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Abstract 

Purpose 

Predictive digital twin technology, which amalgamates digital twins (DT), the Internet 

of Things (IoT), and artificial intelligence (AI) for data collection, simulation, and 

predictive purposes, has demonstrated its effectiveness across a wide array of 

industries. Nonetheless, there is a conspicuous lack of comprehensive research in the 

built environment domain. This study endeavours to fill this void by exploring and 

analysing the capabilities of individual technologies to better understand and develop 

successful integration use cases . 

Design/methodology/approach 

This study uses a mixed literature review approach, which involves using bibliometric 

techniques as well as thematic and critical assessments of 137 relevant academic papers. 

Three separate lists were created using the Scopus database, covering AI and IoT, as 

well as DT, since AI and IoT are crucial in creating predictive DT. Clear criteria were 

applied to create the three lists, including limiting the results to only Q1 journals and 

English publications from 2019 to 2023, in order to include the most recent and highest 

quality publications. The collected data for the three technologies was analyzed using 

the bibliometric package in R Studio. 

 

 



Findings  

Findings reveal asymmetric attention to various components of the predictive digital 

twin’s system. There is a relatively greater body of research on IoT and DT, 

representing 43% and 47%, respectively. In contrast, direct research on the use of AI 

for net-zero solutions constitutes only 10%. Similarly, the findings underscore the 

necessity of integrating these three technologies to develop predictive digital twin 

solutions for carbon emission prediction. 

Practical implications 

The results indicate that there is a clear need for more case studies investigating the use 

of large-scale IoT networks to collect carbon data from buildings and construction sites. 

Furthermore, the development of advanced and precise AI models is imperative for 

predicting the production of renewable energy sources and the demand for housing. 

Originality/value 

This paper makes a significant contribution to the field by providing a strong theoretical 

foundation. It also serves as a catalyst for future research within this domain. For 

practitioners and policymakers, this paper offers a reliable point of reference. 

Keywords 

Digital twins, AI for net zero, Machine learning, Decarbonisation pathways, Emission 

analytics, Digital ecosystem, Sustainable built environment. 

1. Introduction  

In July 2023, a significant climatic event unfolded, marked by the highest recorded 

global average daytime temperature, with sea surface temperatures surging to 

unprecedented levels. These alarming indicators collectively underscore the profound 



imbalance within Earth's climate system, demanding immediate action from major 

industries worldwide. Such action is imperative to mitigate the potentially catastrophic 

consequences that may ensue if these climate anomalies persist unchecked (Bulkeley 

and Newell, 2023).  

The objective is unmistakable: the world needs a significant curtailment in global 

greenhouse gas (GHG) emissions, targeting a nearly 50% reduction by 2030 and aiming 

for the ultimate benchmark of net-zero emissions (Kodoth, 2023, Levin et al., 2023, 

Chen et al., 2024). Achieving net zero - a state where the sum of carbon emissions and 

its removal from the atmosphere balance out - is more than an environmental imperative 

(Levin et al., 2023); it is a cornerstone for sustainable development. But the transition 

towards net zero requires more than just intent; it demands the translation of this global 

carbon constraint concept into a practical and actionable framework for decision-

makers. This involves tailoring decarbonization pathways for specific entities and 

streamlining efforts not just at global or national levels but also diving deep into sub-

national regions, corporate strategies, and other organizations (Fankhauser et al., 2022, 

Bello, 2021). As part of their strategy for this transition, tech giants like Microsoft and 

consultancies like PwC emphasises the critical role of innovation and the use of cutting-

edge technologies to shape and steer the net-zero transition (Insights, 2023, Herweijer, 

2020, Ghansah, 2024). 

In the landscape of Industry 4.0 innovations such as cloud computing, the Internet of 

Things (IoT), artificial intelligence (AI) and machine learning (ML)/deep learning 

(DL), and digital twins (DT) stand out (Goulding and Rahimian, 2012, Getuli et al., 

2021). These have emerged as pivotal enablers, enhancing the efficiency of energy-

intensive systems and playing a catalytic role in accelerating the net-zero transition 

(Ahmed et al., 2023a, Newman et al., 2021, Jia et al., 2023). They enable better data 



collection, increased transparency, collaboration, and precise control, ultimately 

guiding more informed decision-making processes (Wood, 2021, Darko et al., 2020, 

Zhang et al., 2024, Ghansah and Lu, 2024).  

Among these innovations, the integration of IoT, DT, and AI marks a revolutionary 

stride, developing the concept of predictive DT. Going beyond the traditional DT that 

mirrors physical systems in a digital space, predictive DT blends data-driven learning 

and predictive modelling with the existing systems (Kapteyn et al., 2021, Sohal et al., 

2023). This approach leverages physics-based modelling, data-driven ML techniques, 

and uncertainty quantification, providing a holistic decision support tool for offering 

predictive insights (Kapteyn and Willcox, Haghshenas et al., 2023).  

The integration of predictive DT with environmental strategies heralds a transformative 

shift, providing unprecedented precision in monitoring and proactive management of 

environmental variables. Such advancements are vital when juxtaposed against the 

global goals of net-zero carbon emissions. These technologies empower industries to 

simulate various carbon emission scenarios, anticipate potential setbacks, and develop 

strategies that resonate with sustainable developmental goals (SDGs). They not only 

allow for real-time monitoring, analysis, and prediction of environmental parameters 

but also open the avenue for predicting future scenarios, thereby equipping industries 

to better prepare and strategize for a sustainable future. 

Few studies have explored the integration of all technological components that form 

predictive DT (Tahmasebinia et al., 2023). While its potential as a cornerstone for 

carbon mitigation strategies is unequivocal, the literature within the built environment 

context remains scant and fragmented. A comprehensive and systematic analysis 

encompassing the collective advancements in this field and the identification of 

prominent research gaps have been notably absent. The present study endeavours to fill 



this void by employing a multifaceted approach, which integrates bibliometric 

techniques alongside thematic and critical review methodologies. 

The rest of this paper is structured as follows: Section 3 contains a description of the 

research methods and techniques. Section 4 focuses on the critical analysis of research 

related to the three main components of a predictive DT, followed by section 5, which 

presents a research agenda. Section 6 concludes the paper. 

