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Abstract 

The auditory system is wired to be sensitive to patterns in sound, this ability is crucial 

for the brain to comprehend and interact with its environment. Despite the pivotal role of 

these processes, the underlying neural mechanisms remain poorly understood. This lack of 

clarity hinders the development of comprehensive models of auditory processing, machine 

intelligence, and the creation of targeted interventions for those clinical diseases involving 

auditory impairment. 

Expanding on those unsolved issues, this PhD thesis explores several questions 

surrounding the cognitive processes and neural mechanisms underpinning the auditory 

system's sensitivity to patterns in human listeners. Chapter 2 investigates the constraints of 

auditory memory in pattern recognition. In this behavioural study, participants engaged in 

identifying emerging patterns within rapidly unfolding sound sequences. By varying the 

durations and informational complexities of patterns, the study assessed whether memory 

integration is primarily duration-dependent or also configured to monitor discrete items. 

Chapter 3 explored the neural mechanisms that support pattern detection. Participants 

passively listened to predictable and unpredictable sound sequences while their brain 

responses were recorded with magnetoencephalography (MEG). By analysing the time 

domain signal and localising the neural sources, the study is investigating how the brain is 

representing the predictable sensory signals. Chapter 4 addresses the challenges in 

detecting patterns when sound sequence is slowed down, examining how auditory short-

term memory, sustained attention, frequency discrimination, and task engagement influence 

detection performance. Building on the findings of Chapter 4, Chapter 5 employed 

Electroencephalography (EEG) to further explore the correlation between short-term 

memory abilities and implicit pattern detection. Participants listened passively to sound 

patterns of 5500ms, and both EEG signals and behavioural performance data were analysed.  

Overall, the results from this thesis align with predictive coding theory and provide 

novel insights into the neural underpinnings of perceptual and cognitive processes 

underlying auditory pattern detection. 
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Impact Statement 

This PhD thesis enhances the field of cognitive neuroscience by exploring the neural 

mechanisms that underpin the auditory system's sensitivity to patterns in healthy and young 

human listeners. It broadens our understanding in three key areas: the constraints of 

auditory memory in recognizing patterns, the neural foundations that support pattern 

detection, and the influence of cognitive factors on pattern detection efficacy. By elucidating 

the mechanisms behind these processes, this project provides evidence that could be 

crucial in addressing challenges associated with disorders such as schizophrenia, autism, 

and other mental or neurological diseases that manifest with auditory processing disorders 

and memory deficits. 

The study challenges existing auditory models by demonstrating through behavioral 

experiments that pattern recognition is not solely dependent on the duration of sounds but 

is also intricately associated with the item-wise informational content within auditory 

sequences. This insight shifts the theoretical model from simply monitoring temporal 

information at a fixed pace to a more nuanced understanding that the brain adaptively 

integrates discrete elements within sound sequences. These findings have significant 

implications for developing more effective auditory and memory models and provide valuable 

insights into understanding auditory and memory disorders.  

In investigating the neural mechanisms of pattern detection, the thesis examines 

how the brain processes sound sequences that are either predictable or unpredictable by 

introducing silent gap between tones. The MEG findings align with predictive coding theory, 

revealing the coexistence of dual neural components involved in analysing auditory inputs. 

The sustained response, supported by a neural network encompassing the auditory cortex, 

hippocampus, and inferior frontal cortex, is associated with the precision. In contrast, the 

phasic response evoked by individual tones, primarily involving the auditory cortex and 

inferior frontal cortex, carries information of prediction errors. These results provide novel 

insights into how these multiplexed neural processes collectively shape the representations 

of auditory pattern. 

Lastly, the exploration of cognitive factors impacting pattern detection performance 

reveals a correlation between the sustained neural response elicited by sound patterns and 

short-term memory abilities. This discovery, the first from this thesis, provided novel insights 

suggesting shared neural pathways between implicit pattern detection and auditory short-

term memory. The hippocampus is hypothesized to be the crucial area where this overlap 

occurs, setting the stage for future investigations on the nature of sustained response and 

the neural mechanism of auditory scene analysis. 
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1. Chapter 1: General Introduction

1.1. Comprehending Environments by Using 

Sounds 

1.1.1.   How do we define sound? 

“If a tree falls in a forest and no one is around to hear it, 

does it make a sound?” 

The Chautauquan in 1883 

1.1.2. The Role of Auditory Objects in Understanding the 

Environment 

In our everyday environment, we are constantly surrounded by overlapping sound 

signals. From birdsong to the hustle and bustle of city streets, our auditory system must 

navigate this complex auditory landscape and extract meaningful sounds to make sense of 

our surroundings and guide our behaviour. This complex process is called auditory scene 

analysis. 

Auditory objects are central to auditory scene analysis which are typically emitted 

by specific sources as a consequence of physical actions. Although its definition is still under 

debate (Kubovy and Van Valkenburg, 2001; Griffiths and Warren, 2004; Dyson and Ishfaq, 

2008; Shamma, 2008; Winkler et al., 2009; Moore et al., 2010; Schnupp et al., 2013), most 

studies summarize it as perceptual outcomes derived from the auditory system's ability to 

detect, segregate, and group spectrotemporal patterns in sound. More intuitively, these 

objects represent the auditory system's mental description of a potential source performing 

certain actions, thus generating stable perceptual units within the complex acoustic 

environment. (Bregman, 1990; Kubovy and Van Valkenburg, 2001; Shinn-Cunningham, 

2008; Winkler et al., 2009; Winkler and Denham, 2024). This ability is particularly vital in 

environments with multiple sound sources, such as a forest with various animal calls, a busy 

street with cars ringing and people walking, or a crowded room with multiple conversations. 
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Each distinct sound or cluster of sounds is perceived as separate within an auditory scene 

constitutes an auditory object. Understanding how auditory objects are formed helps explain 

how people interact effectively with their environment. 

In all sensory modalities, the concept of objects serves a similar ecological purpose: 

to quickly identify environmental sources and understand their actions. However, the ways 

in which these sensory inputs are processed vary significantly depending on the physical 

nature of the stimuli involved. For example, in vision, detecting discontinuities and edges 

often marks the initial stage of processing a scene, guiding the recognition of shape and 

form (Hubel and Wiesel, 1962; Marr et al., 1997). In contrast, auditory scene analysis lacks 

these direct boundaries and must identify and distinguish sounds without the spatial-

temporal separation of sensory surface observed in vision. 

Alternatively, auditory objects can be characterized by a combination of features 

such as pitch, timbre, and loudness (Bregman, 1990). However, the exact acoustic 

properties underpinning these perceptions, such as harmonic or temporal differences, are 

not immediately obvious to the listener  (Schnupp et al., 2011).  In other words, the process 

of defining and identifying auditory objects is inherently non-intuitive, since auditory 

waveforms unfold dynamically rather than exist as static entities. These signals often overlap, 

forming a complex hierarchy of multiple individual events that require constant monitoring. 

This dynamic nature presents unique challenges for the auditory system during scene 

analysis, as it must discern individual auditory objects in a seamless auditory landscape that 

is not separated by clear boundaries. 

Moreover, auditory objects must be generalizable across different sensory 

experiences since sound features can change under different listening context or physical 

actions while the sources remain the same (King and Nelken, 2009). For instance, you can 

recognize your teacher’s voice regardless of your seating position in the classroom, even 

though varying distances can affect loudness; or you can recognize the melody  of ‘white 

Christmas’ regardless of the speed at which it is played. The distinct physical properties of 

auditory inputs result in unique neural mechanisms for resolving this generalization process 

(Ison and Quiroga, 2008). The following section will review the crucial strategies for 

unravelling how the auditory system resolve the issues of grouping auditory objects and 

generalize across identity-preserving changes.  

1.1.3. Auditory Cues in Complex Acoustic Environments 

Understanding how we perceive and segregate sounds in noisy environments is 

essential for comprehending the formation of auditory objects and addressing the challenges 

associated with auditory processing disorders. This complex process is found to be 
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influenced by various auditory cues and principles that help determine whether sounds are 

perceived as coming from the same source or from multiple distinct sources. 

1.1.3.1. Integrative Processes in Auditory Perception 

Auditory perception heavily relies on memory due to the temporal nature of sound. 

Unlike visual objects, which can be represented in their entirety almost simultaneously, 

auditory objects unfold over time and often overlap with other sound. This temporal 

characteristic requires the auditory system to retain information about the initial parts of a 

sound as it processes the latter parts. A wealth of evidence indicate that echoic memory is 

involved in facilitating the perception of extended sound sequences by preserving auditory 

information for a few seconds, aiding in pattern recognition and temporal integration (Snyder 

and Alain, 2007). However, rather than directly storing raw sensory inputs into memory, the 

first step for the auditory system is to compress those data into a more condensed form for 

memory storage and further processing. This process is hypothesized to be primarily driven 

by two integrative approaches: sequential and simultaneous integration. 

1.1.3.2. Sequential Integration 

Sequential integration, supported by memory, is vital for connecting sounds that 

unfold over time. This process allows for the interpretation of patterns embedded within 

temporal sequences, making it essential for recognizing signals such as speech and music. 

It permits the brain to construct a continuous auditory stream from separate acoustic events 

over time and to extract various types of information (i.e. acoustic features, adjacent/non-

adjacent sound dependencies, the rhythm in music, and the meaning of speech) across 

different time scales. For instance, the ability to recognize patterns in auditory sequences 

emitted by the same source, such as the distinct rhythm of a friend's footsteps can be 

explained by this approach (Yabe et al., 2001; McDermott et al., 2013; Baumgarten et al., 

2021). In music, the brain interprets each note not in isolation but in relation to its rhythmic 

and melodic context. This is supported by that it is simple to recognize Beethoven's 

Moonlight Sonata regardless of the pianist, the piano used, or variations in tempo—whether 

it is played rapidly or slowly (Vuust et al., 2022).  Sequential integration is crucial for speech 

perception, as it enables the distinction of phonetic elements and the construction of words 

and phrases. Even in noisy environments or when parts of speech are obscured, this process 

allows listeners to perceive complete words rather than disjointed groups of phonemes 

(Repp, 1988). Another key functionality of sequential integration is its ability to synthesise 

the constant properties of an auditory signal over time. Even though the physical properties 

of the sound may change as the source's action varies (for example, a lecturer's voice may 

change in intonation or pauses, or loudness can change when they move to different 

position), you still maintain a stable perceptual representation of your lecturer’s voice. 



1.1.3.3. Simultaneous Integration: 

Serving as a complement to sequential integration, simultaneous integration allows 

interpretation and organisation of sounds from various frequency regions, seamlessly 

merging them into a single auditory object. This integration is useful in complex auditory 

environments where multiple sources emit sounds at the same time. For instance, during a 

symphony, where numerous instruments play at once, we perceive their collective output as 

a harmonious whole, not as isolated instruments. This distinctive skill of the auditory system 

allows it to consolidate multiple sound sources into one coherent auditory stream. The ability 

to meld these inputs into a unified auditory perception is particularly important for 

appreciating music. However, this integration also implies that the auditory system may lack 

the sensitivity to distinguish individual sources as effectively as other sensory systems, such 

as vision. A likely reason for this is that auditory system has been evolved for early ‘warning’: 

to rapidly identify the potential nature of sound sources that have not yet been detected by 

other modalities—whether those are living beings? And what immediate actions might be 

necessary in response. (Bregman, 1990; Ragert et al., 2014; Winkler and Denham, 2024) 

1.1.3.4. Essential Cues and Strategies for Auditory Object Formation 

As discussed above, auditory processing demands sophisticated temporal analysis 

capabilities because sounds often arrive as mixtures rather than isolated elements. The 

auditory system's ability to parse these overlapping sounds into distinct streams or objects 

is crucial to understand complex auditory environments. The brain must track and 

integrate these time series - a process that is more temporally demanding than the relatively 

static and spatially ordered visual processing. Various cues and strategies have been 

hypothesized to play an important role in auditory grouping (Bizley and Cohen, 2013).  

The Gestalt principle, developed by German psychologists in the early 20th century, 

describes how perceptual systems group sensory elements into a coherent whole. For 

example, densely occurring sounds, such as rhythmic patterns in music phase or syllables 

in words, are perceived as associated because the timing of the sounds helps to form unique 

linguistic units or musical phases (Ravignani et al., 2019). Similarly, when sounds have the 

same characteristics, such as pitch, timbre, or volume - such as the different notes played 

by a cello in a symphony orchestra - those sounds are heard as a cohesive entity, 

distinguished from other groups of instruments. In addition, the principle of closure in the 

auditory experience, that is, the mental completion of missing elements in the sound 

sequence by the brain, allows continuous perception even when the sound is intermittent. 

This phenomenon indirectly reflects the brain's ability to automatically group certain 

information into a coherent entity (McWalter and McDermott, 2019). In addition, auditory 

elements that are related in time and space provide important clues for the auditory system 

15 
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to bring these elements together, as demonstrated by the unison performance of a choir or 

instrumental ensemble. Overall, those strategies suggest the auditory brain is capable of 

utilizing specific universal principles to construct a stable internal representation of the ever 

changing environment. 

1.1.4. Modelling Auditory Scene Using Pure Tones 

Nevertheless, the mechanisms through which the auditory system processes sound 

are complex and multifaceted, posing significant challenges for researchers. To overcome 

these difficulties and gain a clearer understanding of basic auditory processing in a 

controlled and replicable environment, accumulated research have employed pure tones to 

model the auditory scene (Fletcher, 1940). These controlled auditory stimuli allow precise 

manipulation of sound properties, including frequency, intensity, and duration, which is 

critical to isolate specific auditory mechanisms and thoroughly understanding how these 

temporal and spectral features affect perception and cognition. 

In particular, tone-pips, especially those lasting 50 ms, which match the latency of 

phonemes in speech, are commonly used in many auditory research subfields. This 

approach was inspired by pioneering research such as that carried out by Eimas et al in 

1971. In their study, the researchers explored how infants process language through an 

approach that combines synthetic speech sounds and high amplitude sucking response 

techniques, examining their ability to recognize phonemic distinctions. Infants were exposed 

to pairs of synthetic speech sounds distinguished by sound onset time - a key acoustic cue 

for phonemic differentiation. The results showed that even one-month-old infants showed a 

clear preference for sounds that crossed phonemic boundaries and exhibited a more 

pronounced response when those boundaries were crossed. This suggests that humans 

have an innate ability to integrate and classify short sound durations, similar to individual 

phonemes. (Eimas et al., 1971) 

Further building on this, the study by Di Liberto et al. (2015) investigated the neural 

basis of phoneme-level speech processing using EEG. This research found that low-

frequency cortical entrainment is sensitive not only to the acoustic properties of speech but 

also to its phonemic classification. By employing linear regression models, the authors linked 

EEG responses to continuous natural speech and its time-reversed version with various 

speech representations, including phonemic and phonetic features. They found that models 

which combined acoustic detail and phonetic categorisation were the most accurate at 

predicting EEG data, revealing that the brain response measured by EEG reflects more than 

passive acoustic tracking; it also mirrors higher-level speech-specific processing. Notably, 

the study also found that the model's predictive accuracy was reduced when time-reversed 
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speech was analysed, suggesting the significance of intelligible speech in eliciting distinct 

EEG responses. This research further reinforces the brain's capability to incorporate 

phonemic structures, advocating the use of tone-pip sequences to model the auditory scene. 

(Di Liberto et al., 2015) Importantly, these findings are further supported by recent empirical 

research. This research, which utilized intracranial recordings, has robustly demonstrated 

that the integration window in the auditory cortex can be as brief as 30 milliseconds 

(Norman-Haignere et al., 2022). 

In this thesis, I will utilize pure tone-pips to model auditory patterns, focusing on 

investigating the neural mechanisms that enable the brain’s profound ability to discern and 

represent these patterns. Specifically, the majority of the tone durations employed across 

most studies are set at 50 ms. However, in the first study, some tones are generated with a 

shorter duration of 25 ms (more details are provided in chapter 2). To guide the hypothesis 

formulation and facilitate the interpretation of results, this thesis will extensively utilize 

predictive coding theory. The following section will provide a comprehensive review of this 

theoretical framework.  

1.2. Predictive Coding Theory 
Predictive coding was initially proposed by philosopher Hermann von Helmholtz, 

who believes that perception is akin to unconscious inference, that is, making predictions 

about the world based on previous experience (Turner, 1977). This foundational idea has 

evolved significantly, now positioning predictive coding as a central framework for 

understanding brain function across perception (Kersten et al., 2004), cognition 

(Caucheteux et al., 2023), and motor control (Press et al., 2011). Unlike the traditional view 

of the brain as merely responding to stimuli, predictive coding portrays it as an active 

predictive machine that constantly creates and refines internal models of the world. This 

dynamic model building is driven by the brain's ability to generate predictions about sensory 

information based on past experience and the current environment (Rao and Ballard, 1999; 

Friston, 2005; Huang and Rao, 2011; Bastos et al., 2012). 

Specifically, the brain employs these internal models to anticipate sensory inputs, 

resulting in prediction errors when the actual inputs deviate from expectations (Friston, 

2005). These errors are crucial for refining the models and guiding the brain to adjust its 

predictions to better match the incoming data. The components involved in this adjustment 

process are called precision (Friston, 2010; Yon and Frith, 2021), which represents the 

confidence or inverse variance of the internal model. Suppose it moderates the effect of 

prediction errors (Friston, 2010). 
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Predictive coding operates through hierarchical processing, where higher cognitive 

functions can influence lower-level sensory perceptions, and vice versa. This interaction 

occurs through a combination of feedback and feedforward loops that integrate higher 

cognitive expectations with incoming sensory data (Lee and Mumford, 2003; Friston, 2008; 

Shipp, 2016). Accumulating computational modelling work (Knill and Pouget, 2004; 

Tenenbaum et al., 2006; Daunizeau et al., 2010; Skerritt-Davis and Elhilali, 2021) and 

experimental observations (Battaglia et al., 2003; Knill and Saunders, 2003; Barascud et al., 

2016; Skerritt-Davis and Elhilali, 2021) show that the underlying mechanism of this process 

is primarily based on the principles of Bayesian reasoning. Specifically, the brain constantly 

calculates the probabilities of different outcomes, using previous knowledge (predictions) 

and new sensory evidence (actual input). Although review from Aitchison and Lengyel, 

(2017) suggests that various computational models, not just Bayesian principles, may 

underlie these brain calculations (Aitchison and Lengyel, 2017), the main goals remain 

consistent: These computational processes allow the brain to constantly update its beliefs 

to optimize perception and action in a changing environment. 

1.2.1. Bayesian Processing in Perception 

Predictive coding can be seen as a specific application of the Bayesian principle, 

where Bayesian processing systematically simulates how the brain integrates prior 

knowledge with incoming sensory data. This integration allows the brain to make informed 

inferences about the world, thus constantly updating its internal representations and 

facilitating the learning of new knowledge. This approach, based on Bayesian probability 

theory, refines beliefs based on new evidence through a series of updates. Initially, the brain 

establishes a prior probability (P(H)) that represents the likelihood of a hypothesis before 

processing a new sensory input. This priori is formed based on past experience/memory or 

an innate expectation of what is likely to happen. For example, anticipating a phone call from 

a friend might be based on how often they call you and when they usually call (Knill and 

Pouget, 2004; Friston, 2012). 

Theoretically, when the brain integrate this likelihood with what it already believe 

(the prior knowledge), a mathematical method called the Bayesian formula is used to update 

the belief. This formula helps the brain calculate the updated probability of its hypothesis 

after taking the new evidence into account. The formula is:  𝑃(𝐻 ∣ 𝐸) = !(#∣%)×!(%)
!(#)

 . 𝑃(𝐻∣𝐸) 

is the updated probability of the hypothesis after considering the new evidence E. 𝑃(𝐸∣𝐻) is 

the likelihood of the evidence assuming the hypothesis is true. 𝑃(𝐻) is the brain’s initial belief 

in the hypothesis before receiving new sensory evidence. 𝑃(𝐸), the denominator, is the total 

probability of observing the evidence under all possible hypotheses, and it serves to 
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normalize the result. This normalization ensures that the probabilities for all hypotheses add 

up to one, making them valid probabilities. This formula allows the brain to revise its beliefs 

logically and systematically based on newly acquired information (Doya, 2007). 

To contextualize this in an intuitive scenario, consider identifying the source of a 

sound in a home setting. For example, if you hear a beep, prior knowledge might suggest 

different hypothetical sources, such as a household appliance, a person, or an external noise, 

with initial hypothesis probabilities of 0.6, 0.3, and 0.1, respectively. Once you hear a beep 

again, and this provides you with more evidence that the beep pattern is more consistent 

with the microwave hypothesis (probability 0.8 if true), this particular likelihood, combined 

with a lower probability that it came from a person (0.1) or an external one (0.05), is used to 

update the belief about the source of the beep. Adding these weighted possibilities gives the 

total evidential probability 𝑃(𝐸), which totals 0.515 in this example. Then, the posterior 

probability that the sound came from a household appliance rose sharply and was calculated 

to be about 0.93, indicating a strong belief that the microwave was the source. Thus, this 

Bayesian framework not only helps to interpret everyday auditory scenes by balancing prior 

expectations with new sensory data, but also highlights the dynamic and probabilistic nature 

of perception, constantly adapting to incoming information flows to optimize understanding 

and interaction with the environment. 

Step-by-Step Explanation of the Calculation: 

This is the total probability of ‘hearing the beep’ given those ‘hypothetical sources’, using the 

formula: 

𝑃(𝐸) = (𝑃(𝐸∣𝐻𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒)×𝑃(𝐻𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒))+(𝑃(𝐸∣𝐻𝑝𝑒𝑜𝑝𝑙𝑒)×𝑃(𝐻𝑝𝑒𝑜𝑝𝑙𝑒))+(𝑃(𝐸∣𝐻𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙)×𝑃(𝐻𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙)) 

Plugging in the numbers: 

𝑃(𝐸) = (0.8×0.60)+(0.1×0.30)+(0.05×0.10)=0.48+0.03+0.005=0.515 

Calculation of Posterior Probability (P(H|E)) 

For the probability of appliance hypothesis: 

P(Happliance∣E)= P(E∣Happliance)×P(Happliance) / P(E)=(0.8×0.6) / 0.515≈0.93 

The McGurk effect is a classic example that illustrates how our perceptions are 

shaped by combining prior knowledge with new sensory information, a process well 

explained through Bayesian inference. Typically, we hold strong beliefs about how certain lip 

movements correspond to specific phonetic sounds—for example, expecting a "ba" sound 
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when lips close together. However, the McGurk effect presents a scenario where the brain 

encounters conflicting evidence: while the auditory input suggests "ba-ba", the visual input 

clearly shows lip movements that correspond to "ga-ga". In terms of Bayesian principles, the 

perceptual system recalculates the probabilities to resolve this sensory discrepancy. The 

likelihood of observing "ga-ga" lip movements aligned with a "ba-ba" auditory signal is less 

likely in terms of past experience. Consequently, the brain updates its beliefs, integrating the 

strong prior expectations with the new, conflicting sensory inputs. This integrative process 

typically results in a new, compromised perception, such as "da-da," a sound that was 

neither heard nor visually indicated but emerges as a coherent synthesis of both auditory 

and visual data (Green et al., 1991). Other examples such as speech perception in noisy 

environment (Macleod and Summerfield, 1987) and adaptation to altered auditory feedback 

(Houde and Jordan, 2002), further support the involvement of Bayesian processing in our 

perceptual modalities.  

1.2.2. Hierarchical Models of Predictive Coding 

Predictive coding is fundamentally based on the brain's hierarchical structure, 

wherein higher level (i.e. cognitive) functions influence at lower levels such as sensory 

processing and vice versa, enabling a dynamic interplay that continuously refines our 

perception based on newly sampled information. This structure is backed by 

electrophysiological and anatomical evidence showing that multiple brain regions, such as 

the auditory (Jasmin et al., 2019; Norman-Haignere et al., 2022), visual cortex (Rao and 

Ballard, 1999), and pre-frontal cortex (Badre and D’Esposito, 2007) are hierarchically 

organised.  

From the computational perspective, opinions from Friston (Friston, 2002, 2005), 

Mumford and colleagues (Mumford, 1994; Lee and Mumford, 2003) illuminate the 

hierarchical organization while combines predictive coding and Bayesian inference. This 

model posits the neural system as an active hypothesis-testing machine. According to the 

model, high-level brain areas generate predictions based on learned contextual information, 

which are then sent to lower-level processing units to test on current inputs. When a 

mismatch (‘prediction error’) between expected and actual sensory signal occurs, the brain 

works to resolve this discrepancy by repeatedly adjusting how its different levels 

communicate over the presentations of the repeating stimulus. This involves fine-tuning the 

connection strengths within its hierarchical structure, allowing each level to update its 

expectations based on new information. These modifications result in the reduced future 

prediction errors, enhancing its ability to accurately interpret sensory inputs (This 

phenomenal is manifested as repetition suppression (Summerfield and de Lange, 2014) or 

expectation suppression (Todorovic and Lange, 2012)). When the prediction aligns with the 
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sensory input, the 'minimized' prediction error leads to an optimal Bayesian estimate of the 

sensory input. This allows the brain to choose the 'best guess' model. In this hierarchical 

structure, each layer, from lower to higher, refines the brain's predictive accuracy by 

systematically processing and integrating sensory information. Lower layers handle more 

detailed or raw sensory data, progressively abstracting and refining this information before 

passing it to higher layers. Higher layers, capable of representing more complex and 

contextual knowledge, refine these initial predictions, adjusting them based on broader 

understandings of the external world. This layer-by-layer enhancement ensures that each 

stage contributes to increasingly accurate predictions about environmental scene. 

From the neural viewpoint, hierarchical processing is observed across various 

sensory modalities. In vision, the process begins in the retina, which captures and initially 

processes visual stimuli before passing them up through the brain's hierarchy to structures 

like the lateral geniculate nucleus (LGN) and finally to the visual cortex. Each level refines 

these initial predictions by incorporating more contextual information and feedback from 

higher levels, continuously working to reduce prediction errors (Huang and Rao, 2011). 

Similar insights are also provided in auditory research. The influential work by 

Wacongne and colleagues specifically illustrates the use of hierarchical predictive coding in 

auditory perception. They introduced a paradigm which involves two categories of sounds, 

each created from distinct sets of superimposed sine waves. These sounds were presented 

in three configurations: standard sequences, which repeated the same tone five times to 

establish a predictable pattern; deviant sequences, where the pattern was broken by an 

unexpected fifth tone following four repeated ones; and omission sequences, in which the 

expected fifth tone was left out, deviating from the anticipated five-tone sequence. Their 

MEG and EEG results showed significant mismatch negativity responses when auditory 

sequences deviated unexpectedly from a pattern, with especially pronounced responses to 

omissions—where a predicted tone was absent. This indicates that the brain not only 

anticipates expected auditory patterns but also effectively adjusts its expectations based on 

the presence or absence of expected stimuli, illustrating a complex, multi-level processing 

mechanism for prediction and error correction across various cortical areas (Wacongne et 

al., 2011). 

In addition to basic auditory stimuli, another empirical research by Caucheteux et 

al. (2023) reported similar results in speech processing using fMRI. This study analysed brain 

activity while participants listened to recorded stories, which revealed that the brain 

formulates predictions that span from immediate next word sounds to long-range, contextual 

linguistic constructs. The findings highlighted a multi-level predictive system where the 

frontoparietal cortices forecast complex narrative elements such as syntax structures, 

extending beyond the simpler phoneme processing typically managed by the temporal 

cortices. Moreover, the study revealed that higher cognitive regions, such as the prefrontal 
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cortex, engage in more advanced predictive tasks. These areas handle broader contextual 

predictions and manage information over longer timescales, which suggested a 

sophisticated and hierarchical approach to processing and anticipating linguistic information 

(Caucheteux et al., 2023). 

More importantly, and above findings come to support the opinion that the hierarchy 

of predictive coding in the brain correlates with the brain’s intrinsic time scales (Kiebel et al., 

2008), on which different cognitive functions operate over specific durations. Higher 

cognitive functions, such as those managed by the prefrontal cortex, are engaged over 

longer periods to handle complex, anticipatory tasks. In contrast, lower-level sensory areas 

rapidly process immediate and detailed sensory stimuli. This distinction, both structural and 

functional, allows the brain to allocate neural resources more efficiently and minimize 

redundancy in processing information.  

1.2.3. Neural Evidence of Prediction Error 

Prediction error is the fundamental concept in predictive coding theory, it refers to 

the discrepancy between expected sensory input (top-down predictions) and actual sensory 

input (bottom-up data). The brain uses this error to refine its higher-level beliefs, adjusting its 

internal models to better match reality. This adjustment is achieved through feedback 

mechanisms that send error signals back up the neural hierarchy. As a result, the feedback 

mechanism enhances the accuracy of future predictions and optimises the brain's internal 

model.  

Neural and physiological evidence of prediction error have been substantiated 

through various methodologies including brain imaging, electrophysiology, and experimental 

psychology (Bastos et al., 2012; Kok and de Lange, 2015; Kok, 2016; Shipp, 2016; Heilbron 

and Chait, 2018; Tabas and Kriegstein, 2023). For instance, the study by Arnal et al. (2011) 

investigated neural processing of prediction errors in audio-visual speech perception by 

exploiting the inherent delay between visual and auditory speech signals to create congruent 

and incongruent conditions. Using MEG, the research revealed distinct patterns of neural 

oscillations—slow delta oscillations in higher-order speech areas like the superior temporal 

sulcus under congruent conditions and shifts to low-beta and high-gamma oscillations in 

multisensory areas during incongruence. These findings underscore the brain's utilization of 

specific oscillatory dynamics to code for prediction errors (Arnal et al., 2011).  

At the neural anatomy level, generation of prediction error is thought to be a 

fundamental brain function, which is encoded across a wide network of brain regions such 

as cortical and subcortical areas (Den Ouden et al., 2012). These include the sensory 

cortices (visual (Rao and Ballard, 1999), auditory (Tabas and Kriegstein, 2023), and 
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somatosensory (Yu et al., 2022)), which adjust neural responses based on discrepancies 

between expected and actual sensory data. The premotor and motor cortices also function 

in this way, especially in aligning motor actions with expected outcomes (Shadmehr and 

Krakauer, 2008). Furthermore, the frontal cortex, which is associated with higher level 

functions, has been found to be sensitive to unpredictable sensory deviations (Näätänen et 

al., 2005; May and Tiitinen, 2010; Dürschmid et al., 2016). Evidence from subcortical areas, 

such as those supported by Iglesias et al. (2019), highlights the hierarchical processing of 

prediction errors. Specifically, the study utilized fMRI to show how the ventral tegmental area 

and substantia nigra specifically process low-level prediction errors related to direct sensory 

outcomes, whereas the basal forebrain manages higher-level errors associated with stimulus 

context-outcome contingencies (Iglesias et al., 2019).  

1.2.3.1. Neural Transmitters that Modulate Prediction Error 

At the cellular level, insights from pharmacological research suggests that various 

types of neural transmitters are associated with prediction error processing. For example, 

the study by Marshall et al. (2016) propose that Noradrenaline (NA), particularly sourced 

from the locus coeruleus (LC), is associated with rapid updates in perceptual belief about 

the volatility of the environment, facilitating the brain's response to unexpected 

environmental change. This response to volatility helps maintain focus on relevant stimuli, 

thereby enhancing adaptability to new information. Pharmacological manipulation and 

behavioural task results supports this, which suggested that blocking noradrenaline 

receptors can change the rate at which beliefs about environmental volatility are updated 

(Marshall et al., 2016). Similar insights from the modelling work (Sales et al., 2019) also 

pointed out the critical role of the LC-NA system in augmenting cognitive flexibility within 

dynamic environments, responding to prediction errors with suitable adjustments in learning 

rates and belief updates. 

In addition to the NA, Marshall et al. (2016) also examined the role of acetylcholine 

(ACh) in coding uncertainty within dynamic environments, a process relevant to prediction 

error. Their findings suggest that when ACh receptors are blocked, participants' ability to 

quickly adapt to changes significantly declines. They interpreted that ACh plays an essential 

role in attributing uncertainty, whether it is due to fluctuations within a stable environmental 

context defined by probabilistic associations, or to larger environmental changes following a 

contextual shift  (Marshall et al., 2016).  

The study by Iglesias et al. (2021) further provides evidence for the mechanism of 

ACh in modulating brain responses to prediction errors. The researchers used ACh blockers 

(Biperiden) and enhancers (Galantamine) on human participants and measured the brain 

activity using fMRI. The experiment involved an audio-visual associative learning task to 
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explore the effects of ACh on low level and high level prediction errors. Participants were 

tasked with learning the predictive strengths of auditory cues (high or low tones) to 

determine which of two visual targets (a face or a house) would appear. This task was 

designed to include various levels of cue-outcome association strength (probabilities), 

creating a dynamic environment of volatility in which these long-term associations would 

change over time. The fMRI data and general linear models reveal that ACh significantly 

influences brain activity related to these errors. Using ACh blockers heightens the brain's 

response to low-level prediction errors, such as direct auditory cues and visual outcome 

discrepancies. However, it diminishes responses to high-level prediction errors, like changes 

in environmental volatility, specifically in the brainstem regions. Interestingly, this study also 

reported the observation of increased low level error response while use ACh enhancers, 

which appears to be controversial to the effects of blockers. These findings suggest a 

complex mechanism of acetylcholine in modulating prediction error in the hierarchical levels 

of the brain (Iglesias et al., 2021). 

Dopamine, a crucial neurotransmitter involved in associative learning, is also closely 

linked to concept of prediction errors. It primarily signals positive prediction errors, i.e. 

unexpected rewards (Nasser et al., 2017; Lerner et al., 2021). As demonstrated by 

Takahashi and colleagues, dopamine neurons also encode errors in predicting sensory 

aspects of expected rewards. Their research shows that dopamine neurons respond to 

discrepancies not only in predicted and received rewards, but also in the sensory features 

associated with these rewards (Takahashi et al., 2017). This implies that dopamine signals 

may assist the brain in adjusting not only to unexpected rewards, but also to unforeseen 

environmental changes related to those rewards. It indicates a probable neural mechanism 

that integrate sensory information into the reward prediction framework. This was further 

supported by Iglesias et al. (2021). Using similar pharmacological manipulation methods as 

those used with ACh, they revealed that dopamine is associated with immediate, sensory-

related (low-level) prediction errors. Importantly, the study also reported the complex 

interactions of dopaminergic and cholinergic systems, suggesting that these chemicals do 

not work independently but cooperate in a more sophisticated mechanism (Iglesias et al., 

2021). 

1.2.3.2. Neural Correlates of Prediction Error 

From the perspective of neurophysiological recordings, Mismatch negativity (MMN) 

is closely associated with concept of prediction errors—its response pattern reveals the 

discrepancy between the brain's predictions based on its established environmental model, 

and the actual sensory inputs. MMN is a crucial component of the event-related potential 

(ERP) in brain activity, observed when an unexpected stimulus deviates from a repetitive 
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pattern of stimuli, even without conscious attention (Näätänen et al., 2005). The response 

typically occurs between 100 and 250 milliseconds after the presentation of a deviant 

stimulus. It is primarily found to be associated with the auditory and frontal cortices, serving 

as a rapid indicator of sensory surprise. 

Notably, the review from Garrido and colleagues describe MMN as a reflection of 

Bayesian inference processes, where deviations from predicted sensory inputs lead to 

prediction errors that prompt the brain to adjust its predictions, with the MMN magnitude 

reflecting the degree of surprise (Garrido et al., 2009). Wacongne et al. (2012) provide 

computational insights on this by proposing a neuronal model suggesting that MMN arises 

from synaptic adjustments made in response to hierarchical prediction errors, thus 

enhancing the brain's predictive accuracy (Wacongne et al., 2012). Baldeweg (2006) 

reviewed how the auditory system processes repeated sounds via predictive coding, noting 

that expected sounds typically produce reduced neural responses unless an unexpected 

'anomaly' occurs, thereby eliciting MMN (Baldeweg, 2006). This phenomenon demonstrates 

the brain’s mechanism for minimizing prediction errors. Extending this principle, Stefanics 

and colleagues apply the concept of MMN in visual domains, suggesting that MMN's role in 

addressing prediction errors has cross-modal applications, further emphasizing this neural 

signature as the reflection of perceptual inference and learning across multiple sensory 

modalities (Stefanics et al., 2014). 

Apart from MMN, Repetition Suppression (RS) and Expectation Suppression (ES) 

are two phenomena closely associated with the concept of prediction error, which are both 

frequently explored in perception literature (Todorovic and Lange, 2012; Barbosa and 

Kouider, 2018; Tang et al., 2018). RS manifests as a decrease in neural activity that follows 

the repeated presentation of the same stimulus. Physiological studies suggested that it is the 

reflection of neural habituation or sensory adaptation (Summerfield et al., 2008; Nelken, 

2014). This reduction generally occurs without regard to context, mainly driven by changes 

in neural fatigue or synaptic efficiency within sensory-specific brain areas (Thompson and 

Spencer, 1966). On the other hand, ES is related to the brain's anticipatory mechanisms; 

when a stimulus is expected, the resulting neural activity is lessened due to reduced novelty 

or surprise (Han et al., 2019). This makes ES highly context-dependent, and requires higher 

level processes such as memory and attention to manage expectations (Todorovic and 

Lange, 2012; Kaposvari et al., 2018; Feuerriegel et al., 2021). Despite their unique 

underlying mechanisms, RS, which is rooted in sensory exposure, and ES, which is based 

on contextual prediction, both reflect the brain's hierarchical approach to sensory processing, 

in line with predictive coding. 

In specific, prediction error minimisation represents accurate expectations, while 

inaccurate predictions generate larger errors that facilitates adjustments to the brain's 

internal predictive models. ES occurs when the brain's predictions are accurate that the 
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incoming stimulus matches these predictions, resulting in minimal prediction errors and thus 

reduced neural activity. Similarly, RS arises when a stimulus is repeatedly presented, and 

the sensory units become less responsive due to the lack of novelty. This leads to a reduction 

in neural activity as the prediction error decreases with each repetition. Therefore, within the 

framework of the hierarchical model of predictive coding theory, both RS and ES can be 

seen as the indirect manifestations of prediction error (Mayrhauser et al., 2014). However, 

some studies challenge that RS is not directly linked to the concept of prediction error since 

no neural evidence has been measured in visual cortex (Solomon et al., 2021). 

