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SUMMARY 5

Causal intervention is an essential tool in causal inference. It is axiomatized under the rules
of do-calculus in the case of structure causal models. We provide simple axiomatizations for
families of probability distributions to be different types of interventional distributions. Our ax-
iomatizations neatly lead to a simple and clear theory of causality that has several advantages:
it does not need to make use of any modeling assumptions such as those imposed by structural 10

causal models; it only relies on interventions on single variables; it includes most cases with
latent variables and causal cycles; and more importantly, it does not assume the existence of an
underlying true causal graph as we do not take it as the primitive object—moreover, a causal
graph is derived as a by-product of our theory. We show that, under our axiomatizations, the
intervened distributions are Markovian to the defined intervened causal graphs, and an observed 15

joint probability distribution is Markovian to the obtained causal graph; these results are con-
sistent with the case of structural causal models, and as a result, the existing theory of causal
inference applies. We also show that a large class of natural structural causal models satisfy the
theory presented here. The aim of this paper is axiomatization of interventional families, which
is subtly different from causal modeling. 20

Some key words: Ancestral graph; Causal graph; Directed graph; Do-calculus; Interventional distribution; Markov
property; Structural causal model.

1. INTRODUCTION

1·1. Background
A popular approach to infer causal relationships is to use the concept of intervention as op- 25

posed to observation. For example, as described in Peters et al. (2017), it can be observed that
there is a correlation between smoking and the colour of the teeth, but no matter how much one
whitens somebody’s teeth, it would not affect their smoking habits. On the other hand, forcing
someone to smoke would affect the colour of their teeth. Hence, smoking has a causal effect on
the colour of the teeth, but not vice versa. 30

Interventions have generally been embedded in the setting of structural causal models, also
known as structural equation models (Pearl, 1988; Spirtes et al., 2000). These are a system of
assignments for a set of random variables ordered by an associated true causal graph, which
is generally assumed to be unknown. Structural causal models utilise the theory of graphical
(Markov) models, which are statistical models over graphs with nodes as random variables and 35

edges that indicate some types of conditional dependencies; see Lauritzen (1996).
An axiomatic approach to interventions for structural causal models, known as Pearl’s do-

calculus (Pearl, 2009), has been developed for identifiability of interventional distributions from
the observational ones; see also Huang & Valtorta (2006); Shpitser & Pearl (2006) for some fur-
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2 K. SADEGHI AND T. SOO

ther theoretical developments. There has also been a substantial amount of work on generalizing40

the concept of intervention from the case of directed acyclic graphs, sometimes called Bayesian
networks, to more general graphs containing bidirected edges, which indicate the existence of la-
tent variables (Zhang, 2008), and directed cycles (Bongers et al., 2021). However, most of these
attempts stay within the setting of structural causal models or, at least, under the assumption
that there exists an underlying true causal graph that somehow captures the causal relationships45

(Woodward, 2004).
Interventions on structural causal models have been defined to take various different forms;

see Korb et al. (2004); Eberhardt & Scheines (2007). The type of intervention with which we
are dealing here is hard in the sense that it destroys all the causes of the intervened variable,
and is stochastic in the sense that it replaces the marginal distribution of the intervened variable50

with a new distribution; although, we will show in Remark 4 that an atomic, also called surgical,
intervention, which forces the variable to have a specific value, can be easily adapted in this
setting.

In this paper, without assuming any modeling assumptions such as those given in the setting
of structural causal models, we give simple conditions for a family of joint distributions Pdo =55 {
Pdo(1), . . . , Pdo(N)

}
to act as a well-behaved interventional family, so that one can think of

Pdo(i) as an interventional distribution on a single variable Xi, for each i ∈ V = {1, . . . , N} in
a random vector XV . We have confined ourselves, in this paper, to the case of a finite number of
random variables, as most of the related theory was developed in the finite setting. As apparent
from the context, our approach here is aligned with the interventional approach to causality rather60

than the counterfactual approach.
Here, we are not providing an alternative to the current mainstream setting or Pearlian setting,

where it assumes the existence of a structural causal model and by applying an interventional
approach, has led to extensive work on causal learning and estimation. We simply provide theo-
retical backing for this approach and generalize it beyond structural causal models, by providing65

certain axioms in order to derive as results some of the assumptions that have been used in the
literature, specifically, the existence of the causal graph.

This paper carries certain important messages: There is no need to take the true causal graph
as the primitive object—causal graph(s) can then be formally defined and derived from interven-
tional families, rather than posited. The causal structure and graph can be solely derived from the70

family of interventional distributions; in other words, there is no need for an initial state, i.e., an
underlying joint observational distribution P of XV , to be be known for this purpose. However,
we provide axioms such that the required consistency between the interventional family and the
underlying observational distribution is satisfied when indeed the observational distribution is
available, and such that one can measure the causal relationships. To derive the causal structure75

or graph, in most situations, one needs to rely only on single interventions once at a time. This
is an advantage as much less information is used by only relying on single interventions. In-
deed, there are real world situations in which one would like to consider intervening on several
variables simultaneously; we believe a similar theory can be proposed in such cases.

We must emphasize that the work presented here is about axioms that interventional distribu-80

tions should satisfy for the purpose of causal reasoning. These axioms should not be confused
with a causal model whose goal is to provide correct interpretation of causal relationships and
measuring their effects. This difference is quite subtle and could lead to confusion. Similarly, one
should distinguish the causal graphs defined and derived here from a graph learned by structure
learning from observational and, potentially, interventional data. The goal here is not structure85

learning (Spirtes et al., 2000; Colombo & Maathuis, 2014).
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Axiomatization of interventional distributions 3

1·2. Key results
One of our central assumptions, Axiom 1, is that cause is transitive; see Hall (2000) for a philo-

sophical discussion on the transitivity of the cause. Under the condition of singleton-transitivity
and simple assumptions on conditional independence structure of Pdo, we show that the causal 90

relations are transitive; see Theorem 2. We provide a definition of causation similar to that in Pe-
ters et al. (2017). The concept of direct cause is defined in terms of the conditional independence
properties of the interventional family, which is a departure from the widely-known definition
(Woodward, 2004, page 55), and from this we define the intervened causal graph, and using these,
we define the causal graph; see Section 4·2; this is a major relaxation of assumptions from the 95

current paradigm where it is assumed that such a causal graph exists. The obtained causal graph
allows bidirected edges and directed cycles without double edges consisting of a bidirected edge
and an arrow. We call this family of graphs bowless directed mixed graphs. Later, in Section S6
of the supplementary material, we relax the bowlessness, property, in some cases. The generated
graph is the true causal graph under the axiomatization, and we show that the definitions related 100

to causal relationships and the graphical notions on the graph are interchangeable in Theorem 3.
One of our main theorems is that, under some additional assumptions, namely intersection and

composition, intervened distributions Pdo(i) in the interventional family are Markovian to the
defined intervened graphs; see Theorem 4. We provide additional axioms, Axioms 2 and 3, to
relate Pdo to an observed distribution P , and call the interventional family (strongly) observable. 105

We show that the underlying distribution P for an observable interventional family is Markovian
to the defined causal graph; see Theorem 5. Therefore, the established theory of causality using
structural causal models, which mainly relies on the Markov property of the joint distribution of
the structural causal model, could be followed from our theory.

We later provide additional axioms, in the supplementary material, for the case of ancestral 110

causal graphs, to define what we call quantifiable interventional families that allow for measuring
causal effects. We show that the quantifiable interventional families are strongly observational;
see Theorem S1 in the supplementary material.

We also compare and contrast our theory with the structural causal model setting. We show
that for structural causal models with certain simple properties, implied by faithfulness—such 115

as the transitivity of the cause, the family of interventions on each node constitutes a strongly
observable interventional family, and even without the transitivity assumption in the case of
ancestral graphs, the causal graph generated by the theory presented in this paper is the same as
the causal graph associated to the structural causal model; see Theorem 7.

Our theory is based only on intervening on single variables once at a time. We clearly identify 120

cases, which can only be non-maximal and non-ancestral, where this theory may misidentify
some direct causes; see Section 7.

1·3. Related works
To the best of our knowledge, most of the attempts to abstracting intervention or causality

based on intervention in general are substantially different from our approach; see for example 125

Rischel & Weichwald (2021) for a category-theory approach, and the more recent Park et al.
(2023) for a measure-theoretic approach.

One such attempt is the seminal work of Dawid on the decision theoretic framework for causal
inference; for example, see Dawid (2002, 2021). Our approach share the same concerns and spirit
as that of Dawid’s in focusing on the interventions rather than counterfactuals, as well as trying 130

to justify the existence of the causal graph rather than assuming it, as we have heeded Dawid’s
caution (Dawid, 2010). However, the mechanics of the two works are different. First of all, we
have not provided any statistical model like Dawid does. In addition, the goal of Dawid’s work is
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4 K. SADEGHI AND T. SOO

mainly to enable “transfer of probabilistic information from an observational to an interventional
setting,” whereas, here, our starting point is interventions. Finally, our approach also covers a135

much more general class of causal graphs than directed acyclic graphs, considered by Dawid.
We have not included influence diagrams, as proposed by Dawid, but believe that it should be
possible to derive them together with their conditional-independence constraints using our causal
graphs and Markov properties.