2. Background  

The goal of achieving "net-zero emissions by 2050" is a global target aimed at curbing 

global warming to within 1.5°C above pre-industrial levels, with the overarching 

objective of substantially mitigating the risks and consequences associated with climate 

change (Ohene et al., 2022). Net-zero emission assets utilise emission-free energy 

sources and fulfil energy demands through on-site renewable energy generation. Their 

benefits encompass a reduced environmental footprint, lower operational and 

maintenance costs, enhanced system reliability, and improved energy security (Ohene 

et al., 2022, Wang and Wang, 2024, Chen et al., 2024). 

As the world transits to net-zero emissions, the construction industry has a major role 

to play (Function, 2022), being responsible for approximately 25% of global emissions 

(Assunçāo, 2022). The emergence of technological advancement in the construction 

context can expedite the transition of the industry in various ways. The 3D parametric 

model can significantly facilitate the optimisation of a building’s performance during 

its lifecycle; BIM in integration with computational fluid dynamics and energy 

performance simulation can facilitate energy conservation assessments (Utkucu and 

Sözer, 2020). Other examples are the use of ML/DL algorithms to compute energy 

consumption (Desislavov et al., 2023, Olu-Ajayi et al., 2022), the use of IoT based 



energy efficiency solutions to control emissions (Liang et al., 2023b, Ra et al., 2023), 

using blockchain technology-based digital twin to predict asset management (Tavakoli 

et al., 2024, Hellenborn et al., 2024, Götz et al., 2022) and using DT to automate the 

monitoring and controlling of emissions (Arsiwala et al., 2023, Tahmasebinia et al., 

2023).  

In essence, the attainment of net-zero objectives within the construction industry hinges 

upon the advancement of digital technologies, enhancements of their functionality and 

the resolution of their limitations (Council, 2019, Malagnino et al., 2021). These 

technologies are indeed paramount to the success of major net zero initiatives of the 

construction industry such as circular economy and energy efficiency (Jia et al., 2023, 

Newman et al., 2021, Arsiwala et al., 2023, Elghaish et al., 2023). 

Both industry sources and academic literature concur on the definition of a DT as a 

living digital representation of a physical system. This representation is consistently 

refreshed with data to properly replicate the actual structure, condition, and behaviour 

of the physical system, ultimately with the objective of impacting business outcomes 

(Rasheed et al., 2022). DT are typically categorised into four levels: descriptive, 

informative, predictive, and living DT. Predictive DT is specifically designed for 

forecasting unmeasured variables and future states, primarily relying on historical data 

(Rasheed et al., 2022). In this arrangement, IoT serves as a tool for data collection, 

including measurements — such as CO2 equivalent and energy consumption. DT 

technologies are employed to reflect, simulate, and visualize the data retrieved from 

IoT sensors. Meanwhile, AI/ML is used to predict future scenarios based on the 

collected data from IoT. Consequently, the future practical applications of DT for 

achieving net-zero goals are promising (Arsiwala et al., 2023). 



As illustrated in Table 1, a few papers published on the integration of AI, IoT, BIM, 

and DT to provide preliminary solutions for achieving net-zero in the built environment. 

Arsiwala et al. (2023) developed a predictive monitoring system that estimates CO2-eq 

and TVOC emissions from existing buildings utilising DT, IoT, BIM and AI. Eneyew 

et al. (2022) investigated the feasibility of integrating BIM, IoT and DT to support the 

smart building digital twin capabilities. To aid timely adaptive adjustment of the digital 

twin and realistic lighting, Tan et al. (2022) linked between the lighting system, the 

surveillance system and a digital twin lighting (DTL) system based on dynamic BIM 

while utilised YOLOv4 to detect pedestrians to reduce energy consumption by 97%. 

Schweigkofler et al. (2022) combined the DT, IoT and BIM technologies to create a 

shared data environment for crossed management energy aspects. Finally, Wang et al. 

(2022) used big data approaches, emphasizing data fusion algorithm on the wireless 

sensing link in energy efficient building digital twins to enhance DTs’ feasibility. 

As shown in the literature above, there are few studies that focused on the integration 

of different technologies with the DT to provide comprehensive bespoke solutions. 

Therefore, there is a significant need for further exploration and analysis of the 

capabilities of individual technologies to better understand and develop successful 

integration use cases. 

Table 1. Noteworthy studies on predictive DT for net zero solutions  

The focus of the study Technologies Author and Year No. 

For predictive monitoring of 

CO2 equivalent from existing 

buildings  

DT+ AI+ BIM+ IoT+ Big data  Arsiwala et al. (2023) 1 



to enable semantic 

interoperability among smart-

building DT applications 

DT + IoT + BIM  Eneyew et al. (2022) 2 

to improve the energy efficiency 

of indoor lighting 

DT + BIM + Computer vision  Tan et al. (2022) 3 

to represent and visualize sensor 

data in BIM, in a user-friendly 

way to support complex 

decisions for more responsive 

building management and 

improved energy efficiency. 

DT + IoT + BIM Schweigkofler et al. 

(2022) 

4 

for assessment of environmental 

satisfaction in energy-efficient 

building 

AI + BIM + DT  Wang et al. (2022) 5 

 

3. Research methodology  

AlRyalat et al. (2019) conducted a comparative study on using PubMed, Scopus, and 

Web of Science for bibliometric analysis. The results showed that Scopus provides 

access to a wide range of sources and offers search analysis tools that can produce 

representative figures. Moreover, Mishra et al. (2021) stated that Scopus is preferred 

for bibliometric analysis studies due to its extensive abstract and citation database, 

especially in terms of journal coverage compared with other databases such as PubMed 

and Web of Science. Therefore, Scopus is selected to collect and refine data for this 

mixed-methods systematic review. A mixed-methods systematic review (couched 

within inductive reasoning and an intelligent interpretive design) was espoused as being 

the most effective epistemology for conducting a review study (McGowan and 

Sampson, 2005). Utilising a mixed-methods systematic review allows for a more 



objective presentation of the phenomena to be articulated. Moreover, a mixed-methods 

systematic review improves the depth and breadth of the literature studied (Rajendran 

et al., 2011, Heyvaert et al., 2016). Figure 1 shows the process of collecting, filtering, 

and analysing data. Three separate lists were developed using the Scopus database. 

