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Abstract
A widely adopted approach in research on unconscious perception and cognition involves contrasting behavioral or neural 
responses to stimuli that have been presented to participants (e.g., old items in a memory test) against those that have not 
(e.g., new items), and which participants do not discriminate in their conscious reports. We demonstrate that such contrasts 
do not license inferences about unconscious processing, for two reasons. One is Kelley’s Paradox, a statistical phenomenon 
caused by regression to the mean. In the inevitable presence of measurement error, true awareness of the contrasted stimuli 
is not equal. The second is a consequence, within the framework of Signal Detection Theory, of unequal skewness in the 
strengths of target and nontarget items. The fallacious reasoning that underlies the employment of this contrast methodology 
is illustrated through both computational simulations and formal analysis, and its prevalence is documented in a narrative 
literature review. Additionally, a recognition memory experiment is reported which tests and confirms a prediction of our 
analysis of the contrast methodology and corroborates the susceptibility of this method to artifacts attributable to Kelley’s 
Paradox and strength skewness. This work challenges the validity of conclusions drawn from this popular analytic approach.

Keywords  Implicit memory · Models of recognition memory · Recognition memory · Word recognition

Introduction

In experimental psychology, post hoc data selection is 
a longstanding practice, with examples spanning back to 
seminal works (e.g., Lazarus & McCleary, 1951; Peirce & 
Jastrow, 1884; Sidis, 1898; Williams, 1938). At its core, this 
method is predicated on the selection of either specific par-
ticipants or trials for subsequent analysis on a measure, con-
tingent upon their responses on another measure (for an in-
depth review, see Shanks, 2017). This method is especially 
popular in studies of unconscious cognitive mechanisms, 
including unconscious memory and perception.

Broadly, post hoc data selection leads to two divergent 
approaches. The first approach, which may be termed post 
hoc subgroup selection, has been widely applied in sublimi-
nal perception and unconscious learning studies (e.g., Chien 

et al., 2022; Sklar et al., 2012; Stein et al., 2020; Zhang & 
Carlisle, 2023). This approach hinges on the selection of par-
ticipants or trials where awareness of stimuli is absent (e.g., 
Sheikh et al., 2019), while those showing evidence of aware-
ness are removed from the analysis. Such a selection aims to 
ensure that any observed behavioral or neural effects can be 
attributed to unconscious processes. Despite its prevalence, 
the inherent shortcomings of this method have been much 
discussed over the past several years (Rothkirch et al., 2022; 
Shanks, 2017; Shanks et al., 2021; Yaron et al., 2023). Nota-
bly, Shanks (2017) illuminated the inherent pitfalls of post 
hoc selection when investigating unconscious processing. By 
only including participants with low awareness scores, there 
is a risk of bias in assessing their true awareness levels. The 
apparent evidence of unconscious processing in a post hoc 
selected group could stem from the inclusion of participants 
who, despite being conscious of the stimuli, were incorrectly 
classified as unaware.

In the current article, our main focus is on a second, 
related but conceptually distinct, analytic approach. Here, 
attention is turned to contrasts between pairs of (sets of) 
stimuli or trials. For example, within a two-stage recogni-
tion memory procedure, commonly adopted in memory 
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research (e.g., Kark et al., 2020; Ramey et al., 2019; Rugg 
et al., 1998), participants are first presented with a set of 
stimuli one at a time and then later encounter these same 
stimuli mixed with new ones. In the second, test, stage they 
judge whether each item was presented in the first stage. 
Analyses focus on contrasting responses to stimuli that par-
ticipants fail to recognize from the initial phase (“misses”) 
with truly new stimuli that are correctly identified (“cor-
rect rejections” or CRs). This contrast is then interpreted as 
ensuring matching of awareness, and hence any behavioral 
or neural difference between the misses and CRs must be 
evidence of unconscious processing. In what may be the first 
use of the method, Rugg et al. (1998), in an article published 
in Nature, asked whether the neural correlates of implicit 
and explicit memory could be dissociated. Adopting the rec-
ognition design described above, they extracted misses and 
CRs and then measured a neural signal (event-related poten-
tials, ERPs) associated with these stimuli. Since participants 
made the same recognition response to these, it was inferred 
that their strengths of conscious mental representation were 
equal. As articulated by Rugg et al. (1998):

Crucially, we compared the ERPs produced by new 
words with those produced by old words that were 
misclassified by the subjects as new, reasoning that 
differences between these two classes of ERP would 
reflect memory in the absence of awareness. (p. 595).

In short, the approach involves a two-step process, where 
stimuli classified as misses and correct rejections are first 
selected, followed by asking whether the miss-correct rejec-
tion contrast identifies any other indirect or implicit outcome 
of interest.

In the perceptual domain the procedure is conceptually 
similar to that described above for memory, but in this case 
a contrast is created between stimulus-present and stimulus-
absent events for which participants report stimulus absence 
(i.e., misses and CRs). For instance, in an investigation on 
visual perception utilizing the attentional blink paradigm, 
Marois et  al. (2004) compared neural responses during 
failure in stimulus detection (i.e., misses) against correct 
reports of stimulus absence (i.e., CRs). A significant differ-
ence in neural activation within the parahippocampal place 
area was revealed, and the authors attributed this result to 
unconscious perception.

Although the miss-CR contrast approach shares pro-
cedural similarities with the post hoc subgroup selection 
approach, as a subgroup of stimuli is selected based on cer-
tain criteria, it differs from the latter in its focus on drawing 
inferences by contrasting misses and CRs. For the sake of 
clarity, we hereafter refer to this approach as the miss-CR 
contrast approach. These approaches share the overarching 
aim of isolating the role of unconscious processing by con-
trolling for or eliminating any influence of awareness (e.g., 

Ramey et al., 2020; Ramey et al., 2019). It should be noted 
that the miss-CR contrast qualifies as a type of post hoc data 
selection: while the experimenter predetermines the old/new 
status of a test stimulus (i.e., item), its categorization as a 
miss or CR is determined post hoc based on the participant’s 
report (Lee & Shanks, 2023).

While Shanks (2017) highlighted the risks of drawing 
erroneous conclusions based on post hoc data selection, that 
analysis primarily concentrated on the post hoc subgroup 
selection approach. The present work aims to scrutinize the 
limitations of the miss-CR contrast approach, building upon 
the foundations set by Shanks (2017). As a preview, we first 
discuss Kelley’s Paradox – a counterintuitive statistical phe-
nomenon – and demonstrate how it arises when the miss-
CR contrast approach is applied through simulations. As 
we delve deeper into this phenomenon, we discuss another 
fundamental statistical concept – regression to the mean 
(RttM) – which is closely linked to Kelley’s Paradox. In a 
formal analysis within the framework of Signal Detection 
Theory (SDT), we show that the key assumption on which 
the miss-CR approach rests is usually false. This analysis 
also reveals a second factor at play, namely a property of 
intervals under target and nontarget SDT distributions – dif-
ferences in strength skewness – which invalidates a funda-
mental and indispensable assumption of the miss-CR con-
trast approach. This will be followed by a narrative literature 
review illustrating the widespread adoption of this approach. 
Finally, we report an experiment that directly tests for the 
involvement of Kelley’s Paradox and strength skewness in 
research on unconscious memory.

Kelley’s Paradox

To understand the invalidity of the miss-CR contrast 
approach, consider the following hypothetical scenario. 
Imagine that we have data on the medical school application 
scores of a large group of students who come from relatively 
disadvantaged backgrounds and another large group who 
come from relatively advantaged backgrounds, and assume 
also that the scores for the advantaged group are higher on 
average than those of the disadvantaged group. The distri-
bution of scores in the advantaged group is shifted upwards 
compared to that of the disadvantaged group. We select all 
those students whose scores fall in a narrow interval. Some 
of these are members of the disadvantaged group and oth-
ers of the advantaged group, but we have chosen them to be 
approximately equated in their application scores. Now we 
fast forward to the exam scores they achieve in their final 
medical school exams some years later. We confidently pre-
dict that the subgroups will be equivalent or that the disad-
vantaged subgroup will outperform the advantaged subgroup 
(because their disadvantage held them back and their true 
potential now has an opportunity to reveal itself). Somewhat 
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to our surprise, we find that the advantaged subgroup outper-
forms the disadvantaged subgroup. We infer that advantage 
has persisted through medical training.

What is the problem with this scenario? It is that it rests 
on a false assumption. We are implicitly assuming that we 
have created two subgroups matched for their initial ability, 
since after all we specifically selected them to have equiva-
lent application scores. But the true scores of the two sub-
groups are not matched. Hence whatever outcome we see in 
the final medical school exam scores will be confounded by 
differences in application scores. In the presence of any non-
zero degree of measurement error (and indeed under some 
conditions that we explicate below, even in the absence of 
measurement error), the true score of the advantaged sub-
group will be higher than that of the disadvantaged one (see 
Wainer & Brown, 2006, for an illustration based on real 
educational attainment data). The key point is that one can-
not double-dip by using scores both to create a subgroup and 
to estimate the mean in that subgroup.

We now formalize and simulate an abstract version of 
this scenario. Consider two groups differing in a variable, 
measured with some error. According to classical test theory 
(Hambleton & Jones, 1993), such errors cancel out in aggre-
gate, leading to an alignment between the true and observed 
score means for each group. Imagine that we construct two 
subgroups, one from each group, who score identically (or 
within an interval, including one bounded by either -∞ or 
+∞) on the variable. It is natural to assume that the latent 
scores of these sub-groups are identical. But now we meas-
ure them on this variable again. This time they score differ-
ently. Why is this? The reason is simply an extension of the 
regression effect that occurs in post hoc selection (Shanks, 
2017). On the second measurement, with independent errors, 
the scores of members from the subgroup with a higher true 
mean will regress towards their group mean, while those of 
members of the subgroup with a lower true mean will regress 
towards their group mean. Because these two group means 
differ, then so will the true scores of the two subgroups.