Nonetheless, the above models present interpretations to the process from which 

the brain tests and refines its hypotheses across different layers, thus improving the 

efficiency of sensory processing.  

1.2.4. What is Precision 

How does the brain update its internal model and modulate prediction errors? The 

concept of precision, as initially proposed by theorist Karl Friston within the framework of 

predictive coding, is central to this adaptive process (Friston, 2005, 2010). Precision is 

defined as the confidence of inferred reliability of sensory inputs, which weighs prediction 

errors within hierarchical brain models. Their amplitude is usually represented as inverse 

variance of inferred predictive distribution. Physiologically, precision is hypothesized to 

modulate synaptic gain on prediction error units (Friston, 2010; Yon and Frith, 2021). The 

principle proposed that by optimizing precision, the brain can effectively manage how much 

influence different sensory inputs or prediction errors have on its overall perception/cognition 

and neural response processes. Such regulation allows the brain to allocate more resources 

to deal with unforeseen environmental uncertainty.   

The neural mechanisms underlying precision remain largely elusive. Evidence from 

neural transmitter studies suggest acetylcholine (ACh) and noradrenaline (NE) are crucial 

neuromodulators in this process. Particularly, tonic Ach has been suggested to be correlated 

with contextual uncertainties (Yu and Dayan, 2005). Furthermore, a recent study on rats 

demonstrates how ACh significantly enhances the precision of neural responses to sensory 

inputs by sharpening responses to auditory discrepancies, thus optimizing sensory 

processing and adaptation (Pérez-González et al., 2024). In addition to ACh, NE functions 

as altering the synaptic efficacy, enhancing strong prediction error signals, and suppressing 

weaker ones. This effectively allocates the brain's resources on the most unexpected or 

uncertain inputs (Shipp, 2016). Ferreira-Santos, (2016) indicates that this modulation aligns 

with the GANE (glutamate amplifies noradrenergic effects) model, which posits that NE’s 

primary function is to adjust the precision, or confidence, applied to prediction errors across 



sensory modalities, enhancing the signal-to-noise ratio in neural representations (Ferreira-

Santos, 2016). 

From the neural basis standpoint, emerging evidence have pointed out that 

precision might be related to inhibitory mechanisms (Natan et al., 2017; Schulz et al., 2021; 

Richter and Gjorgjieva, 2022; Yarden et al., 2022). For example, Bastos and colleagues 

discussed the intrinsic connections among excitatory and inhibitory populations within 

cortical columns, particularly those involving inhibitory neurons, crucially contribute to the 

regulation of neural activity. These inhibitory neurons, located primarily in the granular and 

infragranular layers, are key to controlling the gain and precision of neural responses, fine-

tuning the processing of prediction errors. The group suggested that this regulation allows 

for the dynamic adjustment of neural responses, and help scales the responses 

appropriately to the uncertainty or reliability of sensory inputs. Supported by key evidence 

from cortical studies, the neural mechanisms help the brain prevent from 

overloading predictable inputs while enhancing responsiveness to novel stimuli 
(Bastos et al., 2012).  

Similarly, Shipp discussed on how inhibitory neurons within cortical layers rich in 

interneurons modulate the precision of predictions. By adjusting the gain of pyramidal cells 

involved in prediction error signalling, these inhibitory neurons optimize the brain's response 

based on sensory inputs’ predictability and relevance (Shipp, 2016). Furthermore, one 

recent study employed the dynamic causal modelling to investigate how inhibitory 

mechanisms modulate precision within predictive coding. It highlights that precision is 

dynamically regulated by the inhibitory processes, especially for superficial pyramidal (SP) 

cells. By integrating EEG and MEG data, the study reveals that precision weighting is closely 

tied to the self-inhibition of SP cells, and inhibitory neurons are crucial in modulating those 

cells' gain. This modulation significantly influences how prediction errors are processed and 

alters the neural response to surprises, depending on their predictability (Lecaignard et al., 

2022). 

In summary, precision within the predictive coding framework is a crucial concept 

that underpins the brain's ability to integrate and assess sensory information and prediction 

errors. Efficient regulation of precision is not only crucial for normal sensory processing but 

also for maintaining brain health. Disruptions in the normal functioning of precision are linked 

to various neuropsychological disorders, such as schizophrenia and autism, where it impacts 

sensory integration and cognitive responses (Van de Cruys et al., 2014; Sterzer et al., 2018; 

Lecaignard et al., 2022). To deepen our understanding of this concept, this PhD thesis 

utilised auditory modality to address some of the questions underpinning this process (see 

Chapter 3 and 5). The next section will focus on reviewing literature related to the main topic 

of this thesis: the brain's sensitivity to patterns and the emerging understandings about its 

neural mechanism. 
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1.3. Sensitivity to Patterns 

1.3.1. Statistical Learning in Auditory Scene 
The natural world is governed by physical laws that lead to predictable sound 

patterns and structures. For example, the sound of rain falling often exhibits regular rhythmic 

patterns. This regularity comes from the principles of physics: formation of raindrops and 

speed falling from sky. The size and frequency of raindrops dictates the tempo and intensity 

of the sound pattern. Similar for the harmonic series in musical instruments. When sources 

such as violins or guitars produce sound, the vibrations of the strings generate a fundamental 

frequency along with a series of harmonics. These harmonics are integer multiples of the 

fundamental frequency, creating a predictable and regular harmonic series that is a direct 

result of the physical properties of the strings. 

In neuroscience, "statistics" refers to the underlying patterns and structures within 

data that the brain learns to recognise, and the purpose is to make predictions and interact 

with the environment. The neural representations of the predictable patterns, or 'regularities', 

extracted from sensory inputs, are believed to serve as the source action inferences and 

environmental navigation (Winkler et al., 2009; Winkler and Denham, 2024). From technical 

perspective, these statistics are the distributions, relationships, and regularities across 

sensory inputs, in which an organism is exposed to over time. 

Statistical learning refers to the brain's inherent capability to learn the rules in the 

sensory environment (Li et al., 2004; Berkes et al., 2011). For example, common rules that 

have been found includes probability distributions, which involves evaluating the frequency 

and likelihood of different sensory events (Winkler, 2003; Romberg and Saffran, 2010). It 

also involves analysing temporal and spatial correlations (Fiser and Aslin, 2002; Schapiro 

and Turk-Browne, 2015), examining the sequence of events or their relation to each other 

over time and space. Furthermore, the abilities to learn transition probabilities of sensory 

events (Schapiro and Turk-Browne, 2015), or even more complex network structures (Ren 

et al., 2022; Benjamin et al., 2024) have been demonstrated extensively. Nevertheless, 

regardless of what types of 'statistics' the brain learns, the ultimate purpose is to 

predict future events and minimize the response time. 

The seminal research by Saffran and colleagues marked a pivotal point in our 

understanding of infants’ capabilities for statistical learning by demonstrating that 8-month-
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old infants can segment words from continuous speech streams. The authors achieved this 

without the explicit instruction or the reliance on acoustic cues such as pauses or intonation, 

but instead only the transitional probabilities between syllables were used as statistical cues. 

In the experiments, infants were exposed to synthesized, monotone speech streams 

comprising four, three-syllable nonsense words, repeated randomly without pauses. The 

primary cues for identifying word boundaries were the higher transitional probabilities within 

words, as opposed to those between them (‘nonwords’ or ‘part-words’). The results 

demonstrated that infants could accurately distinguish between 'words' they had previously 

encountered and 'nonwords' or 'part-words'—sequences either not introduced during 

familiarization or that intermixed syllables across word boundaries. This finding highlights the 

infants’ substantial reliance on the statistical properties of language to effectively differentiate 

linguistic stimuli (Saffran et al., 1996). Crucially, this innate ability to learn complex linguistic 

structures was not limited to linguistic stimuli but was also applicable to non-linguistic stimuli 

such as pure tones (Saffran et al., 1999; Gebhart et al., 2009). 

Further extending the exploration of statistical learning across species, Hauser et 

al. (2001) investigated whether cotton-top tamarins could utilize this form of learning to 

process human speech patterns, using the same experimental paradigm as Saffran et al. 

(1996). The findings demonstrated that tamarins, akin to humans, could differentiate 

words from non-words and part-words based solely on the statistical characteristics of 

the syllable (Hauser et al., 2001). Additionally, Murphy et al. (2008) provided evidence that 

rats could learn and apply simple rules from sequences of stimuli to novel situations. In 

their experiments, rats were trained to associate specific three-element tone 

sequences, where the sequence structure followed a particular rule (such as XYX), with 

the reward of food. These sequences were created using stimuli that the rats had not been 

previously exposed to. The goal was to test whether the rats could generalize the rule 

learned from the training of novel auditory sequences, which either conformed or did not 

conform to the learned rule. Remarkably, the rats successfully learned that the 

sequences adhering to a specific structure were associated with food and were 

able to transfer this understanding to novel sequences composed of entirely new 

elements that followed the same statistical rule (Murphy et al., 2008). In exception of 

rats, other animals in nature, including Zebra Finches (Menyhart et al., 2015). Bengalese 

Finches (Takahasi et al., 2010), and Budgerigars (Spierings and Ten Cate, 2016) have also 

been found capable of learning statistics in auditory sequences. 
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1.3.2. The Neural Underpinnings of Statistical Learning 

1.3.2.1. The Odd Ball Paradigm 

Understanding the brain's mechanism of how it detect and respond to statistical 

structures in sensory input is an essential aspect for deciphering the brain. One of the 

primary experimental paradigms used to investigate these cognitive processes is the oddball 

paradigm. This paradigm typically involves presenting a sequence of repetitive standard 

stimuli interspersed with infrequent deviant stimuli, which differ in perceptual dimensions 

such as frequency, pitch, or orientation. Its versatility allows adaptation across various 

sensory modalities, notably auditory and visual systems, hence making it invaluable for 

examining neural mechanisms underlying perception, attention, and memory. 

A seminal work by Näätänen and colleagues employed the oddball paradigm to 

explore auditory processing, leading to the discovery of MMN, an early ERP component 

triggered by deviations in auditory patterns. As discussed before, this component signifies 

the brain's automatic response to unexpected stimuli even without the top-down attention, 

suggesting the auditory system’s high sensitivity to acoustic changes (Näätänen et al., 

1978). Another relevant study by Escera et al., 2000, further demonstrated how the brain's 

involuntary attention is captivated by novel sounds using this paradigm, highlighting the 

distinct ERP components produced by 'oddball' sounds, particularly through the P3a and N1 

components which is proposed to be reflecting involuntary attention shifts and early sensory 

processing (Escera et al., 2000). 

The oddball paradigm is also extensively used in animal studies due to its simplicity. 

For instance, influential research by Ulanovsky et al, (2003) on cats revealed that neurons 

in the auditory cortex respond more robustly to rare, deviant tones than to common ones, a 

phenomenon known as stimulus-specific adaptation (SSA). The author suggested that this 

adaptation allows cortical neurons to distinguish between sound frequencies with 

exceptional precision—a trait referred to as "hyperacuity." Interestingly, their findings 

suggest that thalamic neurons did not exhibit similar probability-dependent changes, instead, 

SSA is primarily a cortical phenomenon, possibly linked to the neural mechanisms underlying 

MMN. (Ulanovsky et al., 2003) 

The influence of voluntary attention on neural correlates of oddball paradigm are 

comprehensively investigated. For instance, Justen and Herbert (2018) focused on the 

spatio-temporal dynamics of auditory deviance and target detection. It implemented both 

passive and active auditory oddball paradigms, integrated with ERPs and Standardized Low-

Resolution Brain Electromagnetic Tomography. Participants were exposed to standard and 

deviant tones (500 Hz vs. 1000 Hz) across passive and active listening conditions, revealing 

significant activations in several brain regions. For example, passive listening triggered 
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activations in the right superior temporal gyrus and bilaterally in the lingual gyri during the 

N1/MMN phases, and in the insulae during the P3 phase. Active listening, on the other hand, 

led to activations in the right inferior parietal lobule during the N1/MMN and across multiple 

cortical areas including the precuneus during the P3. The result demonstrated that different 

listening modes tend to engage distinct brain networks in processing the auditory deviance. 

(Justen and Herbert, 2018) 

Collectively, the application of oddball paradigm offer profound insights for the 

neural mechanism of statistical learning. In addition to oddball paradigm, the local-global 

paradigm is another classic technique in this field, designed to study how the brain extracts 

hierarchical information by organizing stimuli into local elements which form part of a larger 

global structure. This approach allows researchers to examine how the brain integrate 

information across different hierarchical levels and has been instrumental in delineating the 

neural mechanisms underlying different layers of information processing. 

1.3.2.2. Local Global Paradigm 

David Navon pioneered this paradigm in 1977, utilizing it in the visual domain to 

investigate how people perceive hierarchical structures. In his seminal study, Navon 

presented visual stimuli composed of large letters (the global level) made up of smaller letters 

(the local level). He discovered that participants processed the global shape of the stimuli 

more rapidly and accurately than the local elements, a phenomenon termed "global 

precedence." This finding suggests that the human visual system is primed to recognize 

overall patterns before discerning finer details, implying a cognitive processing strategy 

where initial perceptions are shaped by general features, followed by subsequent attention 

and detail recognition. (Navon, 1977) 

In the auditory domain, Koelsch et al. (2013) applied the local-global paradigm to 

explore how listeners process hierarchical syntactic structures in music, using J.S. Bach 

chorales. The study differentiated between regular hierarchical structures, where musical 

phrases adhered to expected tonal harmony, and irregular structures, where phrases were 

intentionally altered by transposing the first phrase down a fourth (e.g., from C major to G 

major) or up a major second (e.g., from C major to D major). These modifications disrupted 

the anticipated harmonic closure, creating the hierarchical irregularities while the local 

structure—individual melodic and harmonic integrity within phrases—remained unchanged. 

The brain responses revealed that the final chord from irregular structures prompted an early 

frontal negativity (150-300 ms), an initial detection of irregularities, followed by a later 

negativity (550-850 ms) formed by the deeper processing of the disrupted harmonic 

expectations. Interestingly, these findings were consistent across musicians and non-
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musicians, which highlights a general feature of human auditory perception capable of 

processing hierarchical deviations in music. (Koelsch et al., 2013) 

Additionally, a more comprehensive study by Maheu et al., (2019) applied the local-

global paradigm to study brain responses to hierarchical sequences. This paradigm adjusts 

the complexity of auditory sequences by dividing them into five-tone chunks, each 

representing a unique pattern such as a series of repeated tones (e.g., XXXXX) or a pattern 

with one different tone (e.g., XXXXY). The study manipulated both within-chunk and 

between-chunk deviance by varying these patterns' occurrences within an experimental 

block, allowing the investigation of brain responses to local transition probabilities (within-

chunk) and global pattern rarity (between-chunk) separately. Participants were instructed to 

focus on the sequences while their brain activity was monitored via MEG. The results suggest 

that early and mid-latency brain responses, such as the MMN around 250 ms, are 

responsive to item frequency and alternation. This indicates that the brain processes these 

factors over relatively short timescales. However, late brain responses, P300 as indicated 

by this study, reacted to the overall rarity of the patterns throughout the block, suggesting a 

longer integration timescale and illustrating a complex interaction between local details and 

global structural awareness in sequence processing.  (Maheu et al., 2019) 

1.3.2.3. Can Brain Learn Complex Statistics 

As per the local and global paradigm, the brain's capability to respond differentially 

to various hierarchical levels of sensory information aligns with the hierarchical model of 

predictive coding. Aside from these traditional paradigms, increasing research is centred on 

directly evaluating the information or statistics within sensory inputs and identifying their 

associated neural correlates. 

Skerritt-Davis and Elhilali (2018) suggests that natural sounds are complex and 

cannot be fully described using only basic statistics such as frequency or transition 

probabilities. Instead, fractals, which are patterns that display self-similarity across various 

scales, may be a better way to model the complexities in sound sequences. In this study, 

the authors utilized sequences of random fractal tone sequences, each defined by different 

entropy level, a metric of randomness or unpredictability. This allowed for a controlled stimuli 

of how entropy changes impact detection performance. In the experiment, participants were 

tasked with identifying changes in tone sequences, and the result revealed that the detection 

of entropy changes depended on both the magnitude of the change and the initial entropy 

level of the sequences. Brain responses recorded by EEG showed that larger deviations in 

adjacent frequency (ΔF), particularly in low-entropy contexts, resulted in stronger ERP 

responses. This suggests the brain is especially sensitive to unexpected changes in 

predictable (low entropy) auditory contexts (Skerritt-Davis and Elhilali, 2018).  
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Subsequently, the introduction of the Bayesian predictive inference model (D-REX) 

to simulate brain response aligns with the neural data, which further provided insights for the 

neural underpinnings of  how the brain extract complex auditory statistics. The stimuli used 

in this study varied along two acoustic dimensions, using a random fractal structure to 

modulate entropy levels within auditory sequences. Participants in the EEG experiments 

were tasked with detecting changes in entropy-modulated sequences. They either listened 

to the nSP condition (sequences vary in spatial-pitch dimensions) or the nTP condition 

(sequences vary in timbre-pitch dimensions). The EEG results and model fitting suggest that 

local surprises in acoustic features linearly modulated the neural responses, while global, 

melody-level statistics induced a nonlinear integration across features. Specifically, the 

frontocentral network, visible in the initial processing stage with a latency window of 80-

150ms post-stimulus, displayed neural activity closely aligned with local statistical changes 

in auditory features such as pitch and timbre. After this initial detection, the centroparietal 

network seemed to engage over a prolonged period to integrate these changes into a global 

context. The authors observed that this integration aligned with later ERP components within 

a time window of 300-800ms. Those findings support the hypothesis that the brain learns 

sensory information in the hierarchical manner and further suggest that the neural correlates 

for extracting statistics across multiple layers/time scales appear to be dissociable (Skerritt-

Davis and Elhilali, 2021).   

The natural environments we encounter daily are often stochastic and marked by 

uncertainty, making entropy an ideal quantification for modelling these variable conditions. 

However, in structured settings like language and music, elements often exhibit predictable 

relationships that entropy alone cannot fully capture. To address this, some research, such 

as the seminal work by Schapiro et al. (2013), introduced the concept of network structure 

to investigate the statistical learning in vision domain (Schapiro et al., 2013). This approach 

explored how discrete units are intricately interconnected within a larger framework, 

emphasising the dynamics of how individual elements influence one another. 

The framework was recently tested by Benjamin et al. (2024) in auditory modality, 

in their experiment, participants passively listened to sequences of tones structured 

according to a "sparse community network," which comprised two clusters (communities) of 

tones that were densely connected (high transition probabilities) within and sparsely 

connected (low transition probabilities) between each other. The tones within or between 

the cluster were organised to maintain uniform transition probabilities. The task required 

participants to passively listen to these sequences, with a focus on the auditory input without 

making any active responses. MEG results showed rapid brain responses to changes within 

the sequences, occurring about 150 milliseconds after tone transitions, an indicative of a 

keen sensitivity to the network's structured relationships. Additionally, time-resolved 

decoding techniques revealed significant overlaps in neural representations of successive 
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tones, suggesting that the brain maintains activity from previous tones as new ones are 

perceived. This overlap suggests that the brain representation of tones are linked in a 

sequence, which is crucial for prediction and comprehension of contextual information. The 

study also found that neural responses were influenced by a novelty index from an 

associative learning model, and therefore the auditory processing is dynamically shaped not 

only by immediate spectral temporal changes but also by the accumulated structural 

knowledge. These findings highlight the brain's capacity for temporal integration and have 

profound implications for understanding the mechanisms of auditory memory, particularly 

how continuous auditory information is integrated and retained for tasks like monitoring 

speech and music. 

1.3.3. Neural Correlates of Auditory Regularity Encoding 

Researchers often come across this question: How does the brain retain 

accumulated knowledge and represent auditory context? This ability is widely demonstrated 

through the phenomenon of MMN, as reviewed previously. MMN serves as a critical neural 

mechanism, triggered when an auditory stimulus deviates from a repetitive pattern that the 

brain has learned. Such deviation prompts the MMN response, indicating that the brain has 

stored a representation of the pattern and recognizes deviations from it. Therefore, one 

hypothesis posits that MMN is indirectly indexing the memory trace of the established pattern. 

The MMN thus serves as an important marker for sensory memory. Alternatively, in terms of 

predictive coding theory, the MMN is hypothesized to arise from the brain's ability to create 

and maintain a model of auditory environment. This model helps the brain predict future 

events based on past experiences. When an incoming sound deviates from these 

expectations, the discrepancy triggers the MMN, which reflects the brain's detection of this 

violation of learned pattern. 

One foundational study by Näätänen and colleagues first detailed how MMN can be 

elicited by deviations from a repetitive sequence of sounds, suggesting that the brain 

automatically generates a sensory representation of the auditory environment. This research 

laid the groundwork for proposing MMN as an index of sensory memory's role in detecting 

regularities (Näätänen et al., 1978). Building upon this, research by Winkler and colleagues 

(1996) demonstrated that MMN amplitude could be modulated by the predictability of the 

auditory sequence, directly linking MMN to the brain's expectation based on previous 

experiences (Winkler et al., 1996). 

As MMN is an indirect and momentary marker of regularity tracking, is there a direct 

neural representation of regularity? The ongoing question of whether the neural correlates 

of regularity can be directly measured, was addressed in a comprehensive study by 
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Barascud et al. (2016). The authors conducted an in-depth investigation into auditory 

processing by using stimuli composed of 50-ms tone-pips organized into regularly repeating 

pattern (REG) and random (RAND) sequences. The study systematically manipulated the 

predictability of these REG patterns by varying the alphabet size (the number of different 

frequencies used within the sound pattern). Smaller alphabet sizes, which involve fewer 

frequencies repeated more frequently, resulted in more predictable sequences. Conversely, 

larger alphabet sizes introduced greater informational diversity, thereby reducing 

predictability. In contrast, random (RAND) sequences, defined as tone-pip sequences 

consist of randomly ordered frequencies, lacked deterministic pattern or regularity, serving 

as a baseline against which the structured REG sequences were compared. In the 

experiment, participants listened to those sequences while being instructed to pay their 

attention to a visual decoy task. The MEG recordings demonstrated a significant variation of 

the sequence evoked sustained response (DC) based on the predictability of the sequences. 

Specifically, REG patterns with smaller alphabet sizes elicited stronger sustained neural 

responses, indicating that the brain was more actively engaged when the auditory input was 

predictable. However, for the most unpredictable condition RAND, the brain exhibits lowest 

sustained response amplitude, compared with other predictable patterns.   

Crucially, the dynamics of these sustained responses closely mirror the output 

pattern of Ideal observer model (IdyOM). This alignment suggests that the way the brain 

monitors information, as reflected by the sustained response dynamics, might be consistent 

with the statistical parameters tracked by IdyOM, which is based on the Prediction by Partial 

Matching (PPM) model employing a variable-order Markov model framework (Pearce, 2005). 

The fundamental principle of the PPM model is based on its assumption that the model has 

completed the initial integration processes and analyses the sequences symbol by symbol. 

In details, it creates predictive distributions for the next symbol through a synthesis of 

predictions from various sub-models, particularly n-gram models. An n-gram model uses 

sequences of 'n' adjacent symbols to generate conditional probabilities. For instance, to 

predict the next symbol following the sequence 'ABCAB', the model analyses occurrences 

of 6-grams like 'ABCABX', where 'X' is the variable component. The probability of 'C' being 

the next symbol, is determined by the frequency of 'ABCABC' relative to all 6-grams that 

begin with 'ABCAB’. The model output is quantified as the negative log probability of a tone 

occurrence at this position, conditioned on the portion of the sequence heard so far. 

Intuitively, this metric quantifies the ‘surprise’ experienced by the model when encountering 

each tone in a sequence. As the sequence become predictable, the information content 

typically drops, indicating that the tones are less surprising as the model adjusts to the 

emerging pattern (more details of the model will be provided in Chapter 2).  

Despite IdyOM’s resemblance of the brain responses, Barascud et al. (2016) 

discussed fundamental discrepancies between human auditory processing and the model. 
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Unlike IdyOM, which operates as if it possesses unlimited memory and computational 

resources, the human brain is constrained by neural and memory capacity, impacting its 

ability to relentlessly process and retain complex auditory sequences. This distinction is 

evidenced by the model's performance, where regardless of pattern complexity, IdyOM 

consistently reaches a uniform level of amplitude—quantified as information content—once 

a regular (REG) pattern is identified (See Figure 1.1). In contrast, in human listeners, the 

amplitude of sustained responses varies depending on the complexity of the pattern. This 

variation suggests that neural representations for sequence statistics in humans are 

significantly influenced by their computational capacities such as memory. Relevant 

questions were addressed in Study 1 (see Chapter 2), which aims to provide insights into 

these memory and information integration processes. 

Figure 1.1. Brain response: The graph depicts the root mean square 

(RMS) of brain responses for pattern condition REG5, REG10, and 

REG15, as well as for the random sequence condition RAND20. The 

alphabet here represents the number of frequencies that make up the 

pattern or sequences. This representation covers the full stimulus epoch. 

The number of tones marked in each REG condition represents the point 

where the neural response of pattern starts to diverge from the control 

condition (RAND). Intervals indicated by lines below the brain response 

highlight the points where significant differences has identified between 
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each REG condition and RAND20. Model output: The model output 

displays the averaged information content (across trials) for each tone pip 

over the evolution of sequence processing for REG5, REG10, and REG15 

conditions. The drop of information content indicate the point where the 

model discovered the pattern. (Barascud et al., 2016) 

Back to the study, the authors propose that the increases in sustained response 

power are linked to the enhanced predictability in sequences for various patterned stimuli. 

Beyond the underpinnings by IdyOM, they suggest that this response seems to be 

associated with the inferred reliability or "precision" of sensory inputs—the key concept in 

predictive coding theory as reviewed previously. However, a significant limitation of their 

study is that IdyOM is not designed to track stimulus precision directly. Furthermore, the 

study exclusively uses either random or perfectly deterministic sequences. Such choice 

restricts the interpretation overall, as such deterministic patterns do not allow for subtle 

variations that could more effectively reveal how the brain adjusts its predictions under minor 

fluctuations in uncertainty or change. These conditions of slight variability are more common 

in natural environments and thus more relevant for understanding real-world sensory 

processing. To test this hypothesis, Zhao et al. (2024) introduced rapidly unfolding 

stochastic sound sequences, exploring how the human brain responds to these sequences, 

and whether the Bayesian prediction inference model (D-REX), which is designed to 

continuously monitor precision, could effectively benchmark neural dynamics or not. Their 

results demonstrated that the transitions between different stochastic tone patterns trigger 

changes in these sustained responses. Specifically, sustained response dynamics align with 

the Bayesian concepts of precision, an indicative of the confidence in predicted sensory 

input, pointing to the brain's adaptive mechanism to recalibrate its internal model based on 

the predictability of incoming stimuli (Zhao et al., 2024). 

Zhao et al. (2024) provide direct evidence that sustained response may be the 

potential neural correlate of precision in auditory processing, a component not yet 

dissociated from neural recordings. As discussed in Section 2, gaining a nuanced 

understanding of precision's regulatory mechanisms could illuminate the pathophysiological 

underpinnings of various mental disorders and highlight potential therapeutic interventions. 

Consequently, one objective of this thesis is to dig deeper into the nature of these neural 

dynamics and provide insights for the underlying mechanism (see Chapter 3 and Chapter 

5).  
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1.3.4. The Neural Substrates of Auditory Regularity Encoding 

In addition to understand the statistical representations manifested by the sustained 

neural responses, Barascud and colleagues also probed the neural substrates that underpin 

these dynamics, particularly concerning the brain's detection of emerging patterns, where 

the neural responses evoked by regular patterns begin to diverge from those triggered by 

random sequences (see Figure 1.1), fMRI and MEG source localisation techniques pinpoint 

a critical network (Barascud et al., 2016). This network encompasses the auditory cortex, 

frontal cortex, and notably, the hippocampus. 

The auditory cortex is apparently engaged during the auditory tasks, and its role of 

being a novelty detector has been documented in a wealth of literatures (Heilbron and Chait, 

2018). However, the precise role of frontal cortex contributes to auditory processing and 

regularity encoding remain inadequately understood. Given the well-documented roles of 

the frontal cortex in cognitive control, attentional regulation and working memory, it is 

plausible that these cognitive functions are intricately involved in the auditory processing 

(Miller and Cohen, 2001). Empirical evidence indeed indicate its sensitivity to auditory 

deviants and auditory contextual change (May and Tiitinen, 2010; Näätänen et al., 2012; 

Paavilainen, 2013).  

For instance, work by Doeller et al. (2003) investigated pre-attentive auditory 

deviance detection in prefrontal cortex, using oddball paradigm. In their experiment, 

standard tones at 500 Hz were contrasted with deviants at 667 Hz (small), 833 Hz (medium), 

and 1000 Hz (large). The findings showed distinct activity patterns in the right prefrontal 

cortex, especially noticeable during the processing of smaller pitch deviants. Particularly, the 

fMRI data demonstrated that the right prefrontal cortex showed increased activation when 

the deviants were less identifiable, an indicative of a specific role in contrast enhancement. 

Such pattern suggests that the prefrontal cortex enhances the sensitivity of the auditory 

detection system. This is particularly important under challenging conditions where auditory 

stimuli are subtle and less distinct. The observed activations show that the prefrontal cortex 

plays a significant role in top-down modulation, which helps to prioritize and intensify the 

neural processing of subtle deviations, thereby enhancing the perceptual clarity of these 

auditory differences. (Doeller et al., 2003) 

In addition to the change detection, emerging evidence suggest that the prefrontal 

cortex plays a crucial role in detecting global deviations, highlighting its importance in 

interpreting, and responding to the auditory contextual inputs. Specifically, the study by 

Uhrig et al. (2014) explored the role of the prefrontal cortex in detecting global auditory 

deviants in the monkey brain. The group utilised the local-global auditory paradigm to test 

how monkey brain responds to hierarchical auditory deviations. The fMRI results indicated 

that while local deviants elicited a mismatch response predominantly in the auditory cortex, 
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global deviants activated a broad frontoparietal network, including significant involvement of 

the prefrontal cortex. The study found that the prefrontal cortex, particularly prefrontal areas 

8A and the dorsal mid-cingulate, was critically involved in processing global deviations that 

require higher-order functions like integrating and comparing sequential information across 

time. (Uhrig et al., 2014) 

Dürschmid et al. (2016) further addressed similar questions and provided empirical 

evidence in a study involving humans. The researchers recorded Electrocorticography 

(ECoG) signals from epilepsy patients to test the role of the pre-frontal cortex in detecting 

global deviants. In addition, they also examined whether the brain response differentiates 

between predictable and unpredictable deviations. The experiment used sequences of five 

tones for each trial, with deviants occurring either predictably every fifth tone or 

unpredictably within the sequence. Their results discovered that besides significant 

activation of the frontal cortex during the processing of global deviants, the heightened high 

gamma activity was observed in the frontal cortex in response to unpredictable auditory 

deviants compared to predictable ones. This finding demonstrated the crucial role of gamma 

band in the frontal cortex in signalling high-level auditory prediction errors. In contrast, the 

temporal cortex showed less selective responses, indicating a more generalized response 

to auditory deviations, regardless of their predictability. The study suggested that the 

selective response of the frontal cortex might be involved in functions such as updating 

internal model and recalibrating neural predictions in response to unexpected sensory input, 

as theorised by predictive coding (Dürschmid et al., 2016). Overall, these findings are 

consistent with Barascud et al. (2016), where the frontal cortex is involved in auditory 

regularity detection. 

Apart from the frontal cortex, the hippocampus, traditionally recognized for its 

primary function in memory, also contribute to the neural network underlying auditory 

regularity detection (Barascud et al., 2016), though it is not typically observed in auditory 

tasks such as those with oddball paradigm, which generally emphasises sensory and 

attentional processes. The association between the hippocampus and auditory regularity 

detection could be due to the hippocampus's role in memory functions, necessary for 

integrating and retaining complex auditory sequences. 

According to the IdyOM model, effective prediction of incoming sounds relies on the 

ability to memorize dependencies within sequences, aligning with the hippocampus's known 

functionalities. For example, early research by Kumaran and Maguire (2006) designed fMRI 

protocol to explore the hippocampus's role in detecting associative mismatches within visual 

object sequences. Participants were presented with sequences of objects where certain 

objects were expected based on prior exposures. These sequences were then altered in 

subsequent presentations to introduce associative mismatches — deviations from the 

expected sequences that were specifically designed to challenge the participant's memory-
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based predictions. For example, if a sequence usually presents objects A, B, C, and D in 

that order, it might be changed to A, B, C, and X in a subsequent round. This creates a 

mismatch between the expected D and the actual X. Their fMRI results demonstrated a 

significant enhancement in hippocampal activation during conditions of associative 

mismatch. This suggests that the hippocampus is engaged in identifying when expected 

sequences are not followed, indicating its capability to learn dependencies within a sequence 

and actively compare incoming data against stored memories to signal ‘prediction error’ like 

mismatch. (Kumaran and Maguire, 2006) 

Dimakopoulos et al. (2022) expanded the investigations on auditory working 

memory for processing auditory sequences. Specifically, they analysed how the 

hippocampus interacts with other brain regions to process and recall auditory sequences in 

verbal working memory. Using hippocampal local field potentials and electrocorticography 

(ECoG) recordings, the study examined the functional dynamics between the hippocampus 

and auditory cortex during verbal memory tasks. Participants were engaged in a modified 

Sternberg working memory task involving sets of consonants. The stimuli used consisted of 

a set of eight consonants where the central four, six, or eight letters were the specific 

memory items for each trial, distinguished by their set size. The task required memorizing 

and later recalling these sets, which assesses the participants' ability to handle varying 

memory loads. The study found that during the encoding phase, information primarily flowed 

from the auditory cortex to the hippocampus, particularly in the theta frequency range (4-8 

Hz). Notably, during the maintenance phase—when participants were actively trying to 

retain and manipulate memorised sequences—the information flow reversed. This shift was 

indicated by the hippocampus predicting activity in the auditory cortex, suggesting its 

engagement in replaying and organising memory content for later recall. The authors noted 

that a higher memory load significantly altered neural firing patterns and functional 

connectivity, especially during the maintenance phase of the working memory task. This 

change was evident in the increased directional information flow from the hippocampus to 

the auditory cortex. The study demonstrated that the hippocampus not only plays a role in 

storing auditory working memory but also actively participates in processing and replaying 

sequential information within the working memory processes. (Dimakopoulos et al., 2022) 

Further to this, the intracranial study by Borderie et al. (2024) provides a detailed 

analysis of the neural mechanism behind the maintenance of the auditory sequence in short-

term memory. The study focuses on the role of the hippocampus, examining cross-

frequency coupling in cortico-hippocampal networks. Piano tones were used in a short-term 

memory (STM) task for epilepsy patients, who were presented with sequences of 250-ms-

long tones varying in memory load (3 or 6 tones) and silent retention periods (2 s, 4 s, and 

8 s). Auditory STM was assessed by comparing two sequences, separated by a silent period, 

which were either identical or differed by one tone. The results demonstrated that stronger 
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theta-gamma phase-amplitude coupling in network of superior temporal sulcus, inferior 

frontal gyrus, inferior temporal gyrus and hippocampus, was associated with better 

performance on memory tasks, which suggests that such coupling plays a functional role in 

short-term memory retention. Notably, the activity observed in the network significantly 

predict memory performance at the individual trial level within participants, an indicative of 

the predictive capacity of this neural process. (Borderie et al., 2024) 

In summary, insights from the above studies suggest that the hippocampus is not 

just a passive storage machine but is actively engaged in dynamic sensory information 

processing through complex neural interactions. Such active involvement sheds light on the 

underlying hippocampal mechanisms critical for auditory regularity detection, as initially 

proposed by Barascud et al. (2016). It raises the hypothesis that the hippocampus may 

function as a high-level predictive machine and contribute to sustained neural responses 

during auditory pattern detection tasks. Building on the foundation laid by Barascud’s study, 

this PhD thesis introduced silent intervals between sounds to extend the duration of auditory 

patterns. Such modification aims to present a greater challenge to auditory memory systems, 

thereby enhancing our exploration of how memory processes contribute to the identification 

of auditory regularities. 
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1.4. Aim of This Project 
The literature reviewed thus far have provided compelling evidence that the auditory 

system's sensitivity to patterns is intrinsically linked to memory functions. To decipher the 

nature of the neural correlates of regularity encoding, as demonstrated by sustained 

responses (Barascud et al., 2016; Southwell et al., 2017; Zhao et al., 2024), understanding 

the cognitive and perceptual interplay within this process appears to be the important aspect. 

This PhD thesis investigated several questions based on this topic: What types of information 

does auditory memory utilize to behaviourally analyse patterns within sound sequences? 

Does this memory integration in pattern extraction depend solely on the duration of sound 

sequences, or it adaptively monitor the item-wise information? How does those sensory 

information are represented in the brain? Is the memory mechanism supporting this process 

perceptual specific, or it is interacted with the cognitive functions? This thesis aims to answer 

these questions by utilising behavioural experimentation, along with MEG and EEG 

techniques.  
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2. Chapter 2: Unravelling the Interplay of Duration
and Information boundaries in Rapidly Unfolding

Sound Pattern Detection: Insights from Behavioural
Examination

2.1. Introduction 
In natural auditory scape, the arrival rate of sound streams can vary, even for the 

identical sources. This variability is exemplified by species-specific communication signals, 

such as bird songs (Podos et al., 2004), insect calls (Baker et al., 2019), and mammalian 

vocalisations (Jürgens, 2009), which all display unique temporal patterns. These differences 

underscore the necessity for organisms to adapt to the varying speeds of auditory cues to 

effectively process crucial environmental information, such as the presence of predators, 

prey, and food sources. The brain, central to auditory perception, is believed to continuously 

analyse statistical patterns within dynamic sensory signals across various auditory 

dimensions  (Skerritt-Davis and Elhilali, 2021) and temporal scales (Fitzgerald and Todd, 

2018). This ongoing analysis is critical for auditory sensory processing, as creating coherent 

concepts relies on the sequential unfolding of auditory events. For instance, in the realm of 

speech comprehension, integrating linguistic elements across different temporal scales—

words, sentences, and paragraphs—is essential for forming a thorough understanding of 

the conveyed message (Diehl et al., 2004). 

