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Abstract

Background Predicting antimicrobial resistance (AMR), a top global health threat,
nationwide at an aggregate hospital level could help target interventions. Using machine
learning, we exploit historical AMR and antimicrobial usage to predict future AMR.
Methods Antimicrobial use and AMR prevalence in bloodstream infections in hospitals in
England were obtained per hospital group (Trust) and financial year (FY, April–March) for 22
pathogen–antibiotic combinations (FY2016-2017 to FY2021-2022). Extreme Gradient
Boosting (XGBoost)model predictionswere compared to theprevious value taken forwards,
the difference between the previous two years taken forwards and linear trend forecasting
(LTF). XGBoost feature importances were calculated to aid interpretability.
Results Here we show that XGBoost models achieve the best predictive performance.
Relatively limited year-to-year variability in AMR prevalence within
Trust–pathogen–antibiotic combinations means previous value taken forwards also
achieves a lowmean absolute error (MAE), similar to or slightly higher than XGBoost. Using
the difference between the previous two years taken forward or LTF performs consistently
worse. XGBoost considerably outperforms all other methods in Trusts with a larger change
inAMRprevalence fromFY2020-2021 (last training year) to FY2021-2022 (held-out test set).
Feature importance values indicate that besides historical resistance to the same
pathogen–antibiotic combination as the outcome, complex relationships between
resistance in different pathogens to the same antibiotic/antibiotic class and usage are
exploited for predictions. These are generally among the top ten features ranked according
to their mean absolute SHAP values.
Conclusions Year-to-year resistance has generally changed little within
Trust–pathogen–antibiotic combinations. In those with larger changes, XGBoost models
can improve predictions, enabling informed decisions, efficient resource allocation, and
targeted interventions.

Antimicrobial resistance is oneof the topglobal health threats1. Bloodstream
infections are typically one of themost serious types of infection; given their
high mortality/morbidity, they are generally treated in hospitals and
therefore are often used for surveillance of resistance. In high-income
countries, any isolated pathogens will be tested for antimicrobial suscept-
ibility against key antibiotics, while, unfortunately, most low and middle-

income countries lack the laboratory capacity to test all bloodstream
pathogens, if any2. Being able to predict future antimicrobial resistance of
bloodstream infections in networks of hospitals could help target inter-
ventions and allocate resources to those most at risk, with larger predicted
resistance increases or absolute rates.While estimating associations between
characteristics such as age, sex and probability of resistance is important at
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Plain language summary

Antibiotics play an important role in treating
seriousbacterial infections.However,with the
increased usage of antibiotics, they are
becoming less effective. In our study, we use
machine learning to learn from past antibiotic
resistance and usage in order to predict what
resistance will look like in the future. Different
hospitals across England have very different
resistance levels, however, within each
hospital, these levels remain stable over time.
When larger changes in resistance occurred
over time in individual hospitals, our methods
were able to predict these. Understanding
how much resistance there is in hospital
populations, andwhatmayoccur in the future
can help determine where resources and
interventions should be directed.
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an individual level, it is not clear how a hospital should use this information.
It may be simpler for hospitals to assume that their underlying populations
are broadly similar from year to year and estimate resistance at an aggregate
level. Further, empiric treatment recommendations are generally made
across an entire hospital.

Antibiotic usage is awell-knowndriver of antibiotic resistance3. Several
studies have investigated associations, for example using Spearman’s cor-
relation coefficients between outpatient antibiotic usage and resistance in
European countries, showing countries with higher usage had higher
resistance percentages4, or using multivariate transfer functions to
demonstrate positive associations between antibiotic use and resistance
rates in Pseudomonas aeruginosa in a German hospital. The latter also
allowed a decrease in resistance following usage restriction to be identified5.
Studies have generally shown increases in usage associated with quite rapid
increases in resistance, while decreases in usage were associated with no
changes or very delayed and more subtle decreases6,7. However, exceptions
have also been observed, such as increased nitrofurantoin usage leading to
no changes in nitrofurantoin resistance in Escherichia coli urinary tract
infections, while being associated with decreased trimethoprim resistance8.
The rarity of nitrofurantoin resistance has been explained genetically by the
magnitude of the distance between two genes which require inactivation9. A
recent study used distributed lag models to estimate the relationship
between relative antibiotic usage (classified as a Z-score) and antibiotic
resistance at anational and international level, using 11years of data from26
European countries. They showed that increases in antibiotic usageZ-score
were associated with an immediate and persistent increase in resistant
bacteria for the four following years, while decreases in usage Z-score had
little impact on resistance on the same time scale; antibiotic usage of
neighbouring countries also affected resistance levels10. To our knowledge,
whilst machine learning methods have been used in the past for predicting
resistance at an individual level, for example11,12, they have not been widely
used for predicting resistance at an aggregate level such as a hospital, a
network of hospitals, or a country. One study considered a feed-forward
neural network with a single hidden layer, with each input neuron being a
lagged time series13; however, while this allows for nonlinearity, it models
only one time series at a time14.

