
DAI: A Dependencies Analyzer and Installer For
Solidity Smart Contracts

Giacomo Ibba1, Giuseppe Destefanis2, Rumyana Neykova2, Marco Ortu1,
Sabrina Aufiero3, Silvia Bartolucci3

1University of Cagliari, Italy
2Brunel University London, UK
3University College London, UK

{giacomo.ibba,marco.ortu,roberto.tonelli}@unica.it
{sabrina.aufiero.22,s.bartolucci}@ucl.ac.uk

{rumyana.neykova,giuseppe.destefanis}@brunel.ac.uk

Abstract—The growing importance of Decentralized Applica-
tions (dApps) in areas such as the Internet of Things (IoT),
Cybersecurity, and Finance is playing a crucial role in advancing
software maintenance, security, and data sharing. Understanding
the complex architecture and components of dApps is essential to
harness their full benefits. This often involves the challenging task
of identifying and retrieving key components during the dApp
compilation process, particularly when dealing with multiple
external dependencies. A case in point is the variety of versions in
the OpenZeppelin libraries, where finding compatible elements
can be a laborious process. In response to this challenge, we
introduce DAI (Dependency Analyser and Installer), a novel tool
that automates the identification of compatible external depen-
dency versions for specific smart contracts. This tool significantly
simplifies the compilation process for dApps that incorporate
external modules, making it more efficient for developers and
researchers. We evaluated DAI on 57 real-world dApps, achieving
success in determining the right dependency match for 50 cases.
However, the inability to compile the remaining 7 dApps due to
missing files and artifacts highlights the ongoing complexities in
dApp development.

Keywords—Blockchain, Smart Contracts, Decentralized Appli-
cations, Software Engineering

I. INTRODUCTION

The increasing relevance of Decentralized Applications
(dApps) is revolutionizing sectors where network control tradi-
tionally rests with a single node. These applications, free from
central management, offer improved security and transparency,
significantly enhancing the scalability of IoT and financial
applications. Understanding the architectural components of
dApps is vital for effective software maintenance and de-
velopment. Examining the architecture of a dApp involves a
thorough analysis of source code artifacts, including external
dependencies. For instance, Solidity-based dApps often rely
on OpenZeppelin libraries, which are essential for increasing
security, scalability, and preventing vulnerabilities like over-
flows, underflows, and reentrancy attacks. One of the critical
steps in dApp development is extracting key components,
sometimes requiring the compilation of the dApp. Compiling
dApps without external dependencies is relatively simple,

but those with external dependencies, such as OpenZeppelin
libraries, present unique challenges.

To illustrate the above challenge, consider Figure 1, which
shows the web of dependencies and versions that characterizes
typical dApps. Each library poses different constraints and
brings different paths, contracts, and functions, which can
lead to compatibility issues with the dApp’s chosen compiler
version. Identifying the correct dependency version that aligns
with the dApp is a complex task. The complexity of identi-
fying correct dependency versions is further amplified when
dealing with large datasets of smart contract codebases, each
characterized by a unique set of requirements.

To tackle this problem, we developed DAI (Dependency
Analyzer and Installer). This tool automatically detects and
installs the right versions of external dependencies for dApps.
By enabling the compilation and production of binaries from
datasets with complex dependencies, DAI expands the appli-
cability of these datasets for the evaluation of both static and
dynamic analysis tools. It allows for the effective use of purely
codebase-driven datasets.

We tested DAI on a varied set of dApps, each importing
different versions of external dependencies. The tool effec-
tively identified the compatible versions in most cases, with
the exceptions of applications where missing files hindered
compilation.

II. RELATED WORK

Recent literature has explored various aspects of the
development of blockchain-based decentralized applications
(dApps). Here we mention only a few studies to give a
general understanding of the plethora of applications of smart
contract analysis. Udokwu et al. [4] conducted an evaluation
of existing design methodologies, emphasizing the importance
of robust frameworks in the development of DApps. This is
complemented by the work of Duan et al. [2], who have
focused on testing techniques and tools specifically targeting
DApps development, highlighting the unique challenges they
present. Bartl [1] provides an analysis of utilization trends
in dApps, offering valuable statistical data on the adoption



Fig. 1: Dependency relations of a DAppsample (Figure 4 [5])

and impact of these applications. These studies contribute to
our understanding of the design, testing, and usage patterns
of dApps, but also highlight the importance of large-scale
analysis of related codebases.

