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Training deep learning based 
dynamic MR image reconstruction 
using open‑source natural videos
Olivier Jaubert 1, Michele Pascale 1, Javier Montalt‑Tordera 1, Julius Akesson 2, 
Ruta Virsinskaite 3, Daniel Knight 1,3, Simon Arridge 4, Jennifer Steeden 1,5 & 
Vivek Muthurangu 1,5*

To develop and assess a deep learning (DL) pipeline to learn dynamic MR image reconstruction from 
publicly available natural videos (Inter4K). Learning was performed for a range of DL architectures 
(VarNet, 3D UNet, FastDVDNet) and corresponding sampling patterns (Cartesian, radial, spiral) either 
from true multi‑coil cardiac MR data (N = 692) or from synthetic MR data simulated from Inter4K 
natural videos (N = 588). Real‑time undersampled dynamic MR images were reconstructed using DL 
networks trained with cardiac data and natural videos, and compressed sensing (CS). Differences were 
assessed in simulations (N = 104 datasets) in terms of MSE, PSNR, and SSIM and prospectively for 
cardiac cine (short axis, four chambers, N = 20) and speech cine (N = 10) data in terms of subjective 
image quality ranking, SNR and Edge sharpness. Friedman Chi Square tests with post‑hoc Nemenyi 
analysis were performed to assess statistical significance. In simulated data, DL networks trained 
with cardiac data outperformed DL networks trained with natural videos, both of which outperformed 
CS (p < 0.05). However, in prospective experiments DL reconstructions using both training datasets 
were ranked similarly (and higher than CS) and presented no statistical differences in SNR and Edge 
Sharpness for most conditions.The developed pipeline enabled learning dynamic MR reconstruction 
from natural videos preserving DL reconstruction advantages such as high quality fast and ultra‑
fast reconstructions while overcoming some limitations (data scarcity or sharing). The natural video 
dataset, code and pre‑trained networks are made readily available on github.
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Real-time magnetic resonance (MR) imaging allows evaluation of dynamic changes without relying on physi-
ological gating. Real-time MR is used to examine the heart (particularly in children, during exercise or for inter-
ventional applications), assess joint motion, evaluate speech and measure bowel  motility1. However, real‐time 
imaging often requires significant data undersampling to ensure adequate spatio-temporal resolution. Therefore, 
it is usually combined with advanced reconstruction techniques to produce artifact‐free images, with the previous 
state-of-the-art being Compressed Sensing (CS)2.

Unfortunately, there are drawbacks to CS including computationally intensive, time‐consuming reconstruc-
tions and unnatural looking images. Recently, it has been shown that supervised Deep Learning (DL) can outper-
form CS in terms of reconstruction time and image  quality3. For instance, DL networks applied as a low latency, 
single-pass, post-processing step (deep artifact suppression) can successfully remove undersampling artifacts 
from  radial4 and spiral  images5. These approaches are potentially useful for applications that require very short 
inference times such as interventional and exercise MR. However, deep artifact suppression is less successful 
for Cartesian  undersampling6, and often requires large amounts of image-based training  data4. An alternative 
approach is to use unrolled DL architectures (e.g. VarNet) that have been shown to outperform CS and deep 
artifact suppression for undersampled Cartesian  acquisitions7. Although these methods benefit from the inclusion 
of data consistency, they are slower than deep artifact suppression and importantly require k-space training data.

Currently, one of the main impediments to the development of DL reconstructions is the need for application-
specific image or k-space training data. This is particularly true for dynamic MR applications where it can be 
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difficult to obtain large amounts of training data for some applications (e.g. speech imaging). Furthermore, even 
when application specific training data can be acquired, it is often difficult to share due to data governance issues. 
We believe the lack of accessible training data is a significant barrier to developing both deep artifact suppres-
sion and iterative DL-based MR reconstructions and we propose an alternative approach that leverages readily 
available natural videos to create dynamic data for training. It has previously been shown that static 2D natural 
images (e.g. photographs of animals or scenery) can be used to pre-train DL networks for reconstruction of static 
2D MR  images8. We build on this work, using natural videos (e.g. moving cars, animals, and people) to train 
2D + time DL models that can reconstruct undersampled dynamic real-time MR data. We used a large open-
source database of high-quality natural videos -Inter4K9- and the aims of this study were: (1) to demonstrate that 
it was possible to create synthetic multi-coil complex k-space data for natural videos, (2) use this synthetic data 
to train three reconstructions using different sampling patterns and state-of-the-art DL based models, and (3) 
evaluate reconstruction quality on prospectively acquired real-time cardiac cine and speech cine data compared 
with DL models trained using dynamic cardiac MR data and CS reconstructions.

