2 s periods 

during which no translational movement occurred. This captured 51.4 ± 8.9% 

and 49.8 ± 7.2% of the task data for controls and patients, respectively (see 

Table 3.1 for trial numbers). Importantly, although these epochs could overlap, 

the overlapping time periods were not included in any of our analyses (see 

Fig. 3.1 and further details below). Once the MEG data had been divided into 

movement onset and stationary epochs, artefact trials were automatically 

identified and removed using an underlying outlier test (with a threshold of 

α=0.05). 
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Table 3.1:  Number of movement and stationary periods (or ‘epochs’) in controls and patients 

 Total movement 

epochs  

(mean ± SD) 

Bad 

movement 

trials  

(mean ± SD, 

%) 

Included 

movement 

trials 

(mean ± SD, 

range) 

Stationary 

epochs 

(mean ± SD) 

Bad 

stationary 

trials  

(mean ± SD, 

%) 

Included 

stationary 

trials 

(mean ± SD, 

range) 

CONTROLS 122.6 ± 35.3 3.39 ± 4.22% 

 

119.0 ± 36.4, 

61-192 

241.7 ± 75.5 

 

3.03 ± 3.92% 

 

234.9 ± 76.6, 

110-43 

PATIENTS 142.8 ± 45.3 6.95 ± 6.89% 

 

133.5 ± 45.8, 

38-246 

278.4 ± 82.5 

 

5.91 ± 5.11% 

 

262.9 ± 81.4, 

86-408 
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Figure 3.1: Example time course of task conditions. Analyses of movement related 

changes in oscillatory power (shown in Fig. 3.2 and S3A) compare [-0.5 0.5] s 

windows around the onset of movements that last ≥1 s and are preceded by ≥1 s 

stationary periods (shown in dark red) with [0 1] s windows around the onset of 

stationary periods which last ≥2 s (shown in dark blue). In both cases, the data is 

extracted from wider 6 s ‘epochs’ (indicated by the coloured error bars) that can 

overlap, and provide padding to avoid edge effects in signal processing. Importantly, 

however, the time windows of interest (shown as dark coloured boxes) are always 

separated by ≥0.5 s due to the duration thresholds for movement and stationary 

periods described above. Analyses of oscillatory power modulation by movement 

direction (shown in Fig. 3.3 and S3B) focus on the full period of translational 

movement following movement onset in each 6 s epoch (shown in light red). All other 

task periods (i.e. including movement or stationary periods that do not meet our 

duration thresholds, stationary periods from 1 s after movement cessation to 0.5s 

before movement onset, and movement periods from 3 s after movement onset) are 

unused.  
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MEG data analysis 

To examine changes in low frequency power associated with the onset of 

virtual movement, we generated a time frequency spectrogram for each 

movement and stationary period in the 2-70 Hz range using a five cycle Morlet 

wavelet transform for 40 equally logarithmically spaced frequencies. The 

resulting power values were log transformed and normalised by the sum of 

power values across frequencies at each time point. Finally, power values 

were averaged across epochs for each participant, and power in the [-0.5 0.5] 

s window around movement onset was baseline corrected by average power 

in the [0 1] s window during stationary periods. Inspection of the resultant 

power spectrum, averaged across all participants in both groups, revealed a 

peak in the 4-10 Hz theta band on which subsequent analyses were focussed. 

Source localisation of 4-10 Hz theta power was performed in SPM12 using the 

Linearly Constrained Minimum Variance beamformer from the DAiSS toolbox, 

with a single-shell forward model and sources evenly distributed on a 10mm 

grid co-registered to MNI coordinates. This resulted in a set of linear weights 

for each participant that could generate 4-10 Hz band-pass filtered time series 

in source space from sensor-level data in each movement onset epoch 

(Barnes et al. 2003).  

To look for the hexadirectional modulation of theta power, we first isolated the 

continuous period of translational movement following movement onset in 

each epoch. Next, for each task block (i.e. each virtual environment), we 

extracted continuous movement direction from the corresponding behavioural 

data and a measure of theta power by applying the Hilbert transform to band-

pass filtered data in each voxel and Z-scoring the resultant time series (to 

match signal amplitude across voxels and participants). We then estimated 

grid orientation independently for each voxel using a quadrature filter (Doeller 

et al. 2010) applied to alternate movement onset epochs from that block. 

Finally, we estimated the strength of hexadirectional modulation in each voxel 

for the remaining movement onset epochs by linearly regressing continuous 

theta power against the cosine of the angular deviation from that grid 
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orientation, with six-fold periodicity (see Fig. 3.2 for a schematic). We repeated 

this analysis, reversing the use of alternate epochs for estimating orientation 

and modulation, and averaged the regression coefficients across the two folds 

and then across task blocks to provide a single metric indicating the strength 

of hexadirectional theta modulation for each participant in each voxel (p<0.001 

uncorrected for setting the cluster, and FWE p<0.05 on the cluster size). The 

same analysis was also performed for other rotational symmetries 

(specifically: four-, five-, seven-, and eight-fold) and hexadirectional 

modulation in other oscillatory bands (specifically: 2-4 Hz delta, 12-20 Hz 

alpha, 20-35 Hz beta and 40-70 Hz gamma). For anatomically defined region 

of interest (ROI) analyses, we used probabilistic masks from the Julich-Brain 

Cytoarchitectonic Atlas (Amunts et al., 2020) thresholded at a probability value 

of 40%. 
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Figure 3.2: Identifying hexadirectional modulation of theta band activity in MEG. A) 

Each movement direction in the virtual environment is either aligned (green) or 

misaligned (grey) with the orientation  of an underlying grid firing pattern. B) We 

hypothesise that the amplitude of theta band activity in the MEG signal is sinusoidally 

modulated by movement direction θ with six-fold (hexadirectional) rotational 

symmetry. C) To test this hypothesis, we first partitioned movement epochs into 

alternate even and odd trials. For each movement epoch, we then extracted the 

direction of movement in the VR environment θ and power in the theta band at each 

time step. In half of the movement epochs, we used a quadrature filter to estimate the 

orientation of the underlying grid. Specifically, we calculated the sine and cosine of 
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movement direction θ with 6-fold periodicity and fit those cos(6θ) and sin(6θ) 

regressors to oscillatory power in a first GLM (GLM1). This produced regressor 

coefficients β1 and β2 which could be used to estimate grid orientation  = 

[arctan(β2/β1)] / 6. We then tested whether the amplitude of oscillatory power in the 

other half of movements epochs was sinusoidally modulated at this orientation. 

Specifically, we fit the cosine of movement direction with 6-fold periodicity and 

orientation  - cos(6θ-) - to oscillatory power in a second GLM (GLM2). This 

produced a regressor coefficient β3 which characterises the strength of 

hexadirectional modulation. D) Graphic representation of the cos(6θ) and sin(6θ) 

regressors used in GLM1; and cos(6θ-) regressor used in GLM2. E) Simulated data 

are used to show the linear fit between cos(6θ-) and oscillatory power in GLM2. The 

slope of the linear fit corresponds to the strength of hexadirectional modulation. 

Panels A and D adapted from Doeller et al. (2010). 

 

 

Results 

 

We asked participants with a diagnosis of schizophrenia (half of whom were 

unmedicated) and an age, sex and IQ matched control group to perform an 

established spatial navigation task (Adams et al., 2020, Kaplan et al. 2014, 

Kaplan et al., 2012; Doeller et al., 2008) using desktop virtual reality (VR) 

inside a magnetoencephalography (MEG) scanner (Fig. 3.3A). Consistent with 

previous reports (Ledoux et a., 2014; Mohammadi et al., 2018; Salgado-

Pineda et al., 2016; Wilkins et al., 2019; Wilkins et al., 2013), spatial memory 

performance was significantly better in the control group (t(38)=2.10, p=0.042, 

Hedge’s g=0.66, CI [0.028 1.32]; Fig. 3.3B).  
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Figure 3.3: Spatial Memory Task. A) Schematic. Participants navigate through the 

environment and make responses using a button box. During encoding, they are 

asked to remember the locations of four objects (one object being visible in each trial). 

During retrieval, a fixation cross on a grey screen is followed by an image of one 

object (cue period). The participants are then asked to navigate from a random start 

location to the retrieved location of that object and make a response. During 

navigation, the object image remains visible in the top left corner of the screen. 

Following a response, the object appears in its correct location to provide feedback. 

