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Problem Statement

Objectives
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How to carry out data-driven robust optimisation integrating the neural
networks for multi-level operation of combined cycle gas power plant ?

Data Information Integrated

Neural Network (DINN)

Storage of Weights And
Retrieval Method (SWARM)

Neural networks are universal function approximators but black-box [1] v* Introduce data-information to infuse interpretability for neural networks
Neural networks are point-predictors; do not provide prediction intervals v Compute prediction intervals using neural network parameters space

v Present two-stage robust-optimisation framework embedding the
neural networks

Data-Driven Robust
Optimisation

v Feature association is computed by Pearson ¥ Online-mode of training is implemented for v The multi-objective optimisation function is
Correlation Coefficient (PCC) SWARM approach defined:
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Case

- DataBank

Studies

v" DINN and ANN are trained to predict power
generation from 395 MW capacity gas turbine
system

v' The feature importance for the power

technigues

v' The Pl are constructed by SWARM and ICP

v Energy efficiency cooling data is used [3]

Data-driven robust optimisation of 1180 MW
capacity combined cycle gas power plant is
carried out under top-down approach [4]

(a)

generation Is established for well-trained
DINN and ANN models [2]
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Conclusions & Future Work
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References

v Expressions for the tuning of the model parameters are derived

v DINN based feature importance order better complies with domain
knowledge than those of ANN

v SWARM based prediction intervals are better local-compliant than the
fixed—width prediction intervals of ICP

v Top-down robust optimisation of combined cycle gas power plant
reduces 62 = 20 kt of CO,, annually

v The future work will focus on bi-level optimisation of combined cycle
gas power plant with neural networks
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