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involved in immunity against intestinal pathogens
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Abstract

We performed a genome-wide association study (GWAS) of IgA nephropathy (IgAN), the most 

common form of glomerulonephritis, with discovery and follow-up in 20,612 individuals of 

European and East Asian ancestry. We identified six novel genome-wide significant associations, 

four in ITGAM-ITGAX, VAV3 and CARD9 and two new independent signals at HLA-DQB1 and 

DEFA. We replicated the nine previously reported signals, including known SNPs in the HLA-

DQB1 and DEFA loci. The cumulative burden of risk alleles is strongly associated with age at 

disease onset. Most loci are either directly associated with risk of inflammatory bowel disease 

(IBD) or maintenance of the intestinal epithelial barrier and response to mucosal pathogens. The 

geo-spatial distribution of risk alleles is highly suggestive of multi-locus adaptation and the 

genetic risk correlates strongly with variation in local pathogens, particularly helminth diversity, 

suggesting a possible role for host-intestinal pathogen interactions in shaping the genetic 

landscape of IgAN.

IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis and the 

leading cause of end-stage kidney failure in China1. The diagnosis is made by kidney 

biopsy, which shows predominant deposition of IgA-containing immune complexes in the 

glomerular mesangium, leading to glomerulonephritis, glomerular sclerosis, and progressive 
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loss of kidney function. The etiology of IgAN is poorly understood and the genetic 

architecture is complex. The disease is most prevalent in East Asians, less frequent in 

Europeans, and relatively rare in individuals of African ancestry. For example, Asian-

Americans have a 4-fold higher incidence of end-stage renal disease due to IgAN compared 

to European-Americans, and nearly 7-fold higher compared to African-Americans2. IgAN 

affects individuals of all age groups, with a peak incidence in the 2nd or 3rd decade of life; 

the factors determining age of onset are unknown.

To date, there have been three GWAS for IgAN3–5. The results of these studies demonstrate 

a strong contribution of the major histocompatibility (MHC) locus to disease risk. The two 

largest studies, both based on Asian discovery cohorts, detected four additional non-HLA 

loci, including chromosome 1q32, comprising a common deletion of the complement factor 

H related CFHR3 and CFHR1 genes (CFHR3,1-delta); 8p23 comprising the α-defensin 

(DEFA) gene cluster; 17p13 (including TNFSF13), and 22q12 (including HORMAD2 and 

several other genes)3,4. Cumulatively, these GWAS loci explain about 5% of the total 

disease risk. Additionally, variation in risk allele frequency explains a substantial fraction of 

the observed ethnic variation in disease prevalence, with risk alleles having substantially 

higher frequencies in Asians compared to Europeans3. These findings raise the possibility 

that additional disease loci might have been missed owing to fixation of risk alleles in Asian 

populations. To identify new disease loci, we performed a GWAS twice the size of the prior 

largest study and have analyzed a discovery cohort based predominantly on European 

subjects.

RESULTS

Study Design

In stage I (discovery) we performed a genome-wide analysis in 2,747 biopsy-confirmed 

cases and 3,952 controls, including three new cohorts comprising 1,553 cases and 3,050 

controls of European ancestry and the previously published Han Chinese discovery cohort of 

1,194 cases and 902 controls (Table 1, Supplementary Tables 1–3, Supplementary Note). 

For each cohort, we performed principal component analyses to assure adequate ancestry 

matching between cases and controls (Supplementary Figure 1). All individual samples were 

imputed to a common set of >1 million SNPs (Supplementary Table 4) using ancestry-

matched HapMap-3 reference panels (Supplementary Figure 2). Primary association testing 

was performed after accounting for imputation uncertainty and significant principal 

components of ancestry. We detected minimal effect of population stratification within each 

cohort (λ 1.01–1.06, Supplementary Figure 3). The association results from individual 

cohorts were combined using genome-wide fixed effects meta-analysis. We identified 

multiple suggestive signals and several distinct peaks exceeding genome-wide significance 

in the joint analysis of the discovery cohorts (Supplementary Figure 4). Top signals, defined 

by P < 5 × 10−5, were genotyped in additional 4,911 cases and 9,002 controls (stage II), 

followed by meta-analysis to identify genome-wide significant signals across the combined 

cohorts of 20,612 individuals. This two-stage design was adequately powered to detect ORs 

as small as 1.15–1.25 (Supplementary Table 1).

Kiryluk et al. Page 2

Nat Genet. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the combined analysis, we identified six new genome-wide significant signals (Figure 1, 

Supplementary Figure 5, Table 2, and Supplementary Tables 5, 6, and 7). These included 

four signals in three novel loci, chr.1p13 (VAV3 locus), chr.9q34 (CARD9 locus), and chr.

16p11 (ITGAM-ITGAX locus), and two new independent signals within the previously 

known HLA-DQ/DR and DEFA regions. We also confirmed associations at all nine 

previously identified loci at chr.6p21 (HLA-DQ/DR, TAP1/PSMB8, and HLA-DP loci), chr.

1q32 (CFHR3,1-delta locus), chr.8p23 (DEFA locus), chr.17p13 (TNFSF13 locus), and chr.

22q12 (HORMAD2 locus).

New IgAN susceptibility loci

Chr.16p11: ITGAM-ITGAX locus—This locus represented the strongest novel non-HLA 

signal (Figure 1b). The top signal, rs11574637, is an intronic SNP in ITGAX encoding 

leukocyte-specific integrin αX, a component of complement receptor 4 (CR4) involved in 

leukocyte cell adhesion, migration, and phagocytosis of complement-coated particles by 

monocytes and macrophages6. This SNP was genome-wide significant in the discovery 

phase (OR 1.47, P = 2.8 × 10−10) and in the combined meta-analysis (OR 1.32, P = 8.1 × 

10−13). It is noteworthy that the risk allele (T) at this locus represents an ancestral (chimp) 

allele with frequency of 0.82 in Europeans and 1.0 in Asians, explaining why this strong 

signal was not detected in prior GWAS based on Asian discovery cohorts. Prior studies have 

shown that rs11574637 is associated with risk of systemic lupus erythematosus (SLE)7. 

Interestingly, the IgAN risk allele (T) is protective against SLE, suggesting complex 

interplay between these two disorders causing nephritis.

In addition, we detected another genome-wide significant intergenic SNP in this region, 

rs11150612 (P = 1.3 × 10−11), which is poorly correlated with rs11574637 (r2 = 0 for Asians 

and r2 = 0.12 in Europeans). Stratified conditional analysis strongly suggests that 

rs11150612 represents an independent signal and will require confirmation in larger 

European cohorts (conditioned OR 1.13, P = 1.6 × 10−6, Supplementary Table 8). The risk 

allele at rs11150612 is a derived (non-chimp) allele with frequency of 0.36 in Europeans and 

0.75 in Asians. This allele is also associated with increased expression of ITGAX in 

peripheral blood cells8 (Supplementary Table 9). Moreover, examination of 1000 Genomes 

data revealed that this risk allele is in strong LD with an ITGAX missense variant predicted 

to be damaging (rs2230429, P517R, r2=0.97, but not typed in our study, Supplementary 

Table 10).