The next trial begins when the participants collide with the object. B) Performance, 

quantified as the inverse of the average distance between remembered and actual 

object locations, for controls (in blue) and patients (in red). Each red line indicates the 

median, box edges the 25th and 75th percentiles, whiskers extend to the most extreme 

datapoints not considered to be outliers (defined as values more than 1.5 times above 

or below the 75th and 25th percentile, respectively), and outliers are plotted 

individually. Spatial memory accuracy was significantly higher in the control group. 

 

 

 

 

To look for evidence of grid-like activity during translational movement within 

the VR environment, we first investigated changes in oscillatory power 

associated with movement onset versus stationary periods. Power spectra for 
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both groups, averaged across all sensors, showed a peak in the theta band 

during movement onset (Fig. 3.4A). Specifically, 4-10 Hz theta power was 

greater during movement onset than stationary periods in both controls 

(t(22)=5.58, p<0.001) and patients (t(16)=2.39, p=0.03), and greater in 

controls than patients (t(38)=2.02, p=0.05, g=0.63, CI [0.0014 1.29];  Fig. 

3.5A). This is illustrated by time-frequency spectrograms of movement onset 

periods (Fig. 3.4B), which show a clear increase in theta power in the control 

group beginning ~0.5 s prior to movement onset (consistent with previous 

reports (Bush et al., 2017; Kaplan et al., 2012)) that is markedly reduced in 

patients.  

Scalp plots (showing normalised power differences between movement onset 

and stationary periods) illustrate that 4-10 Hz theta power increases arise over 

bilateral frontal and temporal sensors in both groups, with controls showing 

greater movement-related theta power than patients over left frontal sensors 

(Fig. 3.4C). Importantly, we found no evidence for differences in movement 

statistics between control and patient groups in the virtual environment that 

could account for these differences. Specifically, there were no differences in 

the average duration of movements between patients (mean ± SD = 2.29 ± 

0.43 s) and controls (2.18 ± 0.5 s; t(38)=-0.723, p=0.47) or preference to 

navigate close to the boundaries of the environment (patients: 79.2 ± 4.8%; 

controls: 79.9 ± 6.1%; t(38)=0.37, p=0.71), and movement speed accelerated 

rapidly to a fixed top speed for all participants. 
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Figure 3.4: Movement-related 4-10Hz theta power increases in controls and patients. 

A) Power spectra showing normalised power during movement onset epochs (i.e. [-

0.5 0.5] s around the onset of ≥1 s translational movements that were preceded by 

≥1 s immobility), baseline corrected by average power during stationary periods (i.e. 

[0 1] s around the onset of ≥2 s periods of immobility) for controls (in blue) and patients 

(in red, shading indicates standard error). The grey bar delineates the 4-10 Hz theta 

band. B) Time-frequency spectrograms showing normalised power during movement 

onset, baseline corrected by average power during stationary periods. Controls show 

a marked increase in theta power beginning ~0.5 s prior to movement onset that is 

reduced in patients. C) Scalp plots of normalised 4-10 Hz theta power during 

movement onset epochs, baseline corrected by average theta power during 

stationary periods for controls, patients, and for the contrast between groups. 

Highlighted channels show significant positive power differences at a threshold of 

p<0.01 (uncorrected). 
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Figure 3.5: Movement related changes in oscillatory power and hexadirectional 

modulation of theta power in left entorhinal cortex. A) Normalised oscillatory power 

during movement onset epochs (i.e. [-0.5 0.5] s around the onset of ≥1 s translational 

movements that were preceded by ≥1 s immobility), baseline corrected by average 

power during stationary periods (i.e. [0 1] s around the onset of ≥2 s periods of 

immobility) for controls (in blue) and patients (in red) in the delta (2-4Hz), theta (4-

10Hz), alpha (12-20Hz), beta (20-35Hz) and gamma (40-70Hz) frequency bands, 

averaged across all sensors. In addition to the significant changes in theta power 

described in the main text, we find evidence for movement related decreases in delta 

power in both controls (t(22)=-5.93, p<0.001) and patients (t(16)=-2.11, p=0.05), as 

well as a significant difference between groups (t(38)=2.02, p=0.05, g=0.633, CI 

[0.0024 1.29]); movement related increases in beta power in both controls 

(t(22)=3.74, p=0.001) and patients (t(16)=2.76, p=0.014), with no difference between 

groups (t(38)=1.57, p=0.13); and movement related increases in gamma power in 

both controls (t(22)=6.39, p<0.001) and patients (t(16)=4.12, p<0.001), as well as a 

significant difference between groups (t(38)=2.74, p=0.0092, g=0.86, CI [0.221 1.54]); 

but no changes in alpha power in either group (both p>0.15) or difference between 

groups (t(38)=0.557, p=0.58). B) Absence of hexadirectional theta modulation inside 

an anatomically-defined left entorhinal ROI for controls (t(22)=-0.184, p=0.856) and 

patients (t(16)=0.45, p=0.659). There is no significant difference in the strength of 

hexadirectional modulation between groups in this ROI (t(38)=-0.419, p=0.677). Each 
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red line indicates the median, box edges the 25th and 75th percentiles, whiskers 

extend to the most extreme datapoints not considered to be outliers (defined as 

values more than 1.5 times above or below the 75th and 25th percentile, respectively), 

and outliers are plotted individually. 

 

Next, we looked for hexadirectional modulation of movement-related theta 

power across the whole brain using established methods (Doeller et al., 2010) 

(see Fig. 3.2 for further details). Remarkably, the control group showed a 

single significant cluster of hexadirectional theta modulation in the vicinity of 

right entorhinal cortex (Fig. 3.6A). In contrast, the patient group showed no 

clusters that passed our threshold of p<0.05 FWE corrected across the whole 

brain.  

To further characterise this effect, we extracted the strength and orientation of 

hexadirectional theta power modulation from each voxel in an anatomically-

defined right entorhinal region of interest (ROI) for each participant (Fig. 3.6B). 

Consistent with the whole brain results, this revealed significant 

hexadirectional modulation of 4-10 Hz theta power for controls (t(22)=3.04, 

p=0.0059) but not patients (t(16)=-0.04, p=0.97), and significantly stronger 

hexadirectional modulation for controls than patients (t(38)=2.08, p=0.044, 

g=0.65, CI [0.02 1.31]; Fig. 3.6C). Similarly, theta power in this ROI was 

greater during movement aligned versus misaligned with the grid axes for 

controls (i.e. within ±15° of the fitted grid orientation versus other movement 

directions; t(22)=2.82, p=0.01; Fig. 3.6D), despite no difference in the 

proportion of movement samples with aligned versus misaligned directions 

(t(22)=-0.70, p=0.49; Fig. 3.6E). Importantly, theta power from this ROI was 

not significantly modulated by four, five, seven or eight fold movement direction 

in the control group (although we note a trend towards significance for eight-

fold modulation (t(22)=2.03, p=0.055; all others p>0.27; Fig. 3.6F), nor was 

there any evidence for hexadirectional modulation of delta, alpha, beta, or 

gamma frequency band activity in this region (all p>0.26; Fig. 3.6G). In 

addition, we found no evidence for the hexadirectional modulation of theta 

power within a corresponding anatomically-defined left entorhinal ROI 

(Supplementary Fig. 3.6B). 
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Figure 3.6: Modulation of oscillatory power by movement direction in right entorhinal 

cortex. A) Regions showing significant hexadirectional modulation of 4-10Hz theta 

power at the whole brain level. Only one cluster in right entorhinal cortex (peak at [18 

-22 -44], Z=4.05) passes our significance threshold of p<0.05 FWE corrected (image 

shown at p<0.005 uncorrected, for display purposes). B) Image of the anatomically 

defined right entorhinal cortex region of interest (ROI). C) Strength of hexadirectional 

theta modulation inside the ROI for controls and patients, with 19/23 controls (82.6%) 

and 8/17 patients (47.1%) showing a positive beta coefficicent. D) Difference in theta 

power between on vs off axis movement inside the ROI for controls and patients, with 

19/23 controls (82.6%) and 7/17 patients (41.2%) showing greater on vs off axis theta 

power. E) Difference in the percentage of movement samples that occurred during on 

vs off axis movement for controls and patients. F) Theta modulation by 4-8 fold 
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movement direction inside the ROI for controls. G) Strength of hexadirectional 

modulation of delta (2-4Hz), theta (4-10Hz), alpha (12-20Hz), beta (20-35Hz) and 

gamma (40-70Hz) frequency bands inside the ROI for controls. H) Correlation 

between performance, quantified as the inverse of the average distance between 

remembered and actual object locations, and grid (in)stability across task blocks for 

controls. Each red line indicates the median, box edges the 25th and 75th percentiles, 

whiskers extend to the most extreme datapoints not considered to be outliers (defined 

as values more than 1.5 times above or below the 75 th and 25th percentile, 

respectively), and outliers are plotted individually. 