A fundamental question arises from these phenomena: how do listeners process 

and understand auditory stimuli that unfold over various time scales, and how does the brain 

integrate these signals over time to form a coherent perceptual experience? Furthermore, 

we must explore what specific types of information the brain is encoding during this process. 

The answer likely hinges on the mechanisms of memory, as local memory is believed to be 

interconnected with information processing (Hasson et al., 2015). Due to its limited capacity, 

the brain cannot encode every detail of an auditory signal. Instead, it is more likely that the 

brain employs a selective encoding strategy, prioritizing information that is essential for the 

organism's adaptation to its environment. This raises additional questions: what specific 

information within the auditory stream is deemed necessary to be tracked and retained, and 

for how long the brain consider retaining temporarily? 
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First, it is impossible for the memory to retain the information for infinite time. 

Empirical findings in experimental psychology support the view that auditory short-term 

memory possess a restricted temporal capacity (Näätänen et al., 1989; Winkler & Cowan, 

2005). Such limitations are thought to stem from cellular level biophysical constraints, 

including the weakening of synaptic connections over time (Hardt et al., 2013). Classical 

memory studies employing two-stimulus comparison tasks (Cowan, 1984) have consistently 

demonstrated that participants are tasked with retaining an initial sound for a duration 

typically lasting only a few seconds. Any extension of this retention interval invariably results 

in a decline in comparison performance (Cowan et al., 1997).  

Relevantly, McDermott and colleagues examined auditory representations in 

response to sound texture excerpts of varying lengths. They proposed that textures are rich 

in details, and it is more ecological for the brain to encode the sound by time-averaged 

statistics. To test this hypothesis, the team modified texture details and statistics in both short 

and long excerpts and evaluated listeners' discriminative abilities. As a result, it was found 

that listeners could distinguish short sound texture details effectively but struggled with time-

averaged statistics. However, for longer excerpts, their ability to discern texture details 

decreased, and their proficiency in identifying differences in time-averaged statistics 

significantly improved (McDermott et al., 2013). Though memory is indeed temporarily 

limited, McDermott et al. (2013) provided evidence that temporal constraint does not 

preclude the brain’s ability for encoding spectral temporal details of the auditory signal when 

it is relatively short. In other words, the brain appears to be capable of integrating and 

retaining distinctive features adaptively and comprehend sensory signals that vary in 

temporal details within certain range of temporal frame. 

In fact, previous studies using tools like fMRI (Hasson et al., 2008; Lerner et al., 

2011; Stephens et al., 2013) and EEG/ECoG (Lü et al., 1992; Honey et al., 2012), have 

provided insights that neural activity operates at various temporal scales, matching the 

stimulus inputs’ presentation rate. For example, one recent research investigated how 

humans predict future events based on their past sensory experiences, particularly in 

situations where there are variations in the speed of sensory input. Participants in the study 

listened to sequences of pure tones presented at different rates: fast (150 ms per tone), 

medium (300 ms), or slow (600 ms). The recorded MEG data revealed that the brain’s ability 

to anticipate upcoming information depends on integrating consistent amounts of tonal 

information, regardless of the rate at which it is presented (Baumgarten et al., 2021). 

Similarly, in a study on human speech processing, researchers investigated how the brain 

adapts to changes in speech rate. Using fMRI and intracranial EEG, the study examined 

neural responses to an auditory narrative presented at various rates. It was found that neural 

responses in early sensory processing auditory regions, as well as linguistic and extra-

linguistic brain areas, could be temporally rescaled when speech was slowed down by 1.5 
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to 2 times or sped up by 0.75 times. However, this phenomenon started to break down for 

stimuli presented at double the speed, resulting in reduced intelligibility. This implies that 

flexible time scaling only occurs within specific time intervals. Once the speech rate exceeds 

a certain point, both duration and information can influence the perception (Lerner et al., 

2014). 

However, it is known that the processing of speech (Lerner et al., 2014) or slow 

stimuli (Baumgarten et al., 2021) likely involves the coordination of multiple neural circuits. 

This extends beyond early auditory sensory processing and includes higher cognitive 

functions like anticipation (Lee et al., 2021) and deliberate reasoning (Karlaftis et al., 2019), 

which complicate the results interpretation. To focus on the mechanism of the earlier stage, 

some studies have utilised rapidly unfolding tone sequences to investigate the automatic 

nature of auditory sensory processing. 

For example, Watson and colleagues (Watson et al., 1990) firstly discovered that 

disruptions in fast tone patterns lasting 500 milliseconds and containing 10 items could be 

perceived. The study created random sequences of N tones by evenly distributing a fixed 

frequency range (300-3000 Hz) into N intervals on the logarithmic axis. Participants were 

asked to compare two patterns that differed by only one frequency element. Tests for 

discrimination ability were conducted at various levels of N and different tone/pattern 

durations. As a result, it was revealed that the total duration of the pattern and the duration 

of tones had minimal impact on the comparison task. Instead, the number of items (N) that 

made up the pattern accounted for the majority of the observed variance, suggesting the 

limited informational capacity in short-term memory. 

Relevant evidence from behavioural study by Jaunmahomed and Chait (2012) also 

provide similar insights through how individuals retrospectively timestamp events. 

Participants were asked to decide whether a light flash occurred before or after the transition 

from a random tone sequence to the repeating tone pattern. Interestingly, the study found 

that the perceived timing of events was not at the point of detection, but slightly earlier – by 

about one cycle. Moreover, when the duration of tones was reduced from 100 to 50 

milliseconds, this effect was halved. This suggests that the memory representation used to 

determine the start of a regular pattern is not tied to a specific duration, but to the number 

of available tones that are internally represented (Jaunmahomed and Chait, 2012). 

Core question: Is the Memory that Supports the Pattern Discovery Dependent 
on Duration or Information 

In addition to the behavioural perspective, neural correlates also offer objective 

evidence. Barascud et al. (2016) utilised MEG to further investigate how the human brain 
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automatically discovers the emergence of the sound pattern. Similar to Jaunmahomed & 

Chait, 2012, the stimuli consisted of rapid tone-pip sequences, with each tone lasting 50ms. 

The experiment included REG (regular) pattern with different levels of pattern complexity 

(Rcyc, the number of frequencies that make up the repeating pattern), specifically 5, 10, and 

15 (REG5, REG10, and REG15). The duration of the patterns varied in terms of the size of 

the alphabet used in each condition, and the frequencies were always chosen from a pool 

of 20 frequencies. As a comparison, each REG signal was paired with a RAND (random) 

signal, which consisted of the same subset of frequencies (RAND5, RAND10, RAND15, 

RAND20, only RAND20 was plotted in this study) but presented in a random order. 

Figure 2.1 illustrates the neural response from stimulus onset to offset for 

REG5/10/15 and RAND20 conditions. The experiment revealed that the amplitude of the 

sustained response is modulated by the predictability of the stimulus sequence. Specifically, 

REG5 > REG10 > REG15 > RAND20, indicating a larger amplitude with higher predictability. 

Interestingly, the time latency of the DC change, which is assumed to reflect the point of 

pattern discovery, increased with pattern complexity (Rcyc). The earliest DC change was 

observed in REG5, followed by the other conditions. The Ideal observer model (IdyOM) 

suggests a consistent requirement of three or four additional tones for pattern detection, 

regardless of informational complexity. However, brain responses from humans only mimic 

ideal observer performance for REG5 and REG10, with growing sluggishness for larger Rcyc 

sizes. This observation is also correlated with the DC amplitude effects: REG5 and REG10 

show ideal observer performance and exhibit the same amplitude, while REG15 has a slightly 

lower amplitude. Since the sequences are too rapid to be consciously tracked, the study 

proposed that the auditory system needs to maintain and continuously update the sensory 

representation of the sound input to assist the pattern recognition. The decision regarding 

the emergence of the pattern is then made based on accumulating enough sensory 

evidence. The authors suggested that the decrease in performance after Rcyc of 10 might 

be attributed to the limited capacity in memory. Sound information that exceeds the memory 

capacity becomes non-retrievable, requiring access to the alternative memory strategy to 

support the belief update. This results in the delayed DC shift in more complex patterns 

(REG15). However, one confounding factor in this study is that when the pattern complexity 

increases, the duration of the pattern also increases; therefore it cannot be determined 

whether this constraints depends on duration or the number of tones as they both varied 

together in this study (Barascud et al., 2016). 



Figure 2.1. Group root mean square (RMS) of brain responses to REG5, 

REG10, and REG15 conditions, along with RAND20, are displayed. The 

entire stimulus epoch, from stimulus onset (t = 0) to offset (t = 3,500 ms), 

is plotted. Intervals where a repeated measures bootstrap procedure 

indicated significant differences between each REG condition and RAND20 

are marked with a line beneath the brain responses. (Barascud et al., 2016) 

Harrison and colleagues (Harrison et al., 2020) proposed that the pattern duration 

of auditory sequences in Barascud et al.’s study might be within the temporal boundary of 

echoic memory (Nees, 2016; Winkler & Cowan, 2005). It was argued that the limited 

capacity for storing number of information could be a factor. To test the hypothesis, the team 

conducted a behavioural experiment, in which the participants in the experiment were asked 

to identify when a random tone sequence transitioned into a regular pattern. The response 

time for pattern recognition was compared under two conditions. Both conditions maintained 

a pattern duration of 500 ms but differed in the number of tones per cycle (Rcyc); one had 

10 tones lasting 50 ms each, while the other included 20 tones each lasting 25 ms. The 

results revealed that an increase in the number of tones substantially increased the tonal 

information participants needed to detect regularity. This was true even when the duration 

of each cycle was kept constant and fell within the hypothesised echoic memory boundary. 

Those observations suggest that the memory buffer which supports listeners to detect the 

regularity are indeed influenced by informational constraints. 

This finding was also supported by McDermott et al. (2013), who created ‘cocktail 

party’ textures by overlaying recordings of groups of speakers. Listeners were tasked with 

determining which of three sound excerpts, all sampled from the same signal, was distinct 

from the others. The signals contained varying numbers of different speakers. The results 

demonstrated that short duration excerpts (50ms) were easily distinguishable irrespective 

of number of speakers. However, performance became significantly worse for longer 
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durations (2500ms) depending on the conditions, showing an interaction between duration 

and the number of sources. Their subsequent experiment involved generating random 

sequences of drum hits ranging from sparse to dense, further hinting at an interaction 

between duration and hit density. Those results indicate that once the information flow 

exceeds a certain temporal threshold of the memory, penalty of informational limits arise 

(McDermott et al 2013). 

2.1.1. The Motivation Behind the Study 

Harrison et al. (2020) analysed a small dataset and included a limited range of 

stimulus conditions in their study. Meanwhile, it is important to note that adjusting the tone 

length to manipulate the cycle duration can potentially enhance the encoding of sensory 

signal and reduce the effects of decay in sensory trace. Therefore, it would be unfair to solely 

compare the results based on the controlled cycle duration length (Harrison et al., 2020).  

To enhance our understanding about this topic, this study expands upon prior 

research paradigms by tasking participants to distinguish the transition from a random 

sequence of tones (RAND) to a structured, repeating pattern (REG). In alignment with 

established research, pure tone patterns as stimuli were employed. This choice is 

advantageous because tone-pips encapsulate essential auditory elements and offer precise 

control. Additionally, the rarity of pure tone patterns in natural settings reduces the likelihood 

that the observations are influenced by participants' long-term memory, ensuring a focused 

investigation of the specific auditory processes. Via manipulate the informational and 

temporal parameters of the pattern, this study investigated how the ability to detect the 

transition changes as the function of pattern complexity (Rcyc, the number of 

tones/frequencies that make up the pattern) or the duration of the pattern. Response time 

(RT) was utilised to evaluate task performance, since RT is a commonly measured metric in 

the perceptual decision-making process. The variability in its distribution can offer valuable 

insights into how sensory evidence is gathered over time and how information is internally 

represented (Glickman and Usher, 2019). RT in this study is defined as the duration listeners 

take to perceive the pattern emergence, once adjusted for the baseline response latency 

necessary to detect a straightforward tone change (STEP).  Critically, the response time to 

transitions in the STEP stimuli is used to estimate the response time to a simple, 

computationally low-demanding pitch change. This considers any effects of hardware 

latency, the time it takes for the change to reach awareness, the time to trigger and complete 

the motor response, and the subject's overall attentiveness level. Therefore, RTs measured 

in pattern (RANDREG) detection in this study were all corrected by subtracting the STEP RT. 
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To demonstrate the significance of RT and its correlation with memory capacities, 

this study utilised the PPM decay model (Harrison et al., 2020). This model aids in 

understanding the consequences of memory constraints on the temporal dynamics of sound 

sequence processing. Figure 2.2A displays the decay parameters used in the model. 

Information (transition probabilities) stored in the echoic memory buffer can be recalled with 

high precision. However, memories that leave the buffer over time transition into short-term 

memory, beginning with a 0.1 weighted memory strength and decays exponentially (see the 

demo displayed in Figure 2.3 explain how the pattern can be theoretically detected 

considering the decay process). Same principle was applied to long-term memory decay 

after the short-term memory phase. Figure 2.2B demonstrates how the model process 

REG10 or REG20 with three buffer sizes. When the buffer is reduced to 500ms, the detection 

of REG10 appears to lag compared to the other two buffer sizes (see Figure 2.2B), and this 

is also true for REG20 detection. 

Figure 2.4 illustrates how the model processes RANDREG10 (pattern duration = 

500ms) and RANDREG20 (pattern duration = 1000ms) with corresponding decay 

parameters. The y-axis shows the information content, which quantifies the level of surprise 

after the tone at that position is observed by the model. Less surprise indicates that memory 

has been formed, and the model can make more confident prediction. In this example, I 

modelled the memory buffer with temporal constraints of 0.5, 0.95, and 1.5 seconds. The 

model suggests that when the pattern completely fits within the memory buffer's temporal 

frame (i.e., 1.5 seconds), the information content drops to the hypothesised detection 

threshold at the same time point for both REG10 and REG20. However, when the memory 

buffer cannot cover the length of the pattern (i.e., 950ms for REG20), the model needs more 

processing time to reach the detection threshold for REG20 compared to REG10.  

In essence, the model illustrates how response times are likely to vary based on 

assumed memory's temporal capacities in pattern detection tasks. When the model include 

temporal constraints alone, larger temporal buffer sizes allow for efficient detection, resulting 

in same response times regardless of pattern duration (e.g., bottom plot in Figure 2.4). 

Conversely, smaller buffer sizes lead to slower response times that are dependent on pattern 

duration. This occurs because the high-fidelity echoic memory buffer cannot fully store 

pattern information, necessitating the gathering of more sensory evidence from other form 

of storages over time. 
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Figure 2.2. In the context of PPM decay model (see methods section), 

this study examined how the echoic memory buffer size can affect the 

information content dynamics over time. (A) The curve in the PPM decay 

model represents memory decay. The buffer, shown as a blue square, 

symbolises high-fidelity echoic memory with a duration of 0.5, 0.95, or 1.5 

sec in the model. This is followed by a short-term memory phase that 

decays exponentially, starting from 0.1 of the buffer's weight and lasts 2 

sec. The long-term memory phase follows afterward. (B) The graph 

displays a model simulation of RANDREG10 (pattern duration of REG10 = 

0.5 sec) and RANDREG20 (pattern duration of REG20 = 1 sec) detection. 

The REG pattern starts after 2.5 sec. The model estimates the information 

content (surprise) of each tone based on the experience of previous tones 

(represented on the y-axis). The memory decay parameters influence the 

estimation of information content by assigning specific weights to past 

experiences. The model indicates that the information content starts to 

decrease after observing one REG cycle in both pattern conditions. When 

the echoic memory buffer (1.5 sec) fully encompasses the pattern, the 

model only observed about 4 tones to reach the baseline (strong model). 

Yet, for memory buffers (0.5 sec in REG10, 0.5 and 0.95 sec in REG20) 
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that cannot cover the entire pattern duration or just match it, the model 

presents a slower decline in slope, and needs more tonal information (more 

evidence, interpreted as extended detection time) to reach a state of 

reduced surprise. (Harrison et al., 2020)         

Figure 2.3. This demo illustrates how a pattern becomes theoretically 

detectable throughout the unfolding of a sound sequence over time (this 

example plots the spectrogram of RANDREG5), assuming the limited 

temporal capacity of the memory buffer as proposed by the PPM decay 

model. The pink frame signifies the memory buffer, while the grey shaded 

area represents the previously heard information that has fallen out of the 

memory buffer over time and undergone decay. When listeners are 

processing the sound, at the T1 time point (top), the transition from RAND 

to REG has not yet occurred. At the T2 point (middle), the red line indicates 

the transition from RAND to REG5, but since the REG5 has not started 

repeating, it is not theoretically detectable. By the T3 time point (bottom), 

the REG5 starts to repeat and becomes detectable within the second cycle. 

Listeners were instructed to press the button when they perceive the 

transition. 
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Figure 2.4. Comparison of the model output between REG10 and 

REG20 in different temporal capacities of the echoic memory buffer. The 

plot shows the output that starts from the onset of the first REG cycle, the 

black dashed line indicates the arbitrarily defined detection threshold. The 

duration of REG10 is 0.5 sec, and the duration of REG20 is 1 sec. The top 

figure shows that when the memory buffer (0.5 sec) equals to the duration 

of REG10 and is shorter than REG20, the model's surprise exhibits a gentler 

decrease slope in REG20 compared to REG10. In this case, REG10 takes 

more time to reach the detection threshold. However, due to memory 

decay, REG20 is not detectable within cycle 2. The middle figure 
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demonstrates that the detection threshold is reached just as REG10 begins 

to repeat, with the memory buffer at 0.95 seconds. However, REG20, due 

to its longer duration and increased susceptibility to decay, takes more time 

to reach the same detection threshold. The bottom figure illustrates a 1.5 

sec memory buffer, which is long enough for both pattern conditions to 

reach the detection threshold at the same time after the patterns start to 

repeat.  

2.1.2. Aim & Hypotheses 

The PPM-decay model, while insightful, has limitations due to its dependence on 

specific assumptions about memory capacity, types of constraints (i.e. temporal constraint 

or information constraint), and the processes of encoding and decay. These assumptions 

might not fully encapsulate the complexity, variability, and uncertainty that characterize 

human echoic memory processes, particularly concerning the diversity of information 

encoded and the elusive understanding about the mechanisms of encoding. However, these 

limitations inspired the current study, which seeks to deepen our understanding of the 

auditory memory mechanisms involved in pattern detection. By investigating how human 

response times of auditory pattern detection are influenced by constraints related to 

information or duration, the research aims to enhance the understanding of dynamics of 

echoic memory. Two hypotheses are proposed in this study. 

The hypothesis 1 suggests that auditory memory integrates sensory signals within 

a fixed timeframe. Instead of sequentially encoding unfolding items, the brain integrates 

chuck of information in a set temporal window. Consequently, irrespective of the number of 

discrete items that are included in the pattern, response time should remain statistically 

indistinguishable as long as the pattern duration remains the same (Figure 2.5B).  

Alternatively, human listeners might adaptively integrate discrete informational units. 

The  hypothesis 2 is tested against the IdyOM model (Figure 2.5A) which solely considers 

item-wise information, free from constraints (Pearce, 2005). This hypothesis suggests that 

human participants monitor the transition probabilities of individual tones. In terms of IdyOM, 

it requires fixed amount of information to detect the pattern, regardless of pattern complexity 

(Rcyc), provided the elements that consists of the pattern were selected from the same pool. 

From this assumption, this study proposes that the number of information/tones needed to 

detect the transition remains constant, regardless of pattern complexity. The detection 

threshold of the model in each condition was utilised to represent the boundary of 

performance in hypothesis 2 (Figure 2.5B). 
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It's important to note that all forms of memory inherently undergo temporal decay. 

The PPM decay model also reflects a longer detection time when this decay occurs (Figure 

2.2B). To test the hypotheses without influence of this factor, in experiment 1, a pattern 

duration of 500ms was maintained, short enough to fall within the limits of echoic memory. 

The study varied pattern complexity (Rcyc = REG5, REG10, REG15, REG20), keeping tone 

length fixed at 25 ms, and manipulated Rcyc by introducing silent gaps between tones to 

maintain fixed pattern duration. If hypothesis 1 predicts the human performance, a 

relationship of RTRANDREG5 = RTRANDREG10 = RTRANDREG15 = RTRANDREG20 is anticipated, to linearly 

transform the RT measured as milliseconds into number of tones (see Methods for how the 

linear transformation is performed), the hypothesised relationship will be RTRANDREG5(number of 

tones) = 2RTRANDREG10(number of tones) = 3RTRANDREG15(number of tones) = 4RTRANDREG20(number of tones) (Figure 

2.5B). Conversely, if the human listeners were adaptively integrating discrete items, an 

IdyOM model like relationship of RTRANDREG5(number of tones) = RTRANDREG10(number of tones) = 

RTRANDREG15(number of tones) = RTRANDREG20(number of tones) is expected, and this is equivalent to a 

relationship of RTRANDREG5 = 2RTRANDREG10 = 3RTRANDREG15 = 4RTRANDREG20, when RTnumber of tones 

are converted into RTin ms. 

In Experiment 2, this study aimed to further explore the memory process described 

in Experiment 1. Four experimental conditions orthogonalizing two stimulus dimensions were 

created: Rcyc (REG10 or REG20) and pattern duration (500ms or 1500ms). The objectives 

were twofold: to replicate results observed in Experiment 1. To investigate how an increase 

in pattern duration influence the RT variations of pattern detection, and which hypothesis 

can predict the human performance in slow sequence processing. Similarly, if hypothesis 1 

predict the human performance, the study anticipate the relationship of RTRANDREG10 = 

RTRANDREG20 or equivalent relationship of 2RTRANDREG10(number of tones) = RTRANDREG20(number of tones) in 

both duration conditions. Alternatively, hypothesis 2 will predict a relationship of 

RTRANDREG10(number of tones) = RTRANDREG20(number of tones) in two duration conditions.  

Furthermore, both Experiment 1 and Experiment 2 used a paradigm manipulating 

the duration of a silent gap (25 ms) between fixed tone-pips. However, it's essential to 

acknowledge that this silent gap may introduce factors affecting auditory perception. To 

address this concern, experiment 3 was designed with the same paradigm as Experiment 2, 

but with stimulus pattern duration altered by varying tone length.  
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Figure 2.5. Experiment 1 hypotheses. (A)The ideal observer model 

served as the boundary for assessing the informational constraint of REG 

detection. Regardless of pattern complexity (Rcyc), the model can detect 

the pattern with just observing 3 or 4 tones within the second repeated 

pattern. The dashed line indicates the detection threshold, signifying 

successful prediction of observed tones. (B) Hypothesised response times 

(in ms) are delineated in relation to each constraint. Hypothesis 1: duration 

constraints are expected to yield uniform response times across conditions. 

Hypothesis 2: information constraints anticipate a consistent amount of 

information(tones). This information, when transformed into time linearly, 

exhibits a declining trend across conditions. 

2.2. Experiment 1. Is Pattern Detection Ability 

Limited by Pattern Complexity 

2.2.1. Methods 

In this experiment, the primary goal was to investigate the impact of pattern 

complexity, denoted as Rcyc, on memory integration. To achieve a controlled environment 

for the study, the study standardised the presentation time for all patterns to a fixed half-

second (500 ms) interval, complemented by a uniform tone duration of 25 ms for each sound. 

This uniformity in tone length was critical to ensure that the sensory system’s encoding of 

frequency information remained consistent across all test conditions. In terms of the memory 

studies (Cowan, 2008), it is expected that this duration would be sufficiently within the limits 
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of echoic memory to prevent temporal decay from impacting the results, thus allowing to 

focus on the influence of informational complexity in memory integration process.  

The experiment incorporated four distinct pattern conditions with varying Rcyc 

values, which represent the alphabet size of the pattern: REG5, REG10, REG15 and REG20 

(see stimuli example in Figure 2.6). By adjusting the silent gaps between tone pips and the 

number of tones in each cycle, the study aimed to isolate the effects of pattern complexity 

(as determined by the number of tones the pattern comprises) on echoic memory 

processing.  Two hypotheses are proposed: The first suggests a constancy in RTin ms  across 

varying degrees of pattern complexity, contingent upon the assumption that the memory 

integrate information in terms of a fixed temporal frame. The second hypothesis is informed 

by PPM model (Pearce, 2005), which suggests a fixed number of information ensuring a 

confident pattern detection, the linear transformation of this representation into time will 

exhibit a decrease in RTin ms corresponding with an increase in Rcyc (Figure 2.5B).  To 

transform RTin ms measured in milliseconds to the number of tones, the following linear 

transformation is applied in this study: 

RT(number	of	tones) =
RT	 × 	Rcyc

Pattern	duration

2.2.1.1. Participants 

70 participants were recruited through Prolific (www.prolific.co) and completed this 

experiment. Of these, data from 11 participants were rejected due to reports of a noisy 

environment (see " data rejection criteria " below). Data from 7 participants were rejected 

due to failure to respond to STEP trials or because responses to STEP trials were too slow, 

and data from 2 participants were rejected due to extremely low d prime (d'). In total, 50 

participants (19 females; average age 24 ± 4.44 years) were included in the following 

analysis. In addition, 33 participants did not proceed to the main task due to not passing the 

pre-determined performance threshold in the practice task, meanwhile, about 28% of 

participants who initially accessed the experiment but did not pass the headphone screen 

and therefore did not proceed further (Milne et al., 2020). 

2.2.1.2. Stimuli 

Stimuli (See Figure 2.6) consisted of sequences of 25-ms tone pips, which were 

gated on and off with 3-ms raised cosine ramps. The frequencies of the tone pips were 

randomly drawn from a pool of 20 values that were equally spaced on a logarithmic scale 

between 222 and 2000 Hz (12% steps; loudness normalised based on iso226). A new 

sequence was generated for each trial. RANDREG sequences included a transition from a 

random (RAND) to a regularly repeating cycle (REG) of tone-pips. Each REG sequence 

http://www.prolific.co/
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consists of three REG cycles. The tone-pips that make up the REG pattern for each condition 

were randomly selected from the full pool (20 frequencies).  REG conditions of 5 (REG5), 10 

(REG10), 15 (REG15), and 20 (REG20) tones were included. Each pattern condition was 

presented in a separate block with a pseudo-random (Latin Square function implemented 

on Gorilla experiment builder) order for each subject. The cycle duration was fixed at 500 

ms, and inter-tone intervals were manipulated to fit that duration. Therefore, REG5 contained 

silent gaps of 75 ms between tones; REG10 contained silent gaps of 25 ms; REG15 

contained silent gaps of 8.33 ms; and REG20 contained no silent gaps (0 ms). The RAND 

portion of the RANDREG sequences were generated by randomly sampling from the full pool 

with replacement. They contained the same inter-tone intervals as the REG portion. 

Transition onsets were randomised between 2-3 s post onset to ensure that the transition 

time was not predictable. RAND sequences consisted of tone-pips arranged in random order, 

with each frequency occurring equi-probably across the sequence duration. In each block, 

RAND was matched with RANDREG in inter-tone interval in each sequence. Two control 

stimuli were also included: sequences of contiguous (no silent gap) tone-pips of a fixed 

frequency (CONT) that lasted 4000 ms, and sequences (Figure 2.6) with a step change in 

frequency partway through the trial (STEP: the change always occurred after 2000 ms). 

These were used to measure individuals’ baseline response time to simple acoustic changes 

and at the same time served as ‘catch trials’ to assess task engagement. 
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Figure 2.6. Spectrogram of example RANDREG stimuli of all Rcyc 

conditions in the short pattern duration (500ms). The spectrograms 

shown are from the RANDREG and STEP stimuli (target trials) used in 

experiment 1. These are auditory spectrograms, created with a filter bank 

of channels that are 1/ERB wide (Equivalent Rectangular Bandwidth; 

(Moore and Glasberg, 1983)). These channels are evenly distributed on an 

ERB-rate scale. To achieve a temporal resolution akin to the Equivalent 

Rectangular Duration (Plack and Moore, 1990), the channels were 

smoothed. Four stimuli feature a transition between a random and a regular 

sequence (REG5, REG10, REG15, REG20). The evenly distributed purple 

areas represent the silence interval placed between tone-pips, ensuring a 

consistent pattern duration of 500ms across all Rcyc conditions. Each tone 

lasts 25 ms. The onset of REG is indicated by left red dashed line and all 

target stimuli include three cycles of REG. Listeners were instructed to 

press the button as fast as they can once they perceived the pattern.  

2.2.1.3. Procedure 

The experiment was conducted online using the Gorilla Experiment Builder 

(www.gorilla.sc). Before the main experiment, participants completed a headphone 

screening task (Milne et al., 2020) to ensure they were using appropriate audio equipment. 

The main experiment was preceded by a volume adjustment stage. Participants heard a few 

sounds from the main task and were instructed to adjust the volume to a comfortable 

listening level. In the main experiment, participants were instructed to monitor for transitions 

(50% of trials) from random to regular patterns (RANDREG) and frequency changes in STEP 

stimuli and press a keyboard button as soon as possible upon change detection. The 

participants then received an explanation of the task and completed a practice session to 

become familiar with it. The main experiment was divided into four test blocks, each lasting 

5-7 minutes, with one block for each REG condition. The order of the blocks was randomised

for each participant. Participants were instructed to press a keyboard button as soon as

possible once they detected a transition to RANDREG or a STEP change. Each test block

consisted of 40 trials, delivered in random order. The block contained the following sequence

types: 20 RANDREG, 20 RAND, 5 STEP, and 5 CONT. The main experiment lasted

approximately 30 minutes. To encourage participants to concentrate on the task, feedback

was provided on accuracy and speed at the end of each trial, similar to the previous work

(Bianco et al., 2020). A red cross was displayed for incorrect responses, and a tick was

displayed for correct responses. The colour of the tick was green if the responses were 'fast'

(RT less than two REG cycles from REG onset or less than 500ms from the STEP change),

http://www.gorilla.sc/


and orange otherwise. A small monetary bonus was given for each correct response, and 

the bonus was doubled for 'fast' responses. This served to encourage participants to respond 

as quickly as possible. (Bianco et al., 2021). The inter-block intervals were set to have a 

maximum duration of 2 minutes to keep the overall duration of the exposure equal across 

participants. 

d' (d prime) serves as a general measure of sensitivity to patterns based on signal 

detection theory (Stanislaw et al, 1999). d' was calculated as: d′=Z(Hits)−Z(False Alarms).	

Hits were defined as responses occurring after the onset of the second REG pattern, while 

false alarms were responses to RAND trials or those occurring before the emergence of the 

REG pattern. A good d' suggests high sensitivity, and thus response times (RTs) are 

interpretable. The core analysis focused on RTs to the onset of regular patterns, where RT 

was defined as the time difference between the onset of the REG pattern or the STEP change 

and the participant's button press. The median STEP RTs computed per test block were 

used as a measure of the baseline latency of the response to a simple acoustic change and 

subtracted from the RANDREG RTs to yield a lower-bound estimate of the computation time 

required for change detection.

2.2.1.4. Data Rejection Criteria 

Due to the online nature of the present experiments and associated reduced control 

over participants’ environments, equipment, and engagement, it was important to implement 

a series of rejection criteria to make sure that data reflect true sequence tracking ability. 

Therefore, participants’ data were excluded from all experiments following the below (A-priori 

determined) criteria:  

(1) Failure on the Headphone screen: the task introduced by Milne et al. (2020) was 
used. Participants who did not pass the screening procedure did not proceed to the main 

experiment.  

(2) Low performance in the practice run: To ensure that participants understood the 
task, a practice run of the pattern detection task (13 RANREG, 13 RAND, 2 CON, and 2 

STEP) was delivered. Participants who scored below 60% in the practice task did not 

proceed to the main task. Our previous experience with similar stimuli in lab settings 

(Barascud et al., 2016; Bianco et al., 2020) suggests that the vast majority of young 

participants can achieve ceiling performance. This study, therefore, reasoned that those 
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online participants who performed below 60% are likely not sufficiently engaged with the task 

(i.e. distracted, not following instructions, etc).  

(3) Of those participants who completed the full experiment, the data from those

participants who failed to respond to STEP trials (allowing at most one miss per block) or 

whose RT to STEP trials fell above 2 STDEV relative to the group mean were rejected. Failure 

to respond quickly to the (easy) STEP trials indicated low task engagement. 

(5) The exit questionnaire asked participants to rate the amount of background

noise or interruptions they experienced during the experiment, with 0 indicating no noise and 

10 indicating extreme noise. Data from participants who rated their environmental noise as 

more than 2 were excluded from the analysis. 

(6) Importantly, to allow the study to quantify changes in performance as a function

of Rcyc, it was critical that baseline performance was high. Therefore, data from participants 

whose mean d’ (across conditions) was below 2 were not included in the analysis. 

2.2.1.5. Statistical Analysis 

Performance data were modelled by linear analyses of variance (ANOVA) 

implemented in ez package of R. When sphericity assumptions were violated, Greenhouse-

Geisser adjustments was applied. Post-hoc t tests were used to compare performance 

differences between conditions across blocks and groups. Any value below the significance 

level of 0.05 is indicated as non-significant (n.s). 

2.2.1.6. Modelling 

The hypothesis-supporting illustrations, as depicted in Figure 2.2 and Figure 2.4, 

were generated using a memory-constrained version of the Prediction by Partial Matching 

(PPM) model. PPM is a form of Markov model adept at estimating the likelihoods of 

sequences of symbols by analysing the frequency of n-grams—sequences of 'n' items—

within a set of training data. This method effectively smooths the transition between models 

of different orders by considering variable-length context histories. 

The original PPM model (IdyOM), serving as a benchmark for the informational 

constraints hypothesis in this study, shown in Figure 2.5A, possesses an unbounded trial-
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wise memory, retaining all items within trial with equal weight, regardless of their distance 

from the current event being modelled (Pearce, 2005). However, to reflect the human 

memory processes more accurately, Harrison et al. (2020) introduced a modified PPM with 

hypothesised memory phases and decay function. This 'PPM decay model' dynamically 

attenuates the influence of historical data over time using a customizable decay kernel. 

(Harrison et al., 2020) This decay kernel is triphasic: it commences with an echoic memory 

buffer that temporarily retains high-fidelity information, then transitions to a short-term 

memory (STM) phase where the weight decays exponentially from the buffer's weight to a 

baseline level over a certain duration and concludes with a long-term memory (LTM) phase 

where the weight diminishes exponentially, defined by its initial value and decay half-life. 

For modelling, this study used tones each lasts 50 milliseconds (ms) to simulate the 

temporal precision required for the decay process. The tone sequences were generated 

using the same computational techniques as in the experiments (as detailed in the 

method/stimuli section of Experiment 1). Sequences of RANDREG10 (Rcyc = 10) and 

RANDREG20 (Rcyc = 20) were utilised for model inputs. A transition from random (RAND) 

to regular (REG) patterns was programmed to occur after every 50 tones. The sequence 

processing of the model was dynamic, with the likelihood of each tone being calculated in 

the context of previous sequences and considering the cumulative history of stimuli, thereby 

simulating long-term memory effects. To calculate information content, the model converted 

these probabilities using the negative logarithm to the base 2. The model's complexity was 

constrained to a maximum n-gram length of 5 symbols. 

2.2.2. Results 

In this experiment, participants were encouraged to detect STEP and RANDREG 

transitions as quickly as possible. The variations of response times (RTs) and its implications 

about the internal representation of sensory signals were of particular interest. Therefore, 

the study focused on analysing the RANDREG RTs, which were corrected by the STEP RTs. 

First, the response time of STEP detection (STEP RT) remained stable across blocks [F(3, 

147) = 1.359, η2 = .007, p = .258], suggesting that participants maintained a similar level of

task engagement across the course of the experiment.

The average d Prime score (d’; see Figure 2.7A) was close to ceiling performance 

across all conditions which suggests the RTs are interpretable. A repeated measures 

ANOVA on d Prime data with Rcyc as a within-subject factor confirmed no difference 

between conditions [F(3, 147) = 1.98, η2 = .022, p = .12]. This further confirmed that it is 
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reasonable to focus on interpreting response time (RT) to quantify how much 

information/time was required by human listeners to detect the repeating pattern. The 

response times (RTs) of effective transition, shown in Figure 2.7B and subsequent figures, 

represent the time taken to respond relative to the onset of the second cycle of the REG. 

The use of effective transition in this study aims to straightforwardly depict the processing 

time, as the pattern only theoretically becomes detectable in cycle 2.  

The analysis of repeated measures ANOVA on RTs (in ms) revealed a significant 

effect of Rcyc [F(3, 147) = 3.536, η2 = .039, p = .016], post-hoc t test indicated that RT in 

REG20 condition is shorter relative to REG5 [t(1,49)=2.789,p = .003] with mean differences 

about 41 ms; or REG10 [t(1,49)=3.1318,p = .007] with mean differences about 33 ms. 

   

 

Figure 2.7. Behavioural performance. (A) d Prime distribution from 

experiment 1. Most participants exhibit high sensitivity to the pattern 

emergence, and no significant differences were observed across 

conditions. (B) Distribution of response times (effective transition) across 

conditions in experiment 1. Reduced RTs were observed when the Rcyc 

increased, with statistically significant differences between REG5 and 

REG15 or REG20 (paired t test, **<.01). 

 

In the investigation of memory buffer and its role in pattern detection, two competing 

hypotheses were addressed as introduced above: one predicated on fixed temporal frames 

(Hypothesis 1: Duration constraints), and the other on a fixed quantity of information 

(Hypothesis 2: Information constraints) (see Figure 2.5 B). Hypothesis 1 suggests that the 

auditory system integrates perceived signals within a constant temporal window. Therefore, 
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if Hypothesis 1 is correct, it would be expected that no significant variation in response times 

(RTs) for pattern detection tasks - predicting RTRANDREG5 = RTRANDREG10 = RTRANDREG15 = 

RTRANDREG20 - since only the pattern complexity (Rcyc) changes while the pattern duration 

remains constant. 

Conversely, Hypothesis 2 posits that pattern detection is incorporating a fixed 

number of informational units, irrespective of the complexity of the pattern. Should this 

hypothesis hold true, a constant number of tones would be necessary for listeners to identify 

the pattern across various conditions in terms of PPM model prediction. This would suggest 

RTs in terms of tones to be equivalent, thereby RTRANDREG5(number of tones) = RTRANDREG10(number of 

tones) = RTRANDREG15(number of tones) = RTRANDREG20(number of tones).  

