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Abstract: Oxygen diffusion controlled combustion occurs when local oxygen 13 

transport is slower than the chemistry, commonly found in porous combustible 14 

material or combustible material embedded within an inert porous medium. This mode 15 

of combustion, such as smouldering, can pose dangerous fire risks and also be 16 

harnessed in environmentally beneficial applications. However, the oxygen diffusion 17 

limitation is poorly understood in all contexts and persists as a key knowledge gap. 18 

Quantitative analysis of oxygen diffusion effects is therefore crucial for understanding 19 

the combustion behavior of combustible porous media and developing precise 20 

smouldering simulation models. In this paper, a reactive transport model incorporating 21 

both oxygen diffusion and chemical consumption was developed. Using coal as the 22 

model fuel, the impacts of key parameters on global mass loss during the one-23 

dimensional diffusion combustion of coal samples were simulated and compared with 24 

TGA experiments conducted within a range of oxygen concentrations between 3-21%. 25 

Using this method, key kinetic and oxygen diffusion parameters were obtained within 26 

reasonable ranges by using a genetic algorithm optimization method. With these 27 

optimized parameters, the local oxygen distribution profiles in the samples at different 28 

inlet oxygen concentrations were simulated. The results indicate that oxygen diffusion 29 
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can lead to large oxygen concentration differences within the coal samples, exceeding 30 

63% of the inlet oxygen concentration. These oxygen differences can impact the local 31 

chemistry throughout the sample, and lead to fundamental errors in analyzing global 32 

kinetic analyses, if the transport effects are not considered. Altogether, this study 33 

delivers new insights into a potentially rate-limiting phenomenon that is relevant in 34 

progressing knowledge on many fire problems and engineering applications. 35 

Keywords: Oxygen diffusion effects; Kinetics; Intrinsic mechanism; Genetic 36 

Algorithm; TGA 37 

Nomenclature 

Y mass fraction  
m, n reaction order 
CO2 oxygen concentration, % 
A pre-exponential factor, 1/s 
E apparent activation energy, kJ/mol 
R ideal gas constant, r = 8.314 J/mol-k 
T temperature, k 
ṁ' mass loss rate, kg/kg-s 

m mass of solid material, kg/kg 
t time, s 
N amount of TGA data 
D oxygen diffusivity, m2/s 
Δt time step, s 
h thickness of coal sample in TGA experiments 
w thickness discretization amounts 
ρg gas density, kg/m3 

r radius of crucible, r = 2.75mm 

ĊO2
'  oxygen chemical consumption rate, 1/kg-s 

p temporal discretization amounts 
k oxygen diffusion exponent 

Greeks 

v stoichiometric coefficients of reaction, kg/kg 
ω̇' reaction rate, 1/kg-s 
φ calculation error, % 
ε porosity 

Subscripts 
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O2 oxygen 
ash ash 
eg exhaust gas 
exp experimental results 
cal calculated results 

1. Introduction 38 

Combustion within porous solid materials is complicated because of the potential 39 

coupling of heat and mass transport with degradation chemistry [1-3]. These systems 40 

may be comprised of combustible solids that are (i) themselves porous or (ii) 41 

embedded within an inert porous matrix. Recently, combustion processes occurring 42 

within a porous matrix or with porous materials, such as smouldering, have become a 43 

viable means for various environmentally beneficial applications – including waste-44 

to-energy [4-6], bio-char production [7, 8], and contaminated soil remediation [9-12]. 45 

While oxygen can influence these combustion processes through chemistry, diffusion, 46 

and convection within the pores, local diffusion transport typically limits the rate of 47 

smouldering, resulting in the characteristic combustion time scales are consistent with 48 

diffusive processes [1]. Therefore, understanding the role of oxygen diffusion in 49 

thermal degradation of combustible porous media is paramount. 50 

Extensive studies have explored the global impact of particle size (which affects 51 

porosity and consequently oxygen diffusion transport) on the degradation process 52 

from the perspectives of developing degradation kinetic mechanisms [13], 53 

characterizing gas products [14], and assessing the influence of micro pores [15]. 54 

However, there is limited research on the effects of local oxygen diffusion during 55 

thermal degradation of combustible porous media. 56 

The thermal degradation induced mass loss of most complex organic solids often 57 

exhibits continuous and smooth progression in time that – in the absence of mass 58 

transport effects – can be described by modelling competing endothermic and 59 

exothermic reactions [1]. Different methodologies have been developed to isolate the 60 

key reaction steps but, given the integral nature of mass loss, it is very challenging to 61 

accurately delineate these reactions [16-19]. If oxygen diffusion also needs to be 62 