 

Reassuringly, grid orientation across voxels inside the right entorhinal ROI 

(within each task block and data partition) was more consistent than expected 

by chance (5.33 ± 2.25°, chance=15°; t(22)=-20.7, p<0.001), as was grid 

orientation across data partitions, each including half of the trials (within each 

task block and ROI voxel; 12.9 ± 3.55°; t(22)=-2.85, p=0.0093). However, grid 

orientation across blocks (within each data partition and voxel inside the ROI) 

was no more consistent than expected by chance (15.5 ± 3.05°, t(21)=0.71, 

p=0.49), suggesting that grid patterns randomly realigned with the visually 

distinct square environment encountered in each task block. Importantly, we 

found no evidence for a relationship between theta power during movement 

onset (averaged across all sensors) and the strength of hexadirectional 

modulation inside the ROI (Pearson’s r=0.32, p=0.14); or between theta power 

during movement onset (averaged across all voxels within the ROI) and the 

strength of hexadirectional modulation in the same region (r=0.25, p=0.25). 

This suggests that differences in the magnitude of hexadirectional modulation 

across participants did not arise simply from differences in the power of the 

underlying theta oscillation. 

Finally, we looked for a relationship between the hexadirectional modulation 

of 4-10 Hz theta power inside the ROI and our behavioural data. Although we 

found no evidence for a correlation between the strength of hexadirectional 

modulation and task performance across controls (r=0.15, p=0.49), we did find 

a significant relationship between the consistency of the grid orientation across 

blocks and task performance (r=-0.52, p=0.013; Fig. 3.3H). This indicates that 
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control participants with grid patterns that were more consistent across task 

blocks tended to more accurately remember object locations in the VR 

environments.  

 

 

Discussion 

 

This is the first demonstration of hexadirectional theta modulation in MEG, 

building on previous studies showing similar patterns in BOLD signal 

throughout the default mode network (Constantinescu  et al., 2016; Doeller et 

al., 2010), in high frequency activity from the anterior temporal lobe in both 

MEG and intracranial EEG recordings (Staudigl et al., 2018), and in entorhinal 

theta power from intracranial EEG recordings (Chen et al, 2018; Maidenbaum 

et al., 2018). Crucially, however, the relationship between grid cell activity at 

the neural level, network level modulations of theta or high frequency power in 

the local field potential or in MEG, and the BOLD signal measured using fMRI 

are not clear, and merit further attention. These findings show hexadirectional 

modulation of theta power in right entorhinal in healthy volunteers, which is 

consistent with the presence of stable grid cell firing patterns. Importantly, the 

stability of grid orientation across task blocks in the control population 

correlated positively with their performance in the spatial memory task, 

suggesting a functional relationship between grid firing patterns and spatial 

memory.  

Previous studies have reported impaired spatial navigation associated with 

hippocampal anomalies in schizophrenia (Ledoux et a., 2014; Mohammadi et 

al., 2018; Salgado-Pineda et al., 2016; Wilkins et al., 2019; Wilkins et al., 

2013). In particular, people with schizophrenia are selectively impaired in 

spatial navigation strategies based on cognitive mapping, rather than single-

landmark (response-based) strategies (Wilkins et al., 2019; Wilkins et al., 

2013). These results demonstrate that people with schizophrenia show worse 

spatial memory and less movement-related theta power during a virtual spatial 
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navigation task than a matched control group. They also lack the 

hexadirectional modulation of theta power cortex observed in the control 

group. 

Schizophrenia is also associated with impairments in associative inference 

and acquisition of relational knowledge (Adams et al., 2020; Armstrong et al., 

2018; Armstrong, Kose et al., 2012; Armstrong, Willams et al., 2012), in which 

the hippocampal formation - and grid cells in particular - are thought to play a 

key role (Behrens et al., 2018). Our findings therefore suggest that 

dysfunctional grid coding may underlie atypical inference and poor acquisition 

of relational knowledge in schizophrenia. Grid firing patterns may be supported 

by attractor network dynamics (McNaughton et al., 2006), and attractor states 

are thought to be more unstable in schizophrenia (Adams et al., 2018; Hamm 

et al., 2018), potentially due to reduced α5-GABA-A receptor density in the 

MTL (Marques et al., 2021). We speculate that this may increase reliance on 

striatal learning mechanisms, making inferences more dependent on 

individual landmarks (or, perhaps, events) than structured relational 

knowledge of the world. 

It is interesting to note the discrepancy between movement related theta power 

increases at the sensor level, where differences between groups are most 

prominent over left frontal regions; and the hexadirectional modulation of theta 

power by movement direction, which is restricted to the right entorhinal cortex 

in control participants. This suggests independent underlying mechanisms, 

which is supported by the absence of any correlation between theta power and 

the strength of hexadirectional modulation across our control group. Similarly, 

we find no evidence for the hexadirectional modulation of theta power in an 

anatomically-defined left entorhinal cortex ROI, in contrast to some previous 

studies (Jacobs et al., 2013; Chen et al., 2018; Maidenbaum et al., 2018), 

although our results are not sufficient to make strong claims about laterality. 

In summary, in healthy volunteers performing a virtual spatial navigation task, 

we have shown grid-like modulation of MEG theta power localised to the right 

entorhinal cortex whose consistency of orientation across virtual environments 

correlates with spatial memory performance. Relative to this baseline, we have 
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shown that people with a diagnosis of schizophrenia have impaired spatial 

memory performance, reduced movement-related theta oscillations and 

disrupted grid-like modulation of theta power. This extends previous work 

showing structural and functional impairment of the hippocampal formation in 

schizophrenia and selective deficits of hippocampus-dependent strategies in 

spatial navigation. Future studies could address a possible role of grid cell 

populations in impaired structural knowledge and inference in schizophrenia. 

Overall, this chapter provides additional insight on the role of grid cells in the 

representation of spatial context in memory for spatial locations. Moreover, it 

validates MEG analysis of theta power as a non-invasive method to study grid 

cell activity in humans.  
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Chapter 4. Navigating Memory through 

Semantics and Time 

 

Introduction 

 

In this chapter, I further investigate the interaction of semantic and temporal 

contexts in memory for word lists, as in Chapter 2. This superficially simple 

task, however, is finely controlled and implicitly structured to open a window 

into the underlying neural mechanisms responsible for integrating conceptual 

dimensions that are usually assigned to separate semantic and episodic 

aspects of declarative memory function.  

The hippocampus (HPC) and para-hippocampal areas in the medial temporal 

lobe (MTL) have a well-established fundamental role in episodic memory 

(Tulving 1983), spatial memory, and navigation, in the mammalian brain, 

including the human brain (Moser et al., 2015; Burgess et al., 2002; Doeller et 

al., 2010). 

These structures host different neuronal populations that play key roles in 

memory encoding and retrieval, and in encoding spatial information for 

efficient navigation .  As summarised in Chapter 3 (Introduction), grid cells 

have been at the core of a rich body of research aimed at better understanding 

how the human brain flexibly navigates the environment and creates cognitive 

maps of both the real world and abstract spaces (O’Keefe and Nadel, 1978; 

O’Keefe and Nadel, 1979). Grid cells were originally found in the dorsolateral 

entorhinal cortex (ERH) (Fyhn et al., 2004; Hafting et al., 2005, Moser et al., 

2014; Sargolini et al., 2006), where they map the environment via 

hexadirectionally modulated firing activity (Bush et al., 2015; Kraus et al., 

2015; Dordek et al., 2016).  

In both rodents and humans, grid cell activity appear to be associated with  

theta oscillations during movement (Brandon et al., 2011; Koenig et al., 2011; 

Winter et al., 2015, Aghajan et al., 2017; Bohbot et al., 2017; Kahana et al., 
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1999, Bush et al. 2017, Chen  et al., 2018; Maidenbaum et al., 2018). While 

keeping hexagonal symmetry, grid cell populations share their orientation. 