The fact that members from the two subgroups, despite 
having scored identically (or similarly) on the first meas-
urement, may score differently on the subsequent meas-
urement provides insight into the pitfalls of the miss-CR 
contrast approach. This methodological problem was 
coined Kelley’s Paradox by Wainer and Brown (2006), 
after statistician Truman Kelley who described the under-
lying statistical phenomenon nearly a century ago (Kelley, 
1927; see also Smith, 2017). It is not a logical paradox 
like the liar paradox (e.g., Greenough, 2001). Instead, it 
arises from counterintuitive findings that are statistically 
sound but which challenge established beliefs (Wainer, 
2000; Wainer & Brown, 2006). To elucidate Kelley’s Para-
dox, we present a simple simulation rooted in classical 

test theory. In this framework, any given observed score 
equates to the sum of a true score and an error term (Lord 
& Novick, 1968):

where Xi denotes the observed score, Ti represents the true 
score, and Ei is the error term associated with the measure-
ment, for a given individual i . Two groups were constructed 
for this simulation: the advantaged group and the disadvan-
taged group. For each individual in these groups, a true score 
was randomly sampled from a normal distribution, modeled 
as:

where �g is the group mean (set at 60 for the advantaged 
group and at 40 for the disadvantaged group), and �T2 repre-
sents the variance for the normal distribution (set at 100 for 
both groups). While measurements contain inherent errors, 
in line with classical test theory, this error, having a zero 
mean, is not correlated with the true scores. Accordingly, an 
error term for each participant was randomly sampled from 
a zero-centered normal distribution:

where �E2 represents the variance for the normal distribution 
(set at 100 for both groups, mirroring the variance of the true 
scores). To compute the observed scores – the scores we 
would discern in a real-world setting – we summed the true 
scores and the error components via Eq. (1). Our simula-
tion comprised 50,000 individuals for each group, totaling 
100,000 participants.

The simulated density distributions of observed scores 
for both the advantaged and the disadvantaged groups are 
illustrated in Fig. 1A. The means of the observed scores 
for the advantaged and disadvantaged groups are denoted 
by vertical blue and red lines, respectively. It is evident 
that the observed score means closely match the true score 
means for both groups. This is attributable to the zero-
mean error terms in our model, which, barring sampling 
error, do not influence the overall means of the score dis-
tributions when translating true scores to observed scores.

Now we focus on subgroups composed of participants 
with observed scores within a specific range: do the true 
score means for these selected individuals (represented 
by the gray band in Fig. 1A) remain the same across both 
groups? Figure 1B unveils a surprising divergence. Con-
trary to expectations that true score means should be simi-
lar – given that error terms are zero-centered – the simu-
lation shows otherwise. Among the participants selected 
from the constrained observed score range of 48–52, the 
true score mean for the disadvantaged subgroup is 44.94 

(1)Xi = Ti + Ei

(2)Ti ∼ N(�g, �T
2)

(3)Ei ∼ N(0, �E
2)
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(denoted by the vertical red line in Fig. 1B), while for 
the advantaged subgroup, it is 54.91 (represented by the 
vertical blue line). Importantly, this same basic pattern 
emerges wherever the interval is placed and whatever its 
width, including (as noted above) ones bounded by either 
-∞ or +∞. For instance, if the interval extends from -∞ 
to 30, the mean true scores are 30.87 and 42.70 in the dis-
advantaged and advantaged subgroups, respectively.1 An 
interval such as this is, of course, of particular relevance 
to the miss-CR contrast approach, which compares items 
drawn from two distributions and all of which fall below 
a criterion.

Why does such a divergence occur between the two sub-
groups despite the constraints set on observed scores? The 
fundamental statistical concept of RttM provides insight. 
RttM is a phenomenon rooted in statistical considerations 
and measurement error. To explicate this, recall that we sim-
ulated each observed test score based on two components: 
the individual’s true ability (or true score) and a random 
error inherent in the measurement process. Occasionally, 

this random error can cause observed scores to appear 
more extreme or more moderate than the true scores are 
(Khan & Olivier, 2019, 2023). Nevertheless, when we take 
a subsequent measurement, these errors, being random, do 
not always repeat in the same way. Instead, scores often 
“regress” or move closer to the group’s true mean on a sub-
sequent test.

Crucially, as shown in Fig. 1B, the true score means 
for both selected subgroups shift towards their respective 
true score population means. This shift in true scores is 
modulated by their initial distance from the group-specific 
population mean. Specifically, when we select participants 
within a specific range of observed scores, these individuals’ 
scores are influenced by random error. This phenomenon 
can be understood through Eq. (1): although true scores Ti 
and error components Ei are uncorrelated, observed scores 
Xi correlate positively with Ei due to their shared term, Ei 
itself. Consequently, higher observed scores Xi are typically 
coupled with elevated Ei values, and the opposite holds true 
for lower Xi scores. When we subsequently evaluate the true 
scores across these two subgroups of participants, essentially 
removing random errors, the scores naturally shift toward 
their respective population means, underscoring the RttM 
phenomenon. These findings demonstrate Kelley’s Paradox. 
Specifically, although the selected disadvantaged partici-
pants exhibit observed scores comparable to those obtained 
by their advantaged counterparts, this does not necessarily 
signify higher potential, as one might assume. In fact, the 
resulting patterns unveiled in the true score means suggest 
that the selected disadvantaged participants likely harbor 
less potential than their advantaged peers.

Crucial to the analysis above is the inclusion of measure-
ment error. One way to clarify the role of measurement error 
is via the concept of reliability. For the sake of simplicity, 
in the simulation above, true scores and error terms for both 
groups were sampled from normal distributions with vari-
ances of 100. According to classical test theory, the reliabil-
ity of a measure is defined as follows:

where �
XX

′ represents the reliability of the measure. X 
and X' represent two sets of observed scores obtained from 
the same individuals, which could be from random halves of 
a single multi-trial test, from the same test administered at 
two different times, or from parallel forms of the test admin-
istered at the same or different times. In light of the current 
parameter values, the simulated reliability of the score meas-
ure is 0.5. While this might be deemed low for many conven-
tional applications, it is consistent with reliability estimates 
reported in studies on unconscious memory (Vadillo et al., 
2022), and even general cognitive processes (Huber et al., 

(4)�
XX

� =
�
2

T

�
2

T
+ �

2

E

Fig. 1   (A) Density distributions of observed scores. The vertical blue 
and red lines represent the observed score means for the advantaged 
and disadvantaged groups. The shaded area represents the selected 
observed scores between 48 and 52. (B) Divergence of true score 
means for participants falling within the shaded area in panel A. 
The vertical blue and red lines represent the true score means for the 
advantaged and disadvantaged subgroups

1  The formal derivation we describe in the next section reveals that 
the values reported here are very close to their expected values, 44.97 
and 55.03, respectively, when the selected range is 48–52, and 30.84 
and 42.46, respectively, when the range is -∞–30.



Psychonomic Bulletin & Review	

2019). Importantly, since the extent of RttM is contingent 
upon the reliability of the measure in question (Campbell & 
Kenny, 1999; Lee & Shanks, 2023; Rothkirch et al., 2022; 
Shanks, 2017) – as the greater the dispersion of these ran-
dom errors, the more pronounced the RttM effect becomes 
(Barnett et al., 2005; Yaron et al., 2023) – Kelley’s Paradox 
intensifies with a less reliable measure. This is illustrated in 
the simulation presented in Fig. 2 on how changes in error 

magnitudes (and, by extension, reliability of the measure) 
impact the relationship between true and observed scores for 
simulated participants with observed scores across the range. 
This figure showcases four panels of iso-probability curves, 
each from a distinct iteration of the simulation. The iterations 
differ only in the SD of their error term distributions, ranging 
from 5 to 20, incremented by 5. The group means and true 
variances are as before, hence the true score SD = 10.

Fig. 2   (A)-(D) Iso-probability curves of true and observed scores for 
advantaged and disadvantaged subgroups, at varying error SDs. The 
error SDs were set at 5, 10, 15, and 20 respectively, yielding reliabili-

ties of 0.8, 0.5, 0.31, and 0.2. Contours represent lines of equal prob-
ability density, indicating regions where data points are equally likely 
to occur within the specific distributions of true and observed scores
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The relationship between error SD and the reliability of 
the measure is evident: reliability is at its peak (i.e., 0.8) 
when the error SD is set at 5, whereas reliability is the low-
est (i.e., 0.2) when the error SD is set at 20. If we now select 
participants with a given score, some from the advantaged 
and some from the disadvantaged population, a striking 
pattern emerges. When error is low (and reliability high), 
the iso-probability contours are tightly clustered around the 
diagonal, suggesting that participants with the same meas-
ured score are likely to have similar true scores (top panel). 
In fact, in the hypothetical scenario where the error SD is 
set at 0, the iso-probability contours would collapse to the 
diagonal, indicating perfect reliability with no error, and 
observed scores would precisely match true scores. But as 
error increases (and reliability reduces), the contours spread 
further apart vertically, indicating that participants with the 
same measured score are more likely to diverge in their true 
scores (bottom panel) depending on whether they are drawn 
from the advantaged or disadvantaged population. Eventu-
ally, when SD = 20, the expected true score of a participant 
with an observed score of 50 is 58.29 if that participant is 
from the advantaged group but 41.61 if they are from the 
disadvantaged group, based on the simulated data set.2 Pick-
ing individuals or subgroups who appear to have identical 
scores leads us to be tricked: their true scores are in fact 
highly divergent. This trend reinforces the premise that Kel-
ley’s Paradox is exacerbated by greater error variability and 
mitigated when the error SD is minimal.