4 
 

considered, then it is even more complicated to elucidate the competing nature of 63 

oxygen diffusion and degradation chemistry. 64 

Dakka et al. [20] observed significant variations in the components of 65 

thermogravimetric analysis (TGA) exhaust gases and provided a comprehensive 66 

explanation of mass transport effects on poly methyl methacrylate (PMMA) 67 

degradation. However, due to the fuel particle size, their study could only investigate 68 

the roles played by oxygen diffusion transport and inert degradation gas transport 69 

within different temperature ranges and with a single particle size. Song et al. [21] 70 

investigated the influences of external diffusion, inter-particle diffusion, and pore 71 

diffusion on kinetic parameters derived from TGA experiments. A strong reduction in 72 

the apparent reaction rate, up to 25.5%, was observed due to inter-particle oxygen 73 

diffusion effects. Given the assumption that the intrinsic kinetic parameters remain 74 

constant with oxygen concentrations, these results were attributed to oxygen diffusion 75 

effects. These diffusion effects resulted in lower local oxygen concentrations than 76 

those specified experimentally for the flow. Furthermore, when adjusting the inlet 77 

oxygen concentration in TGA experiments, the kinetic parameters obtained using the 78 

same method exhibited significant variations [22-24], providing additional evidence 79 

of oxygen diffusion effects. 80 

Despite the insight provided by the above studies on oxygen diffusion effects, there 81 

are no systematic or quantitative analyses that investigate the thermal degradation 82 

dynamics of combustible porous materials under oxygen-diffusion-controlled 83 

conditions. This knowledge gap hinders the accurate development of predictive tools 84 

to understand fundamental combustion behavior relevant to both smouldering fire 85 

problems and applications.  86 

This study aims to quantitatively analyze the influence of oxygen diffusion effects 87 

on the thermal degradation of combustible porous media, mainly focusing on coal. A 88 

novel dynamic modeling method was developed, which simulated both oxygen 89 

diffusion and chemical consumption during coal combustion. Using this model, the 90 

oxygen distribution profiles during one-dimensional combustion of coal samples at 91 
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different environmental oxygen concentrations were obtained. The results provide 92 

valuable insights into the role that oxygen diffusion can play thermal degradation, 93 

which is relevant for a wide range of thermal degradation processes. 94 

2. Methodology 95 

2.1 Experimental samples and procedures 96 

Coal was selected as the model fuel for this study due to its morphology and the 97 

comprehensive nature of the existing data. Bituminous coal was used from the NO.205 98 

working face of the Xiegou coal mine in Shanxi, China. The proximate analysis of the 99 

coal sample showed 2.98%, 13.34%, 29.4%, and 54.28% mass fractions for moisture, 100 

ash, volatile matter, and fixed carbon, respectively. In addition, the ultimate analysis 101 

showed 83.27%, 4.72%, 10.51%, 0.19%, and 1.31% mass fractions for C, H, O, S, 102 

and N, respectively. Raw coal was collected from the site and sealed for low-103 

temperature storage prior to experimentation. When tested, the coal was stripped of 104 

its outermost layer and ground into fine particulates in a vacuum glovebox. Following 105 

best practices [21], particle sizes 0.048 to 0.075 mm were used to minimize the 106 

interference of inert degradation products transport (inside sample particles) on coal 107 

combustion. 108 

The reference experimental configuration is the TGA; therefore, this experimental 109 

approach was followed here. An SDT-Q600 synchronous thermal analyzer (TA, 110 

American) was used to continuously monitor mass loss and heat flow during coal 111 

combustion. Fig.1 shows the configuration inside TGA analyzer and the experimental 112 

systems, which consist of a gas supply system, thermogravimetric system, and data 113 

processing system. By adjusting the mass flow ratio of oxygen and nitrogen, the inlet 114 

oxygen concentration was varied between 21%, 16%, 12%, 8%, 5%, and 3%. A 115 

10±0.01 mg coal sample (~ 0.7 mm thick in a Φ5.5×4 mm alumina crucible) was 116 

weighed for each test. The gas flow rate was 100 ml/min. The initial temperature was 117 

30°C, and the temperature was increased to 800°C at 5°C/min. Each test was repeated 118 

three times, and the empty crucible data was subtracted from the mass loss results. 119 
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 120 