Movements in the environment are associated with an angle of orientation that 

can fall either in phase with the angle of orientation of the grid cell population 

(aligned with the axis) or out of phase (misaligned with the axis) (Barry et al., 

2007, Stensola et al., 2012). This shared population orientation of the grid cell 

acitivity allowed scientists to develop new methods to  detect the bulk six-fold 

(hexagonal) symmetry grid activity in humans using non-invasive 

neuroimaging via fMRI (Doeller et al., 2010; Kunz et al., 2015; Bellmund et al., 

2016; Constantinescu et al., 2016; Horner et al., 2016) and MEG (Staudigl et 

al., 2018, Giari et al., 2023; Convertino et al., 2023, see Chapter 3). These 

studies found grid cell-like activity in humans,not only in the ERH but also in 

other areas of the default mode network (medial prefrontal cortex, medial 

parietal cortex and lateral temporal areas). 

Over the last decades, new insights from human and primate neuroscience 

have confirmed the hypothesis that cognitive maps play an important role in 

non-spatial navigation and support flexible cognition and generalisation across 

abstract contexts (Tolman, 1948; O'Keefe and Nadel, 1978; Buzsáki and 

Moser, 2013; Eichenbaum and Cohen, 2014; Farzanfar et al., 2023). Recent 

studies have found evidence of grid cell activities in primate and human 

navigation across abstract conceptual spaces (Killian et al., 2012; 

Constantinescu et al. 2016; Bao et al., 2019; Theves et al., 2019, 2020; Vigano 

et al., 2021; Park et al., 2021; Raithel et al. 2023). 

Moreover, different new theories have proposed a broad inter-domain role for 

the MTL via predictive mapping, which would provide the underline machinery 

for reward-based behaviour, as well as sensory expectations and concept 

search (Stachenfeld et al., 2017; Mok and Love, 2019; Mok and Love, 2023; 

Epstein et al., 2017; Solomon et al., 2018). In this direction, recent work by 

Solomon et al. (2019) found that theta power in the hippocampus predicted 

the semantic distances between words during free recall in a cohort of epilepsy 

patients using intracranial recording (iEEG). This result opens new interesting 

investigations on the role of the MTL and cognitive maps in semantic aspects 

of declarative memory and concept navigation. 
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Based on the work of Solomon et al. (2019), we used 3-T fMRI to investigate 

whether grid-like activity in the ERH cortex, mPFC and potentially other areas 

of the default mode network could be involved in learning of lists of words. To 

do so, we created an implicit abstract 2-D space, where one axis represents 

the semantic distance between words in word2vec embedding space, and the 

other axis represents the ordinal distances between the locations of the words 

in a studied list. ‘Moving’ from thinking of one word to another would result in 

an abstract movement in this environment. 

The goal of this chapter is to provide preliminary results and insight into the 

mechanism of interaction of temporal and semantic contexts in declarative 

memory. This aims to guide and inform further confirmatory analysis and new 

hypotheses testing in future work. Although the intent of this chapter is not to 

deliver an exhaustive understanding of the experimental findings, or finalised 

wholistic analysis, I hope to lay the foundation blocks for new insights on the 

neuronal mechanisms responsible for the integration of multidimensional and 

metacontextual information in declarative memory. 

 

Material and Methods 

 

Participants  

The study was approved by UCL ethics board (REF: 1338/009). Thirty-four 

participants were recruited via Sona System. Inclusion criteria were age 

between 18- and 35-year-old, native English speaker (mother tongue), right-

handed. Age, sex, handedness and years in education data and informed 

consent to participate in the experiment were collected for all participants. One 

participant was later excluded due to brain anatomical abnormalities found 

during the fMRI scan, and three participants were excluded due to inability to 

complete the task during scan. Thirty participants were included in the 

analysis, of which 19 female and 11 males with age mean 𝑀 = 25.1, 𝑆𝐷 = 4.1; 

with ages spanning between 19- and 35-year-old. Before scanning, on the 

same day, subjects were trained to perform the sequence memory task outside 
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the scan on a computer; they then participated in one fMRI scan session. 

Finally, outside scan, they were asked to perform two similarity judgment test 

tasks post-scanning and debriefed. The experiment took place at the 

Wellcome Centre for Human Neuroimaging (FIL, 12 Queen Square, UCL).  

 

Word list learning task 

 

 

Figure 4.1. A. Example of the distribution of words in the abstract 2-D space for an 

example permutation of the words in the list. An example of angle 𝜃 can be seen 

between the word ‘city’ and the word ‘nation’; moving between the word ‘city’ (6 th word 

in the list on the temporal order axis, and 4th word over the first PCA component on 

the semantic axis, i.e. coordinates 6,4) and the word ‘nation’ (coordinates 8,6), would 

create the presented angle on the 2D abstract space. B. Distribution of all the possible 

angles created by all the possible paired associations of words for the permutation 

used in figure A. To avoid biases and confounds in the trajectories between words, I 

controlled for a balanced distribution of all angles tested in the experiments.  

 

The experimental task consisted in a list of eight words that the participants 

were asked to learn in the correct order. The task was repeated twice, with two 

different conditions corresponding to two different lists of words. The two lists 

differentiate form each other based on how the words in each list were 

selected. While the first list included words from the same taxonomic group, 
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the second list included words across a variety of taxonomic semantic 

domains, as better explained in the next paragraph and illustrated in Fig. 4.2. 

Without the participants knowing, both lists were built so that the words in each 

list were distributed evenly in a 2-D space with dimension (Fig.4.1): 1st PCA 

component of a PCA analysis of the word vectors in word2vec, and word 

position (order) within the list. The order of the words in the list was organised 

so that the two dimensions, i.e. the order of the words over the first PCA 

component in word2vec and the temporal order of the words in the list, were 

not correlated with each other (Pearson correlation coefficient = 0). To achieve 

this, every word was transformed into its vector form via word2vec MATLAB 

implementation, and the resulting word vectors were organised in order over 

the first principal component for each list. Critically, each trajectory between 

two words in the 2-D space is associated to an angle . This will be fundamental 

to investigate hexadirectional modulation of brain activity. Moreover, I 

controlled for the even distribution of angles in the 2D space for each trajectory 

between all possible combination of words (Fig.4.1 B) to avoid direction 

biases. I then selected two different permutation of the words that provided the 

preferred occupancy of the words in the 2-D space, and the orthogonality of 

semantic and order dimensions. Each condition was tested with both 

permutations, counterbalancing across participants (Fig.4.2).  
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Figure 4.2. Projection over the first and second component of PCA analysis from 

word2vec word vectors for the continuous (A) and the mixed (B) lists. Each list was 

tested with one of two possible permutations for each participant (C and D). For each 

participant, both permutations were used, one for each list type, and the order of the 

two lists and of the two permutations during the task was counterbalanced across 

participants.  

 

For the first condition (continuous list, Fig.4.2 A), I selected eight words related 

with each other via a taxonomic semantic grouping, where each word referred 

to a human populated human community aggregate.   The first component of 

the PCA for the first list organised the words in the same order as the size-

based one associated with their meanings.. The semantic domain that better 

suited these criteria was the one of community aggregates (hut, village, town, 

city, region, nation, continent, globe). These words can beorganised over a 

size dimension, which corresponds to the order of the words over the first PCA 

of their vectors. 
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For the second condition (Fig.4.2 B), the words were selected from the iEEG 

Free Recall pool of high frequency nouns of the Computational memory 

laboratory, University of Pennsylvania 

(https://memory.psych.upenn.edu/Word_Pools). The criteria of inclusion for 

the words in both lists controlled for comparable string length (maximum 

difference in word length of two letters) and frequency of the words and aimed 

to maximise the difference in spelling between words in the same list 

(Levenshtein distance greater than two). Moreover, the first PCA component 

of the word vectors had to explain at least 25%, and the difference between 

first and second PCA components had to be higher than 10%. Finally, the 

words within each list had to be evenly spread over the first PCA component. 

The mix list condition was characterised by the lack of a taxonomical common 

group , which made it more difficult to organise  the words over a continuous 

dimension based on an evident descriptive semantic characteristic (such as 

size or colour brightness). 

Before the scan, the participants were asked to perform a trial version of the 

experiment with random words (not included in the fMRI task) on a testing 

room computer. This training did not involve any relevant learning for the task 

in the fMRI scan but was carried solely to support the participant familiarise 

with the structure of the task, the nature of the stimuli and the response buttons 

apparatus. Once the training was completed, the participants performed the 

task inside the fMRI scan for both lists (encoding and retrieval) in one single 

session of the total duration of about one hour, including structural data 

acquisition. 
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Figure 4.3. Structure of the encoding phase of the experiment in the scan. Each word 

was presented on the screen for 3 seconds, followed by one second fixation cross 

between words. After the 8 words in the list were presented, the participants were 

asked to select the right word for a specific position in the presented list. After each 

presentation of the list, the participants were asked two questions and received 

feedback for their answer. This process was repeated five times to support learning.  