Other related works explore architectural components and
dApps’ structure. For example, MindTheDApp [3] is a
toolchain designed specifically for the understanding of
Ethereum-based applications structure and operational logic,
with a distinct focus on a complex network-driven approach.
All of the above tools for smart contract analysis rely on
existing datasets of smart contract codebases.

In the context of Ethereum smart contract development,
environments like Truffle 1, Hardhat 2 and Ethereum Package
manager 3, automate aspects of building, testing, and deploy-
ing dApps, but their capabilities are insufficient for analyzing
large datasets where dependencies vary greatly. Truffle provide
a suite of tools to simplify and streamline the process of devel-
oping, testing, and deploying smart contracts on the Ethereum
blockchain. Hardhat as well provides an environment for
dApps development and customization, but unlike Truffle has
more advanced testing capabilities, which can be helpful for
writing more comprehensive and robust tests. However, as for
Truffle or the Ethereum Package Manager (ethPM), developers
may not release all the artifacts of the application, like the
configuration files, which are crucial to gather information
about dependencies versions. Neither of these tools can be
used to compile smart contracts from diverse source-code-only
datasets.

The motivation behind the development of our tool is to en-
able researchers to perform large-scale smart contract analysis,
which requires large datasets of programs relying on complex
dependencies. By simplifying the process of compilation, the
analysis can be performed on the contract codebase, without

1https://trufflesuite.com/
2https://hardhat.org/
3https://www.ethpm.com/

requiring the contract binaries. To the best of our knowledge,
our Dependencies Analyzer and Installer (DAI) is the first tool
to analyze and suggest the compatible dependency version
(which is the one granting the compilation of the whole
application) for a specific decentralized application.

III. RESEARCH METHODOLOGY

A critical initial step was to secure real-world dApps for
tool testing. We referred to the work of [5] which introduced
DappScan, a collection of buggy decentralized applications.
An examination of this dataset revealed a sample of 550
dApps incorporating external dependencies, from OpenZep-
pelin, PancakeSwap, Uniswap, Opensea, and other libraries.
For this phase of our study, we focused solely on dApps
using OpenZeppelin contracts as external dependencies, with
plans to extend DAI’s capabilities to additional dependencies
in future work.

The architecture of the tool is depicted in Figure 2. It
features (1) a module for extracting the pragma version of the
compiler utilizing the ANTLR parser generator; (2) a module
designed for selecting and altering the compiler version,
and (3) a dependency linker and matcher that identifies the
(openzeppelin) dependencies and adjusts the relative path of
the imports in the contracts.

The process of scanning and analyzing dependencies is
complex due to the variation in files and functionalities across
different versions. Focusing on OpenZeppelin contracts, it was
necessary to gather all available versions of the openzeppelin/-
contracts dependency. We compiled a comprehensive JSON
file listing every release of this particular dependency. For each
major version (e.g., 0.5), we created a detailed JSON file that
provides, for each specific release (like 0.5.0, 0.5.1), a list of
paths and accessible files, along with the exact pragma version
used in each file.

Once the scanning process is completed, DAI outputs a
list of OpenZeppelin contract versions that are compatible
with the tested dApp. This approach ensures a thorough and



@openzeppelin/contracts @openzeppelin/files version

Dependencies

dApp dApp dApp

Dataset

pragma version extractor (antlr) solidity compiler selector dependency (openzeppelin) linker

DAI

Fig. 2: DAI Architecture Toolchain

accurate assessment of compatibility between the dApps and
their dependencies.

A. Dataset

Our study utilized the DAppScan dataset, a comprehensive
repository encompassing a diverse range of dApps with known
vulnerabilities, both deployed and undeployed. Within this
dataset, each dApp entry includes the source code, comprised
of smart contracts, information on any identified vulnerabilities
(if applicable), as well as professional audit reports provided
by auditing firms

We selectively filtered the dApps that incorporated the
@openzeppelin/contracts dependency. This process yielded
a subset of 57 dApps, spanning various Solidity pragma
versions. The version of Solidity used in the source files is
a key determinant in establishing which dependency version
is compatible with the decentralized application.

