
2nd Reading

August 21, 2024 10:55 WSPC/103-M3AS 2450036

OPEN ACCESS

Mathematical Models and Methods in Applied Sciences

(2024)

© The Author(s)
DOI: 10.1142/S0218202524500362

Finite element approximation of unique continuation

of functions with finite dimensional trace

Erik Burman ∗

Department of Mathematics, University College London,
Gower Street, London, WC1E 6BT, United Kingdom

e.burman@ucl.ac.uk

Lauri Oksanen

Department of Mathematics and Statistics,
University of Helsinki, P.O. 68, 00014,

University of Helsinki, Finland
lauri.oksanen@helsinki.fi

Received 12 May 2023

Accepted 28 May 2024
Published 23 July 2024

Communicated by C. Canuto

We consider a unique continuation problem where the Dirichlet trace of the solution is

known to have finite dimension. We prove Lipschitz stability of the unique continuation

problem and design a finite element method that exploits the finite dimensionality to
enhance stability. Optimal a priori and a posteriori error estimates are shown for the

method. The extension to problems where the trace is not in a finite dimensional space,

but can be approximated to high accuracy using finite dimensional functions is discussed.
Finally, the theory is illustrated in some numerical examples.
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1. Introduction

Unique Continuation (UC), broadly speaking is the unique extension of a function

from some domain ω to a larger domain Ω subject to it being the solution of a

given elliptic partial differential equation. It has applications in data assimilation,
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inverse problems and control. In spite of the many applications computational UC

has received comparatively little attention from the numerical analysis community.

After a suitable regularization on the continuous level, the UC problem is well

posed and can, in principle, be handled using standard methods, however the

approximation accuracy will be restricted by the regularization error. The first

results on computational methods for UC typically considered the elliptic Cauchy

problem, where the continuation is made from a boundary where both Dirichlet

and Neumann data are known into the domain, subject to a second order elliptic

operator. Early work focused on rewriting the problem as a boundary integral,21, 30

while the earliest finite element reference appears to be Ref. 26. The dominating

regularization techniques are Tikhonov regularization35 and quasi reversibility.31

Various computational methods for the discretization of the regularized problem

have been proposed.4, 6, 7, 23, 33

Recently stabilization techniques introduced for well posed, but numerically

unstable problems,14, 24, 29 were applied to the unique continuation problem in a

discretize first, then optimize framework.12, 13, 15, 19 The stabilization techniques

allow for the design of consistent regularization methods, and the upshot is that

the so-called conditional stability estimates1 for the UC can be shown to lead to

error estimates that reflect the approximation order of the space and the (opti-

mal) stability properties of the ill-posed problem. In particular quantitative a priori

error estimates have been derived in a number of situations with careful analysis

of the effect of the physical parameters of the problem on the constants of the

estimates.16–18 This has lead to a deeper understanding of the computational diffi-

culty of recovering quantities via UC in different parameter regimes. The approach

is related to previous work8–10 on finite element methods for indefinite problems

based on least squares minimization in H−1. More recent results using least squares

minimization in dual norm for ill-posed problems can be found in Refs. 20 and 22.

Although these methods perform as well as can be expected given the stability

of the ill-posed problem, the estimates are not optimal compared to interpolation

and conditional sub-Lipschitz stability can in many cases be prohibitively poor for

practical purposes. For instance, if h denotes the mesh-parameter, the logarithmic

stability of the global UC problem leads to an error bound of the form |log(h)|−α
for some α ∈ (0, 1). On the other hand it has been known for some time in the

analysis community that if additional a priori information on the target quantity is

added the stability can improve to Lipschitz,2, 3, 5, 32, 34 hinting at the possibility of

optimally converging reconstruction methods in this case. Typically the necessary

assumption is that the target quantity is of finite dimension N . The loss of stability

as the dimension becomes large implies that the constant of the stability estimate

may grow exponentially in N . Even if these results have been known for some time,

to the best of our knowledge, no numerical methods exploiting such additional

a priori knowledge exist. The objective of the present work is to present and analyze

such a method for the first time. In particular, we show that the Lipschitz stability,

derived using finite dimensionality, allows us to show that the accuracy of the
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approximation is optimal compared with interpolation, in spite of the ill-posedness

of the problem.