In England, National Health Service hospitals are grouped into Trusts,
which are organisational units serving a geographical area or a specific spe-
ciality, thereforewithmultipleTrusts able to serve the samegeographical area.
Trusts have different antibiotic usage policies and have different resistance
patterns in the population they serve. Most studies so far have focused on
individual pathogens, andonunderstanding specifically associationsbetween
antibiotic use and antibiotic resistance in individual pathogens, with some,
but not all, identifying such associations. Here, we shift focus and predict
future resistance at a Trust level, exploiting all historical aggregate informa-
tion thatwe have on each specificTrust, namely historical antibiotic usage for
a variety of antibiotics, and historical antibiotic resistance to the
pathogen–antibiotic of interest in bloodstream infections, but also resistance
in other pathogen–antibiotic combinations and the complexity of these
relationships.We explore whether awell-understood and typically successful
machine learningmodel, namelyExtremeGradient Boosting (XGBoost), can
outperform base comparators such as carrying the last value forwards, car-
rying the difference between the previous two years forwards and linear trend
forecasting (LTF). The hypothesis is that this type of model can exploit
interactions such as decreasing the use of one antibiotic leading to increasing
the use of another as patients still need to be treated (e.g. ciprofloxacin use
declined as it was selected for Clostridium difficile, and consequently amox-
icillin/clavulanic acid usage increased15), as well as sharing of resistance
mechanisms between different antibiotics and pathogens16–18.

Here we show that XGBoost models successfully exploit information
on both historical resistance prevalence in the pathogen–antibiotic of
interest, but also on other pathogen–antibiotic combinations, as well as
usage. Through this, they achieve better predictive performance in those
Trusts where larger changes occur, without compromising forecasting
capacity in those with little or no change from year to year.

Methods
Datasets
National antibiotic resistance datawas obtained from theUKHealth Security
Agency’s (UKHSA) Second Generation Surveillance System (SGSS), con-
taining laboratory data supplied electronically by approximately 98% of
hospitalmicrobiology laboratories in England.As part of routine surveillance
activities laboratory surveillance data were deterministically linked by
UKHSA using unique patient identifiers and specimen date of collection to
the Healthcare-associated Infections Data Capture System mandatory sur-
veillancedata toobtain thehospital group (Trust) for eachbacteraemia case19.
UKHSA have approval under Regulation 3 of the Health Service (Control of
Patient Information) Regulations 2002 to process patient identifiable infor-
mation without consent. This process considers the ethics and purpose of
collecting and analysing the data, and as such ethical approval was not
separately sought for this work. Aggregate data produced as part of routine
surveillance activitieswere used for this analysis. Since all patient datawas de-
identified and aggregated, ethical approval for the use of data and patient
consent was not required for this study.We studied pathogens isolated from
bloodstream infections subject to mandatory surveillance aggregated at the
Trust level (from different calendar dates, see below), and specific
pathogen–antibiotic combinations, namely: methicillin-susceptible coagu-
lase-positive Staphylococcus species (MSSA) (Apr2016–Mar2021): doxycy-
cline/tetracycline, erythromycin, clarithromycin, clindamycin, vancomycin,
E. coli (Apr2016–Mar2021) and Klebsiella species (Apr2017–Mar2021):
ciprofloxacin, third-generation cephalosporins (resistance to any of cefo-
taxime, ceftazidime, cefpodoximeandceftriaxone), gentamicin, carbapenems
(either meropenem or imipenem; or ertapenem where meropenem and
imipenem not tested), co-amoxiclav, piperacillin/tazobactam, P. aeruginosa
(Apr2017–Mar2021): ciprofloxacin, ceftazidime, gentamicin, carbapenems
and piperacillin/tazobactam. Aggregated monthly totals for
pathogen–antibiotic combinations by Trust are only available from April
2017 for Klebsiella spp. and P. aeruginosa, and April 2016 for E. coli and
Staphylococcus aureus, as theTrust assignation is obtained through linkage to
mandatory surveillance data. The data quality of Trust in the laboratory
reported data alone has historically been poor, and while it is improving, it is
not considered sufficiently accurate for prediction. The mandatory surveil-
lance data collection covers the S. aureus complexwhich includes S. argenteus
and S. Schweitzer, although S. aureus is the predominant species within the
MSSA and methicillin-resistant Coagulase-positive Staphylococcus species
(MRSA) data collection. MRSAwas not considered in this study as numbers
per Trust are very small even when aggregating the data to financial years,
with only 694 cases in 2020/2021 being reported in England20.

