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A B S T R A C T

In the race towards ‘‘Net-zero’’, hydrogen has emerged as one of the key alternatives to carbon-based fossil fuels
for a sustainable decarbonisation. This work studies the spatially explicit multi-period hydrogen infrastructure
planning under demand uncertainty that contributes to the heat decarbonisation in Great Britain. Demand
uncertainty surrounding future hydrogen supply chains poses challenges to cost optimisation and system
security, so uncertainty-resilient policies are required to ensure robust operations. In this work, we employ
data-driven robust optimisation to develop a framework for uncertainty-aware representative days explicitly
characterised by polyhedral uncertainty sets. The proposed framework is applied on a multi-period mixed-
integer linear model with dual temporal resolution which aims to determine the optimal yearly investment
decisions and hourly operational decisions for the hydrogen infrastructure planning under demand uncertainty.
To efficiently solve the large-scale two-stage adaptive robust optimisation problem, a hybrid decomposition
algorithm is developed based on a two-step hierarchical procedure and the column-and-constraint generation
method, which can significantly reduce the computational complexity. The optimisation results highlight how
uncertainty can result in the total cost increase, and verify the advantages on controlling solution conservatism
in the adaptive robust optimisation compared to the static robust optimisation.
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Nomenclature

Abbreviations

SMRCCS Steam Methane Reforming with Carbon
Capture and Storage

ATRCCS Autothermal Reforming with Carbon Cap-
ture and Storage

BGCCS Biomass Gasification with Carbon Capture
and Storage

WE Water Electrolysis
CCG Column-and-Constraint Generation
BCD Block Coordinate Descent

Indices and sets

𝑔, index and set for region
𝑡,  index and set for year period
𝑐, index and set for day (cluster)
ℎ, index and set for hour
𝑝, index and set for production technology
𝑟, index and set for reservoir
𝑠, index and set for storage technology
𝑠𝑎 index for storage cavern
𝑒,  index and set for renewable technology
𝐺𝑖𝑚𝑝𝑔 set of regions in which international import

are feasible
𝑔𝑔′ set of total connections between neighbour-

ing regions
 pipe

𝑔𝑔′ set of neighbouring regions that are con-
nectable via H2 pipelines

𝐺𝑆𝑔𝑠 sets of region 𝑔 in which storage technology
𝑠 is located

𝐺𝑅𝑔𝑟 connection sets of collection points 𝑔 and
reservoir 𝑟

Parameters

𝛿 ratio of hydrogen regional pipeline operat-
ing costs to capital costs (%)

𝛿, 𝛿 ratio of onshore/offshore CO2 regional
pipeline operating costs to capital costs (%)

𝜂𝑝𝑡 efficiency of production technology 𝑝 at
each time period 𝑡 (MW H2/MWh)

𝜂we𝑡 efficiency of WE technology at 𝑡 (%)
𝜏 duration of time periods (years)
𝐴𝑉𝑒𝑔𝑐ℎ availability of renewable technology 𝑒 in

region 𝑔, cluster 𝑐 and hour ℎ (%)
𝑏𝑎𝑔𝑡 maximum threshold of biomass consump-

tion in region 𝑔 and year 𝑡 (MWh)
𝑐𝑎𝑝P𝑝 unit capacity for production type 𝑝

(MW/unit)
𝑐𝑎𝑝max

𝑝 maximum capacity of a hydrogen produc-
tion plant of type 𝑝 (MW/unit)

𝑐𝑎𝑝R𝑟 unit capacity of reservoir 𝑟 (kg CO2)
𝑐𝑎𝑝S𝑠 unit capacity for storage type 𝑠 (MWh/unit)
𝑐𝑎𝑝min

𝑠 ∕𝑐𝑎𝑝max
𝑠 minimum/maximum capacity of storage

technology 𝑠 (MWh/unit)

1. Introduction

To be in line with the current low-carbon emission goals, hydrogen

as an alternative energy carrier to natural gas has increasingly attracted

2 
𝑐𝑝𝑡 fuel (biomass/gas) price at year 𝑡 (£/MWh)
𝑐𝑙 power curtailment coefficient of renewables

(%)
𝑐𝑟𝑓 capital recovery factor
𝑐𝑡𝑡 carbon tax at 𝑡 (£/kg CO2)
𝑑𝑓𝑐𝑡∕𝑑𝑓𝑜𝑡 discount factor for capital/operating costs

at 𝑡
𝐷Pipe

𝑔𝑔′ pipeline transmission distance from region
𝑔 to region 𝑔′ (km)

𝐷𝑠𝑡
𝑔,𝑠𝑎 pipeline transmission distance from region

𝑔 to storage cavern 𝑠𝑎 (km)
𝐷res

𝑔𝑟 pipeline transmission distance from CO2
collection point in region 𝑔 to reservoir 𝑟
(km)

𝑒𝑡𝑡 CO2 emissions target at 𝑡 (MtCO2)
𝐼Up𝑔𝑡𝑐 upper bound of hydrogen import rate at

𝑔, 𝑡, 𝑐 (MW)
𝑙𝑎𝑒𝑔 available capacity upper bound of renew-

able technology 𝑒 at region 𝑔 (MW)
𝐿𝑇 pipe lifetime of pipelines (year)
𝐿𝑇𝑃𝑝 lifetime of production technology 𝑝 (year)
𝐿𝑇𝑆𝑠 lifetime of storage technology 𝑠 (year)
𝑝imp price of hydrogen import (£/MW)
𝑝𝑐 capital cost of hydrogen pipelines (£/km)
𝑝𝑐∕𝑝𝑐 capital cost of onshore/offshore CO2

pipelines (£/km)
𝑝𝑐𝑐𝑝𝑡 capital cost of production technology 𝑝 at

year 𝑡 (£/MW)
𝑝𝑜𝑐F𝑝𝑡∕𝑝𝑜𝑐

V
𝑝𝑡 fixed/variable operating production cost of

𝑝 at year 𝑡 (£/MW)
𝑞Hmax maximum flowrate of H2 pipelines (MW)
𝑞Cmax maximum flowrate of CO2 pipelines (kg

CO2/h)
𝑄Imax

𝑠 ∕𝑄Rmax
𝑠 maximum storage/withdrawal rate for each

storage type 𝑠 (MW)
𝑟𝑐𝑒𝑡∕𝑟𝑜𝑒𝑡 capital/operational cost of renewable tech-

nology 𝑒 at 𝑡 (£/MW)
𝑅𝐷𝑝∕𝑅𝑈𝑝 ramp-down/ramp-up rate of production

technology 𝑝 (%)
𝑠𝑐𝑐𝑠𝑡 capital cost of storage unit 𝑠 at 𝑡 (£/MWh

H2)
𝑠𝑜𝑐F𝑠𝑡 fixed operating production cost of storage

technology 𝑠 at 𝑡 (£/MWh H2/y)
𝑠𝑜𝑐V𝑠𝑡 variable operating production cost of stor-

age technology 𝑠 at 𝑡 (£/MW)
𝑊𝐹𝑐 weight of cluster 𝑐 (day)

global attention, demonstrating its potential in contributing to sustain-
able decarbonisation energy solutions [1–3]. In Great Britain (GB), the
heat sector accounts for approximately one-third of the total national
CO2 emissions [4,5]. Hydrogen has been progressively recognised as a
crucial vector towards the heat decarbonisation pathways in GB [6].
The reports from Committee on Climate Change, National Grid and
Department for Business, Energy & Industrial Strategy (BEIS) suggest
that hydrogen demand will increase significantly by early 2030 and
the 7–20 GW of production capacity may be needed by 2035 [7,8].
Therefore, there is an urgent need to improve and expand hydrogen
energy infrastructure networks to satisfy the increasing demand.

The large-scale hydrogen infrastructure planning problems on a
nationwide scale have been explored by the research community within
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𝑦c𝑝𝑡∕𝑦
e
𝑝𝑡 coefficient of CO2 capture/emissions for

production technology 𝑝 at 𝑡 (kg CO2/MWh
H2)

Integer Variables

𝐼𝑃𝑝𝑔𝑡 total investment number of new production
technology 𝑝 at 𝑔, 𝑡 (units)

𝑁𝑃𝑝𝑔𝑡 total number of available production tech-
nology 𝑝 at 𝑔, 𝑡 (units)

𝐼𝑆𝑠𝑔𝑡 total investment number of new storage
facility 𝑠 at 𝑔, 𝑡 (units)

𝑁𝑆𝑠𝑔𝑡 total number of available storage facility 𝑠
at 𝑔, 𝑡 (units)

Binary Variables

𝐴𝑌𝑔𝑔′𝑡 availability of hydrogen pipeline between
regions 𝑔 and 𝑔′ at 𝑡

𝐴𝑌 S
𝑔,𝑠𝑎,𝑡 availability of hydrogen pipeline from re-

gion 𝑔 to storage cavern 𝑠𝑎 at 𝑡
𝐴𝑌 𝑔𝑔′𝑡 availability of onshore CO2 pipeline be-

tween regions 𝑔 and 𝑔′ at 𝑡
𝐴𝑌 𝑔𝑟𝑡 availability of offshore CO2 pipeline from

region 𝑔 to reservoir 𝑟 at 𝑡
𝑌𝑔𝑔′𝑡 establishment of hydrogen pipeline between

regions 𝑔 and 𝑔′ at 𝑡
𝑌 S
𝑔,𝑠𝑎,𝑡 establishment of hydrogen pipeline from

region 𝑔 to storage cavern 𝑠𝑎 at 𝑡
𝑌 𝑔𝑔′𝑡 establishment of onshore CO2 pipeline be-

tween regions 𝑔 and 𝑔′ at 𝑡
𝑌 𝑔𝑟𝑡 establishment of offshore CO2 pipeline from

region 𝑔 to reservoir 𝑟 at 𝑡

Continuous Variables

𝐶𝐿𝑔𝑡𝑐ℎ renewable power curtailment at 𝑔, 𝑡, 𝑐, ℎ
(MW)

𝐷𝑔𝑡𝑐ℎ uncertain hydrogen demand at 𝑔, 𝑡, 𝑐, ℎ
(MW)

𝐸𝑡 total CO2 emissions at 𝑡 (MtCO2)
𝐼𝑔𝑡𝑐ℎ hydrogen flowrate of international import

at 𝑔, 𝑡, 𝑐, ℎ (MW)
𝐼𝑅𝑒𝑔𝑡 new invested capacity of renewable tech-

nology 𝑒 at 𝑔, 𝑡 (MW)
𝑁𝑅𝑒𝑔𝑡 available capacity of renewable technology

𝑒 at 𝑔, 𝑡 (MW)
𝑃𝑟𝑝𝑔𝑡𝑐ℎ hydrogen production rate of production

technology 𝑝 at 𝑔, 𝑡, 𝑐, ℎ (MW)
𝑃𝑟𝑒𝑔𝑡𝑐ℎ electricity production from renewable tech-

nology 𝑒 at 𝑔, 𝑡, 𝑐, ℎ (MW)
𝑄𝑔𝑔′𝑡𝑐ℎ hydrogen flowrate via pipeline from region

𝑔 to 𝑔′ at 𝑡, 𝑐, ℎ (MW)
𝑄I

𝑔𝑠𝑡𝑐ℎ hydrogen flowrate via pipeline from region
𝑔 to storage 𝑠 at 𝑡, 𝑐, ℎ (MW)

the context of ‘‘Net-zero’’ agenda by 2050 [9]. In [10], a spatially-
explicit multi-period MILP model was developed for the design of
hydrogen supply chain (HSC) in the UK involving the range of pro-
duction technologies, scales, transportation modes and carbon capture
and storage elements. [11] aimed to soft-link resource-technology
network and whole electricity system investment model with different

geographical scopes and temporal resolutions involving the interaction

3 
𝑄R
𝑠𝑔𝑡𝑐ℎ hydrogen flowrate via pipeline from storage

𝑠 to region 𝑔 at 𝑡, 𝑐, ℎ (MW)
𝑄𝑔𝑔′𝑡𝑐ℎ CO2 flowrate via onshore pipeline from

region 𝑔 to 𝑔′ at 𝑡, 𝑐, ℎ (kg CO2/h)
𝑄𝑔𝑟𝑡𝑐ℎ CO2 flowrate via offshore pipeline from a

collection point in region 𝑔 to reservoir 𝑟 at
𝑡, 𝑐, ℎ (kg CO2/h)

𝑅𝐼𝑟𝑡 CO2 storage state of reservoir 𝑟 at 𝑡 (kg CO2)
𝑆𝑡𝑠𝑔𝑡𝑐ℎ hydrogen storage state of storage facility 𝑠

at 𝑔, 𝑡, 𝑐, ℎ (MWh)
𝑉 bio
𝑔𝑡 total biomass consumption at 𝑔, 𝑡 (MWh)

𝑇𝐶 total cost (£)
𝑃𝐶𝐶∕𝑃𝑂𝐶 production capital/operational cost (£)
𝑆𝐶𝐶∕𝑆𝑂𝐶 storage capital/operational cost (£)
𝑃𝐿𝐶𝐶 pipeline transportation capital cost (£)
𝑃𝐿𝑂𝐶 pipeline transportation operational cost (£)
𝐶𝐸𝐶 carbon emissions cost (£)
𝐼𝐼𝐶 hydrogen import cost (£)
𝑅𝑒𝐶 total capital and operational cost of renew-

able technologies (£)
𝐹𝐶 total fuel cost for natural gas and biomass

consumption (£)

between electricity and hydrogen infrastructure for decarbonising GB
heat supply by 2050. The study in [12] focused on the design of nation-
wide H2 and CO2 infrastructure using a spatio-temporal based model to
determine the optimal choices of hydrogen production, transportation
and storage technologies towards the heat decarbonisation of GB. [13]
proposed a model to design and analyse national HSC with spatial
resolution in Germany based on different technologies options for
storage and transport. Two long-term, multi-regional and monthly time-
scale MILP optimisation models of China natural gas supply system
and HSC were established in [14] from 2020 to 2060. [15] developed
a generalised framework for co-optimising infrastructure investments
across the electricity and HSC considering the spatio-temporal varia-
tions in energy demand and supply, and applied it to the U.S. Northeast
region. [16] presented a multi-objective MILP optimisation model
for HSC network to determine the locations and sizes of hydrogen
facilities, production technology, transportation unit and distribution
route. This model was applied to the state of Texas. A novel mixed-
integer nonlinear programming modelling and optimisation framework
related to the design and long-term capacity expansion of HSC was
presented in [17] providing an optimal roadmap for the 10-year plan
of hydrogen infrastructure development in the state of California. [18]
studied the design of HSC in Turkey to meet the hydrogen demand
from 2021 to 2050 by using the mixed integer programming model.
The multi-objective optimisation models were proposed in [19,20] for
the HSC design considering the production, storage, transportation, and
distribution, and applied the models to the case in southern France
and Hungary, respectively. [21] addressed the optimal design of sus-
tainable HSC for vehicle use in the UK, which was formulated as
an MILP problem to determine the optimal combination of different
technologies, their capacities and location, and the transport flows.
The work in [22] analysed how variations in renewable and Power-
to-X technology costs can affect the optimal solution including the
optimal technology capacity and the role of hydrogen under the hourly
resolution in a long-term energy planning setting for the Italian en-
ergy system decarbonisation pathway. [23] presented a spatially and
temporally-explicit multi-period supply chain model for three pathways
(electricity, heat, hydrogen) in decarbonising the UK. Our previous

work [24] presented an MILP optimisation framework focusing on the
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hydrogen infrastructure decisions with 5-year steps from 2035 to 2050
and hourly resolution for the transition of heat sector in GB.

Although the aforementioned works and many existing works in
the literature [25] have mathematically modelled various forms of
HSC problems and presented effective outcomes, they assumed the
deterministic models with fixed parameters. Such models, however,
fail to consider the uncertainties inherent to underlying HSC prob-
lems, such as the uncertain hydrogen demand and renewable energy
generation, which may render the solution to the deterministic model
infeasible when model parameters fluctuate. This could lead to sub-
stantial economic losses and pose a threat to the overall security of
HSC [26,27].

To this end, many studies have explored stochastic programming
(SP) [28] representing uncertainty factors as probabilistic scenarios
and robust optimisation (RO) techniques considering the worst-case
scenario realisation to hedge against the uncertainty [29]. However,
the probability distribution of uncertainties needed in SP may be
difficult to obtain in practice, and stochastic programming is known to
lead to computational complex problems due to the rapid increase in
problem size based on the numbers of scenarios needed to accurately
capture the uncertainty. On the other hand, RO provides a trade-off
between feasibility and computational tractability by establishing a
deterministic uncertainty set that describes the variability of uncertain
parameters. RO can be further categorised into static robust optimi-
sation (SRO) where all decisions are made proactively, and adaptive
robust optimisation (ARO) where part of decisions can be adjustable
once the uncertainty is realised. Naturally, ARO has gradually become
a more attractive alternative to SRO due to the less conservative
solutions which however come with a considerable computational cost.
RO techniques have been widely applied to energy systems problems
such as the power network expansion planning problems [30–32], gas
network such as the natural gas infrastructure planning [33], charging
stations and integrated energy systems [34], among others [35].