A more similar approach to ours is that of Bareinboim, Brito, and Pearl (Bareinboim et al.,140

2011). Like us the authors start with a family of interventional distributions with interventions
defined on single variables. A difference is that they only work on atomic interventions, which
requires alternative definitions to conditional independence, phrased as invariances—we believe
this can be adapted to use stochastic intervention and regular conditional independence. Using
this, they define the concept of direct cause, which is different, but of similar nature to how we145

define this concept. A major difference is that, in their paper, they provide different notions of
compatibility of the interventional family and causal graphs by assuming certain conditions that
include the global Markov property—in our work, we do not assume the global Markov property,
and generate a graph directly from the interventional family by using direct cause, and prove
the Markov property under certain axioms and conditions. Another important difference is that150

their work relies on the notion of observed initial state distribution to define interventions—as
mentioned before, we do not need to rely on observational distribution to derive the causal graph.

The mentioned paper is purely on directed acyclic graphs, but in a more recent work (Barein-
boim et al., 2022) the method was generalized to include arcs representing latent variables. The
notion of Markov property has been replaced by semi-Markov property to deal with this gen-155

eralization, but the difference between the two methods remains the same as described for the
original paper.

Finally, we want to stress that in this paper, we are not using a counterfactual definition of
causation. In Section S7, of the supplementary material, we will point out the differences between
our work and what is known about axiomatization in the counterfactual setting, which is closely160

related to Lewis’ work on modal logic.

2. PRELIMINARIES

2·1. Conditional measures and independence
We will work in the following setting. Let V be a finite set of size N . Let P be a probability

measure on the product measurable space X =
∏
i∈V Xi. ForA ⊆ V , we let XA =

∏
i∈AXi and

PA be the marginal measure of P on XA given by

PA(W ) = P (W ×XV \A)

for all measurable W ⊆ XA. We will use the notation i⊥⊥ P j to mean that the marginal P {i,j} =
P i,j is the product measure P i ⊗ P j on Xi ×Xj , so that if X = (X1, . . . , XN ) is a random165

vector defined on some probability space (Ω,F ,pr) taking values on X with law P , then Xi is
independent of Xj (Dawid, 1979; Lauritzen, 1996).

For xA ∈ XA, we let P (· | xA) = pr(X ∈ · | XA = xA) denote a regular conditional prob-
ability (Chang & Pollard, 1997) so that in particular, we have the disintegration

pr(X ∈ F ) = P (F ) =

∫
XA

P (F | xA)dPA(xA),
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Axiomatization of interventional distributions 5

for F ⊆ X measurable. More generally, consider disjoint subsets A, B, and C of V . We will
often consider the marginal of a conditional measure, and have a slight abuse of notation that:

PA(· | xC) = {P (· | xC)}A.

We write A⊥⊥ PB | C to denote that the measure PA,B(· | xC) = PA∪B(· | xC) is a product
measure on XA ×XB for PC-almost all xC ∈ XC , so that if X has law P , then XA is condi-
tionally independent of XB given XC . Sometimes, we will simply say that A is conditionally 170

independent ofB given C in P . In addition, when independence fails, we writeA6⊥⊥ PB | C and
say that A and B are conditionally dependent given C in P .

2·2. Structural independence properties of a distribution
A probability distribution P is always a semi-graphoid (Pearl, 1988), i.e., it satisfies the four

following properties for disjoint subsets A, B, C, and D of V : 175

1. A⊥⊥ PB | C if and only if B ⊥⊥ PA | C (symmetry);
2. if A⊥⊥ PB ∪D | C, then A⊥⊥ PB | C and A⊥⊥ PD | C (decomposition);
3. if A⊥⊥ PB ∪D | C, then A⊥⊥ PB | C ∪D and A⊥⊥ PD | C ∪B (weak union);
4. if A⊥⊥ PB | C ∪D and A⊥⊥ PD | C, then A⊥⊥ PB ∪D | C (contraction).

The reverse implication of contraction clearly holds by decomposition and weak union. We also 180

use three different properties of conditional independence that are not always satisfied by proba-
bility distributions:

5. if A⊥⊥ PB | C ∪D and A⊥⊥ PD | C ∪B, then A⊥⊥ PB ∪D | C (intersection);
6. if A⊥⊥ PB | C and A⊥⊥ PD | C, then A⊥⊥ PB ∪D | C (composition);
7. if i⊥⊥ P j | C and i⊥⊥ P j | C ∪ {k}, then i⊥⊥ Pk | C or j ⊥⊥ Pk | C (singleton-transitivity), 185

where i, j, and k are single elements. A semi-graphoid distribution that satisfies intersection is
called graphoid. If the distribution P is a regular multivariate Gaussian distribution, then P is a
singleton-transitive compositional graphoid; for example, see Studený (2005) and Pearl (1988).
If P has strictly positive density, it is always a graphoid; see, for example, Proposition 3.1 in
Lauritzen (1996). 190

Remark 1. If P has full support over its state space, then it satisfies the intersection property;
for a comprehensive discussion and necessary and sufficient conditions, see Peters (2015). ♦

Finally, we define the concept of ordered stabilities (Sadeghi, 2017). We say that P satisfies
ordered upward- and downward-stability with respect to an order ≤ of V if the following hold:

• if i⊥⊥ P j | C, then i⊥⊥ P j | C ∪ {k} for every k ∈ V \ {i, j} such that i < k or j < k 195

(ordered upward-stability);
• if i⊥⊥ P j | C, then i⊥⊥ P j | C \ {k} for every k ∈ V \ {i, j} such that i ≮ k, j ≮ k, and
` ≮ k for every ` ∈ C \ {k} (ordered downward-stability).

2·3. Graphs and their properties
We usually refer to a graph as an ordered pair G = (V,E), where V is the node set and E is 200

the edge set. When nodes i and j are the endpoints of an edge, we call them adjacent, and write
i ∼ j, and otherwise i � j.

We consider two types of edges: arrows (i �j) and bidirected edges or arcs (i≺ �j). We do
not consider graphs that have simultaneous third type of edge: undirected edges or lines (i j).
We only allow for the possibility of multiple edges between nodes when they are arrows in two 205
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6 K. SADEGHI AND T. SOO

different directions between i and j, i.e., i �j and i≺ j, which we call parallel arrows. This
means that, except in Section S6, we do not allow bows, i.e., a multiple edge of arrow and arc, to
appear in the graph.

A subgraph of a graph G1 is graph G2 such that V (G2) ⊆ V (G1) and E(G2) ⊆ E(G1) and
the assignment of endpoints to edges in G2 is the same as in G1. An induced subgraph by nodes210

A ⊆ V is the subgraph that contains all and only nodes in A and all edges between two nodes in
A.

A walk is a list 〈v0, e1, v1, . . . , ek, vk〉 of nodes and edges such that for 1 ≤ i ≤ k, the edge
ei has endpoints vi−1 and vi. A path is a walk with no repeated node or edge. When we define
a path, we only write the nodes and not the edges. A maximal set of nodes in a graph whose215

members are connected by some paths constitutes a connected component of the graph. A cycle
is a walk with no repeated nodes or edges except for v0 = vk.

We call the first and the last nodes endpoints of the path and all other nodes inner nodes. A
path can also be seen as a certain type of connected subgraph of G; a subpath of a path π is an
induced connected subgraph of π. For an arrow j �i, we say that the arrow is from j to i. We220

also call j a parent of i, i a child of j and we use the notation pa(i) for the set of all parents of i
in the graph. In the cases of i �j or i≺ �j we say that there is an arrowhead at j or pointing
to j. A path 〈i = i0, i1, . . . , in = j〉, or a cycle where i = j, is directed from i to j if all ikik+1

edges are arrows pointing from ik to ik+1. If there is a directed path from i to j, then node i is an
ancestor of j and j is a descendant of i. We denote the set of ancestors of j by an(j); unlike some225

authors, we do not allow j ∈ an(j). Similarly, we define an ancestor of a set of nodes A ⊂ V
given by an(A) :=

(⋃
j∈A an(j)

)
\A. If necessary, we might write anG to specify that this is

the set of ancestors in G.
A strongly connected component of a graph is the set of nodes that are mutually ancestors of

each other, or it is a single node if that node does not belong to any directed cycle. It can be230

observed that nodes of the graph are partitioned into strongly connected components. We denote
the members of the strongly connected component containing node i by sc(i).