We will assume that the Dirichlet trace of the function to be approximated

by UC is known to reside in a known space of finite dimension. For this situation

we derive a Lipschitz stability estimate in norms suitable for numerical analysis

(Sec. 3). We then design a computational method that can leverage the improved

stability to enhance the accuracy of the approximation (Sec. 4). For this method

optimal a posteriori and a priori error estimates are proved. As an application

we then consider the case where the unknown quantity does not lie in the fixed

finite dimensional space, but can be approximated to high accuracy in that space,

and show that the same bound holds, up to the accuracy of the finite dimensional

approximation of the target quantity (Sec. 5). The case of perturbations in data are

also included in this latter case. We end the paper with some numerical examples

validating the theoretical results (Sec. 6).

2. Problem Setting

Let Ω ⊂ R2, be an open, bounded, polygonal domain, and let ω ⊂ Ω be open and

nonempty. We will consider the unique continuation problem of finding a harmonic

function u in Ω given its restriction in ω. In general, this problem is very unstable, it

is only conditionally logarithmically stable.1 However, if we know, in addition, that

u|∂Ω ∈ VN where VN is a subspace of H1(∂Ω) that satisfies dim(VN ) = N < ∞,

then the problem becomes Lipschitz stable and thus computationally viable. The

purpose of this paper is to introduce and analyze a finite element method that

realizes this Lipschitz stability numerically.

In particular, we will show that the finite element solution uh converges to the

continuum solution with the estimate

‖u− uh‖H1(Ω) ≤ Chk‖Dk+1u‖L2(Ω), (2.1)

where h > 0 and k ≥ 1 are the mesh size and polynomial order of the finite element

space, see Theorem 4.1 for the precise statement.

3. Lipschitz Stability

Following Ref. 27 (Definition 1.3.3.2) the Lipschitz regularity of ∂Ω allows for defin-

ing the Sobolev spaces Hs(∂Ω) for s ∈ [−1, 1]. These spaces inherit the properties

of the spaces Hs(Ω′) with Ω′ ⊂ Rn−1 a domain. In particular, the following inter-

polation inequality holds:

‖u‖H1/2(∂Ω) . ε‖u‖H1(∂Ω) + ε−1‖u‖L2(∂Ω), u ∈ H1(∂Ω), ε > 0, (3.1)

see Theorem 1.4.3.3 of Ref. 27. Here . indicates that we have hidden a constant

C > 0 that multiplies the right-hand side and that is independent of u and ε.

Let P be a projection on VN , and write Q = 1− P for the complementary one.
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Theorem 3.1. There holds

‖u‖H1(Ω) . ‖u‖L2(ω) + ‖Qu‖H1/2(∂Ω) + ‖∆u‖H−1(Ω), u ∈ H1(Ω). (3.2)

Proof. Let us first consider a function w ∈ H1(Ω) satisfying

∆w = 0, Qw = 0 (3.3)

and write

δ = ‖Pw‖H1/2(∂Ω), η = ‖w‖L2(ω), E = ‖w‖H1(Ω).

Then on ∂Ω it holds that w = Pw+Qw = Pw and the standard energy estimate for

the Laplacian gives E . δ. The continuity of trace for harmonic functions Theorem

1.5.3.4 of Ref. 27 implies, for ε > 0

‖w‖H−1/2−ε(∂Ω) . ‖w‖L2(Ω). (3.4)

Further, the stability estimate for elliptic unique continuation, Theorem 5.3 of Ref. 1

reads

‖w‖L2(Ω) ≤ Eµ
( η
E

)
,

where µ is a logarithmic modulus of continuity,

µ(t) ≤ C

log( 1
t )
α

for t < 1 and some α ∈ (0, 1).

As all norms are equivalent in the finite dimensional range of P , combining these

three estimates yields

δ . ‖Pw‖H−1/2−ε(∂Ω) . ‖w‖L2(Ω) ≤ Eµ
( η
E

)
. δµ

( η
E

)
.

Cancelling out δ and applying µ−1 gives

1 .
η

E
,

which again implies E . η. We have shown (3.2) for functions w satisfying (3.3).