Percentages of isolateswith resistance to eachantibioticwere calculated
per Trust per financial year (FY, i.e. April–March), to keep winter months
together in the sameyear. Therewas nomissingdata, in that everyTrust had
a number of pathogens tested and resistant in each year, even if both were
zero. Small numbers of isolates/month for some Trusts and key
pathogen–antibiotic combinations meant monthly data had to be aggre-
gated over years to avoid large fluctuations. Isolates tested are assumed
representative of bloodstream infections in each Trust, as most detectable
bloodstream infections are likely ascertained by widespread testing in ser-
ious illness in a high-income setting. For some antibiotics susceptibility
results were reported as susceptible or resistant. However, for a subset of the
antibiotics, susceptibility results were split into susceptible, resistant, and a
third intermediate category. Where susceptibility was reported as inter-
mediate, this was considered susceptible in models following recommen-
dations that this is susceptible under increased exposure21.

From UKHSA, we also obtained data collected by IQVIA on monthly
antibiotic usage (drug, quantity, concentration) (pharmacy dispensing) at a
Trust level from April 201422, and used defined daily doses (DDDs)23 per
antibiotic per Trust per FY to align different drugs/concentrations. We
standardised antibiotic consumption to account for Trust size24 using Trust
bed occupancy data (mean daily number of day and overnight occupied
beds)25. Specifically, usage rateswere calculatedas the totalDDDspermonth
divided by the number of days in the month, to obtain the mean DDDs
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per day, divided by the mean number of day and overnight occupied beds
per day andmultiplied by 100. For example, an antibiotic usage of 40DDDs
amoxicillin per 100 bed-days, that is a usage rate of 40%, means 40% of
inpatients receive one DDD of amoxicillin every day, an estimate of the
therapeutic intensity. Trust mergers were carried backwards in time, such
that results are presented based on Trusts existing as distinct entities in
202126. In the commonly used antibiotics, data was available for all Trusts
across all FYs, with very few exceptions, namely, one trust missing data
usage across all antibiotics in 2019-2020 and a further two in 2020–2021
(Supplementary Data 1). In the less commonly used antibiotics, missing
data was very common, although this may indicate zero usage for those
years. In ourmodels we only included the top 34 antibiotics (based onmean
usage rate across all Trust-FYs >1%) plus ertapenem (mean usage rate just
below 1%, but an antibiotic of interest as it is a carbapenem, the broadest
spectrum antibiotic class currently in reasonably wide usage).

XGBoost models
Our main goal was to predict future antibiotic resistance for each Trust and
pathogen–antibiotic combination based on historical resistance and anti-
biotic usage. We fit separate models for each pathogen–antibiotic combina-
tion as the outcome, but included prior antibiotic consumption data for all
antibiotics andprior resistance data for all pathogen–antibiotic combinations
in each model. We also explored the predictive performance of historical
usage alone.Hence, eachTrust contributed a training example to eachmodel,
containing information on all available prior annual usage and
pathogen–antibiotic resistance prevalences. We explored whether a pre-
viously highly successful machine learning model with the ability to learn
non-linear relationships and interactions between different features, namely
XGBoost27, could outperformbase comparators. XGBoost is not designed for
time series, butwithappropriate feature engineeringandsetupcanbeused for
time series forecasting, especially as our time series are very short. Specifically,
we used a training-test data split based on calendar time to train models and
evaluate performance.Weused percentage resistance in FY2020–2021 as our
outcome for our training dataset. Although this FY includes the start of the
COVID-19 pandemic, this was the closest to the test set (outcome
FY2021–2022), and maximised the history available for model training. All
data available from prior years of the time series was provided as input. Each
pathogen–antibiotic-FY resistance prevalence and each antibiotic-FY usage
rate with available data contributed a feature to the input matrix, with each
Trust contributing data for one row. FY2021-2022 was used as the outcome
for our test set.We excluded Trusts testing <100 isolates per year throughout
the period studied and Trust–pathogen–antibiotic-FYs with ≤10 suscept-
ibility results to avoid fluctuations due to small numbers unduly influencing
results (arbitrary thresholds). Six FYs of historical antibiotic usage were
available for training (fromApril 2014), fourFYsofhistorical resistance (from
April 2016) for E. coli and MSSA, and three FYs (from April 2017) of data
respectively for both Klebsiella sp. and P. aeruginosa. When exploring pre-
dictive performancewith 3, 2 and1FY(s) historical data,we increased the size
of the training dataset by considering previous years as additional outcomes.
As the test dataset remained unchanged, predictive performance results were
comparable. XGBoost models were fitted with both default and tuned
hyperparameters. To improve generalisability, 3-fold cross-validation on the
training dataset was used to tunemodel hyperparameters, i.e., the number of
estimators, the maximum depth and the minimum child weight (see Sup-
plementary Information for full details). ForXGBoostmodels usinghistorical
antibiotic usage alone (no information on previous resistance prevalence)
only models with default parameters were fitted (see Supplementary Infor-
mation for full details).We also explored whether re-fittingmodels choosing
only features with feature importance above white noise improved perfor-
mance. Feature importance was captured using mean absolute SHapley
Additive exPlanations (SHAP)28 computed on the training dataset.