Chr.9q34: CARD9 locus—We observed a genome-wide significant signal at rs4077515 

(OR 1.16, P = 1.2 × 10−9, Figure 1c), which was supported by both Asian and European 

cohorts (Supplementary Table 6). The rs4077515-T risk allele results in p.Ser12Asn 

substitution in CARD9 (encoding Caspase recruitment domain-containing protein 9, an 

adapter protein that promotes activation of NF-κB in macrophages). This substitution is 

associated with higher expression of CARD9 in monocytes9, lymphoblastoid cell lines10, 

and peripheral blood cells8 (Supplementary Table 9). This same allele also confers increased 

risk of ulcerative colitis and Crohn’s disease11,12 (Supplementary Table 11).
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Chr.1p13: VAV3 locus—The top signal, rs17019602 (Figure 1d) is an intronic SNP in 

VAV3, a gene encoding a guanine nucleotide exchange factor for Rho GTPases that is 

important for B- and T-lymphocyte development and antigen presentation13,14 (OR 1.17, P 

= 6.8 × 10−9). Both Asian and European cohorts support this association (Supplementary 

Table 6). A common variant in VAV3 has previously been associated with hypothyroidism, 

likely secondary to autoimmune etiology15. However, the hypothyroidism risk allele shows 

no linkage disequilibrium with rs17019602 (r2 = 0), indicating that the IgAN signal 

represents a distinct allele at this locus.

Identification of novel and ethnicity-specific signals at known loci

Chr.6p21: Novel signal at HLA-DQ/DR locus—The strongest signal in the present 

GWAS represents a novel association within the HLA-DQ/DR locus (rs7763262, OR 1.41, P 

= 1.8 × 10−38; Supplementary Figure 6). This signal persisted after conditioning on the 

previously described SNPs in the region (conditioned OR 1.31, P = 6.2 × 10−14, 

Supplementary Table 12); the three previously reported SNPs remained significant after 

conditioning on rs7763262. Notably, we detect a stronger effect of rs7763262 in Europeans 

(OR 1.49, P = 1.2 × 10−30) compared to Asians (OR 1.30, P = 1.2 × 10−10, Supplementary 

Table 6, OR difference P = 0.012). To identify specific HLA alleles that may underlie 

associations in this region, we imputed classical HLA alleles (Supplementary Table 13). 

Stepwise conditional analysis identified four independent genome-wide significant 

associations (Supplementary Table 14), including DQA1*0101 (OR 1.53, P = 1.7 × 10−15), 

DQA1*0102 (OR 0.68, P = 1.7 × 10−14), DQB1*0201 (OR 0.71, P = 2.6 × 10−13), and 

DQB1*0301 (OR 1.33, P = 2.2 × 10−12). On conditional analysis, these classical alleles 

account for most of the SNP associations at this interval (Supplementary Table 15).

Chr.6p21: Population-specific effects at TAP1/PSMB8 locus—The previously 

reported risk allele at this locus (rs2071543, a Q49K missense variant in PSMB8)3 

represents a strong cis-eQTL associated with increased peripheral blood expression of 

TAP2, PSMB8, and PSMB98, which encode proteins involved in antigen processing and 

presentation (Supplementary Table 9). In this study, rs2071543 displayed significant 

heterogeneity across different cohorts (I2 = 76%, Cochrane’s P < 0.05) attributable to 

ethnicity-specific effects (Supplementary Table 6). This SNP was genome-wide significant 

in Asians (OR 1.41, P = 2.1 × 10−9), but no association was observed in Europeans (OR 

0.99, P = 0.85). This difference was not explained by differences in risk allele frequency in 

Asian and European controls (0.80 and 0.87 respectively), suggesting variation in LD 

structure between Europeans and Asians, or the presence of an Asian-specific risk allele at 

this locus.

Chr.8p23: DEFA locus—A GWAS in Asians previously implicated rs2738048 in this 

locus, which contains a cluster of related genes encoding the α-defensin anti-microbial 

peptides4. We detected a new genome-wide significant signal in this region represented by 

rs10086568 (OR 1.16, P = 1.0 × 10−9, Figure 1e). All cohorts regardless of ethnicity 

supported this new association. In contrast, we observed only a weak association at 

rs2738048 (OR 1.10, P = 1.6 × 10−4), with evidence of significant heterogeneity across 

different cohorts (Cochrane’s P < 0.05). In the ethnicity-specific analyses, the association of 
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rs2738048 was evident only in Asian cohorts (OR 1.23, P = 1.3 × 10−7 in Asians; OR 1.02, 

P = 0.58 in Europeans; Supplementary Table 6), and this finding was not explained by 

differences in risk allele frequency in Asian and European controls (0.68 and 0.69 

respectively). Because rs2738048 and rs10086568 are not in linkage disequilibrium (r2 < 

0.03), mutual conditioning had little effect on these results (Supplementary Table 16). To 

date, variation at this locus has not been identified by GWAS of other phenotypes, 

suggesting that the DEFA association may be specific to IgAN.

Replication of four other known loci and total variance explained

Our GWAS provided genome-wide significant confirmation of three previously reported 

loci on chr.1q32 (CHFR3,1-delta), chr.6p21 (HLA-DP), and the chr.22q12 (HORMAD2) 

and confirmed one of the two previously reported SNPs on chr.17p13 (TNFSF13, 

rs3803800) (Table 2, Figure 1, and Supplementary Figure 6). We also confirmed the 

additive effect of the TNFSF13 and HORMAD2 risk alleles on serum IgA levels 

(Supplementary Figure 7). Cumulatively, the 15 new and replicated GWAS loci explained 

6.2% of the risk in the European cohorts and 7.6% of the variation in disease risk in the 

Chinese cohorts.

The genetic risk score is associated with the age of disease onset

We hypothesized that a higher burden of genetic susceptibility alleles may also influence the 

severity or onset of kidney disease. To test this hypothesis, we computed a genetic risk score 

as the weighted sum of the number of the alleles multiplied by the log of the OR for each of 

the individual loci. We detected a highly significant association between the genetic risk 

score and age of diagnosis among the 3,409 cases with available data, with 14 of 15 risk 

alleles individually contributing to this association. Risk alleles promoted earlier disease 

onset (Figure 2b and c, Supplementary Table 17), with each quintile of the genetic risk score 

changing the age of onset by 1.2 years (P = 2.8 × 10−13). This effect was robust to 

adjustments for cohort or ethnicity. Nonetheless, these loci explained only about 1.4% of the 

total variance in age of disease onset. Additional analysis of single SNP-phenotype 

correlations pointed to rs7763262-C risk allele (HLA-DQ/DR locus) as most strongly 

associated with age of diagnosis (P = 3.2 × 10−4) and greater risk of progression to end-stage 

kidney disease (per allele HR 1.72, P = 3.6 × 10−3). Exploratory analyses of other 

parameters of disease severity and progression were generally not statistically significant 

(Supplementary Tables 17–19).