Let us now consider an arbitrary u ∈ H1(Ω) and let v ∈ H1(Ω) be the solution of

∆v = ∆u, v|∂Ω = Qu.

Then w = u− v satisfies (3.3) and

‖u‖H1(Ω) ≤ ‖w‖H1(Ω) + ‖v‖H1(Ω) . ‖w‖L2(ω) + ‖v‖H1(Ω) . ‖u‖L2(ω) + ‖v‖H1(Ω).

Now (3.2) follows from the energy estimate for the Laplacian.

Remark 3.1. The discussion is restricted to two space dimensions since the bound

(3.4) on polygonal domains is only shown in this case.27 For smooth domains the

inequality is known to hold also in higher dimensions Theorems B.2.9 and B.2.7 of

Ref. 28. In that case the extension to higher dimensions of the below analysis is

straightforward.
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4. Finite Element Method

We will use the stability estimate (3.2) to analyze a finite element method for

approximation of u satisfying

−∆u = f in Ω,

u = q in ω,

u|∂Ω ∈ VN .

(4.1)

Here it is assumed that a solution exists, which is clearly not true for all data

(f, q). The unique continuation problem formulated in Sec. 2 corresponds to the

case f = 0.

We let Th be a decomposition of Ω into shape regular simplices K that form a

simplicial complex. We let hK = diam(K) be the local mesh parameter and write

h = maxK∈Th hK for the global one. Then we assume that a family of such tesse-

lations {Th}h is quasi-uniform. On Th we define the standard space of continuous

finite element functions

Vh = {v ∈ H1(Ω) : v|K ∈ Pk for K ∈ Th}. (4.2)

Here Pk is the space of polynomial of degree at most k ≥ 1 on K. Further, we write

Vh0 = Vh ∩H1
0 (Ω).

The discrete inverse inequality Lemma 1.138 of Ref. 25 reads

‖h∇u‖L2(K) . ‖u‖L2(K), u ∈ Pk. (4.3)

The implicit constant above does not depend on h > 0. The same will be true for

all subsequent inequalities. It follows from (4.3) that for all integers m ≥ l ≥ 0

[u]Hm(Th) . [u]Hl(Th), u ∈ Vh, (4.4)

where the broken semiclassical Sobolev seminorms

[u]2Hm(Th) =
∑
K∈Th

‖(hD)mu‖2L2(K),

are used. We write, further,

Hm(Th) = {u ∈ L2(Ω) : u|K ∈ Hm(K)}, ‖u‖2Hm(Th) =

m∑
j=0

[u]2Hj(Th).

Consider the bilinear form

a(u, z) = (h∇u, h∇z)L2(Ω), u, z ∈ H1(Ω)

and write A for the corresponding quadratic form. This lower and upper case nota-

tion convention is used for all bilinear and quadratic forms in the paper. The bilinear

form a is scaled so that

A(u) . [u]2H1(Th), u ∈ H1(Ω).
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In particular, in view of (4.4),

A(u) . ‖u‖2L2(Ω), u ∈ Vh.

We use this type of “semiclassical” scaling systematically throughout the paper.

Writing Wh = Vh ×VN × Vh0, our finite element method is given by the Euler–

Lagrange equations for the Lagrangian L : Wh → R,

L(u, y, z) = h2 1

2
‖u− q‖2L2(ω) +

1

2
B(u, y) + a(u, z)− h2(f, z)L2(Ω)

+
1

2
J(u) +

1

2
[h2∆u+ h2f ]2H0(Th),

where

B(u, y) = h‖u− y‖2L2(∂Ω) + h‖h∇∂(u− y)‖2L2(∂Ω),

J(u) =
∑
K∈Th

h‖Jh∇uK‖2L2(∂K\∂Ω).

Here ∇∂ is the gradient on ∂Ω and J·K is the jump across element faces. The first

two terms in L can be viewed as imposing the conditions

u|ω = q, u|∂Ω ∈ VN

and the next two terms the equation −∆u = f , cf. (4.1). The last two terms

are auxiliary regularization (or stabilization) terms. Their choice is motivated by

Lemma 4.1.