Performance evaluation
We chose to minimise the mean absolute error (mean of the absolute
difference between true and predicted value) as it is easily interpretable

and less influenced by outliers than root mean squared error, as for the
former all errors are given the same weight, while for the latter more
weight is given to larger errors. We wished to avoid over-influence from
outliers as despite data cleaning, it is quite likely that some large outliers
still arise from data quality issues. We are mostly concerned with opti-
mising performance for most Trusts rather than those with large errors
and hence choose to optimise mean absolute error. XGBoost handles
missing values by default, by learning at a split of a decision tree which
classification of the missing value group into each split minimises the
mean absolute error, and making that classification. Missing data was
present in resistance because of excluding Trust–pathogen–antibiotic-FYs
with <10 results (Supplementary Tables 1 and 2), and in usage for only a
few Trusts in the highest usage antibiotics (Supplementary Data 1).

Model interpretability
To aid model interpretability, global feature importance was captured
through mean absolute SHAP values calculated across all observations.
SHAP values measure the impact each feature has on the individual pre-
dictions. These were computed on the test set for each Trust in each indi-
vidual pathogen–antibiotic combination model. Large positive/negative
values indicate features that have a considerable impact on the prediction.
Therefore, highermean absolute SHAP values (calculated across all Trusts)
indicate more influential features overall.

Base comparators
We compared XGBoost with carrying the last value forwards, carrying the
difference between the previous two years forwards and LTF which only
considers one time series from a single Trust at a time (compared to
XGBoost models which consider data across all Trusts, as well as multiple
time series for each Trust as features). When comparing performance
between different models, if, for example, the previous value was missing
and therefore a prediction could not be made for this model, these
Trust–pathogen–antibiotic-FYs were dropped and mean absolute errors
were calculated only in Trust–pathogen–antibiotic-FYs for which predic-
tions could be made for all models being compared.

Statistics and reproducibility
We summarised data characteristics and machine learning model perfor-
mance using percentages. No statistical tests were conducted and no sta-
tistical regression models were fitted.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Data summary
Susceptibility data were available for 138 hospital groups (Trusts) for FYs
between April 2016 and March 2022 for E. coli and MSSA, and April 2017
and March 2022 for Klebsiella sp. and P. aeruginosa. 19 Trusts with a
maximum <100 tested isolates/FY across all pathogen–antibiotic combi-
nations were excluded completely, as small sample sizes made resistance
percentages highly variable from year to year (Supplementary Table 3). 16/
19 excluded Trusts were specialist Trusts with typically much lower rates of
bloodstream infection. Trust–pathogen–antibiotic-FYs with ≤10 suscept-
ibility results were also excluded (Supplementary Tables 1 and 2) for similar
reasons (Supplementary Fig. 1).

Antibiotic resistance prevalence varied by pathogen, antibiotic, and
between Trusts over the study period (Fig. 1a). For example, within E. coli the
median overall resistance prevalence for amoxicillin/clavulanic acid was 43%,
vs 9% for piperacillin/tazobactam, but with wide interquartile ranges (IQR)
(36–49% and 6–12% respectively), reflecting Trust-level variation. However,
there was much less variability within each Trust over time for a given
pathogen–antibiotic combination, with >75% of Trusts having a standard
deviation (across annual resistance prevalences) of <8% even for those
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pathogen–antibiotic combinations with the highest standard deviations
(E. coli-amoxicillin/clavulanic acid and Klebsiella sp.-amoxicillin/clavulanic
acid, Fig. 1b). We observed uncommon outliers which may indicate data
quality issues; these were not excluded from analyses as they could also
represent outbreaks. Distributions of antibiotic resistance within a
pathogen–antibiotic combination were broadly similar across the FYs
(Supplementary Fig. 2).

FY-to-FY changes in resistance prevalence
Overall Trust-FYs, the median difference between current and previous
resistance prevalence within each pathogen–antibiotic combination was
always within ±1%; 18/22 pathogen–antibiotic combinations had a median
within ±0.5% (Fig. 2a). Considering individual years, 95% of
Trust–pathogen–antibiotic-FYs differed in the resistance prevalence com-
pared with the previous year by <10% and 84% <5%. The largest absolute
differences were observed for amoxicillin/clavulanic acid resistance in
Klebsiella sp., but even there 43%ofTrust-FYshadabsolute differences<5%.
Distributions and percentages were broadly similar over time (Figs.
S3 and S4). Themedian LTF estimated change between FYs 2016–2017 and
2021–2022 was <2.5% for 18/22 pathogen–antibiotic combinations and
<5% for the remaining 4; 82% of Trust–pathogen–antibiotic-FYs combi-
nations had an LTF-estimated absolute change across the 6 FYs <10%, and
60% <5% (Fig. 2b).