Geospatial pattern of genetic risk suggests polygenic adaptation

We previously demonstrated that the worldwide distribution of IgAN risk alleles was 

correlated with distance from Africa and paralleled the prevalence of IgAN2,3. The 

distribution for the 15-SNP risk score derived from the present study showed an even greater 

difference among worldwide populations and was more correlated with geography (52 

HGDP populations, r = 0.33, p < 1.0 × 10−16, Supplementary Figure 8a). We observed no 

evidence of hard selective sweeps at any of the individual loci by haplotype-based selection 

tests in Asians and Europeans16. For several loci, ancestral alleles have lower frequencies in 

Africans, suggesting that local selective pressures could be operating in Africa. The 
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observed correlation of risk score with distance from Africa is unlikely to be a chance event; 

based on 10,000 permutations of 15 randomly drawn SNPs matched for average allele 

frequency to each IgAN SNP, we found that the observed geo-spatial correlation was in the 

upper tail of the null distribution (empiric P = 0.026, Supplementary Figure 8b). The IgAN 

risk allele frequencies were also highly differentiated across HapMap III populations 

(average Fst of 0.237, Supplementary Table 20). Notably, the risk alleles with larger effect 

size displayed greater differences in frequency among populations, further suggesting a non-

random change in allele frequencies across populations (Supplementary Figures 8d and e). 

Taken together, these observations are best explained by polygenic adaptation to local 

environments (soft selective sweeps acting simultaneously on multiple existing loci) or more 

complex selective pressures not easily detectable by classical tests of selection17,18.

Overlap with susceptibility loci for other phenotypes

We identified many overlaps with susceptibility loci for other phenotypes documented in the 

NHGRI GWAS catalogue, suggesting shared pathogenic pathways (Figure 2a and 

Supplementary Table 11). We found both concordant and opposing effects with other 

immune mediated diseases. The HLA-DQ/DR region had the largest number of overlapping 

associations; IgAN risk alleles within this locus conferred increased risk of rheumatoid 

arthritis19, systemic sclerosis20, alopecia areata21, Graves’ disease22, follicular lymphoma23, 

type I diabetes19 and IgA deficiency24. However, these risk alleles for IgAN also reduced 

risk for SLE25, multiple sclerosis26, ulcerative colitis27, and hepatocellular carcinoma28. At 

the same time, because of extensive LD within the HLA region, some of these associations 

may be reflective of signal inter-correlation rather than true pleiotropic effects. Among non-

HLA loci, IgAN risk alleles also conferred increased risk for IBD (CARD9 locus)11,12, 

elevated serum non-albumin protein and IgA levels (TNFSF13 locus)29, AMD (CFHR3,1-

delta locus)30, and T1DM (HORMAD2 locus)31. Opposing effects were detected for SLE 

(ITGAM-ITGAX and CFHR3,1-delta)7,32 and IBD (HORMAD2 locus)12,33.

Notably, detailed annotations revealed that the majority of IgAN loci encode proteins 

implicated in maintenance of the intestinal barrier and regulation of mucosal immune 

response to pathogens (Table 3). Three IgAN risk loci are associated with Crohn’s disease 

and/or ulcerative colitis (CARD9, HORMAD2 and HLA-DQB1)11,12,34. ITGAM and TNSF13 

participate in regulation of IgA-producing cells in the intestine35,36; ITGAM is also required 

for interaction between FcαR (CD89) and secretory IgA, the main form of IgA at mucosal 

sites37,38. α-defensins are expressed by the intestinal Paneth cells and protect from food- and 

water-borne pathogens in the intestine; deficiencies in α-defensins-5 and -6 have been 

associated with Crohn’s disease39,40. Finally, CARD9, VAV and PSMB8/9 are involved in 

NF-κB activation and are essential for maintenance of the intestinal epithelial barrier and 

control of the local inflammatory response to infection and CARD9 deficiency produces 

susceptibility to invasive fungal infections41–43.

Enrichment of the GWAS for SNPs implicated in autoimmune or inflammatory traits

We hypothesized that additional associations with other autoimmune and inflammatory 

disorders may be present below our replication threshold. Therefore, we performed a gene-

set analysis of 582 non-HLA SNPs previously associated with any autoimmune or 
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inflammatory trait listed in the NHGRI GWAS catalogue. In total, 87/582 (15%) were 

associated with the risk of IgAN at a nominal P < 0.05 (Figure 3a, Supplementary Table 21). 

This distribution was never observed in 10,000 permutations of phenotype on genotype, 

indicating a highly significant excess of positive associations (empiric P < 0.0001, 

Supplementary Figure 9). We also detected a consistent excess of direct protein-protein 

interactions among gene products encoded by the significant and suggestive loci 

(Supplementary Figure 10). Among the most prominent autoimmune signals was the PADI4 

locus, previously associated with risk of rheumatoid arthritis44 (rs12568771, OR 1.12, P = 

1.8 × 10−6, Supplementary Table 5). These data make clear that additional associations with 

other autoimmune and inflammatory disorders are present below our replication threshold 

and should be pursued in follow-up studies.

When the suggestive and significant loci were tested for enrichment in KEGG pathways, the 

top overrepresented pathways were “Intestinal Immune Network for IgA Production” 

(overlap coefficient of 25%, P < 1.0 × 10−16, Figure 3b) and “Leishmania Infection”, a 

protozoan infection involving the skin, viscera and mucosa (overlap coefficient of 15%, P = 

6.8 × 10−15). Notably, the pathway enrichment scores and all network connectivity 

parameters were consistently increased with the addition of the top SNPs at varying FDR 

levels, providing additional support for the role of these loci in the pathogenesis of IgAN 

(Supplementary Figure 10).