Now consider a memory experiment where participants 
respond to various items during a test phase. Some items 
were previously presented to them (i.e., old items), while 
others are entirely new. By design, the true memory strength 
for new items should be zero, given that the participant has 
never encountered them. In contrast, old items are assumed 
on average to possess some positive true memory strength 
due to prior exposure. When tested on recognition memory 
of the items, there are four possible outcomes: correct iden-
tification of old items (hits), correct identification of new 
items (CRs), misidentification of old items as new (misses), 
and misidentification of new items as old (false alarms). In 
the miss-CR approach we focus on CRs and misses, since 
the participant exhibits no observed recognition memory for 
such items (i.e., these items are recognized as new), reason-
ing that any difference in another measure (behavioral or 
neural) between these two types of items is then viewed as 
evidence of unconscious memory.

But the discussion of Kelley’s Paradox above should alert 
us. Selecting items based on observed recognition memory 
is similar to selecting participants based on observed test 
scores. As all measurements are susceptible to errors, when 
a participant deems an item as new (falling below the deci-
sion criterion), its observed memory strength is likely to 
deviate from its true memory strength. Given the assumption 
that the true memory strength mean for old items is higher 
than that for new items, the true memory strength mean for 
selected old items is likely to be greater than that for new 
items. We believe we have selected items equated for con-
scious memory, but in reality we have not done so.

Formal analysis based on Signal Detection Theory

The simulation described above (Fig. 1) clearly bears a close 
resemblance to SDT, in that samples are drawn from normal 
distributions along an underlying “strength” dimension. In 
this section we now develop an SDT-based analysis of the 
miss-CR contrast approach which takes us beyond the intui-
tive but simplistic example captured in the simulation. In 
addition to formalizing the conditions under which the true 
scores of samples of misses and CRs differ, and quantifying 
these differences, SDT also allows us to consider conditions 
in which the variances of the distributions are unequal.

We adopted the assumption of equal variance across 
true score distributions for the disadvantaged and advan-
taged groups in the discussion above. Yet, in analyses of 
recognition memory (where the miss-CR method has most 
often been employed) this assumption is typically found to 
be invalid. When SDT is fitted to empirical findings, and in 
particular to receiver operating characteristic (ROC) func-
tions, the variance of the memory strength distribution for 
old items is usually estimated as being greater (by a factor 
of around 1.3) than that of new items (Lange et al., 2019; 
Rotello, 2017). Transitioning from simulations to a formal 
analytical exposition grounded in SDT, we aim to generalize 
our analysis to scenarios characterized by unequal variances. 
Hence the goal of this section is to demonstrate that the 
use of the miss-CR contrast approach to infer unconscious 
processing is strictly valid only under very limited condi-
tions. Although the analysis is framed for simplicity in terms 
of recognition memory for old and new items, it applies 
equivalently for any discrimination between targets and non-
targets, as in a perception experiment.

TM and TCR represent the true memory strength of misses 
and correct rejections, respectively. The assumption on 
which the miss-CR contrast approach operates can then 
effectively be boiled down to the specific case where TM 
equals TCR, which, as we will see, only holds under very 
restricted conditions. Any deviation from this equality, 
and in particular any cases where TM > TCR, indicates that 
observed differences in behavioral or neural metrics when 

2  The expected true scores are estimated based on participants with 
observed scores between 49.9 and 50.1. There are 330 simulated par-
ticipants within this interval. These are in line with the expected val-
ues based on the formal derivation discussed below: 58.00 and 42.00 
for the advantaged and the disadvantaged groups, respectively.
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comparing misses and correct rejections are not valid evi-
dence for unconscious memory.

The following analytical approach rests on a derivation 
by Arnold et al. (1993), as elaborated in Appendix A. Essen-
tially this equation estimates the expected true mean mem-
ory strength for items constrained within a truncated range, 
from a lower bound Cl to an upper bound Cu, such as when 
decision criteria are set on the observed memory strength. 
In particular, when we focus on high-confidence CRs and 
misses, the range is from Cl = -∞ to a variable criterion, Cu. 
We assume that true memory strengths of old and new items 
are each normally distributed, with new items centered at a 
mean of 0 and a SD of 1 and the old item mean and SD being 
free to vary. Normally distributed error, centered at 0 and 
with SDs ranging from 0 to 2, is added as measurement noise 
to the true memory strengths.3 We also examine the impact 
of two distinct decision criteria (C = 0 and -1) reflecting the 
strength signal below which an item is classified as “new” 
– resulting in CRs in the case of new items and misses in 
the case of old items.

Figure 3 illustrates the expected mean difference in true 
strength between misses and correct rejections as a func-
tion of the SD of the error term under different distribu-
tion parameters. The blue, green, and red curves within 
each of the four panels correspond to true mean strengths 
of old items set at values of 0.5, 1.0, and 1.5, respectively. 

An assumption of equal variances for the old and new item 
distributions is shown in the left panels, while an SD of 1.3 
represents unequal variances (right panels).

A pronounced upward trajectory across all conditions 
– especially marked at higher true mean values for old items 
– indicates that as the error variance increases, the extent 
to which the expected memory strength for misses exceeds 
that for correct rejections amplifies. Crucially, intersec-
tions of the curves with the y-axis’s zero point, denoting 
identical expected true mean memory strength for misses 
and CRs (i.e., TM - TCR = 0), are rare. This state of equilib-
rium, critical for validating claims of unconscious memory 
when differences in other behavioral or neural measures are 
observed, manifests solely with unequal variances and when 
the true mean of old items is relatively low (i.e., 0.5 and 1).

Under some parameter settings (e.g., unequal variances 
and the old item and error means being low) the true mean 
for old items (misses) is less than that for new items (CRs) 
(Berry & Shanks, 2024). It might be assumed that the miss-
CR contrast approach is valid under these conditions. How-
ever, if the implicit measure is a neural signal which is larger 
for misses than CRs, an alternative possibility is that there is 
a negative association between the neural signal and memory 
strength, as often observed in phenomena such as repetition 
suppression (Lee et al., 2020). Even in the complete absence 
of unconscious memory, memory strength and neural activ-
ity may be inversely correlated. All in all, so long as there is 
a difference in true mean memory strength between misses 
and correct rejections, it is difficult to infer unconscious 
memory based on the miss-CR contrast approach.
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Fig. 3   Differential expected true means in memory strength between 
misses and correct rejections as a function of error SDs across various 
conditions. Each panel corresponds to distinct combinations of SDs 

of old items (1 and 1.3) and decision criteria (-1 and 0). SD(new) is 
set to 1 in all panels. The color-coded lines represent true mean mem-
ory strengths (0.5, 1.0, and 1.5) set for old items

3  It should be noted that adding the error term to the true memory 
strength distributions is equivalent to adding the error term to the 
decision criterion.
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Strength skewness and the miss‑CR contrast approach

The curves shown in Fig. 3 display another important prop-
erty that demonstrates a second factor at play in addition 
to measurement error. The miss-CR difference is predicted 
to often be non-zero even when error is zero. Thus, under 
conditions in which regression to the mean cannot be rel-
evant, misses and CRs are not expected to have equal mean 
strength. The fundamental assumption of the miss-CR con-
trast approach, that misses and CRs have equal strength, is 
invalid even under standard SDT.

Why does SDT make this prediction? Consider first the 
case where the variances of the distributions are equal (left 
panels of Fig. 3; SD(error) = 0). Within any given interval 
on the strength dimension, including one from -∞ to Cu, 
the distribution of old item strengths is always more skewed 
towards the left (i.e., negative skew) than the distribution of 
new item strengths. The mean strength of misses is always 
greater than that of CRs falling within the same interval on 
the strength dimension (and this does not depend on the 
placement of the criterion). Skewness is simply a measure 
of asymmetry, with negative skew meaning that more of the 
mass is to the right of the median. Hence mean strength is 
always greater for misses than CRs as reflected in the left 
panels of Fig. 3 (in Appendix C, we provide a more detailed 
explanation of strength skewness for interested readers). 
This is more explicitly illustrated in Fig. 4, where the vari-
ances of old and new item distributions are both set at 1, 
while the ten blue curves represent different values of d′ (0.1, 
0.4, 0.7, 1.0, 1.3, 1.6, 1.9, 2.2, 2.5, 2.8, from dark to light). 
Like Fig. 3, Fig. 4 shows the difference in the mean strengths 

of misses and CRs in the interval from -∞ to C. The math-
ematical derivation on which this is based (a special case of 
the equation for Fig. 3) is given in Appendix B. Crucially, 
in all cases the difference is greater than zero. Indeed, if d′ 
is large then the difference between the mean strengths of 
misses and CRs can also be large, especially if the criterion 
C for responding “old” is highly conservative.

Now consider the case in which the variance of the old 
item distribution is greater than that of the new item distribu-
tion (right panels of Fig. 3; SD(error) = 0). In this case the old 
item distribution in the relevant interval may be more right-
skewed, more left-skewed, or equal to the new item distribu-
tion, depending on the precise parameters. Hence, as shown 
in Fig. 3, the miss-CR difference can be negative, zero, or 
positive.