FY-to-FY changes in usage
Antibiotic usage rates were available for all 119 Trusts from 2014–2015 to
2020–2021. Similarly to resistance prevalences, antibiotic usage rates varied
between the different antibiotics (Supplementary Fig. 5), but with relatively
little change over time for many antibiotics (Supplementary Fig. 6). Of the
most commonly used antibiotics, there was a small increase in amoxicillin/
clavulanic acid usage (median across Trusts 24% (IQR 15–33%) in
FY2014–2015 to 32% (22–42%) in FY2020–2021), a decrease in trimetho-
prim usage (median 8% (5–10%) to 3% (2–5%) respectively), and a corre-
sponding increase in sulfamethoxazole/trimethoprim (median 3% (2–5%)
to 6% (4–9%), respectively) and innitrofurantoin (median 2% (2–4%) to 5%

(4–7%), respectively) (reflecting change in antibiotic recommendations for
treating urinary tract infections). There was a decrease in piperacillin/
tazobactam usage in FY2017–2018 to median 3% (2–4%) (vs 5% (4–7%) in
FY2014–2015), resulting from shortages due to an explosion at a Chinese
antibiotics factory29, followed by a slow rise back to similar levels by
FY2020–2021 (median 5% (3–7%)). There was very little difference from
year to year within a Trust, except for a few outliers, that may indicate
potential data quality issues rather than true changes, potentially excepting
supply interruptions and/or COVID-19 impacts (Figs S7 and S8).

Forecasting performance
Overall, XGBoost models achieved the best predictive performance, with
previous value taken forwards having very similar or slightly higher mean
absolute error across all Trusts (Fig. 3). The largest differences between
previous value taken forwards and XGBoost were when XGBoost out-
performed previous value taken forwards, eg for P. aeruginosa ceftazidime
(2% difference, from 4% to 6%). The mean absolute error from using the
previous resistance prevalence taken forwards by pathogen–antibiotic-FY
over the Trusts was similar over time (Supplementary Fig. 9) and
approximately proportional to the mean resistance level across Trusts
(Fig. 3). Taking the difference between the previous two years forwards
performed the worst across all pathogen–antibiotic combinations, having
the highest mean absolute error, followed by LTF. For three
pathogen–antibiotic combinations, carbapenem resistance in E. coli and
Klebsiella sp. and vancomycin resistance in MSSA, most Trusts had 0%
resistance for all available FYs (Supplementary Table 4). This was reflected
in the considerably lower mean absolute error. XGBoost models with 3, 2
and 1 FY(s) historical usage and resistance data increased the size of the
training dataset by considering previous years as additional outcomes.
These had very similar performance (Supplementary Fig. 10). Differences in
performancebetweenXGBoostwith andwithout feature selectionwere very
small and neither outperformed the other across all pathogen–antibiotic
combinations (Supplementary Fig. 11).

Focusing on evaluating performance in those Trusts where there was
the biggest absolute difference between the resistance prevalence in FYs

Fig. 1 | Mean resistance prevalence and standard deviation per
Trust–pathogen–antibiotic. Distribution of mean resistance prevalence (a) and
standard deviation (b) per Trust–pathogen–antibiotic across available financial
years (Apr2016–Mar2022 forE. coli andMSSAandApr2017–Mar2022 forKlebsiella
sp. and P. aeruginosa). n = 119 Trusts, however not all Trusts contributed data to

each boxplot (Supplementary Table 2). Red (E. coli), green (Klebsiella sp.), blue
(MSSA), purple (P. aeruginosa). Note: one point per Trust. Outliers outside of the
x-axis scale (>50 left panel, >10 right panel) were truncated. Centre line,median; box
limits, upper and lower quartiles; whiskers, 1.5× interquartile range.
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2021–2022 and 2020–2021, considering an arbitrary threshold of >10%
(Fig. 4), XGBoost outperformedprevious value taken forwards in all but one
pathogen–antibiotic combination (E. coli–gentamicin). Performance gains
were substantially larger inmagnitude in this subgroup,while therewas little
to no difference in the mean absolute error in the remaining Trusts (≤10%
difference). Results were similar for thresholds for the difference between
resistance prevalence of 7.5% and 5%, where the outperformance by
XGBoost occurredacross all pathogen–antibiotic combinations includingE.
coli–gentamicin (Supplementary Fig. 12). In Trusts where the absolute
difference was >10%, there were both increases and decreases from the
previous resistance prevalence in 17/22 pathogen–antibiotic combinations.
Performancegains inmeanabsolute errorwereobservedboth inTrustswith
positive and negative differences between current and previous resistance
prevalences (Supplementary Fig. 13).

