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Abstract
Objective. Respiratory motion correction is beneficial in positron emission tomography (PET), as it
can reduce artefacts caused by motion and improve quantitative accuracy. Methods of motion
correction are commonly based on a respiratory trace obtained through an external device (like the
real time position management system) or a data driven method, such as those based on
dimensionality reduction techniques (for instance principal component analysis (PCA)). PCA
itself being a linear transformation to the axis of greatest variation. Data driven methods have the
advantage of being non-invasive, and can be performed post-acquisition. However, their main
downside being that they are adversely affected by the tracer kinetics of the dynamic PET
acquisition. Therefore, they are mostly limited to static PET acquisitions. This work seeks to extend
on existing PCA-based data-driven motion correction methods, to allow for their applicability to
dynamic PET imaging. Approach. The methods explored in this work include; a moving window
approach (similar to the Kinetic Respiratory Gating method from Schleyer et al (2014)),
extrapolation of the principal component from later time points to earlier time points, and a
method to score, select, and combine multiple respiratory components. The resulting respiratory
traces were evaluated on 22 data sets from a dynamic [18F]-FDG study on patients with idiopathic
pulmonary fibrosis. This was achieved by calculating their correlation with a surrogate signal
acquired using a real time position management system.Main results. The results indicate that all
methods produce better surrogate signals than when applying conventional PCA to dynamic data
(for instance, a higher correlation with a gold standard respiratory trace). Extrapolating a late time
point principal component produced more promising results than using a moving window.
Scoring, selecting, and combining components held benefits over all other methods. Significance.
This work allows for the extraction of a surrogate signal from dynamic PET data earlier in the
acquisition and with a greater accuracy than previous work. This potentially allows for numerous
other methods (for instance, respiratory motion correction) to be applied to this data (when they
otherwise could not be previously used).
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1. Introduction

Respiratory motion reduces image resolution, by introducing blurring, as well as misalignment artefacts in
positron emission tomography (PET) (Nehmeh and Erdi 2008). Methods of motion correction, such as
gating, are commonly based on a surrogate signal (SS), see Kyme and Fulton (2021), Lamare et al (2022) for
recent reviews. This SS is a respiratory trace which reflects the position of the anatomy of the patient in the
respiratory cycle over time (Kesner and Kuntner 2010, Kesner et al 2013).

Initial research concentrated on methods that determine the SS via an external device. For instance, a
spirometer (Voscopoulos et al 2013), a belt (Yu et al 2016), an imaging device such as a depth sensing
camera (Xia and Siochi 2012, Silverstein and Snyder 2018), or the real time position management
(RPM) (Bettinardi et al 2013). However, methods utilising external devices suffer from several disadvantages,
such as drift and/or requiring a constant line of sight. Furthermore, most external device methods can only
track the surface deformations of the patient, as opposed to the internal ones. Finally, such methods require
the use of additional equipment, a change to clinical practise, and must be acquired alongside any other data,
not retrospectively.

Thus, PET data driven (DD) methods to extract the SS, which do not require additional equipment and
can be applied retrospectively, have become an alternative for static PET data (Kesner et al 2014). DD
methods include, but are not limited to, those which attempt to spatially track aspects of the acquisition data,
be that reconstructed or not, or ones which use methods such as dimensionality reduction (Lamare et al
2022). We briefly discuss these methods here, but also see section 2.

Some DD solutions make use of aspects of the image acquisition itself, by reconstructing short time
frame images and tracking regions of them over time. Such as, an external or inserted radioactive fiducial
marker (Zimmermann et al 2003, Büther et al 2013), a tumour (Bundschuh et al 2007), or a combination of
patterns from different voxels (Kesner et al 2009). Some methods make use of magnetic resonance (MR)
information (tracking the position of the diaphragm using a pencil shaped navigator) (Taylor et al 1997,
Fürst et al 2015). A disadvantage of image space based methods, is computation time and potential poor
quality due to low count statistics. Obviously, methods which require the insertion of objects into a patient
have the unnecessary side effect of causing harm to the patient. Furthermore, to make use of MR
information requires a combined PET/MR.

Alternatively, aspects of the data in sinogram space can be individually tracked directly from the list
mode data, such as the centroid of distribution (COD) or centre of mass (COM) (Klein et al 2001, Bruyant
et al 2002, Ren et al 2017, Feng et al 2018). A potential disadvantage, is that these methods require structures
with high contrast in sinogram space. A final class of methods, uses short time frame sinograms (often at low
spatial resolution) and detects motion patterns in the whole sinogram. Such methods rely on the fact that, in
static PET, the main cause of (non-stochastic) change in the data is motion. The main sinogram-based
methods are the spectral analysis method (SAM) method (Schleyer et al 2009, 2011, 2014), the sinogram
region fluctuation (SRF) method (Kesner and Kuntner 2010), and a method based on principal component
analysis (PCA) (Thielemans et al 2011, Bertolli 2018), briefly described below.

• SAM identifies regions in sinograms which are likely to be experiencing respiratorymotion. This is achieved
by analysing the frequency spectrum of the result of applying a fast Fourier transform (FFT) to each bin in
the sinogram. A bin which is experiencing respiratory motion will have a peak in the frequency spectrum
at the frequency of the respiratory motion. Through this, areas in the sinogram which are experiencing
respiratory motion are determined, and the total number of counts in these regions, over time, is used to
estimate a SS (Schleyer et al 2009, 2011, 2014).

• SRF proposes to recursively combine signals from sinogram bin time activity curves (TACs). This is per-
formed using a score based on the ratio between respiratory and non-respiratory content (with a positive
and negative sign) in order to maximise its standard deviation (Kesner and Kuntner 2010). However, a dis-
advantage of the use of standard deviation, as the objective, would be that there are many ways to increase
standard deviation, which are not acquiring a better respiratory trace. For instance, noise may increase the
standard deviation of a signal.