Association of the IgAN genetic risk score with pathogen diversity

The enrichment for pathways involving intestinal immunity and mucosal pathogens strongly 

suggested that the distinctive geographic pattern of IgAN risk alleles might have been 

shaped by an adaption to local environment. To better define potential environmental factors 

that could account for such an adaptive process, we performed an association analysis of the 

IgAN genetic risk score for HGDP populations with 14 ecological variables previously 

defined for these populations reflecting local climate, pathogen load, and dietary factors45 

(Supplementary Table 22a). The genetic risk was nominally associated with climatic and 

dietary factors. However, there was a very strong positive association of the IgAN genetic 

risk score with local pathogen diversity (measured as the number of different pathogen 

species in the area, including viruses, bacteria, protozoa, and helminthes, r = 0.61, P = 6.0 × 

10−7, Figure 4a). In the analysis of individual pathogen classes, the strongest association was 

for helminth diversity (r = 0.68, P = 1.0 × 10−8, Figure 4b), which accounted for nearly all 

the association with pathogen diversity on a stepwise regression analysis. In the final 

combined model, only helminth diversity and geography were independently associated with 

the IgAN genetic risk score (Supplementary Table 22b).

Discussion

In this study, we identify six novel signals that contribute to IgAN, including four in novel 

loci (ITGAM-ITGAX, VAV3 and CARD9) and two in known regions (HLA-DQB1, DEFA), 

and replicate nine of the previously reported genome-wide significant signals. The loci 

discovered in this study reside at the intersection of multiple canonical pathways, and point 

to critical steps in the pathogenesis of IgAN (maintenance of the intestinal mucosal barrier, 
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activation of mucosal IgA production, NF-κB signaling, defense against intracellular 

pathogens, and complement activation). Collectively, these 15 independent risk alleles 

significantly influence the age of disease onset. Moreover, we demonstrate significant 

overlap of these loci with other autoimmune and inflammatory disorders, placing IgAN in 

this disease spectrum.

The striking association of risk allele frequencies with geography and local helminth 

diversity is most consistent with multi-locus adaptation to environment. While our analysis 

cannot exclude unmeasured environmental factors or other pathogens that are associated 

with helminth diversity, helminth infection itself is a potential source of selection pressure. 

Helminth infection has been a major source of morbidity and mortality in human history, 

and even today occurs in 25% of the world population46, with the highest global burden of 

soil-transmitted helminthes infections occurring in Asia, significantly contributing to 

pediatric mortality46,47. Intriguingly, secondary forms of IgAN are known to develop in the 

setting schistosomiasis, a common helminth infection48. Recent data also indicate that 

schistosome infection specifically impairs the ability of ITGAM-positive (CD11b+) 

dendritic cells to stimulate CD4+ T-cells49. These findings strongly suggest that the 

increased incidence of IgAN in some geographic areas may represent an untoward 

consequence of protective adaptation to mucosal invasion by local pathogens. The enhanced 

immune response conferred by risk alleles would simultaneously explain the known 

association of mucosal infections as a trigger for IgAN.

Host-pathogen interactions have similarly exerted a critical influence on the genetic 

architecture of IBD12. Consistent with this finding, IgAN loci are either directly associated 

with risk of IBD (HLA-DQ/DR, CARD9, HORMAD2) or encode proteins involved in 

maintenance of the intestinal mucosal barrier or regulation of mucosal immune response 

(DEFA, TNFSF13, VAV3, ITGAM-ITGAX, PSMB8; Table 3). Network and enrichment 

analyses further point to perturbations of the immune pathway of intestinal IgA production 

as a central defect in the disease pathogenesis (Figure 3, Supplementary Figure 10, and 

Supplementary Table 21). These results clearly link intestinal mucosal inflammatory 

disorders and IBD with risk of IgAN and may explain why these two diseases co-occur more 

often than expected by chance50. These data are also consistent with the clinical observation 

that mucosal infections frequently trigger episodes of glomerulonephritis in IgAN, and with 

the key role of IgA in defense at mucosal surfaces51.

Finally, these results demonstrated that most IgAN risk loci are shared with other immune-

mediated diseases and identified 87 suggestive associations with non-HLA autoimmune and 

inflammatory SNPs. These analyses predict that follow-up studies of autoimmune and 

inflammatory variants, particularly among patients with early onset of disease, will yield 

additional genome-wide significant associations and further clarify links to environmental 

risk factors.
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Methods

Study Design and Power Analysis

The study was designed in two stages. Stage I (the discovery phase) involved a genome-

wide meta-analysis of four discovery cohorts (2,747 cases and 3,952 controls) imputed to a 

common set of >1 million SNPs. Stage II (the replication phase) involved genotyping of the 

top signals from stage I in ten additional cohorts of European and Asian ancestry (4,911 

cases and 9,002 controls). We carried out power calculations for this design under the 

following assumptions: a disease prevalence of 1%; a log-additive risk model; perfect LD 

between a marker and a disease allele; a follow-up significance threshold of 5×10 5; and 

joint (stage I and II) significance level of 5×10 8. The power of our study was calculated for 

a range of disease allele frequencies (0.10–0.50) and effect sizes (genotypic risk ratio 1.10–

1.50). The effect sizes detectable at α = 5×10 8 with a power of 80% were also estimated 

(Supplementary Table 1). The calculations were performed using CaTS software75. All 

subjects provided informed consent to participate in genetic studies and the Institutional 

Review Board of Columbia University as well as local ethic review committees for each of 

the individual cohorts approved our study protocol.

GWAS Discovery Study (Stage I)

The cohorts, genome-wide genotyping, genotype quality control, ancestry analysis, and 

imputations are described in detail in the Supplementary Note and Supplementary Tables 2–

4. We implemented strict quality control filters for each of the cohorts, including elimination 

of samples with low call rates, duplicates, ancestry outliers, samples with cryptic relatedness 

or samples with detected gender mismatch (Supplementary Table 2). We applied principal 

component (PC) -based ancestry-matching algorithms to reduce any potential bias of 

population stratification (Supplementary Table 3). After implementation of ancestry 

matching, we dramatically reduced the number of significant PCs for each cohort and we 

demonstrated that cases and controls were evenly distributed along the PC axes without 

significant outliers (Supplementary Figure 1). To improve coverage across different 

platforms, we performed imputation to a common set of >1 million HapMap-III SNPs 

(Supplementary Table 4 and Supplementary Note). Only SNPs with high imputation quality 

(r2>0.8) were included in association analyses. After ancestry matching, imputation, and 

quality control, there were four cohorts included in stage I: the Italian Discovery Cohort of 

1,045 cases and 1,340 controls (1,132,157 imputed markers), the Chinese Discovery Cohort 

of 1,194 cases and 902 controls (1,027,812 imputed markers), the French Discovery Cohort 

of 205 cases and 159 controls (1,032,453 imputed markers) and the US Discovery Cohort of 

303 cases and 1,551 controls (1,118,683 imputed markers). The primary association testing 

was performed within each cohort individually under a multiplicative (log-additive) model 

and after accounting for imputation uncertainty using an allelic dosage method. Significant 

principal components of ancestry were included as covariates in the association analysis of 

each individual cohort. Ancestry-adjusted effect estimates and standard errors were derived 

for each SNP and the results were combined genome-wide using fixed effects. The meta-

analysis results were verified using two independent software packages (PLINK v.1.0776 

and METAL77). The genome-wide distributions of P values were examined visually using 

QQ-plots for each individual cohort as well as for the combined analysis. We also estimated 
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genomic inflation factors for each genome-wide analysis78 (Supplementary Figure 3). The 

final meta-analysis QQ-plot showed no global departures from the expected distribution of P 

values and the overall genomic inflation factor was estimated at 1.047 (Supplementary 

Figure 4).