In sum, there is not one but two factors that entail that 
the fundamental and indispensable assumption of the 
miss-CR contrast approach is usually invalid. The first 
of these is regression-to-the-mean occurring when item 
strengths include error (Kelley’s Paradox) and the second 
is the inequality of old and new items falling in an interval 
on the strength dimension (strength skewness). These are 
independent and additive factors that contribute to the overall 
difference in strengths for misses and CRs. Note, however, 
that the impact of the first factor will usually be greater than 
that of the second factor: the miss-CR difference increases 
sharply as error increases in Fig. 3. While the impact of 
Kelley’s Paradox is always in the one direction (as error 
increases the miss-CR difference always increases), strength 
skewness can lead to CRs having greater mean strength than 
misses or the opposite (as in the bottom right panel of Fig. 3).
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Fig. 4   Differential expected true means in memory strength between 
misses and correct rejections as a function of decision criteria (i.e., C) 
across different d′ values, assuming equal variances for old and new 

item distributions. Each of the ten curves represents a unique d′ value, 
ranging from 0.1 (the lowest curve) to 2.8 (the highest curve)
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Also noteworthy is that noise becomes relatively more 
important as the width of the interval narrows. As this 
width approaches zero, the mean strengths of old and new 
items converge. This could have practical implications if 
the relevant awareness measure can be shown to be highly 
reliable (with error hence being small). If the misses and 
CRs are derived from a narrow interval (e.g., between cri-
teria defined as absolutely certain the item is new and fairly 
certain the item is new), then the miss-CR contrast approach 
would become approximately valid.

The prevalence of the miss‑CR contrast approach

In this section, we offer a non-exhaustive literature review 
highlighting the widespread adoption of the miss-CR contrast 
approach in unconscious processing research. It is impor-
tant to note that terminology such as “misses” and “correct 
rejections” is not uniformly applied across studies, and their 
operational definitions can vary contingent on the research 
context. Given these inconsistencies, our literature review is 
narrative in nature. Nevertheless, this review emphasizes the 
prevalence of the miss-CR contrast approach across a broad 
range of fields and research questions, even though the extent 
to which this analytic approach has influenced particular con-
clusions varies from one study to the next.

Table 1 showcases studies from high-impact journals 
including Nature and Journal of Experimental Psychology: 
General, attesting to versatility of the miss-CR contrast 
method. Researchers have used this approach in conjunc-
tion with diverse methodologies, from electroencephalogram 
(EEG) assessments (Addante, 2015; Addante et al., 2023) 
to behavioral response time measures (Sheldon & Mosco-
vitch, 2010). The studies also employ a wide range of stimuli 
including words (Woollams et al., 2008), faces (Lehmann 
et al., 2004), and line drawings (Kark et al., 2016, 2020). 
The collection of studies also confirms the adoption of the 
miss-CR contrast approach across diverse areas, from facial 
imitation (Arias et al., 2018), to emotion processing (Jaeger 
& Rugg, 2012), visual recognition memory (Thakral & Slot-
nick, 2015), somatosensory processing (Grund et al., 2021), 
and brain stimulation (Grund et al., 2021). Dependent meas-
ures are both behavioral and neural.

While some studies adopted simple binary awareness 
measures to categorize test items as misses and CRs (e.g., 
Jaeger & Rugg, 2012), others incorporated more fine-
grained measures to gauge different levels of awareness. 
For instance, a 6-point recognition response measure was 
utilized in Ramey et al. (2019) to assess awareness. After 
viewing a test item, participants were prompted to respond 
using a scale where 1 = I’m sure it’s new, 2 = Maybe it’s 
new, 3 = I don’t know, 4 = Maybe it’s old, 5 = I’m sure it’s 
old, and 6 = Recollect old. To infer unconscious memory, 
the authors focused on the contrast in other eyetracking 

measures between old images that received a rating of 1 (i.e., 
misses) and new images that also received this rating (i.e., 
CRs). This approach aimed to minimize potential interfer-
ence from conscious memory (for a detailed analysis of this 
study, see Lee & Shanks, 2023). Regardless of how misses 
and CRs were operationalized or the complexity of the 
awareness measure, the core premise of the miss-CR con-
trast approach remained the same: items were first classified 
and selected to represent misses and CRs, and subsequent 
contrasts were drawn based on other performance metrics or 
attributes associated with these two types of items. In two 
of these studies, no significant difference between misses 
and correct rejections was revealed on the key behavioral/
neural dependent measure, thus the authors concluded that 
they failed to find implicit repetition suppression (Henson 
et al., 2005) or that dispersion of viewing was influenced by 
unconscious memory (Ramey et al., 2020). Obviously these 
null results are unlikely to be compromised by regression to 
the mean or strength skewness.

To further illustrate the application of this approach, we 
draw upon several illustrative examples. To begin with, we 
refer back to Rugg et al.’s (1998) study, previously cited in 
the Introduction. This study posited that unconscious mem-
ory can be revealed through differences in neural activity 
between new words (i.e., CRs) and misclassified old words 
(i.e., misses). Beyond its substantial influence as indicated 
by citations (> 900 on Google Scholar in October 2023), the 
miss-CR contrast approach Rugg and colleagues adopted 
has garnered widespread recognition in influential outlets. 
Take, for example, Principles of Neural Science, a widely 
adopted neuroscience textbook. In the latest edition (6th Ed.) 
of the textbook, the Nobel laureate Eric R. Kandel and his 
colleagues (2021) referenced Rugg et al. (1998), elucidating 
on how unconscious memory can be demonstrated via the 
miss-CR contrast approach:

A widely used protocol tests subjects’ ability to recall 
lists of words they have memorized, a task that taps 
a form of declarative memory. In the recall phase, a 
subject is presented with a list of the words that were 
on the study list plus new words. An amnesic patient 
has great difficulty with this type of task and may 
misclassify most of the previously seen words as new 
since she cannot recall seeing them before. Neverthe-
less, the brain activity elicited by reading old words is 
different from that elicited by the new words: There is 
unconscious recognition of a difference, equivalent to 
that shown by patients with unilateral neglect or pros-
opagnosia. Normal subjects usually find this task easy, 
but they too will occasionally misclassify old words as 
new; as with amnesiacs, evoked brain responses in nor-
mal subjects register the distinction lost to conscious 
recall (Chapter 59).
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Table 1   Studies from high-impact journals including Nature and Journal of Experimental Psychology: General attesting to versatility of the 
miss-CR contrast method

Study Method Stimuli Relevant finding

Addante (2015) EEG Old and new words Control subjects’ ERPs were more posi-
tive for old items (misses and neutral 
responses combined) than new items 
(correct rejections and neutral responses 
combined), reflecting implicit memory

Addante et al. (2023) EEG Old and new words More positive ERPs for misses than for 
correct rejections, reflecting implicit 
memory

Arias et al. (2018) EMG Transformed and non-transformed 
spoken sentences

Greater zygomatic activity for misses than 
correct rejections, reflecting unconscious 
recognition of auditory smiles

Gomes et al. (2015) Eye-tracking Old and new images of common objects Differential pupil dilation between misses 
and correct rejections, reflecting uncon-
scious object memory

Grund et al. (2021) fMRI Trials with and without electrical 
stimulation

Greater neural activity for confident 
misses than confident correct rejec-
tions, reflecting non-conscious stimulus 
processing

Henson et al. (2005) fMRI Old and new words Implicit memory operationalized as differ-
ence in neural activity between misses 
and correct rejections

Jaeger and Rugg (2012) EEG Old and new pictures of objects Greater neural activity for misses than 
correct rejections in emotional contexts, 
reflecting implicit memory retrieval

Kanai et al. (2010) Behavioral performance Visual targets The comparison of the rate of high-
confidence correct rejections with that 
of high-confidence misses was used 
to index subjective discriminability of 
invisibility, which in turn was used to 
differentiate between perceptual and 
attentional blindness

Kark et al. (2016) fMRI Old and new line drawings Differential neural activity between 
correct rejections and misses, reflect-
ing implicit repetition suppression and 
repetition enhancement effects

Kark et al. (2020) fMRI Old and new line drawings Differential neural activity between cor-
rect rejections and misses, reflecting 
long-term implicit repetition suppression 
and repetition enhancement effects

Lehmann et al. (2004) fMRI Old and new photos of adult faces Greater neural activity for misses than 
correct rejections, reflecting uncon-
scious discrimination of stimuli

Marois et al. (2004) fMRI Images of scenes and scrambled scenes 
(i.e., no scene)

Greater neural activity for misses than 
correct rejections, reflecting uncon-
scious scene perception

Ramey et al. (2020) Eye-tracking Images of old and new scenes Unconscious memory operationalized as 
difference in eye movement dispersion 
between high-confidence misses and 
high-confidence correct rejections

Ramey et al. (2019) Eye-tracking Images of old and new scenes Lower scanpath ratio for high-confidence 
misses than high-confidence correct 
rejections, reflecting unconscious 
memory

Rugg et al. (1998) EEG Old and new words More positive ERPs for misses than for 
correct rejections, reflecting uncon-
scious memory
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Gomes et al. (2015) provides another instance of the 
application of the miss-CR contrast approach. In their 
investigation, the authors contrasted pupil dilation responses 
between misses (termed “Ms” in their article) and CRs, 
after controlling for associated reaction times. Gomes et al. 
(2015) explained this as follows:

Even though RT-matched Ms showed larger pupil 
dilation than CRs, we used the nonmemory RT con-
found matching procedure… to ensure that this effect 
reflected unconscious object memory rather than a 
failure to match for nonmemory-related difficulty of 
the pictures selected as Ms and CRs… Therefore, the 
familiarity level of Ms must have been effectively at 
chance and the enhanced pupil dilation of Ms must 
have reflected unconscious object memory of some 
kind rather than an effect of above chance, but below 
threshold levels of familiarity (p. 761).

Similarly, Grund et al. (2021) inferred unconscious tac-
tile stimulus processing by contrasting neural correlates of 
misses and CRs. According to the authors:

By comparing the contrast of undetected stimuli to 
correctly rejected catch trials, neural processes asso-
ciated with non-conscious stimulus processing of near-
threshold stimuli can be assessed (p. 2).