A tripath is a path with three nodes. The inner node t in each of the three tripaths

i � t≺ j, i≺ � t≺ j, i≺ � t≺ �j

is a collider, or a collider node, and the inner node of any other tripath is a non-collider, or a non-
collider node, on the tripath or, more generally, on any path of which the tripath is a subpath; i.e.
a node is a collider if two arrowheads meet. A path is called a collider path if all its inner nodes235

are colliders.
The most general class of graphs that naturally arises from the theory presented in this paper

is what we call the bowless directed mixed graph, which consists of arrows and arcs, and the
only multiple edges are parallel arrows; recall that a bow between two nodes consists of both an
arrow and an arc. We will consider briefly how to modify and improve our graphs with bows in240

Section S6.
Ancestral graphs (Richardson & Spirtes, 2002) are graphs with arcs and arrows with no di-

rected cycles and no arcs ij such that i ∈ an(j). Acyclic directed mixed graphs (Richardson,
2003) are graphs with arcs and arrows with no directed cycles. In other words, bowless directed
mixed graphs unify acyclic directed mixed graphs without bows and directed cycles. Bowless245

directed mixed graphs also trivially contain the class of directed ancestral graphs, i.e., ancestral
graphs (Richardson & Spirtes, 2002) without lines. These all also contain directed acyclic graphs
(Kiiveri et al., 1984), which are graphs with only arrows and no directed cycles.

The class of bowless directed mixed graphs is a subclass of directed mixed graphs, introduced
in Bongers et al. (2021), which is a very general class of graphs with arrows and arcs that allow250
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Axiomatization of interventional distributions 7

for directed cycles. Later on, we will use some definitions and results originally defined for
directed mixed graphs.

2·4. Markov properties
In this paper, we will need global and pairwise Markov properties for bowless directed mixed

graphs. In order to introduce the global Markov property, we need to define the concept of σ- 255

separation for directed mixed graphs. This notion of separation was originally defined for the
larger class of directed graphs with hyperedges in Forre & Mooij (2017).

A path π = 〈i = i0, i1, . . . , in = j〉 is said to be σ-connecting given C, which is disjoint from
i, j, if all its collider nodes are in C ∪ an(C), and all its non-collider nodes ir are either outside
C, or if there is an arrowhead at ir−1, then ir−1 ∈ sc(ir) and if there is an arrowhead at ir+1 on π, 260

then ir+1 ∈ sc(ir). For disjoint subsets A,B, and C of V , we say that A and B are σ-separated
given C, and write A⊥ σB | C, if there are no σ-connecting paths between A and B given C.

In the case where there are no directed cycles in the graph, σ-separation reduces to the m-
separation of Richardson & Spirtes (2002); recall that π ism-connecting givenC if all its collider
nodes are in C ∪ an(C), and all its non-collider nodes are outside C. In addition, if there are no 265

arcs in the graph, i.e., the graph is a directed acyclic graph, it reduces to the well-known d-
separation (Pearl, 1988).

We call two graphs Markov equivalent if they induce the same set of conditional separations.
A probability distribution P defined over V satisfies the global Markov property with respect

to a bowless directed mixed graph G, or is simply Markovian to G, if for disjoint subsets A, B, 270

and C of V , we have

A⊥ σB | C =⇒ A⊥⊥ B | C. (1)

If G is an ancestral graph or a directed acyclic graph, then ⊥ σ will be replaced by ⊥m or ⊥ d,
respectively, in the definition of the global Markov property.

If, in addition to the global Markov property, the other direction of the implication holds, i.e.,
A⊥ σB | C ⇐⇒ A⊥⊥ B | C, then we say that P and G are faithful. A weaker condition of 275

adjacency-faithfulness (Ramsey et al., 2006; Zhang & Spirtes, 2008) states that for every edge
between k and j inG, there are no independence statements k ⊥⊥ P j | C for any C ⊆ V \ {k, j}.

A distribution P satisfies the pairwise Markov property with respect to a bowless directed
mixed graph G, if for every pair of non-adjacent nodes i, j in G, we have

i⊥⊥ P j | an({i, j}). (2)

This is the same wording as that of the pairwise Markov property for the subclass of ancestral 280

graphs; see Lauritzen & Sadeghi (2018).
We prove the equivalence of the pairwise and global Markov properties under compositional

graphoids for maximal bowless directed mixed graphs, which shall be used later for causal graphs
and Theorem 5.

THEOREM 1. Let G be a bowless directed mixed graph, and P satisfy the intersection and 285

composition properties. If P satisfies the pairwise Markov property with respect to G, then P is
Markovian to G.

The proof of Theorem 1, as with all our proofs will appear in the supplementary material.
We also define the converse of the pairwise Markov property. We say that P satisfies the

converse pairwise Markov property with respect to G if an edge between i and j in G implies 290

that

i6⊥⊥ P j | an({i, j}). (3)
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8 K. SADEGHI AND T. SOO

Faithfulness and adjacency-faithfulness of PC andGC imply the converse pairwise Markov prop-
erty; see Sadeghi & Soo (2022).

A graph is called maximal if the absence of an edge between i and j corresponds to a
conditional separation statement for i and j, i.e. there exists for some C a statement of form295

i⊥ σj | C. From the definition of σ-separation that graphs with chordless directed cycles, that
is, having two non-adjacent nodes in a cycle, are not maximal.

We have the following corresponding converse to Theorem 1.

PROPOSITION 1. Let G be a maximal bowless directed mixed graph. If P is Markovian to G,
then P satisfies the pairwise Markov property with respect to G.300

We call a non-adjacent pair of nodes which cannot be σ-separated in a non-maximal graph,
regardless of what to condition on, an inseparable pair, and a non-adjacent pair of nodes which
can be σ-separated in a maximal or non-maximal graph a separable pair.

We define a primitive inducing path to be a path 〈i, q1, · · · , qr, j〉, with at least three nodes,
between i and j, where305

(i) all edges qmqm+1 are either arcs or an arrow where qm ∈ sc(qm+1) except for the first
and last edges, which may be i �q1 or qr≺ j, without being in the same connected
component;

(ii) for all inner nodes, we have qm ∈ an({i, j}), i.e., they are in ancestors of i or j.

Primitive inducing paths were originally defined for the case of ancestral graphs, where they were310

allowed to be an edge (Richardson & Spirtes, 2002). We show in the supplementary material, the
result below:

PROPOSITION 2. In a bowless directed mixed graph, inseparable pairs are connected by
primitive inducing paths.

In addition, from Proposition 1, it follows that if P is Markovian to G, then a pair i, j being a315

separable pair is equivalent to the separation i⊥ σj | an{i, j}.
We say that a graph G = (V,E) admits a valid order ≤ if for nodes i and j of G, i �j

implies that i > j, and i≺ �j implies that i and j are incomparable. This specifies the partial
order via its cover relations and this order can is used as the order with respect to which ordered
upward- and downward-stability hold for graph separations; see Sadeghi (2017).320

Finally, for ancestral graphs, the m-separation holds for every set between parents and ances-
tors.

LEMMA 1. For an ancestral graph and for separable nodes i and j, we have

i⊥mj | A,

for every A such that pa({i, j}) ⊆ A ⊆ an({i, j}).

We will use Lemma 1 in our analysis of structural causal models.

2·5. Structural causal models325

The theory in this paper does not use or assume structural causal models, which are also known
as the structural equation models (Pearl, 2009; Spirtes et al., 2000). We define structural causal
models here as they are an interesting special case of our theory, for which intervention could be
easily conceptualized.

Here, we define structural causal models for the class of bowless directed mixed graphs as330

a simplified version of structural causal models defined for directed mixed graphs in Bongers
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Axiomatization of interventional distributions 9

et al. (2021). Consider a graph G with N nodes, which in the context of causal inference is often
referred to as the true causal graph. A structural causal model C associated with G is defined as
a collection of N equations

Xi = φi(XpaG(i), εi), i ∈ {1, . . . , N},

where paG(i) is defined on G and εi might be called noises; for any subsets A and B, we require 335

that εA ⊥⊥ εB if and only if, in G, there is no arc between any node in A and any node in B. In
this paper, we usually refer to a structural causal model as C and its joint distribution as PC .

In the more widely-used case where G is a directed acyclic graph, all the εi are jointly inde-
pendent. For both mathematical and causal discussions on structural causal models with directed
acyclic graphs, see Peters et al. (2017). When directed cycles are existent, some solvability con- 340

ditions are required in order for the theory of structural causal models to work properly; for this
and for more general discussion, see Bongers et al. (2021).