Fig.1 Schematic of the TGA experimental system 121 

2.2 Calculation methods 122 

Coal degradation chemistry at low temperatures is governed by slow chemical 123 

adsorption of oxygen, and therefore not strongly influenced by oxygen diffusion. 124 

Therefore, this study focused mainly on the oxygen diffusion effects at high 125 

temperatures. 126 

A one-step equation (Eq. 1) was used to describe coal combustion at high 127 

temperatures: 128 

Coal	+	vO2Oxygen	→	vash	Ash	+	veg	Exhaust gas    (1) 129 

Assuming constant gas pressure in TGA experiments, the reaction rate of Eq.1 is 130 

only a function of temperature. This is expressed using an n-order mechanism for 131 

reactant concentrations and the Arrhenius equation: 132 

ω̇'	=	YcoalmCO2
nAe-E RT⁄      (2) 133 

It is well-established that coal undergoes many competing endothermic and 134 

exothermic degradation reactions [16, 17, 25, 26]. However, a simplified global one-135 

step reaction was chosen to explore the potential for oxygen diffusive effects during 136 

combustion at high temperatures. Because transport phenomena are often neglected 137 

in TGA analyses, this study warranted simplified chemistry. 138 
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Following Eq. 1, Eq. 3 was derived to calculate the mass loss rate (DTG) from the 139 

TGA results. Eq.4 was used to calculate the remaining solid mass (TG) following the 140 

explicit time integration method. 141 

ṁcal'  = ṁcoal'  + ṁash'  = (1 - vash)ω̇'mcoal      (3) 142 

(mcal)ti 	=	(mcoal	+	mash)ti-1+	%ṁcal
' &

ti-1
∆t      (4) 143 

Based on Eq. 3 and Eq. 4, iterative calculations were performed on the time series 144 

to obtain DTG and TG curves with respect to temperature, i.e., the ‘calculated’ results. 145 

These calculated results were then compared against measured results using a Genetic 146 

Algorithm (GA) to determine optimal values of the unknown kinetic parameters in 147 

Eqs.1-4 to minimize the calculation error (Eq. 5) between the calculated and 148 

experimental results. 149 

                           	φ = 0.5∙ 1
N
∑ ()mexp	- mcal

mexp
)
ti

+ )ṁexp
' 	- ṁcal

'

ṁexp
' )

ti
*  × 100N

	1      (5) 150 

While routine kinetic analyses using GA methods assume uniform spatial reactant 151 

concentrations (e.g., like in Section 3.1), the diffusion analyses in this study 152 

necessitated spatial discretization. In the TGA experiments, the horizontal coal sample 153 

length (5.5mm) was much larger than the vertical length (0.7mm) – see Fig.2. 154 

Therefore, the governing reactive transport equation was expressed in one dimension. 155 

Eq. 6 presents the governing equation with one-dimensional oxygen diffusive 156 

transport and chemical degradation: 157 

                                             
∂CO2
∂t

 = D(T)
∂2CO2
∂x2

 + ĊO2
'     (6) 158 

where the temperature-sensitive oxygen diffusion coefficient is given by 159 

D(T)=10kT3/2, and the oxygen consumption rate is given by ĊO2
' =vO2∙ṁcoal

'  following 160 

Eq.1.  161 

Along the downward combustion direction in Fig.2, the thickness of the coal sample 162 

was evenly discretized into segments, 1 to w. The diffusion rate of oxygen in different 163 

segments was calculated by Eq.7: 164 



8 
 

                       D(T)
∂2CO2,j
∂x2

 = 

⎩
⎪
⎨

⎪
⎧ D(T)

C0	- 2CO2,	j + CO2,	j+1
∆x2

,    j = 1

D(T)
CO2,	j-1	- 2CO2,	j + CO2,	j+1

∆x2
, 1 < j < w

           D(T)
CO2,	j-1	- CO2,	j

∆x2
,      j = w

        (7) 165 

 166 

Fig.2 Schematic of coal sample diffusion and combustion in TGA experiment and 167 

the model discretization. 168 

With the influence of oxygen diffusion, the segments near the top of the crucible 169 

experienced higher oxygen concentrations and faster reactions. Conversely, 170 

downward within the coal sample, lower oxygen concentrations led to slower 171 

reactions. The coal consumption rate within each segment was determined based on 172 

the local oxygen concentration and the relative coal content, as described in Eq.8. 173 