Interestingly, the results from experiment 1 point to a nuanced interaction between 

duration and pattern complexity. If duration were the sole factor, RTin ms would consistently 

align across varying conditions. However, an observed reduction in RTin ms with an increase 

in Rcyc suggests that pattern complexity also plays a role. As illustrated in Figure 2.8, the 

group RTin ms (effective transition – corrected by the duration of first cycle of REG) vary 

significantly across conditions. The grey dashed line in these figures represents the trajectory 

anticipated by the duration constraint hypothesis, which would predict unvarying RTin ms  if 

temporal duration were the only determinant. The red dashed line signifies the hypothesis 

centred around informational constraints, operating under the assumption that the brain 

functions akin to an IdyOM (Figure 2.5A), which processes tonal information on an item-

wise basis. Notably, the observations highlight a departure from the simplistic boundaries 

proposed by the two hypotheses. While an increase in Rcyc correlates with a decrease in 

RTin ms, suggesting a faster detection process as the amount of information per unit period 

increases (p < 0.01), the observations are more complex than the two hypotheses would 

suggest. 

The small magnitude of decrease in RTin ms with increased Rcyc appears to be 

supported by the duration hypothesis; however, the influence of information constraints 

cannot be discounted. This is evidenced by the non-linear trajectory of RTin ms across different 

pattern complexities, suggesting that while the auditory system may prioritize integrate 

information by a set of time window, it also dynamically integrates item-wise features. Such 

integration indicates a more adaptable and nuanced information processing than what the 

duration hypothesis would predict, where cognitive performance is expected to be optimal 

in comprehending the sensory signal and free from the dominance of temporal limitations. 
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Figure 2.8. Response times fall between the boundaries of two 

hypotheses. Hypothesis 1 postulates that the memory buffer operates 

within a fixed time window, processing an auditory pattern regardless of its 

informational complexity; this is visually represented by the grey dashed 

line in the figures. In contrast, Hypothesis 2 conjectures that the buffer 

encodes information adaptively, aligning with the quantity of items as 

postulated by IdyOM, which is symbolised by the red dashed line. Statistical 

analysis reveals that human response times (RTin ms) differ significantly 

across each experimental condition (rmANOVA, p < 0.01). Despite a 

general trend where RTin ms decrease with the increase in Rcyc, there is a 

pronounced tendency towards the predictions of the duration hypothesis. 

 

2.3. Experiment 2. How is Pattern Detection 

Performance Affected by Increasing Pattern 

Duration 

Experiment 1 examined the capability of human listeners to detect rapidly presented 

auditory sequences, with the duration of these patterns fixed at 500 milliseconds. In 

Experiment 2, the focus was shifted to explore the influence of extended pattern durations 
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on detection abilities while maintaining constant pattern complexity. To this end, two Rcyc 

conditions were selected from Experiment 1 - specifically REG10 and REG20 - and 

measured participants' detection performance at two different pattern durations: the initial 

500 milliseconds and a prolonged duration of 1500 milliseconds. 

Although 1500ms is relatively slower, it still falls within the echoic memory temporal 

boundary that has been reported by previous literatures. Therefore, the hypothesis posits 

that if detection is indeed affected by pattern complexity, a replication of the findings from 

Experiment 1 within pattern conditions is anticipated.  

 

2.3.1. Methods 

2.3.1.1. Participants 

105 participants were recruited through Prolific (www.prolific.co) and completed 

this experiment. Of these, data from 21 participants were rejected due to reports of a noisy 

environment (see " data pre-processing criteria " below). Data from 10 participants were 

rejected due to failure to respond to STEP trials or because responses to STEP trials were 

too slow. In total, 74 participants (26 females; average age 25 ± 4.56 years) were included 

in the following analysis. In addition, 32 participants did not proceed to the main task due to 

not passing the pre-determined performance threshold in the practice task, meanwhile, 

about 27% of participants who initially accessed the experiment but did not pass the 

headphone screen and therefore did not proceed further (Milne et al., 2020). 

2.3.1.2. Stimuli 

Four stimulus conditions were used, with each presented in a separate block. Rcyc 

(REG10 vs REG20) and pattern duration (500 ms vs 1500 ms) were orthogonalised, while 

tone duration was fixed at 25 ms. Silent gap durations of 25 ms (RANDREG10, presentation 

rate of 20 Hz) and 0 ms (RANDREG20, presentation rate of 40 Hz) were used to achieve 

the set pattern duration for the 500 ms condition (Cyc500), while gap durations of 125 ms 

(RANDREG10, presentation rate of 6.67 Hz) and 50 ms (RANDREG20, presentation rate of 

13.33 Hz) were used for the 1500 ms (Cyc1500) conditions. The stimulus set also included 

CONT and STEP trials as previously described. 

http://www.prolific.co/
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2.3.1.3. Procedure 

The procedure was similar to that described in Experiment 1. In the main experiment, 

four test blocks were delivered, each corresponding to one of the conditions mentioned 

above. Each block lasted 5-7 minutes and included 50 trials (20 RANDREG, 20 RAND, 5 

CON, and 5 STEP). 

2.3.2. Results 

The evaluation of STEP detection efficacy demonstrated stable performance over 

the course of testing blocks, as indicated by the statistical parameters [F(3, 219) = .435, η2 

= .001, p = .728]. Analysis of the d prime data, presented in Figure 2.9, evidenced good 

performance in all experimental conditions. Repeated measures ANOVA, incorporating 

Rcyc (RANDREG10 vs RANDREG20) and pattern duration (Cyc500 vs Cyc1500) as factors, 

revealed a pronounced effect of duration on response times [F(1,73) = 15.17, η2 = .052, p 

< 0.001], and a significant interaction effect between Rcyc and duration [F(1,73) = 5.45, η2 

= .956, p = 0.022]. Post hoc comparisons indicated no significant differences in d prime 

between the RANDREG10 and RANDREG20 conditions within the shorter (500ms) or longer 

(1500ms) durations. The detected interaction was largely attributable to a slight yet 

statistically significant improvement in the RANDREG10_Cyc1500 condition as opposed to 

RANDREG10_Cyc500 (p<0.05), underscoring the benefits of slower pace that allows 

listeners to consciously track the sequence. 

The primary analyses in this experiment were firstly focused on the Cyc500 

condition to replicate and validate the results of Experiment 1, as depicted in Figure 2.10. 

These analyses confirmed a significant difference in RTs between the Rcyc conditions 

[F(1,73) = 805.12, η2 = .649, p < .001], with REG20 demonstrating a reduced 40 ms 

compared to REG10, a finding that echoes the RT patterns observed in Experiment 1, where 

a mean RT difference of approximately 33 ms was observed. 

Subsequent examinations questioned whether similar RT patterns would emerge 

under the extended pattern duration (Cyc1500). To this end, the RTs between REG10 and 

REG20 was compared. The findings indicated no significant differences (p=.433), 

suggesting that RTRANDREG10 = RTRANDREG20, this is equivalent to a relationship of 

2RTRANDREG10(number of tones) = RTRANDREG20(number of tones) when RTin ms were linearly transformed as 

the number of tones. This observation is congruent with the duration constraints hypothesis 

(Hypothesis 1, see Figure 2.5B). Comparing to RT variations in experiment 1 where a 

decreasing RTin ms over the increasing of Rcyc was observed, the results of slower sound 

sequences appear to suggest that the integration process of the memory buffer adheres to 

a fixed time window.  
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To compare RTin ms across pattern durations, it is more intuitive to convert the RTin 

ms into the RTnumber of tones. This allows to directly visualise how the amount of information 

required for pattern detection changes over the increasing of pattern duration. Figure 2.11 

illustrates the RT number of tones distribution in experiment 2. 

Repeated measures modelled on RT number of tones reveals a significant impact of 

pattern duration [F(1,73) = 30.79, η2 = .09, p < .001], this indicates that participants 

processed a greater number of tones when the pattern was presented more slowly, 

consistent across Rcyc conditions. This finding also aligns with the dynamics illustrated by 

the PPM decay modelling, which suggests that temporal decay contributes to prolonged 

detection times (Figure 2.4). 

Moreover, a significant interaction was observed [F(1,73) = 21.96, η2= .049, p 

< .001] between Rcyc and pattern duration, (see Figure 2.11B) suggesting that the increase 

in pattern duration exerts a more pronounced effect on RTs for detecting RANDREG20 

compared to detect RANDREG10. These findings suggest a potential shift in the cognitive 

mechanisms responsible for auditory sensory integration, possibly leaning towards reliance 

on a fixed temporal window when confronted with an interplay of extended durations and 

heightened complexity in the presented information. 

 

          

Figure 2.9. d Prime distribution from experiment 2. Most participants 

present high sensitivity to the pattern emergence, and no significant 

differences were observed across conditions.  
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Figure 2.10. The results from experiment 1 were reproduced in 

experiment 2. (A) Distribution of individual RTs (effective transition) in 

REG10 and REG20 of fast pattern duration (500ms). (B) The mean and 

standard error were plotted for each condition. Despite the distinct 

paradigm and a different group of participants, a consistent response time 

difference of approximately 40 ms was observed when the Rcyc was 

augmented to 20.  

 

 

Figure 2.11. Individual distribution of response time across all conditions 

in Experiment 2. To enable comparison between different pattern duration 

conditions, The RTs (ms) were converted into their equivalent number of 

tones to facilitate comparison across pattern duration conditions. (A) 
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RTnumber of tones  distribution of all conditions in experiment 2. (B) More number 

of information was needed in both Rcyc conditions as condition change 

from Cyc500 to Cyc1500 and the interaction between pattern duration and 

Rcyc can be identified. Meanwhile, a relationship of 2RTRANDREG10(number of tones) 

= RTRANDREG20(number of tones) is observed in pattern duration of 1500ms 

(Cyc1500), suggests the performance is aligning with duration hypothesis. 

 

2.4. Experiment 3 
In Experiment 1 and Experiment 2, the stimulus involved systematically varying the 

duration of a silent gap between fixed tone-pips, with the tone always lasting for 25 ms. 

However, it is important to note that the presence of this silent gap introduces potential 

confounding factors that may affect the auditory perception such as auditory streaming 

(Moore and Gockel, 2012). For example, introducing silent gaps may allow the brain to 

perceive sequences of sounds as originating from separate sources, rather than perceiving 

them as a singular auditory entity. This phenomenon casts doubt on the interpretation of the 

results from Experiment 1 and Experiment 2. The differences in response times observed 

across various conditions could be due to the perceptual segregation of the sound 

sequences. This implies that the memory buffer may internally represent and integrate the 

multiple sound streams in parallel, potentially leading to quicker detection times for 

sequences perceived as multiple streams compared to those perceived as a single stream.  

Although the stimuli in this study maintained a consistent temporal pattern within each testing 

block, it is known that varying temporal cues play a crucial role in segregation, and that a 

stream’s stability can be facilitated by regular temporal patterns within its elements (Moore 

and Gockel, 2012). Nonetheless, it remains important to design an experiment that directly 

manipulates the duration of tones to address the effects of the presence of silent gaps. 

To address this issue, experiment 3 was designed with the same experimental 

paradigm as Experiment 2. The only difference was that the pattern duration of the stimulus 

was manipulated by varying the tone length. It is expected that, the observations from 

Experiment 3 will consistently align with the findings from Experiment 2. 
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2.4.1. Methods 

2.4.1.1. Participants: 

74 participants were recruited through Prolific (www.prolific.co) and completed this 

experiment. Of these, data from 12 participants were rejected due to reports of a noisy 

environment (see " data pre-processing criteria " above). Data from 7 participants were 

rejected due to failure to respond to STEP trials or because responses to STEP trials were 

too slow. In total, 55 participants (19 females; average age, 26.3 ± 4.91 years) were included 

in the following analysis. In addition, 9 participants did not proceed to the main task due to 

not passing the pre-determined performance threshold in the practice task, meanwhile, 

about 15% of participants who initially accessed the experiment but did not pass the 

headphone screen and therefore did not proceed further. 

2.4.1.2. Stimuli: 

Four stimulus conditions were used, with each presented in a separate block. Rcyc 

(REG10 vs REG20) and pattern duration (500 ms vs 1500 ms) were orthogonalised. Tone 

duration of 50 ms and 25 ms (for REG10 and REG20, respectively) were used to achieve 

the set pattern duration for the 500 ms condition (Cyc500), while tone durations of 150 ms 

and 75 ms were used for the 1500 ms conditions (Cyc1500). The stimulus set also included 

CONT and STEP trials as previously described. 

2.4.1.3. Procedure: 

The procedure was the same as to that described in Experiment 2. However, due 

to a technical issue, the stimuli set comprising 40 trials (20 RAND and 20 RANDREG) was 

unintentionally presented twice in a random manner across three blocks of Experiment 3 for 

all participants. Only REG20 with a pattern duration of 500ms remained unaffected by this 

issue. Consequently, participants in this experiment were exposed to the stimuli twice as 

much as in the previous two experiments. This increased exposure has the potential to 

induce fatigue, which may, in turn, influence response times. Furthermore, the repeated 

exposure to the same set of stimuli introduces unknown variables that could impact the 

overall results.  

Given these circumstances, this study opted not to analyse the data recorded from 

this specific experiment in isolation. Instead, the response times data recorded from the first 

exposure of 40 unique trials for each subject were selected and analysed as a control data 

set. Nevertheless, the primary objective of Experiment 3 was to control for the influence of 

silent gaps between tones, which had been introduced in the preceding two experiments. 

As the result, the study decided to combine and analyse the data from all three experiments 

http://www.prolific.co/
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collectively. This approach enabled to solely assess the between-experiment effects that 

mainly arise from the manipulation of tone length. 

Figure 2.12. Individual RTin ms were measured in conditions REG10 and 

REG20 with a pattern duration of 500ms (Cyc500) in experiments 1, 2, 

and 3. A significant differences in RTs (p=0.0018, repeated measures 

ANOVA) was observed in all pairs of Rcyc conditions, regardless of the 

experiment. No interaction of experiment and Rcyc was seen (p=0.075). 
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Figure 2.13. Individual RTin ms measured in condition REG10 and REG20 

with pattern duration of 1500ms (Cyc1500) from experiment 2 and 

experiment 3. Repeated measures ANOVA suggests no interaction of 

experiment and Rcyc was seen (p=0.1).  

 

2.4.2. Results 

Initially, the detection performance of STEP in Experiment 3 was assessed. The 

analysis revealed stable performance outcomes [F(3, 162) = 1.94, η2 = .008, p = .12], 

suggesting participants maintained consistent engagement throughout the experiment. I 

followed this by conducting a targeted analysis on the Rcyc conditions (REG10 and REG20) 

within the fast pattern (Cyc500) across all three experiments. This analysis involved a 

repeated measures ANOVA with Rcyc (REG10 vs. REG20) as the within-subject factor and 

the experiment number as the between-subject factor for RTs. 

The results (Figure 2.12) showed a pronounced effect of Rcyc [F(1, 176) = 790.027, 

η2 = .818, p < .001] and significant variation between experiments [F(2, 176) = 6.84, η2 

= .072, p = .001]. Importantly, there was no significant interaction between Rcyc and 

experiment [F(2, 176) = 2.635, η2 = .029, p = .075], implying that tone length manipulation 

did not introduce effects on auditory processing while Rcyc varies, as indicated by response 

times. Post hoc pairwise comparisons revealed significant differences between experiment 

1 and 3 (p = .001). That a faster RTin ms was seen in experiment 1, compared to experiment 

3. This might be due to the increased task time caused by technical issues, which led to 
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participants feeling fatigued. However, no significant RTin ms differences between experiment 

2 and 3 (p = .208), or between experiment 1 and 2 (p = .114) were seen. Those findings 

confirm the consistent influence of Rcyc across different experiments in short pattern 

conditions (Cyc500), regardless of experimental conditions and group variability variations. 

Furthering the initial analysis, the slow pattern condition (Cyc1500) tested in 

Experiments 2 and 3 were examined (Figure 2.13). The repeated measures ANOVA, with 

Rcyc (REG10 vs. REG20) as the within-subject factor and experiment as the between-

subject factor, showed no effects of Rcyc [F(1,127) = 0.07, η2 = .001, p = .792]. In other 

words, the RTin ms between RANDREG10 and RANDREG20 are statistically indistinguishable 

in both experiments. Different from the Cyc500 pattern conditions, these results seem to 

align with Hypothesis 1, suggesting the memory buffer which support the pattern detection 

incorporates information with a fixed temporal window, regardless of pattern complexity. 

Significant effects of the experiment [F(1, 127) = 6.32, η2 = .047, p = .0132] were 

found in the slow condition, indicating shorter RTin ms in Experiment 3 compared to 

Experiment 2. This may be due to the longer tone length in Experiment 3, which extended 

the time for encoding signal perception and therefore enhanced sensory memory, resulting 

in faster RTin ms. Crucially, no significant interaction was found between Rcyc and experiment 

[F(1, 127) = 2.74, η2 = .0065, p = .1], corroborating the results observed in the fast pattern 

condition (Cyc500). 

 

2.5. Discussion 
The brain demonstrates exceptional sensitivity to the emergence of sound patterns, 

a trait that is measurable even when the listeners are distracted. While a multitude of studies 

have shed lights on the mechanisms behind this phenomenon (Barascud et al., 2016; 

Southwell et al., 2017; Herrmann and Johnsrude, 2018; Southwell and Chait, 2018; Zhao et 

al., 2024), there remains plenty of unanswered questions. For instance, what types of 

information is the brain monitoring? How does the brain integrate and represent sensory 

inputs in echoic memory that supports the pattern detection?  

This study probed the information integration process of echoic memory system 

using novel tone-pip sequences. To investigate memory mechanisms, it firstly introduced 

silent gaps between tone-pips to alter pattern duration and complexity. From this, the 

confounding impacts that could result from merely manipulating tone length was minimised 

(Harrison et al., 2020). The study generated these sequences from a predetermined set of 

20 frequencies (building elements), ensuring that only the tone-pip order changed within 

each testing block. By manipulating either the informational complexity (Rcyc) or the pattern 
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duration parameters of the stimuli across the blocks, it was aimed to assess the brain's 

efficacy to process auditory stimuli varying across different temporal and informational 

dimensions. Participants were encouraged to detect patterns and to respond by pressing a 

button as fast as possible upon identifying a pattern within each trial. 

The observations from the series of experiments challenged the simplistic models 

of information integration in memory as proposed by the two hypotheses (Figure 2.5B), 

which suggested a more dynamic and adaptive mechanism that responds to both the 

informational complexity and temporal characteristics of auditory stimuli over time when the 

sound sequence is relatively fast. 

2.5.1. Response Times Reflect Dynamic Information 

Processing in Auditory Memory 

To discern auditory patterns, the brain must initially extract the salient features from 

sounds that activate the auditory system. This study utilised simple-tone pips with variations 

solely in frequency. Consequently, it was assumed that the extracted features from the tone-

pips can be linearly decomposed into distinct pitches (Santoro et al., 2014). Following this 

extraction, the auditory information is transiently held within the sensory memory buffer, 

during which the neurons engage in sophisticated computational processes. Theoretically, 

to ‘know’ the sequence starts to repeat, the brain must entail a comparison of incoming 

auditory inputs against those retained within the memory buffer. Additionally, the brain 

evaluate whether the current auditory stimulus aligns with any pre-existing sequence or 

denotes a novel sequence. This evaluation encompasses an assessment of the congruence 

between the memory's stored templates of auditory sequences and the present auditory 

observations.  

The response time documented in this study was adjusted based on the STEP 

change detection RTs, which accounts for the duration from the sound's entry into the ear, 

activation of the auditory cortex, and the basic computational comparison of the current 

sound against an incoming one until the point where the detected alteration reaches 

conscious awareness and precipitates a motor response. Once the pattern detection 

response time is corrected by the STEP RTs, the residual duration predominantly 

encompasses the period required for information processing. This includes the integration 

and retention of the auditory sequence in memory, and the computational assessment 

comparing the retained sequence to the current observation.  

The first experiment’s results revealed a significant inverse relationship between RTs 

and pattern complexity when the sound pattern is fast (500ms). This means that increased 
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informational complexity leads to shorter RTs. This finding contradicts the first hypothesis, 

which suggests that the brain processes sensory signals at a constant rate, regardless of 

the amount of information per time unit. Instead, our data indicates a more complex neural 

processing mechanism, where more information speeds up the perceptual detection. 

In terms of predictive coding theory, one interpretation of how the echoic memory 

functions is that it employs a dynamic, internal statistical model to continuously interpret and 

predict individual sensory inputs. The model assumes that the brain has already integrated 

these sensory inputs and categorised them as distinct items (tone-pips in this study) before 

retained them in the memory. Together, the model is able to retrieve past sound inputs 

stored in the memory buffer to generate the prediction on the upcoming tone. If an imminent 

tone aligns with the predictions, the resulting reduction in prediction error—or 'surprise'—

speeds up the recognition process, leading to a timely response from the participants. 

Essentially, patterns with more information per unit time seem to improve the memory 

buffer's predictive accuracy, resulting in faster detection responses. 

It is noteworthy that Experiments 1 and 2 yielded similar results. Both experiments 

showed a consistent approximate 40ms difference in RTs for detecting RANDREG10 versus 

RANDREG20 patterns. This consistency was observed across different participant groups 

and experimental frameworks, reinforcing the idea that the brain does not passively receive 

sensory information and operate them at a constant pace. Instead, it appears to be actively 

predicting and adapting to the discrete sensory inputs, demonstrating a sensory integration 

process with an integration window that is shorter than the pattern duration (500ms), likely 

as short as the duration of the tone-pips used in this study. This is supported by a recent 

intracranial research (Norman-Haignere et al., 2022), which suggested that the shortest 

integration window in the auditory cortex is around 30ms. 

 

2.5.2. Increased Informational Complexity Facilitate 

Pattern Detection but not Behave Like an Ideal 

Observer Model 

Natural sounds are continuous and do not separate into distinct elements like the 

tone-pip sequences used in this study. To investigate how listeners process statistical 

information in evolving auditory signals, the process needs to be simplified. One such 

simplification is the concept of an initial integration process, which turns continuous auditory 

input into discrete elements. Therefore, this study employed the Information Dynamics of 

Music model (IdyOM) (Pearce, 2005) to form the basis of hypothesis 2.  
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While there is the ongoing debate about whether listeners actually interpret auditory 

patterns this way (Thiessen, 2017), this study chose IdyOM due to the significant amount of 

previous researches, including computational, behavioural, and neuroimaging studies 

(Pearce and Wiggins, 2004, 2006; Pearce et al., 2010; Egermann et al., 2013; Bianco et al., 

2020; Di Liberto et al., 2020), which showed that the IdyOM can successfully generalise the 

prediction of musical sequences in human listeners. Meanwhile, increasing evidence have 

suggested that the brains may innately segment continuous sound stream into their 

elementary parts, and this strategy appears to be a fundamental feature for how the brain 

analyses the sound (Poeppel, 2003; Hickok and Poeppel, 2007; Doelling et al., 2014; Ding 

et al., 2017). 

Although the findings from Experiment 1 provided the evidence for an internal 

statistical model of tracking tone-pip sequences, yet the variation in RTs could not be fully 

benchmarked by IdyOM. This contradicts Barascud et al. (2016) which indicated that the 

dynamics of IdyOM mimics the brain's response to random (RAND) and regular (REG) 

auditory patterns (Figure 2.1). Their observations by MEG suggested the listeners might 

operate similar integration processes as those hypothesised by the model. Nevertheless, a 

similar pattern detection task by Barascud et al. (2016) found that the listeners needed 

approximately 15.5 tones to behaviourally detect the pattern emergence of RAND-REG10 

— 1.5 tones slower than the brain responses measured by MEG (Figure 2.1). These 

differences indicated the inherent delay between the brain's response to change and the 

corresponding belief updates to conscious awareness for action. Particularly, as indicated 

by Figure 2.5A, IdyOM shows a decrease in information content after observing 4 tones, 

and the MEG responses also begin to diverge at this point (Figure 2.1). The extra information 

required for response decision suggested that the brain may need additional computational 

time to determine if the accumulated evidence is sufficient for triggering the awareness of 

‘pattern detected’. This highlighted the potential need for more nuanced models to capture 

the complexities of the cognitive process. 

Furthermore, the online participants in this study required about 7 tones to detect 

the REG10 pattern, which is 1.5 tones slower than Barascud and colleagues’ observation. 

Such difference could stem from the factors affecting online listeners, such as a lack of 

motivation in an unsupervised context, or the environmental distractions that were not 

present in Barascud's controlled laboratory setting. 

2.5.3. Dynamic Nature of Auditory Memory 

In Experiment 2, an additional variable—pattern duration—setting it to 1500ms was 

introduced. The first experiment revealed an inverse relationship between RTs and pattern 

complexity. This time, the objective was to determine if either of two hypotheses would hold 
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true for pattern detection efficacy over this extended duration. Although a 1500ms duration 

seemingly remains within the proposed temporal span of echoic memory (Winkler and 

Cowan, 2005), the behavioural results uncovered a notable increase in the RTnumber of tones  for 

both Rcyc of REG10 and REG20 conditions in detecting the slower patterns, compared to 

their quicker counterparts (Figure 2.11). Crucially, the inverse relationship between RTs and 

Rcyc, apparent in the faster patterns of Experiment 1 and 2, did not hold in the slower pattern 

context. Instead, the variation in RTs with the slow pattern aligned more closely with 

Hypothesis 1, which anticipates consistent RTs for identical pattern durations. This 

observation implied that the brain processes information within a fixed temporal frame. 

These results resemble the findings of McDermott et al. (2013), which revealed the 

unique auditory representations for fast and slow sound textures. Their research and model 

indicated that the brain encodes detailed features when processing short sound textures, 

which allows for a refined discrimination of temporal complexities. In contrast, for longer 

sound textures, in order to assist the sound differentiation, the brain seems to prioritize 

statistical summaries of temporal details over certain time epoch. Additionally, the observed 

interaction between pattern duration and complexity in the second experiment of this study 

also align with McDermott et al.'s findings, which involved participants tasked with 

differentiating 'cocktail party' textures that varies either in sound density or duration of the 

excerpts (McDermott et al., 2013). 

The experiments in this study did not precisely identify the type of representation 

the brain uses during the pattern detection. However, it is evident that with the lengthier 

patterns, the brain tends to alter its strategy. In specific, it shifts from tracking and predicting 

detailed item-wise tonal information via a predictive model-like mechanism, to a rougher but 

efficient processing mode. This mode manifests as the absorbing chunks of information at a 

steady temporal pace. These findings suggested that the brain's adaptive applications of 

varying strategies to interpret auditory streams, particularly when they potentially surpass its 

memory or computational capacities.  

2.6. Does the Brain Process Fast and Slow 

Sounds Differently 
The analysis in this study suggested that the brain possesses distinct modes of 

integration for monitoring rapid and relatively slower sound sequences. From a biological 

view, this observation appears to be explainable by the brain's adaptive responses, which 

have been shaped by environmental influences over the course of evolution. 
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In nature, the brain tracks fast sounds such as the snap of a twig or urgent bird calls, 

which are crucial for survival and interaction in various environments. These sounds signal 

the presence of predators or indicate movement, serving as vital cues for both prey and 

predators (Owings and Morton, 1998; Gerhardt and Huber, 2002; Shelley and Blumstein, 

2005). Alternatively, abrupt sounds are commonly to be linked to the appearance or 

disappearance of a source with the commencement or conclusion of an action. Those 

moments can be characterised by sharp fluctuations in sound intensity or shifts in the 

spectral components of the sound, which the brain quickly detects and interprets, as 

demonstrated by the auditory onset response (Näätänen and Picton, 1987). Since these 

sounds are likely related to urgent decisions and reactions, the brain thus engages more 

neural resources to process the information.  

For example, the salience network plays a critical role in the brain's response to 

auditory stimuli, particularly in detecting and prioritising sudden or novel sounds that often 

indicate important environmental changes (Kayser et al., 2005). This network helps 

efficiently allocate cognitive resources, ensuring that the brain focuses on relevant auditory 

signals (Seeley et al., 2007). It enhances processing and collaborating with other networks 

like the auditory cortex for detailed analysis (Uddin, 2015) and the central executive network 

for making responses (Menon and Uddin, 2010). In clinical contexts, abnormal responses 

to auditory stimuli that affect a listener's ability to detect and respond to abrupt changes, like 

those observed in schizophrenia, are found to be associated with disruptions in the salience 

network (Todd et al., 2012). Therefore, the integration of the salience network is likely 

involved in cognitive processes while monitoring rapid sound sequences, facilitating the 

brain’s ability to capture and analyse detailed sensory inputs. 

Contrasting with the transient nature of rapid sounds, slow sounds in the natural 

environment unfold over more extended periods and are less likely to be associated with 

threat. For example, environmental sounds such as the continuous murmur of a stream or 

the gentle rustling of leaves contribute to an auditory backdrop that many species rely on for 

assessing safety and resource availability (Catchpole and Slater, 2003). To understand the 

source of those sound, instead of retaining/analysing every detail of them, it is more efficient 

for the brain to prioritize representing the statistically stable characteristics of the sound 

(McDermott et al., 2013).  

The findings from this study were also supported by the neural evidence provided 

by Luo and Poeppel (2012). Motivated by question of how the brain integrates speech, the 

team introduced auditory stimuli composed of three types of 5-second duration segments. 

Each segment was created by combining individual frequency-modulated tones. These 

tones had average durations of 25 ms (phonemic rate), 80 ms, and 200 ms (syllabic rate). 

Participants were instructed to passively listen to the stimuli while their brain activity was 

recorded by MEG. The data analysis included calculating cross-trial phase and power 
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coherence. This was done to evaluate the consistency of phase and power patterns across 

multiple presentations, with a particular focus on the theta (200ms), alpha (80ms), and low 

gamma (25ms) frequency bands. Their results indicated that stimuli with temporal structures 

matching natural speech processing scales (approximately 25 ms and 200 ms) elicited 

reliable phase tracking at corresponding oscillatory frequencies. The theta band response 

showed right lateralisation, which suggested a hemispheric preference for processing 

certain temporal scales. In contrast, stimuli with non-matching temporal structures (80ms) 

did not exhibit phase tracking. These findings demonstrated the auditory system's sensitivity 

to particular temporal scales, potentially explaining the different modes of integration 

processes observed in this study (Luo and Poeppel, 2012). 

2.7. Conclusion and Future Direction 
In summary, this study provides evidence that analysing response times is an 

effective method for investigating the integration processes of auditory memory. 

Furthermore, the introduction of silent gaps between tone-pips can be utilised to ensure a 

fixed duration of low-level sensory encoding. While response times collected in behavioural 

experiments may be subject to variability due to a range of factors—particularly as this study 

was conducted online, increasing the likelihood of uncontrolled variables from the 

unsupervised setting. Nevertheless, this study yielded significant insights into the monitoring 

strategies humans employ for sound patterns that change in temporal and informational 

dimensions. 

To enhance the understanding of the neural mechanisms involved in auditory 

pattern monitoring, future research could employ objective methodologies such as 

electroencephalography (EEG). This approach may illuminate the neural correlates 

associated with the timing and propagation of brain activity during the processing of sound 

sequences. For example, the analysis of phase coherence could reveal how the brain 

synchronises with sensory inputs that vary in Rcyc. Additionally, the event-related potentials 

evoked by these sound patterns could be quantitatively analysed to decode the underlying 

neural representations, offering insights into how the brain encode REG pattern that 

consists of different number of tones (items). Follow on that, fMRI might be utilised to provide 

precise spatial information about the specific brain regions involved in those processes. 

 Another interesting question to consider is whether the neural network and brain 

regions responsible for detecting patterns differ when the duration of these patterns varies, 

while the number of items within each pattern remains constant. In terms of the results 

obtained from this study, the hypothesis will be that the brain analyses fast and slow patterns 

differently. Understanding this difference is beneficial for developing computational models 
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in the field. However, addressing this hypothesis requires highly sensitive measurement tools; 

therefore, the employment of invasive methodologies might be necessary to obtain precise 

data. 
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3. Chapter 3: Concurrent Encoding of Precision and 
Event-evoked Prediction Error in Unfolding 

Auditory Patterns 

 

3.1. Introduction 
The physical rules that govern the environment and impose constraints on its agents 

result in statistically structured, predictable sensory signals. The brain is hypothesised to 

have developed the capacity to rapidly detect and track the regularities within these signals 

(de Lange et al., 2018; Press et al., 2020). This ability plays a crucial role in the 

comprehension of our surroundings, facilitating efficient recognition and processing of 

incoming information, to empower us to respond rapidly and adaptively to changing 

circumstances.  

The auditory system, in particular, has demonstrated remarkable tuning to 

regularities across various time scales and dimensions (Bendixen, 2014; Heilbron & Chait, 

2018; Carbajal & Malmierca, 2018; Asokan et al, 2019; Fitzgerald & Todd, 2020).This plays 

a crucial role in our ability to understand spoken language (Arnal and Giraud, 2012), 

appreciate the nuances of musical compositions (Koelsch et al., 2019) and make sense of 

the complex soundscape that surrounds us. However, core questions regarding the 

mechanisms through which regularity is discovered and tracked remain unclear. In 

particular, pivotal issues revolve around whether the brain chooses to prioritise or suppress 

predictable sensory signals (Press et al, 2020). 

Barascud et al. (2016); see also (Sohoglu and Chait, 2016; Southwell et al., 2017; 

Herrmann and Johnsrude, 2018; Herrmann et al., 2019; Zhao et al., 2024) provided insight 

into the brain's automatic ability to detect the emergence of predictable acoustic structure 

by examining low-frequency activity in the M/EEG signal. Using rapidly unfolding (20 Hz) 

tone-pip sequences that contained transitions from a random (RND) to a regularly repeating 

pattern (REG), the prior studies observed that a gradual increase in sustained power 

accompanies the emergence of repeating structures. The timing of the differentiation 

between REG and RND sequences (3 tones after the first cycle) was consistent with that 

predicted by an ideal observer model (Pearce, 2005; Harrison et al., 2020), demonstrating 

statistically efficient processing of structure even when not behaviourally relevant (Barascud 

et al., 2016). 
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The sustained response effect is interesting for several reasons: Firstly, it suggests 

that the brain encodes the inherent state of the stimulus (RND vs REG) rather than merely 

registering changes in the environment. Secondly, the observed increase in sustained power 

during structure discovery challenges our understanding of how the brain processes and 

represents predictability. Specifically, it appears to contradict expectations derived from 

predictive coding frameworks (e.g. Friston, 2005, 2009; Rao & Ballard, 1999), where 

predictable information is typically associated with reduced neural activity, as the brain can 

efficiently encode and predict upcoming events (de Lange et al., 2018). Barascud et al. 

(2016) showed that the sustained response, underpinned by activation in the auditory cortex, 

hippocampus, and inferior frontal gyrus, increases with the predictability of the ongoing 

stimulus sequence. This prompted the hypothesis that it might reflect the process of tracking 

the inferred reliability of the unfolding input (‘precision’; the accuracy, or conversely the 

‘expected uncertainty’ with which future inputs can be predicted, O’Reilly et al., 2013) 

whereby predictable sensory streams are associated with heightened sensitivity (see also 

Zhao et al., 2024). 

Several issues need to be addressed for a better interpretation of the sustained 

response. Firstly, it is important to consider that the effects observed may be specific to the 

rapid sequences used in Barascud et al. (2016). The behavioural results revealed by the first 

study also suggests that the brain monitors rapid and slow sound differently. That is to say 

that evidence from research (e.g. reviewed by (de Lange et al., 2018; Heilbron and Chait, 

2018), which focused on slower patterns, might indicate different neural responses. 

Secondly, it is crucial to determine whether the observed effect primarily reflects a shift in 

background neural activity or if it also extends to modulations of responses to individual 

events due to their integration within the structured sequence.  

To address these questions, the current study expands upon the stimulus used by 

Barascud et al, (2016) by introducing silent gaps between successive tones (Figure 3.1A 

and Figure 3.2). It was aimed to explore the generality of the sustained-response effects 

across different temporal scales and provide a clearer understanding of the mechanisms 

involved in the processing of structured auditory sequences. Additionally, Barascud et al. 

employed rapid and continuous sound sequences, resulting in overlapping neural responses 

associated with individual tones. By incorporating silent gaps between tone-pips, it enabled 

detailed tracking of the neural dynamics corresponding to each sound within the sequences. 

This approach facilitated a deeper understanding of the underlying neural mechanisms. 
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3.2. Methods 

3.2.1. Experiment 1 - Online Behavioural Study 

The behavioural study was designed to probe how the introduction of silent gaps 

between tones affects explicit pattern detection. It was aimed to pinpoint an optimal gap 

duration that is sufficiently long to allow us to isolate responses to individual tones, yet brief 

enough to maintain high-performance levels in pattern detection. 

3.2.1.1. Stimuli 

Stimuli were sequences of 50-ms tone-pips (gated on and off with 5-ms raised 

cosine ramps) drawn from a pool of 20 values equally spaced on a logarithmic scale between 

222 and 2000 Hz (12% steps). The order in which these tone-pips were successively 

distributed defined two different sequence types. RND sequences consisted of 20 tone-pips 

(sampled from the full pool) arranged in random order. Each tone-pip occurred equi-

probably across the sequence duration. RNDREG sequences contained a transition 

between a RND sequence, and a regularly repeating pattern (REG). REG consisted of 10 

different tone-pips, randomly chosen from the full pool on each trial, and repeated in 3 

identical cycles. The RND to REG transition always occurred after 30 tone-pips. Opting for 

this method, as opposed to a variable transition time, ensured a consistent context (in terms 

of frequency information available) both preceding each transition and across different gap 

duration conditions. RND and RNDREG sequences were generated anew for each trial and 

presented equi-probably throughout the experiment. Therefore, the occurrence of a 

transition in any given trial was unpredictable. The amplitude of each tone pip was 

normalised to yield an approximately similar perceived loudness (Moore, 2014). Across 

blocks, the inter-tone-intervals were manipulated to form four conditions (Figure 3.1 A): 

Gap0 (continuous presentation), Gap100 (a 100 ms gap inserted between tones), Gap200 

(a 200 ms gap inserted between tones), Gap500 (a 500 ms gap inserted between tones).  