 

The task was organised in an encoding and retrieval phase. During the 

encoding phase (Fig.4.3), the participants were asked to remember the words 

in the list in the correct order in which they were presented. Each word was 

presented in white on a dark background for 3 seconds on the screen, followed 

by a fixation cross. After list presentation, the participants were tested with two 

questions. They were asked to select the word corresponding to a specific 

position in the list among three possible options; for each answer, they 

received right or wrong feedback. This was introduced to support the learning 

of the list in the correct order. The encoding phase, including both list 

presentation and two memory questions, was repeated 5 times.  



144 
 

 

Figure 4.4. Structure of the testing phase of the experiment. The participants were 

presented with different pairs of words, with one word presented on the screen at the 

time. They then had 4 seconds to think about the two words they just saw and their 

position (order) in the learnt list. For one third of the trials, the participants were 

randomly presented with a question that could either test their memory for the order 

of the words in the list (question type 1) or ask for their subjective rating for the 

similarity of the meanings of the two words (question type 2). They had two seconds 

to answer to either question. The participants were instructed had the chance to 

familiarise themselves with the structure of the experiment and the meaning of the 

two questions before starting the experiment in the scanner. 

 

During the retrieval (testing) phase (Fig.4.4), the participants were presented 

with 128 trials structured as followed. Each trial consisted in a pair of words, 

so that each word in the pair was presented individually on the screen for one 

second, followed by fixation cross, and by the second word. The jittered inter-

word interval (ITI) generated from a truncated (at 7 s) Poisson distribution with 

a mean of 2 s. The 128 pairs were made of twenty-eight unique pairs from a 

list of eight items, presented in both possible orders, twice (116 trials), and of 

an additional 16 trials of the same word repeated twice within the pair (two 

trials for each word in the list). The order of presentation of the pairs was semi-

randomised to adjust for an even distribution of temporal (order) distances 

between words across trials. After the pair of words was presented, the 
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participants were exposed to a blank screen with dark background and no 

fixation cross for 4 seconds.  

The experiment, including both encoding and retrieval phases, was repeated 

twice, once for each list. The order of the lists and the semi-randomized 

presentation of pairs during retrieval were counterbalanced across 

participants, utilizing eight possible permutations of list order and pair 

presentation. 

 

Participants were instructed to focus on the position (i.e. first, second etc in 

the list of eight) of the words just presented in the pair, relative to their position 

in the original list of eight words shown during encoding. This task was 

performed during a four-second interval of blank screen exposure.  In one third of 

the pairs, randomly distributed, the blank screen was followed by a question 

designed to ensure participants' sustained attention and task engagement. Two 

types of questions were presented with equal frequency (21 randomized trials each). 

The first type of question asked whether the first word in the current pair had 

appeared before the second word in the original list of eight, requiring a yes or 

no response. The second type of question asked  the semantic similarity 

between the two words on a scale from 1 to 4, with '4' indicating the highest 

level of similarity. Participants had two seconds to respond. The trial advanced 

either when the participant provided a response or automatically after the two-

second response window, followed by a  jittered inter-trial interval (ITI) from a 

truncated Poisson distribution with a mean of 2 s. 

The experiment, including both encoding and retrieval phases, was conducted 

twice, once for each list. The order of the lists and the semi-randomised 

presentation f word pairs during retrieval were counterbalanced across 

participants, resulting in eight possible permutations of list order and pair 

presentation presentation. 

Post- scan: Free recall and Similarity Judgment Tests 

Following the scanning session, participants were debriefed and subsequently 

completed a free recall test along with two similarity judgment tests (SJTs). In 
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the free recall test, participants were instructed to write down as many words 

as they could recall from each list, maintaining the correct order of presentation 

as seen during encoding.  

. 

The similarity judgment tests consisted of two components: a continuous rating 

of semantic similarity and a forced-choice selection task. In the continuous 

rating test, participants rated the semantic similarity of two words displayed on 

the screen on a scale from 1 to 9. In the second test, participants were shown 

three words simultaneously—one at the top of the screen and two at the 

bottom—and were asked to select which of the two bottom words was closest 

in meaning to the top word. Both tasks were self-paced, with no time limits 

imposed. 

In both SJTs, participants were presented with all possible combinations of 

words, including similarity test between words across two different lists 

comparisons between words from different lists (i.e., words that had never 

been presented or tested together during the initial list-learning task). 

 

Both the word list learning task and the SJTs were programmed using 

Psychtoolbox 3 for MATLAB (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). 

fMRI acquisition 

Structural and functional magnetic resonance imaging (fMRI) data were 

collected with a 3-Tesla scanner, with a 32-channel head coil. First, we 

acquired a structural brain scan (T1-weighted image) for each participant using 

MPRAGE (magnetisation-prepared rapid gradient echo sequence) with 

parameters set to: TR = 2530 ms, TE = 3.34 ms, flip angle = 7°, FoV = 256mm, 

voxel size = 1 x 1 x 1 mm3. We then moved to the acquisition of functional 

data. To minimise the signal loss in the medial temporal lobe and the 

orbitofrontal cortex region, set the slice angle at 30° relative to the anterior-

posterior commissure line. We used the following parameters for data 

acquisition: repetition time (TR): 3360 ms, echo time (TE) = 30ms, filp angle 

=90°, field of view (FoV) = 192mm. 48 slices were acquired in ascending order; 
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the slices were 2.5mm thick and the distance factor between slices was set to 

20%, with voxel sixe = 3 x3 x3 mm3. Between the two repetitions of the task, 

we also acquired a whole brain field map with dual echo-time images to correct 

for signal distortion, with parameters: TR = 1020 ms, TE1 = 10 ms, TE2 = 

12.46 ms, flip angle = 90°, FoV = 192mm, voxel size = 3 x 3 x 2 mm3 . During 

the task acquisition, we time-locked the stimuli presentation and button 

presses to the fMRI data. 

 

 

 

 

fMRI pre-processing 

The acquired data were first pre-processed using SPM12 

(RRID:SCR_007037). Functional imaging data were realigned and co-

registered to each subject's structural scan to account for motion correction. A 

high-pass filter with a cut-off of 128 seconds was applied to address slow 

signal drift. The data were then normalised to MNI space and smoothed with 

a 7 mm Gaussian kernel. To facilitate further first and second level whole-brain 

analysis using FMRIB’s Software library (FSL), I re-ran pre-processing data 

analysis using FSL (Constantinescu et al., 2016). Starting again from the raw 

MRI data,  I removed motion artefacts and applied a high-pass filter at 6 1/100 

Hz. Smoothing was performed with a gaussian filter of 7 mm, and I corrected 

for slice time acquisition differences. I used the acquired field maps to correct 

the geometric distortions in the EPI images. The EPI images were registered 

to the structural T-1 acquisition using boundary-based reconstruction, and 

subsequently normalised into standard space via non-linear registration 

(Montreal Neurological Institute – MNI152). 

 

fMRI statistical analysis  

In the following analyses, uncorrected results are reported with uncorrected 

cluster threshold of p<0.001 for explorative whole brain analyses, while a more 

lenient threshold of p<0.01 is used when there is a strong prior hypothesis for 

ERH and other small-volume para-hippocampal regions of interest, consistent 

https://scicrunch.org/resolver/SCR_007037
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with previous studies (see Constantinescu et al. 2016 for further 

methodological discussion).  

Clusters of voxels showing significant uncorrected activity differences in whole 

brain analyses were corrected for multiple comparisons using family-wise error 

correction at the cluster level (FWEc). For clusters within the ERH and other 

small-volume ROIs, multiple comparisons were corrected using family-wise 

error correction at the peak level (FWEp), accounting for the small volume and 

the high risk of signal loss in fMRI data collection from these regions (see 

Constantinescu et al., 2016). Further methodological details are provided in 

the following sub-sections for each individual analysis.  

Effect of temporal distance, semantic distance, and 2-D distance 

measures 

For each subject, I conducted first-level general linear models (GLMs) and 

second-level group analyses on the retrieval phase of the experiment to 

investigate the  effect of temporal distance (i.e. the distance between words’ 

positions in each list at encoding), semantic distance (i.e. distance between 

words over the first PCA component), and Euclidean distance between words 

in the 2D space.  