When both the coal content and oxygen concentration are sufficient, the coal 174 

consumption rate is controlled by chemistry, however, when either the coal content or 175 

oxygen concentration is insufficient, the coal consumption rate is determined by the 176 

lesser of the two. These rate descriptions in Eq.8 were necessary to avoid numerical 177 

errors at low oxygen and coal concentrations. 178 

ṁcoal' 	=	

⎩
⎪
⎨

⎪
⎧ -ω̇'∙mcoal																																					

-
ερgπr

2CO2
vO2∆t

,				ω̇'mcoal∆t	<	mcoal	 

- mcoal
∆t

,								ĊO2∆t	<	CO2

     (8) 179 

Because the oxygen diffusivity and stoichiometry were unknown, it was necessary 180 

to obtain the optimal values for the oxygen diffusion factor (k) and stoichiometric 181 
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coefficient (vO2) in all calculations accounting for diffusion. A forward solution 182 

method was used. First, these two parameters were bounded by reasonable ranges. 183 

The oxygen diffusion coefficient (D) was bounded between 10-4 to 10-6 m²/s, which 184 

resulted in a k search range between -10.5 to -9. The search range for vO2 was between 185 

0 to 3. Then, both parameters were evaluated one by one with a step size of 0.1 within 186 

the corresponding search ranges to calculate the mass loss and fitting error against 187 

experimental results (Eq.5). Finally, the optimal parameters were identified by 188 

minimizing the fitting errors. Note that the optimal kinetic parameters identified in 189 

Section 3.1 (i.e., 𝑚 , 𝑛 , 𝐴 , and 𝐸  in Eq.2) were used in all reactive transport 190 

calculations. 191 

2.3   Note on temporal discretization, Δt 192 

While the TGA data was collected every 0.5 s, the calculation time step was defined 193 

as Δt = 0.5/p. The value of p was chosen to guard against numerical errors (i.e., by 194 

satisfying Eq.9), where p was related to the inlet oxygen concentrations and the 195 

number of spatial segments (w). To ensure the equations were rigorously discretized 196 

in time, the value of p was multiplied by 1.5, as shown in Eq.10. Since the range of 197 

oxygen diffusion coefficients chosen was between 10-4 and 10-6 m²/s, Dmax in Eq.10 198 

was set to 10-4 m²/s to achieve a sufficiently fine time discretization.  199 

D
∆CO2
(h/w)	2

	∙	0.5	<	p       (9) 200 

p	=	1.5	∙	Dmax
∆CO2
(h/w)	2

	∙	0.5      (10) 201 

3. Results and discussion 202 

3.1   TGA results 203 

Fig.3 shows the measured TG and DTG curves from coal samples under different 204 

inlet oxygen concentrations. As shown in Fig.3, with decreasing oxygen 205 

concentration, the peak reactions gradually shifted towards higher temperatures with 206 

slower reaction rates. Fig.3 shows that the key trends in these TG curves can be 207 

delineated into three stages. Stages Ⅰ and Ⅱ correspond to moisture evaporation and 208 

oxygen adsorption, respectively, which both exhibited slow reaction rates. Variations 209 
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in these stages were minimal and primarily attributed to sample variability, and only 210 

slightly influenced by oxygen diffusion. Stage Ⅲ represents high temperature coal 211 

combustion, where the reaction rate sharply increased, and the influence of oxygen 212 

diffusion was most significant. This study therefore focused on the impact of oxygen 213 

diffusion effects in Stage Ⅲ. 214 

 215 

Fig.3 TG and DTG curves obtained with varying inlet oxygen concentrations. Solid 216 

and dashed lines represent TG and DTG results, respectively. 217 

In most TGA studies without considering oxygen diffusion, the kinetic parameters 218 

obtained at ambient oxygen concentration (i.e., 21%) are used to define the 219 

combustion kinetic parameters [17, 25-28]. This classic approach was used also in this 220 

study. That is, the effect of oxygen diffusion was assumed to be negligible at ambient 221 

oxygen inlet concentration. A GA reverse solving method based on Eqs.1-5 was used 222 

to obtain the optimal kinetic parameters (i.e., 𝑚, 𝑛, 𝐴, and 𝐸 in Eq.2). As shown in 223 

Fig.4a, the experimental and calculated TG and DTG curves at these conditions were 224 

well-aligned. The TG and DTG curves at lower inlet oxygen concentrations were then 225 

calculated using these ambient kinetic parameters without oxygen diffusion effects.  226 

