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Abstract—For commercial electric vehicles (CEVs), an un-
derexplored challenge is the complexity of demand and supply
management, which is vital for the efficient operation and
broader adoption of CEVs. By leveraging advanced smart grid
technologies and intelligent energy management systems, the
research endeavors to create a cost-effective software solution
for optimizing the charging process. This study deploys proximal
policy optimization (PPO) multi-agent deep reinforcement learn-
ing (MARL) within an actor-critic network architecture. Agents
are responsible for managing the supply and demand of energy
from two grids welcoming ten charging stations each pumping
energy from the integrated uninterruptible power supply (UPS).
Performance metrics are compared against a dynamic program-
ming (DP) approach, serving as a benchmark. The DP model
excels when prior information is readily available. In contrast,
PPO agents exhibit remarkable robustness and adaptability in
environments lacking such information obtaining 95% accuracy.
These insights not only enrich the existing academic discourse
but also establish new performance benchmarks for practical
implementations.

Index Terms—Electric vehicle, energy management, charging
station, dynamic programming, multi-agent dynamic learning,
proximal policy optimization, neural network, solar photovoltaic-
integrated grid.

I. INTRODUCTION

The transportation sector, responsible for 14% of global
greenhouse gas emissions, must evolve to mitigate its environ-
mental impact [7]. The push towards Electric Vehicles (EVs)
is a response to the climate crisis, with studies indicating that a
shift to EVs could markedly reduce emissions [9]. Legislative
measures, such as the 2035 ban on combustion engine vehicles,
emphasize this shift [12].

Challenges hindering the adoption of EVs, particularly
Commercial Electric Vehicles (CEVs), include limited charg-
ing infrastructure and the increased electricity demand strain-
ing the grid [13]. This underscores the need for advanced
energy management systems (EMS) that efficiently balance
supply and demand, integrating renewable energy without
destabilizing the grid [15].

Our research centers on Vehicle-to-Grid (V2G) technology,
which optimizes this balance by providing a two-way energy
exchange between EVs and the power grid, enhancing grid
stability and renewable energy storage [14]. We explore the
potential of Deep Reinforcement Learning (DRL) in EMS
for its superior decision-making and adaptability, addressing
challenges such as charging time and grid efficiency [17] [18].
Despite existing limitations in predicting EV charging patterns
[15], the application of DRL in smart grids suggests a scalable
and effective approach to optimizing energy distribution in the
face of evolving energy landscapes.

This research aims to develop a sophisticated Intelli-
gent EMS for managing power in hybrid photovoltaic-grid-
connected microgrids, especially for CEV depots. Our ap-
proach leverages a multi-agent system focusing on Proximal
Policy Optimization (PPO) within an actor-critic framework.
The innovative aspect of our study lies in creating a robust
model that operates effectively without needing prior knowl-
edge of State of Charge or Departure Time, using dynamic
programming scheduling to benchmark the efficacy of our
DRL approach. This methodology positions our system at
the forefront of addressing CEV charging schedule challenges
with high theoretical and practical precision.

The rest of the paper is organised as follows. Section II
delves into existing research focused on energy management
systems, specifically addressing demand/supply balancing and
EV charging schedules. Section III provides an examination of
various methods employed to resolve constrained optimization
problems. Section V executes numerical tests to validate the
efficacy of the proposed method. The final section, Section VI,
offers concluding remarks.

II. RELATED WORKS

Machine learning has significantly influenced EMS for
microgrids [20], bringing advancements in vehicle to home
(V2H), grid to vehicle (G2V), and V2G applications. Tradi-
tional direct and heuristic methods, such as particle swarm
optimization for improved EV charging efficiency [21], have
been complemented by dynamic algorithms like the Dynamic



Hunting Leadership (DHL) method to maintain grid voltage
stability with a high presence of EVs [22].

A pivotal shift towards DRL is evident, with PPO high-
lighted as an effective method for industrial optimization,
particularly in stochastic environments [19], [1]. This is due to
its simplicity and ability to learn iteratively from interactions
within complex systems. DRL’s application extends to opti-
mizing EV dispatch, enhancing renewable energy integration
[23], and intelligent coordination within EV charging networks
for grid impact management [23]. Model-free RL techniques
are reviewed for their optimal control in energy systems [24]
[26], and a decentralized, incentive-based demand response
approach is proposed to manage EV charging loads [25].