The trace inequality with scaling Eq. (10.3.8) of Ref. 11

h1/2‖u‖L2(∂K) . ‖u‖L2(K) + ‖h∇u‖L2(K), u ∈ H1(K), K ∈ Th, (4.5)

implies that

B(u, 0) . ‖u‖2H2(Th), u ∈ Vh +H2(Ω)

and for

S(u) = J(u) + [h2∆u]2H0(Th),

S(u) . [u]2H2(Th) + [u]2H1(Th), u ∈ Vh +H2(Ω).
(4.6)

Lemma 4.1. For u ∈ Vh +H2(Ω) and z ∈ H1
0 (Ω) there holds

a(u, z) . S1/2(u)‖z‖H1(Th).

Proof. We integrate by parts

a(u, z) = (h∇u, h∇z)L2(Ω) = −
∑
K∈Th

∫
K

h2∆uzdx+
∑
F∈Fh

h

∫
F

Jh∂νuKzdx,

where Fh is the set of element faces in the interior of Ω. The claim follows from

(4.5).
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More explicitly, the finite element method is: Find (u, y, z) ∈ Wh such that for

all (v, η, w) ∈Wh there holds

a(u,w) = h2(f, w)L2(Ω),

a(v, z) + b(u, y, v, 0) + h2(u, v)L2(ω) + s(u, v) = h2(q, v)L2(ω) + h2(f, h2∆v)H0(Th)

b(u, y, 0, η) = 0.

(4.7)

Here, following our notation convention, b is the bilinear form corresponding to the

quadratic form B. In particular, the third equation reads

0 = b(u, y, 0, η) = −h(u− y, η)L2(∂Ω) − h(h∇∂(u− y), h∇∂η)L2(∂Ω).

As this holds for all η ∈ VN we see that y = Pu|∂Ω and hence this variable can be

eliminated. This leads to the formulation: find (u, z) ∈ Vh × Vh0 such that for all

(v, w) ∈ Vh × Vh0

g(u, z, v, w) = h2(q, v)L2(ω) + h2(f, h2∆v)H0(Th) + h2(f, w)L2(Ω), (4.8)

where the bilinear form g is defined by

g(u, z, v, w) = a(u,w) + a(v, z) + b̃(u, v) + h2(u, v)L2(ω) + s(u, v) (4.9)

and B̃(u) = B(Qu, 0). Observe that if u ∈ H2(Ω) satisfies (4.1) then (4.8) holds for

this u and z = 0. In other words, the system (4.8) is consistent.

We introduce the norm

9u, z92 = B̃(u) + h2‖u‖2L2(ω) + S(u) + [z]2H1(Th), u ∈ Vh +H2(Ω), z ∈ H1(Ω).

This is indeed a norm in view of (3.2) and the Poincaré inequality.

Lemma 4.2. There holds

9u, z9 . sup
(v,w)∈Vh×Vh0

g(u, z, v, w)

9w, z9
, (u, z) ∈ Vh × Vh0.

Proof. Taking (v, w) = (u,−z), we have

g(u, z, u,−z) = 9u, 092.

As Vh0 ⊂ Vh, we can also take (v, w) = (z, 0) and get

g(u, z, z, 0) = A(z) + h2(u, z)L2(ω) + s(u, z).

Here we used the vanishing b̃(u, z) = 0 due to z|∂Ω = 0. It follows from (4.6)

and (4.4) that

S(z) . [z]2H1(Th). (4.10)
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Moreover, the Poincaré inequality implies that

h2‖z‖2L2(ω) ≤ [z]2H1(Th). (4.11)

We see that

A(z) = [z]2H1(Th) . g(u, z, z, 0) + 9u, 092.

Therefore for ε > 0 small enough

9u, z92 ≤ g(u, z, u+ εz,−z).

It remains to observe that the inequality

9u+ εz,−z9 . 9u, z9,

follows from B̃(z) = 0 together with (4.10)–(4.11).

It follows from Lemma 4.2 that the linear system (4.8) admits a unique solution

for any f ∈ L2(Ω) and q ∈ L2(ω). Writing (uh, zh) ∈ Vh × Vh0 for the unique

solution, we have the Galerkin orthogonality

g(uh − u, zh, v, w) = 0, (v, w) ∈ Vh × Vh0, (4.12)

due to the consistency of (4.8). Here u solves (4.1). Using the orthogonality and

Lemma 4.2 we derive the following best approximation result in the norm 9·, ·9.