The analysis focused on the 4-seconds period of blank screen  follwoing the 

presentation of each pair of words, during which participants were instructed 

to consider the positions of the words in the learnt list.. To avoid confounds,  

epochs corresponding  to trials in which the same word repeated twice were 

excluded from the GLM model for parametric regressor; however, their main 

effect was still modelled as part of the GLM. I ran three separate GLMs: one 

with parametric regressors for temporal and semantic distances, one with a 

parametric regressor for Euclidean distance in the 2-D space, and one with a 

parametric regressor for cosine distance in the 2-D space. Each GLM was 

independently ran for each list at the first level, while at the second level the 2 

lists were kept as separate conditions for each subjects specifying not-

independency in the model.  
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At the second level, I performed a one-sample t-test across subjects and 

applied a p<0.001 uncorrected cluster-forming threshold to identify clusters of 

interest. For the sake of clarity and representation, a more lenient threshold of 

p<0.005 was also applied for some small ROIs (Figure 4.7).. Correction for 

multiple comparisons across voxels was performed at the cluster level, with a 

family-wise error FWE corrected threshold of p=0.05. 

 

Hexadirectional modulation analysis for ROIs 

I employed the methodology of Constantinescu et al. (2016) to identify brain 

regions susceptible to hexadirectional modulation. Using the pre-processed 

data in FSL, I conducted a first-level general linear model (GLM) analysis for 

each subject, incorporating parametric regressors for sine and cosine of the 

angle θ(t) formed by each trajectory between the two words presented in each 

trial during testing phase, with a 6-fold periodicity (60°): sin(6θ(t)) and 

cos(6θ(t)). The same GLM also included regressors for the main effects of 

each phase of the trial (stimuli, blank screen, questions, and response). I first 

divided the trials in even and odd, and modelled parametric coefficients for 

each half of the trials separately in the same GLM. This approach  aimed to 

identify brain regions whose activity is modulated by hexagonal symmetry, with 

these regressors providing coefficients with magnitude √𝛽𝑠𝑖𝑛
2 + 𝛽𝑐𝑜𝑠2  , 

representing the overall activity modulated by hexadirectional periodicity. To 

identify the brain areas modulated by a linear combination of the two 

regressors, 𝛽𝑠𝑖𝑛∗sin (6𝜃) + 𝛽𝑐𝑜𝑠∗cos (6𝜃), I used an F test. The result was 

transformed to a Z-statistic from F test for each subject via asymptotic 

approximation (http://www.fmrib.ox.ac.uk/analysis/techrep/tr00mj1/tr00mj1/). 

Subsequently, I conducted a one-sample t-test across subjects on the Z-

transformed F-scores in each voxel. I then applied a 3.1 cluster-forming 

threshold on the Z-transformed t-statistic (equivalent to p<0001 uncorrected) 

to identify clusters that were significantly modulated by the linear combination 

of cosine and sine regressors with hexagonal symmetry, correcting for multiple 

comparisons across voxels at the cluster level with a family-wise error FWE 

corrected threshold of p=0.05. To explore the modulation in the entorhinal 

http://www.fmrib.ox.ac.uk/analysis/techrep/tr00mj1/tr00mj1/
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cortex - a region with a strong prior hypothesis of involvement and 

susceptibility to higher signal loss and limited voxel availability due to its small 

size and location - I used a more lenient cluster-forming threshold of Z=2.3 

(equivalent to p<0.01 uncorrected, refer to Constantinescu et al. 2016, 

supplementary material). Using this method, I identified regions of interest 

(ROIs) for further GLM analyses to test for hexadirectional modulated activity. 

The significant clusters of interest where then binarized to obtain ROIs masks 

to extract the orientation of the grid cell population, as detailed in the 

subsequent section.  
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fMRI ROIs analysis  

Hexadirectional modulation analyses 

To test for hexadirectional modulation of fMRI activity, I first utilised binarized 

probabilistic entorhinal  cortex masks (left and right), thresholded at 20% 

probability,  from the Julich-Brain Cytoarchitectonic Atlas (Amunts et al., 2020). 

As in the previous analysis, the epoch of interest for each trial (i.e. each pair 

of words at retrieval) was the four seconds of blank screen following the 

presentation of the second word in the pair. Trials were divided into odd and 

even groups. Each epoch of interest was associated with a specific 

‘movement’ between words in the 2-D abstract space. Trialswhere the same 

word was presented twice were not modelled with parametric regressors, due 

to their ambiguous direction of ‘movement’, but were still included in the GLM.)  

Following the methodology of Doeller et al. (2010), I conducted two separate 

GLMs. In the first GLM, for each half of the trials, I modeled parametric 

regressors for the sine and cosine of θ with a 6-fold periodicity (cos(6θ) and 

sin(6θ)). This GLM produced two regressor coefficients for each half of the 

trials, β1 and β2. I then averaged these regressor coefficients within the 

binarized probabilistic ROIs (right and left entorhinal cortex) and used them to 

calculate the orientation angle of the grid population: φ = [arctan(β2/β1)] / 6. 

This process yielded two estimated angles of grid activity, one for each half of 

the trials. 

The direction of the line connecting the words in each trial corresponds to an 

angle θ specific  to the trial. Following the methodology of Doeller et al. (2010), 

I conducted two separate GLMs. In the first GLM, for each half of the trials, I 

modelled parametric regressors for sine and cosine of θ in 6-fold periodicity 

(cos(6θ) and sin(6θ)). This GLM produced two regressor coefficients for each 

half of the trials, β1 and β2. I then averagedthese regressor coefficients from 

the binarized probabilistic ROIs (right and left enthorinal cortex), and used 

them to calculate the angle of orientation of the grid population:   = 

[arctan(β2/β1)] / 6. With this step, This process yielded  two estimated angles 

of grid activity, one for each half of the trials. In the second GLM, I used the 

estimated angles from one half of the trials () to assess the strength of 
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hexadirectional modulation in the second half, using the parametric regressor:  

cos [6(𝜃 − 𝜑)]. The output of this second GLM was a regressor coefficient that 

quantified the degree of hexadirectional modulation of fMRI activity. The GLMs 

were separately for coefficient extracted from left and right ERH ROIs.The 

same approach was extended to a whole-brain analysis in to determine 

whether the activity in any area of the brain was significantly modulated by the 

grid angle, calculated using the binarized empirical mask previously obtained 

via the z-F statistic in FSL. This mask was applied in the same manner as the 

binarized probabilistic masks of the entorhinal cortex  to determine the grid 

population angle. 
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Results 

 

 

 

Figure 4.5. Whole brain analysis for distance over the temporal order axis in both 

lists, with cluster-forming-threshold p<0.001 uncorrected, and FWEp (family-wise 

error peak) corrected threshold p<0.05. Activity was found in the right entorhinal 

cortex (A), left middle temporal gyrus (B) and right superior temporal gyrus (C). These 

effects were mainly driven by activity in these areas in the mixed list condition (E), 

while the continuous list condition had significant activity in mPFC (D). Colour bars 

show the t-statistic. The whole brain analysis revealeda significant effect of 

temporal distance between words - defined as the difference in the position of the 

two words within each pair in the encoding list -  in the right entorhinal cortex, right 

superior temporal gyrus and left middle temporal gyrus in both lists (Fig. 4.5 

A, B and C). However, when analysed separately, the effect was stronger in 

mixed lists (condition 2, Fig. 4.5 E) compared to the continuous list (condition 

1, Fig. 4.5 D), where the only cluster surviving p<0.001 uncorrected was found 

in the left mPFC. 

From the same GLM, I identified brain activity modulated by  the semantic 

distance between words in each pair, calculated as the difference in position 

between words along the first PCA component of word2vec. This modulation 

was observed in the left cerebellum (Fig.4.6 A), right thalamus (Fig. 4.6 B) 

across both conditions.The Euclidean distance in the 2D space significantly 
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modulated clusters in the left hippocampus (Fig. 4.7 A) and in both right and 

left cerebellum (Fig.4.7 B). When examining the lists separately, condition 1, 

but not condition 2, showed a particularly strong effect of Euclidean distance 

on BOLD activity in the left hippocampus and left entorhinal cortex (Fig. 4.7 

C).  
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Figure 4.6. Whole brain analysis for distance over the first semantic PCA component 

axis in both lists, cluster-forming-threshold p<0.001, FWEp corrected (p<0.05). 

Activity was found in the left cerebellum (A) and right thalamus (B). No other 

significant areas of activity modulated by semantic distance regressor were found 

checking for list types separately. Colour bars show the T-statistic.  