There are 79 reported versions of @openzeppelin/contracts
available through npm, including beta versions. Through npm,
it’s feasible to install compatible dependency versions for
dApps using Solidity pragma versions ranging from 0.5 to 0.8.
However, applications operating with the 0.4 root version often
necessitate obtaining the dependency directly from GitHub or
creating custom contracts based on OpenZeppelin guidelines.
Since retrieving or constructing these ad-hoc dependencies
can be arduous, our current implementation of DAI does not
support the 0.4 version.

B. Solidity And Dependency Versions

DAI currently accommodates Solidity versions from 0.5
to 0.8. It is important to note that compatibility issues can
arise between different versions. For example, @openzep-
pelin/contracts designed for the 0.5 Solidity pragma version
are incompatible with higher major versions, such as 0.6.
Similarly, newer Solidity versions, like 0.8, are not backward
compatible with earlier versions like 0.7.

Furthermore, there can be compatibility discrepancies
within the same root version. For instance, OpenZeppelin
contracts compatible with versions beyond 0.8.20 may not
work with dApps designed for general versions above 0.8.0.
These incompatibilities often stem from various updates in
each release, including semantic and syntactic alterations,
explicit requirements, and the phasing out of certain features.

C. Dependency Identification Process

Initially, DAI examines each smart contract within a dApp,
focusing on those importing OpenZeppelin contracts. It ex-
tracts the Solidity pragma from these files, while Solidity files
not importing OpenZeppelin dependencies are excluded from
the analysis.

In some cases, a dApp might use modules with varying
Solidity pragma versions for specific design and compatibility
purposes. These modules might require different versions of
the same dependency for successful compilation. DAI evalu-
ates each Solidity file independently and identifies compatible
dependency versions. However, the task of aligning each
module with the appropriate version rests with the user.

Once DAI determines the version of a dApp, it searches for
all related releases of @openzeppelin/contracts and assesses
their compatibility. The following cases illustrate how DAI
handles different pragma specifications:

• pragma solidity ˆ0.5.2;: A file with this line will compile
with versions later than 0.5.2 but not with versions
starting from 0.6.0. DAI will consider releases greater
than 0.5.2 and less than 0.6.0.

• pragma solidity ∼0.7.0;: This indicates compatibility with
versions of the Solidity compiler that align with 0.7.0,
including minor updates and bug fixes, but excluding
major changes.

• pragma solidity =0.8.2;: A file with this directive is
intended to compile only with version 0.8.2.

• pragma solidity >0.7.0 <0.9.0;: This range specifies that
the contract is compatible with compiler versions between
0.7.0 and 0.9.0. DAI must first identify the appropriate
Solidity version for the contract before determining the
compatible dependency version.

DAI’s final step is to analyze the extracted possibilities,
focusing on the compatibility between dependency versions
and dApp imports. This involves a two-step analysis:

• Path Comparison: DAI compares the source file paths
imported by the dApp with those in the dependency. It
examines if the dependency’s path matches the dApp’s
imported path. A mismatch indicates incompatibility be-
tween the current dependency version and the dApp’s
expectation.

• Pragma Version Check: DAI then verifies if the pragma
versions in the dependency’s source files align with



those in the dApp. Even if two dependency versions
share the same root pragma and file paths, differing
specific Solidity versions might lead to incompatibility.
DAI evaluates these pragma versions against each other
to confirm compatibility.

IV. RESULTS AND DISCUSSION

Our testing of DAI focused on its ability to select compat-
ible versions of @openzeppelin/contracts for various dApps.
The primary method to verify compatibility was by compiling
the dApps; successful compilation without errors indicated that
DAI correctly identified compatible modules and dependen-
cies.

We applied DAI to a subset of 57 dApps that import
@openzeppelin/contracts. In 50 of these cases, DAI accurately
detected the dependency versions that aligned with each
dApp’s Solidity version. The remaining 7 dApps could not be
compiled due to missing files in their smart contracts, leading
us to categorize these instances as unsuccessful analyses. This
limitation stems from our reliance on an external dataset,
which may not always include all necessary modules and
artifacts.

Significantly, DAI proved effective even in complex scenar-
ios, such as those involving compiler range specifications (e.g.,
>0.7.0 <0.9.0). All four dApps using these ranges were suc-
cessfully scanned by DAI. Additionally, DAI handled dApps
with modules importing different dependency versions. We
validated DAI’s output in these cases by manually linking the
suggested @openzepellin/contracts versions to the respective
modules before compilation.