Lemma 4.3. Suppose that u ∈ H2(Ω) and (uh, zh) ∈ Vh × Vh0 solve (4.1) and

(4.8), respectively. Then there holds

9u− uh, zh9 . inf
ũ∈Vh

(9u− ũ, 09 + ‖h∇(u− ũ)‖L2(Ω)).

If, furthermore, u ∈ Hk+1(Ω), with k ≥ 1 the polynomial order in the definition

(4.2) of Vh, then

9u− uh, zh9 . [u]Hk+1(Th).

Proof. Let ũ ∈ Vh. In view of the triangle inequality

9uh − u, zh9 ≤ 9uh − ũ, zh9 + 9ũ− u, 09,

it is enough to bound the first term on right-hand side above. Lemma 4.2 gives

9uh − ũ, zh9 . sup
(v,w)∈Vh×Vh0

g(uh − ũ, zh, v, w)

9v, w9
.

The Galerkin orthogonality yields

g(uh − ũ, zh, v, w) = g(u− ũ, 0, v, w)

and the first claim follows from

g(u− ũ, 0, v, w) . (9u− ũ, 09 + ‖h∇(u− ũ)‖L2(Ω))9v, w9,
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which again follows from the Cauchy–Schwarz inequality together with

a(u− ũ, w) ≤ ‖h∇(u− ũ)‖L2(Ω)90, w9.

The second claim follows from interpolation estimates.

The objective is now to use (3.2) to show an a posteriori error estimate for

the solutions of (4.8) and then convergence in the H1-norm for sufficiently smooth

solutions. This analysis relies on the following bound.

Lemma 4.4. Suppose that u ∈ H2(Ω) and (uh, zh) ∈ Vh × Vh0 solve (4.1) and

(4.8), respectively. Then there holds

h−1‖h2∆(u− uh)‖H−1(Ω) . S1/2(u− uh).

Proof. By definition

‖h2∆(u− uh)‖H−1(Ω) = sup
w∈H1

0 (Ω)
‖w‖H1=1

a(u− uh, w).

Taking v = 0 in the Galerkin orthogonality (4.12), we have

a(u− uh, w̃) = 0, w̃ ∈ Vh0.

Hence for w ∈ H1
0 (Ω) and w̃ ∈ Vh0

a(u− uh, w) = a(u− uh, w − w̃).

Lemma 4.1 gives

a(u− uh, w − w̃) . S1/2(u− uh)‖w − w̃‖H1(Th).

Finally, choosing w̃ as an interpolant of w, we have

‖w − w̃‖H1(Th) . [w]H1(Th) ≤ h‖w‖H1(Ω).

Remark 4.1. The estimate in Lemma 4.4 holds under the weaker assumption that

u ∈ H2(Ω) satisfies

−∆u = f in Ω,

u = q in ω.

That is without the constraint of finite dimensionality on the boundary. Indeed,

although the Galerkin orthogonality (4.12) does not hold for all v and w under this

assumption, it holds in the case that v = 0, and only this case is used in the proof.

Proposition 4.1. (A posteriori error estimate) Suppose that u ∈ H2(Ω) and

(uh, zh) ∈ Vh × Vh0 solve (4.1) and (4.8), respectively. Then there holds

h‖u− uh‖H1(Ω) . h‖uh − q‖ω + J1/2(uh) + B̃1/2(uh) + [h2∆uh + h2f ]H0(Th).

(4.13)
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Proof. Applying the estimate (3.2) to the second term of the right-hand side we

see that

‖u− uh‖H1(Ω) . ‖u− uh‖L2(ω) + ‖Q(u− uh)‖H1/2(∂Ω) + ‖∆(u− uh)‖H−1(Ω).

By definition

‖u− uh‖L2(ω) = ‖q − uh‖L2(ω)

and using the interpolation inequality (3.1) with ε = h1/2

h‖Q(u− uh)‖H1/2(∂Ω) = h‖Quh‖H1/2(∂Ω) . B̃1/2(uh).