These covered AI and IoT, along with DT, as AI and IoT are the cornerstones of 

forming predictive DT (Hosseini et al., 2021). The same criteria were applied to 

develop the three lists, including limiting results to only Q1 Journals, English 

publications, and timeframe from 2019 to 2023 to cover the most recent publications 

of the highest quality. For transparency and quality assurance, the authors have 

reviewed the relevance of papers to three technologies: AI, Digital Twins, and IoT. This 

was conducted through manual scanning of titles and abstracts, resulting in the grouping 

of 137 papers into three categories, as shown in Figure 2. 



Figure1. Research methods and logic 

Figure 2 shows the number of papers identified for each technology, indicating a much 

lower level of activity for research in the AI-related domains. The bibliometrix package 

in R studio was used to analyse the collected data for the three technologies.  

 

            
  

   
  

  
  



Figure 2. Research publications for the three themes. 

The bibliometric package in R Studio enables researchers to examine thematic 

quadrants, the evolution of themes over time, and patterns of publications within each 

theme. It also can assess the scientific production of authors and countries throughout 

the review study's timeframe (Martin Gomez and Bartolome Muñoz de Luna, 2023).  

4. Critical evaluation against the net-zero agenda  

4.1. IoT for net-zero emissions solutions  

The Internet of Things (IoT) is a key technology of Industry 4.0 that has led to the 

fusion of the physical and virtual aspects of objects. It allows for enhanced data 

collection from smart devices (or things) involving the internet, with further integration 

of advanced data analytics such as AI, ML and DL for robust management of 

information (Ozturk, 2021, Sawhney et al., 2020). 

Figure 3 illustrates the identified themes from a pool of 59 papers. Notably, 27% of 

these publications concentrate on energy and user comfort monitoring and control. 

Following closely is the category of smart energy management systems, accounting for 

25% of the papers. Meanwhile, the scientific production pertaining to the use of IoT for 

direct research on net-zero energy homes comprises 7%, and carbon prediction research 

represents 9% of the total publications. This gives insights regarding producing more 

research on IoT for carbon emission prediction and net zero energy homes, which can 

significantly contribute towards achieving the net zero target for the built environment 

sector.  



 

Figure 3. IoT themes for net zero carbon emission research 

  

A study by Kourgiozou et al. (2021) recognise IoT as an enabling technology for 

achieving the targets of net zero buildings; smart energy systems and smart grid form 

an important aspect, focused on improving efficiency and rationalising energy 

consumption (Hu et al., 2022). IoT provides the required structure and protocols for 

data sensing, communicating, and processing, which supports the transformation from 

a conventional energy grid to a modernised smart grid system (Abir et al., 2021). In 

addition, IoT helps to control power uses more effectively and reduces energy waste by 

supporting the real-time monitoring of energy consumption on the end-user side in 

smart homes (Hossein Motlagh et al., 2020, Aggarwal et al., 2021). Adopting IoT 

devices and networks is effective in developing a cost-effective, platform-neutral, 

scalable, and portable building data acquisition system for smart building innovations 

(Gao et al., 2021).  



Another study presented the effectiveness of integrating IoT-based sensing systems into 

smart buildings (Kumar et al., 2022). The authors created a building energy model to 

determine the operational energy of the building and used a custom-built CO2 sensor 

to collect the real-time occupancy data to be incorporated into the building energy 

model. The study results showed that the sensor integration in the solar house is 

environmentally effective.  

Bashir et al. (2020) presented in their study the practical use of IoT in smart building 

environments by developing a framework for IoT-enabled smart buildings to integrate 

big data management and analytics metamodel. To optimise the indoor thermal comfort 

and the energy consumption, Carli et al. (2020) developed an IoT based system for the 

model predictive control of HVAC systems in smart buildings. The study results 

indicated significant energy savings. The same concept was adopted by Kharbouch et 

al. (2022); the authors presented the combination of recent IoT and big data platforms 

with ML algorithms for predictive control of smart building ventilation. The study 

results revealed that the developed approach provided acceptable performance in 

regulating the indoor CO2 concentration and allowed significant energy reduction by 

approximately 16% compared to on/off. Focusing on the heating, ventilation, and air 

conditioning (HVAC) systems, Liang et al. (2023a) developed an IoT-based intelligent 

energy management system for a real net-zero emissions photovoltaic (PV) battery 

building. The developed system tends to efficiently manage the HVAC systems to 

trade-off between the battery's remaining energy and thermal comfort level based on 

the demand compliance concept. In this study, the authors conducted several case 

studies to provide the implementation details of the IoT platform to present the real-

world applications of the energy management system. IoT devices and a cloud-based 

server were used to collect, store, and process the data collected from a newly 



constructed net zero energy house with a PV system, efficient appliances, and an 

efficient hybrid HVAC. The collected data is used to monitor energy generation and 

consumption. Results showed that a cloud-based intelligent control system, which 

automatically selects the best fuel source to use, can benefit the homeowner (19% 

energy cost savings is possible) and contribute to decarbonization (29% reduction) (Yu 

et al., 2019). While Xia et al. (2021) developed an online energy management system 

framework based on IoT to incorporate the intermittency of renewable energy sources 

and dynamic electricity tariffs to develop online scheduling strategies.  

Although there is interest in integrating IoT into the clean energy sector, direct adoption 

of IoT technologies is not possible owing to diverse barriers such as labour/workforce 

skill insufficiency, an ineffective framework for performance, a technology divide, 

insufficient legislation and control, and lack of time for training and skill practice 

(Reddy et al., 2023).  

4.2. Digital twin for net-zero emissions solutions  

In the context of Architecture, Engineering, Construction, and Facility Management 

(AEC-FM) industry, the three major components of a DT include Wireless Sensor 

Network (WSN), data analytics, and 3D model (extracted from BIM) of the physical 

asset (building, bridge, etc.); these facilitate real-time data visualisation, data-driven 

decision making and improved building efficiency (Khajavi et al., 2019). 