The research also delves into multi-agent DRL for schedul-
ing EV charging in solar grid (SGs), presenting a decentral-
ized, adaptable solution for real-time application [26], and
compares various machine learning models for forecasting EV
charging loads.

Despite these developments, a gap persists in addressing the
specific needs of the CEV industry. There is a significant diver-
gence in priorities between commercial and non-commercial
EVs, with the former focusing on operational efficiency over
cost minimization. The alignment of charging schedules with
renewable energy production and the high demands for rapid
charging in the CEV sector are not fully met by current SG
strategies, highlighting an area for further research.

III. PROBLEM FORMULATION AND METHODOLOGY

A. Microgrid Architecture

The microgrid architecture used in this paper is a hybrid
system, primarily designed to cater to the charging needs of
CEVs. The key components of this microgrid are:

1) Photovoltaic Array: This serves as the primary renew-
able energy source, enhancing solar power to generate
electricity.

2) Uninterruptible Power Supply (UPS): The UPS sys-
tem plays a crucial role in energy storage and power
quality management. It consists of an AC-DC converter,
a Voltage Source Converter (VSC), and two battery
packs. The VSC regulates the incoming power and
directs it to the battery packs based on their state of
charge. The battery packs store excess energy generated
by the PV array during the day and discharge it during
periods of high demand or when the PV system is not
generating power (e.g., at night).

3) Charging Stations: The microgrid includes two zones,
each equipped with 10 charging ports, totaling 20 charg-
ing ports. These stations are where the CEVs connect to
receive power for charging.

4) Energy Management System (EMS): The EMS is
the brain of the microgrid, responsible for intelligently
managing the energy flow between the PV array, UPS,
and charging stations. This is where we utilize the multi-
agent PPO algorithm to optimize energy distribution.

The control of the microgrid is hierarchical, with primary
and secondary control levels (the secondary being the focus
of this paper:

1) Primary Control: This level focuses on maintaining
voltage and frequency stability. It utilizes Maximum
Power Point Tracking (MPPT) to optimize the power
output from the PV array and Voltage Source Converters
(VSCs) to regulate the voltage and power flow within the
microgrid.

2) Secondary Control: This level is responsible for higher-
level energy management decisions. It employs the EMS
to make real-time adjustments to the energy distribution,
considering factors like EV charging demand, PV gen-
eration, and battery state of charge.

B. Dynamic Programming Approach

DP is a time-honored and commonly utilized method for
orchestrating the charging scheduling of EVs [6]. We employ
a DP-based EMS as a benchmark to evaluate the performance
of our multi-agent PPO. This comparison aims to determine
the effectiveness of sophisticated algorithms in orchestrating
energy distribution within a commercial microgrid tailored for
EV charging stations (CS).

The procedural logic of the DP-based EMS considers a
thorough strategy for the allocation of energy resources as
seen in Fig 1.

Fig. 1: Custom charging scheduling DP flowchart

In the optimization phase, the distribution of energy re-
sources are allocated to each EV based on the results, manag-
ing the charging station switches. When the energy distribution
cycle is complete, the algorithm updates inputs for the next
cycle. This iterative process persists until CEVs are optimally
charged or the energy reserves are exhausted.



C. Deep Reinforcement Learning

Our model utilizes DRL, combining RL with deep neural
networks (DNN) to train agents in complex environments. In
our microgrid application, the agent learns to optimize energy
distribution, balancing the grid’s efficiency and sustainability.
It continuously adapts to environmental feedback, refining
its decisions to improve the grid’s performance over time.
This enables the agent to effectively manage varying energy
demands and supply conditions through advanced strategy
development.

D. Actor-Critic Methods

Actor-Critic methods, a hybrid architecture combining
value-based and policy-based methods that helps to stabilize
the training by reducing the variance using an Actor that
controls how our agent behaves (policy-based). A Critic that
measures how good the taken action is (value-based method).
The solution to reducing the variance of the Reinforce al-
gorithm and training our agent faster and better is to use a
combination of policy-based and value-based methods.