Finally we apply Lemma 4.4 to deduce that

h‖∆(u− uh)‖H−1(Ω) . J1/2(u− uh) + [h2∆(u− uh)]H0(Th)

= J1/2(uh) + [h2f + h2∆uh]H0(Th).

Observe that the right-hand side of (4.13) can be written

h‖uh − u‖ω + J1/2(uh − u) + B̃1/2(uh − u) + [h2∆(uh − u)]H0(Th)

and that this is essentially the same as 9uh − u, 09. Combining Lemma 4.3 and

Proposition 4.1 gives the following theorem.

Theorem 4.1. (A priori error estimate) Suppose that u ∈ H2(Ω) and (uh, zh) ∈
Vh × Vh0 solve (4.1) and (4.8), respectively. Then there holds

h‖u− uh‖H1(Ω) . inf
ũ∈Vh

(9u− ũ, 09 + ‖h∇(u− ũ)‖L2(Ω)).

If, furthermore, u ∈ Hk+1(Ω), with k ≥ 1 the polynomial order in the definition

(4.2) of Vh, then (2.1) holds.

5. Perturbation Analysis

In many situations additional a priori information is available on the trace of the

function. For instance in flow problems the inflow data may be known to be close

to a finite set of flow profiles up to smooth perturbations. It is then reasonable to

assume that the unknown trace can be approximated to high accuracy as a linear

combination of a finite number of known functions. In this section, we will show

how the above framework can be used to obtain a stable approximation method for

this situation. We restrict the discussion to the case that Ω is convex and k = 1,

corresponding to piecewise affine approximation.

We consider the classical unique continuation problem

−∆u = f in Ω,

u = q on ω.
(5.1)

Here we assume that q is chosen so that the continuation problem admits a solution.

We apply the method (4.8) for the approximation of (5.1), with the data perturbed
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by a term qδ, and call the solution uh ∈ Vh. The perturbation qδ is assumed to

satisfy the bound ‖qδ‖L2(ω) ≤ δ for some small δ > 0. In addition, we assume that

the trace of the solution u to (5.1) can be approximated by functions in VN . More

precisely we assume that there exists p ∈ VN such that

‖u− p‖H3/2(∂Ω) ≤ δ.

We will now show that if the method (4.8) is used for the approximation of u then

(2.1) still holds, up to the perturbation δ. That is, if (uh, zh) ∈ Vh × Vh0 is the

solution of (4.8) with q replaced by q + qδ, then

‖u− uh‖H1(Ω) . h‖D2u‖L2(Ω) + δ. (5.2)

To show this, we first consider the solution u∗ to the problem

−∆u∗ = f in Ω,

u∗ = p on ∂Ω.
(5.3)

Now let uδ = u− u∗ and note that uδ solves

−∆uδ = 0 in Ω,

uδ = u− p on ∂Ω.

Elliptic regularity implies

‖uδ‖H2(Ω) . ‖u− p‖H3/2(∂Ω) . δ. (5.4)

Moreover, since the solution of (5.3) has trace in VN we can apply the method (4.8)

(with q = u∗|ω) to obtain the approximation (u∗h, z
∗
h) ∈ Vh × Vh0. By Theorem 4.1

we know that

‖u∗ − u∗h‖H1(Ω) . h‖D2u∗‖L2(Ω).

Thus

‖u∗ − u∗h‖H1(Ω) . h‖D2u‖L2(Ω) + h‖D2uδ‖L2(Ω) ≤ h‖D2u‖L2(Ω) + hδ

and

‖u− uh‖H1(Ω) ≤ ‖uδ‖H1(Ω) + ‖u∗ − u∗h‖H1(Ω) + ‖u∗h − uh‖H1(Ω)

. δ + h‖D2u‖L2(Ω) + ‖u∗h − uh‖H1(Ω).

We write eh = uh − u∗h and ηh = zh − z∗h, and finish the proof of (5.2) by

bounding the H1(Ω) norm of eh. We apply Lemma 4.2 to see that

9eh, ηh9 . sup
(v,w)∈Vh×Vh0

g(eh, ηh, v, w)

9v, w9
.