Deng et al. (2021) conceptualised a framework of an advanced DT in the built 

environment for the seamless synchronisation of real-time scenarios with the virtual 

world. This system is aimed at monitoring construction processes, environmental 

assessments, and facility management.  According to Villa et al. (2021), a SQL database 

can be used to store data from IoT sensors on a cloud platform with open-source tools 



for integration with the BIM model. The authors proposed a preventive maintenance 

proof of concept for HVAC plants that allows the detection of faults for better, faster, 

and decisive solutions. Indicating a need for a single robust platform for predictive 

maintenance — using historical data for machine learning — and forecasting of the 

physical parameters of a building’s components was accomplished through the 

development of a framework by Hosamo et al. (2022); their study recognised DT as a 

foundation for data processing and visualization, overcoming the challenges of BIM 

and IoT integration. Similarly, a qualitative analysis by Camposano et al. (2021), 

argued that DT can offer an integrated single platform of complex software ecosystem 

transitioned from BIM requirements, made feasible by the convergence of IoT, cloud 

computing and big data. 

Thus, a DT in the built environment serves a specific purpose across a project’s 

lifecycle. It is comprised of a 3D model-based representation and related data that 

simulate the realistic properties of the physical asset based on its defined use case 

(Shahzad et al., 2022).  In addition, the DT technology has proven its capability in 

supporting the sustainable environment agenda and net zero emissions. This has been 

through facilitating the monitoring and optimisation of energy efficiency and thermal 

comfort and by supporting net-zero energy buildings (Arsiwala et al., 2023).  

Figure 4 shows that the majority of publications focus on using DT to optimise energy 

consumption, with around 45% of publications directly addressing this topic. This is 

followed by 35% of publications concentrating on monitoring thermal comfort. 

Meanwhile, only 20% of publications are centred on DT for net-zero energy buildings. 

 



 

Figure 4. Categories of publications on DT for net zero solutions 

4.2.1. Digital twin for optimising energy consumption 

The immense potential of DT has sparked interest in applying them to enhance energy 

efficiency and promote sustainability. For lighting energy-saving strategies in 

educational buildings, Seo and Yun (2022) developed a DT-based assessment 

framework that combined the existing building’s hardware system, the building’s 

operational — education purposes — schedule database, and a probabilistic model of 

occupant behaviour. Results showed that turning lighting systems off through sensors 

after the end of the last class produced energy savings of more than 60% and the 

overdesigned LED lighting in most classrooms can be adjusted to an appropriate level 

to save 46% of the consumed energy. Combining BIM and computer vision 

technologies, Tan et al. (2022) proposed a DT lighting system to provide intelligent 

decision-making on lighting control. The DT assets of the intelligent lighting system 



along with the large amount of the generated lighting data, can pave the way for 

realising a whole life cycle operation and maintenance of green intelligent buildings.  

Shifting from a static sustainability assessment to a DT-based and IoT-enabled dynamic 

approach, Tagliabue et al. (2021) presented an approach that allowed for a real-time 

evaluation and control of a wide range of sustainability criteria with a user-centred point 

of view. The system started with a data collection system to ease data mining for 

predictive maintenance, indoor air quality preservation, space organisation, people flow 

optimisation, with the focus being energy efficiency. A sustainability assessment was 

added to revise the building score in real time through a continuously updated 

connection between the sensor data and sustainable DT. Another study conducted by 

Agostinelli et al. (2021b) focused on optimising and automating energy management 

of a residential district using a 3D data model integrated with IoT, artificial intelligence 

and machine learning.  

The review reveals a considerable number of studies, which were selected carefully 

with different methods to present different approaches of published recently, 

particularly in 2023. Table 2 illustrates examples of these recent studies, which were 

selected carefully using different methods to present different approaches to using DT 

for optimising energy consumption.  

Table 2. Noteworthy studies on the evaluation of DT for the optimisation of energy 

consumption  

Authors Aim Primary methods Results 

Al-Mufti et 

al. (2023) 

To develop a DT for 

building energy 

consumption 

Using an artificial 

neural network 

(ANN)-based 

The predicted energy consumption 

from the DT compares well with the 



forecasting model, 

Open Studio software 

and energy 

consumption data 

experimental data from the smart 

sensors. 

Mohseni et 

al. (2023) 

To establish a cost-

effective energy 

management system in 

a single-zone HVAC 

system.  

A new, reliable, DT 

proximal policy 

optimisation–based, 

model-independent, 

non-singular terminal 

sliding-mode control. 

The performance of the proposed DT-

based controller is better than the 

compared control methodologies in 

terms of unknown uncertainties 

compensation, fast-tracking, and 

smooth response. 

Nie et al. 

(2023) 

To reduce peak-to-

average ratios (PARs) 

and energy usage costs 

in the smart home. 

Local photovoltaics, 

suitable power storage 

systems and the 

improved leader 

particle swarm 

optimisation method 

The proposed system can efficiently 

optimise energy usage costs and PARs. 

Zhang and 

Sun (2023) 

To optimise resource 

allocation in smart 

grids 

DT virtual machines 

and fog servers. 

The DT environment could benefit the 

system in terms of improved 

scalability, visibility, and collaboration 

Alshenaifi 

et al. 

(2023) 

To investigate the 

potential of integrating 

a passive downdraught 

evaporative cooling 

tower into a multi-

space building 

Thermal modelling 

tool, and passive 

downdraught 

evaporative cooling 

(PDEC) DT. 

The integration of the PDEC tower 

resulted in a reduction of 

approximately 22% in cooling energy 

consumption 



Gao and 

Huang 

(2023) 

To optimise energy 

economics and 

renewable energy-

based microgrids 

considering load 

uncertainties 

The moth flame 

optimisation algorithm 

and distributed energy 

management strategy 

in a DT area 

Both grid-connected and islanded 

modes of the algorithm perform well 

and are resilient to failures of 

communication 

Almutairi 

et al. (2023) 

To adjust the energy 

consumption patterns 

of households 

according to the price 

signals   

The bald eagle search 

optimisation algorithm 

and DT  

Using DT-supported users to optimise 

the scheduling of their rooftop solar 

home appliances to maximise 

efficiency and minimise costs 

Zohdi 

(2023) 

To track and optimise 

the flow of incoming 

solar power through a 

complex solar-thermal 

storage system 

A genetic-based 

machine learning DT 

framework 

The proposed framework optimises the 

configuration layout to balance meeting 

customer demands and operational 

efficiency 

Shen and 

Yuan 

(2023) 

To manage a 

microgrid based on the 

energy generated by 

renewable sources 

The DT concept, 

double stochastic 

optimisation levels 

and shark optimisation 

algorithm 

Using DT of renewable energy sources, 

electricity market operators can take 

corrective action to optimize their 

operations and reduce their 

environmental impact 

Chalal et al. 