Materials and methods
This study conformed to the principles of the Declaration of Helsinki and was approved by the UK National 
Health Service, Health Research Authority, Research Ethics Committees and written informed consent was 
obtained in prospective subjects and retrospective data (ref. 21/EE/0037, 17/LO/1499).

Experimental overview
In this study, we aimed to demonstrate that training data created from natural videos (Inter4K) could be used to 
train a range of state-of-the-art iterative and deep artifact suppression DL approaches. These included iterative 
DL that is better suited to Cartesian acquisitions, and coil- combined and multi-coil image-based deep artefact 
suppression approaches that have previously been used for non-Cartesian data. Specifically these were: 1) an 
iterative unrolled  VarNet7,10 with a 3D (2D + time) UNet regularizer for Cartesian real-time acquisitions, 2) a 
3D (2D + time) multi-coil complex image-based  UNet6,11 for tiny golden-angle radial real-time acquisitions, and 
3) a magnitude-only, low-latency, image-based  FastDVDNet12 network used for spiral real-time acquisitions 
 (HyperSLICE5). Each DL method was trained separately on Inter4K data and cardiac MR data allowing compari-
son on both prospectively acquired real-time cardiac cine and speech cine data, along with CS reconstructions. 
An overview of the study is provided in Fig. 1.

Training dataset preparation
Inter4K data
Creation of synthetic ‘multi-coil’ k-space data from natural videos is summarized in Fig. 2. The Inter4K data set 
consists of one thousand 5-s RGB video clips at 4K resolution and 60 frames-per-second. To match the amount of 
cardiac MR training data we used 588 clips, from which we randomly selected 50 consecutive frames and down-
sampled to 488 × 868 pixels using 2D bilinear interpolation. We then randomly extracted two RGB channels to 
create the real and imaginary components of our synthetic image object, scaling the phase by 4 × to create a more 
realistic range and phase angles (factor chosen empirically). The complex image object was then cropped to the 
final size (depending on the acquisition being simulated) and masked with a randomly sized and rotated ellipse 
(long and short axis in range 1.0–1.4 × and 0.64–0.96 × the image width). Additional low frequency background 
phase was simulated by first creating a 6 × 6 random matrix, performing bicubic interpolation to the full image 
size, and finally added to the original image phase.

This synthetic image object was then converted to synthetic ‘multi-coil’ k-space data using the following 
simulated MR acquisition process. Firstly, 30 simulated random synthetic ‘coil maps’ were generated using 2D 
Gaussians with; i) random maximum intensity 0.1–1, ii) independent random standard deviation for x and y 
axes in the range 0.5–0.16 × the image size, iii) random center location (avoiding 1/5th of image center), and 
iv) random background phase offset. The final coil maps were normalized by the root-sum-of-squares of all the 
generated coil maps. Coil images were then obtained by multiplying each coil map with the image series and 
adding uniform random noise separately to each coil and timepoint image. The last step was to perform fast 
Fourier transformation to obtain synthetic fully sampled ‘multi-coil’ k-space data.

Cardiac MR data
All cardiac MR data were acquired in a single center on a 1.5T system (Aera, Siemens Healthineers, Erlangen, 
Germany) as previously  described5. The training dataset consisted of 588 electrocardiogram-triggered breath-held 
Cartesian balanced steady state free precession (SSFP) CINE multicoil raw data (plus an additional 104 hold-out 
datasets for evaluation see below). The data set included seven different orientations: short axis, four chamber, 
three chamber, two chamber, right ventricular long axis, right ventricular outflow tract, and pulmonary artery. 
Data were collected in a diverse adult patient population (age: 58.7 ± 16.0 years, weight: 77.4 ± 18.6 kg, male/
female: 56/36) referred for routine cardiovascular MR (including assessment for ischemia, cardiomyopathy, and 
pulmonary hypertension). The raw data were acquired with 2-times undersampling (with nominal matrix size 
of 224 × 272 and 44 autocalibration lines) and reconstructed with GRAPPA to recover fully sampled Cartesian 
multicoil k-space data.