Standard interventions are defined quite naturally when functional equations are specified, as
in the case of structural causal models: By intervening on Xi we replace the equation associated
toXi byXi = X̃i, where X̃i is independent of all other noises; it is not necessary that X̃i has the 345

same distribution as Xi. We are concerned with a similar type of intervention in this paper—this
is a special case of the so-called stochastic intervention (Korb et al., 2004), where some parental
set of Xi might still exist after intervention on Xi; see also Peters et al. (2017). A more special
type of intervention is called perfect intervention or surgical intervention, where it puts a point
mass on a real value a—this is the original idea of do-calculus (Pearl, 2009), and is often denoted 350

by do(Xi = a).
An important result for structural causal models, which facilitates causal inference using them,

is that the joint distribution of a structural causal model is Markovian to its associated graph; see
Verma & Pearl (1988); Pearl (2009) for the case of directed acyclic graphs, Sadeghi & Soo (2022)
for directed ancestral graphs, and Bongers et al. (2021) for directed mixed graphs. 355

3. INTERVENTIONAL FAMILY OF DISTRIBUTIONS

3·1. Interventional families and the cause
Again, let V be a finite set of size N . Consider a family of distributions Pdo = {Pdo(i)}i∈V ,

where each Pdo(i) is defined over the same state space X =
∏
i∈V Xi. We refer to Pdo as an

interventional family of distributions. For (X̃j)j∈V a random vector with distribution Pdo(i), we 360

think of Pdo(i) as the interventional distribution after intervening on some variable Xi.
For k ∈ V , we define the set of the causes of k as

causePdo(k) = cause(k) := {i : i 6= k, i 6⊥⊥ Pdo(i)
k};

we rarely, simultaneously, have to consider two different interventional families at once. Thus,
if i ∈ cause(k), then, for (X̃j)j∈V , we have that X̃k is dependent on X̃i. By convention, k /∈
cause(k). For a subset A ⊆ V , we define cause(A) =

(⋃
k∈A cause(k)

)
\A.

The definition of the cause is identical to what is known in the literature as the existence of 365

the total causal effect (Peters et al., 2017, Definition 6.12). Its combination with Pdo meets the
intuition behind cause and intervention: after intervention on a variable Xi, it is dependent on a
variable Xj if and only if it is a cause of that variable.

The above setting is compatible with the well-known intervention for structural causal models;
for a comprehensive discussion on this, see Section 6. We will often illustrate our theory with 370

simple examples of structural causal models and standard intervention on a single node.
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10 K. SADEGHI AND T. SOO

We can also define the set of effects of i denoted by eff(i) by i ∈ cause(k) ⇐⇒ k ∈ eff(i).
We take note of the following useful fact.

Remark 2. From the definition of cause, we have eff(i) = {k : i 6= k, i 6⊥⊥ Pdo(i)
k}. ♦

Remark 3 (Interventional families with the same cause). Interventional families are defined375

for one joint distribution per intervention. This can be considered an advantage as not all in-
terventions have to follow a single causal graph. Here, we provide an immediate condition for
interventional families to define the same set of causes. In Section 5·3, we provide conditions for
families of distributions that lead to the same causal graph.

Consider the interventional families Pdo = {Pdo(j)}j∈V and Qdo = {Qdo(j)}j∈V over the
same state space X . Causes and effects depend on the interventional family, and, by Remark
2, it follows that, for all i, k ∈ V , we have(

i6⊥⊥ Pdo(i)
k ⇐⇒ i6⊥⊥ Qdo(i)

k
)

if and only if causePdo(`) = causeQdo(`),

for all ` ∈ V , in which case we say they have the same causes. In the case of structural causal380

models, under standard interventions, the causes are usually invariant with respect to the choice
of distribution, except for technical counterexamples; see Remark 11 and Example S1 in the
supplementary material.

Consider a fixed i ∈ V , and suppose that measures Pdo(i) and Qdo(i) have the same null sets.
Notice that the equality385

Qdo(i)(· | xi) = Pdo(i)(· | xi)

for almost every xi ∈ Xi, is sufficient for the effects of i to be same in both families. Moreover,
with the disintegration

dPdo(i)(x) = dPdo(i)(xV \{i} | xi)dP ido(i)(xi)

we see that effects of i depend only on the corresponding conditional distribution, and are invari-
ant under the marginal distributions on i with the same null sets. ♦

Remark 4 (Atomic interventions). Observe that the dependence

i6⊥⊥ Pdo(i)
k

is equivalent to the existence of disjoint measurable subsetsW ∗,W ∗∗ ⊂ Xi of positive measures
under P ido(i) satisfying the inequality390

P kdo(i)(· | x
∗
i ) 6= P kdo(i)(· | x

∗∗
i ), (4)

for all x∗i ∈W ∗ and all x∗∗i ∈W ∗∗. Since Pdo(i)(· | x∗i ) and Pdo(i)(· | x∗∗i ) are probability
measures on XV \{i}, they can be thought of as atomic interventions on i, where the values at i
are fixed, at x∗i and x∗∗i , respectively. Thus inequality (4) has the interpretation that i is a cause of
k if and only if there exists atomic interventions that witness an effect on k; that is, as a function
of xi, the conditional probability, P kdo(i)(· | xi), is non-constant.395

From Remark 3, without loss of generality, given atomic interventions, Ado(xi), which are
measures on XV \{i} indexed by xi ∈ Xi, we can extend these to an intervention, defined on the
complete space, X , via the disintegration

dPdo(i)(x) := dAdo(xi)(xV \{i})dR(xi),
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Axiomatization of interventional distributions 11

where R is a suitably chosen probability measure on Xi Specifically, in the case where Xi is
finite, R can be taken to be a uniform measure on Xi. ♦

We call a subset S ⊆ V a causal cycle if for every i, k ∈ S, we have k ∈ cause(i) ∩ eff(i).
We write cc(i) to denote the causal cycle containing i.

Under the composition property, we have the following independence. Let neff(i) := V \ 400

eff(i) denote the subset of V that contains members that are not an effect of i.

PROPOSITION 3 (NON-EFFECTS UNDER COMPOSITION). Let Pdo be a family of distribu-
tions. If Pdo(i) satisfies the composition property, then

i⊥⊥ Pdo(i)
neff(i).

3·2. Transitive interventional families
We now say that Pdo is a transitive interventional family if the following axiom holds.

AXIOM 1 (TRANSITIVITY OF CAUSE). For distinct i, j, k ∈ V , if i ∈ cause(j) and j ∈
cause(k), then i ∈ cause(k). 405

The distributions in transitive interventional families are restricted by Axiom 1, which places
constraints between different Pdo(i), since cause(k) depends on all Pdo(i).

Under singleton-transitivity, we have sufficient conditions for Axiom 1 to hold. These con-
ditions are not satisfied in general, even in the case of a structural causal model with standard
interventions. 410

THEOREM 2 (TRANSITIVITY OF CAUSE UNDER SINGLETON-TRANSITIVITY). Let Pdo be
an interventional family whose members Pdo(i) satisfy singleton-transitivity. Assume, for distinct
i, j, k ∈ V such that i /∈ cause(k) and j ∈ cause(k), we have:

(a) i⊥⊥ Pdo(i)
k | j; and

(b) j 6⊥⊥ Pdo(i)
k. 415

Then Pdo is a transitive interventional family.

PROPOSITION 4. Transitivity of the cause induces a strict preordering . on V by{
i < k ⇐⇒ k ∈ cause(i) and k /∈ cause(i);
i ∼ k ⇐⇒ k ∈ cause(i) ∩ eff(i).

(5)

COROLLARY 1. Let Pdo be a transitive interventional family that satisfies the composition
property. If i /∈ cause(k), then

i⊥⊥ Pdo(i)
k | cause(k).

In the next example, we show that we cannot drop the singleton transitivity assumption in
Theorem 2.

Example 1 (Failure of transitivity without singleton transitivity). Suppose 1 is the cause of 2, 420

and 2 is a cause of 3. It may not be the case that 1 is a cause of 3. Consider the structural
causal model, with X1 �X2 �X3, where X1 is Bernoulli p ∈ (0, 1), conditional on X1 =
x1, we sample a Poisson random variable N = n with mean x1 + 1, and then we sample X2 =
(X0

2 , . . . , X
n
2 ) as an i.i.d. sequence of n+ 1 Bernoulli random variable(s) with parameter 1/2,

and finally setX3 := X0
2 . The first random variableX1 is independent of the final resultX3. The 425

standard interventions where we simply substitute a distributional copy ofXi for each i gives that
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12 K. SADEGHI AND T. SOO

1 is clearly the cause of 2, and 2 a cause of 3. However, since Pdo(1) = P , singleton-transitivity
fails: 1⊥⊥ P 3 and 1⊥⊥ P 3 | 2, but we have neither 1⊥⊥ P 2 nor 3⊥⊥ P 2. ♦

4. CAUSAL GRAPHS AND INTERVENED MARKOV PROPERTIES

4·1. Intervened and direct cause430

Notice that only knowing the causal ordering cannot yield a graph, since, for example, for
i �j �k, there is no way to distinguish the two graphs corresponding to whether an addi-
tional i �k exists in the graph or not. For this reason, we need to define the concept of direct
cause.

In order to define direct and intervened cause in the general case, we need an iterative proce-435

dure:

1. For each i, k ∈ V , start with dcause(k) := cause(k), ιcausei(k) := cause(k), and S(Pdo)
an empty graph with node set V ;

2. Redefine

dcause(k) := {i : i ∈ dcause(k), i6⊥⊥ Pdo(i)
k | ιcausei(k) \ {i}};

3. Generate S(Pdo) by setting arrows from i to k, i.e., i �k if i ∈ dcause(k);
4. Generate the graph Si(Pdo) by removing all arrows pointing to i from S(Pdo);440

5. Redefine ιcausei(k) := anSi(Pdo)(k);
6. If S(Pdo) is modified by Step 3, then go to Step 2; otherwise, output dcause(k), ιcausei(k),
S(Pdo), and Si(Pdo).