Fig.4b shows that the calculated reaction rates at lower oxygen inlet concentrations 227 

were higher than measured, and the fittings worsened as oxygen concentrations 228 

decreased. This poor fitting could be due to two reasons: 1) the obtained kinetic 229 

parameters were overestimated compared to the actual reaction mechanisms at low 230 
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oxygen concentrations; 2) the actual oxygen concentrations throughout the coal 231 

samples were lower than the inlet oxygen concentrations due to oxygen diffusion 232 

effects. While 1) would require a more rigorous approach in estimating the kinetic 233 

parameters, e.g., as in [25-27], 2) would require coupled reactive transport calculations 234 

(i.e., as shown in Section 3.2). 235 

 236 

Fig.4 TG-DTG curves measured and calculated using optimal kinetic parameters 237 

from coal combustion at ambient conditions at various oxygen concentrations: (a) 238 

21% and (b) 3%, 8%, and 16%. The table in (a) notes optimized kinetic parameters 239 

and GA search ranges, and the solid and dashed lines represent measured and 240 

calculated results, respectively. Only three oxygen concentrations are shown in (b) 241 

for clarity; where the results for 12% and 5% followed the trends shown. 242 

3.2 Optimizing diffusion parameters  243 



12 
 

To evaluate the optimum number of segments (w), this study evaluated the 244 

sensitivities to w = 2, 3, 5, 10, 15, and 20. Fig.5a shows the calculation errors (Eq.5) 245 

at different k and vO2 combinations with 16% inlet oxygen concentration and w = 10. 246 

The results under other oxygen concentrations were similar. From Fig.5a, multiple 247 

optimal vO2 and k combinations can be identified that minimize calculation errors. 248 

Moreover, the minimum calculation errors under different optimal vO2 and k 249 

combinations are nearly equal. Fig.5b shows multiple optimal combinations at 16% 250 

oxygen concentration and different w. This graph shows that the relationship between 251 

the optimal combinations is relatively insensitive to spatial discretization when w ≥ 252 

10. Therefore, the value of w in this study was set to 10. Fig.5c shows optimal 253 

combinations under different oxygen concentrations with w = 10. This figure shows 254 

that there is an exponential relationship between k and vO2. 255 

Figs.5b and 5c underscore a key relationship, i.e., the optimal vO2 increases with k. 256 

Physically, this implies that the oxygen consumption increases with the oxygen 257 

diffusion rate. This relationship reflects the fact that GA optimization methods do not 258 

reveal unique solutions. However, these figures do show excellent fitting results 259 

across a reasonable range of stoichiometry and diffusivity values. This is a key result 260 

that suggests how oxygen diffusion may indeed influence TGA results. 261 

    262 
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 263 

Fig.5 Calculated results under different parameters. (a) Calculation errors under 264 

different k and vO2 for 16% oxygen concentration with w=10; (b) optimal k and vO2 265 

combinations at 16% oxygen concentration for different values of w; (c) optimal k 266 

and vO2 combinations under various oxygen concentrations with w=10. 267 

3.3   Oxygen concentration distributions 268 

Fig.6 shows the calculated TG and DTG curves with oxygen diffusion effects at 269 

minimal calculation errors. This figure shows great improvements in the fittings 270 

compared to Fig.4b, where only chemistry was considered. However, there were still 271 

slight deviations, especially near the maximum reaction rates, and the fitting error 272 

increased with decreasing oxygen concentrations. This poor fitting may be due to the 273 

model simplifications. For example, a one-step equation was used to describe the 274 

complex coal combustion process, assuming a constant oxygen stoichiometric 275 

coefficient under varying oxygen concentrations. Moreover, the optimal kinetic 276 

parameters were obtained at 21% oxygen concentration without considering oxygen 277 

diffusion effects. Nevertheless, the improvements between Fig.4b and Fig.6 do 278 

demonstrate how oxygen diffusion effects can influence thermal degradation of 279 

combustible porous media in TGA experiments. 280 
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 281 

Fig.6 TG-DTG curves measured and calculated with oxygen diffusion effects at 282 

various oxygen concentrations. The solid and dashed lines represent measured and 283 

calculated results, respectively. Only three oxygen concentrations are shown for 284 

clarity; where the results for 12% and 5% followed the trends shown.  285 

Fig.7a shows the calculated oxygen concentration profiles with temperature at 286 

multiple locations and different optimal vO2 and k combinations at 16% inlet oxygen 287 

concentration. This figure shows that, at the same temperature (and time), the oxygen 288 

concentrations gradually decreased within the sample. Within one location, the 289 

oxygen concentration i) first decreases, as oxygen is consumed via increasingly 290 

intense reactions; and ii) then increases, as the reaction intensity diminishes. 291 