Despite the plethora of research works focusing on uncertainties
for the HSC planning, most of the studies addressed the demand un-
certainties by using sample average approximation technique [36] and
scenario-based approach in SP [37–43], while only a handful explored
RO technique for risk-averse decision-making in HSC planning. [44]
proposed a single-level robust hydrogenation network optimisation
model under demand uncertainty considering the capacity expansion of
hydrogen refuelling stations and flexible transportation modes between
sites. In order to meet the hydrogen needs of chemical plants, a static
robust model was used in [45] to determine the optimal capacity
configuration of a PV/battery/hydrogen system considering the uncer-
tainty of PV output and hydrogen demand. A two-stage production and
replenishment problem was investigated in [46] for HSC considering
the demand uncertainty and the risk of pipeline disruptions, which
was formulated as a distributionally robust optimisation problem. A
column and constraint generation (CCG) algorithm was further pro-
posed to solve this RO problem. [47] investigated the distributionally
RO problem under uncertainty to determine the optimal planning
strategy for the cross-regional hydrogen energy storage systems. A
two-stage robust design and planning problem for an integrated HSC
under demand uncertainty described by a budget-based uncertainty
set was addressed in [48] by using a benders decomposition based
algorithm to eliminate the inherent spatiotemporal imbalance between
renewable energy supply and demand. Nevertheless, this model did not
consider the interregional pipeline transmission of hydrogen. Note that
the spatial scale considered in [46–48] is just sub-regional rather than
a nationwide scale. [49] developed an MILP model to configure the
HSC network in an international scale considering strategic and tactical
decisions on the type and location of hydrogen production/storage
sites, distribution system and physical form of product delivery. The
robust possibilistic programming method was used to deal with the

hydrogen demand uncertainty. However, it only considered the single

4 
planning period, which ignored the multi-period nature of investment
and operational decisions.

In this work, we focus on the large-scale hydrogen infrastructure
planning problem for GB under demand uncertainty, which is formu-
lated as a spatially-explicit, multi-period MILP model on a nationwide
scale. Given their multi-scale nature, energy infrastructure planning
models utilise time compression techniques to generate a set of rep-
resentative days, aiming to achieve a balance between accuracy and
complexity. [50] designed an LP model for the planning of highly
renewable US power grid based on a representative subset of days,
which deterministically solves for the least-cost portfolio of generators,
storage, and transmission. For the case of electric power infrastructure
planning, [51] selected representative days with hourly resolution from
historical data via the clustering procedure to model each year, and
proposed a decomposition algorithm based on nested benders decom-
position to solve the deterministic multi-period MILP problem. The
same authors further extended their model to consider uncertainty
in [52] where operating uncertainties were captured through different
scenarios of representative days’ profiles, and solved the resulting large-
scale problem using stochastic dual decomposition. However, the above
studies and most of the existing literature mainly focused on power
systems. The issue of systematically accounting for the uncertainty in-
troduced through the deployment of representative days within energy
infrastructure planning models remains largely unexplored. To this end,
we introduce data-driven SRO and ARO models involving the con-
struction of uncertainty sets to explicitly characterise potential demand
uncertainty realisations. The polyhedral uncertainty set is adopted in
this paper, which can capture correlations between high-dimensional
uncertain parameters [53]. Note that this work does not consider the
uncertainty of renewable energy generation (REG) because modelling
it in a RO context can exacerbate unnecessarily the conservativeness of
the approach due to the intrinsic volatility that needs to be captured
in uncertainty sets. In addition, we have identified from our previous
paper [54] that demand and REG are uncorrelated (the same as solar
and wind) and hence it would be more appropriate for REG to be
modelled independently using a scenario-based approach [55].

To the best of our knowledge, the spatially-explicit multi-period
hydrogen infrastructure planning problems under uncertainty has not
been studied through a RO approach. The contributions of this paper
are summarised as follows:

(1) We investigate data-driven robust optimisation frameworks in-
cluding both static and adaptive robust optimisation to explicitly
account for the demand uncertainty for the large-scale hydrogen
infrastructure planning over multi-spatial and temporal scales,
resulting in efficient decision support under flexible and variable
demand.

(2) The uncertainty is systematically captured through the deploy-
ment of uncertain representative days and the introduction of
polyhedral uncertainty sets. This enables the consideration of a
wide range of operational scenarios while maintaining computa-
tional feasibility, thereby reducing the likelihood of inappropri-
ately selecting certain demand profiles.

(3) We propose a hybrid decomposition method under the CCG al-
gorithm framework based on a two-step hierarchical procedure
and block coordinate descent methods to solve the underlying
two-stage adaptive robust optimisation problem, which can sig-
nificantly reduce the computational time.

(4) The computational experiments on hydrogen infrastructure plan-
ning in GB over the 5-year steps 2035–2050 show the impact of
uncertainty on the decision-making of investment and operation
through a comparative analysis between the robust and the de-
terministic models. The computational results further verify the
advantages on controlling conservatism of the adaptive robust

optimisation compared to the static robust optimisation.
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The rest of the paper is structured as follows. In Section 2, we
give a formal problem statement, and in Section 3 we introduce the
modelling strategies in spatial and temporal scales and how to capture
the demand uncertainty. In Section 4, we formulate a data-driven
static robust optimisation problem for hydrogen infrastructure planning
and its solution strategy. In Section 5, a data-driven adaptive robust
optimisation problem is presented, and a hybrid decomposition method
is further proposed to handle this complex two-stage MILP problem.
Results are presented and analysed in Section 6. Finally, we conclude
this work in Section 7.

2. Problem statement

The proposed large-scale hydrogen infrastructure planning problem
involves choosing the optimal investment strategy for each region in
GB over a long-time horizon, and hourly operating decisions to meet
the uncertain hydrogen demand.

The production, transmission, storage, and renewable technologies
are given, and we consider (as shown in Fig. 1):

- Production technologies: Steam Methane Reforming with Carbon
Capture and Storage (SMRCCS) & Autothermal Reforming with
Carbon Capture and Storage (ATRCCS) that consume natural gas,
Biomass Gasification with Carbon Capture and Storage (BGCCS),
Water Electrolysis (WE).

- Transmission modes: Due to the substantial amount of hydrogen
demand, the road transportation by trailer for hydrogen is im-
practical [12]. Consequently, we only focus on pipeline transport
for H2 and CO2, which is the most efficient and widely used way.

- Storage technologies: H2 storage involves Medium Pressure Stor-
age Vessel (MPSV) and High Pressure Storage Vessel (HPSV) in
each region, and cavern storage in a few specific regions. CO2
can be stored by pipelines to reservoirs.

- Renewable technology: Solar, Wind Onshore and Wind Offshore.

Also given are:

• Capital and operational costs for different production technolo-
gies, storage sites, and pipelines of H2 and CO2;

• H2 import price, carbon tax and capture rates for CO2 emissions
and the emission target;

• Regional connections, availability and distances for pipelines;
• Operating characteristics such as minimum/maximum capacity,

ramp-up/ramp-down rates and lifetime of production plants and
storage sites, maximum flowrate in pipelines, capacity of H2
caverns & vessels and CO2 reservoirs;

• Renewables availability in each region, year, day and hour;
• Historical data for gas-served heating demand in each region,

year, day and hour.

To determine:

• Worst-case daily hydrogen demand over regions and years;
• Location and operating schedule for each production technology,

storage site and renewable farm;
• Electricity generation of renewable energies;
• Investments of production and storage technology in each region,

and transmission investments between regions over years for H2
and CO2;

• Hourly H2 and CO2 flowrates between regions over years;
• Hourly H2 production, storage and import rates over regions and

years to satisfy the hydrogen demand.

So as to: minimise the overall system costs subject to investment,
operational and environmental constraints.

The main assumptions in this work are summarised below:

• Gas demand data are used as a proxy for gas consumption that is
needed for domestic, commercial and industrial heating [6];
5 
Fig. 1. The hydrogen supply chain.

• A gas price prediction is used for the 5-year step based on the
National Grid’s Future Energy Scenarios 2022 [7];

• All CO2 and H2 pipelines have identical diameters, respectively;
• The computation of transmission distances is based on the mea-

surement between the centroids of each region;
• The cost and maximum capacity for each technology is determin-

istic;
• WE production technology is assumed to only consume electricity

from the renewable energies;
• Hydrogen pipeline connections are configured based on the layout

of the existing gas pipeline network in GB;
• The variable operational cost for renewable farms is assumed to

be zero;
• The hydrogen distribution within each region and its export are

not considered;
• We focus solely on gaseous hydrogen.

For the sake of brevity as the deterministic model that forms the
basis is adopted by [24], the detailed equations are provided in the Ap-
pendix. Next we will delve into the reformulation of this model to
incorporate uncertainty-aware representative days and its robust solu-
tion.

3. Modelling strategies under uncertainty

The multi-period and spatially explicit hydrogen infrastructure plan-
ning is formulated as an MILP optimisation problem in this work. To
be able to solve it, it is crucial to reduce the problem scale so as to
alleviate the computational complexity, which requires the modelling
aggregations and approximations considering the multi-scale nature.
In addition, the uncertainty of hydrogen demand can impact decision-
making, potentially leading to significant economic losses and even
compromising the security of energy systems. Therefore, how to cap-
ture the demand uncertainty when modelling is pivotal. In the next
subsections, we will introduce the days clustering modelling method,
the concept of representative days and polyhedral uncertainty sets.

3.1. Modelling representation in spatial and temporal scales

The hydrogen production, demand, and associated storage and
transmission costs are influenced by geographical characteristics and
existing infrastructure. Renewable energy availability and production
also vary regionally. Therefore, it is essential to consider geographical
factors in hydrogen infrastructure planning [56,57]. To this end, we
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Fig. 2. Conceptual representation of regions and energy flows.

Fig. 3. Multi-scale representation of hydrogen infrastructure planning.

adopt a spatially explicit model wherein GB is disaggregated into 13
regions based on the established local distribution zones of gas network
as shown in Fig. 2 (left) [6]. The 13 regions are denoted by the set .
Fig. 2 (right) displays potential energy interactions for regions 𝑔 and
𝑔′. Hydrogen can be generated by using renewable generation, and is
transmitted from one region to other regions by pipelines transport
if they are connected. The generated CO2 will be stored as well by
reservoirs to satisfy the emission target of GB.

With respect to the temporal scale, we consider not only a strategic
5-year investment horizon which is essential for infrastructure plan-
ning, but also the hourly operations because of hydrogen demand
variability. To reduce the computational time, each year 𝑡 ∈  is
modelled by using 𝐶 representative days with hourly resolution (24
subperiods), which is widely adopted in the multi-scale MILP energy
planning literature [54,58]. More specifically, each year’s demand data
are disaggregated into 𝐶 clusters by using 𝑘-medoids clustering method,
and each cluster 𝑐 ∈  encompasses a specific collection of hourly
demand profiles [6]. As mentioned in Section 1, these representative
days assume a deterministic hourly profile of their attributes which
completely neglects the intra-cluster variability that can result in sig-
nificant underestimation of the uncertainty the future infrastructure is
bound to face. To overcome this issue, we apply a polyhedral uncer-
tainty set to capture the demand uncertainty for each cluster. Thus,
the representative hydrogen demand profiles are not deterministic and
pre-specified anymore. Robust optimisation usually aims to minimise
the cost under the worst case scenario, i.e., under worst daily demand
profile of this uncertainty set. The number of days within each cluster
𝑐 is viewed as the weight (𝑊𝐹𝑐) of representative day (also denoted by
𝑐). The multi-scale representation of the problem is more intuitively
visualised in Fig. 3. Next, we will introduce how we establish the
data-driven polyhedral uncertainty sets.
6 
3.2. Data-drive robust representative days

Polyhedral uncertainty sets have been widely adopted to describe
the range of uncertain parameters by a finite number of linear in-
equalities in robust optimisation [59]. They reduce computational com-
plexity due to their linear nature and flexibility to capture uncertainty
properties, like correlation.

Our point of departure is the method introduced in [53] to con-
struct polyhedral uncertainty set from historical data by using principal
component analysis (PCA) and Kernel density estimation (KDE). The
uncertain demand data matrix for each region 𝑔, year 𝑡 and cluster
𝑐 is denoted by 𝐗𝑔𝑡𝑐 =

[

𝐃(1)
𝑔𝑡𝑐 ,… ,𝐃(𝑁𝑔𝑡𝑐 )

𝑔𝑡𝑐

]⊤
∈ R𝑁𝑔𝑡𝑐×24 where each

row represents an uncertainty demand data point with 24-dimensional
(hourly) space, 𝑁𝑔𝑡𝑐 is the total uncertainty data points, and 𝐃𝑔𝑡𝑐 =
[𝐷𝑔𝑡𝑐,1, 𝐷𝑔𝑡𝑐,2,… , 𝐷𝑔𝑡𝑐,24]⊤ ∈ R24 denotes daily hydrogen demand with
hourly demand 𝐷𝑔𝑡𝑐ℎ ∈ R, ℎ ∈ {1, 2,… , 24}.

Firstly, we standardise the data matrix 𝐗𝑔𝑡𝑐 to zero-mean:

𝐗0
𝑔𝑡𝑐 = 𝐗𝑔𝑡𝑐 − 𝐞𝝁⊤

𝑔𝑡𝑐 , ∀𝑔, 𝑡, 𝑐 (1)

where 𝐗0
𝑔𝑡𝑐 is an uncertainty data matrix after standardisation, the

averaged value 𝝁𝑔𝑡𝑐 = 1
𝑁𝑔𝑡𝑐

∑𝑁𝑔𝑡𝑐
𝑖=1 𝐃(𝑖)

𝑔𝑡𝑐 , and 𝐞 is a unit column vec-
tor. Next, we perform a PCA to obtain orthogonal principal compo-
nents via eigenvalue decomposition to the sample covariance matrix
𝐒𝑔𝑡𝑐 = 1

𝑁𝑔𝑡𝑐−1
𝐗0
𝑔𝑡𝑐

⊤𝐗0
𝑔𝑡𝑐 . Denote the eigenvectors of 𝐒𝑔𝑡𝑐 by 𝐏𝑔𝑡𝑐 =

[

𝑃𝑔𝑡𝑐,1,… , 𝑃𝑔𝑡𝑐,24
]

∈ R24×24, such that 𝐒𝑔𝑡𝑐 = 𝐏𝑔𝑡𝑐𝛬𝑔𝑡𝑐𝐏⊤
𝑔𝑡𝑐 where 𝛬𝑔𝑡𝑐 is

the diagonal matrix containing all the eigenvalues. Each eigenvector
corresponds to a principal component.