Creation of paired training data
Processing steps for each architecture were the same for the cardiac MR data and natural videos and are described 
below. An example of synthetic undersampled data derived from natural videos for each investigated DL archi-
tecture/sampling pattern is shown in Supporting Information Video S1.
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• VarNet The multi-coil k-space data (true and synthetic) was compressed to 10 virtual coils using Singular 
Value Decomposition. The compressed multi-coil k-space and then undersampled using a variable density 
Cartesian pattern with 17 lines per frame (~ R = 14). Each frame included the same 8 center lines, but 9 
different random non-repeating lines sampled from the bottom 60% of k-space. This multi-frame, multi-
coil undersampled k-space data acted as the input to the VarNet and the ground truth target was the coil 
combined (using coil sensitivities) multi-frame magnitude images from the fully sampled k-space. Prior to 
training the k-space data was normalized so that the coil combined magnitude image data was in the range 
0–1.

• 3D UNet The multi-coil k-space data was compressed as above and resampled onto 13 tiny golden angle 
(23.8°) radial spokes with continued increments between frames (~ R = 20). This radially undersampled multi-
coil k-space data was then non-uniformally fast Fourier transformed (NUFFT) to produce the 2D + time 
multi-coil complex image input to the 3D UNet. The coil combined (root-sum-of-squares—RSS) 2D + time 
magnitude images derived from the fully sampled k-space data were used as the ground truth target. Prior 
to training the multi-coil complex image data was normalized so that the coil combined magnitude image 
data was in the range 0–1.

• FastDVDNet The multi-coil k-space data was compressed as above and resampled onto 15 uniform angle, 
variable density, spiral interleaves (average R ~ 6: R ~ 1.1 for the inner 15% of k-space and R ~ 15 for the outer 
56% of k-space with a linear transition between). This undersampled data spiral multi-coil k-space data 
underwent NUFFT and RSS to create the 2D + time coil-combined magnitude input to FastDVDNet, with 
the ground truth target being the same as for the 3D UNet. Prior to training the coil-combined image data 
was normalized so that the magnitude was in the range 0–1.

Network architectures and training
All networks were implemented using TensorFlow/Keras and leverage the open-source TensorFlowMRI which 
includes GPU-accelerated MR  operations13,14. Training was the same for cardiac data and natural videos data, 

Figure 1.  Experiment Overview. Training reconstructions from the natural video Dataset (Inter4K) was 
compared to training from a true cardiac MR dataset for three different sampling patterns and associated 
supervised DL reconstructions of real-time data: Cartesian acquisition with VarNet 2D + time reconstruction, 
radial acquisition with multi-coil 3D UNet reconstruction and spiral acquisition with FastDVDNet 
reconstruction. These methods were tested against Compressed Sensing (CS) reconstructions on two 
prospective applications: cardiac bSSFP in SAX and 4CH views (similar to cardiac training data) and Speech 
GRE cines (out of distribution for both cardiac and natural videos).
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both of which were split 519/69 for training/validation/testing. Full details of the 3 network architectures are 
included in Supplementary Information Figs. 1, 2, 3. All networks were trained using a magnitude Structural 
Similarity Index Measure (SSIM) loss. An Adam optimizer with a learning rate of  10–4 was used to train all models 
for 100, 200 and 200 epochs for the VarNet, 3D Unet and FastDVDNet respectively. For training, 24 timeframes 
were used as input for the VarNet and 3D Unet, while the current and previous four frames were used for the 
FastDVDNet. Training was performed on a single NVIDIA A6000 GPU. The source code for our framework using 
natural videos (including creation of synthetic coils and synthetic multi-coil k-space data) and corresponding 
pre-trained networks are available at https:// github. com/ mrphys/ Image_ Recon struc tion_ Inter 4k. git.