In a more recent study by Addante et al. (2023), neural 
correlates associated with misses and CRs were explored. 
Participants’ recognition of stimulus words was recorded 
using a 5-point recognition confidence scale. While their 
methodology echoed the conventional approach of Rugg 
et al. (1998), Addante et al. (2023) introduced a nuanced 
adjustment. Drawing from a procedure devised by Woodruff 

et al. (2006), Addante et al. (2023) ensured an equal num-
ber of randomly selected trials for both old and new words 
within each level of recognition confidence. This strategy 
aimed at balancing the memory strength of old and new 
items within each response category, thereby permitting a 
more rigorous comparison of misses and CRs uncontami-
nated by residual explicit memory. As Addante et al. (2023) 
explicated:

By virtue of the shared reported strength of memory 
responses comprising both the old and new ERP con-
ditions, this procedure eliminated the possible con-
found discussed above for memory misses: that they 
might reflect differential amounts of memory strength, 
or be contaminated by sub-threshold explicit memory 
difference among old and new conditions. This new 
method of measuring ERPs of implicit memory was 
thus stronger and more precise than methods used in 
prior studies (i.e., generic measures of miss vs. correct 
rejections), and was presumed (though not tested) to be 
free of conflation with other variables such as explicit 
memory (p. 3).

Finally, as previously discussed, Ramey et al. (2019) 
focused on contrasts between high-confidence misses and 
CRs (i.e., old and new items rated 1) to infer unconscious 
memory. Their rationale was that this stringent criterion 
“ensured that none of the scenes used in the unconscious 
memory contrast were contaminated by conscious recollec-
tion or familiarity” (p. 74). An overarching theme emerges 
from these examples: regardless of how the miss-CR con-
trast approach is framed and operationalized, the memory 
strength for both item categories was consistently deemed 
equivalent, and thus any differential outcomes in other 

Table 1   (continued)

Study Method Stimuli Relevant finding

Sheldon and Moscovitch (2010) Behavioral performance Old and new words Faster RTs for misses than for correct 
rejections, treated as implicit priming

Slotnick and Schacter (2004) fMRI Old and new shapes Greater neural activity for misses than 
correct rejections, reflecting implicit 
repetition priming

Slotnick and Schacter (2010) EEG Old and new shapes Greater neural activity for misses than 
correct rejections, reflecting noncon-
scious priming

Stark and McClelland (2000) Behavioral performance Old and new words and pseudowords Faster RTs for misses than for correct 
rejections, reflecting implicit repetition 
priming

Thakral and Slotnick (2015) EEG and fMRI Old and new shapes Greater neural activity for misses than 
correct rejections, reflecting noncon-
scious processing

Woollams et al. (2008) EEG Old and new words More positive ERPs for misses than for 
correct rejections, reflecting implicit 
repetition priming
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indirect variables of interest were interpreted as evidence of 
unconscious memory.

This brief review serves to underline both the scale and 
diversity of applications of the miss-CR contrast approach. 
Another crucial observation is the absence of any acknowl-
edgment of the double-dipping problem and Kelley’s Para-
dox – or more broadly, RttM – by researchers in these stud-
ies, despite the widespread warnings raised by statisticians 
(Campbell & Kenny, 1999; Wainer, 2000; Wainer & Brown, 
2006). We are not suggesting that all findings employing the 
miss-CR contrast approach – thus susceptible to Kelley’s 
Paradox and strength skewness – are categorically invalid. In 
numerous instances, conclusions were grounded in a range 
of evidence and varied analyses. It is even possible that the 
problems highlighted in the sections above are less relevant 
to some domains than others. For example, as Fig. 4 shows, 
strength skewness has a larger impact on the difference in 
the mean strengths of misses and CRs as d′ increases. In 
studies of recognition memory, d′ is typically well above 
zero, whereas in studies on unconscious vision, stimulus vis-
ibility is often manipulated to yield near-threshold percep-
tion (d′ ≈ 0, e.g., via backward masking). Thus, it is possible 
that strength skewness is less of an issue when the method is 
employed in the latter than the former domain.

Nonetheless, when conclusions rest predominantly on the 
miss-CR contrast method, their logical underpinnings are 
inherently susceptible to challenge. To put it another way, it 
is only via a detailed case-by-case assessment that the scale 
of the problems can be determined in a given application. 
For each example in Table 1, it is conceivable that a model 
exists – one that does not distinguish between conscious 
and unconscious processes at the latent level – but which 
can nevertheless predict the critical differential pattern as 
a manifestation of Kelley’s Paradox and/or strength skew-
ness (for instance, see Lee & Shanks, 2023). The varying 
performance in metrics apart from awareness, between 
misses and CRs, might arise purely from the fact that the 
method does not in fact equate conscious mental states. 
The degree to which such models could account for specific 
observed effects or the entirety of response nuances neces-
sitates individual scrutiny, but it is clear that conclusions 
failing to address Kelley’s Paradox and strength skewness 
lack robustness.

Advocates of the miss-CR contrast method might counter 
that Kelley’s Paradox is only a problem if the reliability of 
their awareness measures is low. As revealed in the simula-
tions reported above (Fig. 2), the degree of divergence in 
true scores of subgroups matched for their observed scores 
is a function of the magnitude of error, and hence of the reli-
ability of the measure. Indeed, the divergence is modest if 
reliability is fairly high (0.8). So, what evidence do we have 
that the reliability of the awareness measures employed in 

the studies in Table 1 is sufficiently low to render Kelley’s 
Paradox a serious concern?

It is very rare for studies to report this metric. However, 
reliability values have been calculated for a reasonable sam-
ple of representative studies. Yaron et al. (2023) reported the 
Spearman–Brown-corrected reliability of awareness meas-
ures in 18 experiments and found that it exceeded 0.7 in only 
four. Strikingly, in 9/18 (50%) of them it was either negative 
or close to zero. When reliability is near zero, the expected 
true scores of subgroups matched for their observed scores 
regress completely to the group means. Thus, if an experi-
ment employs an entirely unreliable recognition confi-
dence measure and applies the miss-CR approach to items 
selected from the lowest confidence category, the true scores 
of the misses and CRs will be at the overall old and new 
item means, which of course will be different unless d′ = 0. 
Rothkirch et al. (2022) reported reliabilities of awareness 
measures used in 12 implicit learning and unconscious pro-
cessing studies. Only three were above 0.8.

Of course, it is possible that some of the experiments in 
Table 1 employed awareness measures with high reliability. 
This is certainly the case in Ramey et al.’s (2019) experiment, 
for which the reliability of their recognition confidence scale 
was 0.87 (Lee & Shanks, 2023). In our experiment reported 
in the next section, the mean Spearman–Brown-corrected 
split-half reliability of the single-item recognition task 
was 0.78, based on 5,000 random splits, indicating that the 
recognition task was also of adequate reliability. But even 
in these cases there is appreciable error, and it is only by 
detailed modeling that we can gauge whether the magnitude 
of this error is sufficient to explain the divergence seen in 
the implicit measure (eye movements in this case) – which is 
precisely what Lee and Shanks (2023) demonstrated. For all 
the studies adopting the miss-CR contrast approach for which 
the reliability is unknown, the authors’ conclusions rest on an 
assumption ( �XX′ = 1.0) that is known to be empirically false.

And of course, our analyses above show that even when 
there is no error (reliability �XX′ = 1.0), the miss-CR differ-
ence will almost always be non-zero as a result of the second 
factor, strength skewness.

Experiment

Following our previous simulations and discussion on how 
Kelley’s Paradox and strength skewness can be linked to 
the miss-CR contrast approach, we now report an experi-
ment to test the hypothesis that high-confidence recogni-
tion misses and correct rejections usually do not have equal 
true memory strengths. As we expected overall recognition 
d' to be fairly high (see below), we predicted any negative 
effect of differential strength skewness to be minimal and 
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hence the miss-CR difference would be positive (see Fig. 3). 
In this experiment, after studying a word list, participants 
completed a single-item recognition test in which they 
made old/new judgments to studied and new words on a 
recognition confidence scale, followed by a two-alternative 
forced-choice (2AFC) test in which the key trials paired 
high-confidence misses and correct rejections from the 
single-item stage (Lee & Shanks, 2023, recently adopted a 
similar approach in the context of implicit learning).

We hypothesized that the overall accuracy for judging 
old words correctly in the 2AFC task would be significantly 
above chance. More crucially, in the same task, for pairs 
comprising old words falsely judged new with high confi-
dence (i.e., high confidence misses) and new words judged 
new with high confidence (i.e., high confidence correct 
rejections), we expected that the accuracy of selecting old 
words correctly would be significantly above chance.

The experiment was preregistered on the Open Science 
Framework (https://​osf.​io/​pk6an).

Methods

Participants

An a priori analysis using G*Power (version 3.1.9.7; Faul 
et al., 2007) was conducted before data collection, which 
indicated that a sample of 71 participants would be needed 
to detect a small effect (dz = 0.3) in a one-sample t-test with 
a power of .80 at a one-tailed alpha level of .05. We aimed to 
reliably detect the difference between the accuracy of select-
ing old words correctly in high-confidence miss/correct rejec-
tion pairs and chance performance (i.e., an accuracy of 0.5) 
in the 2AFC task. A total of 75 participants located in the UK 
(35 males and one non-binary; Mage = 34.12 years, SDage = 
10.30, range = 18–59 years) were recruited via Prolific. All 
participants had normal or corrected-to-normal vision and 
were asked to complete the experiment via a web browser in 
a quiet environment without distractions. None of the par-
ticipants took part in previous related experiments. Informed 
consent was obtained from all participants, and they were 
paid £4 in exchange for completion of the experiment. This 
study was approved by the UCL Research Ethics Committee.