Then we project each uncertain demand data 𝐃(𝑖)
𝑔𝑡𝑐 onto each princi-

pal component 𝑘 = 1,… , 24:

𝐭(𝑖)𝑔𝑡𝑐,𝑘 = 𝑃⊤
𝑔𝑡𝑐,𝑘

[

𝐃(𝑖)
𝑔𝑡𝑐 − 𝝁𝑔𝑡𝑐

]

, 𝑖 = 1,… , 𝑁𝑔𝑡𝑐 , ∀𝑔, 𝑡, 𝑐 (2)

By using the KDE method on the projected data matrix 𝐓𝑔𝑡𝑐,𝑘 =
[

𝐭(1)𝑔𝑡𝑐,𝑘,… , 𝐭(𝑁𝑔𝑡𝑐 )
𝑔𝑡𝑐,𝑘

]

, we can calculate the estimated probability density
function 𝑓KDE

𝑔𝑡𝑐,𝑘 (𝝃𝑔𝑡𝑐,𝑘) for the latent uncertainty 𝝃𝑔𝑡𝑐,𝑘 along the 𝑘th
principal component, such that

𝑓KDE
𝑔𝑡𝑐,𝑘 (𝝃𝑔𝑡𝑐,𝑘) =

1
𝑁𝑔𝑡𝑐

𝑁𝑔𝑡𝑐
∑

𝑖=1
𝐾ℎ

(

𝝃𝑔𝑡𝑐,𝑘, 𝐭
(𝑖)
𝑔𝑡𝑐,𝑘

)

(3)

where 𝐾ℎ is a Gaussian kernel function with a bandwidth ℎ. Denote the
cumulative density function of 𝝃𝑔𝑡𝑐,𝑘 by 𝐹KDE

𝑔𝑡𝑐,𝑘 (𝝃𝑔𝑡𝑐,𝑘). Its corresponding
quantile function can be expressed as follows:

𝐹KDE
𝑔𝑡𝑐,𝑘 (𝛼𝑔𝑡𝑐) = min

{

𝝃𝑔𝑡𝑐,𝑘 ∈ R||
|

𝐹KDE
𝑘 (𝝃𝑔𝑡𝑐,𝑘) ≥ 𝛼𝑔𝑡𝑐

}

(4)

where 𝛼𝑔𝑡𝑐 is a predefined parameter related to confidence level.
Define 𝝃

𝑔𝑡𝑐
=

[

𝐹KDE
𝑔𝑡𝑐,1 (𝛼𝑔𝑡𝑐 ),… , 𝐹KDE

𝑔𝑡𝑐,24(𝛼𝑔𝑡𝑐 )
]⊤ ∈ R24 and 𝝃𝑔𝑡𝑐 =

[

𝐹KDE
𝑔𝑡𝑐,1 (1−𝛼𝑔𝑡𝑐),… , 𝐹KDE

𝑔𝑡𝑐,24(1−𝛼𝑔𝑡𝑐)
]⊤ ∈ R24. Finally, we get the following

polyhedral uncertainty set PUS
𝑔𝑡𝑐 for each region 𝑔, year 𝑡 and cluster 𝑐:

PUS
𝑔𝑡𝑐 ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐃𝑔𝑡𝑐 ∈ R24

𝐃𝑔𝑡𝑐 = 𝝁𝑔𝑡𝑐 + 𝐏𝑔𝑡𝑐 ⋅ 𝝃𝑔𝑡𝑐 ,
𝝃𝑔𝑡𝑐 = 𝝃

𝑔𝑡𝑐
◦𝐳−𝑔𝑡𝑐 + 𝝃𝑔𝑡𝑐◦𝐳+𝑔𝑡𝑐 ,

𝟎 ≤ 𝐳−𝑔𝑡𝑐 , 𝐳
+
𝑔𝑡𝑐 ∈ R24 ≤ 𝟏,

𝟏⊤
(

𝐳−𝑔𝑡𝑐 + 𝐳+𝑔𝑡𝑐
)

≤ 𝛷𝑔𝑡𝑐 ,
𝐳−𝑔𝑡𝑐 + 𝐳+𝑔𝑡𝑐 ≤ 𝟏

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(5)

where 𝝁𝑔𝑡𝑐 is the averaged value introduced in (1), 𝟎 and 𝟏 are column
vectors of all zeros and ones, and 𝐳−𝑔𝑡𝑐 and 𝐳+𝑔𝑡𝑐 are the backward
deviation and forward deviation vectors, respectively. The symbol ◦
denotes the Hadamard product. The lower and upper bound vectors
𝝃
𝑔𝑡𝑐

and 𝝃𝑔𝑡𝑐 define the confidence interval of latent uncertainties. The
parameter 𝛷𝑔𝑡𝑐 is the uncertainty budget that controls the maximum
extent to which latent uncertainties are allowed to deviate from their
average values, i.e., controls the level of conservatism by changing
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locations of hyperplane cuts (i.e., changing the size) of the uncertainty
set. Note that 𝛷𝑔𝑡𝑐 does not change the polyhedral structure of the
ncertainty set.

In summary, in this section data-driven methods (Clustering, KDE
nd PCA) are used to construct polyhedral uncertainty sets from his-
orical demand data when developing the representative days of the
lanning problem, which is fundamental to the next robust optimisation
rameworks. The proposed uncertainty sets can flexibly capture com-
act regions of uncertainty in a nonparametric way and consider the
ata correlations between different hours by using PCA, thus enhancing
he practicality and efficiency of the optimisation solution.

. Data-driven static robust optimisation

In order to hedge against the hydrogen demand uncertainty, in
his section, we develop a data-driven static robust framework and its
olution for the hydrogen infrastructure planning involving the total
ystem cost and corresponding constraints.

.1. Static robust optimisation formulation

The total cost (𝑇𝐶) considered in the planning model consists of the
roduction capital & operational cost (𝑃𝐶𝐶) & (𝑃𝑂𝐶), storage capital
operational cost (𝑆𝐶𝐶) & (𝑆𝑂𝐶), pipeline transportation capital &

perational cost (𝑃𝐿𝐶𝐶) & (𝑃𝐿𝑂𝐶), carbon emissions cost (𝐶𝐸𝐶),
hydrogen import costs (𝐼𝐼𝐶), renewable cost (𝑅𝑒𝐶), and total fuel cost
(𝐹𝐶) for the natural gas and biomass consumption. To this end, we
employ Eq. (6) as shown below.

𝑇𝐶 = 𝑃𝐶𝐶 + 𝑆𝐶𝐶 + 𝑃𝑂𝐶 + 𝑆𝑂𝐶 + 𝑃𝐿𝐶𝐶

+ 𝑃𝐿𝑂𝐶 + 𝐶𝐸𝐶 + 𝐼𝐼𝐶 + 𝑅𝑒𝐶 + 𝐹𝐶
(6)

The detailed expression for each cost term can be found in Appendix (A.1
– (A.10).

The static robust MILP model for the hydrogen infrastructure plan-
ning problem is shown below, where the demand profiles of uncer-
tain representative days belong to polyhedral uncertainty sets ob-
tained in (5) of Section 3.2, allowing for a broader range of intra-day
operational scenarios.

min 𝑇𝐶

s.t. (6), (A.1) – (A.39),
𝐃𝑔𝑡𝑐 ∈ PUS

𝑔𝑡𝑐 , ∀𝑔 ∈ , 𝑡 ∈  , 𝑐 ∈ 
(7)

where Eqs. (A.11) – (A.14) are hydrogen production constraints related
to the number of production plants and hydrogen production rate, and
Eqs. (A.15) – (A.19) represent hydrogen storage constraints related to
the number of storage units and hydrogen flowrate to the storage units.
Eqs. (A.20) – (A.25) describe the pipelines transmission constraints for
H2, onshore and offshore CO2. Eqs. (A.26) and (A.27) represent the
H2 and CO2 energy supply–demand balance constraints, respectively.
The renewable generation constraints are denoted by Eqs. (A.28) –
(A.32). The H2 imports constraints, fuel consumption constraints, CO2
storage and emission constraints are expressed by Eqs. (A.33) – (A.39),
respectively.

In the static robust optimisation (7), all investment and operational
decisions are made ‘‘here-and-now’’ before the demand uncertainty
realisations. The fundamental principle of robust decision-making is
to find a solution that is feasible for all possible situations within
the uncertainty range. In our model, the demand uncertainty exists in
hydrogen balance constraint (A.26), which must remain feasible for all
the uncertainty realisations within the polyhedral uncertainty set.

By considering the worst-case uncertainty realisation, Eq. (A.26) can
be rewritten as Eq. (8):

max
𝐷𝑔𝑡𝑐ℎ∈PUS

𝑔𝑡𝑐ℎ

𝐷𝑔𝑡𝑐ℎ ≤
∑

𝑝∈
𝑃𝑟𝑝𝑔𝑡𝑐ℎ +

∑

𝑔′∈ pipe

𝑄𝑔′𝑔𝑡𝑐ℎ +
∑

𝑠∈𝐺𝑆𝑔𝑠

𝑄R
𝑠𝑔𝑡𝑐ℎ
𝑔′𝑔

7 
+ 𝐼𝑔𝑡𝑐ℎ −
∑

𝑔′∈ pipe
𝑔𝑔′

𝑄𝑔𝑔′𝑡𝑐ℎ −
∑

𝑠∈𝐺𝑆𝑔𝑠

𝑄I
𝑔𝑠𝑡𝑐ℎ, ∀𝑔, 𝑡, 𝑐, ℎ (8)

here PUS
𝑔𝑡𝑐ℎ is the uncertainty set for demand 𝐷𝑔𝑡𝑐ℎ at hour ℎ, which is

subset of PUS
𝑔𝑡𝑐 . Note that the worst-case demand value is taken into

ccount in (A.26) in order to guarantee the generation can satisfy the
ydrogen demand under any uncertain situation at any time ℎ.

Using the definition of polyhedral uncertainty sets shown in Eq. (5),
.e, 𝐷𝑔𝑡𝑐ℎ = 𝝁𝑔𝑡𝑐ℎ+𝐏𝑔𝑡𝑐ℎ ⋅𝝃𝑔𝑡𝑐 which is ℎth row of 𝐃𝑔𝑡𝑐 , the left-hand side

of Eq. (8) is written as Eq. (9):

max
𝐷𝑔𝑡𝑐ℎ∈PUS

𝑔𝑡𝑐ℎ

𝐷𝑔𝑡𝑐ℎ

= 𝝁𝑔𝑡𝑐ℎ + max
𝐳−𝑔𝑡𝑐 ,𝐳

+
𝑔𝑡𝑐∈𝑔𝑡𝑐

𝐏𝑔𝑡𝑐ℎ
(

𝝃
𝑔𝑡𝑐

◦𝐳−𝑔𝑡𝑐 + 𝝃𝑔𝑡𝑐◦𝐳+𝑔𝑡𝑐
)

= 𝝁𝑔𝑡𝑐ℎ + max
𝐳−𝑔𝑡𝑐 ,𝐳

+
𝑔𝑡𝑐∈𝑔𝑡𝑐

{

(𝐏𝑔𝑡𝑐ℎ◦𝝃⊤𝑔𝑡𝑐 )𝐳
−
𝑔𝑡𝑐 + (𝐏𝑔𝑡𝑐ℎ◦𝝃

⊤
𝑔𝑡𝑐 )𝐳

+
𝑔𝑡𝑐

}

(9)

where 𝝁𝑔𝑡𝑐ℎ ∈ R and 𝐏𝑔𝑡𝑐ℎ ∈ R1×24 are the ℎth row elements of 𝝁𝑔𝑡𝑐

nd 𝐏𝑔𝑡𝑐 defined in Section 3.2, respectively, and 𝑔𝑡𝑐 =
{

𝐳−𝑔𝑡𝑐 , 𝐳
+
𝑔𝑡𝑐 | 𝟎 ≤

−
𝑔𝑡𝑐 , 𝐳

+
𝑔𝑡𝑐 ≤ 𝟏, 𝟏⊤(𝐳−𝑔𝑡𝑐 + 𝐳+𝑔𝑡𝑐 ) ≤ 𝛷𝑔𝑡𝑐 , 𝐳−𝑔𝑡𝑐 + 𝐳+𝑔𝑡𝑐 ≤ 𝟏

}

. The optimisation
roblem in right-hand side of (9) is then converted to Eq. (10):

max
−
𝑔𝑡𝑐 ,𝐳

+
𝑔𝑡𝑐

{

(𝐏𝑔𝑡𝑐ℎ◦𝝃⊤𝑔𝑡𝑐 )𝐳
−
𝑔𝑡𝑐 + (𝐏𝑔𝑡𝑐ℎ◦𝝃

⊤
𝑔𝑡𝑐 )𝐳

+
𝑔𝑡𝑐

}

s.t. 𝐳−𝑔𝑡𝑐 ≤ 𝟏, 𝐳+𝑔𝑡𝑐 ≤ 𝟏, 𝐳−𝑔𝑡𝑐 + 𝐳+𝑔𝑡𝑐 ≤ 𝟏

𝟏⊤(𝐳−𝑔𝑡𝑐 + 𝐳+𝑔𝑡𝑐 ) ≤ 𝛷𝑔𝑡𝑐

𝐳−𝑔𝑡𝑐 , 𝐳
+
𝑔𝑡𝑐 ≥ 𝟎 ∀𝑔, 𝑡, 𝑐, ℎ,

(10)

which is equivalent to the following minimisation problem (11) by us-
ing the duality theory, since it is a linear program of decision variables
𝐳−𝑔𝑡𝑐 , 𝐳

+
𝑔𝑡𝑐 . By defining 𝐐

𝑔𝑡𝑐ℎ
= 𝐏𝑔𝑡𝑐ℎ◦𝝃⊤𝑔𝑡𝑐 ∈ R1×24 and 𝐐𝑔𝑡𝑐ℎ = 𝐏𝑔𝑡𝑐ℎ◦𝝃

⊤
𝑔𝑡𝑐 ∈

R1×24, respectively, we have the dual problem:

min
𝝀−𝑔𝑡𝑐ℎ ,𝝀

+
𝑔𝑡𝑐ℎ ,𝜸𝑔𝑡𝑐ℎ ,𝜚𝑔𝑡𝑐ℎ

𝟏⊤(𝝀−𝑔𝑡𝑐ℎ + 𝝀+𝑔𝑡𝑐ℎ + 𝜸𝑔𝑡𝑐ℎ) + 𝜚𝑔𝑡𝑐ℎ𝛷𝑔𝑡𝑐

s.t. 𝝀−𝑔𝑡𝑐ℎ + 𝜸𝑔𝑡𝑐ℎ + 𝜚𝑔𝑡𝑐ℎ𝟏 ≥ 𝐐⊤
𝑔𝑡𝑐ℎ

𝝀+𝑔𝑡𝑐ℎ + 𝜸𝑔𝑡𝑐ℎ + 𝜚𝑔𝑡𝑐ℎ𝟏 ≥ 𝐐
⊤
𝑔𝑡𝑐ℎ

𝝀−𝑔𝑡𝑐ℎ,𝝀
+
𝑔𝑡𝑐ℎ, 𝜸𝑔𝑡𝑐ℎ ≥ 𝟎, 𝜚𝑔𝑡𝑐ℎ ≥ 0, ∀𝑔, 𝑡, 𝑐, ℎ

(11)

where 𝝀−𝑔𝑡𝑐ℎ,𝝀
+
𝑔𝑡𝑐ℎ, 𝜸𝑔𝑡𝑐ℎ ∈ R24 are the dual variables (Lagrange multipli-

ers) to the first three constraints in (10), respectively, and 𝜚𝑔𝑡𝑐ℎ ∈ R is
the dual variable to the fourth constraint.

Combining the minimisation problem in (11) with Eq. (8), we can
get Eq. (12)

𝝁𝑔𝑡𝑐ℎ + 𝟏⊤(𝝀−𝑔𝑡𝑐ℎ + 𝝀+𝑔𝑡𝑐ℎ + 𝜸𝑔𝑡𝑐ℎ) + 𝜚𝑔𝑡𝑐ℎ𝛷𝑔𝑡𝑐

≤
∑

𝑝∈
𝑃𝑟𝑝𝑔𝑡𝑐ℎ +

∑

𝑔′∈ pipe
𝑔′𝑔

𝑄𝑔′𝑔𝑡𝑐ℎ +
∑

𝑠∈𝐺𝑆𝑔𝑠

𝑄R
𝑠𝑔𝑡𝑐ℎ

+ 𝐼𝑔𝑡𝑐ℎ −
∑

𝑔′∈ pipe
𝑔𝑔′

𝑄𝑔𝑔′𝑡𝑐ℎ −
∑

𝑠∈𝐺𝑆𝑔𝑠

𝑄I
𝑔𝑠𝑡𝑐ℎ, ∀𝑔, 𝑡, 𝑐, ℎ.

(12)

Note that the minimisation term of (11) is omitted after substituting it
to the left-hand side of Eq. (8), thus forming Eq. (12), because it is suf-
ficient that the constraint holds for at least one (𝝀−𝑔𝑡𝑐ℎ,𝝀

+
𝑔𝑡𝑐ℎ, 𝜸𝑔𝑡𝑐ℎ, 𝜚𝑔𝑡𝑐ℎ)

satisfying the constraints in (11). The logic behind it can be demon-
strated from the compact case: inf𝐴⊤𝑝≤𝐵 𝑏⊤𝑝 ≤ 0 ⇔ 𝑏⊤𝑝 ≤ 0 ∃𝑝 s.t. 𝐴⊤𝑝
≤ 𝐵 where 𝑝 is the decision variable.

After obtaining the above constraint, we formulate a data-driven

robust counterpart for optimisation problem (7), as shown below.
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Problem 1 (SRO).

min 𝑇𝐶

s.t. (6), (12), (A.1) – (A.25), (A.27) – (A.39)
𝝀−𝑔𝑡𝑐ℎ + 𝜸𝑔𝑡𝑐ℎ + 𝜚𝑔𝑡𝑐ℎ𝟏 ≥ 𝐐⊤

𝑔𝑡𝑐ℎ

𝝀+𝑔𝑡𝑐ℎ + 𝜸𝑔𝑡𝑐ℎ + 𝜚𝑔𝑡𝑐ℎ𝟏 ≥ 𝐐
⊤
𝑔𝑡𝑐ℎ

𝝀−𝑔𝑡𝑐ℎ,𝝀
+
𝑔𝑡𝑐ℎ, 𝜸𝑔𝑡𝑐ℎ ≥ 𝟎,

𝜚𝑔𝑡𝑐ℎ ≥ 0, ∀𝑔 ∈ , 𝑡 ∈  , 𝑐 ∈ , ℎ ∈ ,

(13)

which is an MILP problem, and can be solved using the off-the-shelf
ethod like branch-and-cut method implemented in solver Gurobi [60].