Follow-up of Suggestive Signals (Stage II)

Based on the examination of QQ-plots from Stage I, we selected a P-value threshold of 

5×10−5 to define signals for follow-up analyses. This threshold corresponds to the positive 

FDR of 13% (Q-value software)79. The threshold defined 435 top SNPs that were 

subsequently prioritized for replication. Of the 435 SNPs, 320 (74%) were localized within 

the known susceptibility loci, including 286 SNPs across the HLA loci, 30 SNPs on chr.

22q12.2 (HORMAD2 locus) and additional 4 SNPs on chr.1q32 (CFHR3/1-delta locus). The 

remainder 115 SNPs were clustered into distinct loci on the basis of their physical location 

and regional patterns of LD. Conditional logistic regression analysis was carried out to 

confirm correct SNP grouping and to detect independent signals. For follow-up genotyping, 

we prioritized independent SNPs with the lowest P-value within each independent locus. We 

additionally required that each SNP is successfully typed or imputed in at least three of the 

four analyzed cohorts. We excluded loci supported only by a single SNP (“singleton 

signals” defined by absence of supporting signals with P<0.01 within the same block of 

LD). In case genotyping failed, we selected a back-up SNP based on strength of association, 

LD with the top SNP, quality of genotyping or imputation, and ability to design working 

primers. Additionally, we included representative SNPs for the two recently discovered 

GWAS loci in Chinese4, the TNFSF13 locus (rs3803800 and rs4227) and the DEFA locus 

(rs2738048). In total, we successfully acquired and analyzed genotype data for 50 carefully 

selected SNPs representative of the top 37 distinct genomic regions in 13,913 replication 

samples (4,911 cases and 9,002 controls). The composition of the replication cohorts, 

genotyping methods and genotype quality control are summarized in the Supplementary 

Note and Supplementary Table 2. The association analyses were first carried out 

individually within each of the 10 included cohorts. Similar to stage I, the results were next 

combined using a fixed effects model. For each SNP, we derived pooled effect estimates, 

their standard errors, and 95% confidence intervals. We also estimated the degree of 

heterogeneity using heterogeneity index (I2) and Cochrane’s Q test in the combined 

analysis80. The complete summary of association results for all 50 SNPs tested in replication 

cohorts is provided in Supplementary Tables 5, 6, and 7.

Imputation Analysis of Classical HLA Alleles

For each of the cohorts with available genome-wide genotype data, we imputed classical 

HLA alleles at -A, -B, -C, -DQB1, -DQA1, and -DRB1 loci. We used HapMap Caucasian 

Utah (CEU) samples as reference for imputation of Caucasian cohorts and combined Han 

Chinese Beijing (HCB) and Japanese of Tokyo (JPT) samples for Asians. The reference 

panels were constructed by phasing combined SNP genotype and HLA typing data. The 

phasing and imputation were performed using two independent methods: MACH81 and 

BEAGLE-382. Any poorly imputed alleles (R-sq < 0.3) were eliminated from association 

testing at the level of individual cohorts. The imputed allelic concordance rate between the 

two methods was 98.1%. In addition, direct sequencing of the informative coding segments 
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of HLA-DQB1 gene in a random subset of 155 samples demonstrated that our imputation 

had 89.0% sensitivity and 91.5% specificity. The association testing in each cohort was 

performed using allelic dosage method with adjustment for significant principal components 

in PLINK76. The final results were combined across cohorts using fixed effects meta-

analysis in METAL77 (Supplementary Table 13). Conditional analyses were performed 

using stepwise logistic regression with Bayesian Information Criterion (BIC) as a selection 

criterion (Supplementary Table 14, Step function, R version 3.0)

Pairwise Epistasis Screen

We screened all possible pairwise interaction terms for association with disease using 1-df 

LRT comparing two nested logistic models: one with main effects only and one with main 

effects and a multiplicative (log-additive) interaction term. We included cohort membership 

as a fixed covariate in both models. We excluded 7 pairwise interaction terms between SNPs 

in partial linkage disequilibrium (r2>0.1) resulting in a total of 98 independent interactions 

tested (Supplementary Table 23). The results were ranked in the order of significance and 

positive false discovery rate (q-values) were calculated. Suggestive interaction terms were 

defined as exceeding a significance threshold that was Bonferroni-corrected for the number 

of independent tests (p < 0.05/98 or 5×10−4).

Interrogation of Protein-Protein Interaction (PPI) Networks

We interrogated two comprehensive PPI network datasets using two independent methods. 

First, we used the Disease Association Protein-Protein Link Evaluator (DAPPLE)83. This is 

a network connectivity tool based on InWeb84, an integrated database of known PPIs with 

12,793 nodes and 169,810 high-confidence interactions based on MINT, IntAct, BIND, 

PPrel, ECrel, and Reactome. Statistical significance of network connectivity parameters for 

individual proteins and for the entire seed set was assessed using 1,000 within-degree node-

label permutations (Supplementary Figure 10). As an independent confirmatory analysis, we 

downloaded the Protein Interaction Network Analysis (PINA) dataset85, which combines 

annotated PPI data from 6 databases (MINT, IntAct, DIP, BioGRID, HPRD, and MIPS/

MPact). This large network consisted of 14,784 nodes and 107,802 unique edges (last 

release December 10th, 2012). To integrate our GWAS results with PPI data, and to identify 

modules enriched in disease-associated genes, we used a dense module searching method 

(dmGWAS v.2.0)86. Briefly, we performed a global search for modules with maximum 

proportion of low P-values by designating the top-scoring GWAS genes as seeds and 

selecting neighboring nodes (with a shortest path to any node in the module ≤ 2) that 

optimize subgraph’s overall significance. The extracted subnetworks were merged and 

visualized using R (igraph v.0.5.2).

Other Methods of Prioritizing Candidate Genes

To interrogate putative functional SNPs that were not typed or imputed in our dataset, we 

systematically identified all variants that were in high LD (r2 > 0.5) with the 15 IgAN 

GWAS SNPs based on 1000 Genomes data. These variants were further annotated using 

ANNOVAR87, SeattleSeq88, and HaploReg289 (Supplementary Table 10). We also analyzed 

a subset of 1,073 SNPs that represented tags for the known common copy number 
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polymorphisms90. Additionally, we identified all genes whose expression was correlated 

with the IgAN susceptibility SNPs in cis- or trans- and at P < 10−5 (Supplementary Table 9). 