V. THREATS TO VALIDITY

In evaluating DAI, we must consider several factors that
could affect its validity. A primary concern is the scope of
our dataset. The 57 applications we used represent a specific
segment of dApps and may not fully capture the broader
complexity and range of artifacts present in the wider dApp
ecosystem.

Another key aspect is the nature of our test cases. Cur-
rently, DAI’s testing is confined to real-world scenarios. While
valuable, this approach might overlook complex, hypothetical
cases that could challenge and refine the tool further. Creating
and testing these intricate, custom scenarios is a challenging
yet necessary step for a comprehensive assessment.

The scope of @openzeppelin/contracts versions supported
by DAI also poses a limitation. Presently, DAI does not
accommodate dependencies that are compatible with the 0.4
Solidity version, which, despite not being installable via npm,
remains relevant in certain contexts.

Additionally, DAI’s current focus is limited to
@openzeppelin/contracts, excluding other significant
dependencies like @openzeppelin/contracts-upgradeable
and @openzeppelin/contracts-ethereum-package. Moreover,
popular dependencies such as @pancakeswap, @uniswap and
opensea are not yet supported, which restricts the potential
applications of our tool.

While DAI shows promise, these limitations highlight the
need for ongoing development to broaden its applicability and
enhance its robustness in diverse scenarios.

VI. FUTURE WORK AND CONCLUSIONS

Our future efforts will focus on addressing the identified
threats to DAI’s validity and enhancing its applicability. A key
goal is to expand our dataset by acquiring more diverse dApps.
This expansion, coupled with the creation of custom test
cases featuring complex imports, will enable a more thorough
assessment of DAI’s effectiveness.

A primary objective is to ensure DAI’s compatibility with
all versions of @openzeppelin/contracts, including those for
Solidity 0.4. Keeping DAI updated with the latest versions of
these contracts will also be a priority.

We plan to broaden DAI’s scope by incorporating additional
external dependencies commonly used in dApps. Integrating
these dependencies will significantly enhance DAI’s function-
ality, allowing for a more comprehensive analysis of a wider
range of applications. Additionally, we aim to make DAI
compatible with deprecated packages, recognizing that many
deployed dApps may still depend on these older versions.

Another ambitious goal is to enable DAI to work with
dependencies sourced from GitHub. This task presents unique
challenges due to the difficulty in tracking dependencies
available through such external platforms.

Our work aims to turn DAI into an essential tool in
the toolbox of smart contract developers and researchers,
helping them navigate the diverse and evolving landscape of
blockchain technology. Our preliminary analysis has show-
cased that DAI’s can compile dApps with a wide array of
external dependencies and varying compiler versions. This not
only highlights DAI’s potential in assisting developers and
researchers in pinpointing compatible dependency versions for
their dApps but also its capability to handle and adapt to a
richly varied set of smart contracts.

ACKNOWLEDGEMENT

S.B., G.D., R.N. and M.O. acknowledge support from the
Ethereum foundation grant FY23-1048.

REFERENCES

[1] Mathias Bärtl. A statistical examination of utilization trends in decen-
tralized applications. Frontiers in Blockchain, 6:01–12, 2023.

[2] Yue Duan, Xin Zhao, Yu Pan, Shucheng Li, Minghao Li, Fengyuan Xu,
and Mu Zhang. Towards automated safety vetting of smart contracts in
decentralized applications. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 921–935,
2022.

[3] Giacomo Ibba, Sabrina Aufiero, Silvia Bartolucci, Rumyana Neykova,
Marco Ortu, Roberto Tonelli, and Giuseppe Destefanis. Mindthedapp:
A toolchain for complex network-driven structural analysis of ethereum-
based decentralised applications. IEEE Access, pages 1–1, 2024.

[4] Chibuzor Udokwu, Henry Anyanka, and Alex Norta. Evaluation of
approaches for designing and developing decentralized applications on
blockchain. In Proceedings of the 4th International Conference on
Algorithms, Computing and Systems, pages 55–62, 2020.

[5] Zibin Zheng, Jianzhong Su, Jiachi Chen, David Lo, Zhijie Zhong, and
Mingxi Ye. Dappscan: Building large-scale datasets for smart contract
weaknesses in dapp projects. arXiv preprint arXiv:2305.08456, 2023.


	Introduction
	Related Work
	Research Methodology
	Dataset
	Solidity And Dependency Versions
	Dependency Identification Process

	Results and Discussion
	Threats To Validity
	Future Work and Conclusions
	References