Model interpretability
Consideringmodel interpretability, generally previous resistanceprevalence
to the same pathogen–antibiotic combination as the outcome was among
the top 10 features ranked according to their mean absolute SHAP values
(Tables 1–4). Previous resistance prevalence to the same antibiotic but in a
different pathogen, as well as usage of the same antibiotic, were also gen-
erally among the top ten features, and similarly for other antibiotics from the
same class.

Discussion
While associations between antibiotic usage and antibiotic resistance are
widely accepted, here we have built amodel that allows us to take advantage

of the complex relationship between the usage of different antibiotics, and
between different resistancemechanisms being responsible for resistance to
multiple antibiotics or in multiple pathogens, with the goal of predicting
future resistance at an aggregate level for a hospital group. Features with the
highest contributions to the prediction illustrated that such complex rela-
tionships were very likely captured and exploited by the models. One key
challenge is that changes in resistance were small for many
pathogen–antibiotic combinationswe considered.Training themodel on all
Trusts, but evaluatingperformance in the subgroupofTrustswhere changes
from one financial year to the next were the largest, we achieved better
predictive performance when considering themean absolute error, without
compromising predictive performance in those where the changes were
minimal.

Relatively few studies have considered multiple
pathogen–antibiotics simultaneously. One previous study considered
forecasting quarterly resistance in E. coli bloodstream infections to third-
generation cephalosporins, ciprofloxacin, gentamicin, and piperacillin/
tazobactam per clinical commissioning group (CCG, groups of general
practices) in England using data from October 2015 to October 2018, as
well as annual resistance in European countries to carbapenems and
fluoroquinolones in K. pneumoniae, E. coli, P. aeruginosa, and Acineto-
bacter spp. using data from 2012 to 201614. They compared the last value
taken forwards with single time series models allowing for more com-
plexity including autoregressive integrated moving average (ARIMA),
Expected–Trend–Seasonal, and a feed-forward neural network with a
single hidden layer, with each input neuron being a lagged time
series, as well as fitting an integrated nested Laplace approximations

Fig. 2 | Difference in resistance prevalence between the current and previous
financial year and estimated change over the study period. Distribution of differ-
ence in resistance prevalence between the current and previous financial year (a) and LTF
estimated change over the study period (b), per pathogen–antibiotic combination across
all Trusts and financial years. Percentages of Trust-FYs that have an absolute difference
<5%, <7.5% and <10% between the current and the previous financial year are also given
by pathogen–antibiotic combination (a), and an absolute LTF estimated change <5%,
<7.5% and <10% (b). n= 119 Trusts × 5 FY-to-FY differences (E. coli and MSSA) and 4

FY-to-FY differences (Klebsiella sp. and P. aeruginosa), however not all Trusts con-
tributed data to each boxplot (Supplementary Table 2). Red (E. coli), green (Klebsiella sp.),
blue (MSSA), purple (P. aeruginosa). Note: one point per trust year. Distribution split by
financial year available in Supplementary Fig. 3. Percentage of trusts with an absolute
difference in resistance prevalence <5%, <7.5%, and <10% split by financial year in
Supplementary Fig. 4. Outliers outside of x-axis scale (absolute value > 20) were trun-
cated. Centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× inter-
quartile range.
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Fig. 4 | Predictive performance comparison split by absolute difference between
consecutive years.Mean absolute error for prediction on the test set (resistance
prevalence in FY2021–2022) for six different predictionmodels split by the absolute
difference between FY2021–2022 and FY2020–2021 in resistance prevalence, >10%
(full circle) or ≤10% (star). Six different predictionmodels: taking the previous value
forwards (red), taking the difference forwards (yellow), LTF (green), XGboost with
default parameters (light blue), XGboost with tuned hyperparameters (dark blue),
and XGboost with previous antibiotic usage alone as input features (with default

parameters, no information on previous resistance prevalence, pink). n Trusts
included are provided in the Figure. Note: 70 residuals that had either missing
previous values or previous differences were excluded for comparability of perfor-
mance measures between the models, although XGboost also made these predic-
tions. Results using thresholds of 7.5% and 5% are illustrated in Supplementary
Fig. 11. For 3 pathogen–antibiotic combinations: E. coli carbapenems, Klebsiella sp.
carbapenems andMSSA vancomycin, most Trusts had 0% resistance prevalence for
all available FYs (Supplementary Table 2).