With actor-critic methods, there are two function approxi-
mations (two NNs). The Actor is a policy function parameter-
ized by θ: πθ(s) where the goal is to propose a probabilistic
actions space. The Critic is a value function parameterized by
µ: Vµ where it evaluates the actions by estimating the value
of taking a particular action in a given state and updates the
actor’s policy. It helps the actor to understand how good the
action is in terms of future rewards. This dual mechanism
allows for more stable and faster convergence compared to
traditional methods.

E. Multi-Agent Reinforcement Learning (MARL)

Our model is based on a multi-agent system in a decen-
tralised environment, which means that no information is
shared between the agents. It simplifies the system design but
it does not know the state of other agents.

The DRL agent interacts with the microgrid by sending
control signals to adjust energy distribution, charge or dis-
charge energy storage systems, or connect/disconnect from the
main grid. The microgrid, in turn, provides the agent with
observations such as current load and battery status, which
the agent uses to make future decisions.

F. Proximal Policy Optimization

The core strength of our approach lies in the implementation
of MARL combined with the PPO technique. This innovative
method excels in scenarios lacking prior knowledge, a com-
mon occurrence in commercial EV charging systems where
user patterns are unpredictable.

PPO’s critical innovation is its cautious approach to policy
updates during training, aimed at ensuring stable convergence
towards optimal solutions. The rationale is twofold: empiri-
cally, smaller policy adjustments tend to yield more consistent
convergence, and excessive changes risk detrimental policy
performance, from which recovery can be prolonged or even
unachievable. PPO achieves this careful balance by calculating

a ratio that reflects the extent of policy change from one
iteration to the next. This ratio is then clipped within a
specified range, denoted as [1−ϵ, 1+ϵ], constraining the policy
to remain proximate to the previous one—hence the term
’proximal policy.’ This mechanism, embodied in the clipped
surrogate objective function, strategically restricts the policy
update, ensuring that changes stay within a conservative range
to foster stable and reliable learning outcomes.

Avoiding large updates is the primary function of:

LCLIP (θ) = Êt

[
min( rt(θ)︸ ︷︷ ︸

Ratio Function

Ât

︸ ︷︷ ︸
UnclippedPart

,

clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)︸ ︷︷ ︸
ClippedPart

]
(1)

The ratio functions is the following:

rt(θ) =
πθ(at|st)
πθold(at|st)

(2)

The quantity in (2) represents the likelihood of choosing
a specific action at given the current state st under the new
policy relative to the old policy. This value symbolized as
rt(θ), acts as a gauge for the change in policy over time:

A value of rt(θ) greater than 1 suggests that the new policy
has a higher propensity to select action at in state st compared
to the former policy. Conversely, a value of rt(θ) less than 1
implies a reduced tendency for the action under the new policy
in contrast to the old. This ratio serves as a straightforward
metric for assessing the extent of deviation between the new
and prior policy settings.

G. Reward Function Design

The reward function is engineered to align agents’ be-
haviours with the specified objectives of minimizing this last,
which is:

• Charging percentage on EVs over it’s SoC:

W1 ×
∑
ZEVs

(
SoCN+1 − SoCN

SoCN

)
(3)

• Voltage Direct Current (VDC):

WV DC ×
∑
AEVs

(
SoCN+1 − SoCN

SoCN

)
(4)

• The ratio of energy sourced from PV panels to the total
energy consumption from both PV and the central grid.

W2 ×
(

PPV

(PPV + PM )

)
(5)

• Penalisation metric for failing to achieve requisite SoC
levels within specified time frames.

W3 ×NNC × Penalty (6)



H. Trust Region Constraints

PPO incorporates a trust region limitation to maintain pol-
icy updates within a certain range. This precaution ensures
that newly adopted policies do not deviate excessively from
previous ones, thereby avoiding radical changes that might
disrupt the stability of the learning progression [1].

I. Value Decomposition Networks into a MARL

Due to the complexity of the EV charging station, a so-
phisticated MARL approach is needed. This approach scales
traditional DRL to complex, multi-agent environments, prepar-
ing the system for future growth and complexity [2]. Utilizing
PPO, each agent is responsible for a section of the action space
and works in concert with others to achieve collective goals
like energy efficiency and cost reduction.