Evaluation on simulated data
Evaluation using simulated data allowed comparison with the ground truth. Simulated undersampled data (for all 
3 architectures/sampling patterns) were created from the 104 hold-out cardiac MR datasets pre-processed in the 
same way as the training data. Simulated undersampled data were then inputted into their respective DL models 
separately trained on either cardiac MR data or natural videos. In additions, the undersampled data underwent 
CS reconstruction with temporal Total Variation and a regularization factor of 5*10–4. The outputs were compared 
to ground truth data using Mean Squared Error (MSE), Peak Signal to Noise Ratio (PSNR) and SSIM.

Evaluation on prospective data
Ten healthy subjects (30 ± 4 y.o., 73 ± 14 kg) underwent MR on a 1.5T system (same system as training data 
collected on). Approximately 10 s of real-time data were acquired in three separate scan planes: cardiac short 
axis (SAX), cardiac 4-chamber (4CH), and sagittal head (for speech cine imaging). Cardiac SAX and 4CH data 

Figure 2.  Pipeline for generating fully sampled Cartesian dynamic multi-coil k-space from natural videos. Step-
by-step: 1 Creation of ground truth object: 2 of the 3 channel RGB video are randomly selected to create the real 
and imaginary parts and the phase between the two is scaled. Images are cropped and masked with an elliptical 
mask. Low frequency background phase is added. 2 Creation of ground truth multi-coil k-space: Random coil 
maps are generated and applied to the object, random noise is added on each coil image separately and finally a 
fast Fourier transform is applied to obtain the k-space data. 3 Finally, the data can be used as a regular input to 
any supervised reconstruction method.

https://github.com/mrphys/Image_Reconstruction_Inter4k.git
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were acquired using balanced steady-state free precession (bSSFP) during free-breathing without ECG-gating. 
Speech cine imaging was acquired with spoiled gradient echo (GRE) with subjects performing a simple number 
counting protocol (counting between 1 and 10 repeatedly). More information on the six different prospective 
real-time acquisitions can be found in Table 1. At inference, all undersampled prospective data (after normali-
zation) were inputted into their respective DL models trained with either cardiac MR data or natural videos. 
As with the simulated data, all datasets were also reconstructed using CS with temporal Total Variation and a 
regularization factor of 5*10–4.

• Qualitative image scoring evaluation Qualitative comparison of the three reconstructions (DL trained using 
cardiac MR data, DL trained from natural videos, and CS) was performed by two clinical experts (V.M., D.K. 
with > 20 and 10yrs experience respectively). The three reconstructions were viewed simultaneously as a single 
movie clip separately for each scan plane and sampling pattern. The order of the reconstruction within the 
3 × 1 frame was randomly shuffled per clip and scorers were blinded to the reconstruction type. The overall 
image quality of reconstructions in each clip were then subjectively ranked against each other from best to 
worse (1 = best, 2 = middle, 3 = worst, with possibility of tied scores).

• Quantitative image scoring evaluation As there was no ‘ground truth’ data for comparison, it was not possible 
to calculate MSE, PSNR and SSIM for prospective undersampled data. Thus, for each scan plane and sampling 
pattern the reconstructions were compared using estimated signal-to-noise ratio (SNR) and edge sharpness 
(ES). The estimated SNR was calculated as the mean signal intensity in the blood pool or tongue divided by 
standard deviation of pixels in a region outside the body. The ES was calculated as the maximum gradient 
along normalized intensity profile across the cardiac septum or tongue, and both the mean and standard 
deviation over time were reported. An example of SNR and ES measurements is provided in Supplementary 
Information Figure S4.

Statistical analysis
As some of the distributions tested were non-normal (Shapiro–Wilk test), a Friedman Chi Square test with post-
hoc Nemenyi analysis was used to assess any statistical differences (p < 0.05) between mean reported metrics.

Results
Training and inference
Training from natural videos and cardiac images took a similar amount of time, with VarNet, 3D UNet and 
FastDVDNet taking 32h, 18h and 1h30 to train respectively. Inference times were similar for both DL models 
(~ 10–100 × faster than CS, Supplementary Information Table S1).