We call dcause(k) the set of the direct causes of k, and ιcausei(k) the set of intervened
causes of k after intervention on i. We also call S(Pdo) the causal structure, and Si(Pdo) the445

i-intervened causal structure.
In the iteration dcause(k) is getting smaller, which ensures that the procedure will stop.
By convention, k /∈ dcause(k) ∪ ιcausei(k), for any i ∈ V . We also let dcause(A) =

(
⋃
k∈A dcause(k)) \A, and ιcausei(A) = (

⋃
k∈A ιcausei(k)) \A.

By definition, cause is a universal concept: no matter how large the system of random variables450

is, as long as it contains the two investigated random variables, the marginal dependence of those
variables stays intact. On the other hand, direct cause depends on the system of variables in
which the two investigated variables lie.

The below example shows why we need ιcausei(k) as opposed to cause(k) in the definition
of dcause(k); see also Section S3 in the supplementary material.455

Example 2. Let the graph of Figure 1, below, be the graph associated to a structural causal
model with standard interventions. Under faithfulness, notice that, i6⊥⊥ Pdo(i)

k | cause(k) \ {i},
where cause(k) \ {i} = {j, `}. However, i is clearly not a direct cause of k. On the other hand,
ιcausei(k) \ {i} = {j}, and i⊥⊥ Pdo(i)

k | ιcausei(k) \ {i}.
In the iterative procedure above, in the first round, there will be an arrow from i to k in S(Pdo).460

In the second round, i will be removed. ♦

Remark 5. For causal graphs, as defined in the next subsection, that are ancestral, dcause(k)
can simply be defined by

i6⊥⊥ Pdo(i)
k | cause(k) \ {i}
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Axiomatization of interventional distributions 13

i j

k`

Fig. 1. A graph for which detecting the direct cause re-
quires an iterative procedure.

rather than using the iterative procedure and ιcausei(k) in the conditioning set; see Section S3
in the supplementary material for the equivalence of the two methods under certain conditions.
♦

Remark 6. As it is seen in Section 7, there may still be arrows generated here that arguably 465

should not be considered direct causes in the case of non-maximal non-ancestral graphs. We
study and identify these cases and offer adjustments in that section. ♦

The next proposition can be thought of as a proxy for the pairwise Markov property, and will be
used in our proofs of the Markov property for our casual graphs.

PROPOSITION 5. Let Pdo be a transitive interventional family, and Pdo(i) satisfy the compo-
sition property. For distinct i, k ∈ V , if i /∈ dcause(k), then

i⊥⊥ Pdo(i)
k | ιcausei(k) \ {i}.

4·2. Intervened causal and causal graphs 470

We are now ready to define a graph that demonstrates the causal relationships by capturing the
direct causes as well as non-causal dependencies due to latent variables.

Given an interventional family Pdo, and i ∈ V , we define the i-intervened graph, denoted by
Gi(Pdo) to be the i-intervened causal structure, where, in addition, for each pair of non-adjacent
nodes j, k ∈ V that are distinct from i, we place an arc between j and k, i.e., j≺ �k, if 475

j 6⊥⊥ Pdo(i)
k | ιcausei({j, k}), (6)

Thus with (6), we put an arc if one of the interventions Pdo(i) suggests the presence of a latent
variable.

We also define the causal graph, denoted by G(Pdo), to be the causal structure, where, in
addition, for each pair of nodes j, k that are not adjacent by an arrow, we place an arc between
them if the jk-arc exists in Gi(Pdo) for every i ∈ V that is distinct from j and k. 480

Remark 7. The graph Gi(Pdo) does not contain arrows pointing to i in G(Pdo) and all arcs
with i as an endpoint in G(Pdo).

We also note that the existence of the jk-arc in two different intervened graphs Gi(Pdo) and
G`(Pdo) may not coincide when there is a primitive inducing path as the below example shows.
♦ 485

Example 3. Consider a structural causal model with the graph presented in Figure 2, below,
with standard intervention. Assume that the joint distribution of the structural causal model is
faithful to this graph. It is easy to observe that j 6⊥⊥ Pdo(i)

k | ιcausei({j, k}), but j ⊥⊥ Pdo(`)
k |

ιcausei({j, k}). This implies that there is a jk-arc in Gi(Pdo), but not in G`(Pdo). ♦
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14 K. SADEGHI AND T. SOO

` h kj i

Fig. 2. A non-maximal graph associated to a structural
causal model.

For an interventional family Pdo, our definitions now allow us to use the notions paG(Pdo)
(k)490

and dcause(k) interchangeably. For a transitive Pdo, we have that, moreover, other causal termi-
nologies on Pdo and the graph terminologies on G(Pdo) can be used interchangeably:

THEOREM 3 (INTERCHANGEABLE TERMINOLOGY). For a transitive interventional Pdo
where Pdo(i) satisfy the composition property, we have the following:

(i) i ∈ anG(Pdo)(k)⇐⇒ i ∈ cause(k) in Pdo.495

(ii) i ∈ scG(Pdo)(k)⇐⇒ k ∈ cc(i) in Pdo.

As an immediate consequence of the above result, we see that if the set of causes of a variable
is non-empty, then at least one of the causes must act as the direct cause.

COROLLARY 2. Let Pdo be a transitive interventional family where Pdo(i) satisfy the compo-
sition property. For k ∈ V , if cause(k) 6= ∅, then dcause(k) 6= ∅.500

In the next example, we illustrate how all the different edges can easily occur. We remark
that we can generate cycles quite easily, but in the standard structural causal model setting, their
existence is non-trivial and requires solvability conditions (Bongers et al., 2021).

Example 4 (A simple example of an arrow, cycle, and arc). Consider a fixed joint distribution
P for random variables (X1, X2, X3), where X1 is not independent of X2, and X3 is indepen-505

dent of (X1, X2) We may think of the joint distribution (X1, X2) as generated via the following
functional equations: (X1, X2 = φ(X1, U)) or (X1 = ψ(X2, V ), X2), where φ and ψ are deter-
ministic functions, U and V are uniformly distributed on [0, 1].

Thus corresponding to φ, we have a structural causal model, where X1 �X2, and X3 is iso-
lated, and similarly, corresponding to ψ, we have a structural causal model, where X2 �X1,510

and X3 is isolated. Next, we see how these structural causal model interact with various inter-
ventions, and see the corresponding causal graphs that can be defined.

Via the function φ, we consider standard interventions, where X1, X2, and X3 are replaced
with a distributional copies of themselves, giving the family (P = P φdo(1), P

φ
do(2), P = P φdo(3))

and via the function ψ we consider standard interventions giving the family (Pψdo(1), P =

Pψdo(2), P = Pψdo(3)); in both cases, we place an arrow between 1 and 2 in the expected direc-
tion. Note that

P ind := P 1 ⊗ P 2 ⊗ P 3 = P φdo(2) = Pψdo(1).

Consider also the non-standard interventional family (P φdo(1), P
ψ
do(2), P ); 1 is a direct cause of

2, and 2 is also a direct cause of 1, so we obtain a parallel edge.
Finally, to have an arc, we consider the interventional family

(Pdo(1), Pdo(2), Pdo(3)) = (P ind, P ind, P );

there are no causes, and no arrows are placed, but Pdo(3) detects the dependence in X1 and X2,515

and places an arc between them. ♦

Page 14 of 25

http://mc.manuscriptcentral.com/biometrika

Manuscripts submitted to Biometrika

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asae043/7738083 by U

niversity C
ollege London user on 28 August 2024



Axiomatization of interventional distributions 15

In the following example, we stress that the generated causal graph heavily depends on the
interventional family that is considered, even under standard interventions arising from simple
structural causal model.

Example 5 (Two different graphs, one underlying distribution). Let ε1, ε2, ε3 be independent 520

Bernoulli random variables with parameter 1/2. Consider the random variables X1 = ε1, X2 =
X1 + ε2, and X3 = X1 + ε3; they have a joint distribution P , and can be thought of as a struc-
tural causal model C with X1 �X2 and X1 �X3. Thus we can define a intervention family
Pdo corresponding to standard interventions on C; it is not difficult to verify in this case that the
resulting casual graph will be the same as the graph for C. 525

However, it is not difficult to construct another structural causal model C′ with X ′3 �X ′2,
X ′3 �X ′1, and X ′2 �X ′1, where (X ′1, X

′
2, X

′
3) also have the joint distribution P . Thus we can

define another intervention family P ′do corresponding to standard interventions on C′; again it is
not difficult to verify in this case that the resulting casual graph will be the same as the graph for
C′. 530

We exploited the simple fact that that the joint distribution P does not uniquely determine a
corresponding structural causal model—not even up to adjacency. Notice that C and C′ do not
have the same number of edges. ♦

The generated graph is indeed a bowless directed mixed graph.