To address the high complexity of the system and improve
optimization, value decomposition networks (VDN) have been
integrated into the MARL framework. VDN breaks down the
overall value function into individual components for each
agent, facilitating the optimization of each agent’s policy
towards a common, overarching reward [3]. This method
efficiently overcomes the issue of correlated policies, enabling
agents to work with a degree of independence while maintain-
ing overall alignment and coordination. Moreover, it endows
the system with adaptability and robustness. Making it capable
of handling various challenges, such as fluctuating demand,
the unpredictability of renewable energy sources, and potential
system faults [4]. A representation of our proposed model
architecture can be seen in Fig 2 with the use of VDN [5].

Fig. 2: Overall architecture of proposed MARL system (im-
plemented with 2 agents) using an Actor-Critic PPO process.

IV. EXPERIMENTAL SET-UP AND IMPLEMENTATION

The model has been trained RTX A4000 GPU of a Dell
Precision 5820 Tower Workstation with a Intel Xeon W-2245
(8 Core), 3.9 GHz (4.5 GHz Max Turbo) and 32 GB of
memory.

A. Optimal Training Environment for MARL PPO Agents

The proposed approach meticulously calibrates the number
of charging ports to maintain a balance between a realistic
representation of a commercial EV charging setup and the
computational tractability required for efficient agent training.
By structuring the environment to allow the zones to function
both independently and collectively within the microgrid,
we facilitate an accurate assessment of the multi-agent PPO
system’s ability to dynamically allocate energy resources.

The simulated microgrid environment (Fig. 2) is designed
to serve as the training ground for our agents. Within this
environment, each PPO agent manages a specific array of
EV charging ports, functioning as an individual EMS. The
collective goal of these agents is ensuring that each EV
achieves the required SoC by the predetermined departure
time, and reducing reliance on the main power grid.

The defined agents operate within a defined observation
space with SoC levels of the UPS and each EV, along with the
EVs’ scheduled departure times and A set of thirteen floating-
point values representing the percentage of power drawn from
the central grid. Agents require an action space of boolean
variables representing the on/off status of each charging port
and a boolean switch to regulate the connection to the central
grid.

B. Agent Architecture and Training Parameters

Initially designed with a three-layered hidden structure com-
prising 120, 60, and 30 neurons, this setup did not successfully
achieve convergence in initial tests.

Owing to the initial design’s failure to converge, modifi-
cations were made to both the Actor and Critic networks,
which involved increasing the neurons in each hidden layer
to 256, 128, and 64, respectively. This enhancement allowed
the networks to detect more complex patterns, thereby aiding
in achieving convergence.

Additional hyperparameters, such as the rate of learning,
the size of the batches, and the rate of discount were carefully
optimized. A subsequent implementation employing PPO re-
sulted in markedly better convergence and consistency across
a multitude of episodes.

V. RESULTS AND DISCUSSION

The learning progress of PPO agents tasked with optimizing
energy distribution in a microgrid setting is studied. The
exploration covers three distinct configurations to determine
how effectively the PPO strategy performs under varying
conditions.

A. Single Agent with Wide Trust Region

Fig 3 exhibits the episodic reward trajectory for a single
agent operating under a policy with a wide trust region.
This approach allows for larger updates to the policy dur-
ing training. It appears that the agent experiences consider-
able volatility in performance, with significant fluctuations
in episodic reward. Such variance suggests that while the
wide trust region may accelerate learning in some episodes, it



may also introduce instability, leading to periods of reduced
performance. To mitigate this, a more conservative approach
or a dynamic adaptation of the trust region could be explored
to balance learning speed and stability.

Fig. 3: Single Agent with Wide Trust Region

B. Single Agent with Narrower Trust Region

Fig 4 features a single agent adhering to a policy with a
narrower trust region, constraining the magnitude of policy
updates. The rewards here display less fluctuation compared to
the wide trust region scenario, indicating a smoother learning
process. However, there are still sharp drops in performance,
which could imply that while the narrow trust region promotes
stability, it might also slow down the agent’s ability to adapt
to more optimal policies. Refining the balance between explo-
ration and exploitation might enhance the agent’s performance
consistency.