(2023) 

To improve energy 

management in real 

time of hybrid energy 

system.  

IoT and DT based on 

energetic macroscopic 

representation 

The developed system is efficient for 

an autonomous photovoltaic system.  

Liu et al. 

(2023) 

To develop effective 

energy management 

Reinforcement 

learning and fuzzy 

The simulation in the DT environment 

demonstrates that the proposed device 



for household demand 

response  

reasoning in DT 

simulation  

planning method smooths the energy 

consumption and reduces the energy 

cost  

 

4.2.2. Digital Twin for thermal comfort monitoring in buildings  

Building design can create comfortable environments for all occupants and still reduce 

energy consumption. Gnecco et al. (2023) used a DT to decode human-building 

interaction for environmental comfort and energy saving, with four different sources of 

information being integrated and interoperated: the geometrical BIM model; 

environmental sensors data; wearable sensor signals and subjective answers from 

occupants. The authors concluded that DT offers a full understanding of a facility 

operation. Bringing spatial representations into the DT paradigm, Abdelrahman et al. 

(2022) attached spatially and temporally dynamic data to BIM to explore the relation of 

occupants’ location in a building to their indoor environment satisfaction perception. 

The authors developed the Build2Vec model by integrating the location data and 

occupants’ feedback with indoor environmental data to formulate the thermal 

preference prediction model. Results showed that Build2Vec outperforms the baseline 

model noticeably. Deng et al. (2022) built on their earlier study of utilising a DT and 

proposed a framework for human-centric monitoring and control of smart buildings. 

The authors reported that the proposed framework provides real-time information for 

both an overview of the indoor environment and the occupants’ states, which can be 

valuable references for building managers. Clausen et al. (2021) presented the application 

of a DT and a generic control algorithm to control heating and ventilation in buildings. 

The authors demonstrated the practical application of the developed approach and 

found that it was possible to transition from rule-based control to model predictive 



control without immediate adverse effects on comfort or energy consumption. It is 

increasingly recognized in the construction industry that digital technology enables the 

monitoring of building users or entire portfolio performance to ensure user comfort. 

Several recent studies have focused on using digital technology to improve building 

users' comfort. Some examples are listed in Table 3.  

Table 3. Noteworthy studies on DT for thermal comfort monitoring in buildings  

Authors Aim Methods Results 

Hosamo et 

al. (2023) 

To automatically 

detect HVAC fault 

sources and predict for 

comfort performance 

evaluation of existing 

non-residential 

buildings  

Using Bayesian 

Networks (BNs), 

satisfaction survey, 

BIM, and real-time 

sensor data 

Aiding the facility management sector 

by offering insight into the aspects that 

influence occupant comfort, speeding 

up the process of identifying 

equipment malfunctions, and pointing 

toward possible solutions 

Gnecco et al. 

(2023) 

To develop a method 

for DT from a test 

room for human 

comfort and energy 

behaviour analysis. 

An as-monitored BIM 

model was integrated 

with monitoring 

information from the 

facility, physiological 

signals, and survey 

answers from 

occupants through 

Graph Neural 

Networks 

The recognition of patterns, 

connections, and the influence of 

diverse stimuli in the human 

perception of the surrounding 

environment 



Khampuong 

et al. (2023) 

To provide sustainable 

comfort monitoring 

for smart campuses  

Wireless sensors and 

DT 

Highlighting the significance of 

workspace monitoring, as performance 

can be directly affected by the 

environment 

Banfi et al. 

(2022) 

To improve building 

comfort and efficiency  

BIM, specific grades 

of generation, API and 

DT 

The developed system interacts with 

DT to learn characteristics and 

environmental parameters to increase 

the degree of control and improve 

users’ comfort  

Nurumova et 

al. (2021) 

To explore the 

potentials 

and challenges of a 

DT for the occupant-

centric operation of 

facilities 

BIM, wireless sensors, 

and predicted mean 

vote (PMV) and the 

predicted percentage 

of dissatisfied (PPD) 

method 

Accessing historical facility 

performance data, identifying areas for 

optimization to minimize energy 

waste, and estimating the comfort of 

occupants in real-time  

Zaballos et 

al. (2020) 

To explore a DT in the 

fields of 

environmental 

monitoring and 

emotion detection to 

provide insights into 

the level of comfort 

BIM, Dynamo and 

IoT-based wireless 

sensor networks 

Highlighting the significance of 

monitoring workspaces because 

productivity has been proven to be 

directly influenced by environmental 

parameters 

Xie et al. 

(2020) 

To automatically 

detect environmental 

anomalies and faults 

that affect building 

Fault tree analysis 

(FTA), augmented 

reality and DT 

The results showed that the visualised 

inspection system helps formalise the 

link between temperature issues and 

the corresponding failed assets 



occupants’ thermal 

comfort.  

 

4.2.3. Digital twin–based net-zero energy buildings 

Few studies were found on using DT to address net-zero energy buildings (NZEB). A 

study conducted by Kaewunruen et al. (2019) highlighted the technical and financial 

viability of using DT in NZEB. The study revealed that a suitable NZEB solution for 

an existing building can achieve a 23-year return period in the UK. Another study 

conducted by Zhao et al. (2021) focused on evaluating the feasibility of existing 

building retrofitting schemes based on the concept of nearly zero-energy buildings 

(nZEBs). Authors used 3D laser scanning to efficiently develop the building energy 

model (BEM) of existing buildings and DT model. The authors argued that an nZEBs 

solution suitable for the building can reduce building energy costs by 14.1%; increase 

solar photovoltaic power generation by 24.13%; and reduce carbon dioxide emissions 

by 4306.0 kg CO2eq/a. To quantify the smart readiness indicator (SRI) for NZEB 

(university buildings), Martínez et al. (2021) used two conceptual spaces (physical and 

digital) within two dimensions (users and infrastructures) over an IoT three-level model 

with a focus on CO2 and energy consumption monitoring. The study results revealed 

the effectiveness of using DT and IoT to achieve sustainable development goals. In an 

attempt to meet NZEB requirements, Agostinelli et al. (2021a) developed a DT-based 

method to achieve an intelligent optimisation and automation system for energy 

management in buildings. Using three-dimensional data models integrated with IoT, 

artificial intelligence, and machine learning, the developed approach enabled the 

evaluation of the effectiveness of the integrative system for renewable energy 



production from the solar energy necessary to raise the threshold of self-produced 

energy. Similarly, Deena et al. (2022) used DT to develop an intelligent optimisation 

and automation system to manage energy to meet NZEB requirements in buildings. 