• PCAworks similarly to singular value decomposition (SVD), in factmost implementations of PCAuse SVD.
The goal of thismethod is to find linear transforms of the data, such that it is projected to a space alongwhich
its axis point in the direction of greatest variance (and then second greatest variance etc). For SS extraction
PCA is applied across a time series of sinograms. The weighting of each principal component (PC) for each
time point would be the signal. Generally multiple PCs are extracted, and the one which contains the most
respiratory information (determined using FFT) is selected (Thielemans et al 2011, Bertolli 2018).
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To-date, evaluations of these methods have been almost exclusively performed on static PET data, mostly
using Fluorine-18 Fludeoxyglucose ([18F]-FDG). They include comparisons with external devices (such as
the RPM), MR navigator based SSs (Manber et al 2015), as well as image quality (Walker et al 2019, Büther
et al 2020). Preliminary investigations indicated that many sinogram-based methods all perform
similarly (Thielemans et al 2013).

However, current DD methods are adversely affected by the radiotracer kinetics of a dynamic acquisition,
where the tracer is injected after the beginning of the scan. As an example, methods that use dimensionality
reduction (such as PCA) are hampered by the fact that at the start of the scan, rapid redistribution of the
radiotracer (rather than the respiratory motion) causes more variance in the data. Previously, work was
performed to extend the SAMmethod to be robust to radiotracer kinetics. This work proposed the use of
short time Fourier transform (STFT) to generate masks for SAM (rather than a static mask for all time
intervals), this was called kinetic respiratory gating (KRG) (Schleyer et al 2014). STFT operates by splitting
the data into windows, and applying a FFT on them independently. This could be approximated, by
windowing the data first, and then performing SAM. However, this method was unable to extract a usable
signal at very early time intervals (after tracer injection).

The aim of the current work is to propose several adaptions of the PCA method, with which it can be
used with dynamic data, and compare their performance with a method based on KRG. The methods
explored in this work include; the use of a moving window, re-use of the PCs from a later time interval to
estimate the SS from earlier time intervals, and the automatic scoring, selection, and combination of
multiple PCs, akin to SRF.

Firstly, in section 2, the data (including train and test splits) will be introduced, before moving on to the
methods which are being proposed or compared. Next, in section 3, a more thorough description of the data,
including how it is prepared, and the evaluation methods used to compare the methods are presented. In this
section we also introduce potential post-processing techniques, which can be performed to SSs, to improve
results generally. Followed by, in section 4, figures depicting a comparison of the methods defined in the
previous section are shown and discussed. The advantages and disadvantages of the methodology of the
work presented, is highlighted in section 5. Finally, in section 6, the arguments put forth are drawn together,
before briefly pointing out the potential future directions for the work.

2. Methods

Here, we briefly describe the data acquisition, before describing methods that are either simple modifications
of the conventional methods (based on KRG) or use a novel method to score, select, and combine signals.
These methods can be used with SAM, but for simplicity, we will refer specifically to PCA.

2.1. Data acquisition and train/test split
Data used was acquired from a research study with patients suffering from idiopathic pulmonary fibrosis
(IPF) (Emond et al 2020). 22 dynamic [18F]-FDG acquisitions, with a field of view (FOV) covering the upper
lung and heart, were acquired on a General Electric (GE) Discovery 710 in list-mode. Data used in this study
was from the first 14min with the acquisition starting roughly 20 s before injection of the radiotracer. An
external SS was acquired in parallel using an RPM (Oh et al 2019).

These 22 acquisitions comprised of two scans each of 11 subjects. One scan was performed before and
one scan was performed some time after an intervention was performed. In this case, the intervention was
the administration of an anticoagulant drug. The first acquisition of each patient is called the baseline scan
and the second acquisition is called the post treatment scan (Emond et al 2020). Of these 22 acquisitions only
10 were suitable to be used as either part of the training or testing process. Five of the acquisitions could not
be used as the list-mode itself could not be loaded by the software. The remaining acquisitions could not be
used for either training or testing due to issues with the acquisition of the RPM. For instance, the acquired
RPM could not be synced with the list-mode. These data without RPM could be used with the subsequent
methods, just not evaluated, as can be seen in figure 1.

To form a train and test split the data was randomly split into three training data points and seven testing
data points. More than one training data point was selected to attempt to prevent overfitting on a single data
point. Data points from both baseline and post treatment acquisitions were added to prevent overfitting on
type of acquisition. Train data points were selected such that the same patient did not appear in both the
train and test dataset, to attempt to mitigate data leakage. A validation dataset was not utilised due to the low
number of data points.

For selection of hyperparameters, the method was applied to the train dataset, and the correlation
coefficients with RPM were computed. The mean of the three resulting correlation coefficients was
maximised while varying a hyperparameter.
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Figure 1. Signals for the first usable 120 s (between 20 s and 140 s) generated using the Score, Select, and Combine NN based
scoring method. This is for the five acquisitions which did not have a usable RPM signal and as such could not be used for
training or testing.

Algorithm 1. Conventional score.

Data: timeSeriesSinograms, PC, respiratoryFrequencyWindow
Result: respiratoryScore

1 for sinogram in timeSeriesSinograms do
2 respiratorySignal append sinogram× PC
3 end
4
5 PSD= absolute of FFT on respiratorySignal
6
7 respiratoryScore=mean value of PSD within respiratoryFrequencyWindow

2.2. Conventional PCA
As described above in section 1, PCA is applied to the entire data set in one go, as it would be if the data were
from a static acquisition. The PC containing the respiratory trace may not be the first one. Generically, a
number of PCs are selected, and the signal that maximises a score with the appropriate respiratory features
(for instance, a frequency matching the common human breathing), is selected as the SS (Bertolli et al 2017).
In this implementation, when selecting from a number of PCs the one which contains respiration, the signal
which maximises the score seen in the algorithm 1 is used. For reference, power spectral density (PSD) being
the result of decomposing the signal into discrete frequency bins, using FFT, where the power is the energy at
that frequency.