Fig. 4: Single agent with narrow trust region

C. Multi-Agent Training

Fig 5 portrays the learning curves of multiple agents work-
ing collaboratively or competitively within the same environ-
ment. The presence of multiple agents introduces complexity
due to the interactions between the agents’ policies. Interest-
ingly, the collective dynamics seem to produce more consistent
reward patterns in some phases, potentially indicating that
multi-agent collaboration can lead to more robust policy
development and try to achieve globally optimal policy. We
can see that both agents converge collaboratively to a reward
of around 470. However, the increased complexity also leads to
unpredictability, as seen in certain episodes with sharp reward
declines. Implementing communication protocols or shared
learning strategies could potentially improve coordination and
result in more stable performance.

These findings offer meaningful observations regarding the
flexibility and effectiveness of PPO agents when orchestrating
intricate energy networks. Moreover, these results lay a foun-
dational backdrop for the ensuing discussion segment, wherein
these empirical revelations will be contemplated within the
expansive scope of this investigative study.

(a) Multi-agent 1

(b) Multi-agent 2

Fig. 5: Multi-agent training result

D. Comparative Performance Analysis with DP Method

The analysis evaluates MARL using PPO against DP strate-
gies, focusing on key indicators of efficiency in energy distri-
bution within the microgrid. This includes prior information
on energy demands and departure times. Table I summarizes
the findings.

TABLE I: Comparative performance analysis with or without
priori information (PI) compared to the DP method benchmark

Control
Method

DP w/ PI MARL
PPO
w/ PI

DP w/o PI MARL
PPO
w/o PI

Performance Baseline 102% 45% 95%
Computation
Time

Fast Fast Fast Fast

Penalty of
Insufficient
Charging

0 0 6 times 1 time

Training Time n/a 40h n/a 40hr
PV/Total
Energy
Consumption
(kWh)

85 91 85 88

In reinforcement learning, efficiency is indicated by the cost
minimized or maximized according to the reward function,
described by different equations (Eq.3 to 6). Higher cumula-
tive rewards imply better performance and higher efficiency.
For example, a 2% improvement of MARL PPO with prior
information over DP indicates a 2% higher cumulative reward,
demonstrating superior EMS performance. The paper defines
two primary objectives for the EMS: ensuring all EVs reach
their required SoC by their designated departure times and
minimizing the energy drawn from the central grid.

The MARL PPO method equipped with prior information
marginally surpassed the baseline DP approach by 2%. In
contrast, the MARL PPO method lacking prior information
achieved a commendable 95% efficiency relative to the base-
line. However, the DP method deprived of prior information
was considerably less effective, realizing only 45% efficiency.
All assessed methodologies demonstrated rapid computational



speeds, suggesting their potential suitability for applications
necessitating immediate decision-making. The MARL PPO
strategies demonstrated superior management in avoiding
penalties for insufficient charging, maintaining zero penalties
with the advantage of prior information and incurring just a
single penalty without it. Conversely, the DP method without
such information suffered 6 penalties. Approximately 40 hours
were necessary to train the MARL PPO methods. This time in-
vestment is substantial but is justified as a one-off commitment
to secure enduring performance enhancements. Harnessing
prior information, the MARL PPO method achieved an im-
pressive 91% ratio of PV energy to total energy consumption,
indicative of more effective utilization of sustainable energy
resources. This metric suggests room for improvement in
optimizing energy sourcing, highlighting a potential area for
further technological development or algorithmic refinement.

VI. CONCLUSION

Our study marks a significant advancement in microgrid
management by effectively utilizing DRL within a multi-
agent system to address the day-night energy imbalance. We
successfully implemented MARL with PPO agents, achieving
a remarkable 95% efficiency, significantly outperforming tradi-
tional Dynamic Programming approaches which only managed
a 45% effectiveness rate. This highlights the superior adapt-
ability and robustness of our MARL PPO method, especially in
managing photovoltaic systems and optimizing CEV charging.

The DRL algorithms for secondary control in our system
effectively utilize renewable energy during the day, enhancing
grid independence and reducing operational costs at night. The
implementation of PPO agents through VDN further advances
multi-agent cooperation, setting new benchmarks in smart mi-
crogrid management. Overall, a pioneering approach in energy
management is presented, particularly in the commercial EV
sector, by combining operational efficiency with sustainability.
Our DRL-based methodologies provide a foundation for future
innovation in sustainable microgrid operations.
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