Two control stimuli were also included: sequences of contiguous (no silent gap) 

tone-pips of a fixed frequency (CONT) that lasted 4000 ms, and sequences with a step 

change in frequency partway through the trial (STEP: the change always occurred after 

2000 ms). These were used to measure individuals’ response time to simple acoustic 

changes and served as ‘catch trials’ to assess task engagement.  

 

3.2.1.2. Procedure 

The experiment was implemented online using the Gorilla Experiment Builder 

(www.gorilla.sc). Before the main task, participants completed a headphone screening task 
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(Milne et al., 2020) to ensure they were using appropriate audio equipment. They then 

received an explanation of the task and completed a practice session. Due to length 

constraints, the experiment was divided into two parts, performed by two different groups of 

participants. Experiment 1a contained the Gap0, Gap100 and Gap200 conditions along with 

the control stimuli (STEP and CONT; see above). Experiment 1b contained the Gap0, 

Gap100 and Gap500 conditions, along with the control stimuli.  

Participants were instructed to respond, by pressing a keyboard button, as soon as 

possible once they had detected a RNDREG transition or a STEP. To motivate participants 

to focus on the task, they were given feedback on their accuracy and speed after each trial. 

A small monetary bonus was given for each correct response (Bianco et al., 2021). 

In each experiment, three blocks of 40 trials were delivered. Each block contained 

the following sequence types: 15 RNDREG, 15 RND, 5 STEP, and 5 CONT. The first block 

always presented the Gap0 condition. This block lasted 5 minutes. Thereafter, listeners 

completed the other two blocks (Gap100 and Gap200 in experiment1a, Gap100 and 

Gap500 in experiment1b) in random order. Starting with Gap0 ensured that all participants 

experienced the easiest condition first and had adequate opportunity to practice the 

regularity detection task, reducing the likelihood of frustration and dropout that may occur if 

participants are immediately faced with the most difficult condition. The main task in 

experiment 1a lasted about 20 minutes, and that in experiment 1b lasted about 30 minutes.  

 

3.2.1.3. Participant Rejection Criteria 

Previous work (Barascud et al., 2016; Bianco et al., 2020) demonstrated that 

participants are sensitive to the emergence of regularity in RNDREG sequences, exhibiting 

high sensitivity and rapid detection time (usually responding within two regularity cycles). 

Due to the online nature of the present experiments and associated reduced control over 

participants’ environments, equipment, and engagement (Bianco et al., 2021), it was 

important to implement a series of rejection criteria to make sure that data reflect true 

sequence tracking sensitivity. Therefore, subject data were excluded from the experiment 

following the below (a-priori determined) criteria:  

1) Failure on the Headphone screen: the task introduced by Milne et al. (2020) was 

used. Participants who did not pass the screening procedure did not proceed to the main 

experiment.  

2) Low performance in the practice run: To ensure participants understand the task, 

24 trials with no gap (10 RNDREG, 10 RND, 2 CONT and 2 STEP) were given. Participants 

did not proceed to the main task if their correct response rate was below 80% in the practice 

task (see also Bianco et al., 2023). This ensured that those participants who proceeded to 
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the main experiment could detect the REG transitions, thus allowing us to focus on how 

performance is affected by increasing the gaps between tones. Our previous experience 

with similar stimuli in lab settings (see e.g. Barascud et al., 2016; Bianco et al., 2020) 

suggests that the vast majority of young participants can achieve ceiling performance. We, 

therefore, reasoned that those online participants who performed below 80% are likely not 

sufficiently engaged with the task (i.e. distracted, not following instructions, etc).   

3) Of those participants who completed the full experiment, the data from those 

subjects who failed to respond to STEP trials (allowing at most one miss per block) or whose 

RT to STEP trials fell above 2 STDEV relative to the group mean were rejected. Failure to 

respond quickly to the (easy) STEP trials indicated low task engagement.  

 

3.2.1.4. Participants 

Two participant groups were recruited via the Prolific platform 

(https://www.prolific.co/).  

168 participants took part in experiment 1a. 29% did not proceed to the main task 

due to failure on the headphone check (this is a similar fail rate to that reported in Milne et 

al, 2021); 44% did not proceed to the main task due to not passing the threshold of the 

practice task. This number is much higher than that normally encountered in the lab (see 

e.g. Bianco et al, 2020 for a similar task) and likely reflects variable engagement by online 

participants. Data from 5% of subjects were rejected because their STEP responses in the 

main task were too slow. Data from a further 6% of participants were lost due to network 

issues affecting the Gorilla online platform. Data from 29 subjects are included in the analysis 

below (7 females; average age, 24.3 ± 4.79 years).  

94 participants took part in experiment1b. 29% did not proceed to the main task 

due to failure on the headphone check; 21% did not proceed to the main task due to not 

passing the threshold of the practice task. Data from 10% of subjects were rejected because 

their STEP responses in the main task were too slow. Data from a further 11% of participants 

were lost due to network issues affecting the Gorilla online platform. Data from 27 subjects 

are included in the analysis below (6 females; average age: 22 ± 4.69 years). 

https://www.prolific.co/
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Figure 3.1. Behavioural experiment (A) Examples of the four gap duration 

stimuli. RNDREG sequences are plotted (the stimulus set also contained 

50% no-change RND sequences). Four gap duration conditions are used 

(0, 100, 200 and 500 ms), resulting in regularity cycles of 500, 1500, 2500 

and 5500 ms, respectively. Participants listened to the sound sequences 

and were instructed to press a keyboard button as soon as they detected 

the emergence of a REG pattern; indicated with a red line. (B) Behavioural 

performance. Performance steadily declined with increasing gap duration. 

Generally good performance (mean d’>2) was seen for the Gap200 

condition and it was therefore chosen for the MEG experiment. (Hu et al., 

2024) 

 

3.2.2. Experiment 2 - MEG in Naïve Passively Listening 

Participants 
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3.2.2.1. Stimuli 

Stimuli (Figure 3.2) were generated similarly to those in experiment 1. To reduce 

the duration of the (passive listening) MEG experiment, the study focused on REG and RND 

sequences, without transitions. Sensitivity to regularity is investigated by comparing brain 

responses to the onset of REG and RND sequences. During the initial portion of the 

sequence (first cycle in REG), responses to the two sequence types should be identical, with 

differences emerging as soon as the auditory system has discovered that the pattern is 

repeating. Ideal observer modelling (Barascud et al., 2016; Harrison et al., 2020) suggests 

that about 3 tones, following the first cycle, are needed for the transition to be statistically 

detectable. REG sequences were generated by randomly selecting (without replacement) 

10 frequencies from the pool and iterating that order to create a regularly repeating pattern. 

RND sequences consisted of a random succession of 10 tones, newly selected on each trial. 

All stimuli contained 60 tone-pips. Two timing conditions were used: in ‘fast’ sequences tone-

pips were presented in direct succession (20 Hz rate; 500ms REG cycle duration; 3 s overall 

sequence duration); in ‘slow’ sequences tone-pips were separated by a 200 ms silent gap 

(4 Hz rate; 2500ms REG cycle duration; 15 s overall sequence duration). One hundred 

instances of each condition were presented. Sequences were generated anew for each trial 

such that each stimulus was created of the same frequency “building blocks” (random 

selection of 10 out of 20 frequencies). Condition presentation was fully randomised. 

3.2.2.2. Procedure  

The experiment was controlled with the Psychophysics Toolbox extension in 

MATLAB (Kleiner et al., 2007). All auditory stimuli were presented binaurally via tube 

earphones (EARTONE 3A 10 Ω; Etymotic Research) inserted into the ear canal, with the 

volume set at a comfortable listening level, adjusted for each participant.  

The experiment lasted 40 minutes. Participants listened passively to the stimuli 

(presented in random order with an ISI jittered between 1400-1800 ms) and engaged in an 

incidental visual task. The task consisted of landscape images, grouped in triplets (the 

duration of each image was 5 s, with 2 s ISI between trials during which the screen was 

blank). Participants were instructed to fixate on a cross in the centre of the screen and press 

a button whenever the third image was identical to the first image (10% trials). The visual 

task served as a decoy task for diverting subjects’ attention away from the auditory stimuli. 

Participants were naïve to the nature of the auditory stimuli and encouraged to focus on the 

visual task. Feedback was displayed at the end of each block. The experimental session was 

divided into six 12 min blocks. Participants were allowed a short break between blocks but 

were required to remain still. 
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3.2.2.3. Participants 

23 naïve subjects participated in the study. One participant’s data were discarded 

due to excessive noise in the data. Data from 22 participants (11 females; average age, 

25.14 ± 4.61 years) are reported below.  

3.2.2.4. Data Recording and Pre-processing 

Magnetic signals were recorded using CTF-275 MEG system (axial gradiometers, 

274 channels; 30 reference channels; VSM MedTech). The acquisition was continuous, with 

a sampling rate of 600 Hz. Offline low-pass filtering was applied at 30 Hz (all filtering in this 

study was performed with a two-pass, Butterworth filter with zero phase shift). All pre-

processing and time domain analyses were performed using the fieldtrip toolbox (Oostenveld 

et al., 2011). To analyse time domain data, the 40 most responsive channels for each 

subject were selected. This was done by collapsing across all conditions and identifying the 

M100 component of the onset response (Näätänen and Picton, 1987; Stufflebeam et al., 

1998; Näätänen et al., 2011; Gorina-Careta et al., 2021), as a source-sink pair located over 

the temporal region of each hemisphere. For each subject, the 40 most strongly activated 

channels at the peak of the M100 (20 in each hemisphere; 10 in each sink/source) were 

considered to best reflect auditory activity and thus selected for all subsequent time-domain 

analyses. This procedure served the dual purpose of enhancing the relevant response 

components and compensating for any channel misalignment between subjects. Next 

section will introduce the two-domain analysis pipelines in this study. 

 

3.2.2.5. Whole Sequence Analysis 

Initially, responses to the entire sequence were assessed. Low-frequency activity is 

of prime importance as a possible marker of predictability tracking (Barascud et al., 2016; 

Southwell et al., 2017). Therefore, no high-pass filter was used. Data were segmented into 

epochs from 200ms before onset to 1000ms post offset (yielding epochs of 4200ms and 

16200ms in ‘fast’ and ‘slow’ conditions, respectively). Epochs containing artefacts were 

removed (based on variance summary statistics) using Fieldtrip’s manual visual artefact 

rejection function. Around 5% of epochs were removed from each subject (range 0-10%). 

The remaining epochs were then averaged by condition. To help denoise the data from ‘slow’ 

conditions (low-frequency drift artefacts) denoising source separation (DSS) analysis was 

applied to maximize reproducibility across trials. (Särelä and Valpola, 2005; de Cheveigné 

and Simon, 2008; de Cheveigné and Parra, 2014). For each subject, the three most 

significant components (i.e., the three ‘most reproducible’ components across trials) were 

kept and projected back into sensor space.  
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3.2.2.6. The Single-tone Response Analysis 

A subsequent analysis focused on responses to individual tones in REG vs. RND 

sequences in the ‘slow’ sequences. To identify activity associated with individual tone-

evoked responses which might be masked by the sustained activity, the raw data were high-

pass filtered at 2Hz. Filtered data were then cut into individual tone epochs, from 50 ms 

before the onset of the tone, to 200 ms post onset. Responses from tones within each cycle 

were averaged, yielding 6 time series per condition per subject (tones in Cycle#1, Cycle#2, 

etc.). Time series were baselined based on pre-tone onset activity.  

 

Figure 3.2. Examples of stimuli in the MEG experiment. All stimuli 

consisted of 60 tones (6 regularity cycles in REG sequences; red lines). 

‘fast’ sequences were 3 s long; ‘slow’ sequences were 15 s long. Naive 

participants listened to the sound sequences passively and were instructed 

to focus on a visual task. If brain responses track the emergence of 

regularity, responses REG and RND sequences should be differentiated 

following cycle#1. Ideal observer REG detection latency (~3 tones into the 

2nd cycle, e.g. Barascud et al, 2016) is indicated with a dashed line. (Hu et 

al., 2024) 

 

3.2.2.7. Statistical Analysis 

The time domain data are summarised as root-mean square (RMS) across the 40 

selected channels for each subject (see above). The RMS is a useful summary signal, 
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reflecting the instantaneous power of the neural response irrespective of its polarity. Group 

RMS (RMS of individual subject RMSs) is plotted; statistical analysis was always performed 

across subjects.  

To evaluate differences between conditions (RND vs REG), the RMS differences at 

each time point were computed for each participant, and a bootstrap re-sampling (Efron and 

Tibshirani, 1998) was applied (10000 iterations) on the entire epoch. Significance was 

inferred by inspecting the proportion of bootstrap iterations that fell above or below zero, 

here p=0.01 was used as a threshold.  

3.2.2.8. Source Analysis 

To estimate the brain sources that underly the observed time domain effects at the 

sensor level, source reconstruction using the standard approach implemented in SPM12 

(Litvak and Friston, 2008; López et al., 2014; Bartha-Doering et al., 2015) was performed. 

Sensor-level data were converted from Fieldtrip to SPM. By using 3 fiducial marker locations, 

the data were co-registered to a generic 8196-vertex inverse-normalised canonical mesh 

warped to match the SPM’s template head model based on the MNI brain (Ashburner and 

Friston, 2005). This had the advantage of providing a one-to-one mapping between the 

individual's source-space and the template space, facilitating group analyses (Litvak and 

Friston, 2008). The forward model was solved with a single shell forward head model for all 

subjects. Source reconstruction was performed using the multiple sparse priors (MSP) 

model that assumes that activity can be expressed in multiple patches or covariance 

components, each of which has an associated hyperparameter (Litvak and Friston, 2008; 

López et al., 2014; Bartha-Doering et al., 2015). These were optimised with greedy search 

(GS) technique (Litvak and Friston, 2008) by iterating over successive partitions of multiple 

sparse priors to find the set yielding the best fit (here a total of 512 total dipoles was 

specified). The MSP model was used to identify distributed sources of brain activity, hence 

the 2 conditions (RND and REG) were inverted together.  

This study was interested in capturing the sources underlying two aspects of the 

data: 

1. The discovery of regularity (REG vs RND) in the ‘fast’ sequence evoked response. 

The analysis used DSSed data (de Cheveigné and Parra, 2014), with the three most 

reproducible components projected back into sensor space and used for the inversion. Trials 

were averaged by condition and the inverse estimates were obtained for the two conditions 

together using an interval of 300ms between 665 and 965 ms post-stimulus onset. The 

interval was chosen to coincide with the timing of divergence between the REG and RND 

conditions as seen in the time domain analysis (Figure 3.3). An attempt was made to analyse 

the 'slow' sequences (between 3500 and 6000ms post stimulus onset, coinciding with the 

timing of divergence between REG and RND conditions), but no significant sources were 
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identified (see supplementary information). This lack of findings can be attributed to several 

factors, primarily the weaker sustained response effect (see below). Memory constraints 

probably further exacerbated the issue, resulting in substantial variability across participants 

when tracking the slow sequences. Importantly, the opposing effects observed for the 

sustained and tone-evoked responses (see ‘results’) likely contributed to a net cancellation 

of effects, making it challenging for the source model to discern meaningful patterns in the 

'slow' sequence evoked activity. 

2. The effect of regularity (REG vs. RND) on the individual tone responses in ‘slow’ 

sequences. A similar analysis pipeline as that described above was used. This analysis 

focused on the interval between 5 and 15 s – from the 3rd cycle of the REG until offset, i.e., 

where the regularity in REG stimuli was well established (theoretically, and, as seen in the 

time domain data, regularity is discovered partway through the 2nd cycle and well established 

by the 3rd cycle). The filtered raw signal (2-30 Hz), epoched over 0-200ms post tone onset 

and averaged across tone presentations, was used for the inversion. The interval was 

chosen to coincide with the largest possible time window post tone onset to allow the 

algorithm to encompass all brain sources responsible for generating the response (Henson 

et al., 2011). 

After inversion, source activity for each condition was projected to a three-

dimensional source space and smoothed [12-mm full width at half maximum (FWHM) 

Gaussian smoothing kernel] to create Neuroimaging Informatics Technology Initiative (NIfTI) 

images of source activity for each subject. At the second level of statistical analysis, the two 

conditions (REG vs RND) were modelled with the within-subject factor Regularity (REG / 

RND). Statistical maps of the contrast were thresholded at a level of p = 0.05 uncorrected 

(F contrasts) across the whole-brain volume. Relevant brain regions were identified using 

the AAL3 toolbox (https://www.oxcns.org/aal3.html). 

 

 

 

 

 

 

 

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.oxcns.org%2Faal3.html&data=05%7C01%7Cmingyue.hu.18%40ucl.ac.uk%7Cc47d773d09334677be1c08dae437f6b1%7C1faf88fea9984c5b93c9210a11d9a5c2%7C0%7C0%7C638073226250466148%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=J7iNmIUQ8j0vtsAnkFCKlFOgJP%2BPxuALsRPYd1BsuRo%3D&reserved=0
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3.3. Results 

3.3.1. Behavioural Performance Reveals Good Sensitivity to 

Regularity Even Following the Introduction of Silent 

Gaps between Tones.  

This study tested how pattern detection ability is affected by the introduction of a 

silent gap of increasing length between successive tone pips. Figure 3.1B shows 

performance (quantified as d’ sensitivity score) for each condition in experiments 1a and 1b. 

With increasing gap duration, an overall gradual worsening of performance was observed. 

A repeated measures ANOVA over the three gap duration conditions in experiment 1a 

confirmed a main effect of condition [F (2, 56) = 3.814, η2 = .123, p = .026]. Post hoc tests 

(Bonferroni corrected) indicated a significant difference between Gap0 and Gap100 

conditions [p = .034] and between Gap0 and Gap200 conditions [p = .026]. No difference 

between Gap100 and Gap200 was seen [p = 1]. In general, most participants achieved a d’ 

above 2 in the Gap200 condition, revealing a largely conserved sensitivity even though the 

duration of the pattern increased five-fold from 500ms in Gap0 to 2500ms in Gap200.  

Experiment 1b further tested the performance for silence gaps of 500 ms. A repeated 

measures ANOVA with factor Gap (0, 100, 500 ms) confirmed a main effect of condition 

[F(2, 52) = 33.687, η2 = .564, p < .001]. Post hoc (Bonferroni corrected) comparisons 

indicated significantly worse performance in Gap100 [p=.025] and Gap500 [p<.001] 

compared to Gap0, and between Gap100 and Gap500 [p < .001].  

 
Overall, the pattern of results is consistent with a slow decline in performance for 

gaps up to 200ms and a steeper drop thereafter. We, therefore, selected the 200ms gap 

duration for the MEG experiments (in naïve distracted listeners) below.  

 

 

3.3.2. The Emergence of Regularity is Associated with an 

Increase in Sustained MEG Activity 

The Group RMS (mean of all subjects’ RMSs) of the evoked response to the ‘fast’ 

sequences are shown in Figure 3.3A. The brain response presents prototypical onset 

activity, followed by a subsequent rise to a sustained response that persists until offset. A 

pronounced offset response is seen about 100 ms after sound cessation. Fluctuations at 20 

Hz, reflecting the tone presentation rate, are visible in the sustained portion of the response. 
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In line with previous observations (Barascud et al., 2016; Southwell et al., 2017; Southwell 

and Chait, 2018), REG shows an increased sustained response when compared with RND. 

The timing at which the response to REG diverges from RND is considered to reflect the 

information required to detect the regularity. A significant difference between conditions 

emerged after 665 ms, (13 tone-pips, 1.3 cycles). This estimate is consistent with previous 

modelling work (Barascud et al., 2016; Harrison et al., 2020) which demonstrated that an 

ideal observer model required 3-4 tones following the first cycle to detect the emergence of 

regularity.  

Figure 3.3B displays the source analysis, applied over a 300 ms interval over which 

the REG and RND conditions begin to diverge (yellow shading in Figure 3.3A). The activation 

map (F contrast, REG>RND, p=0.05) demonstrates increased activity in auditory cortex (AC; 

bilaterally), inferior frontal gyrus (IFG; bilaterally) and hippocampus (HP; Right Hemisphere 

only). No areas were identified by using the opposite (RND > REG, p=0.05) contrast. Overall, 

the source data are largely consistent with what was previously shown by Barascud et al. 

2016 for similar stimuli, confirming a distributed network spanning auditory, frontal and 

hippocampal sources which underlies sensitivity to regular patterns.  

 

 

 

Figure 3.3. MEG response to ‘fast’ (Gap0) sequences. (A) The full 

stimulus epoch, from stimulus onset (t = 0s) to offset (t = 3s). The shaded 

area around the traces indicates the standard error of the mean. The grey 

horizontal line indicates time intervals where a significant difference is 

observed between the two conditions (p<0.01). Yellow highlighting 

indicates the interval (665 ms to 965 ms) used for source analysis in (C). 

(B) Mean sustained response power computed during the last second of 

stimulus presentation (2-3 s post-onset) and averaged over trials for each 

subject in RND and REG conditions. (C) Source analysis. Group SPM F 

map for the REG > RND contrast during the rising slope of the sustained 
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response (yellow shaded area in A), thresholded at p = 0.05 (uncorrected). 

AC: Auditory Cortex; HP: Hippocampus; IFG=Inferior Frontal Gyrus. (Hu et 

al., 2024) 

 

Responses to the ‘slow’ (Gap200) sequences are shown in Figure 3.4A. 

Pronounced fluctuations at 4 Hz, reflecting the tone presentation rate, are clearly visible on 

top of the sustained response. Similar to what was observed for the ‘fast’ sequences, a 

difference in sustained response emerges between REG and RND when the REG pattern 

begins to repeat (after 2500ms). This effect is much smaller, however. To separate the 

sustained response from phasic activity associated with tone-evoked responses, the data 

were low pass filtered (0-2Hz; Figure 3.4B). A significant difference between conditions 

emerged after 13 tones (3266 ms) consistent with the observations from the ‘fast’ sequence 

above. This suggests that irrespective of the rate at which tones are presented (at least 

within the range tested here), regularity detection requires a constant amount of information 

(as measured in number of tones pips). However, it is notable that the sustained difference 

between REG and RND conditions in the ‘slow’ sequences is smaller and rather noisier (e.g. 

as reflected by the discontinuous significance, see Figure 3.4) than in the ‘fast’ sequences. 

A repeated measures ANOVA on the difference between mean sustained response power 

in REG and RND (as shown in Figure 3.3B; Figure 3.4B) confirmed a significantly smaller 

difference between REG and RND in the ‘slow’ sequences (F (1, 42) = 18.31, η2 = .3036, p 

<.001).  
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Figure 3.4. MEG response to ‘slow’ (Gap200) sequences. (A) Wideband; 

0-30Hz. The entire stimulus epoch (16s) is plotted. A sustained difference 

between responses to REG and RND sequences emerges from ~ 3s post-

onset. Responses evoked by individual tones (4Hz) are observed 

throughout the epoch. (B) Low pass filtered responses (0-2Hz) focusing on 

the slow sustained response activity. The horizontal black and grey lines 

denote time intervals where a significant difference is observed between 

conditions (p < .05 and p<.01, respectively). Mean sustained response 

power computed between 10-15 s (from the 5th cycle onwards) post-onset 

for each individual in each condition is shown on the right. (C) High pass 

filtered activity, with clearly visible responses to individual tones. The 6 REG 
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cycles analysed in Figure 3.5 are indicated. Shaded areas are those 

plotted in Figure 3.5B, C. (Hu et al., 2024) 

 

Overall, the MEG results demonstrate that passively elicited brain responses to REG 

relative to RND sequences are associated with significantly stronger sustained response 

magnitude, including when pattern durations are long (2500 ms in ‘slow’ sequences).  
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Figure 3.5. Tone evoked responses. (A) Tone-evoked responses 

averaged over the first 10 tones (0-2.5 s; first cycle) in the RND and REG 

conditions. Shading around the traces indicates the standard error of the 

mean. Field maps corresponding to the M50 (60-80 ms) and M100 (130-

150 ms) responses are shown below. As expected, no differences are seen 

because the REG pattern can only be distinguished from RND following the 

first cycle (once the pattern starts repeating) (B) Tone-evoked responses 

averaged over tones presented between 2.5 - 5 s in the RND and REG 

conditions (‘Cycle#2). The horizontal grey line indicates time intervals 

where a significant difference is observed between conditions (p<.01) (C) 

Tone-evoked responses averaged over tones presented between 12.5 - 15 

s in the RND and REG conditions (‘Cycle#6). (D) Difference from 1st cycle 

computed (over the M100 time interval; 100-200ms) for each subsequent 

cycle in REG and RND. Tones presented in REG contexts show 

consistently reduced activity relative to the 1st cycle. p-values indicate a 

difference from 0 (one sample t-test). (E) Tone-evoked responses 

averaged over tones presented during 5-15 s (Cycle#3 to cycle#6). (F) 

Source analysis results computed from the data in (E). The image is a group 

SPM F map for the RND > REG contrast, thresholded at p = 0.05 

(uncorrected). AC: Auditory Cortex; HP: Hippocampus; IFG=Inferior 

Frontal Gyrus. (Hu et al., 2024) 

 

To focus on phasic activity associated with responses to individual tones, sequence-

evoked responses were high pass filtered at 2Hz (Figure 3.4C) and tone-centred epochs 

were extracted (from 50ms pre-tone-onset to 200ms post-tone-onset). The main analysis 

(Figure 3.5), focused on tones presented in each cycle of the REG sequences (see indicated 

in Figure 3.4C; 0-2.5 s; 2.5-5 s; 5-7.5 s; 7.5-10 s; 10-12.5 s; 2.5-15 s), and corresponding 

tones in RND sequences. As expected, no differences between conditions are seen in the 

first cycle (cycle#1) (Figure 3.5A). In contrast, clear differences between tones presented 

in REG vs RND contexts are seen in cycle #2 onwards (Figure 3.5B; cycle #6 also plotted; 

Figure 3.5C). Critically, REG tones evoke reduced responses relative to RND tones. This 

effect appears to be specific to the latter part of the tone-evoked response: from ~100ms 

post tone onset, i.e., during the tone-evoked M100 peak.  

An additional repeated measures ANOVA on response magnitude (mean power 

between 100-200ms post tone onset) with regularity (REG vs RND) and tone position in the 

2nd – 6th cycles (i.e., from tone #11 to tone #60) as factors revealed a main effect of regularity 

only (F(1,21)=4.634, η2=.181, p=.043), with no effect of tone position (F(1,49)=1.063, 

η2=.048, p=.359) or interaction of the two factors (F(1,49)=.937, η2=.043, p=.599). Though 
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clearly noisy, this tone-by-tone analysis reveals a sustained, stable difference between REG 

and RND conditions. As a control analysis, a repeated measures ANOVA on the first 10 

tones in the sequence (cycle#1) indicated a main effect of tone position (F(1,21)=9.877, 

η2=.32, p<.001) only. Post hoc tests indicated that the responses to the first two tones are 

significantly different from the third through tenth tones (p<.01) in both REG and RND 

sequences, reflecting increased responses at sequence onset. Neither condition 

(F(1,9)=2.647, η2=.112, p=.119) nor the interaction of condition by tone position 

(F(1,9)=.556, η2=.026, p=.832) were significant. Together, these analyses confirm no 

difference between REG and RND during the first cycle (cycle#1), with a sustained difference 

between conditions emerging during the second cycle (cycle#2) onwards.  

To further understand whether and how the tone-evoked responses in REG and 

RND contexts changed over time, the mean evoked field differences between tones 

presented in the first and subsequent cycles in REG and RND conditions were computed. 

Because responses to the initial couple of tones (first 2 tones in cycle#1) were affected by 

onset-response activity, the analysis was focused on the last eight tones of each cycle 

(cycle#1: tone 3-10; cycle#2: tone 13-20; and so on). The mean tone-evoked response 

(computed between 100-200 post onset) during cycle#1 was subtracted from that of 

cycle#2-#6 to understand how the presence of regularity affects tone responses. The data 

are plotted in Figure 3.5D. A repeated measures ANOVA with condition and cycle number 

as factors yielded a main effect of condition only (F(1,21)=4.723, η2=.184, p=.041). No 

effect of cycle number (F(4,84)=1.078, η2=.049, p=.373) or interaction of those two factors 

(F(4,84)=1.087, η2=.049, p=.368) was observed. This indicates a sustained difference 

between REG and RND conditions, that does not change over time. A one-sample t-test 

(uncorrected) confirmed that such differences for cycles#2-#6 in the REG condition were 

below zero, i.e. consistently reduced relative to cycle 1. [cycle#2 t(1,21)=-

3.102,d=-.661,p=.003; cycle#3 t(1,21)=-3.288,d=-.701,p=.002; cycle#4 t(1,21)=-

3.702,d=-.789,p<.001; cycle#5 t(1,21)=-2.161,d=-.461,p=.021; cycle#6 t(1,21)=-

2.478,d=-.528,p=.011]. In contrast, the same analysis for RND indicated non-significant 

effects [cycle#2 t(1,21)=-1.051,d=-.224,p=.153; cycle#3 t(1,21)=-1.7,d=-.363,p=.052; 

cycle#4 t(1,21)=-1.604,d=-.342,p=.062; cycle#5 t(1,21)=-1.829,d=-.390,p=.041; cycle#6 

t(1,21)=-.125,d=-.027,p=.451].  

Overall, the tone-evoked analysis demonstrates a consistent difference between 

tones presented in REG relative to RND contexts, the effect emerges early during the second 

regularity cycle (i.e. when the regularity has been established) and is manifested as a 

reduction in responses to REG tones, whilst responses to RND tones remain stable 

throughout the stimulus period.  

Source localisation (see Figure 3.5F) for the contrast RND>REG (p=0.05) during 

the tone-evoked response (full epoch – 0-200ms; extracted from the 3rd cycle until sequence 
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offset; 5-15 s; i.e. after the regularity in REG has been established; see Figure 3.4B and 

Figure 3.5E) identified sources in bilateral temporal lobe (superior temporal gyrus, Heschel’s 

gyrus) and bilateral Inferior Frontal Gyrus that underly the time-domain effect. The opposite 

contrast (REG>RND, p=0.05) yielded no significant activations.
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Table 3.1. Summary of MEG source localisation results. MNI coordinates (x,y,z), and F 

values (pvoxel < 0.05). Anatomical labelling based on the Harvard-Oxford Cortical Structural 

Atlas. (Hu et al., 2024) 

     MNI Coordinates 

                                                                                                                                         Region Side 
P-value 
(peak-
level) 

F-value  x y z 

REG-RND 
Middle temporal 
gyrus 

Left 0.002 12.42 -56 -28 -10 

(‘fast‘ sequence) Inferior frontal gyrus Left 0.026 5.78 -50 34 -4 

 Middle temporal 
gyrus 

Right 0.002 12.9 54 -28 -6 

 Inferior frontal gyrus Right 0.024 5.98 46 32 -4 

 Hippocampus   Right 0.033 5.22 30 12 -38 
        
RND-REG 
(tone response 
extracted from 
‘slow’ sequence) 

Heschl’s 
gyrus/Superior 
temporal gyrus 

Left 0.01 8.09 -60 -8 12 

 Inferior frontal gyrus Left 0.035 5.06 -48 34 -6 

 Rolandic operculum  Right 0.035 5.06 52 -4 14 

 Inferior frontal gyrus Right 0.039 4.85 48 28 -8 
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3.3.3. No Significant Correlation Between Tone-evoked and 

Sustained-response Effects 

To investigate a potential link between the sustained response and tone evoked 

responses, spearman correlation analysis was conducted on the difference in the tone 

evoked response (REG-RND; mean power between 100-200ms post tone onset) with a 

difference in the sustained response (REG-RND; low pass filtered as in Figure 3.4B) during 

Cycle#2 and Cycle#6 across subjects. Both analyses yielded non-significant effects (p>0.2).  

More complex ridge regression analyses (Bates et al., 2015) was also attempted 

over single trial data during Cycle#2 and Cycle#6 predicting the tone evoked response with 

the sustained response and trial number as predictors and subjects as random variable. No 

significant effects were observed (p>0.29).  

 

3.4. Discussion 
This study demonstrated that an increased sustained response to regular (REG) 

compared to random (RND) patterns previously observed in rapid tone sequences (20Hz; 

500ms cycle duration), also occurs in slower sequences (4Hz; 2500ms cycle duration). This 

confirms the auditory brain’s remarkable implicit sensitivity to complex patterns. Critically, 

brain responses evoked by single tones exhibited the opposite effect - lower responses to 

tones in REG compared to RND sequences. The observation of opposing sustained and 

evoked response effects reveals parallel processes that shape the representation of 

unfolding auditory patterns. 

 

3.4.1. Sustained Brain Responses Track Pattern Emergence 

Even in Slow Sequences 

Increased brain responses to predictable, relative to random patterns have 

previously been documented in many contexts (Barascud et al., 2016; Sohoglu and Chait, 

2016; Southwell et al., 2017; Herrmann and Johnsrude, 2018; Herrmann et al., 2019; Zhao 

et al., 2024). A greater amplitude for REG over RND stimuli is not easily interpretable as a 

response to physical attributes of the signal. Adaptation, for example, would result in the 

opposite pattern (Megela and Teyler, 1979; Pérez-González and Malmierca, 2014). Instead, 

the dynamics of this response, including when it diverges between REG and RND stimuli, 

suggest that the brain is sensitive to changes in the predictability of sound sequences. On 

an abstract level, observations regarding how the sustained response is modulated by 
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sequence predictability suggest it might reflect the coding of precision, or inferred reliability, 

of the incoming sensory information (Barascud et al., 2016; Friston et al., 2017; Heilbron 

and Chait, 2018; Yon and Frith, 2021; Zhao et al., 2024). 

Here it was showed that sustained response effects persist even when sequences 

are presented at a slower rate (4Hz). Despite the 5-fold increase in pattern duration, the 

divergence between REG and RND conditions occurred roughly at the same time (3 tones 

into the second cycle), in slow and fast sequences, consistent with ideal observer 

benchmarks (Pearce, 2005; Barascud et al., 2016; Harrison et al., 2020). 

It is noteworthy that the sustained response was diminished in the slow compared 

to fast sequences. This could be attributed, at least in part, to limitations in human listeners' 

memory capacity. Indeed, Barascud et al. (2016) observed a reduced sustained response 

to REG sequences consisting of cycles of 15 tones relative to 10 tones. This was interpreted 

as indicative of a threshold in encoding patterns that emerges when detecting longer 

repeating cycles. Similarly, Herrmann et al. (2019) reported reduced sustained responses 

in older individuals compared to younger participants, hypothesizing that this reduction could 

stem from age-related decline in tracking regularity patterns (Bianco et al., 2023). To detect 

the emergence of regularity, the auditory system must presumably maintain and update a 

statistical model of the auditory input, registering tone repetitions, and decide at which point 

there is sufficient evidence to indicate a regular pattern. The efficiency of this process relies 

on the interplay between echoic and short-/long-term memory capacity (Bianco et al., 2020; 

Harrison et al., 2020).In our study, the introduction of gaps between consecutive tones and 

the subsequent increase in cycle duration from 500 ms to 2500 ms likely strained short-term 

memory capacity, leading to less precise memory encoding and therefore overall lower 

precision for the slow sequences. The behavioural results indeed indicate a decline in pattern 

detection (Figure 3.1). However, it is crucial to emphasize that despite this decline, the mean 

performance level remained high, underscoring the largely preserved sequence tracking 

capacity.  

The brain mechanisms underlying the sustained response remain unclear. Source 

analysis suggests that the amplified response is driven by cortical activation in auditory, IFG 

and hippocampal sources (see also Barascud et al. (2016). A similar network involving the 

auditory cortex and IFG has been implicated in the generation of the Mismatch Negativity 

response (Näätänen et al., 2012) and has been postulated to represent the circuit 

responsible for maintaining an auditory model and conveying predictions to lower processing 

levels (Garrido et al., 2009; Heilbron and Chait, 2018). 

According to one interpretation, the sustained response might reflect an excitatory 

processing mechanism, characterised by an increase in gain, potentially via 

neuromodulation, on units responsible for encoding reliable sensory information (Feldman 
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and Friston, 2010; Auksztulewicz et al., 2017). In particular, tonic Acetylcholine (ACh) has 

been shown to be modulated by environmental uncertainty (Dalley et al., 2001; Yu and 

Dayan, 2005; Bland and schaefer, 2012). 

However, this interpretation may be less tenable, as it predicts heightened 

responses to tones within the REG sequences, which is contrary to our observed findings 

(see below). Alternatively, the sustained response may indicate an enhancement in the 

inhibition of neuronal units that convey low information content. This is consistent with prior 

research, albeit involving simpler stimuli, where an increase in inhibitory activity linked to the 

presence of predictable information has been documented (Natan et al., 2015, 2017; Schulz 

et al., 2021; Richter and Gjorgjieva, 2022; Yarden et al., 2022). A specific role for inhibition, 

instead of excitation, in governing responses to predictable sensory stimuli, is also supported 

by indirect evidence from dynamic causal modelling (Lecaignard et al., 2022) and 

behavioural findings: rather than capturing attention, predictable patterns are more easily 

ignored (Southwell et al., 2017) and are linked to reduced arousal (Milne et al., 2021). It is 

important to emphasize that M/EEG (or BOLD) do not readily differentiate between inhibitory 

and excitatory activity. Therefore, further advancement in understanding this phenomenon 

necessitates focused investigations at the cellular level. 

 

3.4.2. Reduced Responses to Tones in REG Relative to RND 

Patterns  

Introducing temporal gaps between successive pips allowed us to disentangle the 

neural responses elicited by individual tones. Results revealed a reduction in neural activity 

in response to tones embedded within regularly repeating relatively to random patterns. This 

effect appears to be driven by relatively stable responses to tones in random patterns, but 

declining responses in the REG context. The dynamics of this effect are consistent with a 

step change in response magnitude during the second cycle (after the regularity has been 

introduced) that is then fixed for the remainder of the sequence.  