Fig. 3 | Predictive performance comparison.Mean absolute error for prediction on
test set (resistance prevalence in FY2021-2022) for 6 different prediction models:
taking the previous value forwards (red circle), taking the difference forwards
(yellow triangle), LTF (green square), XGboost with default parameters (light blue
plus sign), XGboost with tuned hyperparameters (dark blue square with multi-
plication sign), and XGboost with previous antibiotic usage alone as input features

(with default parameters, no information on previous resistance prevalence, pink
star). n = 119 Trusts, however not all Trusts contributed data to each boxplot
(Supplementary Table 2). Note: 70 residuals that had either missing previous values
or previous differences were excluded for comparability of performance measures
between the models, although XGboost also made these predictions.
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spatiotemporal model to all groups (CCGs or countries) and forecasting
for each individual time series, while also including covariates such as
antibiotic usage. They found that the median root mean square error
across each pathogen–antibiotic combination was relatively small (range
0–7%). Similarly to our study, the last value taken forward outperformed
the other predictors when considering aggregate performance measures
for yearly European resistance data, despite the spatiotemporal model
being able to capture and account for associations between antibiotic
usage and resistance. At the CCG level, the more complex
Expected–Trend–Seasonal model captured some seasonality and
improved predictive performance, but only very slightly compared to the
previous value taken forward. Traditional time series generally consider
modelling one-time series at a time, and while this has advantages,
information on other time series or covariates can often be helpful for
prediction. ARIMA is one such model, while VARIMA is an extension
that considers multiple time series for forecasting. While the number of
E. coli bloodstream infections per quarter would have also been a rea-
sonable outcome to predict for our models, we wanted to apply the same
method across all pathogens under mandatory surveillance. As the
number of isolates tested for susceptibility per quarter for all other
pathogens was considerably smaller (Supplementary Fig. 1), and given
the short length of our time series, we did not consider these models.

While XGBoost was not designed with time series in mind, with the
right feature engineering we could use it to address our problem, providing
for eachTrust–pathogen–antibiotic outcome, input features comprising the
historical resistance for that Trust for all available pathogen–antibiotic
combinations (not just the outcome), as well as all historical antibiotic usage
rates for that Trust. One strength of our analysis is our in-depth domain
knowledge: standardising usage for comparison between different Trusts,
antibiotics and antibiotic formulations, and financial years, by using DDDs
and number of occupied beds, rather than data-agnostic standardising
methods; using resistance prevalences which are appropriate to answer
questions about resistance in the population at risk. We also carefully
considered the changes that we could expect to be able to predict from year
to year in the context of the distribution of resistance prevalences, allowing
us to demonstrate that XGBoost models indeed achieve better predictive
performance in those Trusts where there were larger changes, without
impairing performance in those where changes were smaller. Taking the
difference between theprevious twoyears forwardwas theworst performing
model across all pathogen–antibiotic combinations, followed by LTF
regression, indicating that some of the year-on-year observed differences
may have been artefactual, related to the small numbers of isolates being
tested and lack of representativeness of the population at risk. While LTF
regressionmitigated some of these fluctuations, it was either still influenced
to a certain extent by the outliers and/or the linearmodel was not a good fit.
For example, previous work found evidence for a sigmoid pattern in
resistance trends, that is a fast rise following an initial period of low resis-
tance levels, followed by a stable trend once a certain resistance percentage
(below 100%) was reached30. However, for antibiotics that have been widely
used for a longperiodof time,our period likely only covered the stable trend,
not requiring a sigmoid. Given how little year-to-year variation there was, it
was difficult for average measures of performance to massively outperform
previous values taken forward, despite their ability to learn from previous
resistance prevalences for all pathogen–antibiotic combinations, as well as
previous antibiotic usage rates. Further, the hyperparameter tuning, feature
selection, and feature engineering that we considered to improve gen-
eralisability did not improve performance (even though overfitting was
reduced), with minimal decrease in mean absolute error in only some
pathogen–antibiotic combinations and occasionally very small increases in
some others. This is likely due to the reasonably small number of training
exampleswhichdidnotprovide enoughpower to allow for learningofbetter
hyperparameters than the default ones, which were set by the author of
XGBoost based on empirical experimentation to work well on a diverse
range of datasets.