Importantly, the oxygen profiles at different optimal combinations are very similar. 292 

These similar profiles indicate that, although the GA method yields non-unique 293 

optimal combinations, the characteristic oxygen profiles do appear reasonably unique. 294 

This result provides confidence that this novel method provided physically 295 

meaningful results regarding how oxygen diffusion affected TGA results. 296 
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 297 

Fig.7 Oxygen concentration profiles under various optimal vO2 and k combinations 298 

in TGA samples with different oxygen concentrations, i.e., (a) 16% and (b) 12%, 299 

8%, 5%, and 3%. 300 

Fig.7b shows that the results at lower inlet oxygen concentrations followed similar 301 

characteristic profiles but dipped to lower concentrations. That is, at 16% and 12% 302 

inlet oxygen concentrations, oxygen diffusion effects caused maximum oxygen 303 

concentration differences of approximately 63% and 83%, respectively, relative to 304 

their inlet concentrations. When inlet oxygen concentrations were below 10%, the 305 

minimum oxygen concentrations at the base of the sample were near 0%. At these 306 
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minimum oxygen concentrations, plateaus in the oxygen profiles were simulated. 307 

These plateaus reflect the time in the TGA experiment when the mass loss rate was 308 

limited by oxygen transport, as transport dynamics – unlike the chemistry – are 309 

relatively insensitive to temperature [20]. These plateaus grew with lower inlet oxygen 310 

concentrations, which corresponded to an increased time when the TGA mass loss 311 

was limited by oxygen transport. Altogether, Fig.7 underscores that, even in TGA 312 

experiments following best practices with small particle and sample sizes, it is 313 

possible that diffusive effects can lead to dynamic reactant gradients. The resulting 314 

mass transport should be accounted for in analyzing the data to better understand how 315 

local mass transport affects the thermal degradation of combustible porous media. 316 

4. Conclusion 317 

In this paper, a novel modeling method was developed to quantitatively explore 318 

oxygen diffusion effects during the thermal degradation of combustible porous media. 319 

By coupling genetic algorithm (GA) optimization with a one-dimensional reactive 320 

transport model, this method provided valuable estimations of unknown diffusion and 321 

kinetic terms. Using coal as the model fuel, kinetic parameters were first determined 322 

from TGA experiments at 21% oxygen concentration without considering oxygen 323 

diffusion. Then, with these kinetic parameters fixed, optimal combinations of the 324 

oxygen diffusion exponent (k) and stoichiometric number (vO2) were evaluated at 325 

lower inlet oxygen concentrations (3-16%) to assess oxygen diffusion effects. Finally, 326 

these optimized parameters were used to simulate in-depth oxygen profiles throughout 327 

the coal samples at different inlet oxygen concentrations. The following conclusions 328 

were drawn: 329 

(1) Although the GA method yields multiple optimal combinations values for k and 330 

vO2 at each inlet oxygen concentration, which exhibit exponential relationships to each 331 

other, the local characteristic oxygen profiles were reasonably unique. This finding 332 

suggests that the novel model provided physically meaningful insights into how 333 

oxygen diffusion effects impacted thermal degradation of combustible porous media. 334 
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(2) With oxygen diffusion, there were significant variations in oxygen 335 

concentrations throughout the coal sample, exceeding 63% of the inlet oxygen 336 

concentration. When the reference oxygen concentrations were below 10%, oxygen 337 

concentrations near 0% were simulated away from the sample surface. These low 338 

oxygen concentrations resulted in plateaus in mass loss rates, which implied that the 339 

mass loss was limited by oxygen diffusion. 340 

Altogether, this study provides a novel methodology and comprehensive 341 

quantitative analysis exploring the potential for oxygen diffusive effects to affect the 342 

thermal degradation rates in porous combustible materials. Based on the findings, it 343 

appears that oxygen diffusive effects may indeed influence thermal degradation 344 

processes, and these effects amplify with decreasing inlet oxygen concentrations. This 345 

work is significant for smouldering combustion and thermal degradation processes, 346 

including many fire safety problems and emerging applications for waste-to-energy, 347 

biochar production, and contaminated soil remediation. 348 
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