Compared to the deterministic optimisation, the static robust opti-
isation further introduces more decision variables, the size of which is

ummarised later in Table 2 of Section 6. To alleviate its computational
omplexity, we adopt a two-step hierarchical procedure introduced
n [10,24] to handle it by relaxing the part of integer variables. The
irst step consists of the solution to the original problem without the
ipelines investments, and then the production and storage investment
ecisions 𝑁𝑃𝑝𝑔𝑡, 𝐼𝑃𝑝𝑔𝑡, 𝑁𝑆𝑠𝑔𝑡, 𝐼𝑆𝑠𝑔𝑡 obtained from the first step are fixed
nd transmitted to the second step to solve the full model in (13) so as
o calculate the remaining integer and continuous decision variables. As
erified in [24], the two-step procedure can guarantee a near-optimal
olution while significantly reducing the computing time.

The solution of Problem 1 provides a robust strategy guaranteeing
hat the energy balance constraint is feasible for all uncertainty realisa-
ions in the uncertainty set. The static robust framework suits the case
hat all the decisions need to be made before all the uncertainty realisa-
ions. But some of the operational decisions in the hydrogen planning
roblem can be made after the uncertainty realisations. In addition,
he solution to (13) is overly conservative because it is unlikely that
ll the worst-case scenarios for each hour 𝑡 happen at the same time.
herefore, we introduce the data-driven adaptive robust optimisation

n the next section to overcome these issues.

. Data-driven adaptive robust optimisation

The data-driven adaptive robust optimisation (ARO) allows for the
ynamic adjustment of operational decisions to hedge against the
ncertain risk, and provides a more flexible framework to control the
evel of conservativeness of the robust solution. In ARO, the decisions
re made in a ‘‘wait-and-see’’ manner with the uncertainty feedback.
ence, ARO can better model the sequential decision-making process
nd avoid the overly-conservative issues of SRO. It has been widely
sed in the energy system such as the power system expansion planning
nd demand response of multi-energy hubs [31,61] and its effective-
ess has been demonstrated as well. In addition, ARO only requires
he range of the uncertain data, which avoids the difficult capture
f probability distributions required for scenario-based approaches in
tochastic programming. Therefore, we are motivated to develop an
RO framework for the large-scale hydrogen infrastructure planning
roblem.

In general, the investment decisions are made on the yearly scale
efore the demand uncertainty realisations, while the operational de-
isions are made on the hourly level and can be adjusted after the
ncertainty realisations, which fits well into the sequential decision-
aking process and can lead to a more adaptive and less conservative

olution. To this end, we reformulate the optimisation problem in (7)
o adapt to the ARO framework, which is shown in the following Prob-
em 2. We define a composite vector (𝐱) related to investment decisions
f production and storage technologies and transmission pipelines

=
(

𝐼𝑃𝑝𝑔𝑡, 𝑁𝑃𝑝𝑔𝑡, 𝐼𝑆𝑠𝑔𝑡, 𝑁𝑆𝑠𝑔𝑡, 𝐴𝑌𝑔𝑔′𝑡, 𝐴𝑌
S
𝑔,𝑠𝑎,𝑡, 𝐴𝑌 𝑔𝑔′𝑡, 𝐴𝑌 𝑔𝑟𝑡,

𝑌𝑔𝑔′𝑡, 𝑌
S
𝑔,𝑠𝑎,𝑡, 𝑌 𝑔𝑔′𝑡, 𝑌 𝑔𝑟𝑡, 𝐼𝑅𝑒𝑔𝑡, 𝑁𝑅𝑒𝑔𝑡, 𝑅𝐼𝑟𝑡,∀𝑝, 𝑠, 𝑒, 𝑔, 𝑡, 𝑟

)

∈ 
8 
where  is a set of 𝐱 satisfying local constraints that only related to the
composite variable 𝐱. We then define a composite continuous vector (𝐲)
related to the operational decisions

𝐲 =
(

𝐶𝐿𝑔𝑡𝑐ℎ, 𝐼𝑔𝑡𝑐ℎ, 𝑃 𝑟𝑝𝑔𝑡𝑐ℎ, 𝑃 𝑟𝑒𝑔𝑡𝑐ℎ, 𝑄𝑔𝑔′𝑡𝑐ℎ, 𝑄
I
𝑔𝑠𝑡𝑐ℎ, 𝑄

R
𝑠𝑔𝑡𝑐ℎ,

𝑄𝑔𝑔′𝑡𝑐ℎ, 𝑄𝑔𝑟𝑡𝑐ℎ, 𝑆𝑡𝑠𝑔𝑡𝑐ℎ,∀𝑝, 𝑠, 𝑒, 𝑔, 𝑡, 𝑟, 𝑐, ℎ
)

∈ 𝛺(𝐱,𝐃)

where 𝛺(𝐱,𝐃) is a set of 𝐲 satisfying its local constraints and linking
constraints that related to variables 𝐱, 𝐲 and uncertain demand 𝐃 =
(𝐷𝑔𝑡𝑐ℎ; 𝑔 ∈ , 𝑡 ∈  , 𝑐 ∈ , ℎ ∈ ). The variable 𝐲 is composed
of the continuous decision variables at the lower-level of the ARO
model. They represent the renewable power curtailment, the hydrogen
flowrate, hydrogen production rate, CO2 flowrate and hydrogen storage
state at each hour 𝑡, respectively. A detailed description of decision
variables related to 𝐱 and 𝐲 composite vectors can be found in the
Appendix and Nomenclature.

Problem 2 (ARO).

min
𝐱∈

{

𝑃𝐶𝐶 + 𝑆𝐶𝐶 + 𝑃𝐿𝐶𝐶 + 𝑃𝑂𝐶1 + 𝑆𝑂𝐶1 + 𝑃𝐿𝑂𝐶 + 𝑅𝑒𝐶

+ max
𝐃∈PUS

min
𝐲∈𝛺(𝐱,𝐃)

{

𝑃𝑂𝐶2 + 𝑆𝑂𝐶2 + 𝐶𝐸𝐶 + 𝐼𝐼𝐶 + 𝐹𝐶
}

}

s.t. (A.1) – (A.10), PUS =
{

PUS
𝑔𝑡𝑐 ; 𝑔 ∈ , 𝑡 ∈  , 𝑐 ∈ 

}

 =
{

𝐱||
|

(A.11), (A.15), (A.20) – (A.22),

(A.31), (A.32), (A.37)
}

𝛺(𝐱,𝐃) =
{

𝐲||
|

(A.12) – (A.14), (A.16) – (A.19),

(A.23) – (A.30), (A.33) – (A.36), (A.38), (A.39)
}

(14)

where cost 𝑃𝑂𝐶1/𝑆𝑂𝐶1 denotes the first term of right-hand side
of Eq. (A.5)/Eq. (A.6) that related to integer variables (investment
decisions), while cost 𝑃𝑂𝐶2/𝑆𝑂𝐶2 denotes its second term that related
to continuous variables (operational decisions), accordingly, such that
𝑃𝑂𝐶 = 𝑃𝑂𝐶1 + 𝑃𝑂𝐶2 and 𝑆𝑂𝐶 = 𝑆𝑂𝐶1 + 𝑆𝑂𝐶2.

Problem 2 is a tri-level optimisation problem. The first minimi-
sation problem is called the upper level problem which consists of
the annualised investment cost and the worst-case operating cost. The
investment decisions are subject to the constraints shown in  . The
middle-level problem, i.e., the second maximisation problem identifies
the uncertainty realisations under worst-case scenario. The feasible
region for this level is defined in Section 3.2. With the upper and
middle-level decision variables, the operating cost is minimised in the
lower-level subject to the constraints shown in 𝛺(𝐱,𝐃). The goal of this
min–max–min formulation is to protect the system against the worst-
case realisation of uncertain demand within the polyhedral uncertainty
set, i.e., to confer resilience upon the system for all potential instances
encompassed by the uncertainty set.

It is worth noting that in the above robust framework while the
clusters are introduced for reducing the model size, the proposed model
is different from the robust-stochastic modelling framework in the
literature [55,62,63] which combines the stochastic programming (SP)
with the (A)RO for different uncertain parameters in the optimisation
problem. This work does not involve SP at all for demand uncer-
tainty. Considering the computational complexity of the underlying
multi-scale problem, the above (A)RO-based framework is proposed
to systematically generate representative days with the related uncer-
tainty sets using data-driven methods. The established uncertainty sets
consider the data correlations between hours, which is different from
the robust-stochastic models in the literature.

5.1. Hybrid decomposition for ARO problem

The above formulated tri-level ARO problem cannot be solved
directly using off-the-shelf optimisation solvers. To this end, we em-
ploy the widely adopted column-and-constraint generation (CCG) algo-
rithm [64,65] to decompose Problem 2 into a ‘‘min’’ master problem
and a ‘‘max–min’’ sub-problem.
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The CCG master problem is a relaxation of original Problem 2,
which is an MILP problem as well. A set of operating constraints
related to the demand under worst-case scenario obtained from the
sub-problem at iteration 𝐾 − 1 are added into the master problem at
teration 𝐾. We can obtain tentative investment decisions after solving

the master problem, and then transmit these decisions to the CCG
sub-problem to calculate the worst-case scenario. The master problem
provides a lower bound while the sub-problem determines the upper
bound. The whole process continues until the gap between the upper
and lower bounds iteratively reaches an optimality tolerance.

5.1.1. CCG master problem
The CCG master problem can be formulated as follows:

min
𝐱,𝜂,𝐲𝑘

{

𝑃𝐶𝐶 + 𝑆𝐶𝐶 + 𝑃𝐿𝐶𝐶 + 𝑃𝑂𝐶1 + 𝑆𝑂𝐶1 + 𝑃𝐿𝑂𝐶 + 𝑅𝑒𝐶 + 𝜂
}

s.t. (A.1) – (A.11), (A.15), (A.20) – (A.22), (A.31), (A.32), (A.37)
𝜂 ≥ 𝑃𝑂𝐶2𝑘 + 𝑆𝑂𝐶2𝑘 + 𝐶𝐸𝐶𝑘 + 𝐼𝐼𝐶𝑘 + 𝐹𝐶𝑘,

𝑃 𝑟𝑘𝑝𝑔𝑡𝑐ℎ ≤ 𝑐𝑎𝑝max
𝑝 ⋅𝑁𝑃𝑝𝑔𝑡 ∀𝑝, 𝑔

𝑃 𝑟𝑘𝑝𝑔𝑡𝑐ℎ − 𝑃𝑟𝑘𝑝𝑔𝑡𝑐,ℎ−1 ≤ 𝑅𝑈𝑝 ⋅ 𝑐𝑎𝑝
P
𝑝 ⋅𝑁𝑃𝑝𝑔𝑡 ∀𝑝, 𝑔

𝑃 𝑟𝑘𝑝𝑔𝑡𝑐,ℎ−1 − 𝑃𝑟𝑘𝑝𝑔𝑡𝑐ℎ ≤ 𝑅𝐷𝑝 ⋅ 𝑐𝑎𝑝
P
𝑝 ⋅𝑁𝑃𝑝𝑔𝑡 ∀𝑝, 𝑔

𝑐𝑎𝑝min
𝑠 ⋅𝑁𝑆𝑠𝑔𝑡 ≤ 𝑆𝑡𝑘𝑠𝑔𝑡𝑐ℎ ≤ 𝑐𝑎𝑝max

𝑠 ⋅𝑁𝑆𝑠𝑔𝑡,

𝑆𝑡𝑘𝑠𝑔𝑡𝑐ℎ = 𝑆𝑡𝑘𝑠𝑔𝑡𝑐,ℎ−1 +𝑄I,𝑘
𝑔𝑠𝑡𝑐ℎ −𝑄R,𝑘

𝑠𝑔𝑡𝑐ℎ, ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠

𝑆𝑡𝑘𝑠𝑔𝑡𝑐,24 = 𝑆𝑡init𝑠𝑔𝑡𝑐,1 ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠

𝑄I,𝑘
𝑔𝑠𝑡𝑐ℎ ≤ 𝑄Imax

𝑠 ⋅𝑁𝑆𝑠𝑔𝑡 ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠

𝑄R,𝑘
𝑔𝑠𝑡𝑐ℎ ≤ 𝑄Rmax

𝑠 ⋅𝑁𝑆𝑠𝑔𝑡 ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠

𝑄𝑘
𝑔𝑔′𝑡𝑐ℎ ≤ 𝑞Hmax ⋅ 𝐴𝑌𝑔𝑔′𝑡 ∀𝑔, 𝑔′ ∈  pipe

𝑔𝑔′

𝑄
𝑘
𝑔𝑔′𝑡𝑐ℎ ≤ 𝑞Cmax ⋅ 𝐴𝑌 𝑔𝑔′𝑡 ∀𝑔, 𝑔′ ∈ 𝑔𝑔′

𝑄
𝑘

𝑔𝑟𝑡𝑐ℎ ≤ 𝑞Cmax ⋅ 𝐴𝑌 𝑔𝑟𝑡 ∀{𝑔, 𝑟} ∈ 𝐺𝑅𝑔𝑟
∑

𝑝∈
𝑃𝑟𝑘𝑝𝑔𝑡𝑐ℎ +

∑

𝑔′∈ 𝑝𝑖𝑝𝑒
𝑔′𝑔

𝑄𝑘
𝑔′𝑔𝑡𝑐ℎ +

∑

𝑠∈𝐺𝑆𝑔𝑠

𝑄R,𝑘
𝑠𝑔𝑡𝑐ℎ + 𝐼𝑘𝑔𝑡𝑐ℎ

≥
∑

𝑔′∈ pipe
𝑔𝑔′

𝑄𝑘
𝑔𝑔′𝑡𝑐ℎ +

∑

𝑠∈𝐺𝑆𝑔𝑠

𝑄I,𝑘
𝑔𝑠𝑡𝑐ℎ +𝐷𝑘

𝑔𝑡𝑐ℎ, ∀𝑔, 𝑡, 𝑐, ℎ

∑

𝑔′∈𝑔′𝑔

𝑄
𝑘
𝑔′𝑔𝑡𝑐ℎ +

∑

𝑝∈
𝑦𝑐𝑝𝑡𝑃𝑟

𝑘
𝑝𝑔𝑡𝑐ℎ

=
∑

𝑔′∈𝑔𝑔′

𝑄
𝑘
𝑔𝑔′𝑡𝑐ℎ +

∑

𝑟∈𝐺𝑅𝑔𝑟

𝑄
𝑘

𝑔𝑟𝑡𝑐ℎ, ∀𝑔, 𝑡, 𝑐, ℎ

𝑃 𝑟𝑘𝑝𝑔𝑡𝑐ℎ = 𝜂𝑡
(
∑

𝑒∈
𝑃𝑟

𝑘
𝑒𝑔𝑡𝑐ℎ − 𝐶𝐿𝑘

𝑔𝑡𝑐ℎ
)

, ∀𝑝 ∈ {𝑊𝐸}

∑

𝑔∈

∑

𝑡∈
𝐶𝐿𝑘

𝑔𝑡𝑐ℎ ≤ 𝑐𝑙 ⋅
∑

𝑒∈

∑

𝑔∈

∑

𝑡∈
𝑃𝑟

𝑘
𝑒𝑔𝑡𝑐ℎ, ∀𝑐, ℎ

𝑃 𝑟
𝑘
𝑒𝑔𝑡𝑐ℎ = 𝐴𝑉𝑒𝑔𝑐ℎ ⋅𝑁𝑅𝑒𝑔𝑡, ∀𝑒 ∈  , 𝑔, 𝑡, 𝑐, ℎ

𝐼𝑘𝑔𝑡𝑐ℎ ≤ 𝐼Up𝑔𝑡𝑐 , ∀𝑔 ∈ 𝐺𝑖𝑚𝑝𝑔 , 𝑡, 𝑐, ℎ

∑

𝑝∈{𝐵𝐺𝐶𝐶𝑆}

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅

𝑃𝑟𝑘𝑝𝑔𝑡𝑐ℎ
𝜂𝑝𝑡

≤ 𝑏𝑎𝑔𝑡, ∀𝑔, 𝑡

𝑅𝐼𝑟𝑡 = 𝑅𝐼𝑟,𝑡−1 + 𝜏
∑

𝑔∈𝐺𝑅𝑔𝑟

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅𝑄

𝑘

𝑔𝑟𝑡𝑐ℎ, ∀𝑟 ∈ , 𝑡

∑

𝑝∈

∑

𝑔∈

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅ 𝑦

𝑒
𝑝𝑡 ⋅ 𝑃𝑟

𝑘
𝑝𝑔𝑡𝑐ℎ ≤ 𝑒𝑡𝑡

𝑘 = 1,… , 𝐾, ∀𝑡, 𝑐, ℎ (15)

where 𝜂 in the objective function is the approximation of primal
objective function at lower level, i.e., the approximation of operating
cost in Problem 2. The decisions in (15) include the upper level decision
variables 𝐱 and also the additional variable 𝐲𝑘 corresponding to 𝐲 at
ach iteration 𝑘 = 1,… , 𝐾. Except the local constraints for 𝐱, a set of
9 
rimal cuts constructed by 𝐲𝑘 is added to the master problem. Note that
he obtained values of 𝜂 and 𝐲𝑘 after solving master problem (15) will
ot be transmitted to the CCG sub-problem, and only the value of 𝐱 is
eeded.