Observe that (eh, ηh) satisfies (4.8) with q = qδ + uδ|ω and f = 0. Therefore using

(4.8) we have that g(eh, ηh, v, w) = h2(qδ + uδ, v)L2(ω) and hence after application

of the Cauchy–Schwarz inequality and (5.4), we have

9eh, ηh9 . h(‖qδ‖L2(ω) + ‖uδ‖L2(ω)) . hδ.
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Applying now (3.2) to eh we obtain, in view of Remark 4.1,

‖eh‖H1(Ω) . h−19eh, 09 . δ.

We have shown the bound (5.2).

Remark 5.1. Observe that for the estimate (2.1) to be useful, the a priori knowl-

edge cannot be based on possible approximation properties of the space VN alone.

Even if δ can be made smaller by choosing N larger through approximation, the

implicit constant in (5.2) grows in N . So even if δ could be made to decay, the

discretization error part may blow up.

6. Numerical Results

Our computational implementation of the method is based on the formulation (4.7),

where the variable y ∈ VN has not been eliminated. According to our computational

examples, the stabilizing bilinear form s in (4.9) is actually not needed — the

method appears to converge with the optimal rate even without it. We leave it as a

future work to understand if, and under what conditions, s can indeed be omitted.

In all the computational examples below, we take Ω = [0, 1]2 and let ω be the

region touching the left, bottom, and right sides of the unit square given by

ω = {(x, y) ∈ Ω : x < 1/10 or x > 9/10 or y < 1/4}.

We write Γ ⊂ ∂Ω for the top edge of the unit square, and let VN be the subspace of

H1(∂Ω) that is spanned by the functions φn, n = 1, . . . , N , where φn is
√

2 sin(nπx)

on Γ and vanishes on ∂Ω\Γ. Further, the polynomial order k of the finite element

spaces Vk, see (4.2), is one.

To see the effect of the stabilizing term s in the computations, we rescale it by a

constant γ ≥ 0. As long as γ > 0, this makes no theoretical difference. The H1(Ω)

error for the manufactured solution

u(x, y) = y sin(πx), (6.1)

as a function of the mesh parameter h is shown for different values of γ in Fig. 1.

We have chosen N = 5. Observe that u|Γ ∈ V1. We take γ = 0 in the subsequent

examples, since the computational results improve as γ → 0.

Let us now illustrate (5.2), that is, the error estimate with perturbations. We

take

ũ(x, y) = y sin(πx) +
1

100
y sin(2πx).

Then ũ|∂Ω ∈ V2. Figure 2 shows that the convergence stalls for N = 1 but not for

N = 2, in line with the theory.

Our final computational example studies the effect of increasing the number N

of degrees of freedom on the boundary. It appears that merely increasing N does

not affect the results if the solution lies in a fixed VN0 with N0 ≤ N . We don’t
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Fig. 1. The error ‖u − uh‖H1(Ω) as a function of mesh size h. Here γ = 1, 10−2, 10−4, 0 with

triangles pointing down, up, left, and right, respectively. Reference rate h in dashed, as predicted
by (2.1) with k = 1.

Fig. 2. The error ‖ũ − ũh‖H1(Ω) as a function of mesh size h. Here N = 1, 2 with triangles

pointing down and up, respectively. Reference rate h in dashed.

have a theoretical explanation for this, better than expected, phenomenon. We will

compare this case to the case where the exact solution depends on N .

To this end, let us define the ratio

C(u) =
‖u− uh‖H1(Ω)

h‖u‖H2(Ω)
,

and consider the functions

uN (x, y) = y sin(Nπx), N = 1, 2, 3, 4. (6.2)
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Fig. 3. The error ‖uN − uNh‖H1(Ω) error as a function of mesh size h. Here N = 1, 2, 3, 4 with

triangles pointing down, up, left, and right, respectively. Reference rate h in dashed.

Fig. 4. The ratio C(u) as a function of N . Here u is as in (6.1) and (6.2) with triangles pointing
down and up, respectively.

Then uN |∂Ω ∈ VN . The H1(Ω) errors for the functions uN are plotted in Fig. 3.

Moreover, the ratio C(u) for u as in (6.1), as well as for uN , is shown in Fig. 4 as

a function of N . For any u, the ratio C(u) gives a lower bound for the constant

C > 0 in (2.1) with k = 1. We see that the constant grows as a function of N , as

expected.
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