PROPOSITION 6 (THE CAUSAL GRAPH IS BOWLESS DIRECTED MIXED GRAPH). The 535

causal graph and intervened graphs generated from a transitive interventional family are
bowless directed mixed graphs.

Remark 8. By just knowing the family Pdo, in most situations, there is no way to distinguish
an arrow and a bow. For example, in the case of only two nodes i and j, dependence in either
of the interventional distributions indicates a direct cause without specifying the existence of a 540

latent variable causing both nodes; see also Example S4. This reflects in our definition on causal
graphs where the existence of an arc between two nodes is tested only when there is no arrow
between them. The exception is for non-maximal graphs. We detail this in Section S6, where we
also discuss identifying bows when, in addition, there exist observational distributions. ♦

Remark 9. If we assume that cc(k) = {k} for every k ∈ V , so that there is no causal cycle,
then the causal graph is a bowless acyclic directed mixed graph. If we assume that for every
j, k ∈ V that are not direct causes of each other and every i, we have

j ⊥⊥ Pdo(i)
k | ιcausei({j, k}),

then the causal graph does not contain arcs—in this case it is seen that the interventional fam- 545

ily does not detect any latent variables that cause both j and k, since they are not dependent.
Assuming both of these conditions results in a directed acyclic graph. ♦

4·3. The Markov property with respect to the intervened causal graphs
We can now present a main result of this paper.

THEOREM 4. (INTERVENTIONAL DISTRIBUTIONS ARE MARKOVIAN TO INTERVENED 550

GRAPHS). Let Pdo =
{
Pdo(i)

}
i∈V be a transitive interventional family. For each i ∈ V , if Pdo(i)

satisfies the intersection property and the composition property, then Pdo(i) is Markovian to the
i-intervened graph, Gi(Pdo).
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16 K. SADEGHI AND T. SOO

5. OBSERVABLE INTERVENTIONAL FAMILIES

5·1. The Markov property with respect to the causal graph555

In Section 4, the causal structures are completely defined by interventional families; here we
provide additional assumptions for the causal graph to be Markovian with respect to an underly-
ing distribution that can be observed.

We say that an interventional family of distributions Pdo on the state space X =
∏
i∈V Xi

is observable with respect to an underlying distribution P on X such that the following axiom560

holds.

AXIOM 2.

(a) For every separable pair j, k ∈ V , in G(Pdo), and every distinct i ∈ V , we have

j ⊥⊥ Pdo(i)
k | ιcausei({j, k})⇒ j ⊥⊥ Pk | cause({j, k}).

(b) For every k and every i ∈ cause(k), we have

i⊥⊥ Pdo(i)
k | ιcausei({i, k})⇒ i⊥⊥ Pk | cause({i, k}).

We remark that if P is a product measure on X , then every interventional family will be
observable with respect to P ; in practice we want to consider underlying distributions that have
some relation to the interventional family, such as when P is the distribution of a structural causal565

model.

THEOREM 5 (THE UNDERLYING DISTRIBUTION IS MARKOVIAN TO THE CAUSAL GRAPH).
Let Pdo be a transitive observable interventional family, with underlying joint distribution P
that satisfies the intersection property and the composition property. Then P is Markovian to the
causal graph, G(Pdo).570

5·2. Causal graphs for observational distributions
The arcs in the causal graph G(Pdo) can be generated from the observational distribution P

and the causes, if the inverse of Axiom 2 holds. Assume Pdo is an observable interventional
family of distributions with respect to an underlying observational measure P . We say that Pdo
is a strongly-observable interventional family if the following additional axiom holds.575

AXIOM 3.

(a) For every distinct i, j, k ∈ V , we have

j ⊥⊥ Pk | cause({j, k})⇒ j ⊥⊥ Pdo(i)
k | ιcausei({j, k}).

(b) For every k and every i ∈ cause(k), we have

i⊥⊥ Pk | cause({i, k})⇒ i⊥⊥ Pdo(i)
k | ιcausei({i, k}).

Our next example shows that there are univariate observable interventional families that are
not given by standard interventions and that univariate observable interventional families may
not satisfy Axiom 3.

Example 6 (Interventions on joint distributions). Suppose X1, X2, and X3 are jointly inde-580

pendent (Bernoulli) random variables, with law P , which will serve as an underlying distribu-
tion. Now consider the (non-standard) intervention, where Pdo(1) changes the joint distribution
of X2 and X3 to one of dependence, but leaves the marginal distributions of X2 and X3, and
X1 alone; furthermore, we leave X1 independent of (X2, X3). Although we normally think of
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Axiomatization of interventional distributions 17

Pdo(1) as an interventional on X1, our general definition allows for somewhat counter-intuitive 585

constructions.
Let Pdo(2) and Pdo(3) be standard interventions on X2 and X3, respectively, that simply leave

the original independent distribution unchanged. The family {Pdo(1), Pdo(2), Pdo(3)} satisfies
Axioms 1 and 2 trivially, but Axiom 3 is not satisfied. ♦

Define G(P ) by adding to the causal structure S(Pdo), arcs between j and k, i.e., j≺ �k, for 590

nodes j and k not adjacent by an arrow, if

j 6⊥⊥ Pk | cause({j, k}). (7)

Clearly, (7) suggests the presence of a latent variable; compare with (6).

PROPOSITION 7. Suppose that Pdo is a strongly-observable interventional family with the
underlying distribution P , and N ≥ 3, so that there are at least three nodes. Then G(P ) =
G(Pdo) when these graphs are maximal. 595

Note that for strongly-observable interventional families, the existence of the jk-arc inG(Pdo)
and G(P) may differ for non-maximal graphs only when j, k is an inseparable pair. This implies
that these two graphs are Markov equivalent.

5·3. Congruent interventional families
Consider the interventional families Pdo = {Pdo(j)}j∈V and Qdo = {Qdo(j)}j∈V over the 600

same state space X . It is immediate that if both families are strongly observable with respect
to a single underlying distribution P , and if the causal graphs G(Pdo) and G(Qdo) are maximal,
then they have the same adjacencies. Motivated by Axioms 2 and 3, we say that the families are
congruent if they have the same causes; see also Remark 3.

1.) For every k and every i ∈ causePdo(k) = causeQdo(k), we have

i⊥⊥ Pdo(i)
k | ιcausePdo

i ({i, k}) ⇐⇒ i⊥⊥ Qdo(i)
k | ιcauseQdo

i {i, k}.

2.) For every distinct i, j, k ∈ V , we have

j ⊥⊥ Pdo(i)
k | ιcausePdo

i ({j, k}) ⇐⇒ j ⊥⊥ Qdo(i)
k | ιcauseQdo{j, k}.

We collect our observations in the following proposition. 605

PROPOSITION 8. Consider two interventional families over the same state space.

1.) The families are congruent if and only if their causal graphs are the same.
2.) If the families are strongly observable with respect to the same underlying distribution, and

their causal graphs are maximal, then the graphs have the same adjacencies; furthermore,
if the families have the same causes, and if the causal graphs are ancestral, then the graphs 610

are the same, and the families are congruent.

6. SPECIALIZATION TO STRUCTURAL CAUSAL MODELS

6·1. Introduction
In this section, we relate the standard intervention on structural causal models to the setting

presented in this paper. 615

Let C be a structural causal model with random vector X taking values on X =
∏
i∈V Xi with

joint distribution PC , and associated graphGC . Consider again the standard intervention in struc-
tural causal models, where intervention on i ∈ V replaces the equation Xi = φi(XpaG(i), εi) by
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18 K. SADEGHI AND T. SOO

Xi = X̃i, where X̃i is independent of all other noises. In the setting of this paper, the new system
of equations after intervening on i yields the joint distribution PC [do(i)=X̃i], and consequently one620

obtains the family of distributions PC [do=X̃] := {PC [do=X̃1], . . . , PC [do=X̃N ]}.

Remark 10. The definition of the set cause(i), defined for PC [do=X̃], in the setting of this
paper is identical to the definition of the set of “causes” of i in the structural causal model setting
(Pearl, 2009; Peters et al., 2017). ♦

Remark 11. Under some weak, but technical assumptions, in the sense of compatibility, we625

suspect it is possible to show that cause(A) is invariant under the choice of X̃; see also Proposi-
tion 6.13 in Peters et al. (2017), which has technical counterexamples.

Therefore, under invariance, if we are only interested in the causal structure, we can simply
refer to some canonical family, where intervention X̃i has the same distribution as Xi, which we
denote by Pdo(C) = {Pdo(1), . . . , Pdo(N)}. ♦630

6·2. Structural causal models and interventional families
The first question that needs to be addressed is when Pdo(C) satisfies different axioms and

key assumptions related to interventional families. Cancellations may occur in structural causal
models so that cause is not transitive, as required in Axiom 1. We do not provide conditions
for structural causal models such that cause is transitive—the main results in this section do not635

require transitivity of cause. The following example shows that standard interventions on struc-
tural causal models do not satisfy the conditions of Theorem 2 nor do they lead to quantifiable
interventional families, as defined in the supplementary material.