Evaluation on simulated data
Comparison of the ability of DL models trained with cardiac MR data and trained with natural videos to recon-
struct simulated undersampled data are shown in Table 2 and Supplementary Information Fig. 4. The cardiac 
trained DL models outperformed those trained with natural videos in terms of MSE, PSNR and SSIM (p < 0.05). 
This was particularly true for the Cartesian undersampling (SSIM: 0.9 vs 0.83), but the difference was less 
marked for radial undersampling (SSIM: 0.93 vs. 0.88) and spiral undersampling (SSIM: 0.9 vs. 0.86). Both DL 
reconstructions outperformed CS reconstructions (Table 2).

Evaluation on prospective data
Comparison of the three reconstructions (DL trained from cardiac data, DL trained from natural videos, and 
CS) for each sampling pattern (Cartesian, radial, spiral) for representative SAX, 4CH and speech cine images 

Table 1.  Acquisition details for the six different prospective real-time acquisitions. Cardiac and speech cine 
acquisitions had the same trajectories and were reconstructed using the same networks. Cartesian: 17 lines 
were acquired per timepoint including the 8 center lines and 9 randomly selected samples in bottom 60% 
of Fourier space. Radial: 13 radial spokes were sampled per timepoint with a constant tiny golden angle 
increment of 23.8°. Spiral: 15 variable density spiral arms were sampled per timepoint with a linear rotation 
between arms of 24° within a timepoint and an additional 30° increment between timepoints.

Trajectory Sampling Application Type
Temporal resolution 
(ms) Flip Angle (°) TR (ms)

Spatial resolution 
(mm)

Field of view 
(mm)

Cartesian 17 lines
Cardiac bSSFP 47 70 2.8 1.7 × 1.7 400

Speech GRE 58 15 3.4 1.7 × 1.7 400

Radial 13 spokes
Cardiac bSSFP 38 70 3.0 1.6 × 1.6 400

Speech GRE 45 15 3.4 1.6 × 1.6 400

Spiral 15 variable density 
arms

Cardiac bSSFP 55 70 3.7 1.7 × 1.7 400

Speech GRE 79 15 5.3 1.7 × 1.7 400
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are shown in Figs. 3, 4 and 5 respectively (with corresponding videos in Supplementary Information Videos 
S2, S3, S4).

Qualitative image scoring for each scan plane and sampling pattern are reported in Table 3 (cardiac cine data) 
and 3 (speech cine data). The DL reconstructions trained from natural videos ranked similarly to those trained 
from cardiac data (p > 0.19) except for Cartesian SAX and 4CH images where they ranked higher (p = 0.04). Both 

Table 2.  Comparison of different reconstructions (DL trained with natural video and cardiac MR data, as well 
as CS) for each sampling pattern for simulated cardiac images. Mean and standard deviation for mean square 
error—MSE (in decibels -dB), peak signal–noise ratio—PSNR, and structural similarity index measure – SSIM. 
All results were statistically significantly different (p < 0.05).

Acquisition Reconstruction MSE *104 PSNR SSIM

Cartesian

CS 15.72 ± 8.49 28.68 ± 2.39 0.8 ± 0.07

Natural Videos 8.57 ± 4.67 31.18 ± 2.04 0.82 ± 0.06

Cardiac 3.61 ± 2.3 35.16 ± 2.48 0.9 ± 0.05

Radial

CS 6.96 ± 5.58 32.63 ± 3.06 0.8 ± 0.07

Natural Videos 3.67 ± 2.16 35.06 ± 2.45 0.88 ± 0.07

Cardiac 2.01 ± 1.3 37.8 ± 2.63 0.93 ± 0.04

Spiral

CS 14.91 ± 14.49 29.38 ± 3.0 0.69 ± 0.08

Natural Videos 6.51 ± 3.04 32.31 ± 1.95 0.86 ± 0.05

Cardiac 4.15 ± 2.2 34.39 ± 2.26 0.9 ± 0.03

Figure 3.  Qualitative comparison of a cardiac short axis cine dataset showing cropped image and Y–T profiles 
as indicated by white dotted line. From Top to Bottom: Real-time Cartesian, radial and spiral prospective 
acquisitions. From left to right: Compressed Sensing, natural video trained and Cardiac trained reconstructions. 
Deep learning architectures were VarNets, multi-coil 3D UNet, and low latency FastDVDNet for Cartesian, 
radial and spiral respectively. Corresponding video can be found in Supporting Information Video S2.
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DL networks ranked significantly higher (p < 0.05) than CS, except spiral speech cines (although the same trend 
is observed). There no were statistically significant inter-rater differences (p > 0.42, Supplementary Information 
Table S2).