We can observe that the CCG master problem is a complex MILP
roblem and its scale will grow as the outer iteration step 𝐾 proceeds,
hich could make it more and more computationally intensive. Hence,
e still use the two-step hierarchical procedure introduced in Sec-

ion 4 to solve the problem (15) to decompose it into two optimisation
roblems that can be solved relatively quickly. The solution process is
imilar to that in Section 4.

.1.2. CCG subproblem
The CCG sub-problem is a bi-level ‘‘max–min’’ optimisation problem

arameterised in terms of the given investment decisions 𝐱𝐾 at itera-
tion 𝐾, which aims to extract the worst-case realisations of uncertain
demand. It can be formulated as follows where all the decision variables
are continuous and constraints are linear:
𝛯(𝐱𝐾 ) = max

𝐃∈PUS
min
𝐲

{

𝑃𝑂𝐶2 + 𝑆𝑂𝐶2 + 𝐶𝐸𝐶 + 𝐼𝐼𝐶 + 𝐹𝐶
}

s.t. (A.5) – (A.8), (A.10), (A.17), (A.26) – (A.29),
(A.33) – (A.35), (A.38), (A.39),
𝑃 𝑟𝑝𝑔𝑡𝑐ℎ ≤ 𝑐𝑎𝑝max

𝑝 ⋅𝑁𝑃𝐾
𝑝𝑔𝑡, ∀𝑝, 𝑔, 𝑡, 𝑐, ℎ

𝑃 𝑟𝑝𝑔𝑡𝑐ℎ − 𝑃𝑟𝑝𝑔𝑡𝑐,ℎ−1 ≤ 𝑅𝑈𝑝 ⋅ 𝑐𝑎𝑝
P
𝑝 ⋅𝑁𝑃𝐾

𝑝𝑔𝑡, ∀𝑝, 𝑔, 𝑡, 𝑐, ℎ

𝑃 𝑟𝑝𝑔𝑡𝑐,ℎ−1 − 𝑃𝑟𝑝𝑔𝑡𝑐ℎ ≤ 𝑅𝐷𝑝 ⋅ 𝑐𝑎𝑝
P
𝑝 ⋅𝑁𝑃𝐾

𝑝𝑔𝑡, ∀𝑝, 𝑔, 𝑡, 𝑐, ℎ

𝑐𝑎𝑝min
𝑠 ⋅𝑁𝑆𝐾

𝑠𝑔𝑡 ≤ 𝑆𝑡𝑠𝑔𝑡𝑐ℎ ≤ 𝑐𝑎𝑝max
𝑠 ⋅𝑁𝑆𝐾

𝑠𝑔𝑡, ∀𝑠, 𝑔, 𝑡, 𝑐, ℎ

𝑄I
𝑔𝑠𝑡𝑐ℎ ≤ 𝑄Imax

𝑠 ⋅𝑁𝑆𝐾
𝑠𝑔𝑡 ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠, 𝑡, 𝑐, ℎ

𝑄R
𝑔𝑠𝑡𝑐ℎ ≤ 𝑄Rmax

𝑠 ⋅𝑁𝑆𝐾
𝑠𝑔𝑡 ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠, 𝑡, 𝑐, ℎ

𝑄𝑔𝑔′𝑡𝑐ℎ ≤ 𝑞Hmax ⋅ 𝐴𝑌 𝐾
𝑔𝑔′𝑡 ∀𝑔, 𝑔′ ∈  pipe

𝑔𝑔′ , 𝑡, 𝑐, ℎ

𝑄𝑔𝑔′𝑡𝑐ℎ ≤ 𝑞Cmax ⋅ 𝐴𝑌
𝐾
𝑔𝑔′𝑡 ∀𝑔, 𝑔′ ∈ 𝑔𝑔′ , 𝑡, 𝑐, ℎ

𝑄𝑔𝑟𝑡𝑐ℎ ≤ 𝑞Cmax ⋅ 𝐴𝑌
𝐾

𝑔𝑟𝑡 ∀{𝑔, 𝑟} ∈ 𝐺𝑅𝑔𝑟, 𝑡, 𝑐, ℎ

𝑃 𝑟𝑒𝑔𝑡𝑐ℎ = 𝐴𝑉𝑒𝑔𝑐ℎ ⋅𝑁𝑅𝐾
𝑒𝑔𝑡 ∀𝑒 ∈  , 𝑔, 𝑡, 𝑐, ℎ

𝑅𝐼𝐾𝑟𝑡 = 𝑅𝐼𝐾𝑟,𝑡−1 + 𝜏
∑

𝑔∈𝐺𝑅𝑔𝑟

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅𝑄𝑔𝑟𝑡𝑐ℎ, ∀𝑟 ∈ , 𝑡.

(16)

Note that the above bi-level optimisation problem is NP-hard and
cannot be directly solved using the off-the-shelf solvers. The common
way to handle it is converting the ‘‘max–min’’ problem into a single-
level ‘‘max’’ optimisation problem with bilinear terms by using the
dualisation theory [30,53]. Then a big-M method is introduced for
the linearisation with additional binary variables. Nevertheless, the
choice of appropriate big-M values is a challenging task [66], and
the introduction of additional variables results in the solution of a
combinatorial program for the CCG sub-problem.

Therefore, we propose to use the Block coordinate descent (BCD)
method to efficiently solve the sub-problem (16), which does not need
the introduction of dualisation and big-M values [31]. BCD decomposes
the ‘‘max–min’’ problem into two linear program problems: the lower
level problem determining the operating decisions with fixed demand,
and the middle level problem determining the uncertain demand with
fixed decisions, and these two LP problems are solved iteratively until
the BCD method convergence.

The BCD lower-level problem is expressed as follows:

𝛷𝑙𝑜 = min
𝐲

{

𝑃𝑂𝐶2 + 𝑆𝑂𝐶2 + 𝐶𝐸𝐶 + 𝐼𝐼𝐶 + 𝐹𝐶
}

s.t. All constraints in (16)
𝐷𝑔𝑡𝑐ℎ = 𝐷𝑣

𝑔𝑡𝑐ℎ ∶ 𝜇𝑔𝑡𝑐ℎ, ∀𝑔, 𝑡, 𝑐, ℎ

(17)

where 𝜇𝑔𝑡𝑐ℎ,∀𝑔, 𝑡, 𝑐, ℎ are the dual variables, which quantify the sensi-
tivity of the objective function with respect to variations in demand at

iteration step 𝑣 of BCD method. The dual variables will be employed
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in the BCD middle-level problem to get the worst-case uncertainty
realisation.

The BCD middle-level problem is formulated below:

max
𝐃∈PUS

𝛷𝑙𝑜
𝑣−1 +

∑

𝑔∈

∑

𝑡∈

∑

𝑐∈

∑

ℎ∈
𝜇𝑣−1
𝑔𝑡𝑐ℎ ⋅ (𝐷𝑔𝑡𝑐ℎ −𝐷𝑣−1

𝑔𝑡𝑐ℎ) (18)

where the demand is subject to the polyhedral uncertainty set, 𝜇𝑣−1
𝑔𝑡𝑐ℎ and

𝛷𝑙𝑜
𝑣−1 are obtained from the lower-level at iteration 𝑣−1. This middle-

level problem is built upon the first-order Taylor series approximation
of the operating cost 𝛷𝑙𝑜 around the uncertainty realisations at the
previous iteration.

5.1.3. Summary of ARO solution algorithm
The above iterative procedure forms our proposed algorithm called

Enhanced column-and-constraint generation (ECCG) algorithm, which is
given below. It involves one outer loop related to the traditional CCG
algorithm and two inner loops associated to the two-step hierarchical
method for solving CCG master problem (CCG-MP) and BCD method
for solving CCG sub-problem (CCG-SP), as shown in flowchart Fig. 4.
Initialise the upper bound 𝑈𝐵 = +∞ and lower bound 𝐿𝐵 = −∞, and
set tolerance 𝜀1 > 0 for the outer loop and 𝜀2 > 0 for the inner BCD
method.

(1) Initialisation of the outer loop: Set the iteration counter 𝐾 to 1
and the maximum iteration step 𝐾max; Set the initial investment
decisions 𝐱𝐾 .

(2) Initialisation of the inner loop: Set the iteration counter of inner
loop about the BCD method 𝑣 to 1, and initialise demand values
𝐃𝑣; Set the operational cost for the inner loop 𝐶𝐼𝐿 to +∞.

(3) Solve the BCD lower-level problem (17) with given 𝐱𝐾 and 𝐃𝑣,
which provides 𝛷𝑙𝑜

𝑣 and 𝜇𝑣
𝑔𝑡𝑐ℎ.

(4) Check the convergence of inner BCD method:
If |𝐶𝐼𝐿 −𝛷𝑙𝑜

𝑣
|∕|𝐶𝐼𝐿

| ≤ 𝜀2, end the BCD iteration and set 𝐃𝐾 ←

𝐃𝑣, and then go to Step (6); otherwise, continue the BCD iteration
and set 𝐶𝐼𝐿 ← 𝛷𝑙𝑜

𝑣, update the BCD iteration counter 𝑣 ← 𝑣 + 1.
(5) Solve the BCD middle-level problem in (18) with given 𝛷𝑙𝑜

𝑣−1 and
𝜇𝑣−1
𝑔𝑡𝑐ℎ, which provides 𝐃𝑣. Then go to Step (3).

(6) Update the outer loop iteration counter 𝐾 ← 𝐾 + 1.
(7) Solve the CCG master problem in (15) with given 𝐃𝑣 by using

the two-step hierarchical procedure, which provides the invest-
ment decisions 𝐱𝐾 ; Assign the objective value of the CCG master
problem to 𝐿𝐵, and calculate 𝑈𝐵 = 𝐿𝐵 − 𝜂𝐾 + 𝐶𝐼𝐿.

(8) Check the convergence of outer loop: If |𝑈𝐵 − 𝐿𝐵|∕|𝐿𝐵| ≤ 𝜀1
and 𝐾 ≤ 𝐾max, terminate the whole algorithm; otherwise, go to
Step (2).

Fig. 4 showcases how the proposed ECCG algorithm works. Firstly,
instead of solving a monolithic large-scale MILP directly, we use a two-
step hierarchical procedure to decompose the master problem to two
relatively small-scale MILP problems. Step 1 allows for the solution
without the pipeline network constraints, which decreases the model
size significantly, and then with the obtained production and storage in-
vestment decisions from Step 1 the full model with pipeline constraints
is calculated at Step 2. This hierarchical procedure allows for signifi-
cantly faster computations, as will be demonstrated later on in Table 2.
Secondly, the BCD method decomposes the ‘‘max–min’’ subproblem
to two computationally straightforward LPs rather than solving an
underlying MILP problem resulted from the big-M formulation, which
further improves the computational efficiency. Overall, compared to
CCG method, ECCG is more convenient to implement, particularly for
multi-scale complex models. It offers improved scalability and reduces
computational complexity.
10 
Fig. 4. The flowchart of the proposed ECCG algorithm.

6. Computational results

We conduct the numerical simulations in this section to evaluate the
performance of the proposed framework for the hydrogen infrastructure
planning in GB shown in Fig. 2 over the 5-year steps 2035–2050. In
order to derive the uncertainty sets for hydrogen demand, historical
regional hourly gas consumption data are collected from the GB gas dis-
tribution companies for several years (2015–2018) [6]. These historical
data account for industrial, domestic and commercial loads, which were
further dealt with to segment heat-related hydrogen demands within
each region for heat decarbonisation in GB. We use the 𝑘-medoids
clustering method introduced in Section 3.1 to disaggregate each year’s
hydrogen demand into several clusters. The peak demand day is treated
as one cluster for system’s security reasons. We establish the polyhedral
uncertainty sets for other remaining clusters by applying the method
shown in Section 3.2. All simulations are executed in GAMS Studio
1.13.4 on a PC with Intel® CoreTM i9-10980XE CPU @ 3.00 GHz and
128 GB RAM, and solved by Gurobi 9.5.1 with optimality gap 5%.
Model parameters kept the same as our previous paper [24] and can
be found in its supplementary material. The lifetimes of equipment for
production, storage and transmission are set as 30–40 years, which is
taken from the report of UK BEIS [67]. The planning interval is less
than the lifetimes of technologies and pipelines, and hence the terminal
residual values of equipment are not deducted from the investment
cost. The relative tolerance for the BCD method is 1 × 10−8. The op-
timality tolerance of outer hybrid decomposition algorithm is set to be
0.1%. The solution results of the multi-scale model find the optimal
yearly investment decisions and hourly operational decisions for the
hydrogen infrastructure network.
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Table 1
Cost comparison between deterministic and ARO scenarios under 4
clusters and 𝛷𝑔𝑡𝑐 = 3.

Scenarios Total cost (£b) Running time (min)

Deterministic 63.08 9.73
SRO 114.54 9.82

Fig. 5. Cost comparison between deterministic model and SRO model under 4 clusters
and 𝛷𝑔𝑡𝑐 = 3.

6.1. Comparison between deterministic and SRO models

We compare the model performances with and without uncertainty
with 4 clusters in this section. The deterministic model means that the
uncertainty budget value 𝛷𝑔𝑡𝑐 of polyhedral uncertainty set introduced
in (5) is 0, and the hydrogen demand in each cluster is equal to the
average values, which neglects the daily variability of demand. In SRO,
we set the value of budget 𝛷𝑔𝑡𝑐 as 3 because the resulting data-driven
uncertainty set can cover the majority of uncertainty data. This leads to
more hydrogen demand because the SRO needs to guarantee that the
solution is feasible for all uncertainty realisations within an uncertainty
set. The SRO model is solved as an MILP model by using the two-step hi-
erarchical method introduced in Section 4, which includes 544 discrete
variables, 472,800 continuous variables and 419,832 equations.

As we can see from Table 1, the total system cost increases by
around 81.5% using the SRO approach compared with the deterministic
scenario because of increased demand. The total CPU running time of
these two scenarios is similar under 4 clusters. The spatially-explicit
pattern of hydrogen demand considers trade-offs between production,
storage, transmission and emissions costs. Fig. 5 shows the detailed
cost with around 50% increase in production capital and operating cost
and 85% increase in gas cost by using robust approach compared with
the deterministic model. The biomass cost for both of them is similar
because of limited biomass availability, while most of hydrogen is
produced by consuming gas. Neither of them involves hydrogen imports
11 
as seen from Fig. 5. Note that SRO model leads to the investment
and use of renewable energies as well to produce more hydrogen
by WE technology. Fig. 6 compares the total production capacity of
different technologies in different years. We can observe that ATRCCS
technology is more widely used and favourable compared to SMRCCS
technology. This is because even though the capital cost of ATRCCS
technology is a bit higher, it demonstrates superior energy conver-
sion efficiency and performance, potentially enabling more effective
resource utilisation and lower operational cost. From 2035–2045, the
total production capacity is increasing year by year due to increasing
hydrogen loads, and then remains essentially the same, which can also
be observed from Fig. 7 showing the temporal and spatial production
for SRO. The NO region produced the most accounting for around 19%
in 2035 due to the high demand, while the production percentage in
other regions is almost similar in each year.

Fig. 7. Temporal and spatial heatmap of production capacity for SRO under 4 clusters
and 𝛷𝑔𝑡𝑐 = 3.