Using an open international standard approach and the ontology-based representation 

method, Shen et al. (2022) developed a conceptual framework to integrate BIM and DT 

to support decision-making for the whole life cycle net-zero carbon buildings. For 

future optimal NZEB HVAC design, commissioning and operation, Ochs et al. (2023) 

presented a model for a DT as a benchmark to compare actual against predicted 

performance.  

The existing literature addressing the NZEB requirements has predominantly focused 

on new buildings while many buildings are already built. There is a need to address the 

application of NZEB on existing buildings. Integrating technologies such as DT, BIM, 

IoT, and artificial intelligence can balance out energy demand with the energy from 

renewable technologies (NZEB options) for existing buildings. However, the 

availability of solutions to meet each performance requirement is limited, and an 

accurate evaluation is required. Besides, existing studies have focused on heating and 

cooling energy management, whereas the focus should be on the overall building 

systems.  

4.3. Artificial intelligence (AI)- based net-zero emissions  

The proliferation of IoT sensors and devices has led to the generation of large amount 

of unstructured data, which cannot be handled by conventional data-processing tools 

and software.   



 

Figure 5. Categories of publications on AI for net zero solutions 

As seen in Figure 5, approximately 62% of the publications on AI are focused on energy 

prediction analysis, while the remaining publications are distributed across various 

applications such as energy optimisation and energy decision-making systems. It is 

worth noting that only 13% directly addressed practical applications of carbon emission 

monitoring and control, highlighting a need for further research in this area. 

Artificial intelligence techniques such as machine learning (ML) algorithms, provide 

valuable insights by analysing big data, enabling informed decision making (Gandomi 

and Haider, 2015). ML utilises structured data with human experts to extract and 

determine feature sets for the input data, enabling the algorithm to learn and provide its 

results, for instance, in terms of prediction analysis. ML algorithms have the ability to 

learn from the behaviour of the observed, emphasising its prediction accuracy rather 

than model accuracy (Leo, 2001). Feroz et al. (2021) identified several potentials of 

integrating big data and AI in the built environment, relating to monitoring and 



controlling air pollution, optimisation of water resources and efficient energy 

management of assets while predicting their impact on climate change  . 

Several studies were conducted recently based on data-driven approaches to predict 

energy consumption and demand to enable energy consumption savings. A study by 

Mehmood et al. (2019) emphasised its potentials achieving operational efficiency of 

assets in residential housing with use of machine learning algorithm, forecasting and 

minimising energy consumption to mitigate their climate impacts.  

Ward et al. (2023) used computer vision techniques to quantify building features to 

estimate energy consumption from mobile sensing data. The developed framework 

proved its effectiveness with gold standard datasets. Noteworthy studies on the use of 

AI to predict and estimate energy consumption are tabulated in Table 4.  

Table 4. Key publications on the use of AI for net-zero emissions purposes 

Authors Aim Methods Results 

Abumohsen et al. 

(2023) 

To forecast electrical 

loads using different 

algorithms  

Long Short-Term 

Memory (LSTM), 

Gated Recurrent Unit 

(GRU), and A  

Recurrent Neural 

Network (RNN) 

Algorithms 

GRU model achieved 

the best performance in 

terms of accuracy with 

the lowest error 

Qiao et al. (2023) To predict building 

energy consumption 

based on limited types 

of features 

Empirical mode 

decomposition (EMD) 

and Boruta feature 

selection (BFS) 

A significant 

improvement in 

prediction performance 



Sarmas et al. (2023) To predict the energy 

savings of energy 

efficiency renovation 

actions 

Machine-learning 

algorithms namely RF, 

XGBoost, and 

LightGBM and 

ensembling model 

The model can generate 

accurate forecasts  

Huang and 

Kaewunruen (2023) 

To estimate the energy 

consumption of a 

public building 

Transformer and 

support vector 

regression (SVR) 

The SVR presents 

superior performance 

and is more sensitive to 

the input  

Sheng et al. (2022) To predict energy 

consumption for 

residential buildings 

Deep convolutional 

neural network and 

Google Street View 

images 

Predicted an annual 

energy consumption 

with a mean absolute 

difference of 

0.01kWh/m2 per 

annum on average 

Wen et al. (2022) To improve solar 

forecasting accuracy  

Spatial and temporal 

attention-based neural 

network (STANN) in 

conjunction with the 

federated learning 

(FL) technique 

The proposed approach 

outperforms other 

benchmarks with 

higher forecasting 

accuracy 

Dash et al. (2021) To predict long term 

household electricity 

demand load  

A neural network 

gradient boosting 

regression tree (RNN-

GBRT) forecasting 

technique and a novel 

The proposed approach 

is efficient in 

forecasting the load 

demand  



energy theft detection 

method 

Lei et al. (2021) To predict building 

energy consumption to 

reduce redundant 

influencing factors 

Rough set theory and 

deep learning 

algorithms 

The integrated rough 

set and deep neural 

network was the most 

accurate 

Many researchers have worked on Reinforced Learning (RL)-based energy 

management systems (EMS) (Si et al., 2021, Mathew et al., 2020, Liu et al., 2020, Lee 

and Choi, 2020, Ahrarinouri et al., 2021, Diyan et al., 2020, Esrafilian-Najafabadi and 

Haghighat, 2022, Fu et al., 2023). To create comfortable and healthy indoor 

environments with minimal energy requirements, Duhirwe et al. (2023) employed a 

virtual sensor and a double Q-learning control agent hat interacting with a deep 

reinforcement learning (DRL)-based control to efficiently control indoor CO2 while 

using the minimum amount of energy possible. They achieved a 58% energy reduction. 