Across all scan planes and sampling patterns, there was no significant difference in SNR between DL recon-
structions trained from cardiac MR data and natural videos (Tables 3 and 4), except for Cartesian speech cines 
(natural videos lower, p < 0.01) and spiral speech cines (natural videos higher, p = 0.02). Images reconstructed 
with CS either had similar or lower (p < 0.05) SNR than the DL reconstructions (Tables 3 and 4).

For most comparisons, mean ES and the standard deviation of ES over time (STD-ES), between reconstruc-
tions were not significantly different (Tables 3 and 4, Figs. 3, 4, 5).

Discussion
The main finding of this proof-of-concept study was that it was possible to train DL-based reconstructions for 
dynamic real-time MR data using open-source natural videos. We used the openly available Inter4K dataset 
from which we simulated synthetic MR data, enabling training of a range of state-of the-art complex multi-coil 
reconstructions (VarNet and 3D UNet) and magnitude only models (FastDVDnet). Importantly, we demon-
strated that natural videos could be used to train iterative DL methods that are useful when data consistency is 
vital, as well as single pass methods that are useful for low latency applications.

For prospective data, we demonstrated that the subjective image quality of reconstructions from DL networks 
trained with natural videos and cardiac MR data were similar for both real-time cardiac (SAX and 4CH) and 
speech cine applications. In most cases this was also reflected in similar quantitative measures of edge sharpness 
and estimated SNR.

However, for the simulated undersampled cardiac MR test data, the natural videos DL reconstructions did 
have slightly lower image quality than cardiac DL reconstructions when compared to the ground truth. This is 

Figure 4.  Qualitative comparison of a cardiac four chamber cine dataset showing cropped image and 
Y–T profiles as indicated by white dotted line. From Top to Bottom: Real-time Cartesian, radial and spiral 
prospective acquisitions. From left to right: Compressed Sensing, natural video trained and cardiac trained 
reconstructions. Deep learning architectures were VarNets, multi-coil 3D UNet, and low latency FastDVDNet 
for Cartesian, radial and spiral respectively. Corresponding video can be found in Supporting Information 
Video S3.
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unsurprising as supervised DL tends to work better when test inputs (and desired outputs) have a similar distribu-
tion to the training data. Nevertheless, the fact that both DL models performed equally well on prospective data 
suggests that differences in simulation do not necessarily translate to differences during real-world inference.

The fact that natural videos trained DL models provide high quality reconstructions suggests that the underly-
ing image object used for training doesn’t have to exactly replicate the test data. This is probably because the DL 
models that we investigated primarily ‘learn’ local image features and these are similar in both cardiac MR and 
natural video data. However, further study of the significance of the dissimilar image characteristics is required 
to improve our understanding of both the opportunities and limitations of learning from natural  videos15,16. In 
addition, improving the quality and generalizability of these models could be explored through scaling up the 
number of training videos, or experimenting with noise and object phase addition. Another area that should be 

Figure 5.  Qualitative comparison of a speech cine dataset showing cropped image and Y–T profiles as indicated 
by white dotted line. From Top to Bottom: Real-time Cartesian, radial and spiral prospective acquisitions. From 
left to right: Compressed Sensing, natural video trained and cardiac trained reconstructions. Deep learning 
architectures were VarNets, multi-coil 3D UNet, and low latency FastDVDNet for Cartesian, radial and spiral 
respectively. Corresponding video can be found in Supporting Information Video S4.