For this purpose, we used the following recently published eQTL datasets: (1) meta-analysis 

of transcriptional profiles from peripheral blood cells of 5,311 Europeans8, (2) primary 

immune cells (B-cells and monocytes) from 288 healthy Europeans9; (3) 400 

lymphoblastoid cell lines (LCL) derived from asthmatic children10, and (4) eqtl.uchicago 

browser with compiled data across several tissues. Finally, we utilized GRAIL (Gene 

Relationships Across Implicated Loci), an online tool that uses PubMed text mining results 

to assess network connectivity between genes residing in implicated GWAS loci91. To 

prioritize candidate genes, each individual gene was tested for significant enrichment in 

GRAIL connectivity to genes residing in other loci.

Genetic Risk Score

To assess cumulative effects of the newly detected loci, we built a logistic regression model 

based on the 15 SNP predictors with independent contribution to disease risk. The risk score 

was calculated as a weighted sum of the number of risk alleles at each locus multiplied by 

the log of the adjusted OR for each of the individual loci. The percentage of the total 

variance explained was estimated by Nagelkerke’s pseudo R2 from the logistic regression 

model with the risk score as a quantitative predictor and disease state as an outcome (SPSS 

Statistics v.21.0, IBM 2013).

Geospatial Risk Analysis

For this purpose, we used publicly available genotype data of HapMap III (1,184 individuals 

representative of 11 populations) and the Human Genome Diversity Panel (HGDP; 1,050 

individuals representative of 52 worldwide populations). The HGDP individuals have been 

previously genotyped for 660,918 markers using Illumina 650Y arrays (Stanford 

University). High quality genotype data was available for 13 out of 15 IgAN SNPs, with 

missing genotypes for rs10086568 and rs7763262. We imputed rs7763262 with high 

confidence (imputation r2 > 0.99) using all combined HapMap-III populations for reference. 

Instead of rs10086568, we used a near-perfect proxy rs9644778 (r2=94%, D′=1.00), which 

was also genome-wide significant in our study (P = 1.8 × 10−9). Using these data, we 

calculated individual risk score profiles for all individuals in the HGDP dataset. The risk 

score was standardized across populations using a Z-score method: Standardized Risk Score 

= (Individual Risk Score – Worldwide Mean)/Worldwide Standard Deviation. The median 

standardized risk scores for each population were compared across continents. We 

correlated standardized risk profiles with the longitude, latitude, and geographic distance 

from Africa.

Testing for Genetic Drift

To evaluate if the observed allelic differentiation is due to genetic drift, we analyzed 10,000 

sets of SNPs randomly drawn from the genome but matched to the IgAN SNPs based on 

average minor allelic frequency on a per-SNP basis. In each permutation round, we scored 

all 1,050 HGDP individuals with the risk score calculated from the set of randomly selected 

SNPs. The risk scores were correlated with the distance from Africa to generate distributions 

of null statistics against which we compared the observed geospatial correlation. Empirical 
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P-value was defined as the number of permuted statistics more extreme than the observed 

statistic divided by the total number of permutations (Supplementary Figure 8). Empiric P-

value < 0.05 was considered statistically significant. The permutation procedure was 

implemented using a custom script in PERL programming language.

Correlations with Environmental Variables

We investigated correlations between the newly defined genetic risk score and 14 

environmental variables previously defined for each of the HGDP populations 

(Supplementary Table 22a). The environmental variables were downloaded directly from 

Fumagalli et al.45, and included climatic factors (relative humidity, mean annual 

temperature, precipitation rate, net short wave radiation flux, and physical distance from the 

sea), subsistence strategies (relative amount of agriculture, animal husbandry, fishing, 

hunting, and gathering) and pathogen diversity (number of different species of viruses, 

bacteria, protozoa, and helminthes). We applied Pearson’s correlation analysis, as well as 

partial correlation to test median standardized genetic risk before and after controlling for 

geographic distance from Africa (SPSS Statistics v.21.0). Because many of the ecological 

factors are inter-correlated, we also applied a stepwise feature selection algorithm (BIC 

selection criterion) to construct the best predictive regression model of genetic risk (step 

function, R v.3.0). At entry, we included each of the broad predictor categories separately 

(climate, subsistence, pathogens), followed by all 14 predictors combined, with additional 

adjustment for the distance from Africa (Supplementary Table 22b).

Clinical Phenotype-Genotype Correlations

We analyzed baseline demographic and clinical data from the time of renal biopsy, 

including age, gender, body mass index, serum creatinine (SCr), albumin (Alb), hemoglobin 

(Hgb), 24-hour protein excretion (P24), microscopic hematuria, systolic blood pressure 

(SBP), diastolic blood pressure (DBP), and history of gross hematuria. The diagnosis of 

hypertension was based on SBP ≥ 140 mmHg, or DBP ≥ 90 mmHg, or history of 

antihypertensive medication use. The level of protein excretion was measured by a 24-hour 

urine collection or estimated based on urinary protein-to-creatinine ratio; the proteinuria 

values were normalized using ln(P24+1) transformation. The degree of renal tissue injury 

was graded using the Haas92 classification. Estimated glomerular filtration rate (eGFR) was 

evaluated using the Modification of Diet in Renal Disease (MDRD) equation for 

Europeans93 and the modified MDRD version for Chinese94. Chronic kidney disease (CKD) 

was classified based on the eGFR intervals according to the Kidney Disease Outcomes 

Quality Initiative (K/DOQI) practice guidelines95. End stage renal disease (ESRD) was 

defined by eGFR < 15 ml/min/1.73m2 or initiation of renal replacement therapy (dialysis or 

kidney transplantation). Longitudinal data after kidney biopsy were available for 1,607 

patients with a mean follow-up time of 7.9 years. Out of 1,607 patients, 459 reached the 

endpoint of ESRD within the follow-up period. For screening genotype-phenotype 

correlations, we used linear regression for quantitative traits, logistic regression for binary 

traits, and Cox proportional hazards models for survival analysis with SNP predictors coded 

under additive genetic model. The associations for eGFR, P24, Alb, Hgb, histopathology 

scores, and serum levels of IgA and IgA1 were adjusted for age, gender, and cohort/

ethnicity. Association testing for the age of diagnosis and onset of ESRD were performed 

Kiryluk et al. Page 13

Nat Genet. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



before and after adjustment for sex and cohort/ethnicity. The analysis of kidney disease 

progression was adjusted for age, sex, cohort/ethnicity, baseline eGFR (minimally adjusted 

model) as well as P24 and Haas histopathology score (full model). Statistical analyses were 

implemented in R version 3.0 and SPSS Statistics version 21 (IBM).