One limitation of our study is the assumption that the bloodstream
infections whose pathogens are tested for antibiotic susceptibility in each
Trust are representative of the population being served by each Trust. For
a high-income country, this may be reasonable given the severity of
bloodstream infections means the vast majority of at-risk patients would
have blood cultures taken, unlike low and middle-income countries
where blood cultures are often only taken after empirical treatment
failure31. It is still possible that some patients do not have cultures
obtained or that prior antibiotics render cultures artificially negative,
however, in our setting such patients would not be expected to have a
different rate of antimicrobial resistance. Another limitation is the
imperfect denominator for antibiotic usage as not everyone who occu-
pied a day or overnight bed would have received antibiotics; however,
this follows World Health Organisation recommendations25, and makes
features comparable both over time and between Trusts for our predic-
tion models. Another limitation is the data aggregation to financial years,
as previous studies have shown seasonality in the usage of many anti-
biotics and resistance in many pathogen–antibiotic combinations in the
community8,32. Studies in the community rather than hospitals found the
highest correlations with the antibiotics that were used most and that
peaked during winter32,33. Unfortunately, the numbers were too small in
our study for us to analyse the data quarterly across all pathogens con-
sidered; however, we did consider financial years to keep the winter
months together. One alternative could have been to use smaller time
periods and use both estimated resistance prevalence and some con-
fidence limits on this (e.g. 90% CI) to represent uncertainty: however, we
already had a large number of features for the number of observations.
We also decided to predict resistance in FY2020-2021, despite this
potentially being affected by COVID-19, given the relatively limited
variation in usage over time (Supplementary Fig. 9). We only tried to
predict resistance one year into the future due to our short time series.
The short length of our time series is the main statistical limitation. In the
future, as the length of the time series increases with more available data,
deep learning architectures will become viable. Two good candidates are
long short-term memory models, which can memorise both short and
long-term information by learning to selectively remember or forget, and
transformer models, which use the attention mechanism to learn which
parts of the time series it should focus on. And as the time series grows
even longer, predicting more than one year ahead may also become
viable. Two possible approaches are to do this in an autoregressive
manner by using the previously predicted year as the input for predicting
the next year, or as an alternative, using encoder-decoder architectures to
directly learn how to predict multiple steps ahead.

Antibiotic usage in the community has been shown to be associated
with antimicrobial resistance.While some antibioticswe considered are not
used in the community, others, e.g. amoxicillin, will be very common. The
challenge is that incorporating these features into the model would require
assigning community use to Trusts. The most recent English surveillance
programme for antimicrobial utilisation and resistance reported associa-
tions between ethnicity and deprivation and higher AMR rates34, suggesting
these might be other potential predictive features. The association between
antibiotic use and resistance is complex and is underlined by theOneHealth
approach which aims to tackle AMR by approaching it from all compart-
ments that are both affected, as well as contribute to this issue, namely
human, animal and environmental35.

The small variability we observed in resistance prevalence within
Trust–pathogen–antibiotic combinations could be due to the (short)
length of our time series, but it could reflect a plateau if resistance had
already been increasing for quite a few years before our study30, or
resistance had become balanced with antibiotic usage in most Trusts,
perhaps due to antibiotic stewardship practices36. One study used non-
linear time series analysis to model relationships between antibiotic
usage and resistance in five different populations in Europe for different
pathogen–antibiotic combinations, as well as identify minimum usage
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thresholds specific to each population to guide effective antimicrobial
usage, balancing effectively treating the patient with preserving the
effectiveness of antibiotics37. We note that both this study, as well as
previous studies considering non-linear time-series analyses to identify
antibiotic usage thresholds below which no further reduction in inci-
dence of resistance was observed, considered much longer time periods
than we, unfortunately, had available38,39.

In summary, the change in resistance prevalence from year to year in a
Trust–pathogen–antibiotic combination was generally small from FY2016-
2017 onwards. However, focusing on those Trusts with larger changes,
XGBoost, a machine learning model, provided better predictions of future
resistance from historical antibiotic usage and historical resistance patterns
in a variety of antibiotics and pathogens. Features with the highest overall
contribution to predictions suggest that complex relationships were cap-
tured to achieve this performance.We therefore have amodel that could be
further tested and even deployed in a real-world setting to predict resistance
prevalence in the next financial year, informing appropriate targeting of
interventions and allocation of resources, in settings where notable changes
in resistance prevalence take place.

Data availability
National antibiotic resistance data, at a per hospital group (Trust) level, was
obtained by aggregating data in the UKHSA SGSS, containing laboratory
data supplied electronically by approximately 98% of hospital microbiology
laboratories in England. A subset of the antibiotic resistance dataset is
available through UKHSA’s online data service, Fingertips40. Information
on the use of antibiotics in secondary care was obtained from IQVIA
(formerly QuintilesIMS, formed from the merger of IMS Health and
Quintiles)22. All IQVIA data used retains IQVIA Solutions UK Limited and
its affiliates' Copyright. All rights reserved. Use of IQVIA data for sales,
marketing or any other commercial purposes is not permitted without
IQVIA Solutions UK Limited’s approval, expressed by IQVIA’s Terms of
Use. Datasets underlying the main figures are available as supplementary
data (Supplementary Data 2–5 corresponding to Figs. 1–4).

Code availability
Onlyopen-source softwarewasused for this analysis. Rwasused for thedata
preparation and visualisation of the results, while Python was used for
modelling. Code for feature engineering and XGBoost models is publicly
available at https://github.com/karinadorisvihta/AMR_forecasting41.
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