In Fig. 8, the production capacity and hydrogen pipelines expansion
maps are illustrated from 2035 to 2050 year. The total production
capacity increases from 39 GW in 2035 to 63.7 GW in 2040 and further
to 84.2 GW in 2050. We can observe that the hydrogen in NO region
is produced not only by ATRCCS and BGCCS technologies, but also
WE technology consuming renewables. Although the WE technology
has higher operating cost compared with ATRCCS technology, it has
relatively lower capital cost compared with ATRCCS and BGCCS tech-
nologies, and does not generate CO2. Therefore, when the hydrogen
demand is very high in some individual regions like NO region, it may
be more economical to invest more WE technologies rather than more
ATRCCS technologies, which may result in relatively low capital cost in
this region despite potentially higher production costs, while the total
cost is reduced. It is the balance of operational cost and capital cost.
This case does not suit the scenario of low hydrogen demand, wherein
the investment in production technology is relatively small compared
to high demand scenario. However, due to the limited installation of
renewable farms and limited investment number of WE technology
in each region, the production of WE will not continue to increase,
and perhaps at some point the operational cost will be higher than
Fig. 6. The total production capacity comparison of different technologies between deterministic (Dete.) model and SRO model with 𝛷𝑔𝑡𝑐 = 3 under 4 clusters in different years.
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Fig. 8. Production capacity and hydrogen pipelines expansion maps from 2035 to 2050 for SRO under 4 clusters and 𝛷𝑔𝑡𝑐 = 3.
Fig. 9. Temporal and spatial heatmap of storage capacity for SRO under 4 clusters
and 𝛷𝑔𝑡𝑐 = 3.

the capital cost leading to an overall increase in total costs over time.
That is why in Fig. 6, the production capacity of WE looks basically
unchanged in different years. The transportation of hydrogen across
regions is facilitated by an interconnected pipeline network. Illustrated
in Fig. 8, the hydrogen transmission network undergoes incremen-
tal development from 2035, with initial installations covering only a
portion of the intended network. Subsequently, the network expands
progressively, establishing connections with neighbouring regions in
2045. Note that the pipelines availability in 2050 is the same as 2045
because all the pipelines have been established in 2045 and no further
expansion and pipeline investment needed in 2050.

The hydrogen storage plays a significant role in ‘‘peak shaving’’ so
as to reduce the total system cost. Fig. 9 displays the temporal and
spatial storage for SRO. It can be observed that the storage capacity
in each region increases annually and then remains constant, with
similar annual increments across all regions. The storage technology
installed in all regions of GB is MPSV with or without uncertainty,
because it offers lower operating cost for storage compared with HPSV
technology. The detailed storage in each region for SRO is shown in
Fig. 10 with a total storage capacity 63.6 GWh in 2035 and 188.8 GWh
in 2050 year, which is slightly higher than the total storage capacity
172.8 GWh in 2050 for deterministic case. The storage differences
12 
Fig. 10. The percentage of storage capacity in each region from 2035 to 2050 for SRO
under 4 clusters and 𝛷𝑔𝑡𝑐 = 3.

between SRO and deterministic case are not substantial due to the
limited investment number of storage facilities, which can also be
observed from the storage capital and operating costs in Fig. 5.

6.2. Sensitivity analysis based on SRO

In the following, we investigate the impacts of the number of
clusters 𝑐 and different uncertainty budget values 𝛷𝑔𝑡𝑐 on the solu-
tion results. More clusters means more accurate approximation of the
original demand data, but at the same time, it leads to more variables
and constraints, which may be computationally intractable, especially
when solving the MILP problem directly by Gurobi. As we can see from
Table 1, the total running time is around 10 mins when 4 clusters are
employed. However, when the cluster number increases to 12, the total
running time increases exponentially. In Table 2, we show the model
size under 12 clusters with 𝛷𝑔𝑡𝑐 = 3, and compare the running times
and computational results by using monolithic way and our adopted
hierarchical method shown in Section 4. The number of equations and
continuous variables in the MILP problem is nearly tripled from 4
clusters to 12 clusters. Note that the number of variables fixed in the
hierarchical solution process is also counted into the total number of
variables when using GAMS. That is why the total number of variables
in Step 1 and Step 2 remains the same. It can be known from Table 2
that the two-step hierarchical method significantly reduces the total
running time with the number of clusters grows, while resulting in a
slightly better solution than the monolithic way. Achieving a lower
cost value with optimality gap smaller than 6.37% would require more
running time for monolithic method due to its high combinatorial
complexity.
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Table 2
The comparison between two methods for SRO under 12 clusters and 𝛷𝑔𝑡𝑐 = 3.

Monolithic Hierarchical method

Step 1 Step 2

Disc. Var. 544 544 544
Cont. Var. 1,416,672 1,416,672 1,416,672
Equations 1,257,656 1,164,344 1,257,656
Optimality Gap (%) 6.37 2.06 3.12
CPU time 13 h 07 min 30 min
Total cost (£b) 110.48 107.42

Fig. 11. Heat map of solution profile for SRO under different number of clusters
(𝑐 = 4, 8, 12, 16) and uncertainty budget values (𝛷𝑔𝑡𝑐 = 1, 2, 3, 4).

The uncertainty budget can affect the size of uncertainty set, i.e., the
uncertainty data coverage, and thus affect the amount of hydrogen
demand to be satisfied under the worst-case scenario. A larger value of
uncertainty budget means more data coverage. In Fig. 11, we present a
heat map for the SRO under different values of the parameters. It can
be observed that increasing the value of uncertainty budget leads to a
higher system cost, while increasing the number of clusters results in
a lower cost because the weight of each uncertain representative day
introduced in Section 3.1 will decrease as the number of clusters grows,
and thus the total demand will decrease. Note that the total cost of 4
kinds of cluster numbers shown in Fig. 11 is very close when budget
𝛷𝑔𝑡𝑐 = 1 representing less data coverage because the worst-case demand
of each cluster is close to its average value and then the obtained total
demand after timing the weight of each cluster is similar as well. If we
set 𝛷𝑔𝑡𝑐 equal to its maximum value, i.e., the uncertain data dimension
24, the uncertainty set would become a box set, which will lead to a
very conservative solution and could not reflect the real situation. In
fact, when the value of 𝛷𝑔𝑡𝑐 is 3 or 4, it already contains most of the
uncertain data. Our results can provide a certain valuable reference
on choosing the value of 𝛷𝑔𝑡𝑐 for decision makers in real applications.
Fig. 12 demonstrates a near linear relationship between running time
and the expansion of cluster number, maintaining similar trend under
different uncertainty budgets. When the number of clusters increases
to 16, it only takes about 80 mins to get the solution of the large-scale
MILP problem by using the hierarchical method.

6.3. Comparative analysis of SRO and ARO

The SRO does not provide feedback for uncertainty and all decisions
are made ‘‘here and now’’. It needs to guarantee that the solution
is feasible satisfying the energy balance constraint for every hour,
which means that the worst-case scenario in the uncertainty set is
taken at each moment. In practice, it is unlikely that all uncertain
parameters will get the worst-case values at the same time. Compared
with SRO, the decisions of ARO are made on the ‘‘wait and see’’ basis
and part of decisions like the operational decisions can be adjusted
after the uncertainty realisations. Therefore, the ARO can avoid the
overly-conservative issue of SRO. In this subsection, we will analyse
13 
Fig. 12. Total running time for SRO under different number of clusters with 𝛷 = 1
and 3.

Fig. 13. The hydrogen demand comparison among deterministic (Dete.) and SRO and
ARO under worst-case scenario with 𝛷 = 2 for each cluster of region SC in 2035 under
4 clusters.

the difference between ARO and SRO, and compare their performance
on the hydrogen infrastructure planning problem under 4 clusters. We
set the value of uncertainty budget 𝛷 = 2 in this part for showing
different perspectives and comparison and avoiding presenting same
repetitive results as in Section 6.1 for SRO. The ARO problem is solved
by applying the developed two-level hybrid ECCG algorithm shown in
Section 5. Fig. 13 displays the hydrogen demand of region SC under
deterministic case, and the demand under worst-case scenario between
SRO and ARO in 2035 under 4 clusters and 𝛷 = 2. Since the peak
demand day is treated as one cluster, it only displays the daily profiles
of Cluster 2, 3 and 4. It can be observed that the demand will increase
under uncertainty compared with the deterministic case. The demand
for SRO is higher than that for ARO at most hours within each cluster,
especially after 13:00 p.m., because it adopts the maximum value of
demand within the uncertainty set for each hour, as shown in Eq. (8)
and the decisions of SRO are made at once before the uncertainty
realisation, while ARO considers the system worst-case scenario for the
whole 24 h rather than only for individual hour, as shown in Eq. (16).
It is worth noting that ARO can incur lower total cost not only due to
the lower demand under the worst-case scenario compared to SRO, but
also because the system can adjust operational decisions based on the
realised uncertainty.

In Table 3, we compare the total system cost and running time for
SRO and ARO under 4 clusters and 𝛷 = 2. It can be seen that ARO
results in a lower cost compared to SRO, and at the same time it needs
more CPU execution time because SRO represents single stage imple-
mentation, while ARO involves two-stage operation with iterations.
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Table 3
Cost comparison between ARO and SRO models under 4
clusters and 𝛷𝑔𝑡𝑐 = 2.

Models Total cost (£b) Running time

SRO 107.57 9.8 min
ARO 94.99 11 h 32 min

Fig. 14. Cost comparison between SRO and ARO models under 4 clusters and 𝛷 = 2.

Fig. 14 shows the detailed cost comparison between these two models.
Most of the cost like production capital and operational cost and gas
cost in ARO framework decreases in line with the reduced demand,
while the import cost related to the operational decision import rate
increases.

The convergence of proposed ECCG algorithm under 4 clusters
and 𝛷 = 2 is displayed in Fig. 15. The 𝑋-axis and 𝑌 -axis represent
the number of iterations and the total cost (objective value), respec-
tively. As the algorithm iterates, the size of each CCG-SP remains the
same while the size of the CCG-MP significantly increases because the
optimality cuts are constantly added to the master problem at each
iteration shown in (15). More specifically, CCG-MP has 544 discrete
variables, 108,375 continuous variables, and 180,207 constraints at
the first iteration, while it increases to 544 discrete variables, 215,901
continuous variables, and 358,046 constraints at the second iteration,
and 544 discrete variables, 323,427 continuous variables, 535,885
constraints at the third iteration. Therefore, the computational time
required for optimising the problem also increases progressively. As we
can see, the proposed ECCG algorithm takes only 3 iterations to reach
the optimality tolerance of 0.1%. The needed CPU times at the first and
second iterations are within 14 mins, while it goes to around 11 h at the
third iteration involving 5.47 h for Step 1 and 5.58 h for Step 2 in the
large-scale CCG-MP solving process. If we solve the CCG-MP directly
by using a monolithic approach rather than the hierarchical method,
it would require significant computing time as the iteration step in-
creases, especially under more clusters shown in Table 2. Furthermore,
compared with the commonly used decomposition algorithm in the
literature [53] where the CCG-MP is solved by the monolithic way and
the CCG-SP is solved by using a big-M method with introduction of
additional binary variables that amount to 1872 in our problem across
all technologies, regions and years, the adopted BCD method in the
ECCG algorithm only needs to solve two linear problems for CCG-SP
and can converge within 20 s to the optimality criteria 1 × 10−8, further
improving the computational efficiency. In Fig. 16, we show the error
value of the BCD method at outer iteration step 𝐾 = 3, which only
requires 5 iterations to reach the convergence criterion. In addition, the
BCD method does not involve formulating the complex dual problem of
the CCG-SP and suffering from the issue of appropriately selecting the
bounds of the dual variables which are required by the big-M method.
14 
Fig. 15. The upper and lower bounds of outer ECCG algorithm for ARO under 4
clusters and 𝛷 = 2.

Fig. 16. The error value between upper and lower bounds of BCD algorithm (i.e., value
of |𝐶𝐼𝐿 −𝛷𝑙𝑜

𝑣
|∕|𝐶𝐼𝐿

|) for ARO under 4 clusters and 𝛷 = 2 at outer iteration step 𝐾 = 3.

In Fig. 17, we compare the total production capacity between
SRO and ARO models among different technologies and years. The
production of ATRCCS technology for ARO decreases compared to SRO
in each year due to the decreasing demand, while the production of
SMRCCS technology increases. Nevertheless, the ATRCCS is still the
most prevailing technology. Compared with the deterministic case in
Fig. 6, ARO and SRO both involve the WE production from the renew-
ables. Fig. 18 shows the temporal and spatial heatmap of production
capacity under these two frameworks. Compared with SRO, the produc-
tion for ARO are mainly concentrated in several high-demand regions,
especially NO, NE, WS and SE regions in 2045 and 2050. Differently
from SRO where the production percentage across all regions except
NO region is similar in each year, the production percentage for ARO
varies significantly across most regions, which can also be observed
from Fig. 19 showing the detailed percentage of production capacity
for each region in 2050 year.

The temporal and spatial heatmap of storage capacity for SRO and
ARO is displayed in Fig. 20. We can observe that the storage capacity
for SRO in different regions of each year is very close, while the
storage for ARO is concentrated in SC, NW, WM, EM, EA and NT
regions and the amount of storage in these regions is much larger than
SRO’s. In Fig. 21, we compare the total storage between SRO and ARO
in different years, and find that their difference is not substantial in
each year. Based on these observations, it can be inferred that ARO
tends to concentrate hydrogen storage in specific regions compared
to SRO, subsequently transporting it to other areas through pipelines.
The availability of hydrogen pipelines under the ARO framework from
2040 to 2050 (which remains constant during these years) is illustrated
in Fig. 22 marking the pipeline transmission distance across regions
(unit: km), which is similar to the pipeline availability in SRO. It
can be observed that these storage-concentrated regions SC, NW, WM,
EM, EA and NT are central regions, and hence the distances they
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Fig. 17. The total production capacity comparison of different technologies between
SRO and ARO models in different years under 4 clusters and 𝛷𝑔𝑡𝑐 = 2.

Fig. 18. Temporal and spatial heatmap of production capacity for SRO (left) and ARO
(right) under 4 clusters and 𝛷𝑔𝑡𝑐 = 2.

Fig. 19. The percentage of production capacity for each region in 2050 year for SRO
and ARO under 4 clusters and 𝛷𝑔𝑡𝑐 = 2.

transport hydrogen to other regions are shorter. Additionally, other
regions with surplus production, such as WS and SE, can also efficiently
transmit hydrogen to these central areas. Furthermore, compared with
the distributed storage, the centralised storage can lead to a lower
storage investment because the surplus storage capacity in each region
is effectively utilised and concentrated, and similarly it applies to pro-
duction capacity as well. Since part of decisions of ARO can be adjusted
to better accommodate the uncertainty realisations, the transmission
operation of pipelines become more frequent than SRO and can reduce
the system economic cost to some extent.

In an effort to further elucidate the degree of conservativeness of
different solutions, i.e. Deterministic vs ARO and SRO, we conduct a
set of optimisation runs during which we fix the investment decisions
for generation, storage and transmission and allow only the operational
decisions to be optimised. That way we aim to mimic the real-life
implementation of the strategic decisions within the context of ca-
pacity expansion planning towards deep decarbonisation. In Fig. 23,
we present a breakdown of the capital, operational and total costs.
Note that the capital costs are fixed from the solution of integrated
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Fig. 20. Temporal and spatial heatmap of storage capacity for SRO (left) and ARO
(right) under 4 clusters and 𝛷𝑔𝑡𝑐 = 2.

Fig. 21. Total storage capacity for ARO and SRO under 4 clusters and 𝛷𝑔𝑡𝑐 = 2.

Fig. 22. Availability and distances (marked number with unit: km) across regions of
hydrogen pipelines for ARO from 2040–2050 under 4 clusters and 𝛷𝑔𝑡𝑐 = 2.
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Fig. 23. Economic performance comparison between deterministic, ARO and SRO
models when tested in a Monte Carlo simulation environment.

capacity and operational optimisation problem, while the operational
cost is computed via the whole year operational optimisation with
fixed capacity investments. In the full-year optimisation of operations,
we allow for demand shedding with a value of lost load (VoLL) at
£20,000/MWh, similar to the recent study [68]. Focusing on Fig. 23,
it is evident that the most expensive strategy in terms of capital
expenditures is the SRO by 97% and 30% more funds needed compared
to the deterministic and ARO, respectively. Interestingly, when focusing
on the system’s operational expenditures a trend reversal is observed,
where ARO solution results in 7% less costs compared to the SRO while
the deterministic solution results in 59% more cost due to the inability
to account for the uncertainty and resorting to demand shedding. In
terms of the final total cost of the decarbonised system we see that the
most expensive strategy when deployed in a ‘‘real-life’’ scenario is the
deterministic approach by 25% while the least expensive approach and
the one that appears as the best compromise is the ARO with 15% less
overall costs when compared to SRO. We further conducted a sensitivity
analysis for different VoLL values ranging from 25,000 to 40,000. The
results show that general trend remains the same and the gap between
the uncertainty-aware solutions and the deterministic one is gradually
exacerbating. Overall, through this study, we highlight the urgent need
to take into account uncertainty in the development of energy sys-
tems planning models with representative days formulation to secure
informed, resilient and cost-effective decarbonisation strategies.