Reduced response to REG tones is consistent with predictive coding theories (Rao 

and Ballard, 1999b; Lee and Mumford, 2003; Friston, 2005, 2009). According to these 

models, top-down expectations, derived from statistical regularities in the external world, 

play a crucial role in suppressing anticipated sensory input. This mechanism serves as an 

efficient neural coding scheme, optimizing the allocation of neural resources and enabling 

the brain to prioritize the processing of novel or unexpected information, which may hold 

greater relevance (Olshausen and Field, 1996, 2004; Friston, 2005, 2009; Tang et al., 

2018). Empirical support for these predictions, often referred to as 'expectation suppression',  

has been mounting across sensory modalities, (Baldeweg, 2006; Summerfield et al., 2008; 
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Alink et al., 2010; Ouden et al., 2010; Todorovic et al., 2011; Kok et al., 2012; Todorovic 

and Lange, 2012; Barbosa and Kouider, 2018; Heilbron and Chait, 2018). In the auditory 

domain, Todorovic and de Lange (2012) demonstrated that when tones were expected 

based on the probability structure of tone transitions, they elicited suppressed auditory 

activity within a specific time window of 100–200 ms. This suppression was uniquely 

attributable to the phenomenon of expectation suppression and distinct from adaptation 

(repetition suppression) effects. 

Notably, the effects that was reported manifest within this same time-window (100-

200ms; during the M100 phase of the response). Whilst it is difficult to exclude low-level 

processes such as adaptation, several patterns in the dynamics of the development of these 

effects suggest that simple adaptation is unlikely to be a main factor. Firstly, the effects 

require processes that persist for 2500ms (duration of a cycle). Secondly, no gradual 

reduction in responses to REG tones that builds up over cycles was seen. Rather there is a 

step change in the second cycle that is then consistent for the remainder of the sequence. 

3.4.3. Multiplexed Representation of Sequence 

Predictability 

The challenge faced by sensory systems is to accurately and swiftly represent 

information to support adaptive behaviour and facilitate interaction with the environment. A 

fundamental question pertains to whether the brain primarily encodes predictable or novel 

information (Press et al., 2020). Bayesian cognitive models propose that our predisposition 

to perceive what we expect enhances the fidelity of our sensory experiences (Wyart et al., 

2012; Summerfield and de Lange, 2014; Kaiser et al., 2019).  In contrast, cancellation 

models suggest that our perceptual system prioritises unexpected stimuli, as they carry an 

informative value (Blakemore et al., 1998; Meyer and Olson, 2011; Richter et al., 2018). In 

line with these considerations, predictive coding models (Rao and Ballard, 1999; Friston, 

2005, 2009) postulate the existence of two functionally distinct subpopulations of neurons 

within the brain. One encodes the conditional expectations of perceptual causes, while the 

other encodes prediction error.  

Our findings confirm the coexistence of these facets of regularity coding within the 

MEG signal: the sustained response is consistent with the encoding of the precision of the 

signal, whereas responses to individual tones appear to correspond to the coding of 

prediction error, as indicated by the reduced responses to predictable tones. Intriguingly, 

our results underscore the active involvement of the same neural network, encompassing 

the auditory cortex and the IFG, in both discovering structural patterns within auditory 

sequences and dampening responses to anticipated stimuli. However, the spatial resolution 
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limitations inherent to MEG source analysis prevent definitive conclusions about the precise 

co-localisation of these neural processes. 

Indeed, the question of whether these manifestations stem from a singular process 

exhibiting differential characteristics in sustained and tone-evoked responses, or if they 

represent two distinct mechanisms, as proposed in previous works (Rao and Ballard, 1999; 

Friston, 2005, 2009), emerges as a crucial avenue for future exploration. For example, it is 

possible that the sustained response reflects activity linked to a tonic inhibitory drive 

(implementing gain control) onto sensory units, resulting in a diminished evoked response to 

individual stimuli. Notably, our study did not reveal a correlational relationship between tone-

evoked and sustained responses. While this may tentatively suggest no direct linkage 

between the two mechanisms, it's essential to consider the possibility that this observation 

could be influenced by the inherent noise in MEG measurements. More nuanced insights 

will be gleaned with the application of sensitive invasive tools in future investigations.  
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3.5. Supplementary Information 

Figure 3.6. The source analysis on the sequence evoked response on 

‘slow’ conditions (between 3500 and 6000ms post stimulus onset, 

coinciding with the timing of divergence between REG and RND conditions) 

was conducted by using a p=0.1 and the results confirm the ubiquitous 

Auditory Cortex (AC) and IFG pattern and consistent with the fact that Right 

Hemisphere sources are often more strongly activated than Left 

hemisphere ones. The Hippocampus source is usually weak, so it is not 

surprising it is not evident here. It appears to be for a more robust source 

analysis substantially more trials/subjects would be needed. 
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4. Chapter 4. Whether/which Cognitive Factor Might
Account for the Variability in Pattern Detection

Performance.

The results from Study 2(see Chapter 3) indicate that listeners’ sensitivity (d’ score) 

to slow sound patterns (Gap500) exhibits significant variability; while some participants 

achieved ceiling performance, others performed at chance level. To explore the underlying 

causes of this variability in detecting RNDREG transitions (the emergence of a regular 

pattern), several cognitive factors were considered: 

Working/Short-term Memory Ability:  Although listeners in the pattern detection 

task were not explicitly instructed to memorize sounds, recognizing patterns required them 

to maintain a mental representation of previous signals for comparison with new sounds. 

Kumar et al. (2014) found that human subjects could learn to identify repetitive noise 

patterns without direct guidance, demonstrating unsupervised learning through extended 

auditory exposure. The fMRI and multi-voxel pattern analysis revealed that both the planum 

temporale and the hippocampus were adept at differentiating between familiar and new 

acoustic patterns. This underscores the pivotal role of the hippocampus in storing long-term 

auditory experiences that facilitate pattern recognition (Kumar et al., 2014); similarly, 

the MEG data reported by Barascud et al. (2016) also suggests the involvement of 

hippocampus, collaborates in discriminating between regularly repeating and random tone 

patterns during passive listening (Barascud et al., 2016). Prompted by those insights, this 

study is investigating whether auditory pattern detection is dependent on working or short-

term memory capabilities, functions also linked to hippocampal activity (Kumar et al., 2016; 

Hauser et al., 2020).

Sustained Attention Ability: Successful performance in the task may require 

listeners to continuously focus on the unfolding sound stream. 

General Vigilance/Task Engagement: This encompasses overall 

engagement/motivation with the task at hand. 

To identify which factors might influence performance, participants completed the 

pattern detection task (termed as ‘Gap100’, ‘Gap500’ task in this study) alongside a battery 

of cognitive assessments designed to measure working/short-term memory, sustained 

attention, frequency discrimination, and general task engagement. 

This study was structured into two sub-studies: 
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The first sub-study compared auditory and visual sustained attention tasks to 

determine which better reveal the individual variability of sustained attention ability. 

The second sub-study focused on identifying the cognitive factors that best explain 

the observed variability in the explicit pattern detection task among human listeners. 

4.1. Sub-study 1: Comparison Between 

Auditory SART and Visual SART 

4.2. Introduction 
Sustained attention refers to the ability to maintain consistent focus on a particular 

aspect of a stimulus over an extended period. It is typically assessed through monitoring 

tasks that require participants to detect a target among irrelevant signals presented 

sequentially (Esterman and Rothlein, 2019). The Sustained Attention to Response Task 

(SART) is a sensitive measure for evaluating sustained attention abilities (Robertson et al., 

1997). In its visual version, participants monitor a sequence of digits displayed one after 

another. They must press a button in response to frequent non-target stimuli (‘go trials’ 

labelled '1-2, 4-9') and withhold their response for the less frequent target stimulus (‘Nogo’ 

trial, number '3'). This setup involves 25 'go' trials and 200 'no go' trials. Importantly, the 

commission error, which is the failure to withhold the response to ‘Nogo’ trials, are the most 

common measure in SART. Accumulating work suggest that commission error rate during 

the SART coincide with subjective reports of mind wandering (Smallwood et al., 2007, 2008), 

and the propensity for making errors is correlated with self-reported measures of absent-

mindedness (Cheyne et al., 2009). 

SART has been widely used to address various clinical populations that have 

difficulties with sustained attention. For instance, evidence suggests that variations in the 

dopamine β-hydroxylase (DBH) gene are linked to attention deficits and broader executive 

function deficits in individuals with ADHD. The study by Greene et al. (2009) explored the 

relationship between genetic variations in the DBH gene and sustained attention. It 

specifically examines how the DBH C-1021T polymorphism affects the conversion rate of 

dopamine to noradrenaline, noting that the T allele is associated with a slower conversion 

rate than the C allele. This difference may lead to varied levels of cortical dopamine and 

noradrenaline, influencing neurological processes related to attention. The study involved 
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200 participants who were genotyped for the DBH C-1021T marker and then completed the 

Sustained Attention to Response Task (SART). The findings indicate that the DBH genotype 

significantly influences performance on this task, with individuals carrying more copies of the 

T allele exhibiting more errors of commission (Nogo hits), indicative of lapses in sustained 

attention. These errors were correlated with decreased noradrenaline levels, implying that a 

slower conversion rate may contribute to reduced alertness and a heightened susceptibility 

to distractions (Greene et al., 2009). 

Another related study by Farring and colleagues (2003) investigated the effect of 

depression on sustained attention while using SART. Their work exposes a mismatch 

between how people with depression evaluate their cognitive abilities and what objective 

assessments reveal. The study included 102 UK servicemembers who were divided into 

"depressed" or "nondepressed" groups based on their Beck Depression Inventory scores. All 

participants took the SART. The results showed that those with depression made more 

commission errors than those without. Moreover, the depressed group subjectively reported 

experiencing more cognitive failures than they objectively performed, indicating a higher 

perceived level of cognitive impairment (Farrin et al., 2003). 

Except for ADHD and depression, evidence suggests schizophrenia was associated 

with sustained attention deficit revealed by SART. Chan et al. (2009) conducted a study 

investigating sustained attention deficits across various levels of psychosis proneness using 

the SART. The study included 199 participants, divided into three groups: 74 individuals 

diagnosed with schizophrenia, 69 individuals identified as having schizotypal personality 

features due to high scores on the Schizotypal Personality Questionnaire (SPQ), and 56 

healthy control participants. The results revealed that both individuals with schizophrenia 

and those with schizotypal features performed worse (obtained more commission errors) 

than the healthy controls (Chan et al., 2009). 

Furthermore, the crucial role of sustained attention in self-awareness was also 

demonstrated among patients with traumatic brain injury (TBI). The research highlights the 

importance of self-awareness in affecting rehabilitation outcomes. It explains how cognitive 

function impairments like diminished sustained attention can significantly affect patients' 

understanding of their own cognitive deficits. Methodologically, the study evaluates TBI 

patients' self-monitoring capabilities through an online error-monitoring task (visually 

presented symbols or letters) that requires sustained attention, thereby assessing how these 

patients perceive and adjust to their actions throughout the duration of this task. The findings 

present a strong connection between commission errors and both types of online self-

awareness—emergent and anticipatory. They highlight that the ability to maintain attention 

correlates closely with recognizing cognitive failures (O’Keeffe et al., 2007).  
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Traditionally, SART has relied on visually presented digits or letters/symbols as used 

by O’Keeffe et al. (2007). However, in this experiment, both visual and auditory version of 

the task were introduced, where in auditory task, visual digits are replaced by spoken digits. 

In fact, this experimental design was initially addressed by Seli and colleagues that aimed to 

assess whether individual differences in sustained attention, as measured by the visual SART, 

would remain consistent in an auditory format. Within the experiment, participants completed 

three task blocks across auditory, visual, and combined auditory-visual modalities. Each 

block consisted of 225 trials displaying digits from 1 to 9 randomly. In the visual SART, these 

digits appeared on a screen, whereas in the auditory SART, they were spoken through 

headphones. Participants were required to press a key for all digits except the number 3 

(Nogo trials), where they were to withhold their response. Their findings indicated that the 

auditory SART typically resulted in slower response times and fewer errors than the visual 

version. Despite these performance discrepancies, strong correlations between the two 

modalities demonstrated consistent measures of sustained attention (Seli et al., 2012a).  

As the result, in this sub-study, the first objective is to replicate their findings (Seli et 

al., 2012a). Secondly, it is aimed to evaluate the performance differences between these 

two modalities and examine which task can optimally capture the sustained attention 

variability. 

 

 

4.3. Methods 

4.3.1. Visual SART 

The Gorilla experiment platform was utilised to implement a version of the task. 

Digits were displayed at the centre of a computer screen in one of five randomly assigned 

font sizes (48, 72, 94, 100, and 120), corresponding to digit heights between 12 and 29 mm. 

The main task involved the delivery of 225 single digits. Each digit was shown for 250 ms, 

followed by a 900 ms mask composed of a 20 mm ring with a diagonal cross in the centre. 

The presentation was paced at an onset-to-onset interval of 1150 ms. Both the digits and 

the mask were white, set against a black background. The outcome measures were the 

percentage of failures on no-go trials. 

4.3.2. Auditory SART 

The same experimental platform was used for the auditory version of the SART test. 

Stimuli were presented as single spoken digits, randomly spoken by either a pre-recorded 
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male or female voice. The main task delivered 225 spoken digits. Each stimulus was 

presented at an onset-to-onset interval of 1150ms (stimulus + silence) to align with the visual 

SART. As the duration of each spoken digit varied (0.35 ± 0.0516 s), the silence after the 

stimulus also varied slightly. To minimize visual distractions, participants were instructed to 

focus on the fixation cross at the centre of the screen. The outcome measures were the 

same as those for the visual SART. 

4.3.3. Participants 

Participants were recruited through Prolific (www.prolific.co). Each participant was 

presented with two tasks in a shuffled order, and practice was provided before proceeding 

to the main task. Data from 24 participants (11 females), with an average age of 22.8 ± 3.3, 

were included in the following analysis.  

4.4. Results 

Figure 4.1. Distribution of commission errors (hits on Nogo trials) across 

all NOGO trials for each of auditory, visual version of Sustained Attention 

Response Task (SART). Significant differences were seen between 

modalities (p<.001).  

http://www.prolific.co/
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4.4.1. NoGo Commission Errors 

Differences (Figure 4.1) were seen [t (23) = 4.386, p < .001] between the 

commission errors (responding to Nogo trial) of auditory SART (mean = 0.21, std = 0.13); 

and visual SART (mean = 0.46, std = 0.27). Visual SART yielded significantly higher error 

rate than the auditory SART. However, contradicting to the previous study (Seli et al., 2012a), 

which they proposed the strong correlation of proportion error across the two versions of the 

SART, no correlation (spearman) in commission error rate between auditory and visual SART 

was seen (N=24) in this study. Considering the ‘noise’ of the data due to the unsupervised 

environment, this study selectively analysed the sub-group (participants whose commission 

error rate below 80% in visual SART) as it was assumed that healthy participants who were 

fully engaged in the task can reach that threshold. Therefore, data from 19 subjects were 

included. However, no significant correlation of commission error rate between two tasks 

was observed, despite only the subjects with reasonable commission error rate in visual 

SART (below 80%) were included [r(18)=.255,p=.277].  

4.4.2. Go Trial Response Times 

Shorter response time in visual SART with mean of 385ms relative to auditory SART 

with mean of 627ms were seen [t(23)=-9.193, p <.001]. No correlation in response times 

across two modalities [r(23)=0.2443,p=0.2487] when all subjects were included; However, 

significant correlation emerged in those subjects whose commission rate was below 80% in 

visual SART [r(18)=0.5035,p=0.0297] (Figure 4.2). 
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Figure 4.2. Significant correlation was seen across modalities in subjects 

group whose NoGo commission error rate was below 80% in visual SART 

(N=19). 

4.4.3. NoGo Trial Commission Error Rate and Go Trial 

Response Times 

Interestingly, significant negative correlation was seen between NoGo commission 

error rate and Go hits response times in visual SART [r(23)=-0.916, p <.001] (all subjects 

were included), and this observation was not obtained in auditory SART [r(23)=-0.1546, p = 

0.4708], although in both tasks, the NoGo error rate are negatively associated with the Go 

hits response time (Figure 4.3). The longer the response time is, the less the commission 

errors are. The significant correlation between those two measures suggests that quicker 

responses may be associated with certain form of diminished executive control (more 

discussion will be provided in the following section). 

Figure 4.3. The spearman correlation analysis was applied on both tasks, 

all individuals were included (N=24). (A) Significant correlation between 

Nogo commission error rate and Go hits response time in visual SART was 

observed. (B) No significant correlation between Nogo commission error 

rate and Go hits response time in auditory SART. 
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The coefficient of variation (CV) of response times (RTs) is hypothesised to reflect 

fluctuations in RTs, indicating episodes of speeding and slowing due to lapses in attention 

(Seli et al., 2012b). The CV of RTs were analysed in separate groups: a full group of 24 

participants [t(23) = 8.389, p < .001] of and a selected group of 19 participants who had a 

commission error rate below 80% in the visual SART [t(18) = 8.171, p < .001]. In both groups, 

significant differences were observed in the CV of RTs between modalities, indicating task-

dependent variability linked to attentional lapses (Figure 4.4). 

Figure 4.4. Coefficient of variation of response time (RTCV). (A) 

Distribution of individual performance and mean of RTCV across all GO 

trials for each of auditory, visual SART (p<.001). All subjects were included 

(N=24).  (B) Performance of coefficient variation of RT across all GO trials 

for subject of those visual SART commission error rate below 80% (N=19) 

(p<.001). 

Spearman correlation was run to assess the relationship between CV computed 

during visual SART and auditory SART. The analysis suggests that there was a statistically 

significant, positive correlation between those two measures [r(19) =.57,p=.01] (Figure 4.5). 

Except for assessing the consistency across modalities. A significant correlation 

was seen between RTCV and commission errors in visual SART (selected group, N=19) 

[r(18)=0.5152, p=0.024]. The effects are stronger in full group (N=24) [r(23) 

=0.6853,p<.001]. However, correlation was not seen in auditory SART in both groups.   
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Figure 4.5. Spearman correlation. Significant correlation 

(r(18)=0.57,p=.011) was seen in RTCV between auditory SART and visual 

SART after the rejection of the subjects whose commission error rate is 

higher than 80% in visual SART (N=19). 
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4.5. Discussion 
This sub-study closely replicates the observation from the previous study (Seli et al., 

2012a). Firstly, significantly improved performance with less commission error rate was seen 

in auditory SART, compared with visual SART; meanwhile, distinctly longer response time 

appear in auditory version. In order to assess whether the slower RTs account for the 

reduced commission errors/better performance, the study revealed a significantly negative 

correlation in visual SART. Additionally, correlation between the two task versions in 

coefficient of variance of RTs (RTCV) was only observed in selected group, which is different 

from the results of previous study that they tested on full group. This discrepancy is likely to 

be attributed by potential noise from the unsupervised online environment, leading the 

analysis to exclude outlier performances in the visual SART. 

4.5.1. What Contributed to the Prolonged Response Times 

Observed in Auditory SART Go Trials 

Unlike visual stimuli, which have a consistent duration of 250 ms, auditory stimuli 

exhibited some unavoidable variations in temporal duration, averaging 0.35 ± 0.0516 s. This 

longer duration of most auditory stimuli compared to visual stimuli could explain the extended 

Go trial response times seen in auditory SART. When assessing the mean response time 

differences between the two versions of SART, it was found that the auditory SART was 

about 240 ms slower, suggesting that the duration differences between the stimuli might not 

be the only predictor of response time differences (Cheyne et al., 2009). Auditory stimuli, 

unlike visual stimuli (which are presented holistically), require a longer processing time due 

to their sequential nature. This provides a wider time window for the responses, potentially 

allowing participants more time to recover from transient attention lapses (Weissman et al., 

2006). This aspect, alongside the speed trade-off discussed later, supports the hypothesis 

that participants were more optimally prepared with auditory tasks, as reflected by the 

prolonged response times. 

4.5.2. What does the Commission Error Reflect 

Scientists regard the underlying cause of commission errors (fail to withhold the 

response to Nogo trials) as sustained attention lapses. In the mindlessness theory, lapses of 

sustained attention are attributed to the subjects’ withdrawal of their conscious attention 
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from monotonous task and redirect their attention to task-irrelevant thoughts or mind 

wondering (Giambra, 1995; Smallwood et al., 2004). Instead, in the resource theory, the 

perspective argued that lapses of sustained attention are primarily attributed to subjects’ 

mental fatigue and the depletion of their limited attention resources (Helton et al., 1999, 2005, 

2009; Temple et al., 2000; Warm et al., 2008). Nevertheless, all the debate are built based 

on the reliance that the causes of SART commission errors is sustained attention lapses.  

Helton (2009) argued that the SART might tap into processes other than just 

sustained attention, such as impulsivity and response strategies. The repetitive nature of 

responses to common signals in SART might encourage a ballistic feed-forward motor 

program that the supervisory attention system struggles to control, particularly when 

multitasking or distracted. For example, the team observed that participants were 

consciously aware of the incorrect response they made during the SART, but cannot prevent 

themselves from pressing the button when the speed was too fast. Thus, it was suggested 

that actively slow response can inhibit this self-assembling feedforward motor program. In 

other words, the hypothesis characterised that the commission error of SART is measuring 

the control ability of this supervisory system. Although one plausible explanation is that this 

constant regulation of the motor response can be regarded as one form of sustained 

attention (Helton, 2009).  

4.5.3. Why Reduced Commission Errors were Performed in 

Auditory SART 

This sub-study replicated the previous finding that the performance of auditory 

SART is better than visual SART regarding to the commission error (Seli et al., 2012a). 

Providing the context, our results suggested that this improved accuracy (reduced 

commission errors) are linked to the reduced Go trial response times (Figure 4.3). Critically, 

the significance is only observed in visual SART. The overall longer response time in auditory 

SART cannot explain the variability of commission errors. This might be attributed by the fact 

that SART is sensitive to the response strategy and subject to the speed-accuracy trade-off 

(Temple et al., 2000; Peebles and Bothell, 2004; Helton et al., 2009, 2010).  

For example, one previous study addressed that a simple alteration in instructions 

emphasizing a slow-and-accurate rather than a fast-and-accurate strategy, producing 

substantial improvements in SART performance (Dang et al., 2018). Additionally, evidence 

was found to suggest that the commission errors measured in SART reduces with increasing 

age, but this reduction is accounted for by the robust slowing of RTs with increasing age 

(Carriere et al., 2010). This is consistent with the earlier theory model, which suggested that 

the responding process of SART should be characterised by three segments. The first 
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segment represents the participants simply reacting to the onset of the stimuli; the second 

segment are the ones characterised by longer response time and improved accuracy 

(stimuli is fully aware and maintained perceptually); the third segment represents the longest 

response time, during which the participants were adapting strategy for achieving high 

accuracy (Wood and Jennings, 1976). 

One important question is whether the dynamics of the speed-accuracy trade-off 

are neurally linked to sustained attention. Sustained attention is not a singular cognitive 

function but a multifaceted process involving multiple sub-components and neural systems. 

Key regions such as the prefrontal cortex, anterior cingulate cortex, and parietal cortex play 

critical roles in this process (Fortenbaugh et al., 2017; Esterman and Rothlein, 2019). The 

speed-accuracy trade-off reflects the cognitive and motor processes of balancing quick 

responses with accurate performance. Variations in sustained attention could potentially 

interact with corresponding neural networks, thus impacting the dynamics of the speed-

accuracy trade-off. Given the above, it is crucial to consider the variability in neural 

processes associated with the speed-accuracy trade-off when examining sustained 

attention. 

 

4.5.4. Visual SART or Auditory SART 

Response time coefficient of variation (RTCV) is a sensitive variable that measures 

the fluctuations in response time, thereby indicating the episodic lapses of attention. This 

sub-study found higher RTCV in visual SART (mean = 0.59) relative to auditory SART (mean 

= 0.31). This discrepancy may be attributed to the faster processing duration of the visual 

stimuli, which makes it more sensitive to moment-to-moment attention lapses (Cheyne et al., 

2009). 

Furthermore, the commission error rate was positively correlated with RTCV in 

visual SART. This observation can explain the large variation in response times: when 

experiencing attention lapses, the participants respond rapidly like an automatic robot, 

leading to errors. After an error occurs, error feedback results in post-error slowing of 

responses. The relatively slower stimulus processing duration and response rate in auditory 

SART makes the task more tolerant to these effects, hence smaller RTCV and commission 

error rates. 

One of the purposes of using SART is to investigate whether the attention lapses 

account for the variability observed in pattern detection performance. It was found that the 

inherent properties of the auditory modality made it easier for participants to achieve high 

accuracy, thus limiting its ability to detect individual variability in attention lapses of healthy 

listeners. Therefore, a rapid response rate might be a more sensitive measure of minor 
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fluctuations in sustained attention, which makes the visual SART a better assessment tool 

for attention lapses and for revealing variability in explicit pattern detection performance. 

4.6. Sub-study 2: Cognitive Underpinnings of 

Auditory Pattern Detection 

4.7. Introduction 
In the behavioural experiment of Study 2 (Chapter 3), participants were tasked with 

identifying the emergence of a regular pattern from random sound sequences, while silent 

gaps of 100 ms, 200 ms, and 500 ms were introduced between tone-pips. These gaps 

resulted in pattern durations of 1500 ms, 2500 ms, and 5500 ms, respectively. When the 

pattern duration was extended to 2500 ms (Gap200), participants still maintained high 

performance with a mean d’ score above 2. However, as the gap was up to 500 ms 

(Gap500), resulting in a pattern duration of 5500 ms, overall performance dropped 

significantly, with a mean d’ score of 0.97. The results also revealed considerable variability: 

some participants achieved near-ceiling performance, demonstrating a strong capability to 

explicitly detect the slow pattern despite its challenging nature. In contrast, nearly half of the 

participants performed at chance level, indicating their inability to identify the pattern. 

Monitoring slow auditory patterns is indeed a challenging task. It demands 

substantial cognitive effort and energy due to the increased processing needs over extended 

timespans. This complexity also stems from the need to handle and manipulate auditory 

information over prolonged periods, which calls for various neural systems. Grasping which 

cognitive elements or computational procedures account for this variability is key to 

illuminate the neural mechanisms at play when listening under challenging conditions. 

Despite its obvious significance, there are still unanswered questions around which specific 

cognitive factors influence explicit auditory pattern detection and how they tie in with 

behaviour performance.  

In this study, it is hypothesised that several cognitive factors may explain the 

variability observed in the pattern detection task. Specifically, both the Gap100 task (fast, 

tone presentation rate = 6.7 Hz) and the Gap500 task (slow, tone presentation rate = 1.8 

Hz) were included to investigate whether cognitive abilities remain consistent across 

different time scales for auditory pattern detection tasks. 
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4.7.1. Auditory Working/short-term Memory 

Auditory working memory refers to the ability to hold and manipulate auditory 

information temporarily during a cognitive task. Its key functions include: 1. Actively 

maintaining and manipulating auditory information. 2. Using executive processes to manage 

this information. 3. Linking auditory information to behaviour (for example, solving a task-

related problem or following task instructions). These functions can be grouped into two 

main components. The first is the central execution, which directs attention and controls 

cognitive processes. The second is the phonological loop, which temporarily stores 

verbal/auditory information. (Baddeley and Hitch, 1974; Daneman and Carpenter, 1980). 

While both of those two components are essential, some studies suggest that the 

phonological component of working memory, rather than executive functions, plays a 

predominant role in various cognitive tasks requiring memory functions, such as the speech-

in-noise (SiN) task (Millman and Mattys, 2017; Lad et al., 2020). Nevertheless, Bianco and 

Chait, (2023) presented compelling evidence that auditory working memory ability is not 

correlated with SiN task performance (Bianco and Chait, 2023). 

The phonological component of working memory appears to be closely linked to 

auditory short-term memory, which primarily relies on activation patterns in the temporal lobe 

and less on executive functions (Cowan, 2019). Unlike working memory, the short-term 

memory is traditionally defined as the ability to temporarily retain auditory information and 

constrained by low-level sensory representation (Cowan, 2008). Nevertheless, several 

established models (Atkinson & Shiffrin, 1968; Cowan, 2008; Harrison et al., 2020) propose 

that this memory process also comprises multiple stages. Initially, information is 

automatically encoded and stored in a high-fidelity auditory memory buffer that preserves 

sensory details. This information is then transferred to a short-term store involving more 

active cognitive processes. Factors such as deliberate encoding strategies (e.g., elaborative 

rehearsal, chunking), domain expertise (e.g., musical expertise), and attentional resources 

can influence the efficiency and precision of this encoding process (Talamini et al., 2017). 

Although the shared neural mechanisms underlying auditory short-term memory and 

working memory remain debated and may evolve with new findings, this study does not 

rigorously distinguish between the two concepts. Instead, I will refer to the memory 

component involved in this task as short-term memory and will focus on the essential 

cognitive processes relevant to the task. 

The auditory short-term memory is believed to be crucial in auditory scene analysis, 

functioning as a temporary repository for integrating and retaining sensory information 

(Sussman, 2005). Auditory streams often consist of multiple elements arranged in specific 

sequences, such as phonemes in speech or notes in music. The short-term memory allows 

the integration of these elements into cohesive patterns, aiding in the computation and 
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interpretation of auditory sources or meanings (Winkler and Cowan, 2005; Cowan, 2008). 

Temporal processing is another critical aspect, as timing and rhythm are essential cues for 

comprehending auditory scenes (Shamma, 2001). The short-term memory functions in 

perceiving temporal relationships between sounds, enabling individuals to discern beats in 

music or parse speech with proper cadence and intonation (Gussenhoven, 2004; Mauk and 

Buonomano, 2004; Hasson et al., 2015). 

This sub-study employed a modified version of the classical auditory short-term 

memory test, 'Tone Pattern Comparison task' (TP-COMP; Figure 4.6) (Schulze et al., 2011; 

Albouy et al., 2013; Graves et al., 2019; Bianco and Chait, 2023) to investigate whether this 

task performance share variability with explicit pattern detection performance or not. 

Participants were instructed to memorize a 500 ms tone pattern (comprising 10 random 50 

ms tones), retained it for 2 seconds, and then compared it to a subsequent probe sound 

pattern. Although structurally similar to the digit span task (Richardson, 2007; Woods et al., 

2011), a traditional measure of active auditory short-term memory, TP-COMP uses rapid, 

arbitrary tone patterns that prevent rehearsal and influence of long-term memory, allowing 

us to measure low-level short-term sensory representations (Bianco and Chait, 2023).  

 

4.7.2. Sustained Attention 

It is hypothesised that maintaining attention over prolonged periods is critical for 

identifying patterns, especially in slow sequences like those featured in our Gap500 task. 

There are several reasons why sustained attention might play a significant role in 

auditory pattern detection. First, attention functions as enhancing the precision of sensory 

representation, facilitating the encoding of auditory signals during information processing 

(Pessoa et al., 2003; Odegaard et al., 2016; Mehrpour et al., 2020). Sustained attention, by 

engaging the brain's executive control network, allows listeners to constantly allocate more 

computational resources to encode or manipulate the target stream while ignoring or 

inhibiting irrelevant sounds, such as background noise in the room (Pessoa et al., 2003). 

Furthermore, evidence suggests that stream formation in auditory scene analysis is also 

influenced by attention. Shamma and colleagues proposed that attention can enhance 

feature salience, modify neural representation, and increase phase coherence among neural 

populations, thereby sharpening the perceptual boundary between the attended stream and 

the background (Shamma et al., 2011). 

Therefore, in this sub-study, the classical visual SART (Sustained Attention to 

Response Task) was implemented, as introduced in sub-study 1, to investigate whether it 

explains variability of explicit pattern detection performance.  
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4.7.3. General Task Engagement and Vigilance 

Task engagement is a critical factor influencing performance. One hypothesis posits 

that variability in the pattern detection task is closely linked to participants' level of motivation, 

given that those experiments were conducted online. To quantify participants' engagement 

and motivation, the Frequency Sensitivity Test (FST) and response times to STEP changes 

(STEP RT) were utilised. Response times to STEP changes serve as an extra metric for 

gauging attentiveness and motivation. Although fundamental processing speed is a factor, 

quicker response times may also indicate increased motivation. This is because motivated 

individuals typically apply their mental effort optimally to maintain high vigilance, leading to 

faster detection of stimuli. Likewise, the Frequency Sensitivity Test (FST) can also measure 

motivation. This test asks participants to differentiate between tones with slight frequency 

differences, a task that is designed to be simple for healthy listeners. Motivated individuals 

often put more effort into staying focused and adhering to instructions accurately, while 

those less motivated may exhibit decreased consistency and accuracy due to distractions.  

Beyond assessing motivational impact, the FST ensures that online participants 

possess normal auditory function and can accurately discriminate pitch variations. This is 

crucial since frequency discrimination correlates with phonological processing, which is 

fundamental for recognizing sound patterns such as spoken language (McArthur and Bishop, 

2004; Hill et al., 2005). Impaired frequency discrimination is commonly associated with 

dyslexia (Baldeweg et al., 1999; Banai and Ahissar, 2004).  

4.8. Methods 

4.8.1. Participants 

224 participants recruited through prolific (www.prolific.co) took part in the study. 

Data from 109 subjects are included in the analysis below (35 females; average age, 24.5 ± 

4.69 years). Data from 3 subjects were rejected due to failure to respond to STEP trials or 

because responses to STEP trials were too slow (same rejection criterion #3 as Study 2). 

Data from 47 did not proceed to the main task due to not passing the pre-determined 

performance threshold in the practice task (same rejection criterion #2 as Study 2). 

Additionally, about 29% of the participants who initially accessed the experiment did not 

pass the headphone screen and therefore did not proceed further (Milne et al., 2020). This 

fail rate is similar to the previous two studies and those reported in Milne et al. (2020).  
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4.8.2. Pattern Detection Task  

Participants completed two types of pattern detection task (those were named as 

Gap100 and Gap500 below). The task and stimuli are same as those used in behaviour 

experiment of Study 2. In all cases tone pips were 50 ms long with frequencies drawn from 

a fixed pool of values with twenty frequencies (logarithmically spaced values between 222 

and 2,000 Hz; 12% steps). The order in which these frequencies were successively 

distributed defined different conditions, that were otherwise identical in their spectral and 

timing profiles. RND sequences (50% of trials) consisted of randomly ordered tone pips. 

RNDREG sequences (50% of trials) contained a transition from a random (RND) to regularly 

(REG) repeating patter. REG sequences were created by drawing 10 different, randomly 

ordered tone pips and repeating that order 3 times. Novel stimuli were generated for each 

trial. To stay consistent with Study 2, the target trial (RNDREG) used in this study consisted 

of 60 tones with the transition from RND to REG always at the 30th tone-pips. The primary 

purpose of keeping the transition time fixed is to ensure all trials contain the same amount of 

information before the transition. It is acknowledged that the potential confound of temporal 

expectation; however, it is believed to be unlikely a major issue, given the limited number of 

trials that experienced by participants. Two control trial types were also included: sequences 

of tone-pips of a fixed frequency (CONT) that lasted 4000 ms, and sequences with a step 

change in frequency partway through the trial (STEP: the change always occurred after 2000 

ms). The STEP trial was for same purpose as previously explained, no silence gaps were 

added in CONT and STEP in this study as well. Importantly, as STEP/CONT stimuli were 

embedded within the pattern detection blocks and served as a good proxy for subject 

vigilance/engagement. It was therefore included among the “cognitive factors” for the 

following analysis. All sounds were generated in MATLAB with a sampling rate of 44.1 kHz. 

Each pattern detection task included 40 trials: 15 RNDREG, 15 RND, 5 CONT, and 

5 STEP. In the Gap100 task, 100 ms silent gaps were added between tone-pips in RND and 

RNDREG sequences, each lasting 9000 ms. In the Gap500 task, 500 ms silent gaps were 

added, extending the sequence to 33000 ms. Participants were asked to respond as quickly 

as possible by pressing the space bar when they detected a RNDREG transition or STEP 

change. Feedback regarding response time, expressed as the number of elapsed tones 

between the transition and the participant's button press, was provided at the end of each 

trial. Performance was measured using response time and d Prime(d’).  

Same as in the behaviour experiment addressed in Study 2, the two tasks were 

presented in a fixed order to ensure that participants could practice sufficiently with the 

easier task (100 ms gap) before moving to the more difficult condition. This approach was 

intended to minimize the impact of unfamiliarity with the basic task rules, ensuring that any 

variability observed in the challenging condition would not arise from a lack of familiarity with 



124 
 

the tasks themselves. Following the two pattern detection tasks, participants proceeded to 

complete three cognitive tasks (in random order). 

 

4.8.3. Visual SART 

The same version of the visual Sustained Attention to Response Task (SART) as in 

sub-study 1 was employed. Digits were displayed at the centre of a computer screen in one 

of five randomly assigned font sizes—48, 72, 94, 100, and 120 points—corresponding to 

digit heights ranging from 12 to 29 mm. The task involved presenting 225 individual digits, 

each shown for 250 milliseconds, followed by a 900-millisecond mask. This mask consisted 

of a 20 mm ring with a diagonal cross at the centre. The presentation followed a paced 

onset-to-onset interval of 1150 milliseconds. Both the digits and the mask were set in white 

against a black background. The primary outcome measured was the percentage of failures 

on no-go trials (commission errors). 

 

4.8.4. Frequency Sensitivity Test (FST) 

Participants in this task must determine whether pairs of tones, separated by a 500 

ms gap of silence, are the ‘same’ (50% of trials) or ‘different’ (50% of trials). The stimuli 

comprise 50-ms tone-pips, gated on and off with 5-ms raised cosine ramps. The frequencies 

are drawn from the same pool as the pattern detection tasks, using only contiguous pairs of 

frequencies in each ‘different’ trial. Each participant heard 39 pairs of tones in total. 

Participants were instructed to respond by pressing button ‘S’ for ‘same’, and button ‘D’ for 

different after heard each tone pair. The outcome measure for this task is the rate of correct 

responses. Despite the task's simplicity, it demands normal hearing and engagement to the 

tone pairs. The performance achieved by listeners is taken as an indicator of healthy listeners 

and also the general task engagement. (Bianco and Chait, 2023) 

 

4.8.5. Tone Pattern Comparison Test (TP-COMP) 

Stimuli. Each trial lasted 3000 ms and included two sequences of tone-pips, each 

lasting 500 ms and containing 10 tones. The pair of sequences was separated by a 2000 

ms silent gap (see Figure 4.6). Each tone-pip was 50 ms long, and their frequencies were 

randomly sampled from the same pool used in the pattern detection tasks for consistency. 