Genetic Overlap with Other Phenotypes

To systematically cross-annotate IgAN susceptibility loci against all previously published 

GWAS findings, we downloaded the latest NHGRI GWAS catalogue (September 2013)96. 

We filtered all published SNPs that were (1) associated with any disease phenotype or trait 

at a genome-wide significance (p < 5 × 10−8) and (2) resided within the genomic regions of 

association with IgAN. For each SNP association, we manually verified the direction of 

effect for a reference allele based on original publications. Next, each selected SNP from the 

catalogue was queried against our GWAS results to extract the odds ratios and p-values for 

associations with IgAN. The directionality of allelic effects was assessed to identify 

pleiotropic alleles with concordant or opposed effects (Supplementary Table 11). We 

calculated a maximum r2 between SNPs associated with each catalogued trait and the 15 

SNPs from our study based on the data from HapMap-III and 1000 Genomes project. We 

defined overlapping susceptibility alleles if r2 exceeded 0.50. Lastly, we constructed a 

susceptibility overlap map that connects each of the IgAN loci to the previously associated 

GWAS traits and highlights associations with SNPs in high LD with the top IgAN signals 

(Figure 2a).

Testing Inflammatory/Autoimmune Subset Hypothesis

We analyzed 582 unique SNPs representative of all non-HLA autoimmune and 

inflammatory disease-associated GWAS loci out of the 11,276 listed in the NHGRI GWAS 

catalogue (September, 2013)96. The association results for this set were visually examined 

for overrepresentation of significant signals using a QQ-plot (Figure 3a). Next, we tested the 

autoimmune hypothesis using a previously published GWAS-HD approach97. This involved 

testing 582 unique SNPs simultaneously for association with IgAN using the GWAS 

discovery cohorts. To preserve the LD pattern between SNPs, the IgAN phenotype was 

permuted 10,000 times within each cohort. In each round of permutation, corresponding 

association analysis was performed using logistic regression after adjustment for cohort 

membership, and a sum of the Wald (1-d.f.) association statistics of the 582 SNPs was 

calculated. The empirical P value was calculated as the proportion of the permutation 

samples whose sum statistic was larger than that in the observed sample (Supplementary 

Figure 9).

Gene Annotation and Network Analysis of Autoimmune/Inflammatory SNPs

Based on the observed distribution of P-values, we defined two arbitrary thresholds for 

inclusion of suggestive signals in downstream network analyses: positive FDR < 10% 

(corresponding to P < 5.9 × 10−3) and positive FDR < 25% (corresponding to P < 0.05). The 

SNPs meeting these criteria were clustered into distinct loci based on genomic location and 

pairwise linkage disequilibrium. The disease locus was defined by nearest recombination 

hotspots in the 3′ and 5′ direction of the top SNP and overlapping intervals were merged into 
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a single locus. All genes that intersect this interval, including 100-kb upstream and 40-kb 

downstream of the largest isoform (to include regulatory DNA), were considered as 

contained within the disease locus. The candidate gene sets (union of all genes within the 

candidate loci), were used as seeds in the sequential GRAIL and DAPPLE analyses 

(Supplementary Figure 10). These gene sets were also used for pathway analysis using Gene 

Set Enrichment Analysis (GSEA)98. The KEGG pathway enrichment map (Figure 3b) was 

constructed using the Enrichment Map (v.1.2)99. Network graphs were visualized in 

Cytoscape (v.2.8).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Results of the combined meta-analysis across all 20,612 individuals
Manhattan plot (a) and regional plots for genome-wide significant loci outside of the HLA 

region: (b) ITGAM-ITGAX locus, (c) CARD9 locus, (d) VAV3 locus, (e) DEFA locus 

(shaded area represents the region of common duplications involving DEFA1 and DEFA3 

genes), (f) CFHR3,1-delta locus (shaded area represents the deletion of CFHR3 and CFHR1 

genes), (g) HORMAD2 locus. X-axis represents physical distance in kb (hg-18 coordinates); 

Y-axis represents -log P values for association statistics.
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Figure 2. Pleiotropic effects of IgAN GWAS loci and their cumulative effect on the age at disease 
onset
(a) A genetic susceptibility map was constructed based on all overlapping genome-wide 

significant loci reported in the NHGRI GWAS catalogue: diseases sharing a single locus 

with IgAN are indicated in yellow; diseases sharing multiple loci with IgAN are indicated in 

orange; solid arrows represent allelic associations that are identical to, or in tight LD (r2 > 

0.5) with the IgAN risk alleles: concordant effects are indicated in red and opposed effects 

in blue; dotted arrows represent all other phenotype associations in the region. Of note, 

candidate gene or regional association studies were not included in this analysis. Inset: 
collapsed representation of pleiotropic relationships between IgAN and other phenotypes 

(only shared allelic effects are included with concordant effects indicated in red and opposed 

effects in blue). (b) Average age at diagnosis as a function of an individual’s risk allele 

burden (N=3,409 individuals with available data). (c) Average age at diagnosis by quintile 

of genetic risk (error bars represent 95% confidence interval for the mean). Abbreviations: 

IgAD: IgA Deficiency; RA: Rheumatoid Arthritis; PBC: Primary Biliary Cirrhosis; MN: 

Membranous Nephropathy; OA: Osteoarthritis; HCC: Hepatocellular Carcinoma; SLE: 

Systemic Lupus Erythematosus; UC: Ulcerative Colitis; CD: Crohn’s Disease; T1D: Type I 

Diabetes; AMD: Age-related Macular Degeneration.
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Figure 3. Autoimmunity/inflammatory loci and risk of IgAN
(a) A quantile-quantile plot of IgAN associations for 582 unique non-HLA SNPs previously 

associated with autoimmune or immune-mediated diseases at p < 5 × 10−8 in the NHGRI 

GWAS catalogue. When tested for association with IgAN, an unexpectedly large number of 

SNPs deviate from the null expectation (empiric p < 1 × 10−4, Supplementary Figure 9). (b) 
The KEGG enrichment map for the genes residing within autoimmunity loci associated with 

IgAN at p < 0.05 (q < 0.25). The size of nodes reflects −log10-transformed P-values of the 

adjusted hypergeometric enrichment test in GSEA. The edges represent pathway similarity 

as defined by an overlap coefficient. The top overrepresented KEGG pathway is the 

“Intestinal Immune Network for IgA Production” (gene set overlap coefficient = 25%, 

enrichment p < 1.0 × 10−16). Individual genes intersecting top-ranked KEGG pathways are 

provided in Supplementary Figure 10c.
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Figure 4. IgAN genetic risk is correlated with worldwide pathogen diversity
(a) Correlation between IgAN genetic risk score (X-axis) and the level of local pathogen 

diversity (Y-axis) among the HGDP populations (linear regression line and its 95% 

confidence intervals, Pearson’s correlation coefficient = 0.62, P = 6 × 10−7); (b) Stepwise 

feature selection among all pathogen subgroups confirmed helminth diversity as the single 

best predictor of IgAN genetic risk (Pearson’s correlation coefficient = 0.68, P = 1 × 10−8); 

(c) Weaker correlation was also evident for bacterial diversity (top panel, Pearson’s 

correlation coefficient = 0.56, P = 1 × 10−5), but not for protozoan or viral diversity (middle 

and bottom panels). The pathogen diversity metrics were scaled and standardized across all 

populations; error bars represent 95% confidence interval for the mean; for detailed analysis 

refer to Supplementary Table 22.
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Table 3

IgAN GWAS loci and their role in the intestinal immunity and inflammation.