In this part, we have investigated how the planning of future
hydrogen infrastructure is affected by intra-day demand variability,
and demonstrated the cost and resilience differences between SRO and
ARO methodologies. The one-shot investment option of SRO, while
simpler to implement, results in capital losses. Conversely, ARO, with
more frequent operations, tends to yield lower capacity expansion and
reduced capital costs. Our results indicate that the majority of hydrogen
from 2035–2050 continues to be provided by natural gas through ATR-
CCS technology. In order to achieve long-term heat decarbonisation
targets in GB, it will be necessary to invest renewable generation for
hydrogen production, expand national-scale pipeline infrastructure for
both H2 and CO2, and install large volumes of energy storage facilities.
There are notable differences in the production and storage installation
locations between SRO and ARO, more specifically, SRO tends to
favour similar distribution across various regions, while ARO prefers
centralised installation in specific regions. These insights can be used
by national policymakers to assess which decision-making methodology
is more appropriate to their use case.

7. Conclusions

In this paper, we proposed a single-level SRO model and a two-stage
ARO model for the spatially-explicit multi-period large-scale hydro-

gen infrastructure planning problems under demand uncertainty. The
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demand uncertainty is captured by the introduction of novel concept
of data-driven robust representative days. Our developed hybrid algo-
rithm can reduce the computing time by 30%–90% compared to the
monolithic way as the number of clusters grows while keeping a rea-
sonable optimality gap. Compared with deterministic cases, the robust
frameworks are more resistant to risks caused by uncertainty, while the
extent of conservatism of solution can be controlled by the uncertainty
budgets of polyhedral uncertainty sets. ATRCCS production technology
is the most commonly used compared to other technologies due to
its high energy conversion efficiency and its capacity takes up 50%–
85% of the total system production capacity. ARO can alleviate the
conservative issues and reduce the total cost by around 11% compared
to SRO since its operational decisions like the hydrogen transmission
flowrates could be made after the uncertainty realisations and its hy-
drogen demand under worst-case scenario is lower. We can also observe
from the simulation results that the production and storage of ARO
are mainly concentrated in several regions, the amount of transmission
between pipelines increases and the transmission operation is more
frequent compared with the distributed production and storage of SRO
to hedge against the uncertainty.

Ongoing research in our group focuses on extending the proposed
approach of uncertainty-aware representative days to the optimal
sector-coupling planning problems towards net-zero [69] as well as the
implementation of novel stochastic programming methods [70] for REG
uncertainties, and further developing novel frameworks with longer-
term energy storage properties based on the representative weeks and
efficient solution methods to reduce the uncertain model’s conser-
vatism, while considering the terminal residual value of infrastructure
over a 40 years planning horizon.
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Appendix. Deterministic hydrogen infrastructure planning model

The deterministic hydrogen infrastructure planning model that is
employed in our work was firstly introduced in [24]. In the following

sections the detailed model formulation is given.
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A.1. Total cost

The capital costs (𝑃𝐶𝐶) and (𝑆𝐶𝐶) depend on the number of newly
nvested hydrogen production plants (𝐼𝑃𝑝𝑔𝑡) of production technology
and the number of newly invested hydrogen storage sites (𝐼𝑆𝑠𝑔𝑡) of

torage type 𝑠 in region 𝑔 at year 𝑡.

𝐶𝐶 =
∑

𝑝∈

∑

𝑔∈

∑

𝑡∈
𝑑𝑓𝑐𝑡 ⋅ 𝑝𝑐𝑐𝑝𝑡 ⋅ 𝑐𝑎𝑝

P
𝑝 ⋅ 𝐼𝑃𝑝𝑔𝑡 (A.1)

𝑆𝐶𝐶 =
∑

𝑠∈

∑

𝑔∈

∑

𝑡∈
𝑑𝑓𝑐𝑡 ⋅ 𝑠𝑐𝑐𝑠𝑡 ⋅ 𝑐𝑎𝑝

S
𝑠 ⋅ 𝐼𝑆𝑠𝑔𝑡 (A.2)

here 𝑑𝑓𝑐𝑡 is the discount factor for capital cost at 𝑡, the param-
ters 𝑝𝑐𝑐𝑝𝑡/𝑠𝑐𝑐𝑠𝑡 and 𝑐𝑎𝑝P𝑝/𝑐𝑎𝑝S𝑠 denote the capital cost of hydrogen
roduction/storage of production type 𝑝/storage type 𝑠 and their pro-
uction/storage capacity, respectively.

The pipeline capital cost (𝑃𝐿𝐶𝐶) includes the hydrogen pipeline
ost between regions and to storage caverns, CO2 onshore pipeline cost
nd CO2 offshore pipeline cost to reservoirs. The pipeline operating cost
𝑃𝐿𝑂𝐶) is assumed to be a certain proportion (𝛿, 𝛿, 𝛿) of capital cost

(𝑃𝐿𝐶𝐶).

𝑃𝐿𝐶𝐶 =
∑

𝑡∈

∑

𝑔,𝑔′∈ pipe
𝑔𝑔′

𝑑𝑓𝑐𝑡 ⋅ 𝑝𝑐 ⋅𝐷
pipe
𝑔𝑔′ ⋅ 𝑌𝑔𝑔′𝑡

+
∑

𝑡∈

∑

𝑔,𝑠𝑎∈𝐺𝑆𝑔𝑠

𝑑𝑓𝑐𝑡 ⋅ 𝑝𝑐 ⋅𝐷
st
𝑔,𝑠𝑎 ⋅ 𝑌

S
𝑔,𝑠𝑎,𝑡

+
∑

𝑡∈

∑

𝑔,𝑔′∈𝑔𝑔′

𝑑𝑓𝑐𝑡 ⋅ 𝑝𝑐 ⋅𝐷
pipe
𝑔𝑔′ ⋅ 𝑌 𝑔𝑔′𝑡

+
∑

𝑡∈

∑

𝑔,𝑟∈𝐺𝑅𝑔𝑟

𝑑𝑓𝑐𝑡 ⋅ 𝑝𝑐 ⋅𝐷
res
𝑔𝑟 ⋅ 𝑌 𝑔𝑟𝑡

(A.3)

𝑃𝐿𝑂𝐶 =
∑

𝑡∈

∑

𝑔,𝑔′∈ pipe
𝑔𝑔′

𝛿 ⋅ 𝑑𝑓𝑜𝑡 ⋅ 𝑐𝑟𝑓 ⋅ 𝑝𝑐 ⋅𝐷pipe
𝑔𝑔′ ⋅ 𝐴𝑌𝑔𝑔′𝑡

+
∑

𝑡∈

∑

𝑔,𝑠𝑎∈𝐺𝑆𝑔𝑠

𝛿 ⋅ 𝑑𝑓𝑜𝑡 ⋅ 𝑐𝑟𝑓 ⋅ 𝑝𝑐 ⋅𝐷st
𝑔,𝑠𝑎 ⋅ 𝐴𝑌

S
𝑔,𝑠𝑎,𝑡

+
∑

𝑡∈

∑

𝑔,𝑔′∈𝑔𝑔′

𝛿 ⋅ 𝑑𝑓𝑜𝑡 ⋅ 𝑐𝑟𝑓 ⋅ 𝑝𝑐 ⋅𝐷pipe
𝑔𝑔′ ⋅ 𝐴𝑌 𝑔𝑔′𝑡

+
∑

𝑡∈

∑

𝑔,𝑟∈𝐺𝑅𝑔𝑟

𝛿 ⋅ 𝑑𝑓𝑜𝑡 ⋅ 𝑐𝑟𝑓 ⋅ 𝑝𝑐 ⋅𝐷res
𝑔𝑟 ⋅ 𝐴𝑌 𝑔𝑟𝑡

(A.4)

where binary variables 𝑌𝑔𝑔′𝑡(𝑌 S
𝑔,𝑠𝑎,𝑡)/𝑌 𝑔𝑔′𝑡/𝑌 𝑔𝑟𝑡 and 𝐴𝑌𝑔𝑔′𝑡 (𝐴𝑌 S

𝑔,𝑠𝑎,𝑡)/

𝐴𝑌 𝑔𝑔′𝑡/𝐴𝑌 𝑔𝑟𝑡 denote the new H2/onshore CO2/offshore CO2 pipeline
stablishment from region 𝑔 to region 𝑔′ (storage cavern 𝑠𝑎)/reservoir
, and their pipelines availability, respectively. The parameters 𝐷pipe

𝑔𝑔′ ,
st
𝑔,𝑠𝑎 and 𝐷res

𝑔𝑟 are the distances through pipeline transmission from
egion 𝑔 to region 𝑔′, from 𝑔 to underground storage cavern 𝑠𝑎, and
rom 𝑔 to CO2 reservoir 𝑟, respectively. 𝑔𝑔′ denotes a set of total
onnections between neighbouring regions.  pipe

𝑔𝑔′ is a subset of 𝑔𝑔′ ,
ncompassing neighbouring regions that are connectable via hydrogen
ipelines. 𝐺𝑆𝑔𝑠 denotes the sets of region 𝑔 in which storage facility 𝑠 is
ocated. 𝐺𝑅𝑔𝑟 denotes the sets of region 𝑔 and reservoir 𝑟 connections.
𝑓𝑜𝑡 is the discount factor for operational cost. The parameters 𝑝𝑐, 𝑝𝑐, 𝑝𝑐
re the pipeline costs, while 𝑐𝑟𝑓 is the capital recovery factor.

The total operational cost (𝑃𝑂𝐶) of hydrogen production depends
n the number of available hydrogen plants (𝑁𝑃𝑝𝑔𝑡) and the production
ate (𝑃𝑟𝑝𝑔𝑐ℎ𝑡) of each production type 𝑝. The total operational cost
𝑆𝑂𝐶) of hydrogen storage depends on the number of the available
torage site (𝑁𝑆𝑠𝑔𝑡) and the hydrogen flowrate (𝑄I

𝑔𝑠𝑡𝑐ℎ) via pipeline to
torage type 𝑠 in region 𝑔.

𝑂𝐶 =
∑

𝑝∈

∑

𝑔∈

∑

𝑡∈
𝑑𝑓𝑜𝑡 ⋅ 𝑝𝑜𝑐

F
𝑝𝑡 ⋅ 𝑐𝑎𝑝

P
𝑝 ⋅𝑁𝑃𝑝𝑔𝑡

+
∑ ∑∑∑ ∑

𝑑𝑓𝑜𝑡 ⋅𝑊𝐹𝑐 ⋅ 𝑝𝑜𝑐
V
𝑝𝑡 ⋅ 𝑃𝑟𝑝𝑔𝑐ℎ𝑡

(A.5)
𝑝∈ 𝑔∈ 𝑡∈ 𝑐∈ ℎ∈
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𝑂𝐶 =
∑

𝑠∈

∑

𝑔∈

∑

𝑡∈
𝑑𝑓𝑜𝑡 ⋅ 𝑠𝑜𝑐

F
𝑠𝑡 ⋅ 𝑐𝑎𝑝

S
𝑠 ⋅𝑁𝑆𝑠𝑔𝑡

+
∑

𝑔∈

∑

𝑠∈

∑

𝑡∈

∑

𝑐∈

∑

ℎ∈
𝑑𝑓𝑜𝑡 ⋅𝑊𝐹𝑐 ⋅ 𝑠𝑜𝑐

V
𝑠𝑡 ⋅𝑄

I
𝑔𝑠𝑡𝑐ℎ

(A.6)

where parameters 𝑝𝑜𝑐F𝑝𝑡/𝑠𝑜𝑐F𝑠𝑡 and 𝑝𝑜𝑐V𝑝𝑡/𝑠𝑜𝑐
V
𝑠𝑡 are fixed and variable

operational cost of hydrogen production/storage of production type
𝑝/storage type 𝑠, respectively. 𝑊𝐹𝑐 is the weight of day 𝑐 introduced
in Section 3.1.

The carbon emissions cost (𝐶𝐸𝐶) correlates with the hydrogen
production rate and carbon emissions cost (𝑐𝑡𝑡):

𝐶𝐸𝐶 =
∑

𝑝∈

∑

𝑔∈

∑

𝑡∈

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅ 𝑑𝑓𝑜𝑡 ⋅ 𝑐𝑡𝑡 ⋅ 𝑦

e
𝑝𝑡 ⋅ 𝑃𝑟𝑝𝑔𝑡𝑐ℎ (A.7)

where 𝑦e𝑝𝑡 denotes the coefficient of CO2 emissions for production
technology 𝑝 at 𝑡.

The import cost (𝐼𝐼𝐶) depends on the import price (𝑝imp) and the
import rate (𝐼𝑔𝑡𝑐ℎ):

𝐼𝐼𝐶 =
∑

𝑔∈𝐺𝑖𝑚𝑝𝑔

∑

𝑡∈

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅ 𝑑𝑓𝑜𝑡 ⋅ 𝑝

imp ⋅ 𝐼𝑔𝑡𝑐ℎ (A.8)

where 𝐺𝑖𝑚𝑝𝑔 denotes the set of regions in which international import
are feasible.

The total renewable cost (𝑅𝑒𝐶) is related to the new installed ca-
pacity (𝐼𝑅𝑒𝑔𝑡) and available capacity (𝑁𝑅𝑒𝑔𝑡) of renewable technology
𝑒 in region 𝑔 and year 𝑡.

𝑅𝑒𝐶 =
∑

𝑒∈

∑

𝑔∈

∑

𝑡∈
(𝑑𝑓𝑐𝑡 ⋅ 𝑟𝑐𝑒𝑡 ⋅ 𝐼𝑅𝑒𝑔𝑡 + 𝑑𝑓𝑜𝑡 ⋅ 𝑟𝑜𝑒𝑡 ⋅𝑁𝑅𝑒𝑔𝑡) (A.9)

where 𝑟𝑐𝑒𝑡 and 𝑟𝑜𝑒𝑡 are the capital and operating costs of renewable 𝑒
at 𝑡, respectively.

The total fuel cost (𝐹𝐶) for the natural gas and biomass consump-
tion is as follows:

𝐹𝐶 =
∑

𝑝∈

∑

𝑔∈

∑

𝑡∈

∑

𝑐∈

∑

ℎ∈
𝑑𝑓𝑜𝑡 ⋅ 𝑐

𝑝
𝑡 ⋅𝑊𝐹𝑐 ⋅

𝑃𝑟𝑝𝑔𝑡𝑐ℎ
𝜂𝑝𝑡

(A.10)

where 𝑐𝑝𝑡 is the fuel (gas/biomass) price at 𝑡, and 𝜂𝑝𝑡 is the production
efficiency of technology 𝑝.

A.2. Production constraints

The total number of available production plants (𝑁𝑃𝑝𝑔𝑡) for each
roduction technology 𝑝 and year 𝑡 is related to its new invested plants
umber (𝐼𝑃𝑝𝑔𝑡), which is expressed below:

𝑃𝑝𝑔𝑡 = 𝑁𝑃𝑝𝑔,𝑡−1 + 𝐼𝑃𝑝𝑔𝑡 − 𝐼𝑃
𝑝𝑔,𝑡−(

𝐿𝑇𝑃𝑝
𝑛 )

∀𝑝, 𝑔, 𝑡 (A.11)

where 𝐿𝑇𝑃𝑝 is the lifetime of technology 𝑝.
The hydrogen production rate (𝑃𝑟𝑝𝑔𝑡𝑐ℎ), for each 𝑝, 𝑔, 𝑡, 𝑐, ℎ, is lim-

ited by the capacity of infrastructures:

0 ≤ 𝑃𝑟𝑝𝑔𝑡𝑐ℎ ≤ 𝑐𝑎𝑝max
𝑝 ⋅𝑁𝑃𝑝𝑔𝑡 ∀𝑝, 𝑔, 𝑡, 𝑐, ℎ. (A.12)

The operation of production plants also needs to satisfy the hourly
ramp-up and ramp-down constraints (A.13) and (A.14):

𝑃𝑟𝑝𝑔𝑡𝑐ℎ − 𝑃𝑟𝑝𝑔𝑡𝑐,ℎ−1 ≤ 𝑅𝑈𝑝 ⋅ 𝑐𝑎𝑝
P
𝑝 ⋅𝑁𝑃𝑝𝑔𝑡 ∀𝑝, 𝑔, 𝑡, 𝑐, ℎ (A.13)

𝑃𝑟𝑝𝑔𝑡𝑐,ℎ−1 − 𝑃𝑟𝑝𝑔𝑡𝑐ℎ ≤ 𝑅𝐷𝑝 ⋅ 𝑐𝑎𝑝
P
𝑝 ⋅𝑁𝑃𝑝𝑔𝑡 ∀𝑝, 𝑔, 𝑡, 𝑐, ℎ (A.14)

where 𝑅𝑈𝑝 and 𝑅𝐷𝑝 are the ramp-up and ramp-down rates for technol-
ogy 𝑝, respectively.