The generic equation for calculating the weights (or signal) from the PC and data is

W= PC× S (1)

where in equation (1) PC represents the PC (which in this case is the shape of one sinogram) and S
represents a time series of sinograms.× denotes element-wise multiplication of the arrays (in this case
multiplication of the one PC by each sinogram in the time series S), followed by summing. In fact, a similar
equation is used by SAM, where a ‘signed mask’ is multiplied with the data and summed.

2.3. Moving windowmethod
As shown in the algorithm 2, the data is split into a series of windows, where each subsequent window
overlaps with the previous window by half its length. The motivation for attempting the Moving Window
method, is to increase the relative importance of motion vs kinetics. This is achieved through small windows
being used at early time intervals, where the radiotracer kinetics are at their most severe, and longer windows
can be used at later time intervals to reduce noise. If SAM is used rather than PCA, then the method
approximates KRG (Schleyer et al 2014).
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Algorithm 2.Moving window method.

Data: timeSeriesSinograms, windowSizes
Result: respiratorySignal
1 index = 0
2 whileBool = true
3
4 while whileBool do
5 if index > length of timeSeriesSinograms then
6 index = length of timeSeriesSinograms - windowSize
7 whileBool = false
8
9 set windowSize to value at index of windowSizes
10
11 windowSignal = fill with Not a Numbers (NaNs) to index
12 windowSignal append compute PC weight with PCA for data between index and index + windowSize
13 windowSignal append NaNs to length of timeSeriesSinograms
14
15 if windowSignal correlation with last signal in signals< 0.0 then
16 windowSignal = windowSignal ×− 1.0
17
18 signals append windowSignal
19

20 index = index +
windowSize

2
21
22 end
23
24 respiratorySignal =mean of signals ignoring NaNs

The size of each window was optimised on the training data set. The PCA method was first run with a
number of fixed window sizes. The window size which gave the best signal (defined as the highest average
correlation coefficient with the RPM within each window) at each time interval was selected and recorded.
Example results for the moving window size can be seen in figures 2 and 3 for the PCA and SAMmethods
respectively.

For this method, PCA (or SAM) is applied independently on each window, and the results are averaged
together (after sign correction). This is required because PCs could produce equally valid but opposite sign
results. As the sign of the signal from each window is arbitrary, the overlapping allows for a common sign to
be found, by comparing the correlation coefficient of the data in the overlap of neighbouring windows, and
flipping windows where the correlation coefficients have opposite sign. Other methods for sign correction are
possible, for example see Bertolli et al (2017), Feng et al (2018), as well as the sign choice in the algorithm 6.

2.4. Late time interval method
Here, a PC from a late time interval is taken, and used with data from all time intervals. The motivation
behind attempting this method, was the observation that PCs from late time interval data did not vary
significantly when different windows were selected. However, this was not true for early time interval data. It
could be hypothesised that; because the respiratory motion should be semi-consistent throughout the
acquisition, then if a PC is capturing the respiratory motion at late time intervals, it should do the same at
early time intervals as well. With the current implementation, negative weights for this PC have not been
considered. It may be prudent to attempt to use negative weights, due to the fact that although the
respiratory motion is probably similar, the tracer distribution is very different at early time intervals.

The Late Time Interval PC method, as seen in the algorithm 3, splits the data into two channels, one
which only contains later time interval data, where the radiotracer kinetics have diminished, and one which
contains all the data. PCA is applied to the later time interval data only. The PC from the later time interval
data can then be taken and multiplied by the channel containing all of the data, to give the weights
contributing to that PC for all time points. The cutoff between early and later time interval data was
determined on training data, by varying the cutoff point, and maximising the correlation coefficient between
the output and RPM signal, for the first 120 s interval (between 20 s and 140 s). The cutoff determined here
was 62% or approximately 520 s from the start of the acquisition. It was noted however that later cutoffs gave
similar results.

5



Phys. Med. Biol. 69 (2024) 175008 A CWhitehead et al

Figure 2. A plot showing an example of the influence of the moving windows size for the PCA method. For different fixed window
sizes, the correlation of the extracted signal to the RPM is shown for the windows sliding over the whole acquisition (shown for
the first acquisition of patient one). Note that 0.5 s time frames were used.

Figure 3. A plot showing an example of the influence of the moving windows size for the SAMmethod. For different fixed
window sizes, the correlation of the extracted signal to the RPM is shown for the windows sliding over the whole acquisition
(shown for the first acquisition of patient one). Note that 0.5 s time frames were used.

Algorithm 3. Late time interval method.

Data: timeSeriesSinograms, lateTimeIntervalCutoff
Result: respiratorySignal

1 lateTimeIntervalSeriesSinograms= split timeSeriesSinograms from lateTimeIntervalCutoff to end
2 lateTimeIntervalPC = PC from PCA for lateTimeIntervalSeriesSinograms
3
4 for sinogram in timeSeriesSinograms do
5 respiratorySignal append sinogram× lateTimeIntervalPC
6 end

2.5. Score, select, and combine method
In this section, we describe a novel method based on a combination of previous work. The use of this
method was inspired by, the observation that signals in a frequency window of respiratory motion could be
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Algorithm 4. Frequency score.

Data: timeSeriesSinograms, PC, kineticFrequencyWindow, respiratoryFrequencyWindow,
noiseFrequencyWindow

Result: respiratoryScore
1 for sinogram in timeSeriesSinograms do
2 respiratorySignal append sinogram× PC
3 end
4
5 PSD= absolute of FFT on respiratorySignal
6
7 kineticContribution=mean value of PSD within kineticFrequencyWindow
8 respiratoryContribution=mean value of PSD within respiratoryFrequencyWindow
9 noiseContribution=mean value of PSD within noiseFrequencyWindow
10

11 respiratoryKineticRatio=
respiratoryContribution
kineticContribution

12

13 respiratoryNoiseRatio=
respiratoryContribution

noiseContribution
14
15 respiratoryScore= respiratoryKineticRatio× respiratoryNoiseRatio

seen outside of the first few PCs. Additionally, a significant number of these had far less of a frequency
contribution in a frequency window of the radiotracer kinetics. However, the information contained in these
PCs is ignored if only one PC is used, as in Thielemans et al (2011), and Bertolli (2018). This could lead to a
reduced signal to noise ratio (SNR). The method therefore uses a ‘respiratory score’, and orders and
combines PCs to maximise this score.