A smart home energy management was formulated as a cost minimisation problem 

using a safe reinforcement learning (SRL) approach with the Primal-Dual Optimisation 

(PDO) policy search-based algorithm (Ding et al., 2022). The developed model could 

make optimal decisions targeting energy cost reduction. For optimal control of HVAC, 

Fu et al. (2022) proposed a multi-agent deep reinforcement learning method for 

building cooling water system control (MA-CWSC) to optimise the load distribution, 

cooling tower fan frequency, and cooling water pump frequency of different types of 

chillers. Similarly, Yu et al. (2021) used the Markov game based on multi-agent deep 

reinforcement learning with attention mechanism to reduce the HVAC system energy 

costs in a commercial building.  



Other studies have used different AI approaches to optimize energy consumption to 

achieve sustainability. Han et al. (2023) developed a model-free deep reinforcement 

learning (DRL)-based heat pump operation strategy. The model used the Rainbow deep 

Q network algorithm to reduce electricity costs with artificial neural networks to train 

the regression of future load demands and coefficient of performance. The proposed 

model reduced the year-round demand charge by 23.1% and the energy charge by 

21.7%, resulting in a 22.2% reduction in the electricity cost. Yu et al. (2023) used deep 

transfer learning to capture energy-essential building variables through reasoning 

building façade images to optimise energy consumption and reduce greenhouse gas 

emissions. To optimise the operation of sports facilities and reduce the energy 

consumption of the HVAC system, Elnour et al. (2022) developed a neural network 

(NN)-based model predictive control (MPC) management and optimisation system. 

The study results revealed that up to 46% energy reduction was achieved while jointly 

optimising the thermal comfort and indoor air quality. 

Few studies have focused directly on net zero emissions. Mills et al. (2022) developed 

a cloud-edge architecture that integrated AI and data analytics for microgrid energy 

optimisation and net zero carbon emissions. Ahmed et al. (2023b) used AI in the 

monitoring of a net zero energy building to understand energy savings and methods to 

reduce consumption. To optimise energy consumption to achieve net zero and 

sustainability, Srivastava et al. (2023) developed a multi-stage ML-explainable AI 

(XAI) model that related the drivers of energy consumption to reduce harmful 

emissions and to enable transition to green energy net zero emissions alternatives. The 

significance of the study is the use of XAI to monitor carbon consumption to provide a 

holistic perception of environmental harm and facilitate proactive conservation 

measures. Moraliyage et al. (2022) used AI algorithms to improve the accuracy, 



efficiency, and consistency of measurement and verification (M&V) protocols of 

energy-efficient infrastructure for net zero carbon emissions. The proposed approach 

used small volumes of energy consumption data to develop efficient predictions for 

energy savings estimation leading up to a net zero carbon emissions strategy. 

4.4. Bibliometric analysis of publications 

Figure 6 shows the scientific output in predictive decision tree (DT) technologies over 

the last five years. It is noteworthy that China has the highest number of publications, 

exceeding 60 papers. Furthermore, the graph illustrates a consistent upward trend in the 

number of publications in this field over the past five years. 

 

Figure 6. Country production over time for predictive DT technologies (data was 

analysed using R studio-bibliometric package) 

Figure 7 visually illustrates the distribution of keywords into four distinct themes. The 

first theme, labelled as the 'basic themes', covers research areas such as BIM and DT 



for sustainability, green buildings, and smart cities. The second theme, named as the 

'motor themes', represents topics characterized by strong centrality and high density, 

including climate change and BIM. In contrast, the 'niche theme' lacks strong 

connectivity but demonstrates how predictive digital technologies interact with other 

areas, such as decision-making systems, energy, and heat management. Lastly, the 

'merging themes' emphasize the integration of various Industry 4.0 technologies, with 



primary focus on achieving integrated solutions for net-zero emissions.

  



Figure 7. Thematic analysis of predictive DT publications (R studio-bibliometric 

package). 

5. Critical analysis and research agenda 

5.1. IoT for net zero applications 

Affordable digital technology solutions like IoT pave the way to achieve net-zero 

targets. IoT-enabled technology solutions have a variety of applications that can 

optimise renewable energy distribution models. The integration of IoT technology with 

ML and AI can allow renewable energy solutions like solar panels and wind turbines 

to perform efficiently and cost-effectively. However, operating billions of these 

connected devices raises an alarm to ensure that they are a net zero technology 

themselves. It is essential that the gains of using IoT are not cancelled out by the energy 

consumed. There is a need to conduct different studies that address low-carbon and 

efficient communication networks while identifying an optimum number of sensor 

nodes necessary for reliable analysis outcomes. 

In addition, to make use of the enormous amount of structured and unstructured data 

gathered from various IoT devices, there is a need to do in-depth research in the field 

of construction data management. An efficient data management infrastructure is 

required to identify semantic links between various data attributes in addition to 

maintaining the integrity, availability, quality, and privacy of data. Moreover, the 

consistency and quality of data collected from IoT devices need to be tested and verified 

in real-world scenarios especially when heterogeneous devices are used in the same 

building with different vendor settings which could affect the data quality and 

accordingly the building control performance (Ekström et al., 2021).  



Finally, more studies are needed to examine IoT devices in real-world scenarios when 

there are attenuation and interference losses. Therefore, future studies should 

thoroughly test their recommended solutions and systems in a more complicated, 

dynamic, and real-world setting to assess the credibility, precision, and performance of 

their suggested solutions.  

Figure 8 summarizes the future research agenda of IoT for net zero applications in four 

main areas: low-carbon efficient communication networks, data management, data 

quality, and examination of various IoT devices in real-world scenarios. 

 

Figure 8. Future research agenda of IoT for net zero applications. 

 

5.2. Digital Twins for net zero applications  

The review reveals that the research on DT for energy consumption management 

(monitoring, visualisation, optimisation, and control) at the building and room level has 

been extensive. The thermal comfort of users has also been studied at different levels, 



with the optimisation of HVAC being crucial for energy efficiency. However, the focus 

of most existing studies is on new construction. New construction only replaces or adds 

a few per cent per year at most to the world's existing building stock. Improving the 

performance of our existing building stock is incredibly important to achieving the 

sustainable development goals (SDGs). Accordingly, more studies are needed to 

explore practical solutions to manage the energy consumption of existing buildings.  