Materials

The experiment was programmed with PsychoPy (Peirce 
et al., 2019). For each participant, two sets of 60 words and 
one set of 20 words were randomly sampled without replace-
ment from a list of 180 words. The first set was used as the 
words to be studied in the first task and as the old words in 
the single-item test; the second set was used as new words 
in the single-item test; and the last set was used as truly new 
words in the 2AFC test. The word list was selected from a 

normative pool of 1,200 words developed by VanArsdall 
and Blunt (2022). In the selection process, we first filtered 
out words above 1 SD or below -1 SD on the concreteness, 
familiarity, imagery, valence, and arousal ratings from the 
word pool. Subsequently, 180 words were randomly selected 
from the remaining 304 words, irrespective of their living/
nonliving ratings, to form the word list to be used in the 
current study.

Procedure

The experiment, consisting of four tasks, was implemented 
on the Pavlovia website (pavlovia.org). Participants were 
allowed to run the experiment on any device of their choice, 
barring mobile devices. The four tasks were the study task, 
the distractor task, the single-item recognition judgment 
task, and the 2AFC task, respectively. Participants first 
completed a word classification task of 60 trials, serving as 
the study task. A word was presented in each trial, and par-
ticipants’ task was to decide whether it referred to a living 
or nonliving object as quickly as possible by pressing either 
the “left” or “right” arrow key. The order of presentation 
of words was randomized. No indication of a subsequent 
memory test stage was provided. Participants were given a 
short break upon completion of the study task.

Afterwards, participants completed a jigsaw puzzle dis-
tractor task. Each puzzle comprised nine pieces of an image, 
randomly arranged over the display. Participants moved the 
pieces using the mouse to form the complete image. After 
completing a puzzle, they pressed the spacebar to see a new 
puzzle. The distractor task lasted 5 min, before participants 
took another short break upon completion.

Then, participants completed a single-item recognition 
judgment task. A word was presented in each trial. The word 
was either one that appeared in the study task (i.e., an old 
word) or a new word. Participants reported whether or not 
they thought the word was presented in the study task based 
on a 4-point recognition confidence scale, with values 4 (“I’m 
sure it’s old”), 3 (“Maybe it’s old”), 2 (“Maybe it’s new”), and 
1 (“I’m sure it’s new”). There were 120 trials (60 old words 
and 60 new words) in this phase, and the words were randomly 
ordered anew. A short break ensued after the end of this task.

Finally, the fourth task comprised a 2AFC recognition 
task. A pair comprising an old (i.e., studied) and a new 
word were presented side-by-side in each trial. Participants 
were given as long as they needed to select the word that 
had appeared in the study task (i.e., the old word) by press-
ing either the “left” or “right” arrow key. In 40 trials, the 
pairs included a new and an old word receiving the same 
recognition rating in the single-item recognition judgment 
task whenever possible. In cases where there were old and 
new words left unpaired because there were not enough 
words of each type given the corresponding rating, these 

https://osf.io/pk6an
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words would be matched randomly, such that each pair 
consisted of old and new words receiving different ratings 
(i.e., “unequal pair”). A further 20 pairs were included 
which comprised studied and truly new words (i.e., words 
that had never appeared in the previous phases). These 
pairs were created by replacing words that were new in the 
single-item recognition phase in the following order: new 
words in unequal pairs were replaced first, then new words 
in pairs with equal ratings of 4, followed by new words in 
pairs with equal ratings of 3, and so on. As a result of the 
pairing process, the 2AFC task comprised a total of 60 tri-
als. The sequence of word pairs appearing in this task as 
well as positions of old and new words across trials were 
randomized. Subsequently, participants were thanked and 
debriefed at the end of the experiment.

Data pre‑processing

Following the pre-registration, to ensure that only those 
participants who were sufficiently attentive throughout 
the experiment were included in the statistical analyses, 
two exclusion criteria were adopted. First, we excluded 
participants who failed to achieve 85% accuracy in their 
living/nonliving judgments in the study task. Since some 
words in the word list were ambiguous regarding the type 
to which they belonged, we only focused on words that 
are clearly living or nonliving. Specifically, we deemed 
words above the living/nonliving rating of 600 as clearly 
living, whereas words below the living/nonliving rating 
of 200 were deemed as clearly nonliving. There were 138 
clearly living or nonliving words in the word list. The 
living/nonliving rating ranged from 100 to 700. Second, 
we also excluded participants who failed to achieve 60% 
accuracy in selecting the old word correctly in the 20 
pairs involving truly new words in the 2AFC task. In total, 
five participants were excluded, leaving a final sample of 
70 participants in the subsequent analyses. In addition, for 
the critical one-sample t-test comparing the accuracy of 
selecting old words correctly from high-confidence miss-
correct rejection pairs (i.e., word pairs rated 1) in the 
2AFC task against chance performance, we excluded par-
ticipants who had fewer than three valid pertinent trials. 
After applying this filter, the analysis was based on data 
from 29/70 (41%) participants. All the statistical analyses 
were carried out in R (R Core Team, 2022).

Results

Study task

In general, participants were able to correctly judge clearly 
living or nonliving words with very high accuracies (M = 

.95, SD = .03). Conversely, when the whole study list was 
taken into account, words judged as living were significantly 
higher on the living/nonliving ratings (M = 602.84, SD = 
36.56) than words judged as nonliving (M = 190.99, SD 
= 30.54), t(69) = 92.67, p < .001, dz = 11.16. The results 
indicate that the participants understood the instructions cor-
rectly and were attentive during the study task.

Single‑item recognition task

Collapsed across participants, the percentages of old words 
receiving ratings of 1–4 were, respectively, 6.64%, 8.50%, 
11.45%, and 73.40%; in contrast, for new words, the per-
centages were, respectively, 48.71%, 30.29%, 11.90%, 
and 9.10%. These distributions suggest that, as expected, 
old words were given higher recognition confidence rat-
ings compared to new words. In an exploratory analysis, 
we further probed participants’ performance in terms of d' 
scores. Specifically, old words correctly judged as old (i.e., 
responses receiving a confidence rating 3 or 4) were deemed 
as hits, while new words erroneously judged as old (by the 
same token, responses receiving a confidence rating 3 or 
4) were deemed as false alarms. A mean d' score of 2.03 
was revealed, suggesting that participants in general were 
able to make correct recognition judgments in this task. This 
confirms that negative strength skewness (that is, CRs > 
misses in strength) is unlikely to be relevant and that our 
key hypothesis – that misses would be selected more fre-
quently than CRs in the forced-choice test – is reasonable. 
The decision criteria C1 - C3 (for instance C1 is the criterion 
below which participants responded with a rating of 1) were 
0.03, 0.75, and 1.20, respectively. These were computed via 
maximum likelihood estimation, assuming equal variances, 
and note also that these criteria are with respect to the mean 
of the new item distribution (0) for consistency with Fig. 3 
and 4.

2AFC task

The variable of interest was the mean accuracy for selecting 
the old word correctly across pairs of words in this task. 
Specifically, mean accuracy was defined as the proportion of 
trials in which participants correctly selected the old word. 
As a pair of old and new words was presented to participants 
in each trial, the chance accuracy is 50%. Across 60 trials 
in total, participants exhibited high overall accuracy (M = 
84.40%, SD = 9.72%), significantly above chance, t(69) = 
29.61, p < .001, dz = 3.56. More critically, for word pairs 
receiving a rating of 1 from the single-item recognition stage 
(i.e., pairs comprising high confidence misses and correct 
rejections), participants on average also showed mean accu-
racy (M = 65.34%, SD = 21.06 %) significantly higher than 
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chance, t(28) = 3.92, p < .001, dz = 0.74. Figure 5 illustrates 
the respective distributions of mean accuracies.

In light of the large number of participants (41 of 70) 
excluded from the above analysis, we fitted a generalized 
mixed-effects model (GLMM) in an exploratory analysis. 
Before running the analysis, we excluded trials that paired 
words of different ratings, as well as trials involving truly 
new words, to ensure that the model was estimated based 
on word pairs with the same ratings. The GLMM allows us 
to include all participants, even those with missing data for 
some ratings.

Specifically, we fitted the GLMM with rating as a fixed 
effect and participant as a random effect, using the “lmerTest” 
package in R (Kuznetsova et al., 2017).4 We set the rating of 
1 (“sure new”) as the baseline condition, such that the inter-
cept represents the logit-transformed accuracy for selecting 
old words rated 1. The model was estimated using maximum 
likelihood estimation with Laplace approximation. The inter-
cept was revealed to be significantly above 0, b = 0.60, SE = 
0.15, z = 4.05, p < .001, which corresponds to an accuracy of 
correctly selecting the old word rated 1 of 0.65, 95% CI [0.58, 
0.71]. This result corroborates the pre-registered analysis above, 
providing evidence for above-chance recognition of old words 
that had been previously rated as “sure new.” Here the effect is 
not restricted to a subset of the entire sample.

For the analysis on the word pairs rated 1 only, partici-
pants exhibited considerable between-subjects differences 
in both the mean accuracy and the number of trials encoun-
tered (M = 8.07, SD = 5.58). In light of this, as another 

exploratory analysis, we investigated whether there were 
systematic variations between participants’ mean accuracy 
and number of trials encountered in this task. As illustrated 
in Fig. 6, there was no apparent association between mean 
accuracy and number of trials encountered. This was further 
corroborated by the non-significant correlation between the 
two variables, r(27) = -.18, p = .35, 95% CI [-.51, .20].5

Finally, a possible objection to our key claim would be to 
suggest that the 2AFC task employed here is more sensitive 
than single-item recognition to unconscious memory. Such 
a view would propose that high-confidence misses and cor-
rect rejections are equated in terms of conscious memory 
(as routinely presupposed by those who employ the method) 
but not unconscious memory, and that 2AFC is sensitive to 
the latter. However, Lee and Shanks (2023) showed that the 
results are very similar when the 2AFC test is replaced by 
a yes/no final recognition stage: ratings were significantly 
higher for old items.