2.5.1. Score and select
We developed several ways to calculate a score used for selecting PCs.

2.5.1.1. Frequency based
As seen in the algorithm 4, PSD analysis (Thielemans et al 2011) used the PSD of the weights for each PC, to
select for the PC with the highest contribution in the respiratory window. We extended this method to
account for kinetic information. In our current implementation, these PSDs contain the frequency
contribution of each signal, between the frequencies of 0.0Hz and 1.0Hz (due to sampling the input data at
2.0Hz and the Nyquist theorem (Whittaker 1915, Nyquist 1928, Shannon 1949)). Frequency windows
representing the content of information related to radiotracer kinetics, respiratory motion, and noise are
defined.

In an initial implementation they were defined as 0.0Hz to 0.1Hz, 0.1Hz to 0.4Hz, and above 0.4Hz
respectively (Bertolli et al 2017). However, it was found that the choice of respiratory window boundaries
was limiting, it was both too wide (so as to encourage the mislabelling of noise), and not low enough (so as
to fail on slow breathers). Thus, in the current implementation, the respiratory window is determined by first
applying the Late Time Interval PC method, to acquire an initial estimate of the signal, and using this to
estimate the window boundaries. A PSD of the initial estimate is acquired. The frequency which is at the
mean value of the PSD is determined to be the centre of the window, and the boundaries are selected as being
half the standard deviation of the PSD from this point. Half a standard deviation is used such that there is a
full standard deviation between the upper and lower bounds of the window.

The contribution within each window is determined for each PC by finding the mean magnitude within
the windows. Ratios are then calculated between the respiratory window and the kinetic window, and the
respiratory window and the noise window, and a score determined by the product of these two values.

2.5.1.2. Neural network based
A NN based scoring metric that was previously developed (Walker et al 2020), was tested here to remove
complexity and increase robustness when compared to the frequency scoring method. The NN of Walker
et al (2020) is a pretrained model, designed to accept a signal as input and return a score between 0.0 and 1.0.
Here a higher score indicates a more respiratory like signal. To achieve this, to avoid issues with signals of
different lengths, features of the signal were extracted and used as input to the NN (rather than directly

7



Phys. Med. Biol. 69 (2024) 175008 A CWhitehead et al

Figure 4. An example of the output for the neural network (NN) can be seen here testing signals extracted from the first
acquisition of patient one using PCA.

inputting the signal itself). For example, one potential feature could be the PSD of the signal. The network
was trained on scores predetermined by clinicians. Specifically, two clinicians scored the signals used to train
this model as either being a score of 0.0, 0.5, or 1.0, the mean of the scores from the two clinicians was used as
target values. Examples of the output of the NN can be seen in figure 4.

Once a score for each signal has been determined, the list of PCs is sorted following this scoring as in the
algorithm 5.

2.5.2. Combine
After the PCs are sorted from a high to low score, they are then iterated over, both being summed and
subtracted (with a weighting, the score), and a new score is found for both resulting signals. If one of the
signals increases this score, then it becomes the new best PC, and goes forward to the next iteration. PCs are
both summed and subtracted to handle the arbitrary sign problem mentioned earlier in section 2.3 (Bertolli
et al 2017).

A similar method of combining signals can be seen in Kesner and Kuntner (2010). However, the method
presented here, attempts to improve on this by using a scoring metric whose behaviour better reflects the
qualities of a ‘good’ signal. While in Kesner and Kuntner (2010), the standard deviation is maximised. In

8
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Algorithm 5. Score and select PCs.

Data: timeSeriesSinograms, PCs, scoreThreshold
Result: PCs
1 for PC in PCs do
2 respiratoryScore= get respiratory score from PC and timeSeriesSinograms
3
4 if respiratoryScore> scoreThreshold then
5 respiratoryScoreList append respiratoryScore
6 else
7 remove PC from PCs
8 end
9 end
10
11 sort PCs by respiratoryScoreList

Algorithm 6. Combining PCs.

Data: timeSeriesSinograms, PCs
Result: respiratoryPC
1 respiratoryPC = first PC in PCs
2 remove respiratoryPC from PCs
3 respiratoryScore= get score from respiratoryPC and timeSeriesSinograms
4
5 for PC in PCs do
6 currentRespiratoryScore= get score from PC and timeSeriesSinograms
7
8 scaledRespiratoryPC = respiratoryPC × respiratoryScore
9 scaledCurrentPC = PC× currentRespiratoryScore
10
11 sumPC = scaledRespiratoryPC + scaledCurrentPC
12 subtractPC = scaledRespiratoryPC - scaledCurrentPC
13
14 sumRespiratoryScore= get score from sumPC and timeSeriesSinograms
15 subtractRespiratoryScore= get score from subtractPC and timeSeriesSinograms
16
17 if sumRespiratoryScore> respiratoryScore then
18 respiratoryPC = sumPC
19 respiratoryScore= sumRespiratoryScore
20 else
21 if subtractRespiratoryScore> respiratoryScore then
22 respiratoryPC = subtractPC
23 respiratoryScore= subtractRespiratoryScore
24 end
25 end

addition, the proposed methods compute the metric based on signals derived from PCs, as opposed to a
single voxel or sinogram bin value, which should lead to noise reduction.