 

 

Figure 4.7. Whole brain analysis for Euclidean distance - in 2D (temporal and 

semantic) space - parametric regressor. For both lists, I found significant cluster of 

activity in the left hippocampus (A), cluster-forming-threshold p<0.001, FWEp 

corrected (p<0.05) and in the cerebellum (B), cluster threshold p<0.001, FWEc 

(family-wise-error cluster) corrected at p<0.05. The continuous list alone showed 

significant activity in the left hippocampus and left entorhinal cortex (C), cluster 

threshold p<0.005, FWEp corrected (p<0.05). Colour bars show the t-statistic. 
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Figure 4.8. Whole brain analysis for hexadirectional modulation using the z-F 

statistic. A shows the (binarized) cluster corrected at a cluster threshold Z = 3.1 

(p=0.001) and p< 0.05  in mPFC (clusters-forming-threshold from Z-statistic = 3.1. 

Supra-threshold clusters were corrected for family-wise error using a cluster 

significance threshold of p = 0.05); B shows this at a cluster corrected threshold Z = 

2.3 (p=0.01) and p < 0.05; C shows the ERH cluster at cluster forming threshold Z = 

2.3, not thresholded at cluster level.  

 

The z-transformed F-statistic test for significant modulation of the linear 

combination of sin(6θ) and cos(6θ) of the angle θ between words in the 2D 

abstract space revealed significant clusters across participants and across 

lists in the mPFC (Fig. 4.8 A and 4.8 B) and in the ERH (Fig.4.8 C). The mPFC 

cluster was then binarized and used as a mask to extract grid population 

angles in whole-brain analyses for grid cell activity (Doeller et al. 2010, 

Constantinescu et al. 2016). The ERH cluster was used to validate the use of 

anatomical probabilistic ERH masks; however, it was not utilised as a binarized 

mask due to the small number of voxels included, likely a consequence of 

signal loss and the small size of the region.  
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Hexadirectional modulation: Probabilistic (anatomical) mask of left 

entorhinal cortex 

 

Figure 4.9. Regions showing significant hexadirectional modulation at the whole 

brain level using grid population angle from the left ERH anatomical mask (Amunts 

et. Al, 2020). In the continuous list in the left ERH (A) and left HPC (B) (cluster forming 

threshold p<0.005 FWEp corrected at p <0.05), and in both lists in left ERH (cluster 

forming threshold p <0.005 in C and p <0.01 in D, not cluster corrected). Colour bars 

show the t-statistic. 

 

I ran the hexadirectional modulation analysis using binarized probabilistic 

anatomical masks (Amunts et al., 2020) of the right and left ERH to calculate 

the grid population angle. In whole-brain analysis, I found clusters of activity 

significantly modulated by 6-fold symmetry in the left ERH and left HPC in list 

1 (Fig.4.9 A, B), and in left ERH across both lists (Fig. 4.9 D, E). 
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Hexadirectional modulation: Empirical mask of mPFC 

 

Figure 4.10. Regions showing significant hexadirectional modulation at the whole 

brain level using grid population angle from empirical binarised mPFC mask at 

threshold Z=3.1 and FWEc p <0.05. In both lists in the left ERH, displayed with p 

<0.001 (A) and p <0.005 (B) thresholds, uncorrected. Colour bars show the T-statistic. 

 

The same analysis was ran using the empirical mask of mPFC at threshold 

3.1 (Fig. 4.8 A) to calculate the grid angle. Whole-brain analysis found 

significant clusters of hexadirectionally modulated activity in the left ERH 

across lists (Fig. 4.10).  
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Discussion 

 

With this work, I investigated how temporal and semantic domains are 

integrated within declarative memory. The interaction between temporal and 

semantic contexts was conceptualised as a specific case of bidimensional 

space, allowingme to hypothesise and test whether the same brain area and 

neuronal mechanism fundamental to spatial memory and navigation might 

also be involved in integrating two different abstract contextual dimensions. 

While previous studies on navigation in abstract spaces required the 

participants to undergo task-specific training to establish the two relevant 

spatial dimensions (Constantinescu et al. 2016, Vigano et al. 2021), this study 

aimed to investigate whether the similar processes are engaged in 

multidomain spaces (time and semantics) during a naturalistic task, without 

the need for a task-specific training. Although preliminary, the results suggest 

a potential involvement of grid cell populations and 6-fold symmetry 

modulation during the retrieval of one-dimensional word lists. This work 

contributes to the growing body of research on abstract navigation and 

cognitive maps across various domains. Notably, this study is the first to 

investigate how two separate domains, namely temporal order and word 

semantics, can be integrated into a unified 2D abstract map of concepts. 

Interestingly, the preliminary findings indicate hexadirectional modulation of 

fMRI signal in regions known to play an important role in spatial navigation 

(ERH, HPC and mPFC) during the recollection of sequences of words. 

Moreover, this effect appears to be more pronounced in lists of words from the 

same taxonomical domain with a more obvious one-dimensional order over 

the size domain (condition one). This may suggest that the involvement of grid 

cell population and bidimensional organisation of conceptual spaces might 

appear in the real world – without any previous task-specific training – when 

the dimensions aresalient for the specific task tested. Additionally, a left-

lateralization of most results aligns with the known hemispheric language 

dominance in right-handed participants. Examining temporal and semantic 

modulation independently, additional ROIs were identified in the whole-brain 

analysis. Temporal modulation of activity in the right superior temporal gyrus 
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aligns with previous findings that highlight this area's role in coding time and 

durations (Cantarella et al., 2023; Morillon et al., 2009), while the left middle 

temporal gyrus is involved in reading and speech production. Regarding 

semantic distance modulation of fMRI activity, activation in the left cerebellum 

and right hippocampus suggests that the non-dominant brain  may support 

language semantic processing with visuospatial organisational information (on 

which the first PCA component of semantic distances is built), which is 

primarily encoded in non-dominant areas (right hippocampus and left 

cerebellum). Additional representation similarities analyses might be beneficial 

to further investigate how different measures of semantic similarity and 

temporal distances affect fMRI brain activity.Further planned analyses 

The aim of this chapter was to outline a novel approach to studying grid cell 

activities outside the domain of spatial navigation. While the results presented 

here suggest a possible involvement of hippocampal, parahippocampal areas 

and mPFC in supporting grid-like hexadirectional modulation during abstract 

navigation of a multidomain 2D space, they are not intended to be conclusive. 

The analyses and results presented are only the first exploratory steps in a 

broaderinvestigation and hypothesis testing. To build upon this work, I plan ot 

conduct additional tests to validate the preliminary findings and better 

understand the underlying mechanisms.  

Further analyses will be required to validate the preliminary results and explore 

the mechanisms underlying the reported findings. First, the same 

hexadirectional modulation analysis will be completed to test for other 

symmetries (4-, 5-, 7- and 8- fold symmetries), and verify that the results are 

specific for 6-fold (hexadirectional) symmetries. Additionally, I plan to run a 

GLM to test for on-axes versus off-axes (aligned vs misaligned) modulation of 

fMRI activity (Doeller et al. 2010, Fig. 3e). This latter analysis aims to 

determine how the average fMRI signal for ROIs changes for angles aligned 

with the computed grid population angle versus misaligned angles compared 

to baseline, thereby enhancing our understanding of the mechanisms 

underlying the results, if confirmed. 
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To improve statistical power and refine the model design, I plan to model the 

preliminary analyses as a unified GLM at the first level for each participant, 

where each list is modelled as a different condition, rather than running two 

separate first-level GLMs per subject (one for each list). Moreover, correlation 

analyses will be conducted to investigate whether the strength of the 

hexadirectional modulatory effect correlates with learning performance across 

participants.  

The data from the similarity judgment tests (SJTs) can be used to create 

subject-specific semantic graphs. This approach will allow for the generation 

of subject-tailored semantic dimensions to replace the generic word2vec first 

PCA component, enabling the creation of personalized 2D graphs for each 

participant and the re-running of analyses based on individual semantic 

structures. These results can then be compared with those derived from the 

generic word2vec-informed semantic structure.Thus far, all discussed 

analyses have focused on the retrieval phase of the experiment. However, the 

encoding phase, during which participants learned the word lists, can also be 

of interest. In this phase, I aim to observe how learning the words affected the 

representation similarity between them. By including trails where the same 

word was repeated twice during retrieval, it will be possible to run 

representation similarity analysis on both encoding and retrieval data to 

analyse how the temporal structure provided by the order of words in the list 

influences the brain's representation of words. Additionally, the same analysis 

can be used to identify representational similarities based on measures of 

semantic distance (first principal component, cosine and Euclidean distance 

in word2vec space), and determine which brain areas are responsible for 

semantic representation for words from the same and different semantic 

domains. 