The sequence before the gap represented the memory array, while the sequence after the 

gap was the test array. 
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Task. Participants were required to decide whether two sequences were identical 

or different by pressing button ‘S’ for "same" and ‘D’ for "different". The task comprised 32 

trials, where each trial presented a memory array (encoding phase) followed by the 2 second 

silent gap (maintaining phase), and then the test array (retrieval phase); these arrays were 

identical on half of the trials and differed on the other half through the shuffling of three tones’ 

positions. To prevent primacy and recency effects, the positions of first and last items were 

always unchanged. Novel stimuli were generated for each trial using MATLAB at a 44.1 kHz 

sampling rate, ensuring that each sequence was unique to avoid familiarity effects. The 

outcome measure was the correct response rate, assessing participants' ability to accurately 

discriminate two sequences (Bianco and Chait, 2023). 

 

 

Figure 4.6. The spectrogram of the stimuli in the tone pattern 

comparison task (TP-COMP). Sequences of each trial consists of ten 50 

ms tone-pips separated by 2 sec silent gap. Yellow square represents each 

tone-pip, purple area represents the silent gap. For those ‘Different’ trials, 

three tones’ positions were altered, subjects were instructed to press the 

button once they have made the decision.  

 

 

4.9. Results 
Figure 4.7A displays distribution of d’ performance on the pattern detection tasks 

from the full group of participants (N=109). Repeated measure ANOVA tested on d’ indicates 

a significant difference between task conditions Gap100 and Gap500 [F(1, 108) = 86.952, 

η2 = .446, p < .001], which replicated the results that have observed in behaviour 

experiments of Study 2.  
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            Pattern Detection Simulation (d’ modelling): 

It is important to note that due to the extended duration required to complete the 

Gap500 task, the test block was limited to include only 15 target trials (RNDREG) and 15 foil 

trials (RND). This restricted number of trials inherently results in a wider distribution of chance 

performance. To assess the impact of trial quantity on performance, the d’ scores of 109 

subjects simulating random performance across two scenarios were modelled: one with 15 

trials and another with 100 trials per condition (target or foil). The model assumes that 

participants respond to the trials randomly, irrespective of the number of target trials in the 

test block. The d' score is calculated based on each simulated participant's random 

response. 

The d’ score distribution is displayed in Figure 4.8, as expected, variability in d’ 

reduced significantly with an increased number of trials. This implies that participants who 

cannot discern the pattern in the task might achieve d' scores below or above chance. Thus, 

performance above chance level (d’ = 0) is intermixed with noise, and a d’ score of 0 cannot 

serve as an effective threshold for distinguishing performance. While adding more trials could 

reduce noise, it would also result in participant fatigue due to the longer task duration. This 

limitation of behavioural measures, at least for d', poses inherent constraints. Figure 4.8C 

displays a comparison between human performance on the Gap500 task and the model 

simulation. A one-sample t-test indicates significant differences between these two 

distributions [t(1,108)=10.245, d=1.16, p<0.001]. This implies that the human participants 

were not simply performing at random. For the subsequent analysis, participants who 

achieved d' scores above 0.5 were selected (The 90th percentile was used as a cut-off point 

in terms of the random behaviour distribution from model simulation). 76% of the full group 

(N=109) passed the threshold and was advanced to the subsequent analysis. 

For response time analysis, the study only focused on those participants who 

achieved a sufficiently high accuracy (d’ > 2) so that their response time is interpretable 

(Figure 4.7B). Similar to the response time correction in Study 1 (Chapter 2), raw response 

times were corrected by subtracting the RT to STEP change and then converted to express 

the RT in terms of number of tones. Since the effective transition is theoretically detectable 

after the beginning of the second cycle, it is expected that the RTnumber of tones  to be more than 

10 tones (one cycle of pattern). Our results demonstrate that participants needed an 

average of 18.5 tones after the transition to detect REG in the Gap100 task and about 19.6 

tones in the Gap500 task. Independent-t test confirmed that the response time was 

significantly slower in the Gap500 task relative to the Gap100 task [t(78) = -2.7208, p = .008], 

suggesting that participants required more information to determine the emergence of a 

pattern in the Gap500 condition. 
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Figure 4.7. Performance(d’) and RT number of tones to pattern detection tasks 

for all participants (N = 109). (A) Violin distribution of d’ in the Gap100 task 

and Gap500 task. d’ in Gap100 task is significantly higher than d’ in 

Gap500 task, and increased individual variability was seen when silence 

gap is increased to 500 ms. The dashed line represents the mean 

performance. (B) RTnumber of tones of pattern detection tasks (d’ > 2). 
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Figure 4.8. The simulation of pattern detection task performance 

modelled on the size 109 subjects. The distribution of d’ was plotted for 

each trial number condition. (A) This plot shows the simulation for a trial 

number of 15 for each condition. The performance distribution is normally 

distributed, with d’ ranging from -1.5 to 1.5, and the mean and median 

centred near 0. (B) This plot shows the simulation for a trial number of 100. 

Like the trial number of 15, the performance is normally distributed with the 

mean and median centred at 0. However, d’ ranges from near -0.5 to 0.5, 

a significantly narrower range than in the trial number of 15. (C) d' 

distribution of Gap500 tasks from human subjects compared to the model 

simulation, significant difference was seen between two distributions 

(p<0.001). A threshold of 0.5 was chosen to screen out participants who 

might perform at chance. Approximately 76% of participants fall above this 

threshold. 
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To quantify cognitive task performance, the commission error rate on Nogo trials for 

the visual SART and the correct response rate for both the TP-COMP and FST tasks (Figure 

4.9) were measured. Unsurprisingly, the data revealed substantial variability across all 

cognitive measures. But can any of this variability explain individual differences in pattern 

detection performance? To address this question, the study employed the multiple linear 

regression model with d’ scores in the pattern detection task as response variable, 

performance on the TP-COMP, FST, SART tasks, and STEP change response time as the 

predictors, to investigate whether/which cognitive factor could explain the observed 

variability in d’.  

 

 

 

Figure 4.9. Substantial variability was observed from all cognitive 

measurements. The distribution of the outcome measures from tasks TP-

COMP, FST, visual SART, and STEP RT from Gap100 task and Gap500 

task. Each dot represents the individual performance.  

 

The full group (N=109) in the Gap100 task was analysed since all participants 

performed above chance and d’ is therefore interpretable. An additional point of interest is 

that this condition is quite fast, allowing to assume a degree of automaticity in performance 
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(i.e people have reduced ability to explicitly track the pattern). The model was tested on the 

d’Gap100 and cognitive measures (visual SART, STEP RT, TO-COMP, FST). The output 

revealed that the independent measures significantly accounted for 15% of the variability 

[R2=0.15, F(4,104)=4.597, p=0.002]. The regression expression is as follows: d’Gap100 = 

−0.987 + (0.02*STEPRT) - (0.211*SART) + (0.208*FST) + (0.254*TP-COMP). Specifically, 

TP-COMP (p = 0.007), visual SART (p = .022) and FST (p = .025) contributed significantly 

to the model. 

A similar analysis was conducted on the performance in the Gap500 task, focusing 

on the subjects who achieved above chance performance (d’ > 0.5).  

The model with d’ Gap500 as the dependent variable, performance on the TP-COMP, 

SART, and FST tasks along with the STEP response time in Gap500 test block as predictors 

demonstrated that the independent measures explained 12.8% of the d’ variability of d’Gap500 

[R2 =0.128, F(4,77)=2.831, p=.03]. The regression equation was: d’Gap500 = -0.48 + (-

0.103*STEPRT) + (2.97*TP-COMP) + (-0.055*SART) + (0.115*FST). Within this, only TP-

COMP (p = .008) contributed to the model with significance while other measures did not. 

This suggests that the large variability seen in the Gap500 task is predominantly driven by 

variability in auditory short-term/working memory abilities of subjects. 

It is hypothesised that participants who achieve ceiling performance in the Gap100 

task are more likely to be highly engaged, familiar with the task, and exhibit high baseline 

performance. Thus, their performance in the Gap500 task is expected to predominantly 

reflect variability due to individual differences in tracking pattern across different time scales, 

rather than task familiarity or engagement. To minimize the irrelevant ‘noise’ and enhance 

the signal of interests in the d’ distribution, the subsequent analysis focuses specifically on 

participants who demonstrated ceiling performance (d’ ≥ 3) in the Gap100 task. (Figure 

4.10). For each of these participants (N = 22), the difference between their d’ performance 

on the Gap100 task and Gap500 task was computed. As suggested by Figure 4.11, there 

is a large variability in performance on the Gap 500 task. Some participants maintained a 

high level of performance whereas others exhibited near chance performance despite doing 

exceptionally well on the Gap100 task. 

The next aim is to determine whether there is an interaction between task conditions 

(Gap100 and Gap500) and cognitive factors. Multiple regression model with d’ Gap500, Gap100_Diff  

as the dependent variable, performance on the TP-COMP, SART, and FST tasks along with 

the STEP response time in Gap100 and Gap500 test blocks as predictors demonstrated 

that the independent measures explained 69.6% of the d’ variability of d’Gap500, Gap100_Diff 

[R2 =0.696, F(5, 16) = 7.314,p < .001]. The regression equation was: d’ Gap500_Gap100_Diff = -

9.673 + (-0.462*STEPRT_Gap100) + (-0.171*STEPRT_Gap500) + (0.615*TP-COMP) + (-

0.159*SART) + (0.257*FST). Within this, TP-COMP (p < 0.001) contributed to most of the 



131 
 

variance with significance, confirming the critical role of short-term memory when the time 

scales of the stimulus were extended. Besides, the STEP RT in Gap100 task also contributes 

to the model with significance (p=0.009), revealing that smaller the differences (more 

consistency across tasks) between d’Gap500 and d’Gap100, the faster the STEPRT in 

Gap100 is (more engaging and motivated the participant was). However, this was not seen 

in STEP RT in Gap500 task, which might intriguingly stem from increased task complexity 

(e.g. more cognitive efforts and cognitive processes such as strategy applications were 

involved in the task) resulting in greater variability in STEP response times, therefore a less 

direct relationship between response times and the task performance can be statistically 

identified in that condition.   

 

 

 

Figure 4.10.  Large variability in Gap500 task were still observed despite 

the fact that all subjects can achieve ceiling peformance in Gap100 task. 

Violin distribution of d’ in two tasks, and the d’ differences. The coloured 

dashed line within the distribution represents the mean. 

 



132 
 

            

 

Figure 4.11. Spearman Correlation. (A) Participants with d’ > 0.5 in Gap 

= 500 pattern detection (N = 82) were included. TP-COMP performance is 

positively correlated with d’ in Gap = 500 ms (p < .01) task. (B) Participants 

with d’ > 3 in Gap100 pattern detection task (N = 22) were included. The 

d’ differences between Gap500 task and Gap100 task is positively 

correlated with TP-COMP performance (p < .001). 

 

 

4.10. Discussion 
This sub-study aimed to delineate the cognitive factors explaining the individual 

variability of pattern detection performance in the Gap100 and Gap500 tasks. The attention 

was particularly placed on the auditory short-term memory (TP-COMP task), the sustained 

attention (SART task), the basic auditory processing, as well as the general task motivation 

(FST and STEP RT). The findings provide novel insights into the differential contributions of 

these cognitive factors based on the temporal characteristics of the auditory pattern 

detection tasks. 

 

4.10.1. Sustained Attention and Frequency 

Discrimination's Role in Gap100 Task Performance 

Frequency Sensitivity Test (FST): The regression analysis showed that the 

Frequency sensitivity Task (FST) significantly accounted for individual variances in the 

performance of the Gap100 task (p = 0.025). This result is consistent with research by 
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Bianco and Chait (2023), who used a similar task to predict performance variance in sound 

pattern detection across various age groups. However, unlike their 20 Hz presentation rate, 

this experiment used a slower presentation rate (6.7 Hz, Gap100 task) of sound sequences. 

Despite these methodological differences, both studies suggest that the variability reflected 

by the FST (is hypothesised to be primarily reflecting the task engagement), which predicts 

the pattern detection performance across different rapid temporal scales (Bianco and Chait, 

2023).  

Critically, the impact of the FST was not significant in the Gap500 task performance. 

One possible explanation is that monitoring rapid sequences (Gap100) may require less 

cognitive effort compared to the slower sequences. The lower performance on the Gap100 

task could be due to the reduced engagement, as this task—similar to the simpler FST 

task—does not demand extensive cognitive resources. However, the longer pattern task 

(Gap500) may exceed mere engagement requirements for successful performance. The 

substantial individual variability observed suggests that cognitive limits cannot merely be 

enhanced through increased motivation. Such interpretation is supported by the short-term 

memory, which is the solely significant predictor in the data. Moreover, given the extended 

duration of sound sequence in the Gap500 task, additional cognitive processes are likely 

engaged (i.e. strategy application). For instance, this task's increased mental demands may 

activate more complex neural strategies aimed at achieving specific goals. Such increased 

complexity introduces greater variability in performance outcomes, which in turn results in a 

less straightforward statistical correlation between the Frequency Sensitivity Test (FST) and 

d' scores in Gap500 task. 

 

Sustained Attention to Response Task (SART): The SART also emerged as a 

negative predictor of Gap100 task performance (p = 0.025). The Gap100 task, being 

relatively fast paced, requires participants to monitor auditory stimuli continuously and 

respond swiftly. The significant contribution of sustained attention to performance aligns with 

previous findings (Helton, 2009), which demonstrated that the lapses in sustained attention 

impair performance in rapid auditory tasks. Moreover, Cheyne et al. (2009) emphasised that 

the visual SART is sensitive to moment-to-moment attentional lapses. Following this, it is 

possible that participants in Gap100 task may experience more attentional lapses due to the 

stimuli’s fast-paced nature, thus impacting decision-making and execution processes 

(Cheyne et al., 2009). From the execution perspective, Helton (2009) also linked fast-paced 

tasks to the control ability of the supervisory system (executive network), particularly in 

situations where participants are aware of making incorrect responses but cannot inhibit 

them due to the task's fast speed (Helton, 2009). This inability to inhibit motor responses 

may explain some of the variability in Gap100 performance attributable to sustained attention. 

Alternatively, it is also possible that the shared variability is mainly accounted by the 
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heightened awareness that is required to monitor the rapid task such as Gap100. Since 

SART also demands constant vigilance to meet task objectives.  

 

4.10.2. Auditory Short-Term Memory Predicts 

Performance in Explicit Sound Pattern Detection 

Across Two Time Scales 

Auditory short-term memory, measured by the TP-COMP task, positively predicted 

performance in both the Gap100 and Gap500 tasks. This finding also aligns with Bianco and 

Chait (2023), which drew a similar conclusion. The result emphasised the consistent role of 

short-term memory across various temporal scales of auditory pattern detection, from a 20 

Hz tone presentation rate (see Bianco and Chait, 2023) to a 1.8 tone presentation rate 

(Gap500 task). 

Memory Processes in Gap100 Task: In the fast-paced Gap100 task, pattern 

detection requires listeners to maintain a sensory representation of the pattern that serves 

as evidence for comparative analysis. Given the presentation rate of the Gap100 sequence 

(6.7 Hz), which is relatively fast, it is hypothesised that detection relies largely on automatic 

tracking, where the pattern 'pops out' perceptually. The shared variability between TP-

COMP and Gap100 performance suggests the involvement of a task-independent, low-level 

sensory memory component common to both cognitive processes. 

Memory Processes in Gap500 Task: Unlike the Gap100 task, the presentation 

rate of the Gap500 task is slower (1.8 Hz). In this task, the TP-COMP significantly predicted 

the performance. It was the only cognitive factor among all measures that did so, highlighting 

the fundamental role of short-term memory in detecting slow patterns. Nevertheless, it is 

noteworthy noting the slower-paced nature of explicit pattern tracking, which suggested that 

multiple cognitive processes may contribute to the observed variability and interacted with 

the behavioural processes associated with TP-COMP.  

For instance, cognitive strategies like auditory rehearsal has been found to be 

capable of enhancing task-related memory representations (Greene, 1987; Buchsbaum et 

al., 2005). Moreover, participants could deliberately track salient sounds in both the TP-

COMP and Gap500 tasks rather than retaining entire sound sequences. This strategic 

tracking allows them to maintain pattern-relevant information over the longer intervals 

presented in the Gap500 task. 
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4.10.3. Implications for Neural Mechanism 

The role of short-term memory in explaining individual variability in pattern detection 

task performance was consistently observed, as evidenced by the shared variability 

observed between the TP-COMP and both Gap100 and Gap500 tasks. This finding aligns 

with earlier research, such as that by Bianco and Chait (2023), which demonstrated 

correlations between the TP-COMP and tasks involving even more rapid pattern durations. 

Notably, the Gap500 task, which shows substantial individual variability, identified short-term 

memory as the only significant predictor. These results underscored the pivotal role of 

auditory sensory/short-term memory supporting the ability to detect complex patterns. 

Beyond the short-term memory, it is likely that the observed relationship between 

the TP-COMP and pattern detection task could be explained by the involvement of high-

level executive components of working memory, given that the TP-COMP task actively 

engages in the execution and manipulation of information (feature of working memory). This 

is particularly relevant for Gap500 task, given the auditory system’s limited capacity to store 

sensory details for extended periods, resulting in an alternative approach for tasks that 

require prolonged temporal engagement (Keller et al., 1995). As discussed before, listeners 

might selectively attend to certain salient sounds within the sound sequence in both tasks.  

There are two primary reasons why such adaptations are theoretically plausible and 

crucial for interpreting our results. First, the slower pace of tasks like the Gap500 provides a 

more extended time window, allowing the brain to engage higher-level neural pathways, 

such as rehearsal and logical reasoning. This was supported by the research in both human 

and animal models that areas like the dorsolateral prefrontal cortex (also involved in working 

memory) are more actively engaged during tasks that allow for these higher-level processes 

due to the longer task duration (Miller et al., 1996; Curtis and D’Esposito, 2003). In contrast, 

tasks that involve rapid sequences, where the swift presentation constrains the time 

available for higher cognitive processes, rely more on automatic sensory processing (Scott 

et al., 2006; Griffiths and Hall, 2012). In addition, as discussed previously, rapid sensory 

inputs are evolutionarily linked to situations signalling danger or requiring immediate 

response, thereby prompting the brain to activate attentional and vigilance mechanisms 

(Jasmin et al., 2019). Moreover, the constraints of memory capacity are evident as sensory 

representations decay over time (Hardt et al., 2013). In tasks requiring monitoring slower 

stimulus, this decay makes sensory information particularly vulnerable, forcing listeners to 

develop alternative strategies to maintain and manipulate this information to achieve task 

goals. 
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4.11. Conclusion 
In summary, this sub-study provides compelling evidence that different cognitive 

factors are differentially implicated in auditory pattern detection tasks with varying temporal 

demands. In scenarios where auditory patterns are presented at a rapid pace, the 

predominant factors that predict performance revolve around task engagement, general 

vigilance, and short-term memory ability. This is evidenced by significant correlation with all 

testing metrics such as the FST, SART and TP-COMP. 

Conversely, as the demands on efforts increase with slower pattern, the key 

determinant of performance shifts towards auditory short-term memory. This transition 

underscores the primary role that memory plays in the tracking of extended sequences. It 

indicates that when the task requires the retention and manipulation of information over 

longer periods, memory capacity becomes the major factor that contribute to the variability 

of the performance metrics, overshadowing the influences of motivation and attention.  

However, since the interpretations are constrained by the behavioural nature of this 

study. As discussed above, the shared variability between TP-COMP and pattern detection 

tasks may extend beyond short-term memory capacity to include processes such as explicit 

information manipulation (as involved in working memory) and the application of cognitive 

strategies. To further explore these dynamics, my next study aim to delineate specific 

cognitive processes by recording brain activity under passive listening. I employed EEG to 

explore the neural correlates of the unsupervised pattern detection process, independent of 

top-down attention. This study further assesses the relationship between the neural 

correlates of auditory patterns and individual variability of short-term memory, as evaluated 

through TP-COMP measurements. 
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5. Chapter 5: Sensitivity to Complex Sound Patterns 

is Correlated with Auditory Short Term Memory 

 

5.1. Introduction 
The brain does not merely record the world passively; rather, it actively constructs 

a sensory representation of the perceived environment. Accumulating evidence including 

Study 2 suggests that the brain automatically attunes to complex auditory patterns across 

various time scales, exhibiting heightened sustained responses to predictable sequences as 

opposed to unpredictable ones (Barascud et al., 2016; Southwell et al., 2017; Southwell and 

Chait, 2018; Hu et al., 2024). This sensitivity has been hypothesised to reflect the brain’s 

ability to encode the predictability of sensory input. More recently, this neural correlation has 

been substantiated by evidence as 'precision' — a key concept which is central to predictive 

coding theory (Zhao et al., 2024). As reviewed in the general introduction, precision is 

defined as the degree of inferred predictability of sensory inputs, effectively representing the 

inverse variance of the top-down predictive distribution (Friston, 2010). 

To recognise sound pattern, the brain must formulate predictions about forthcoming 

sounds and test these predictions against the actual sensory input received. This cognitive 

process requires the brain to maintain an elaborate record of previous sound sequences, 

using the stored information to both construct and refine a generative model continually. 

Research indicates that the dynamics of sustained responses, supported by the network of 

auditory cortex, inferior frontal cortex and hippocampus, may serve as manifestations of this 

generative model (Barascud et al., 2016; Zhao et al., 2024).  

Theoretically, the success of the model is dependent on the auditory memory's 

ability to preserve the necessary information. As Barascud et al, (2016) suggests, sustained 

response amplitudes gradually decline with increasing sound pattern complexity. This 

suggests that while the brain uses predictability in regular patterns to forecast auditory 

events, more complex (complexity here is defined as a greater number of tones are included 

within the pattern) and longer patterns potentially place greater demands on memory 

resources. As sequences become longer and more complex, the sustained response 

amplitude decreases. This correlation might reflect a greater work load required for 

information processing and memory retention, therefore serving as an indicative of memory 

capability (Barascud et al., 2016). Building on this, Southwell et al. (2018) provided EEG 

evidence from participants who listened passively to sound sequences that were either 

random or regular, punctuated by occasional deviant tones. Similarly, their findings showed 
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a more pronounced sustained response to regular sequences over random ones. However, 

deviations within these regular sequences evoked significantly stronger and more distinct 

neural responses than those in random sequences. This suggests that regularity may reduce 

the cognitive load needed to analyse stimuli, potentially easing the burden on memory 

capacity. These observations further forge a link between sustained neural responses and 

the brain's limited memory capacity (Southwell and Chait, 2018). 

Furthermore, observations from Study 2 demonstrate that lengthening the auditory 

pattern duration from 500 milliseconds to 2500 milliseconds significantly diminishes the 

sustained neural response to those patterns compared to shorter ones. This differential 

response indicates that longer sequence durations might intensively challenge the memory 

system, thus offering insights into the dynamics of auditory memory and its capacity (Hu et 

al., 2024). Age-related differences provide additional support for this relationship. The study 

conducted by Herrmann et al. (2022) explored how aging affects neural responses to 

auditory patterns in younger and older adults. The team found that while older adults 

demonstrated heightened responsiveness to the initial sounds, their sustained neural activity 

to regular auditory patterns was significantly reduced compared to younger adults 

(Herrmann et al., 2022). The authors proposed that this reduction in neural activity suggests 

an age-related decline in the auditory system's ability to process and maintain information 

over time, a degeneration that perhaps corresponds with the memory commonly associated 

with aging (Gazzaley et al., 2005).  

Beyond research on regularity, neural evidence from memory studies provides 

compelling evidence that sustained neural activity is closely linked to memory processes. 

For example, Curtis and D'Esposito (2003) reviewed the role of sustained neural activity 

sourced from dorsolateral prefrontal cortex (DLPFC) in working memory (WM). The single-

unit recordings from the monkeys suggested that during the retention intervals of delayed 

response tasks, persistent, elevated levels of neuronal firing are observed in the DLPFC. 

FMRI findings on humans further corroborate this, showing sustained activity in DLPFC 

under similar task conditions. Notably, the study emphasised that both the duration and 

intensity of this sustained activity, relative to the number of items retained in memory, are 

crucial indicators of the DLPFC's processing efficiency in maintaining phase (Curtis and 

D’Esposito, 2003). Additionally, Axmacher et al. (2007) explores the neural mechanisms 

within the medial temporal lobe (MTL) that has been hypothesised to support WM functions. 

The researchers utilised intracranial EEG (iEEG) and fMRI to observe WM-specific sustained 

neural activity, analysing the effects of maintaining single or multiple items (photographs of 

faces) in memory. The study discovered that maintaining an increasing number of items 

induced both a negative shift in the direct current (DC) potential and an increase in gamma-

band activity within the MTL. This observation suggests that those neural activity are 

modulated by the WM load, in particular, the sustained activity varied depending on the 



139 

number of items retained. Those findings provide direct evidence that the sustained activity 

measured in MTL which contains the hippocampus and parahippocampus, is inversely 

correlated with memory load (Axmacher et al., 2007).  

Intriguingly, Kumar et al. (2021) systematically investigated the neural 

underpinnings of auditory working memory (AWM) by analysing local field potentials (LFPs) 

across various brain regions involved in auditory processing. Employing 

electrocorticography (ECoG), the researchers focused on the oscillatory activity within the 

auditory cortex, inferior frontal cortex, and the hippocampus during tasks that required 

maintaining sounds in memory. The study observed distinctive patterns of sustained neural 

activity, specifically noting an enhancement in delta and theta oscillations and a suppression 

of beta and gamma frequencies during the memory maintenance phase. Even though this 

study only required participants to retain a single tone over a delay period, it still identified 

the same critical network. The network, involving the auditory cortex, inferior frontal cortex, 

and hippocampus, is associated with sustained responses observed in regularity detection. 

(Barascud et al., 2016; Hu et al., 2024). This shared neural network shed light on the 

possible connection between those two processes (Kumar et al., 2021b). 

Taken together, the accumulated evidence provides an insightful perspective into 

the potential association between sustained neural responses of regularity detection and 

memory functions. These neural activities are crucial for understanding the neural 

mechanisms through which the brain analyse and represent sensory information. Despite 

these advances, evidence linking these specific neural dynamics directly to memory 

capabilities has yet to be established. 

5.1.1. The Goal of the Study 

Auditory short-term memory is believed to be crucial in auditory scene analysis, 

functioning as a temporary repository for integrating and retaining sensory information 

(Sussman, 2005) Importantly, this memory component is also known to be limited by low-

level sensory representation and is prone to decay over time. To this end, this study 

employed the Tone Pattern Comparison task (TP-COMP; Figure 5.2A), the same task that 

was used in Study 3 (See Chapter 4), specifically designed to assess the active components 

of auditory short-term memory for sound patterns. In this task, participants are required to 

memorize a 500 ms tone pattern composed of ten 50 ms tones, retain this information for 2 

seconds, and then compare it to a subsequent probe pattern. The TP-COMP, which involves 

rapid, arbitrary tone sequences, essentially measures the encoding, retention, and retrieval 

phases of memory processing. Therefore, it is hypothesised that the memory function 

variability as measured by TP-COMP might explain those individual variability observed in 
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sustained neural responses to sound patterns (Richardson, 2007; Woods et al., 2011; 

Recasens et al., 2015). 

Study 2 investigated the brain responses to repeated, regular patterns and random 

sound sequences across two time scales: fast rate (20 Hz, 0 ms inter-tone interval, ITI) and 

slow rate (4 Hz, 200 ms ITI). Behavioural assessment at 4 Hz reveals high sensitivity to the 

pattern emergence across all participants. Although the slower pattern elicited a diminished 

sustained response compared to the faster pattern which suggests memory limitation, the 

relatively stronger response to the patterned versus random sequence suggests that the 

memory demands of the task were manageable for those participants. This indicated that 

the 2500 ms pattern duration may not have been sufficiently challenging to elicit varied 

responses that could demonstrate significant differences in memory capabilities among 

individuals. Additionally, since  Study 2 used a 200 ms inter-tone interval (ITI), analysis 

focused primarily on the early stages of auditory processing, such as the P1/M50 and 

N1/M100 components (Hu et al., 2024). However, observations from previous research 

suggests that later stages of phase-locked responses are also indicative of information 

processing and statistical learning (Näätänen, 1990; Paavilainen, 2013; Maheu et al., 2019). 

For instance, the knowledge of high-order community structure embedded within image 

sequences arise around 500ms after stimuli onset and well predict behavioural performance 

within trial (Ren et al., 2022); Moreover, ERP such as P300, which is commonly identified 

after 300ms post-stimulus onset, is suggested to be sensitive to both global and local 

statistical context in auditory sequences (Kolossa et al., 2015).   

This brings us to the question of how to design the paradigm for this study. As 

observed in Study 2 and Study 3, the behaviour findings related to explicit pattern detection 

exhibited a substantial variation at a longer pattern duration of 5500 ms (Gap500 task). 

Performance differed significantly among participants, with some performing exceptionally 

well and others at chance. Likely, the regression analysis in Study 3 suggests that these 

differences originate from individual variations in auditory memory, as indicated by the Tone 

Pattern Comparison task (TP-COMP), which significantly predicted performance. This 

finding supports the idea of a shared cognitive mechanism between explicit pattern detection 

and auditory short-term memory. However, it is still unclear about the underlying neural 

mechanism that predominantly contribute to the variability since multiple processes could 

be involved. As discussed in Study 3, except for the known procedures of sensory encoding, 

retention, and information manipulation (attention involved) in the tone-pattern comparison 

task. Other higher-level cognitive processes, such as strategic application (the listener might 

monitor the salient sound to identify the change in two tasks), may also explain the 

correlation. 

Building on these insights, the current study extended the examination to implicit 

pattern detection, and aims to explore the interplay between auditory short-term memory 
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capabilities and the neural correlates of pattern sensitivity in the absence of voluntary 

attention. A silent gap of 500 ms between tone-pips (presentation rate of 1.8 Hz) in both 

regular pattern (predictable) and random (unpredictable) sequences were introduced, 

extending the pattern duration up to 5500 ms. Naïve participants listened to these 

sequences while watching a movie of their choice, with EEG recording their brain signals. 

Post-recording, participants completed the TP-COMP task.  

This study pursues two primary goals: first, to explore how short-term memory 

contributes to tracking predictability in scenarios where attention is not actively employed; 

second, to assess whether the neural mechanisms underlying later time intervals (200-

500ms relative to tone onset) of tone-evoked activity are indicative of regularity encoding. 

5.2. Methods 

5.2.1. Experiment 

5.2.1.1. Stimuli 

Stimuli were sequences of 50-ms tone-pips, each gated on and off with 5-ms raised 

cosine ramps (Figure 5.1A). Frequencies were selected from a pool of 20 values equally 

spaced on a logarithmic scale from 222 to 2000 Hz (12% steps). Two sequence types were 

created: REG sequences were generated by randomly selecting 10 frequencies from the 

pool without replacement. These were arranged in a specific (randomly determined) order 

to form a pattern, which was then repeated three times. New REG patterns were generated 

for each trial. RND sequences also consisted of 10 frequencies, similarly, selected anew for 

each trial and presented in random order. All sequences contained 30 tone-pips, presented 

with a 500 ms inter-tone silent gap (1.8 Hz rate; 5500ms REG cycle duration; 16.5 sec 

overall sequence duration). Stimulus delivery was in blocks.  Each block consisted of 10 

REG and 10 RND trials. A total of 5 blocks (100 trials) were delivered, with each condition 

presented 50 times in a randomised order. 

5.2.1.2. Procedure 

The experiment was implemented in Psychophysics Toolbox in MATLAB (Kleiner, 

Brainard, Pelli, & Ingling, 2007) and conducted in a sound-proof booth. EEG signals were 

recorded by Biosemi system (Biosemi Active Two AD-box ADC-17, Biosemi, Netherlands) 

with 64 Ag-AgCl electrodes at a 2048 Hz sampling rate and subsequently downsampled to 

256 Hz. The recording was restarted for each block. Auditory stimuli were delivered 

binaurally via tube earphones (EARTONE 3A 10 Ω; Etymotic Research) inserted into the ear 
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canal. The loudness was adjusted to each participant's comfort. The experiment lasted a 

total of 40 minutes.  

The experimental session began with an auditory functional localiser block, lasting 

about 3 minutes. This block featured a randomised sequence of 180-200 pure tones (1000 

Hz frequency, 150 ms duration), each followed by a random interstimulus interval (ISI) 

between 700 and 1500 ms. This process served as a control to ensure a reasonable signal-

to-noise ratio. 

In the main experiment, participants passively listened to randomly presented stimuli 

with an inter-stimulus interval (ISI) of 3000-4500 ms, while watching a silent movie of their 

choice. Unaware of the auditory stimuli's nature, participants were encouraged to focus on 

the movie. The session was divided into five 8-minute blocks, with short breaks allowed 

between blocks while participants remained still. 

5.2.1.3. Participants 

Thirty-four naïve participants with normal pure-tone thresholds (≤ 20 dB) in 

standard audiometric frequencies (0.25–8 kHz) participated in the study. Data from two 

participants were discarded due to excessive noise, and data from another two were 

discarded due to a trigger malfunction resulting in data loss. Hence, data from 30 

participants (19 female; average age, 24.7 ± 4.63) are reported below. All subjects were 

fluent in English, had normal or corrected-to-normal vision, and were reimbursed for their 

time. They had no history of hearing impairment or neurological disorders. The research 

ethics committee of University College London approved all experimental procedures 

described in this study, and written informed consent was obtained from each participant. 

 

5.2.2. Data Analysis 

5.2.2.1. Detrending  

Before preprocessing, robust detrending was performed using a 10th order 

polynomial fit (de Cheveigné and Arzounian, 2018), with the fitted values subsequently 

subtracted from the original continuous signal. This was done to reduce common drifts in 

EEG recording, especially since the stimulus used in this study is particularly slow. This 

approach (as opposed to high pass filtering) helps preserve the slow dynamics (sustained 

response) that are phase-locked to the stimulus and are of interest in this study. 

5.2.2.2. EEG Data Preprocessing  

All pre-processing and time domain analyses were conducted using the fieldtrip 

toolbox (http://www.fieldtriptoolbox.org/, (Oostenveld et al., 2011). Low-pass filtering was 

http://www.fieldtriptoolbox.org/
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applied at 30 Hz (all filtering in this study was performed using a two-pass, Butterworth filter 

with zero phase shift). To analyse time domain data, the 10 most responsive channels for 

each subject were identified. This was done by combining tone responses collapsed from all 

conditions and identifying the N1 component (80-120 ms) of the onset response (Näätänen 

and Picton, 1987; Stufflebeam et al., 1998). For each subject, the 10 most strongly activated 

channels at the peak of auditory N1 (5 most positive, 5 most negative) were selected to best 

represent auditory activity for all subsequent time-domain analyses. This procedure served 

the dual purpose of enhancing the relevant response components and compensating for 

any channel misalignment between subjects. 

5.2.2.3. Sequence Evoked Response 

First analysis focused on responses to the sequence, with particular interests on low 

frequency activity as a potential marker of predictability tracking (Barascud et al., 2016; 

Southwell et al., 2017; Hu et al., 2024). High-pass filter was not used in this analysis. The 

data was segmented into epochs of 16.5 seconds, starting from 200ms prior to onset until 

the end of each trial. These epochs were then baselined to the pre-onset interval (200ms) 

and averaged for evoked response analysis.  

To minimize low frequency drift artifacts and enhance signal noise ratio that is locked 

to the trial, denoising source separation (DSS) was applied as those was done in Study 2, 

following the method (de Cheveigné and Parra, 2014), three most significant components, 

which exhibited the highest reproducibility across trials, were identified and projected back 

into sensor space for each subject. 

5.2.2.4. Tone Evoked Response 

A secondary analysis was focused on neural responses to individual tones in REG 

versus RND sequences. To identify activity linked to each tone-evoked response, which 

might be obscured by slow neural dynamics, the raw data were high-pass filtered at 1.5 Hz. 

The filtered data were then segmented into individual tone epochs, spanning from 50 ms 

before to 500 ms after tone onset. Denoising Source Separation (DSS) was applied to the 

tone-evoked responses and the three most significant components were projected back to 

the sensor space for each participant. Responses from tones within each cycle were then 

averaged, producing three time series. This was done for each condition per subject. The 

time series were baselined based on the activity before the onset of the tone (50ms).  

5.2.2.5. Statistical Analysis 

The time domain data is summarised as root-mean square (RMS) across ten most 

responsive channels for each subject. As suggested by Study 2, RMS is a useful summary 

signal because it reflects the instantaneous power of the neural response, regardless of 

polarity that reflected by electrodes. For illustration, this study shows the group-response 



(average of individual RMSs) and standard error across subjects. However, statistical 

analysis is always conducted across subjects. To assess differences between conditions 

(RND vs REG), RMS differences were calculated at each time point for each participant. A 

bootstrap resampling (Efron and Tibshirani, 1998) with 1000 iterations were then applied to 

the entire epoch. A significant difference was considered if the proportion of bootstrap 

iterations that were either above or below zero exceeded 95% (i.e., p < 0.05). To keep the 

statistical comparison transparent, for time intervals where significant differences were not 

theoretically expected (e.g. during the baseline period, or during the first cycle where REG 

and RND are indistinguishable), those identified clusters are presumed to be due to noise, 

were therefore marked as light grey in the figures below. The longest cluster identified in this 

way was used as a threshold for significance for the rest of the epoch, such that only clusters 

that exceed this duration are considered to be significant.  

5.2.3. Tone Pattern Comparison Task (TP-COMP): 
Following the EEG recording session, a behavioural task was carried out to evaluate 

the participants' deliberate auditory short-term/sensory memory ability (Schulze et al., 2011; 

Albouy et al., 2013; Graves et al., 2019). Participants were only informed of this task after 

the EEG session has concluded. 

The task was similar to that reported in (Bianco and Chait, 2023) and Study 3: The 

stimuli contained two 500 ms tone-pip sequences separated by a 2000 ms silent gap (see 

Figure 5.2A). The sound sequences were comprised of ten 50 ms tone-pips drawn from the 

same pool described for the EEG stimuli above. Different patterns were drawn on each 

trial. The two sound sequences before and after the gap were matched on 50% of the 

trials (‘same’ trials) and differed in the other trials (‘different’ trials). The sequences in the 

‘different’ trials were created by switching the positions of 3 of the 10 tones. The 

positions of the shuffled tones were randomly chosen on each trial, except for the first 

and last tones, to avoid primacy and recency effects. The instructions were to listen 

carefully to the sound sequences and press one of two keyboard buttons to indicated 

whether the two-tone sequences were the same or different (“S” for same and “D” for 

different). Participants then completed 32 trials. Feedback was provided after each trial. 