Please note that the algorithm 6 is described in terms of PCs. In fact, a simpler version just sums and
subtracts the corresponding signals, this will give the same final signal.

In our current implementation, this method is applied on all time intervals at once. It is possible to
integrate this method with the Late Time Interval method in section 2.4 or the Moving Window method in
section 2.3. However, this has not been demonstrated here.

3. Evaluation

Here, we discuss how the data was prepared for evaluation. We also present a suite of methods which can be
applied generally to SSs (both from dynamic as well as potentially static acquisitions), in order to combat
issues such as noise and outliers. Finally, in this section, we highlight how the methods in section 2 will be
evaluated in section 4.

9
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Table 1. This table shows the correlation coefficient between the result of the Score, Select, and Combine using NN scoring and the RPM
for the train dataset where a number of pre- and post-processing methods have been applied to the data. Each new line represents the
addition of this method, therefore the last element includes all previous pre- and post-processing. This is for the Freeman-Tukey
transform, the Yeo–Johnson transform, the incorporation of a mask to remove low count areas of the sinogram, smoothing and
downsampling the sinogram and smoothing the signal, and parallel compression.

Correlation coefficient with RPM 20 s–840 s 20 s–140 s

Freeman–Tukey 0.783 0.703
Yeo–Johnson 0.790 0.747
Mask 0.826 0.824
Smoothing and downsampling 0.826 0.825
Parallel compression 0.830 0.839

3.1. Data preparation
Time of flight (TOF) data were unlisted into low spatial resolution sinograms, each with a time frame
duration of 500 ms, using the GE PetToolbox, following Bertolli et al (2017), resulting in sinograms with
dimensions 95× 16× 47× 11 (radial positions× angles× transaxial plane×TOF). To extract respiratory
variation, the sampling rate of the PET sinograms was chosen as 2 Hz, so as to attempt to mitigate the effect
of cardiac motion (Bertolli 2018).

Data was pre-processed element-wise by first applying a Freeman-Tukey transformation (Freeman and
Tukey 1950), followed by a Yeo–Johnson power transformation (Yeo and Johnson 2000), to transform the
Poisson distributed data to be more Gaussian-like.

In the current implementation, these transformations are applied element-wise on the (Poisson
distributed) TOF sinogram Sp

Sg = YJλ
(
FT

(
Sp
))

. (2)

The Freeman–Tukey transformation is defined as

FT(X) =
√
X+ 1+

√
X. (3)

The Yeo–Johnson power transformation is defined as

YJλ(X) =


((X+ 1)λ − 1)/λ if λ ̸= 0, X⩾ 0

log(X+ 1) if λ= 0, X⩾ 0

−
[
(−X+ 1)(2−λ) − 1)

]
/(2−λ) if λ ̸= 2, X< 0

− log(−X+ 1) if λ= 2, X< 0.

(4)

The λ parameter is determined by minimising the Kullback Leibler Deviation (KLD) between normal
distributions and the transformed distribution (Yeo and Johnson 2000). In this paper a single λ was
determined from all of the data, although it would be feasible to find different λ values for every element in
the sinogram.

The impact of including the Yeo-Johnson power transformation can be seen in table 1.
It was previously found through experimentation, that Gaussian smoothing of the resulting sinograms

can improve results, especially in the case of the SAMmethods (Thielemans et al 2013). In the current
implementation, further downsampling was performed post-smoothing to reduce memory usage, and
increase computational speed. Linear interpolation was used as it was shown in a preliminary investigation
to give satisfactory results at little computational cost. Although block reduction (by summing patches of
data of size four or eight etc) is more computationally efficient, and may potentially have benefits with
regards to noise over linear interpolation. However, block reduction is limited in what downsampling factors
can be used, while interpolation is not. We use linear interpolation here to reduce the matrix size to a size
necessary to represent the highest frequency information present in the data post-smoothing. The effect this
inclusion makes on the end result can be seen in table 1.

Finally, it has been found that the introduction of a mask to further aid in the reduction of noise is
beneficial (Thielemans et al 2011). The mask itself is defined as being true for any value, in the sinogram,
above a predetermined threshold. Values not in the mask are removed prior to further execution, this is
because these values can be assumed to mostly be noise. Note that a mask can also be used to eliminate parts
of the data potentially affected by non-respiratory movement (Bertolli 2018), but this has not been
implemented in the current work. Again, the impact of this inclusion can be seen in table 1.

Values for the Gaussian smoothing, and the threshold of the mask, were determined using a grid search
on a randomly selected subset of the data (specifically three patients). This data was then not used as part of
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any final evaluation, as was stated in section 2.1. The Gaussian smoothing sigma for the PCA based methods
were 1.0, 0.5, and 2.0, for SAM based methods they were 1.0, 3.0, and 1.0 (this is for the sinogram radial
positions, angles, and transaxial planes respectively). The mask threshold is selected programmatically, such
that it removes the bottom 5% of values. The same mask is used for every time point. From an examination
of the masks used for the test dataset, because a threshold value as low as 5% is used, it appears that the mask
is only removing parts of the background.

3.2. Post-processing
Regardless of the method used, there are still some effects of the radiotracer kinetics to be expected at early
time intervals, and noise throughout. Thus, a method is proposed here to aid with the remaining radiotracer
kinetics, and smoothing to help with noise in the extracted SS. The same post-processing is used regardless of
the method to extract the SS.

3.2.1. Parallel compression
Firstly there is, what shall be referred to as ‘parallel compression’. This is a method borrowed from audio
engineering (appearing notably in Dolby A noise reduction). The signal is split into two channels, one has its
dynamic range reduced (through a process such as compression), while the other passes unchanged, before
they are averaged back together (Izhaki 2012). This has the effect of reducing large differences in the dynamic
range of the signal (for instance caused by tracer kinetics or some kind of drift), without losing a lot of breath
to breath variability, compared to directly using the phase of the signal (if applied to respiratory SSs) (Lamare
et al 2022). For a more detailed explanation of the implementation please see the appendix.