Locus (Genes) Canonical Pathways * Function and role in intestinal mucosal immunity

ITGAM, ITGAX Granulocyte pathway, 
Monocyte pathway, Cell 
adhesion molecules (CAMs), 
Hematopoietic cell lineage, 
Leishmania infection, 
Leukocyte transendothelial 
migration, Regulation of actin 
cytoskeleton

• ITGAM and ITGAX encode integrins αM and αX that 
mark intestinal dendritic cells that maintain the balance 
between inflammation and tolerance. ITGAM and 
ITGAX also combine with integrin β2 chain to form 
leukocyte-specific complement receptors 3 and 4 (CR3 
and CR4, respectively).

• ITGAM is involved in the regulation of intestinal IgA-
producing plasma cells in mice36. Integrin-αM-positive 
IgA plasma cells reside in Peyer’s patches, require 
microbial stimulation for development, and exhibit 
more proliferation and more IgA production compared 
to integrin-αM-negative cells36.

• In mice, intestinal dendritic cells that express high 
level of both αM and αX integrins are CD103+, 
express TLR5, produce retinoic acid, and induce T-
cell-independent IgA class-switch recombination52, 53.

• Schistosome infection specifically impairs the ability 
of ITGAM-positive (CD11b+) dendritic cells to 
stimulate CD4+ T-cells49.

CARD9 NOD-like receptor signaling 
pathway, Innate immune 
system, Tuberculosis, Fungal 
infection

• CARD9 encodes a molecular scaffold for the assembly 
of a BCL10 signaling complex that activates NF-κB, 
which is responsible for both innate and adaptive 
immune responses54.

• The rs4077515 risk allele is associated with increased 
expression of CARD9, and has known association with 
increased risk of ulcerative colitis and Crohn’s 
disease11, 12, 34, 55, 56. Conversely, a rare protein-
truncating splice variant in CARD9 confers additive 
protection from inflammatory bowel disease56, 57.

• Familial CARD9 deficiency predisposes to invasive 
fungal infections58.

• CARD9 mediates intestinal repair, T-helper 17 
responses, and control of bacterial infection after 
intestinal epithelial injury in mice41.

VAV3 Chemokine signaling pathway, 
Focal adhesion, Natural killer 
cell mediated cytotoxicity, T 
cell receptor signaling 
pathway, B cell receptor 
signaling pathway, Fc epsilon 
RI signaling pathway, Fc 
gamma R-mediated 
phagocytosis, Leukocyte 
transendothelial migration, 
Regulation of actin 
cytoskeleton

• VAV proteins (Vav1, 2, and 3) are guanine nucleotide 
exchange factors essential for adaptive immune 
function13, 14 and NF-κB activation in B-cells, a 
process that stimulates IgA production43.

• VAV proteins are also required for proper 
differentiation of colonic enterocytes and preventing 
spontaneous ulcerations of intestinal mucosa42.

• VAV3 is a positional candidate for QTL for mouse 
intestinal inflammation in a parasite-induced (Trichuris 
muris) model-of infection59.

DEFA1, DEFA3, DEFA4, DEFA5, 
DEFA6

Innate immune system • α-defensins are antimicrobial peptides involved in 
mucosal defense.

• DEFA5 and DEFA6 genes expressed by the intestinal 
Paneth cells. Deficiencies in α-defensins-5 and -6 have 
been associated with Crohn’s disease39, 40. While α-
defensin-5 is broadly antimicrobial, α-defensin-6 
promotes mucosal innate immunity through self-
assembled peptide nanonets60.
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Locus (Genes) Canonical Pathways * Function and role in intestinal mucosal immunity

TNFSF13 Cytokine-cytokine receptor 
interaction, Intestinal immune 
network for IgA production

• TNFSF13 encodes APRIL, a powerful B-cell 
stimulating cytokine that promotes CD40-independent 
IgA class switching35.

• The IgAN risk allele is associated with increased IgA 
levels4.

• TNFSF13 is induced by intestinal bacteria resulting in 
IgA class switching. APRIL levels are elevated in 
some patients with IgAN61.

• Mutations in the TNFSF13 receptor (TACI) produce 
IgA deficiency or combined variable 
immunodeficiency, with increased propensity to 
mucosal infections62.

LIF, OSM, HORMAD2, MTMR3 Cytokine-cytokine receptor 
interaction, Jak-STAT 
signaling pathway

• The IgAN risk allele at this locus is protective against 
Crohn’s disease11, 12, 63 and associated with increased 
serum IgA levels3.

• LIF and OSM are IL-6 related cytokines that use 
gp130 for signal transduction, and have been 
previously implicated in mucosal immunity64, 65. 
Genetic disruption of gp130 signaling leads to 
gastrointestinal ulceration and inflammatory joint 
disease in mice66. LIF is secreted by pericrypt 
fibroblasts67 and may be critical for proliferation and 
renewal of enterocytes68.

PSMB8, PSMB9, TAP1, TAP2 Phagosome pathway, Antigen 
processing and presentation, 
Primary immunodeficiency, 
Proteosome, Activation of 
NFkB in B-cells

• PSMB8 and PSMB9 are interferon-induced subunits of 
the immunoproteosome that mediate intestinal NF-κB 
activation in IBD69.

• PSMB8 is up-regulated in human intestinal tissue with 
active IBD lesions70.

• Treatment with bortezomib (PSMB8 inhibitor) or 
psmb8 deletion in mice attenuates experimental 
colitis71.

HLA-DQA1, HLA-DQB1, HLA-DRB1 Antigen processing and 
presentation, Adaptive 
immune system, Intestinal 
immune network for IgA 
production, Allograft rejection, 
Graft versus host disease, 
Asthma, Autoimmune thyroid 
disease, Leishmania infection

• The IgAN risk allele is associated with increased risk 
of Celiac disease72, 73 and increased risk of IgA 
deficiency24.

• The IgAN risk allele has an opposed (protective) effect 
on the risk of ulcerative colitis27, 74.

*
Canonical pathways based on the Molecular Signature Database (KEGG, Biocarta, and Reactome).
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