Reducing operational carbon in the construction sector requires attention to buildings 

in use. Only one study was found in this review with a focus on using DT and AI to 

develop a predictive monitoring system that estimates equivalent carbon dioxide (CO2-

eq) emissions from existing buildings (Arsiwala et al., 2023). The system can predict 

future emissions based on received time-series data from installed devices. The results 

are then analysed using a machine learning algorithm and finally presented on a 

dashboard to identify patterns. With buildings and construction making up 37% of 

energy-related CO2 emissions globally, more solutions that integrate existing 

technologies, such as DT, are required to shift to low-emissions and climate-resilient 

developments.  

Contributing to a sustainable future involves effective maintenance strategies to reduce 

energy consumption and carbon emissions. Several researchers have advocated 

introducing DT to improve the performance of building operations and maintenance 

(Hosamo et al., 2022, van Dinter et al., 2022, Falekas and Karlis, 2021). However, only 

one study attempting to identify energy consumption-related factors during the 

operation phase to achieve sustainable operation and maintenance for building 

infrastructures was found (Jiao et al., 2023). The proposed model in this study 

combined the DT operation and maintenance model to strengthen the sustainable link. 

This enables the model to continuously mine and update the influencing factors of 



operation and maintenance to realise the building’s sustainability. To support the low-

emission and climate-resilient agenda, more studies should focus on finding practical 

solutions for sustainable operations and maintenance in the construction sector.   

Figure 9 summarizes the future research agenda of DT for net zero applications in three 

main areas: the practical application of DT in existing buildings, the development of 

predictive monitoring systems to estimate emissions, and the application of the DT 

concept for sustainable operation and maintenance. 

 

Figure 9. Future research agenda of DT for net zero applications. 

5.3. AI for net zero applications 

More studies are required to develop digitally supported adaptive capability that 

considers significant environmental change-related uncertainties. For instance, many 

AI and ML models can enable prediction, optimisation, and control activities, but they 

frequently have substantial uncertainties that make it difficult to characterise them as 



random variables. Additionally, there are unanswered problems surrounding the 

effective application of AI due to the absence of streamlined methods for combining 

the knowledge received from data with the expertise of professional users to make 

decisions. 

The review revealed that most of the studies have focused on AI algorithms in energy 

consumption optimisation and prediction to achieve net zero or low-energy buildings. 

Thus, there is a need for future studies that focus on the capabilities of AI and other 

technologies together in developing solutions that consider energy demand forecasting, 

energy consumption optimisation, and planning over the lifecycle of the facility taking 

environmental uncertainty such as climate into consideration.  

Finally, most of the existing studies focus on net zero energy buildings or low energy 

buildings, and very few about positive energy buildings were found (Shen et al., 2021, 

Mousavi et al., 2023). Thus, there is a need for more studies to explore the use of AI 

techniques in positive energy buildings to reduce emissions impact and energy 

consumption.  

 

Figure 10. Future research agenda of AI for net zero applications. 



Figure 10 summarizes the future research agenda of AI for net zero applications in four 

main areas namely: the consideration of the environmental change related uncertainties, 

the integration of AI and other technologies, the planning over the lifecycle of the 

facility and the positive energy buildings.  

6. Conclusion  

This paper presents a critical overview of the existing use of predictive DT 

technologies, including IoT, AI, and DT for achieving the net zero target in the built 

environment sector. It also explores the existing areas of integration towards integrated 

DT solutions. Novel insights and fresh discoveries have surfaced, marking a departure 

from previous review studies within the same domain. 

Findings reveal that most of the research has focused on IoT (n=59) and standalone DT 

solutions (n=64 papers), with only a few papers (n=16 papers) focusing on using AI for 

net-zero solutions. Moreover, only a few papers on integrating the three technologies 

were found. 

Current AI solutions aimed at achieving net-zero energy consumption focus on 

developing reliable models for predicting electrical loads and data-driven solutions to 

forecast energy consumption and demand, ultimately enabling energy savings. 

Additionally, computer vision techniques have been employed to quantify building 

features for estimating energy consumption based on mobile sensing data. Furthermore, 

ML models have been developed to enhance the accuracy of solar energy forecasting. 

However, findings bring to light a need for further exploration in two key areas: 

synchronous prediction of energy using streaming data with machine learning models 

and the development of more AI models to support positive energy buildings powered 

by renewable sources. 



There is a significant emphasis on IoT solutions to advance net-zero objectives within 

the built environment sector. For instance, the review of 59 papers revealed a focus on 

deploying IoT sensors to estimate and monitor energy consumption during the 

transition from a conventional energy grid to a modernised smart grid (SG) system. 

Additionally, there is limited research on using IoT sensors to quantify equivalent 

carbon emissions and monitor air quality in smart buildings, particularly with TVOC 

sensors. Furthermore, automated building facility control strategies have been explored 

to reduce energy consumption, such as monitoring the trade-off between remaining 

battery energy and thermal comfort levels based on the demand compliance concept for 

HVAC systems. However, the evaluation of the existing research highlights a 

significant gap in the literature regarding the use of IoT for net-zero solutions. This 

includes the utilisation of building case studies involving multiple IoT sensors for 

energy data collection and the development of AI-based data management systems 

capable of handling both structured and unstructured data from IoT sensors to provide 

better insights for decision-makers. 

While digital twin (DT) solutions for achieving net-zero objectives have gained 

attention in recent years, the publication volume has not surpassed that of other 

technology domains such as IoT. Three key areas of application emerge: DT for 

optimizing energy consumption, monitoring and enhancing thermal comfort, and 

creating net-zero-energy buildings (NZEB). However, most solutions are currently 

conceptual, and there is a pressing need for more practical and mature solutions. 

Addressing research gaps and integrating IoT, DT, and AI for achieving net-zero goals 

in the built environment is still in its early stages, requiring more practical research 

efforts and real-life case studies to demonstrate effectiveness. Looking forward, the 

authors recommend conducting comprehensive studies that evaluate the existing 



research on other technologies such as blockchain, big data, and immersive 

technologies in the context of achieving net-zero strategies for the built environment 

sector. 

Several limitations of the research deserve mention, with a prominent concern being 

the utilisation of an interpretivist methodological approach, which may be susceptible 

to individual researcher bias. To mitigate this risk, the study relied on validated data 

gleaned from the existing literature. Nonetheless, further investigation is warranted to 

evaluate users’ perspectives regarding the adoption of these technological innovations. 

Additionally, comprehensive reporting on the barriers and facilitators associated with 

such adoption is necessary. 
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