Example 7. Consider the colliderX1 �X3≺ X2, whereX3 = X1 ⊕X2 mod 2. Consider
the underlying joint distribution PC where X1 is Bernoulli with parameter p1 = 1/100 and X2640

is Bernoulli with parameter p2 = 1/2. Consider the standard interventions where p1 → 1/2 and
p2 → 1/100. Although these are standard interventions, the resulting family does not satisfy
Axiom S1 in the supplementary material. Observe that X2 is a direct cause of X3, but X1 is
not a cause ofX3. However, Pdo(1)(x3 = 1 | x2 = 1, x1 = 1) = 0 and PC(x3 = 1 | x2 = 1) =
PC(x1 = 0) = 99/100. We also see that the conditions of Theorem 2 are not satisfied. ♦645

We will need to introduce a concept related to faithfulness on the edge level. We say that Pdo(C)
satisfies the edge-cause condition with respect to GC if an arrow from i to j in GC implies that
i ∈ dcause(j), i.e., i6⊥⊥ Pdo(i)

j and i6⊥⊥ Pdo(i)
j | ιcausei(j) \ {i}.

In Section S5 in the supplementary material, we will discuss simple conditions on the struc-
tural causal model that imply the edge-cause condition. In particular, it is easy to see that if650

Pdo(i) are faithful to the intervened graphs (GC)i, where the upcoming arrows and arcs to i are
removed, the edge-cause condition is satisfied. The same can be said with the weaker condition
of adjacency-faithfulness of Pdo(i) and (GC)i.

PROPOSITION 9 (ANCESTORS AND CAUSES). For a structural causal model C and the fam-
ily Pdo(C), we have that655

dcause(k) ⊆ paGC(k) and cause(k) ⊆ anGC(k), (8)

for every k ∈ V . In addition, if Pdo(C) satisfies the edge-cause condition with respect toGC then

dcause(k) = paGC(k) and paGC(k) ⊆ cause(k). (9)

Moreover, Pdo(C) is transitive if and only if

cause(k) = anGC(k). (10)
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Axiomatization of interventional distributions 19

The following example shows that the inequality may be strict in (8) and (9) does not hold
without the edge-cause condition.

Example 8 (Independence and cause in a structural causal model). Consider the collider

X1 �X3≺ X2,

where X3 = X1 ⊕X2 mod 2. Consider the underlying joint distribution PC where X1 is 660

Bernoulli with parameter p1 = 1/2 and X2 is Bernoulli with parameter p2 = 1/2. Consider the
standard interventions where nothing happens: p1 → 1/2 and p2 → 1/2. ThenX3 has no causes,
and thus its set of ancestors is not equal to its causes. However, it is easy to verify that Axiom S1
in the supplementary material is satisfied. ♦

We also recall that the joint distribution PC of a structural causal model C is Markovian to GC . 665

We need a corresponding result to the Markov property of the joint distribution of the structural
causal models for the intervened distribution.

LEMMA 2. Let C be a structural causal model. For each i ∈ V , its intervened distribution
Pdo(i) is Markovian to (GC)i and GC .

THEOREM 6 (STRONGLY OBSERVABLE STRUCTURAL CAUSAL MODELS). Let C be a struc- 670

tural causal model associated to graph GC . Assume that PC satisfies the converse pairwise
Markov property with respect to GC . Also assume that Pdo(C) satisfies the edge-cause condi-
tion with respect to GC . Then Pdo(C) is a strongly observable interventional family if GC is
ancestral. In addition, if Pdo(C) is transitive, then the result holds for bowless directed mixed
graphs. 675

6·3. Causal graphs and graphs associated to structural causal models
In this subsection, we present the ultimate relationship between interventions in the structural

causal model setting and the setting in this paper, which relates the “true causal graph” GC with
the causal graph G(Pdo) defined in this paper. We first need some lemmas.

LEMMA 3. Let C be a structural causal model. We have that paG(Pdo(C))(k) ⊆ paGC(k), for 680

every k ∈ V . In addition, if Pdo(C) satisfies the edge-cause condition with respect to its associ-
ated graph GC , then paG(Pdo(C))(k) = paGC(k).

To prove a part of the next main result that deals with directed ancestral graphs, we need the
following lemma.

LEMMA 4. Let C be a structural causal model, and assume that Pdo(C) satisfies the edge-
cause condition with respect to its associated directed ancestral graph GC . Then for every i, j ∈
V , we have

i⊥⊥ PCj | cause({i, j})⇒ i⊥⊥ PCj | anC({i, j}).

THEOREM 7 (EQUALITY OF CAUSAL AND STRUCTURAL CAUSAL MODEL GRAPHS). 685

Consider a structural causal model C with the joint distribution PC . If Pdo(C) satisfies the
edge-cause condition, and PC satisfies the converse pairwise Markov property with respect
to the maximal directed ancestral graph GC , then G(Pdo(C)) = GC . In addition, if Pdo(C) is
transitive, then the result holds for maximal bowless directed mixed graphs. Moreover, without
the maximality assumption, it holds that G(Pdo(C)) and GC are Markov equivalent. 690

The following example shows that we, indeed, require to assume that GC is maximal.

Page 19 of 25

http://mc.manuscriptcentral.com/biometrika

Manuscripts submitted to Biometrika

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asae043/7738083 by U

niversity C
ollege London user on 28 August 2024



20 K. SADEGHI AND T. SOO

Example 9. Consider the non-maximal graph of Figure 3 to be GC . Assume standard inter-
vention and also faithfulness of PC and GC . In G(Pdo(C)), there exists an arc between j and
k since no matter what one intervenes on, j and k always stay dependent given any condition-
ing set. Notice that here we require two discriminating paths between j and k. If there were695

only one discriminating path between j and k, for example with no h′ and `′, then by interven-
ing on any node on the discriminating path, such as h, one obtains the required independence
j ⊥⊥ Pdo(h)

k | ιcauseh({j, k}). ♦

` h

kj

`′ h′

Fig. 3. A non-maximal graph associated to a structural
causal model.

COROLLARY 3. Let C be a structural causal model. If its joint distribution PC and its associ-
ated bowless directed mixed graph GC are faithful, and its intervened distribution Pdo(i) and its700

associated intervened graphs (GC)i are faithful, for every i, then G(Pdo(C)) = GC .

7. IDENTIFYING CASES THAT NEED EXTRA OR MULTIPLE CONCURRENT INTERVENTIONS

Our theory is based on the interventional family Pdo = {Pdo(i)}i∈V , which only allows single
interventions.

We note again that, for ancestral causal graphs, under certain conditions, direct cause can705

be simply defined using i6⊥⊥ Pdo(i)
k | cause(k) \ {i}; see Section S3. The following example

shows that for the case of structural causal models for non-ancestral graphs, this definition might
misidentify some direct causes.

Example 10. In Example 2 and the graph of Figure 1, we observed that an iterative procedure
is needed to obtain i6⊥⊥ Pdo(i)

k | ιcausei(k) \ {i}}, which does not coincide with i6⊥⊥ Pdo(i)
k |710

cause(k) \ {i} in this case.
In a structural causal model associated to the below graph with standard intervention, we see

that even i6⊥⊥ Pdo(i)
k | ιcausei(k) \ {i} misidentifies i as the direct cause of k since i has no

parents in the graph. We observe that, in this case the independence i⊥⊥ Pdo(j)
k | cause(k) \ {i}

holds. ♦

j h ki

Fig. 4. A non-maximal graph associated to a structural
causal model.

715

Below, we classify the cases for non-ancestral graphs, where direct cause cannot be defined in
the way described above.

The result below shows that all cases where cause(k) is not sufficient to define dcause(k)
result in primitive inducing paths:
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Axiomatization of interventional distributions 21

PROPOSITION 10. For a transitive interventional family Pdo, assume Pdo(i) is Markovian to 720

the i-intervened graph, Gi(Pdo), an assumption which can be discharged by satisfying condi-
tions of Theorem 4. For non-adjacent pair of nodes i and k, let i ∈ cause(k) \ dcause(k). If
i6⊥⊥ Pdo(i)

k | cause(k) \ {i}, then there is a primitive inducing path between i and k in G(Pdo).

For i ∈ cause(k), there could be two types of primitive inducing paths between i and k, de-
scribed in the above proposition. Notice again that such cases can happen only for non-ancestral 725

graphs and when the true causal graph is non-maximal.