If confirmed, these findings represent a substantial and innovative contribution 

to the study of cognitive maps and abstract navigation in humans, particularly 

in the context of combining different domains. By using a participant-specific 

similarity judgment tests to create individual semantic structures, we can better 

understand whether explicit conscious access to semantic structure of 

concepts  more accurately reflects the map-like organisation of stimuli. By 
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testing alternative methods to detect hexadirectional modulation (Bellmund et 

al., 2016), we will also be able to explore how different methodologies might 

influence thefindings presented here. Interestingly, both empirical masks of the 

mPFC (Constantinescu et al., 2016) and probabilistic maps of the ERH 

(Convertino et al., 2023) provided coherent results, suggesting that the 

observed effects are robust across different approaches.Further studies would 

be beneficial to investigate the involvement of special coding in real-world 

semantic and temporal information independentl. The rich nature of natural 

language processing and the potential of nested temporal structures open the 

field to the possibility of testing complex hypotheses and a variety of 

experimental conditions.  

In summary, these preliminary findings offer new insight into the role of spatial 

coding in abstract cognitive maps across domains in real-world conditions. 

Additionally, they suggest a potential contribution of cell populations and brain 

structures typically involved in spatial cognition to language processing and 

mnemonic strategies for linguistic stimuli.  
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Chapter 5. General Discussion and Future 

Directions 

 

This work provided a multi-modality approach to the experimental investigation 

and theoretical conceptualisation of context-bound memory reconstruction 

and navigation. Thanks to the use of different computational frameworks, MEG 

and fMRI studies, this thesis challenges the idea of semantic and episodic 

memory as fully separated aspects of declarative memory; here, I explored the 

possibility of a more integrated and nuanced system, which makes use of 

overlapping computational strategies and brain structures to flexibly access 

information.  

In Chapter 2.1, I implemented a modified version of the DRM model and 

investigated whether behavioural measures of pattern completion could 

provide better understanding of the mechanism involved in the false memory 

task.  The findings showed that false memory can be understood as pattern 

completion of lists reflecting influence from both temporal and semantic 

context. This work proposes an easy behavioural implementation of the DRM 

paradigm, which can be flexibly manipulated to better understand the 

underline mechanisms of interference and interaction between episodic and 

semantic aspects of declarative memory. Then, I developed different 

computational models of false memory in the frameworks of auto-associative 

Hopfield dynamics, successor representation and active inference. These 

models succeed in reproducing the phenomenology of the DRM false memory 

task in a controlled mechanistic manner. Crucially, at different levels of 

computational description, these models coherently support the hypothesis of 

a pattern completion mechanism, typically associated with the hippocampal 

formation and episodic memory, involved in the processes of integration and 

interference of semantic and episodic memory. The auto-associative Hopfield 

network model (Chapter 2.2) reproduces the pattern completion effect driven 

by neurons in the CA3 area of the hippocampus, re-building the synaptic 

structure of the area and its mechanism at a neuronal level.  
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Moving towards a higher level of abstraction, the temporal context model, in 

its successor representation (SR) form (Chapter 2.3), allows to bring the 

potential mechanism of integration between continuous time-based 

associations and discretised pre-acquired semantic knowledge e to the 

broader field of reward-driven algorithms. This opens to exciting opportunities 

to further implement SR algorithms to account for the role of different aspects 

of declarative memory and pre-acquired knowledge in planning and goal-

directed behaviour. Finally, I made use of the active inference framework to 

better understand the false memory effect as Bayesian optimal behaviour 

(Chapter 2 Appendix 2). Overall, these models provide a multi-perspective 

approach to an integrated declarative memory system. In future work, I plan 

to further implement these models to account for different time scales (from 

item integration to episodes for narrative construction), and to test them with 

hypothesis -driven experimental work and model fitting.  

Thus far this thesis successfully built the foundation to study temporal and 

semantic contexts in a rigorous, mechanistic manner. However, the most 

fundamental form of context, i.e. space, provided the key to explore the 

foundational cognitive processes and underline brain computations that 

account for memory and navigations in the human brain. I first validated MEG 

as a powerful non-invasive method to study grid cell activity in humans in theta 

frequency. Using an MEG VR experimental approach (Chapter 3), we were 

also able to develop cutting edge computational data analysis to study grid 

population activity in MEG recording.  Moreover, the stability of the grid activity 

correlated with spatial memory performance in healthy volunteers.   

Schizophrenia offers an interesting pathological model to explore the 

potentially overlapping mechanisms supporting spatial navigation and abstract 

inference. I verified that individuals with schizophrenia display diminished 

spatial memory and reduced theta power associated with movement in a 

virtual spatial navigation task, compared to a matched control group. I also 

showed for the first time that schizophrenia is associated with a reduced 

degree of hexadirectional modulation of theta power in the right entorhinal 

cortex, a phenomenon linked to the stable firing patterns of grid cells. This 

research marks the inaugural identification of hexadirectional theta modulation 
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in magnetoencephalography (MEG), expanding upon prior findings of similar 

patterns observed through various neuroimaging techniques, thereby 

highlighting the intricate connections between grid cell function, theta 

oscillations, and spatial cognition.  

These findings are also suggestive of a potential causative role of impaired 

grid coding in inferential mechanisms and relational knowledge impairment 

seen in neuropsychiatric conditions.  This dysfunction could be attributed to 

instabilities in attractor network dynamics, potentially exacerbated by 

alterations in receptor densities affecting neural stability and reliance on 

different learning mechanisms. Although further work is needed to better 

understand the pathophysiological involvement of navigation systems in a 

variety of multi-domain cognitive functions in schizophrenia, this work 

successfully showed how overlapping mechanisms and brain cell populations 

flexibly account for multiple aspects of declarative memory and can be directly 

studied with a variety of neuroimaging approaches.  

The different explorative computational and experimental approaches 

previously explored in this work informed the final experimental chapter of this 

thesis, Chapter 4, where I built an fMRI experiment to investigate how 

semantic, temporal, and spatial information is processed and integrated into a 

coherent unified map by brain dynamics. To do so, I built a simple controlled 

task of sequence memory for word lists, where the word presented in each list 

were implicitly organised to cover a 2-dimensional abstract map built on 

semantic and temporal distance coordinates. Unlike previous investigations 

that necessitated task-specific training for abstract space navigation, this 

research investigated the naturalistic integration of time and semantics without 

such prerequisites.  

My preliminary findings indicate that grid cell populations and their 

hexadirectional signal modulation may play a crucial role in the retrieval of 

sequentially listed words, particularly within semantically coherent domains. 

This suggests that the cognitive mechanisms underlying spatial navigation 

may also support the organization of abstract conceptual spaces in a 

bidimensional multidomain context, even in tasks without explicit training. 
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Significantly, these observations reveal hexadirectional modulation in brain 

regions previously linked to spatial navigation (entorhinal cortex, 

hippocampus, and medial prefrontal cortex) during word sequence 

recollection. These findings hint at the spontaneous emergence of 

bidimensional conceptual maps in real-world settings, particularly when task 

dimensions are intuitively salient. Further work will focus on validating these 

findings and exploring additional measures to calculate the extent and 

localisation of grid-like activities in different brain regions in encoding as well 

as retrieval. Overall, this work positions itself at the forefront of research into 

cognitive maps and abstract navigation, proposing new hypothesis on how 

spatial coding principles are applied across diverse cognitive domains.  

In this work, I attempted to investigate the computational, cognitive and 

neuronal mechanisms involved in different types of contexts, spanning across 

spatial, temporal and semantic contexts. I tried to contribute to implementing 

our understanding of each individual context and of their interactions in 

memory. This journey was guided by a particular interest in the role of the 

hippocampus, entorhinal cortex, parahippocampal areas and medial prefrontal 

cortex in memory and navigation, which informed both hypotheses and 

experimental designs, as well as data analysis strategies.  

Overall, this thesis proposes alternative approaches, computational 

mechanisms, and experimental techniques to investigate the role of multi 

modal contexts in declarative memory, and the integration of traditionally 

differentiated aspects of it, accounting for the nuanced complexity of 

overlapping cognitive dynamics in the human brain.  
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