3.2.2. Outlier removal
Even though most of the large changes in intensity are remedied by parallel compression, some momentary
spikes are still apparent. Thus, outliers are removed where they are outside a threshold of the quartile of the
signal, and new values are interpolated.

3.2.3. Smoothing
Finally, smoothing is applied through the use of a bandpass filter (specifically a sinc filter), followed by a
Savitzky-Golay filter (Savitzky and Golay 1964). A bandpass filter is used to remove frequencies in the signal
outside of the respiratory window, and the Savitzky–Golay filter is used to promote local smoothness.

The bandpass filter is defined as

hBPF (t) = 2BHsinc(2BHt)− 2BLsinc(2BLt) (5)

where in equation (5) hBPF is the bandpass function, t is the time distributed variable, BH is the upper bound
and BL is the lower bound of the bandpass filter. The bandpass filter is implemented using a truncated sinc
kernel. A polynomial order of three and a window length of five was used with the Savitzky-Golay filter,
determined through a grid search on the training dataset.

The impact of the inclusion of the above methods on the correlation of the Score, Select, and Combine
method with NN based scoring with the RPM can be seen in table 1.

3.3. Evaluationmethods
For evaluation of the results, the correlation coefficient of each SS between each method and the RPM, for all
acquisitions in the test dataset, has been calculated. The correlation coefficient has been calculated for both
the first 120 s (ignoring the first 20 s), and also the entire acquisition (between 20 s and 840 s). A statistical
analysis using a mixed effects model has also been included.

All methods were compared to conventional PCA. We also included results for the Moving Window SAM
method as this approximates KRG. While the conventional and Late Time Interval methods can also be
implemented using SAM, corresponding results are not shown here.

As stated earlier in section 2.1, parameters for the methods have been selected using a grid search on a
randomly selected subset of the data (specifically three patients). This data was then not used as part of any
final evaluation. The parameters were optimised by maximising the correlation coefficient between the SS
and the RPM for the first 120 s of usable data (between 20 s and 140 s), due to there being initially no counts
in the FOV.

4. Results

A plot showing for each method its output, compared to the RPM, for the first 120 s (between 20 s and 140 s)
(taken for the first acquisition of patient one), can be seen in figure 5. From a visual analysis, it can be
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Figure 5. Output of each method compared to the RPM for the first usable 120 s (between 20 s and 140 s) (taken for the first
acquisition of patient one). This is for conventional PCA, Moving Window PCA, Late Time Interval PC, Score, Select, and
Combine using frequency and NN scoring, and the Moving Window SAMmethod.

Figure 6. Output of each method compared to the RPM for the first usable 120 s (between 20 s and 140 s) (taken for the first
acquisition of patient eight). This is for conventional PCA, Moving Window PCA, Late Time Interval PC, Score, Select, and
Combine using frequency and NN scoring, and the Moving Window SAMmethod.

observed that the conventional PCA method has failed, post normalisation, it appears almost as if there is no
variation in the signal at early time intervals. Both Moving Window methods show, towards the end of the
plot, that they can extract a signal. However, it takes until between 60 s and 80 s for both methods to begin to
pick up the signal. For the SAM based method, it appears as if the sign determination method has failed
before 80 s, regardless though the method still cannot extract a signal before 60 s. The Late Time Interval,
Score, Select, and Combine using frequency and NN scoring methods, all appear to be able to extract a
usable signal right down to 20 s (around when counts begin to appear in the FOV). The magnitude of the
signal post 80 s more closely matches the RPM (or in comparison to before 80 s) for both Score, Select, and
Combine methods than for the Late Time Interval method.

A plot showing for each method its output, compared to the RPM, for the first 120 s (between 20 s and
140 s) (taken for the first acquisition of patient eight) can be seen in figure 6. Similar results as for in figure 5
are repeated in figure 6 (although all methods match the RPM worse than in figure 5). This acquisition was
selected to be shown due to it being a difficult trace to extract. Regardless, the Late Time Interval PC and
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Figure 7. A box plot showing for each method its correlation coefficient to the RPM for the first usable 120 s (between 20 s and
140 s) (taken for the seven test acquisitions). This is for conventional PCA, Moving Window PCA, Late Time Interval PC, Score,
Select, and Combine using frequency and NN scoring, and the Moving Window SAMmethod.

Figure 8. A box plot showing for each method its correlation coefficient to the RPM for the entire acquisition (taken for the seven
test acquisitions). This is for conventional PCA, Moving Window PCA, Late Time Interval PC, Score, Select, and Combine using
frequency and NN scoring, and the Moving Window SAMmethod.

Score, Select, and Combine methods appear to have extracted a signal early into the acquisition (from about
35 s on this patient and acquisition).

A box plot showing for each method its correlation coefficient to the RPM for both the first 120 s
(between 20 s and 140 s), and also for the entire acquisition (taken for seven acquisitions), can be seen in
figures 7 and 8. The correlation coefficient for the conventional PCA method is low and the method is not
usable. The correlation coefficients for both the Moving Window methods are roughly around 0.5, indicating
that the Moving Window method is beneficial regardless of the method used to extract the signal for each
window. However, again here, the correlation coefficient is lower than is acceptable. The results from the Late
Time Interval, Score, Select, and Combine using frequency and NN scoring methods, all show correlation
coefficients around 0.6 or higher, for both the early time interval as well as for all data. The Score, Select, and
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Figure 9. Correlation coefficients to the RPM for the first 120 s in 20 s intervals (between 20 s and 140 s) (taken as a mean for all
data sets). This is for conventional PCA, Moving Window PCA, Late Time Interval PC, Score, Select, and Combine using
frequency and NN scoring, and the Moving Window SAMmethod. The stair plots are staggered for the different methods for
visual clarity.

Combine methods show marginally higher correlation coefficient than the Late Time Interval method, and
the NN shows slightly higher correlation coefficient than the frequency based scoring.