(1) If this primitive inducing path is not a primitive inducing path in Gi(Pdo), as in the case of
Figure 1, i.e., an inner node of the primitive inducing path is only an ancestor of k via i, then
the iterative procedure to define direct cause works as it is designed to ensure that a direct
cause is not placed in the causal graph incorrectly. 730

(2) If the primitive inducing path is a primitive inducing path in Gi(Pdo), as in the case in
Figure 4, then the current theory is incomplete in the sense that some direct causes may be
misidentified as our theory considers i ∈ dcause(k), and it always places an arrow from i to
k in G(Pdo). We have two sub-cases here:
(a) If there exists maximum one such primitive inducing path between each pair of nodes, 735

then we propose the following adjustment to the definition of direct cause, which fixes
this issue:
We define i to be a direct cause of k if for every j, that may be i but not k, it holds that
i6⊥⊥ Pdo(j)

k | cause(k) \ {i}.
Hence, as a procedure, one can generate the intervened causal structure Si(Pdo), and if
there is a primitive inducing path between i and k then performs the extra test

i⊥⊥ Pdo(j)
k | cause(k) \ {i},

for a j on primitive inducing path. If it holds, then the arrow from i to k will be removed. 740

We note that, for observable interventional families, and for separable pairs, by Axiom
2 and (S2) in the supplementary material, the original definition of direct cause is equiv-
alent to this new one. However, this definition, is an extension of the original definition
for inseparable pairs.
Notice also that in such cases, similar to bows, by only knowing Pdo, it is not possible to 745

distinguish an arrow from an arc between i and k. We treat such cases as a direct cause
from i to k.

(b) If there are more than one such primitive inducing paths between i and k then, In the
case of faithful structural causal models, no matter which j one intervenes on, i6⊥ σk |
cause(k) \ {i}. Hence, Markov property does not imply independence of i and k given 750

cause(k) \ {i}.
In such cases, one should intervene concurrently on one node on each of these primitive
inducing paths to determine whether i and k become separated given cause(k) \ {i}.
Hence our theory based on single interventions is not identifying such direct causes. To
be more precise, we have the following remark. 755

Remark 12. Let Pdo be a transitive interventional family. Assume i ∈ cause(k). Suppose that
there are r primitive inducing paths π1, . . . , πr between i and k. In order to identify whether
i ∈ dcause(k), the existence of a concurrent intervention Pdo(j1,··· ,jr) of size r, is necessary,
where each js, for 1 ≤ s ≤ r, is an inner node of πs. ♦
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8. DISCUSSION760

The notion of the cause defined here is equivalent to the definition of the cause provided in
the literature for structural causal models. We have provided transitivity of the cause as the first
axiom on the given family, as it leads to reasonable causal graphs. Although, in general, causation
does not seem to be transitive (Hall, 2000), it seems to us that examples for which causation
is not transitive do not satisfy singleton-transitivity. We refrain from philosophical discussions765

here, but in our opinion, representing causal structure using graphs implicitly implies that one is
focusing on the cases where cause in indeed transitive as the directed paths in directed graphs
are transitive.

Although direct cause has been defined here with an iterative procedure in the general case,
under the assumption that the causal graph is directed ancestral, causal graphs can be defined770

without an iterative procedure. The major departure in this paper from the literature is that the
direct cause of a variable is defined using single interventions and by conditioning on other
causes of the variable. As opposed to the defined causal relationships, which stand true in a
larger system of variables, the direct causal relationship clearly depends on the system—it seems
that one can always add a new variable to the system that breaks the direct causal relationship by775

sitting between the two variables as an intermediary.
Our original motivation to write this paper was to relax the common assumption that there ex-

ists a true causal graph, and, thereby, the goal of causal inference is solely to learn or estimate this
graph. We do not need any such assumption under our axiomatization as we define causal graphs
using intervened graphs, which themselves are defined using the concept of the direct cause for780

arrows and the pairwise dependencies given the joint causes in the interventional distributions
for arcs. Arcs represent latent variables, and our generated graphs also allow for causal cycles.
Transitivity ensures that the causal relationships in the interventional family and the ancestral
relationships in graph are interchangeable.

We believe this setting can be extended to causal graphs that unify anterial graphs (Lauritzen785

& Sadeghi, 2018) with cyclic graphs. Such a graph represents, in addition, symmetric causal
relationships implied by feedback loops; see Lauritzen & Richardson (2002). In order to do so,
some extension of Markov properties, presented here for bowless directed mixed graphs, for this
larger class of graphs is needed.

For the case where causal cycles exist, one advantage of the setting presented here is that it790

is easy to provide examples for cyclic graphs under our axiomatization; see Example 4. This is
in contrast with the case of structural causal models with cycles, where, for this purpose, strong
solvability assumptions must be satisfied (Bongers et al., 2021).

We remark again that there is no need for an underlying or observational distribution P to
define the causal graph. We provide a minimalist and a maximalist approach to place an arc in795

the casual graph based on whether the arc exists in intervened graphs. This will only lead to
different causal graphs where arcs between inseparable pairs of nodes are or are not present.

Although we argue that causal graphs only need Pdo(i) to be defined, and have defined them
only using Pdo(i), we show that under the axioms of (strongly) observable interventional families,
the arcs in causal graph can be directly defined using the observed distribution P .800

Our definition of the arc, partly ensures automatically that the main results of the paper, i.e.,
Markov properties of interventional and observational distributions with respect to intervened
causal and causal graphs are satisfied. However, under an alternative definition of the arc we
provided in the supplementary file—which places an arc when the endpoint variables are always
dependent regardless of what we condition on—no assumptions related to Markov property is in805

place. In this case, we need the extra assumption of ordered upward- and downward-stability to
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obtain the Markov property. These Markov-property results are analogous to the case of struc-
tural causal models, and, consequently, this allows the developed theory for causality in the
structural causal models to be embedded in the general setting of this paper.

We mostly work on definitions and axioms for interventional families that are only related to 810

conditional independence structure of interventional and observed distributions; although they
are sufficient for generating and making sense of causal graphs, for “measuring” causal effects,
which we do not discuss, they are not sufficient. For that purpose, for the case of directed ances-
tral causal graphs, we provide, in the supplementary material, the axiom of (bivariate) quantifi-
able interventional families, which relates the univariate (and bivariate) conditional-marginals of 815

the distributions in the family to those of an underlying distribution P . In principle, P could be
learned via observation, and in the case of directed acyclic graphs, it is determined uniquely by
the interventional family. The extension of this axiom to bowless directed mixed graphs seems
quite technical, and requires further study.

The satisfaction of the axioms for a family of distributions does not mean that the family 820

provides the correct interventions—refer again to Example 4 to observe that all three types of
edges, as the causal graph for different interventional families of two variables with the same
underlying distribution P , can occur. Finding the correct interventional families is a question for
mathematical and statistical modeling. One can think of this as being analogous to Kolmogorov
probability axioms (Kolmogorov, 1960): a measurable space satisfying Kolmogorov axioms does 825

not mean that it provides the correct probability for the experiment at hand. This is not the case
in the structural causal model setting, as in the presence of densities, interventional distributions
with full support are equivalent, modulo technical counterexamples (Peters et al., 2017) —this
is because the causal graph in this setting is assumed to exist and already set in place. Example
5 shows that even the skeleton of the causal graph could change by the change of interventions 830

with the same underlying distribution.
When we relate structural causal models to the setting of this paper, we find that if the struc-

tural causal model satisfies some weaker version of faithfulness given by the edge-cause and
converse pairwise Markov property, then, in the case where the natural graph associated with the
structural causal model is ancestral, the causal graph, given by standard interventions, is the same 835

as the structural causal model graph; if the graph is not ancestral, then if the interventions are
transitive, we can recover this result for maximal bowless directed mixed graphs. These results
demonstrate that our theory is compatible with the standard theory, for a large class of structural
causal model.

We have not provided conditions on structural causal models under which the cause is tran- 840

sitive, although it is not used for the main results related to structural causal models being em-
bedded in the setting of this paper. Our initial investigation revealed that this is quite a technical
problem. This is nevertheless beyond the scope of this paper, and is a subject of future work.

Finally, although an advantage of our theory is that it only relies on single interventions, our
theory might misidentify direct causes between primitive inducing paths in the intervened graphs 845

for non-maximal non-ancestral causal graphs. We provide an adjustment to deal with this when
there is only one primitive inducing path exists between a pair. If there are more primitive induc-
ing paths between a pair, we showed that we need multiple concurrent intervention of the size of
the number of primitive inducing paths between the pair.

Similarly, our theory does not include some cases where multiple concurrent interventions 850

could act as the cause of a random variable whereas none of them individually act as the cause;
for example; see Example 7. Understanding these cases, and developing a similar theory for such
cases is a subject of future work.
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SUPPLEMENTARY MATERIAL860

We provide the theory needed to prove the results presented in Section 2·4, including the
proof of equivalence of the pairwise and global Markov property under compositional graphoids
for maximal bowless directed mixed graphs. We provide certain alternatives and adjustments to
the definition of causal graphs. We specialize the definitions and results for directed ancestral
graphs. We provide additional axioms of quantifiable interventional families for the purpose of865

measuring causal effects. We consider the addition of bows. We contrast, in more detail, our
work with the fundamentally different work on the axiomatization in the counterfactual setting.
We also provide all the proofs.
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