Discussion

In unconscious processing research, adoption of post hoc 
data selection has been widespread. Recent literature has 
underlined methodological shortcomings linked with the 
post hoc subgroup selection approach, a type of post hoc 
data selection which concerns selection of a subgroup 
of participants or trials based on a certain awareness 

Fig. 5   Respective distributions of mean overall accuracies and mean 
accuracies for trials rated 1. Each point represents a participant’s 
mean accuracy in selecting old words correctly. The dashed line rep-
resents accuracy at the chance level (i.e., 0.5)

Fig. 6   Distribution of trial numbers across different accuracies. Each 
point represents a participant’s mean accuracy with the corresponding 
number of trials encountered. Overlapping points have been vertically 
jittered to avoid overlap. The dashed line represents accuracy at the 
chance level (i.e., 0.5)

4  The model specification was: Accuracy ∼ Rating (i.e., ratings 1-4) 
+ (1 + Rating | Participant). The random effect is italicized. We 
included both random intercepts and random slopes in the model, 
in line with the recommendation by Barr et al. (2013). The 95% CI 
for the accuracy estimate was computed via the ‘emmeans’ package 
(Lenth, 2024).

5  This correlation is attenuated by the low reliability of the accuracy 
measure for these rating 1 trials (split-half reliability r = .34, 95% CI 
[-.43, .69], with Spearman-Brown correction; Brown, 1910; Spear-
man, 1910). The disattenuated correlation (Schmidt & Hunter, 2015) 
is r = -.31, 95% CI [-.88, .35].
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threshold, drawing attention to the risk of misinterpret-
ing RttM artefacts as evidence of unconscious processing 
(Rothkirch et al., 2022; Shanks, 2017; Shanks et al., 2021). 
Building upon this body of work, this article demonstrates 
that another pervasive form of post hoc data selection 
– namely, the miss-CR contrast approach – is susceptible 
to artifacts due to Kelley’s Paradox, a phenomenon closely 
associated with RttM. Recognizing the influence of Kel-
ley’s Paradox not only offers a more parsimonious account 
for the findings of studies employing this approach, but 
also poses important theoretical implications, possibly 
obviating the need to postulate unconscious processes 
altogether.

As demonstrated through simulations, when partici-
pants from two distinct groups are selected based on their 
observed scores from a specified interval, a marked dif-
ference in true score means emerges between the two 
groups, assuming these groups are underpinned by two 
distributions of different true score population means. 
While errors are, in principle, randomly distributed, this 
randomness no longer holds once the selection is done 
based on the observed scores. Independence between error 
and true score does not entail independence between error 
and observed score; on the contrary, error positively cor-
relates with observed score as per Eq. (1). This interplay 
between error and observed score causes Kelley’s Para-
dox, leading to a systematic misrepresentation of group 
differences. This is shown in our simulations, where the 
observed scores of advantaged participants tend to be arti-
factually affected by greater negative errors compared to 
their disadvantaged counterparts, hence concealing the dif-
ference in the true score means between the groups. This 
dynamic becomes especially pronounced as the error SD 
increases (i.e., as the reliability of the measure decreases), 
further obfuscating the difference in true score means 
between the groups. Taken together, the simulated results 
underscore the susceptibility of post hoc data selection to 
such statistical artifacts due to Kelley’s Paradox.

As explained, our simulations shed light on how the 
miss-CR contrast approach is susceptible to Kelley’s Para-
dox. When items are selected based on observed recogni-
tion memory, it is similar to selecting participants based on 
observed test scores from an interval below a certain thresh-
old. If the recognition memory strength for an item falls 
below this threshold, the item is recognized as new. How-
ever, due to measurement errors, an item’s observed memory 
strength can differ from its true memory strength. Assuming 
the true memory strength mean for old items exceeds that 
for new ones, the true memory strength of selected old items 
will likely surpass that of new items. This scenario exempli-
fies Kelley’s Paradox, contradicting the common interpre-
tation that these items are of equivalent memory strength 
simply because they have been judged as new.

In our formal analysis based on SDT, we generalized our 
simulation findings to contexts with unequal variances in 
true memory strength distributions for old and new items. 
Utilizing an equation derived by Arnold et al. (1993), our 
demonstration indicated a greater difference in expected true 
mean memory strengths between misses and correct rejec-
tions as the error term SD increases. Crucially, the equilib-
rium of true memory strength between misses and correct 
rejections – which is essential for validating unconscious 
memory claims – is observed only at singular points under 
conditions of unequal variance, and specifically when lower 
true mean values were assigned to true memory strength 
distributions for old items (i.e., at 0.5 and 1). The rarity of 
such equilibria suggests that the use of the miss-CR con-
trast approach to infer unconscious memory could only be 
deemed valid under extremely restricted contexts.

The formal analysis also revealed a second factor at play. 
The evidence for this factor, which we have termed strength 
skewness, becomes apparent when error is assumed to be 
zero. If RttM were the only factor then under these condi-
tions misses and CRs should have equal strength, but Fig. 3 
shows that this is not the case. Indeed when error is zero, 
misses can be stronger, equal to, or weaker than CRs, imply-
ing that even standard SDT does not predict equal strengths 
for misses and CRs (see Berry & Shanks, 2024, for further 
discussion). What is the explanation for this surprising find-
ing, which has evidently not been appreciated by researchers 
employing the miss-CR contrast approach? We attribute it 
to an intrinsic property of normally distributed strengths, 
namely that these strength values will be skewed to a greater 
or lesser extent within any interval on the strength dimension 
(as explained in detail in Appendix C). In equal-variance 
SDT the old item distribution is more right-skewed, mean-
ing that more of its mass is to the right, compared to the 
new item distribution, and this holds in all intervals. Thus, 
the strength of misses is always greater than that of CRs. In 
unequal-variance SDT, in contrast, the old item distribu-
tion can be more or less right-skewed than the new item 
distribution (or under very specific parameter values they 
could be equal). This means that the strength of misses will 
sometimes be greater and sometimes less than that of CRs. 
But regardless of the conditions, the fundamental assump-
tion on which the miss-CR contrast approach rests is invalid.

Through a narrative review, we demonstrate the prevalent 
application of the miss-CR contrast approach across mul-
tiple disciplines, methodologies, and research questions. 
This approach is exemplified in studies ranging from neu-
roimaging analyses to behavioral assessments. Central to 
this approach is the classification of items as misses or CRs 
and the subsequent contrasting based on other performance 
metrics or attributes. Despite differences in operationaliza-
tion, a recurring theme emerges: the memory strength of 
both item categories is considered to be equivalent, and any 
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difference in other metrics is taken as evidence for uncon-
scious memory. Yet, many researchers have overlooked the 
implications of Kelley’s Paradox, or the broader RttM phe-
nomenon. While not dismissing all findings based on the 
miss-CR contrast approach, it is pivotal to acknowledge that 
when this method stands as the primary analytical technique, 
the findings risk being caused by statistical artifacts due to 
Kelley’s Paradox and/or strength skewness. Indeed, the 
susceptibility of the miss-CR contrast approach to Kelley’s 
Paradox is further illustrated in our experiment: during the 
2AFC task, focusing on word pairs rated 1 (i.e., judged as 
“sure new”) from the preceding recognition stage (i.e., pairs 
comprising high confidence misses and correct rejections), 
participants consistently exhibited above-chance accuracy in 
correctly choosing the old words. This contradicts the intui-
tive presumption that old and new words rated as 1 share 
equivalent memory strength.

Are there any conditions in which the miss-CR contrast 
approach could support valid inferences about unconscious 
processes? One scenario that offers compelling evidence 
comprises an inequality in strengths for misses and CRs that 
is in the opposite direction to their mappings onto an implicit 
measure. For instance, suppose that our SDT analysis yields 
the necessary parameters for calculating the mean strengths 
of misses and CRs (d', C for each response category, and 
an estimate of reliability) under an unequal-variance model 
and we conclude that the mean strength of misses is lower 
than that of CRs for high-confidence “new” responses. At 
the same time, we observe a behavioral measure, such as 
RTs in a repetition priming task, which implies greater 
priming for misses than CRs. These two opposing patterns 
(CRs stronger than misses in recognition memory, misses 
stronger than CRs in priming) are incompatible with any 
model which seeks to explain both awareness (i.e., recogni-
tion familiarity) and behavior via a single latent construct 
and hence would provide strong support for the involvement 
of an unconscious process.

But note that this inference would raise an additional set 
of issues if a neural measure is substituted for the behavio-
ral one, because we would need validation of the direction 
of correlation between the neural signal and the underly-
ing strength variable. Repetition suppression (Lee et al., 
2020) shows that this association can often be negative. For 
example, the opposing and quite plausible pattern in which 
misses are stronger than CRs in recognition memory while 
a neural signal is stronger for CRs than misses would not 
represent strong evidence for an unconscious process. The 
reason is that strength and neural activation are inversely 
correlated in repetition suppression, so a model with a sin-
gle latent factor would be sufficient to accommodate the 
results.