A plot showing for each method the evolution of the correlation coefficient with the RPM over time, for
the first 120 s, by computing it in 20 s intervals, can be seen in figure 9. It can be observed, that on average
across all data sets all methods struggle to produce usable results at the very beginning of the acquisition
(around when counts begin to appear in the FOV). However, it is also apparent that on average both Score,
Select, and Combine methods robustly begin to produce results, which closely match the RPM, as evidenced
by a reasonable correlation past the first 40 s, on most acquisitions. The Moving Window method appears to
perform well in the first interval.

A plot showing the component (or their combination) used to generate the output signal, can be seen in
figure 10. One advantage of the sinogram-based methods is that the PC (or signed mask for SAM) can be
visualised to see how it corresponds to anatomy and tracer uptake. In figure 10 it can be seen that the
conventional PCA method returns a PC which closely resembles the input data, leading to the conclusion
that the variation in the selected PC is dominated by the kinetics. The other methods produce a PC which is
more related to edges of internal structures, where respiratory movement occurs. A visual inspection
indicates that the least confounding variation, and noise, is included in the Score, Select, and Combine using
the NN scoring method. Curiously, it appears that the Late Time Interval, and the Score, Select, and Combine
using the NN scoring method return very similar distributions. However, the Score, Select, and Combine
using the frequency scoring method also returns a high value region in tissue at the top of the image.

We utilised a mixed-effects model to analyse the differences between various methods and RPM
measurements across all subjects. This model incorporated ‘method’ as a fixed effect and treated subjects as a
random effect, to account for inter-subject variability. We found that the comparisons between each method
and RPM were not statistically significant, with all p-values> 0.05, see table 2. While this may suggest that,
within the constraints of our analysis and available data, there was no evidence to support significant
differences between any methods in comparison to RPMmeasurements, given the small number of subjects,
it is important to consider that this analysis may be considerably underpowered.

It is noteworthy to mention that we observed that the Late Time Interval and Score, Select, and Combine
using frequency and NN scoring methods exhibited the highest p-values. This may suggest a lesser degree of
difference from RPM. However, such interpretations should be approached with caution and not be taken as
conclusive evidence of similarity.

Finally, results of applying the Score, Select, and Combine using NN scoring method to data where the
RPM could not by synced with the list mode data can be seen in 1.
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Figure 10. A plot showing a single ‘view’ of the original PET data (top) as well as the PCs used to generate the output signal for
the conventional PCA, Late Time Interval PCA and the two Score, Select, and Combine methods (taken for the first acquisition of
patient one).

Table 2. This table shows the p-values acquired as part of a statistical analysis of the test dataset using a mixed-effects model. Before
applying the mixed-effects model the signals were first transformed to frequency space using FFT. One values between 0.05Hz and
0.45Hz were used. This is for conventional PCA, Moving Window PCA, Late Time Interval, Score, Select, and Combine using frequency
and NN scoring, and the Moving Window SAMmethod.

Mixed-effects model p-value

Static PCA 0.183
Moving Window PCA 0.483
Late Time Interval PCA 0.548
Score, Select, and Combine PCA PSD 0.649
Score, Select, and Combine PCA NN 0.908
Moving Window SAM 0.373

5. Discussion

This paper introduces several methods for DD extraction of a respiratory signal from dynamic PET data. To
the best of our knowledge, this appears to have only been attempted in Schleyer et al (2014). Data used here
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Figure 11. The result of applying FFT to the RPM signals for the first usable 120 s (between 0.05Hz and 0.45Hz) (for the seven
test acquisitions). Notice that four of the seven have peaks very close to or outside the lower boundary of the resiratory window.
Also notice that two of the seven have very wide frequency responses, which would be difficult for the automatic selection of a
respiratory frequency window.

are from a [18F]-FDG study on patients with IPF, while in the latter paper, Nitrogen-13 Ammonia
([13N]-NH3) data was used to evaluate the proposed KRG method.

The work presented suffers from several limitations. Firstly, the data used all originates from the same
study, using the same procedure, the same radiotracer, and acquired on the same scanner. In order to better
validate the generalisability of the method it would be positive to test on data acquired on different scanners
and using different radiotracers. Additionally, from the data acquired, only a subset of this data is usable due
to issues during acquisition. The number of participants is limited, it would be beneficial to test the methods
on a larger sample of patients. Furthermore, it would be beneficial for the data to include both a larger
number of non-complex and complex breathers to better test the limitations of the methods.

An additional concern is the point at which the methods may fail, for patients who exhibit abnormal
breathing patterns. For instance, extremely slow breathers will breathe at a rate less than 0.1 Hz, which in the
case of the Score, Select, and Combine method using the frequency scoring method and a fixed frequency
respiratory window would be considered to be radiotracer kinetics. Furthermore, when using a non-fixed
respiratory window this method struggles with patients who breathe less regularly, as the window is
expanded to include parts of the kinetics and noise (this is shown in figure 11). The discrepancy between the
results for the SAMMoving Window method, presented here, and the KRG ones, shown in Schleyer et al
(2014), could also be attributed to this complexity. Many of the patients breathed at varying rates, stopped
breathing during acquisition, or breathed unusually fast or slow (this is shown in figure 12). This was
probably due to the data being acquired for an IPF study.

The presented method includes several pre- and post-processing steps. Although these have been shown
to be beneficial on the training dataset, table 1, the impact of some steps is relatively small. It remains to be
determined on a larger dataset if some of these steps could be removed.