A.3. Hydrogen storage constraints

The total number of available storage units (𝑁𝑆𝑠𝑔𝑡) is defined by
Eq. (A.15):

𝑁𝑆 = 𝑁𝑆 + 𝐼𝑆 − 𝐼𝑆 𝐿𝑇𝑆𝑠 , ∀{𝑠, 𝑔} ∈ 𝐺𝑆 , 𝑡 (A.15)
𝑠𝑔𝑡 𝑠𝑔,𝑡−1 𝑠𝑔𝑡 𝑠𝑔,𝑡−( 𝑎 ) 𝑔𝑠
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where 𝐼𝑆𝑠𝑔𝑡 denotes the newly invested hydrogen storage sites, and
𝐿𝑇𝑆𝑠 is the lifetime of storage technology 𝑠.

The hydrogen storage state (𝑆𝑡𝑠𝑔𝑡𝑐ℎ) for each storage type 𝑠 and
𝑔, 𝑡, 𝑐, ℎ, is limited by an upper and lower bound, as expressed by
Eq. (A.16):

𝑐𝑎𝑝min
𝑠 ⋅𝑁𝑆𝑠𝑔𝑡 ≤ 𝑆𝑡𝑠𝑔𝑡𝑐ℎ ≤ 𝑐𝑎𝑝max

𝑠 ⋅𝑁𝑆𝑠𝑔𝑡, ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠, 𝑡, 𝑐, ℎ.

(A.16)

The hydrogen storage state (𝑆𝑡𝑠𝑔𝑡𝑐ℎ) is shown in Eq. (A.17), where
𝑄I

𝑔𝑠𝑡𝑐ℎ/𝑄R
𝑠𝑔𝑡𝑐ℎ denote the hydrogen flowrate via pipeline from/to region

𝑔 to/from storage 𝑠, for each 𝑠, 𝑔, 𝑡, 𝑐, ℎ. The storage state at final hour
ℎ = 24 of the daily horizon is assumed to be equal to the initial
storage state (𝑆𝑡init𝑠𝑔𝑡𝑐,1) with ℎ = 1 to ensure the continuity of storage
levels across consecutive days. This assumption captures the typical
daily operational patterns, which fits well within the proposed model
framework and reduces the computing complexity. The 24-hour cycle
for energy storage has been widely adopted in the literature [71,72],
especially in the large-scale planning problem with the representative
days formulation [51,52].

𝑆𝑡𝑠𝑔𝑡𝑐ℎ = 𝑆𝑡𝑠𝑔𝑡𝑐,ℎ−1 +𝑄I
𝑔𝑠𝑡𝑐ℎ −𝑄R

𝑠𝑔𝑡𝑐ℎ ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠, 𝑡, 𝑐, ℎ

𝑆𝑡𝑠𝑔𝑡𝑐,24 = 𝑆𝑡init𝑠𝑔𝑡𝑐,1 ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠, 𝑡, 𝑐.
(A.17)

In addition, the storage and withdrawal rates are limited by the follow-
ing constraints:

𝑄I
𝑔𝑠𝑡𝑐ℎ ≤ 𝑄Imax

𝑠 ⋅𝑁𝑆𝑠𝑔𝑡 ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠, 𝑡, 𝑐, ℎ (A.18)

𝑄R
𝑔𝑠𝑡𝑐ℎ ≤ 𝑄Rmax

𝑠 ⋅𝑁𝑆𝑠𝑔𝑡 ∀{𝑠, 𝑔} ∈ 𝐺𝑆𝑔𝑠, 𝑡, 𝑐, ℎ (A.19)

where 𝑄Imax
𝑠 and 𝑄Rmax

𝑠 are the maximum storage and withdrawal rates
for storage type 𝑠, respectively.

A.4. H2 & CO2 pipelines transmission

The available number of pipelines for H2 transmission between
regions and storage to caverns (𝑠𝑎), and available number of pipelines
for onshore and offshore CO2 transmission are defined as follows:

𝐴𝑌𝑔𝑔′𝑡 = 𝐴𝑌𝑔𝑔′ ,𝑡−1 + 𝑌𝑔𝑔′𝑡 − 𝑌
𝑔𝑔′ ,𝑡−( 𝐿𝑇

pipe
𝑛 )

∀{𝑔, 𝑔′} ∈  pipe
𝑔𝑔′ , 𝑡

𝐴𝑌 S
𝑔,𝑠𝑎,𝑡 = 𝐴𝑌 S

𝑔,𝑠𝑎,𝑡−1 + 𝑌 S
𝑔,𝑠𝑎,𝑡 − 𝑌 S

𝑔,𝑠𝑎,𝑡−( 𝐿𝑇
pipe
𝑛 )

∀{𝑔, 𝑠𝑎} ∈ 𝐺𝑆𝑔,𝑠𝑎, 𝑡

𝐴𝑌 𝑔𝑔′𝑡 = 𝐴𝑌 𝑔𝑔′𝑡 + 𝑌 𝑔𝑔′𝑡 − 𝑌
𝑔𝑔′ ,𝑡−( 𝐿𝑇

pipe
𝑛 )

∀{𝑔, 𝑔′} ∈ 𝑁𝑔𝑔′ , 𝑡

𝐴𝑌 𝑔𝑟𝑡 = 𝐴𝑌 𝑔𝑟,𝑡−1 + 𝑌 𝑔𝑟𝑡 − 𝑌
𝑔𝑟,𝑡−( 𝐿𝑇

pipe
𝑛 )

∀{𝑔, 𝑟} ∈ 𝐺𝑅𝑔𝑟, 𝑡

(A.20)

where 𝐿𝑇 pipe is the lifetime of pipelines.
The Eqs. (A.21) and (A.22) describe the pipelines availability bal-

ance between two regions.

𝐴𝑌𝑔𝑔′𝑡 = 𝐴𝑌𝑔′𝑔𝑡 ∀𝑔, 𝑔′ ∈  pipe
𝑔𝑔′ , 𝑡 (A.21)

𝐴𝑌 𝑔𝑔′𝑡 = 𝐴𝑌 𝑔′𝑔𝑡 ∀ 𝑔, 𝑔′ ∈ 𝑔𝑔′ , 𝑡 (A.22)

The H2 flowrate (𝑄𝑔𝑔′𝑡𝑐ℎ) from 𝑔 to 𝑔′, onshore CO2 flowrate (𝑄𝑔𝑔′𝑡𝑐ℎ)
nd offshore CO2 flowrate (𝑄𝑔𝑟𝑡𝑐ℎ) in the pipelines should satisfy the

following maximum flowrate constraints:

𝑄𝑔𝑔′𝑡𝑐ℎ ≤ 𝑞Hmax ⋅ 𝐴𝑌𝑔𝑔′𝑡 ∀𝑔, 𝑔′ ∈  pipe
𝑔𝑔′ , 𝑡, 𝑐, ℎ (A.23)

𝑄𝑔𝑔′𝑡𝑐ℎ ≤ 𝑞Cmax ⋅ 𝐴𝑌 𝑔𝑔′𝑡 ∀ 𝑔, 𝑔′ ∈ 𝑔𝑔′ , 𝑡, 𝑐, ℎ (A.24)

𝑄𝑔𝑟𝑡𝑐ℎ ≤ 𝑞Cmax ⋅ 𝐴𝑌 𝑔𝑟𝑡 ∀{𝑔, 𝑟} ∈ 𝐺𝑅𝑔𝑟, 𝑡, 𝑐, ℎ (A.25)

where 𝑞Hmax and 𝑞Cmax denote the maximum flowrates of pipelines for

H2 and CO2, respectively.

18 
A.5. Energy balance constraints

The hydrogen balance constraint (A.26) ensures that, in each region
𝑔, year 𝑡, cluster 𝑐 and hour ℎ, the total hydrogen generated by
production plants (𝑃𝑟𝑝𝑔𝑡𝑐ℎ) and transmitted from other regions (𝑄𝑔′𝑔𝑡𝑐ℎ)
and imports (𝐼𝑔𝑡𝑐ℎ), and withdrawn from storage site 𝑠 in this region
(𝑄𝑅

𝑠𝑔𝑡𝑐ℎ) can satisfy the total hydrogen demand and hydrogen energy
transmitted to other regions (𝑄𝑔𝑔′𝑡𝑐ℎ) and injected to storage units
𝑄𝐼

𝑔𝑠𝑡𝑐ℎ).
∑

𝑝∈
𝑃𝑟𝑝𝑔𝑡𝑐ℎ +

∑

𝑔′∈ pipe
𝑔′𝑔

𝑄𝑔′𝑔𝑡𝑐ℎ +
∑

𝑠∈𝐺𝑆𝑔𝑠

𝑄R
𝑠𝑔𝑡𝑐ℎ + 𝐼𝑔𝑡𝑐ℎ

∑

𝑔′∈ pipe
𝑔𝑔′

𝑄𝑔𝑔′𝑡𝑐ℎ +
∑

𝑠∈𝐺𝑆𝑔𝑠

𝑄I
𝑔𝑠𝑡𝑐ℎ +𝐷𝑔𝑡𝑐ℎ, ∀𝑔, 𝑡, 𝑐, ℎ

(A.26)

here 𝐷𝑔𝑡𝑐ℎ is the uncertain hydrogen demand introduced in Sec-
ion 3.2. The hydrogen balance can also be observed from Fig. 2
right).

The CO2 mass balance constraint is expressed by Eq. (A.27). The
eft-hand side involves the onshore CO2 flowrates (𝑄𝑔′𝑔𝑡𝑐ℎ) from other
egions 𝑔′ to region 𝑔, and the captured CO2 which is related to
roduction rate (𝑃𝑟𝑝𝑔𝑡𝑐ℎ) with a CO2 capture coefficient (𝑦c𝑝𝑡). The right-

and side also considers the offshore CO2 flowrates (𝑄𝑔𝑟𝑡𝑐ℎ) from region
𝑔 to reservoir 𝑟.

∑

𝑔′∈𝑔′𝑔

𝑄𝑔′𝑔𝑡𝑐ℎ +
∑

𝑝∈
𝑦c𝑝𝑡𝑃𝑟𝑝𝑔𝑡𝑐ℎ =

∑

𝑔′∈𝑔𝑔′

𝑄𝑔𝑔′𝑡𝑐ℎ +
∑

𝑟∈𝐺𝑅𝑔𝑟

𝑄𝑔𝑟𝑡𝑐ℎ ∀𝑔, 𝑡, 𝑐, ℎ

(A.27)

A.6. Renewable generation constraints

Denote the power production of renewable technology 𝑒 ∈  for
each 𝑔, 𝑡, 𝑐, ℎ by 𝑃𝑟𝑒𝑔𝑡𝑐ℎ, and its power curtailment by 𝐶𝐿𝑔𝑡𝑐ℎ. The
hydrogen produced by WE technology is expressed as:

𝑃𝑟𝑝𝑔𝑡𝑐ℎ = 𝜂we𝑡
(
∑

𝑒∈
𝑃𝑟𝑒𝑔𝑡𝑐ℎ − 𝐶𝐿𝑔𝑡𝑐ℎ

)

∀𝑝 ∈ {𝑊𝐸}, 𝑔, 𝑡, 𝑐, ℎ. (A.28)

The power curtailment has an upper limit, as shown in Eq. (A.29):
∑

𝑔∈

∑

𝑡∈
𝐶𝐿𝑔𝑡𝑐ℎ ≤ 𝑐𝑙 ⋅

∑

𝑒∈

∑

𝑔∈

∑

𝑡∈
𝑃𝑟𝑒𝑔𝑡𝑐ℎ, ∀𝑐, ℎ (A.29)

The produced electricity (𝑃𝑟𝑒𝑔𝑡𝑐ℎ) of each renewable technology 𝑒
depends on its capacity (𝑁𝑅𝑒𝑔𝑡) and its availability (𝐴𝑉𝑒𝑔𝑐ℎ) which is
pre-given, as described by Eq. (A.30).

𝑃𝑟𝑒𝑔𝑡𝑐ℎ = 𝐴𝑉𝑒𝑔𝑐ℎ ⋅𝑁𝑅𝑒𝑔𝑡 ∀𝑒 ∈  , 𝑔, 𝑡, 𝑐, ℎ. (A.30)

The available renewable capacity at year 𝑡 is shown in Eq. (A.31)
where 𝐼𝑅𝑒𝑔𝑡 denotes the new invested capacity.

𝑁𝑅𝑒𝑔𝑡 = 𝑁𝑅𝑒𝑔,𝑡−1 + 𝐼𝑅𝑒𝑔𝑡 ∀𝑒 ∈  , 𝑔, 𝑡. (A.31)

The installation of renewable farms is limited, which leads to inequal-
ity (A.32):

𝑁𝑅𝑒𝑔𝑡 ≤ 𝑙𝑎𝑒𝑔 ∀𝑒 ∈  , 𝑔, 𝑡 (A.32)

where 𝑙𝑎𝑒𝑔 is the capacity upper bound of renewable technology 𝑒 in
region 𝑔.

A.7. H2 imports & fuel consumption constraints

The hydrogen import rate cannot exceed a certain upper bound
(𝐼Up𝑔𝑡𝑐) for each import region 𝑔 ∈ 𝐺𝑖𝑚𝑝𝑔 , 𝑡, 𝑐, ℎ:

Up
𝐼𝑔𝑡𝑐ℎ ≤ 𝐼𝑔𝑡𝑐 , ∀𝑔 ∈ 𝐺𝑖𝑚𝑝𝑔 , 𝑡, 𝑐, ℎ. (A.33)
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The amount of biomass consumed by BGCCS technology to pro-
duce hydrogen is computed by equality (A.34) with efficiency 𝜂𝑝𝑡. The
imited amount of available biomass leads to Eq. (A.35):

bio
𝑔𝑡 =

∑

𝑝∈{𝐵𝐺𝐶𝐶𝑆}

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅

𝑃𝑟𝑝𝑔𝑡𝑐ℎ
𝜂𝑝𝑡

∀𝑔, 𝑡 (A.34)

𝑉 bio
𝑔𝑡 ≤ 𝑏𝑎𝑔𝑡 ∀𝑔, 𝑡 (A.35)

where 𝑏𝑎𝑔𝑡 is a maximum threshold of consumption in region 𝑔 and
ear 𝑡.

.8. CO2 storage & emission constraints

The CO2 storage (𝑅𝐼𝑟𝑡) of reservoir 𝑟 at year 𝑡 is expressed by
q. (A.36), which is related to the CO2 flowrates to the reservoir.

𝐼𝑟𝑡 = 𝑅𝐼𝑟,𝑡−1 + 𝜏
∑

𝑔∈𝐺𝑅𝑔𝑟

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅𝑄𝑔𝑟𝑡𝑐ℎ, ∀𝑟 ∈ , 𝑡 (A.36)

where 𝜏 is the duration of time periods (years). The absorption level
is limited by an upper bound as described by Eq. (A.37), where 𝑐𝑎𝑝R𝑟
represents the reservoir capacity.

𝑅𝐼𝑟𝑡 ≤
∑

𝑔∈𝐺𝑅𝑔𝑟

𝑐𝑎𝑝R𝑟 ⋅ 𝐴𝑌 𝑔𝑟𝑡 ∀𝑟 ∈ , 𝑡 (A.37)

The total CO2 emissions (𝐸𝑡) at year 𝑡 for hydrogen production
𝑃𝑟𝑝𝑔𝑡𝑐ℎ is calculated by Eq. (A.38). It should satisfy the allowed emis-
sion limit 𝑒𝑡𝑡, which is expressed by Eq. (A.39).

𝐸𝑡 =
∑

𝑝∈

∑

𝑔∈

∑

𝑐∈

∑

ℎ∈
𝑊𝐹𝑐 ⋅ 𝑦

e
𝑝𝑡 ⋅ 𝑃𝑟𝑝𝑔𝑡𝑐ℎ, ∀𝑡 (A.38)

𝐸𝑡 ≤ 𝑒𝑡𝑡, ∀𝑡 (A.39)
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