Another pattern that could provide support for uncon-
scious processes is one in which the magnitude of the miss-
CR difference is equivalent to that of the overall old-new 
difference (i.e., d' calculated across all old and new items). 
The RttM/skewness account always predicts that the miss-
CR difference will be smaller in magnitude than the old-new 
difference. This can be seen for the equal-variance case in 
Fig. 4. In most conditions the miss-CR difference is much 
smaller than d', although they converge under extremely con-
servative response criteria. Hence a pattern in which these 
differences are similar (and the criterion is not extreme) 
would be a challenge for the account.

A potential limitation to the inferences drawn here 
should be mentioned. The significance of strength skewness 
depends on the suitability of the SDT framework as a model 
for the data-generation process. In particular, our strength 
skewness analyses (Fig. 3 and 4) depend on the strengths 
of old and new (or target and non-target) items being nor-
mally distributed. There would be no skewness effect if, 
for example, the distributions were uniform (see Berry & 
Shanks, 2024, for further discussion). The interpretation 
could change even more radically if SDT was replaced by a 
different decision model. High-threshold theory, for exam-
ple, is a discrete state model of recognition in which old 
items are detected as “old” with probability do and misiden-
tified as new with probability 1- do. In this account, old and 
new items in the non-detect (“new”) state are theoretically 
indistinguishable, and hence misses and CRs are truly in 
equivalent states of unawareness. Berry and Shanks (2024) 
reported fits of one particular version of high-threshold 
theory to experiments similar to the one reported here, in 
which participants were able to discriminate misses and CRs 
in a forced-choice test, and found that the model was able to 
reproduce key aspects of the results. Thus, it is possible that 
a high-threshold theory analysis could justify employing the 
miss-CR approach to identify unconscious processes. This 
certainly merits further exploration.

In summary, the current article demonstrates the pitfalls 
of the miss-CR contrast approach, particularly its suscepti-
bility to statistical artifacts stemming from Kelley’s Para-
dox and strength skewness. Given the prevalence of this 
approach in unconscious processing research – spanning 25 
years (e.g., Rugg et al., 1998) – the implications are pro-
found. While we do not refute the possibility that previ-
ous findings derived from this approach may truly evidence 
unconscious processing, we submit that Kelley’s Paradox 
and strength skewness offer a more parsimonious interpre-
tation. It is imperative for researchers to critically assess 
purported evidence of unconscious memory, ensuring that 
they have adequately addressed the potential confounds 
introduced by these two factors.
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Appendix A

Observed scores (X) are created by adding error (E) to a true 
score (T), X = T + E, where T~N(μt, σt), and E~N(0, σe),  
and r(T, E) = 0. X is therefore distributed as 
X ∼ N
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)1∕2) . To represent the greater scores 
of Group 2 compared to Group 1, μt is assumed to differ 
between groups. Thus, for Group 1, μt = μt1, and for Group 2, 
μt = μt2, where μt2 > μt1.

To obtain the subset of X falling within a particular range, 
the scores are truncated according to an upper bound Cu and 
a lower bound Cl, where Cu > Cl. To obtain the expected 
value of T in the subset of X, we made use of the fact that 
the joint distribution of T and X is a bivariate normal, with 
mean vector (μt,   μt), variance vector 
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When the distribution of X is truncated according to Cl 
and Cu, T in the subset is distributed as a nontruncated mar-
ginal of a truncated bivariate normal (Arnold et al., 1993), 
which has the following expected value:
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c = Φ(β) − Φ(α), and Φ is the cumulative normal distribution 
function. The expected T in the subset of X can therefore be 
obtained for Group 1 when μt = μt1, and for Group 2 when 
μt = μt2. T for Group 1 represents correct rejections while T 
for Group 2 represents misses.

The subset of X has a truncated normal distribution, with 
expected value:

Appendix B

If X is a normally distributed variable with mean μ and 
standard deviation σ, then the equation for the expected 
value of a one-sided truncated normal distribution (upper 
tail) is:
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where ϕ is the normal density function, Φ is the cumulative 
normal distribution function, and b is the truncation point 
(Forbes et al., 2011).

In the equal variance SDT model, the mean strength 
of new items, μ(new), can be fixed to zero without loss of 
generality, and σ(new) and σ(old) can similarly be fixed to 
1. The mean of old items, μ(old), is therefore equal to d′, 
and the truncation point b is the response criterion C. The 
expected strength of misses can therefore be written as:

That of correct rejections is:

It may be possible to prove the inequality below formally

but, at least by simulation, the difference of E(strength | miss) 
– E(strength | correct rejection) is always positive, as shown 
in Fig. 4.

Appendix C

Figure 3 (left panels) and Fig. 4 show that under the equal-
variance SDT model the expected value of an interval from 
-∞ to a criterion C, E(X | X < C), is always greater under the 
old (i.e., misses) than the new item distribution (i.e., CRs). 
This makes intuitive sense as the left tail is longer under the 
new item distribution. For instance, if the criterion is –1.5 
then the mean value for misses (based on the formula in 
Appendix B) is –1.82 while the mean for CRs is –1.94. The 
effect is caused by different degrees of skewness: skewness 
is –1.61 for misses and –1.44 for CRs. These are extreme 
degrees of skewness, with the value being more negative 
for misses.

Somewhat less intuitively, both the inequalities in 
expected value (old items > new items) and in skewness 
(new items > old items) hold across all intervals on the 
strength dimension.6 To illustrate this, we used the function 
rtruncnorm from the truncnorm package in R to generate 
106 random numbers from a truncated normal distribution 
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6  We refer to the truncated distributions in these intervals as old/new 
rather than misses/CRs because the latter terms only apply if par-
ticipants are instructed to place new items in the interval. If they are 
instructed instead to place old items into the interval – more likely for 
an interval at higher strength values – the items would be classified as 
hits/false alarms.
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with mean = 0 and σ = 1.0 and the same number from a 
truncated normal distribution with mean = 1 and σ = 1.0, in 
both cases from the interval [1.0, 1.5] illustrated by the red 
lines in Fig. 7. The distributions of these numbers, and their 
resulting means, are shown in Fig. 8. The mean is higher for 
old than new items (strength skewness) while skewness is 
lower for old (0.04) than new items (0.22): That is, the old 
item distribution is more symmetrical.

This relatively greater positive skew for new items reflects 
the fact that more of the distribution is shifted leftwards, creat-
ing a longer rightwards tail (although this has been truncated). 
The leftwards shifting of the distribution pulls down the mean.

Figure 9 shows the distributions for a different interval, 
from –1.5 to –1.0. Once again, skewness is lower for old 
(–0.39) than new items (–0.22) while the sample mean is 

greater for old items. In this case the old item distribution 
is more asymmetrical than the new item distribution. In 
analogy with Fig. 8, the relatively greater negative skew for 
old items reflects a longer leftwards tail, and the rightwards 
shifting of the distribution pulls the mean upwards.

Intervals under a normal curve with mean strength = 0 
have extreme negative skewness for extreme negative strength 
values, gradually increasing (less negative) skewness as 
strength increases, have skewness = 0 when strength = 0, and 
have gradually larger positive skewness as strength increases 
further. Because the old item distribution is simply the new 
item distribution shifted upwards, this means that skewness is 
always lower under the old than the new item distribution. The 
old item distribution therefore always has relatively more of 
its mass shifted upwards within the interval compared to the 
new item distribution, and hence has a higher mean.

In both Fig. 8 and Fig. 9 there are more higher values for 
old than new items and more lower values for new than old 
items. For the interval [1.0, 1.5] this seems reasonable as 
the downward slope of the normal curve is steeper in this 
interval for new than for old items, as can be seen in Fig. 7. 
However, the relative slopes in Fig. 9 seem puzzling at first 
glance because, as Fig. 7 shows, the new item distribution 
slopes more steeply upwards in this interval than the old 
item distribution. How can the old item distribution simulta-
neously curve less (Fig. 7) and more (Fig. 9) steeply upwards 
than the new item distribution?

The answer is that in this interval, the likelihoods under 
the old item distribution are much lower than those under 
the new item distribution, yet in the simulation shown in 
Fig. 9 (and similarly for Fig. 8) we generated equal numbers 

Fig. 7   Equal variance signal detection theory. The mean of the new 
item distribution is 0 and that of the old item distribution is 1.0. 
For both distributions the standard deviation σ = 1.0. The blue lines 
demarcate the interval [–1.5, –1.0] and the red lines the interval 
[1.0, 1.5]

Fig. 8   Distributions of random numbers generated from truncated 
normal distributions in the interval [1.0, 1.5]. The pink distribution 
represents new items (mean = 0, σ = 1.0) and the blue distribution is 

for old items (mean = 1, σ = 1.0). The vertical lines mark the resulting 
mean values and illustrate the key strength skewness effect
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of observations from each distribution. Stated differently, 
the blue distribution in Fig. 9 would be much lower and 
less steep if we had sampled in accordance with the likeli-
hoods. However, sampling from the underlying distributions 
in this way would have masked the critical feature that these 
simulations reveal: At every point on the strength dimension, 
the slope of the old item distribution is steeper than that of 
the new item distribution if the likelihoods are equated, and 
hence more of its mass is towards the right.

This is easy to see analytically. For a standard normal 
distribution,

and the first derivative (i.e., slope) is

Hence the slope, relative to the likelihood, is simply

Thus, the relative slope decreases linearly with x. Because 
the old item distribution is identical to the new item distribu-
tion but shifted upwards, the slope of the old item distribu-
tion is always greater than that of the new item distribution.

In sum, for all intervals across the strength dimension, 
the expected value E(X) is greater for old than for new 
items (strength skewness) in the equal-variance SDT 
model, provided d′ > 0. At the same time, skewness itself is 
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always greater for new than for old items. It is this skewness 
difference that explains the difference in mean strengths.
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