Table 3.  Comparison of different reconstructions (DL trained with natural video and cardiac MR data, as 
well as CS) for each sampling pattern for prospective cardiac cine images (SAX N = 10, 4CH N = 10). Mean 
and standard deviation values for Signal–noise ratio—SNR (in decibels -dB), Edge Sharpness (mean over 
1.5s), temporal standard deviation of edge sharpness through time (std over 1.5s) and subjective image quality 
ranking (between 1-best and 3-worst). *,† Statistically significantly different from cardiac and natural videos 
respectively (p < 0.05).

Cardiac cine Reconstruction SNR Edge sharpness (ES) Temporal STD ES Subjective image quality ranking

Cartesian

CS 47.1 ± 27.4 *† 0.085 ± 0.021 † 0.016 ± 0.005 2.98 ± 0.16 *†

Natural Videos 67.9 ± 19.0 * 0.106 ± 0.037 0.019 ± 0.006 1.2 ± 0.4 *

Cardiac 164.8 ± 85.7 0.098 ± 0.024 0.018 ± 0.008 1.75 ± 0.49

Radial

CS 38.5 ± 18.7 *† 0.129 ± 0.032 0.017 ± 0.005 2.92 ± 0.35 *†

Natural Videos 132.6 ± 71.9 0.127 ± 0.033 0.018 ± 0.007 1.3 ± 0.51

Cardiac 207.0 ± 121.2 0.127 ± 0.029 0.017 ± 0.006 1.27 ± 0.45

Spiral

CS 66.2 ± 26.0 * 0.098 ± 0.028 0.015 ± 0.006 † 2.9 ± 0.3 *†

Natural Videos 85.9 ± 37.2 * 0.104 ± 0.034 0.02 ± 0.007 1.55 ± 0.59

Cardiac 108.7 ± 49.3 0.098 ± 0.024 0.017 ± 0.005 1.5 ± 0.59
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explored is the generation of synthetic multi-coil data, which was a novel aspect of this work. In our study, the 
simulation of the coil sensitivities was kept relatively straightforward for ease of computation and generalizability. 
The advantage of this approach was that no prior knowledge of coil geometries was required, which potentially 
enables easier application to other body parts/coil types. Nevertheless, future works that includes more realistic 
coil simulations via true MR acquisitions or generative  DL17 could improve results.

Interestingly, we also demonstrated that cardiac MR based DL can successfully reconstruct speech cine 
images, demonstrating the potential of out of domain training with other types of MR data. These results suggest 
that cardiac MR trained DL models could be used for a wide range of dynamic non-cardiac applications and 
further strengthens the idea that training data doesn’t have to exactly reflect test data. Nevertheless, such models 
still require access patient data for training. On the hand, natural videos have higher underlying spatial and tem-
poral resolution, as well as being open source, making data, results and pre-trained models easier to disseminate.

In this proof-of-concept study, we did not compare our approach with competing DL methods that use limited 
or no training data. The most commonly used method of mitigating a lack of training data is data augmentation 
and this approach has recently been further improved by creation of synthetic training  data17. However, some 
training data is still required, which does these limit these methods. Newer approaches include zero-shot learn-
ing, deep image priors and geometry informed deep  learning18–20 have shown great potential. However, these 
approaches represent a significantly different approach and are often limitated by long inference times. As our 
study was primarily aimed at demonstrating the potential of natural videos for training supervised methods, we 
did not perform comprehensive comparison with all alternative approaches. Another limitation of this study is 
that we did not compare cardiac volumes from the different reconstructions. This was beyond the scope of this 
proof-of-concept study but is required to truly demonstrate that natural videos provide robust clinically useful 
reconstructions. A final limitation of this study was that we did not directly compare the different sampling 
strategies. This was not performed because our aim was not to investigate optimum k-space sampling, rather 
we attempted to show that natural videos could be used across a broad range of applications and acquisitions.

Conclusion
A proof-of-concept pipeline to learn dynamic MR image reconstruction from publicly available natural videos 
was applied to a variety of trajectories with different network architectures showing no significant differences or 
better subjective image quality compared to similar reconstructions trained on true dynamic cardiac MR data.

Data availability
The source code for training and testing our framework using natural videos and corresponding pre-trained 
networks for dynamic MRI reconstruction are provided online (https:// github. com/ mrphys/ Image_ Recon struc 
tion_ Inter 4k. git).
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