A limitation of the concept of using SSs, at all, in the pursuit of the motion correction of respiratory
motion, is the transform from a one dimensional (1D) SS to the three dimensional (3D) motion. There are
methods for this transformation, such as one using a motion model (MM) parameterised by the
SS (McClelland et al 2013, 2017). However, they are not trivial, and in the case where a 1D SS is used, limit
breath to breath variability and hysteresis to being periodic (Whitehead et al 2021). There are beginning to be
methods for motion correction which are conditioned on features of the acquisition rather than a SS (Huang
et al 2023, 2024).
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Figure 12. RPM signals for the first usable 120 s (between 20 s and 140 s) (for the seven test acquisitions). Notice that only the first
acquisition of patient one and patient six shows a steady trace with an average frequency, every other trace shows variable
breathing or artefacts.

6. Conclusion

We have presented and evaluated several methods for extraction of a respiratory signal from dynamic PET
data. Results from a visual comparison of early time interval output signals compared to the RPM, quality of
PC, and correlation coefficient of the output signals to the RPM, indicates that the Late Time Interval and
both Score, Select, and Combine methods are more robust and afford higher quality signals than Moving
Window methods. The results also indicate that both Score, Select, and Combine methods can give a higher
correlation coefficient earlier than the Late Time Interval method. Scoring using the NN shows slightly
higher correlation coefficients than the frequency based scoring.

In the future, research will focus on further development of the method, including optimisation of the
NN scoring method. In the next stage, these methods will be applied to the task of implementing advanced
respiratory motion correction on dynamic PET data.

Data availability statement
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authors.
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Appendix

A.1. Parallel compression
This appendix contains a detailed description of what is presented briefly in section 3.2.1. This method
attempts to limit the dynamic range of a signal proportionally, in time, to how much that signal is expected
to be affected by artefacts. The signal is duplicated into two channels, one of these channels is then split
temporally into a series of small moving windows. These windows are 20 s in size and overlap by their length
minus one (the stride size is one). The values in each window are then standardised independently, the
windows are averaged back together, before being combined with the unadulterated channel following the
weighting seen in figure 13. An example of the algorithm can be seen in the algorithm 7.

The channels are combined following the gradient of the count rate. An example of the signals involved
can be seen in figure 13, and an example of the algorithm can be seen in the algorithm 8.

• Firstly, the count rate over time is found by summing all elements of each sinogram. A moving average
smoothing is then applied to this processed count rate signal with a size of 5 s.

• Secondly, the gradient of the processed count rate is taken. The absolute of this signal is used, this is because
we are interested in the change in gradient (but not the direction). Next the processed gradient of the pro-
cessed count rate signal is iterated over from its last value to its first. If the value decreases, it is replaced by
interpolation, using the previous value and the next value that is larger than the previous value. Finally a
(centred) moving average smoothing is applied to the signal with a size of 20 s, and the signal is normalised
between zero and one by subtracting by the minimum and dividing by the maximum value of the signal.

• Thirdly, the low and high dynamic range respiratory signals are summed, using the magnitude of the pro-
cessed gradient of the processed count rate signal as a weighting. At time intervals where the magnitude of
the processed count rate signal is greater, more of the compressed/standardised signal is summed, compared
to the non-compressed/non-standardised signal. The total weighting is always equal to one, to maintain the
scale. To achieve this, the low dynamic range respiratory signal is multiplied directly by the processed gradi-
ent of the processed count rate signal, and the high dynamic range respiratory signal is multiplied by one
minus the processed count rate signal (before both respiratory signals are summed together).
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Figure 13. This figure shows an example of the processed count rate and processed gradient of the processed count rate, between
0 s and 140 s, which are used as part of the parallel compression post-processing step. These have been taken for the first
acquisition of patient one. Here the processed count rate is normalised between zero and one by subtracting by the minimum and
dividing by the maximum value of the signal.

Algorithm 7. Parallel compression.

Data: timeSeriesSinograms, respiratorySignal, windowSize
Result: respiratorySignal
1 for index in length of timeSeriesSinograms - windowSize do
2
3 currentRespiratorySignal = respiratorySignal for data between index and index + windowSize
4
5 currentRespiratorySignal = currentRespiratorySignal −mean of currentRespiratorySignal

6 currentRespiratorySignal =
currentRespiratorySignal

standard deviation of currentRespiratorySignal
7
8 windowSignal = fill with NaNs to index
9 windowSignal append currentRespiratorySignal
10 windowSignal append NaNs to length of timeSeriesSinograms
11
12 respiratorySignals append windowSignal
13
14 end
15
16 lowDynamicRangeSignal =mean of signals ignoring NaNs
17
18 weighting = get weighting from timeSeriesSinograms
19
20 lowDynamicRangeSignal = lowDynamicRangeSignal × weighting
21 respiratorySignal = respiratorySignal × (1 – weighting)
22
23 respiratorySignal = respiratorySignal + lowDynamicRangeSignal
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Algorithm 8. Extract parallel compression weighting.

Data: timeSeriesSinograms
Result: processedGradientOfProcessedCountRate
1 for sinogram in timeSeriesSinograms do
2 countRate append sum of sinogram
3 end
4
5 processedCountRate=moving average of countRate
6
7 gradientOfProcessedCountRate= gradient of processedCountRate
8
9 processedGradientOfProcessedCountRate= absolute of processedGradientOfProcessedCountRate
10
11 processedGradientOfProcessedCountRate= reverse of processedGradientOfProcessedCountRate
12 currentMaximumValue= 0.0
13
14 for value in processedGradientOfProcessedCountRate do
15 if value> currentMaximumValue then
16 currentMaximumValue= value
17 else
18 value= NaN
19 end
20 end
21
22 processedGradientOfProcessedCountRate= reverse of processedGradientOfProcessedCountRate
23 linear interpolate NaNs in processedGradientOfProcessedCountRate
24
25 processedGradientOfProcessedCountRate= centred moving average of processedGradientOfProcessedCountRate
26
27 processedGradientOfProcessedCountRate= processedGradientOfProcessedCountRate−minimum of

processedGradientOfProcessedCountRate

28 processedGradientOfProcessedCountRate=
processedGradientOfProcessedCountRate

maximum of processedGradientOfProcessedCountRate
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