The correct response rate was used to quantify performance.  

Before proceeding to the main task, subjects were given a practice task with 10 

trials to ensure they understood the task structure. All sounds were generated anew for each 

subject in MATLAB at a 44.1 KHz sampling rate and stimulus delivery was controlled with 

psychotoolbox. Stimuli were delivered over Sennheiser HD558 headphones via a UA-33 
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sound card. The testing took place in the same booth as the EEG experiment. The task, 

including instructions, took approximately 5 min to complete.  

5.2.3.1. Time Frequency Analysis 

Time-frequency representations of EEG data during REG and RND conditions were 

derived using a wavelet-based approach, implemented via the FieldTrip toolbox. Continuous 

wavelet transforms were applied to each sound sequence evoked trial (see Figure 5.1A for 

stimuli example) across a frequency range of 1.5 - 30 Hz, with a frequency resolution of 0.1 

Hz steps. A wavelet width of 5 was utilised to achieve an optimal balance between time and 

frequency resolution. The most responsive 10 EEG channels for each participant and all 

trials in each channel were included in this analysis. Padding was set to a minimum of 2 

seconds to mitigate edge artifacts during the time-frequency transformation. 

The analysis focused specifically on the activity evoked by the third cycle of tones 

within each sequence. Due to the applied padding, only the first nine tones of cycle 3, 

spanning from 11 seconds to 15.95 seconds relative to the onset of the first tone, were 

included. Time-frequency representations for the averaged tone-evoked activities across 

nine tones were baselined from -500 ms to 0 ms prior to each tone onset. Subsequently, the 

data were averaged across 10 selected EEG channels for each participant to refine the 

spectral outputs. 

Statistical comparisons between two distinct groups of subjects—TP-COMP high 

performers (N=14) and low performers (N=16)—were conducted using FieldTrip’s 

implemented function ft_freqstatistics. This analysis employed a Monte Carlo method 

coupled with an independent samples T-test to robustly determine significant differences 

between the groups across all assessed frequencies and time points. To ensure the reliability 

of the findings, 1000 random permutations were executed, and the significance threshold 

was established at an alpha level of 0.05, based on a two-tailed distribution. 
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Figure 5.1. Brain response (A) Spectrogram of example REG and RND 

sequences used in the EEG experiment. All stimuli consisted of thirty 50 ms 

tones (3 regularity cycles in REG sequences; 16.5 s long), with 500ms 

silent gaps between tones. Naïve participants listened to the sound 

sequences passively while watching a movie. It is hypothesised that if the 



brain monitors the transition probabilities between tones in the unfolding 

sequence, responses to REG and RND should be differentiated during the 

second cycle (when the pattern begins to repeat). Ideal observer-based 

estimates (e.g. Barascud et al, 2016) suggest an ideal observer requires 

roughly 3 or 4 tones（marked by the dashed line）after the onset of cycle 

2. (B) EEG response evoked by REG and RND sequence. The top panel

displays group RMS across a frequency range of 0-30 Hz for the full group

of 30 participants (N=30). The two traces represent the average power

during the presentation of regular (REG) versus random (RND) tone

sequences. The shaded areas denote the standard error. The black bars

below the graph indicate periods where the power differences between

REG and RND conditions are statistically significant (p<0.05), suggesting

that the regular patterns evoke a differentiable neural response at certain

time points. The bottom graph in Panel A shows group RMS in a narrower

frequency band of 1.5-30 Hz which emphasizes the tone-evoked activity

(1.8 Hz).

5.3. Results 
Neurophysiological (EEG) responses to auditory sound sequences were examined 

in thirty participants and related to short-term memory abilities probed with a Tone Pattern 

Comparison Task (TP-COMP).  

5.3.1. Sequence-Evoked EEG Responses Suggest Regularity 

Extraction 
The study explores brain responses to sound sequences, with a particular focus on 

the slow, sustained EEG response. The core question being investigated is whether the brain 

can automatically (outside of behavioural relevance) recognise slow REG patterns (cycle 

duration of 5500ms). This is being studied by testing whether brain responses to 

REG patterns differ from matched random sequences (RND). The upper graph of Figure 

5.1B presents the group neural activity (mean and standard error of individual RMSs) to 

RND and REG sequences. A typical onset response is observed, which is then 

followed by a heightened level of sustained activity. This ongoing activity is 

punctuated by clear fluctuations at 1.8 Hz, mirroring the frequency at which the tones 

were presented. This observation is consistent with past MEG work, which has 

reported a similar pattern of sustained neural activity for patterns presented at 4 Hz (Hu 

et al., 2024). 
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Intriguely, a subtle enhancement in this sustained neural activity is observed when 

the brain is processing REG sequences in comparison to RND ones, particularly evident from 

the third cycle onwards. This suggests the brain exhibits sensitivity to patterns despite the 

effects is small.  

5.3.2. Performance in Tone Pattern Comparison Task 

exhibit Significant Variability 

The Tone Pattern Comparison Task (TP-COMP) serves as a classical method for 

evaluating participants' auditory short-term memory (Schulze et al., 2011; Albouy et al., 

2013; Graves et al., 2019). Participants engage with this task by listening to pairs of tone 

sequences and determining whether each pair is same or different. The analysis reveals 

significant variability in participant performance, as depicted in Figure 5.2B.  

The distribution of correct scores was consistent with a prior study (Bianco and 

Chait, 2023) and Study 3, with mean and median around 62% but quite a large variability 

across participants, likely reflecting variance in short term memory capacity. To further 

explore the relationship between task performance and brain activity, participants were 

divided into two groups based on the median performance score of the group distribution. 

This split resulted in one subgroup, ‘Mem – high performers” displaying good ability in 

recognizing changed tone patterns, and another subgroup ‘Mem – low performers” 

performing below the median, indicating less sensitivity to changes in the sequences. 

5.3.3. TP-COMP Performance Associated with Differential 

EEG Responses to REG Patterns 

The ability to monitor the structure of the sensory signal and identify the regularity is 

believed to be inherently intertwined with memory process. Therefore, this study explored 

the connection between participants' TP-COMP performance and the neural responses to 

sound sequences, as measured by EEG.  

Remarkably, Mem – high performers demonstrated a pronounced enhancement in 

sustained neural responses to REG sequences, discernible from the second cycle of REG 

presentations, in contrast to RND sequences (illustrated in Figure 5.3A). This amplification 

in DC amplitude underscores a heightened neural activation to auditory regularities in high 

performers. Conversely, Mem – lower performers exhibited no significant differentiation in 
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their EEG responses to REG versus RND sequences, indicating a potential link between TP-

COMP performance and the neural encoding of auditory patterns (as shown in Figure 5.3B). 

Figure 5.3D consolidates the conclusion of interaction, presenting a comparative 

analysis of neural activity (REG-RND) between the two performance groups. Notably, 

significant clusters (p<0.05, bootstrap resampling) were identified from the third tone in the 

second REG cycle until the end of the sequence.  

To further investigate potential correlations between sensory memory performance 

and sustained response dynamics across subjects, an exploratory Spearman correlation 

analysis between the difference in sustained response (REG vs RND) and the performance 

on TP-COMP was conducted. The correlations were conducted over 0.5 s intervals 

sampling the entire epoch (Figure 5.3D).  The analysis revealed significant clusters (p<0.05), 

mainly within the 7.5-11 sec time interval, which corresponds to cycle 2 of REG – the initial 

period over which REG becomes theoretically detectable.  The observation of correlation 

provide evidence that the link between sensory memory and the sustained response may be 

specific to this initial period where strong differences (DC started to diverge between RND 

and REG) are observed between conditions.  



Figure 5.2. Memory task performance. (A) Examples of the stimuli used 
in the Tone Pattern Comparison Task (TP-COMP). Participants listened to 
two trials of a 500ms tone sequence, separated by a 2-second silent 
interval. They were then asked to indicate whether the two sequences were 
the same or different. In the 'different' trials, the positions of three tones 
were altered. However, the first and last tones were never changed to avoid 

primacy and recency effects. (B) Distribution of correct rates in the TP-

COMP across all participants (N=30). The central dot at 0.62 indicates the 
median correct rate, while the thickness of the shaded area at different 
levels of correct rate suggests the density of participants scoring at that 
level. The plot shows variability in performance. 
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Figure 5.3. Sequence evoked EEG responses grouped based on TP-

COMP performance.  (A) Group RMS mean over time for participants who 

scored above the median in the TP-COMP (N=14). The orange line 

indicates neural responses to regular (REG) tone sequences, while the 

green line shows responses to random (RND) sequences. The shaded area 

represents the standard error. Notably, there are power increases for the 

REG condition during cycles 2 and 3, as revealed by horizontal bar (black 

marks p<0.05, red marks p <0.01) at the bottom. This suggests enhanced 

stimulus processing in REG relative to RND. Note that the significant 

clusters observed during the pre-stimulus interval and first cycle, where no 

differences between REG and RND were expected, are labelled as grey. 

This applies to the clusters observed in the later time domain, where any 

identified clusters shorter than the longest cluster observed in those noise-

attributed time intervals are also labelled as grey. (B) Group RMS mean 

over time for participants who scored below the median on the TP-COMP 

(N=16). Similar to panel A, two lines represent the average power for REG 

and RND sequences, with shaded areas indicating error. In this case, the 

lines overlap considerably, and no significant difference between REG and 

RND conditions was found. This suggests a less pronounced neural 

response to the stimulus' regularity. (C) Direct comparison between 

memory performance groups. The plot compares the neural responses 

differences of REG and RND between memory (TP-COMP) high 

performers and memory low performers. The memory high performers 

(shown in red) exhibit a significantly higher difference between REG and 

RND relative to the low performers. (D) The Spearman correlation between 

the difference in sustained response differences (REG vs RND) and correct 

score of TP-COMP was conducted with bin of 0.5 sec (2 Hz) over the entire 

trial duration. Each purple bar represents the Spearman correlation 

coefficients at each bin. Yellow shaded areas mark the time intervals where 

a significant correlation (p < 0.05; FWE uncorrected) was observed. 

5.3.4. Tone-Evoked Responses Indicate Regularity 

Encoding 

Following the sequence-evoked response, the phasic responses (1.5 – 30 Hz) 

elicited by tones presented in either regular (REG) or random (RND) sequences for all 30 

participants were analysed.  The extracted EEG data was divided into epochs, ranging from 

50 milliseconds before to 500 milliseconds after each tone onset, centring the analysis on 

the exact moments when the brain processes each individual tone. 
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Figure 5.4 displays the group tone responses averaged across each REG cycle, 

and the corresponding ten tones of RND. The neural processing of individual tone is 

associated with four distinct peaks summarised by the root mean square (RMS) of the tone-

evoked activity. The P1 component (40-60ms) appears at approximately 50 milliseconds 

after tone onset, indicating the brain's early sensory processing of the auditory signal. 

Following is the N1 component (80-120ms), peaking around 100 milliseconds, which is an 

early neural marker influenced by the predictability of auditory stimuli and highlights the 

brain's responsiveness to sensory signal (Todorovic and Lange, 2012; Hu et al., 2024). 

Subsequently, the P2 component (180-230ms), which arises close to 200 milliseconds post-

tone, signals a deeper level of auditory processing that is hypothesised to be engaged in 

some aspect of the stimulus classification process (Crowley and Colrain, 2004). The final 

component, peaking around 330 milliseconds (250-400ms), appears to coincide temporally 

with N2 or N300 as reported in previous literatures (Näätänen, 1990; Renoult et al., 2012; 

Kumar et al., 2021a). However, no consistent hypotheses about the neural processes 

underlying this time interval exist, and it appears to be a component influenced by the 

stimulus context. For instance, the N2 component is noted for its sensitivity to various 

contexts, such as the detection of perceptual novelty or template mismatch (Crowley and 

Colrain, 2004). The topographic maps of the scalp voltage distribution for each neural 

component are shown in Figure 5.4. Interestingly, the N2 response exhibits a frontocentral 

distribution, with maximal negative amplitude observed at central midline electrodes, which 

exhibit similar topographic pattern as N1 (more discussion about N2 will be provided in the 

next section).  

No differences were seen in cycle 2 where the evidence of regularity has been 

accumulating. However, in cycle 3, significantly increased power evoked by REG relative to 

RND are seen in P2; and more significantly reduced power evoked by REG compared to 

RND are seen in N1 and N2.  

To evaluate whether and how REG and RND condition-specific tone-evoked 

responses change over time, the average evoked field differences between tones presented 

in the first and subsequent cycles were calculated. As the responses to the initial tones (the 

first two tones in Cycle#1) were influenced by onset-response activity, the last eight tones of 

each cycle (Cycle#1, tones 3-10; Cycle#2, tones 13–20; and Cycle#3, tones 23-30) were 

extracted and averaged. The average tone-evoked response during Cycle#1 (calculated 

across the time window of each neural component P1, N1, P2, and N2) were subtracted 

from that of Cycle#2 and Cycle#3 to assess how regularity modulates tone responses over 

the evolution of cycles. The results are displayed in Figure 5.4D.  

For P1 (40-60ms), repeated measures ANOVA with sequence condition (RND or 

REG) and cycle number as factors found no significant effects of sequence condition 

(F(1, 29) = 0.339, η2 = 0.012, p = 0.565), cycle number 
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(F(1, 29) = 0.708, η2 = 0.024, p = 0.407), or their interaction 

(F(1, 29) = 1.924, η2 = 0.062, p = 0.176).  

For P2 (180-230ms), there were no significant effects of sequence condition 

(F(1, 29) = 2.231, η2 = 0.074, p = 0.138), cycle number 

(F(1, 29) = 2.987, η2 = 0.064, p = 0.169), or their interaction 

(F(1, 29) = .056, η2 = 0.002, p = 0.815).  

For N1, a significant effect of cycle number was observed 

(F(1, 29) = 19.616, η2 = 0.403, p <.001) where the cycle#3-cycle#1 exhibited reduced 

amplitude compared to cycle#2-cycle#1. However, there were no significant effects of 

sequence condition (F(1, 29) = 0.355, η2 = 0.012, p = 0.556) or the interaction of those two 

factors (F(1, 29) = 2.104, η2 = 0.071, p = 0.148).  

For N2 (180-230ms), there were no significant effects of sequence condition 

(F(1, 29) = 0.03, η2 = 0.001, p = 0.869), cycle number 

(F(1, 29) = 0.826, η2 = 0.028, p = 0.371), or their interaction 

(F(1, 29) = 2.168, η2 = 0.07, p = 0.152). 

The reduced N1 amplitude between cycle#3-cycle#1 and cycle#2-cycle#1 was 

observed in both RND and REG conditions, as shown by ANOVA. Significant differences in 

N1 for cycle#2-cycle#1 and cycle#3-cycle#1 in the RND condition were further confirmed 

by a one-sample t test. This test compared the values to zero, indicating a consistent 

reduction relative to cycle 1 [Cycle#2: t(1,29) = −3.1088, d = −0.5679, p = 0.0042; Cycle#3: 

t(1,29) = −5.4675, d = −0.9982, p <0.001]. The same test for the REG condition also 

showed significant effects [Cycle#2 t(1,29) = −4.5209, d = −0.8254, p <0.001; Cycle#3 

t(1,29) = −8.5236, d = −1.5562, p <0.0001]. This finding contrasts with the MEG findings 

that identified differences distinctively in the regular (REG) condition (Hu et al. 2024) and did 

not detect significant impact of cycle positions on N1 responses in both regular and random 

conditions. However, this experiment reveals an unexpected pattern, where N1 amplitudes 

is reducing over cycles.   
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Figure 5.4. Tone response across each cycle of REG and corresponding 

timing in RND. (A) Tone evoked activity in cycle 1. Four distinctive ERP 

components are visible, P1 (40-60ms), N1 (80-120ms), P2 (180-230ms), 

N2 (250-400ms).  Any differences between conditions here (indicated in 

light grey) are considered noise and used as a threshold of significance in 

cycle 2 and cycle3. (B) Tone evoked activity in cycle 2. The Regularity (REG) 
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started to establish in this cycle, however, no significant differences were 

seen between conditions in any ERP components. (C) Tone evoked activity 

in cycle 3. Regularity has been theoretically established in this cycle. 

Significant differences between conditions were seen in different ERP 

components.  The black and red horizontal bar represents the statistical 

significance. The grey horizontal bar indicated intervals that did not pass 

the cluster threshold. The topographical maps represent the scalp voltages 

averaged across each time interval of interest. (D) To test how the mean 

amplitude of neural components changes over the course of cycles, the 

difference from the first cycle was calculated over the time interval of P1 

(40-60ms), N1 (80-120ms), P2 (180-230ms), and N2 (250-400ms) for the 

second and third cycles in REG and RND. Only the last eight tones in each 

cycle were included in this analysis to avoid the onset response in the first 

cycle. Statistical differences between the cycle differences and zero were 

tested using a one-sample t-test in each condition, and the p-value was 

labelled on top of each distribution. Significantly reduced responses were 

observed only in N1 with both RND and REG. Specifically, REG shows a 

stronger magnitude of reduction over the course of cycles compared to 

RND in N1 time window. 

 

5.3.5. Inter-Group Comparisons of Phasic Responses 

Highlight Variations in Auditory Processing of 

Individuals 

Similar to the sequence-evoked response analysis, the relationship between neural 

responses to individual tones and short-term memory performance were examined. For this, 

participants were categorised based on their performance on the TP-COMP similarly as 

sequence response analysis (Figure 5.5).  

Figure 5.5A displays the averaged tone-evoked activity in each cycle of REG and 

corresponding time interval of RND. The low performer group did not show any significant 

effects, but significant clusters were observed for the high performers, as indicated in Figure 

5.5A.  

Figure 5.5B shows the interaction between participants' group categories (high and 

low performers, based on TP-COMP scores) and the type of sequence (random or regular). 

Here, significant clusters were detected exclusively within the N2 component's timeframe 

(250ms - 400ms), highlighting a link between the N2 component and short-term memory 
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capabilities. The independent t test examined the group differences between mean 

amplitude over the N1and N2 time window, confirming the significantly reduced amplitude 

[t(1,29)=-2.6739, d=-0.9785, p=0.0124] of N2 in Mem-high performers, compared to low 

performers. No significance was seen in N1 [t(1,29)=-1.1836, d=-0.4331, p=0.2465].  

To summarize, for the tone-response level, a whole group analysis suggested 

potential differences between REG and RND during the N1, (RND>REG; consistent with Hu 

et al, (2024)), P2 (REG>RND; but this is difficult to interpret due to baselining, and the 

increase in P2 typically coincides with the reduction in N1) and N2 (RND>REG).  A 

comparison between the low- and high- memory performers also revealed a specific 

difference between groups in the N2 range, with high memory performers exhibiting 

significant differences between conditions in that interval exclusively.  

To investigate whether the observed relationships extend to individual differences, 

a Spearman correlation analysis was conducted. This analysis examined the relationship 

between TP-COMP scores and neural activity throughout the entire tone epoch - baseline-

corrected at tone onset - across participants (refer to Figure 5.5C). Interestingly, negative 

correlations were noted between TP-COMP performance and the N2 time interval, 

suggesting the better short-term memory ability is associated with the larger differences 

between RND and REG. Notably, within the N2, statistical significance was only observed 

within the 0.25-0.3 sec post-tone onset across subjects. In addition to the potential for false 

positives, these findings suggested that only specific neural processes underlying the tone-

evoked response are correlated between short-term memory ability and regularity encoding. 

Finally, the neural oscillations that could potentially explain the observed group 

differences in the time domain were analysed (Figure 5.5B). The comparison of time-

frequency domain for tone-evoked activity in cycle 3 between TP-COMP high performers 

and TP-COMP low performers is illustrated in Figure 5.5D. Significant clusters of activity are 

observed across multiple event-related potential components, namely P1, N1, P2, and N2, 

manifesting as a broadband pattern. Notably, slow theta-like oscillations were initially 

observed from tone onset until approximately 250 ms, subsequently re-emerging between 

330 ms and 410 ms. During the N2 time interval, where persistent and significant differences 

between the two groups were observed (see Figure 5.5B), the time-frequency 

representation reveals a broadband encompassing theta, alpha, and low beta frequencies. 

These findings suggested that participants who perform above the median on the TP-COMP 

task exhibit reduced brain activations in response to tones within a REG sequence in cycle 

3, compared to a RND sequence. This reduction in neural activity spans multiple frequency 

bands, indicating that the observed differences during the N2 interval may be attributable to 

multiple neural processes. Interestingly, those results align with the recent MEG study which 

suggests that increased alpha and beta power are associated with disruption of learned 

music sequences (Bonetti et al., 2024). 
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Figure 5.5. Tone response comparison between TPCT above median 

performers and below median performers. (A) Tone evoked response. 

Left column shows tone responses of memory high performers in TP-

COMP (N=14) and the right shows those memory low performers (N=16). 

One row for each cycle, demonstrating the power averaged across tones 

in each cycle. Red and black horizontal bar represents the significant 

cluster. Grey bar represents the noise-attributed clusters (see methods). 

(B) Between group comparison. The bottom graph shows the tone 

response difference (REG-RND) in each group. The upper graphs 

represent the mean response distribution of each time window of interest 

across participants in each group. Statistical comparison suggests a 
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significant difference in N2 (250-400ms) between memory high performers 

and low performers; that those memory high performers exhibit a reduced 

N2 response in REG relative to RND. (C) Correlation analysis. The 

Spearman correlation between the difference in tone response (REG-RND, 

cycle 3 of REG and corresponding time interval of RND, baselined from 

tone onset) and correct score of TP-COMP was conducted with bin of 40 

ms over the tone epoch across all subjects (N=30). Each brown bar 

represents the Spearman correlation coefficients summarised within each 

bin. Dashed square mark the time intervals exhibit significant effects (p < 

0.05; FWE uncorrected). Negative correlation coefficients with statistical 

significance are observed within the time interval of N2, specifically 

between 0.25-0.3 sec. (D) Time frequency domain of tone response in 

cycle 3. The RND-REG differences comparison between TP-COMP high 

performers and low performers. Warm colour represents stronger RND-

REG power differences. Cold colour represents stronger REG-RND power 

differences. The black line marks the clusters that exhibit significance (p < 

0.05).  

 

5.3.6. Enhanced Early Auditory Response was Observed in 

Memory Task High Performers 

This study further examined whether individuals' baseline auditory responses 

(collapsed across REG and RND evoked tone responses), differ based on their performance 

on the TP-COMP, as shown in Figure 5.6. Analysing the tone responses from the first cycle 

across both REG and RND conditions, it was found that participants with TP-COMP scores 

above the median (Mem – high performers) exhibited significantly enhanced P1 and N1 

responses, potentially indicating more efficient early sensory encoding of auditory stimuli 

(Näätänen and Picton, 1987; Stufflebeam et al., 1998). Interestingly, this enhanced 

encoding was not evident in later neural components like P2 (Crowley and Colrain, 2004) or 

N2 (Folstein and Van Petten, 2008). 

To investigate the relationship between neural responses and behavioural 

performance across subjects, the Spearman correlation analyses between TP-COMP 

scores and P1 and N1 amplitudes was conducted. However, as suggested by Figure 5.6B's 

scatter plots, no significant correlations for either P1 (rho=0.22, p=0.17) or N1 (rho = 0.29, 

p=0.11) were observed. The lack of significant correlation between P1, N1 amplitudes and 

TP-COMP scores suggests that those early sensory processing biomarkers are not the 

solely predictors of individual performance on TP-COMP. The observed correlation across 
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subgroups might indicate that participants who possess better sensory encoding precision 

tend to detect the tone pattern change better. However, the ability to detect the change also 

requires the ability of maintaining the complex tone pattern and retrieving the information 

when necessary. This could be attributed to the task's dependence on neural processes 

such as memory, which extend beyond the initial sensory encoding. 

 

 

Figure 5.6. Tone-evoked activity in cycle 1. (A) Tone responses 

averaged across the first cycle for both RND and REG in each group of 

performers. The blue line represents high performers in the memory task 

(TP-COMP), and the pink line represents low performers. Statistically 

significant differences between groups were observed in the P1 (40-

60ms) and N1 (80-120ms) components. (B) Scatter plots for neural 

responses in P1 (0.04-0.06 s), N1 (0.08-0.12 s) averaged across cycle 1 

and TP-COMP scores. Spearman correlation between correct scores on 

the memory task and mean amplitudes for P1 and N1 components are 

provided in each plot. The aim is to test whether these two ERP 

components correlate with memory task performance as suggested by 

Figure A. However, the upper plot illustrates a non-significant correlation 

for the P1 amplitude (rho = 0.22, p = 0.17), and the lower plot shows a 



slightly stronger, yet still non-significant correlation for the N1 amplitude 

(rho = 0.29, p = 0.11). 

5.3.7. Correlation Between Tone-evoked Activity and 

Sustained Response 
In this study, the analysis reveals that the N2 response (250-400ms) which is 

hypothesised to be associated with more advanced neural processing (Näätänen, 1990), is 

significantly correlated with memory performance revealed by TP-COMP (see Figure 5.5C). 

Interestingly, as indicated by earlier analysis, a significant correlation is also observed 

between the amplitude of sustained responses and memory performance across 

participants, particularly in 7.5-11 sec of cycle 2 (Figure 5.3C,D). It is important to mention 

that the amplitude of sustained responses is hypothesised to reflect the precision coding of 

sensory signals (Zhao et al., 2024). Therefore, to further explore the potential link between 

tone-evoked activity (N1, N2) and sequence-evoked activity (sustained response), the mean 

amplitude of the sustained response and tone responses (N1 and N2) were extracted and 

correlated. Specifically, the Spearman correlation was conducted on the REG-RND 

difference in the tone-evoked response (high-pass filtered, see Figure 5.4), and the REG-

RND difference in the sustained response (low-pass filtered, as shown in Figure 5.1B) during 

Cycle#2 (7.5-11 s, when the response to REG began to diverge from RND, see Figure 5.1B) 

and Cycle#3 (11-16.5 s), across all participants. 

The results presented in Figure 5.7 indicate a moderate but significant negative 

correlation between the REG-RND difference in sustained responses and those of N1 

response (rho = -0.40, p = 0.02) in Cycle 2. However, this significance value did not survive 

the p value threshold after the Bonferroni correction (p value threshold = 0.0125).  
Meanwhile, no significant effects are observed between the N2 response and the sustained 

response in the same timeframe (rho = -0.17, p = 0.36). 

Interestingly, in Cycle 3, when the pattern has been theoretically established, the 

correlation between the N1 response and sustained response does not reach statistical 

significance (rho = -0.27, p = 0.14). Conversely, a significant correlation is seen between the 

N2 response and the sustained response (rho = -0.45, p = 0.012), and the significance value 

also survived the Bonferroni correction, providing strong evidence that the more reduced 

responses of N2 in REG compared to RND are associated with the increased enhancement 

in sustained response in REG relative to RND in Cycle 3. 
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Figure 5.7. Scatter plots for neural responses in the 7.5-11 s (Cycle 2) 

and the 11-16.5 s (Cycle 3) time windows. Spearman correlation 

between mean amplitude of sustained response differences (REG-RND) 

and REG-RND differences of N1 (0.08-0.12 s), N2 (0.25-0.4 s) are 

provided in each plot. Blue dots represent high performers in TP-COMP, 

pink dots represent low performers. (A) The correlation of neural activity, 

averaged across the time latency of the DC shift (where the divergence 

between REG and RND occurs) to the end of cycle 2 (see Figure 5.1B), 

shows a moderate negative correlation (rho=-0.4, p=0.02, uncorrected). 

This suggests that more reduced REG response relative to RND in N1 

amplitude are associated with increased enhancement of REG response 

relative to RND in the sustained response across subjects. (B) No 

significant correlation was observed in Cycle 2 for N2. (C) Similar analysis 
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was conducted on time interval of Cycle 3; no significant correlation was 

seen for N1. (D) A significant negative correlation was observed for N2 

(rho=-0.45, p=0.012, uncorrected) in cycle 3. This suggests that as the 

sustained response of REG relative to RND increases, the N2 amplitude of 

REG relative to RND decreases. 

5.4. Discussion 
In this study, electroencephalography (EEG) was utilised to measure the brain 

activity in human participants. The participants were engaged in passive listening to sound 

sequences that were either predictable or unpredictable. Two types of neural responses 

were investigated: sustained responses, to assess sensitivity to sequence regularity, and 

phasic responses, to evaluate event-evoked activity for individual tones. Following the EEG 

recording, participants were administered with the Tone Pattern Comparison Task (TP-

COMP) to evaluate their auditory short-term memory capabilities. 

The findings revealed a pronounced increase in the power of sustained responses 

upon the establishment of a regular pattern. Notably, the magnitude of this effect was 

modulated by the TP-COMP performance. Participants with higher task scores 

demonstrated a greater brain response distinction between the regular patterns (REG) and 

random sequences (RND), while the lower scorers exhibited negligible differences. This 

pattern of response also extended to phasic activity during the N2 time window following 

tone onset, with the higher TP-COMP scores correlating with a greater separation in N2 

responses. Furthermore, the correlation analysis indicated that the differences in sustained 

responses between REG and RND conditions were inversely related to differences in N2 

responses, suggesting that the two neural components might share the common underlying 

mechanisms, or be influenced by the same neural pathways.  

5.4.1. Shared Neural Processes Between Implicit Sound 

Pattern Detection and Auditory Short-term Memory 

This study explored the relationship between the sustained neural responses 

evoked by sound patterns and individual performance in the tone pattern comparison task 

(TP-COMP). The task revealed that the higher-performing individuals exhibit more 

pronounced sustained responses to sound patterns compared to their lower-performing 

counterparts. As previously discussed, the brain's ability to recognise sound patterns relies 

on maintaining a record of past auditory sequences so that it can be used to compare with 



164 
 

the incoming sensory inputs. This process has been found to be facilitated by the sustained 

neural responses within a network comprising the auditory cortex, inferior frontal cortex, and 

hippocampus (Barascud et al., 2016; Hu et al., 2024). In specific, hippocampus is known to 

be the primary hub for memory function in the brain, playing a role in both long-term and 

short-term memory (Kumaran, 2008), it is therefore hypothesised that this correlation might 

be associated with the engagement of hippocampus.  

To support the above, relevant scenario such as research conducted by Kumar et 

al, (2014), demonstrated that human listeners could discriminate repetitive noise patterns 

through unsupervised learning upon prolonged auditory exposure. Using fMRI and multi-

voxel pattern analysis, the authors found that hippocampus played an essential role in 

encoding long-term auditory experiences, which supports the noise pattern recognition 

(Kumar et al., 2014).  

Indeed, hippocampus has been extensively reported across various studies related 

to working/short-term memory (Kumar et al., 2016, 2021b; Tsetsenis et al., 2023). However, 

it is important to note that the behaviour outcome measured by the TP-COMP task is 

accounted for different cognitive procedures, each potentially engaging specific brain 

regions crucial for supporting these processes. In other words, the correlation observed 

between sustained response and behaviour performance in current study could be 

explained by any stage assessed by the task.  

To clarify the brain areas which are associated with the two stimulus comparison 

task, some previous studies have attempted to examine the neural involvement at each 

stage (Kaiser, 2015; Quentin et al., 2019; Yuan, 2019). For example, empirical evidence 

from fMRI data (Kumar et al., 2016) showed that during the encoding phase, listeners who 

are exposed to auditory stimulus (i.e. tone) would engage the auditory cortex. The 

maintenance phase, which involves retaining stimuli in memory, is found to be facilitated by 

sustained activation in both the auditory cortex and the hippocampus. Additionally, the study 

suggested that the inferior frontal gyrus supported the stabilisation during this phase, which 

is enhanced by its functional connectivity with the hippocampus. During the retrieval phase, 

participants compare a probe stimulus with the memorised one, significantly engaging both 

the hippocampus and frontal regions. 

Furthermore, Kumar and colleagues explored the neural correlates of this auditory 

working memory. They tested the same paradigm on patients with medically implanted 

electrodes in regions related to auditory working memory. The analysis of local field 

potentials (LFPs) confirmed the sustained neural activity patterns in various brain regions 

during the maintenance phase of auditory working memory (AWM). The primary auditory 

cortex exhibited an increase in delta power along with a general suppression of higher 

frequencies, specifically in the beta and gamma ranges. Concurrently, the medial temporal 
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lobe regions, including the hippocampus and parahippocampal gyrus, demonstrated an 

enhancement in low-frequency activities, predominantly in the delta and theta bands, 

coupled with a reduction in high-frequency oscillations (Kumar et al., 2021b). Following that, 

it is plausible to hypothesise that the enhanced sustained responses observed in this study 

are likely linked to neural sources sharing mechanisms with low frequency oscillations such 

as delta, as suggested by Kumar's findings. 

However, it is important to emphasize that this study did not demonstrate a 

significant correlation over the full trial of the sequence evoked activity across subjects (see 

Figure 5.3D), instead the above significant effects were only observed within cycle 2, where 

the sustained response evoked by the REG started to diverge from the RND. Specifically, 

this is the point when the neurons effectively detected the transition, hence the neural 

process underly the REG and RND started to differentiate. One explanation is that the signal 

to noise ratio is relatively higher in this dynamic process. Alternatively, this might suggest the 

neural circuits, responsible for signalling the pattern emergence (i.e. as indicated by the DC 

shift), are specifically interacted with the neural pathways of the TP-COMP.  

Overall, as the TP-COMP performance variability may be accounted by multiple 

cognitive processes, future research should aim to measure the neural responses to both 

tasks and examine their temporal and spatial relationships, in order to further elucidate these 

complex interactions. 

 

5.4.2. Neural Processes Underlying N2 are Associated with 

Regularity Encoding 

Introducing silent gaps between successive tones has allowed to dissociate the 

neural responses that phase locked to each individual tone. Interestingly, the analysis in this 

study revealed a significant reduction in the N2/N300  time interval (250ms - 400ms post-

tone onset) of phasic activity (1.5-30 Hz) for tones that consist regular pattern compared to 

a random sequence (see Figure 5.4). This suggested that the neural processes underlying 

this specific time interval exhibit sensitivity to the auditory sequential regularity (auditory 

context). Although this negative deflection have not been widely documented in past 

auditory literature, several studies have provided insights related to their association with the 

processing of unexpected or deviant auditory events compared to a standard input 

(Näätänen, 1990). 

One relevant study by Besson et al. (2007) investigated how musical training 

enhances pitch perception within music, revealing that musical training sharpens the ability 

to detect pitch variations (Besson et al., 2007). The EEG data suggested that musicians tend 
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to exhibit more pronounced responses to subtle pitch changes compared to non-musicians, 

as evidenced by the N300 responses, which peak at 300ms after the sound onset, to pitch 

incongruities. This study demonstrated that the N300 component is crucial for illustrating 

auditory acuity that allows for the detection of subtle discrepancies in pitch, suggesting its 

sensitivity to the statistics of auditory context. Interestingly, the team also found that the 

response is particularly enhanced in musicians, an indicative that music training can 

significantly improve auditory processing. Their observations are further illuminated by 

evidence showing a correlation between musical proficiency and performance in short-term 

memory tasks (Fujioka et al., 2006; Parbery-Clark et al., 2009; Chandrasekaran and Kraus, 

2010). In addition, musician’s enhanced sensitivity to stimuli statistics for musicians was also 

reported from the previous study (Shook et al., 2013). Furthermore, the N300 component is 

featured in a more recent work by Randeniya et al. (2022). In their experiment, participants 

were exposed to a stochastic oddball paradigm while listening to sounds of varying 

frequencies, and the purpose was to test the brain's response to deviations from standard 

embedded within stochastic auditory patterns. The EEG data analysis revealed that the 

N300 time window is sensitive to the auditory context, with stronger responses to uncertain 

(deviant) sound relative to the certain (standard) sound. This observation led researchers to 

interpret this neural component as possibly representing the prediction error signal, 

highlighting its role in auditory context processing (Randeniya et al., 2022). 

Although the N2/N300 component was not commonly reported in auditory research, 

it has been extensively explored within the field of vision and shares similar characteristics 

as the component discovered in this study (McPherson and Holcomb, 1999; Schendan and 

Kutas, 2002, 2003, 2007). Crucially, one insightful research utilised the predictive coding 

theory to explore the nature of N300. Through a series of experiments focusing on how the 

N300 is modulated by statistically regular and irregular visual scenes, researchers 

discovered that the amplitude of the N300 is significantly reduced when responding to 

regular scenes compared to irregular ones. This finding suggested that the N300 is sensitive 

to the statistical properties of visual inputs, indicating its role in processing prediction errors 

within visual information (Kumar et al., 2021a). 

Since the N2’s timing is relatively late compared to phase-locked responses 

observed in learning based on local statistics, such as stimuli occurrences and transitional 

probabilities (Todorovic and Lange, 2012; Maheu et al., 2019). Thus, this component 

appears to be less likely to stem from low-level bottom-up computations. As inspired by some 

previous work in visual modality (McPherson and Holcomb, 1999; Schendan and Kutas, 

2002, 2003, 2007), it is plausible that neural processes underlying N2 are associated with 

high-level top-down expectations, for example, such as learning/representing the 

abstraction/summary statistics of the sound sequence. Correspondingly, the attenuated N2 

response observed in the third REG cycle, where the auditory pattern was theoretically 
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established, supports the notion that the brain had accumulated sufficient evidence to 

compute stable statistics of the auditory stream (i.e. the precision of the auditory input). This 

likely enables the brain to suppress certain neural processes, thereby conserving resources 

to manage unexpected future scenarios.  

Moreover, in terms of neuroanatomy, the ‘late’ nature of N2 suggests that it is less 

likely to originate from the primary auditory cortex. Instead, candidate regions might be 

posterior areas such as the planum temporale, which known for encoding abstract sound 

categories (Giordano et al., 2013), or frontal cortex, which is thought to be associated with 

sequential structure encoding (Stiso et al., 2022). Nevertheless, the current data, limited to 

only two predictability conditions, do not fully substantiate this hypothesis. The lack of spatial 

resolution in the 64-channel EEG cannot provide reliable evidence about where this 

component is sourced.  Future research could expand on this by incorporating invasive tools 

and manipulating the predictability of auditory sequences more comprehensively to 

investigate the nature of this neural process. 

 

5.4.3. Correlation Between Sequence Evoked Sustained 

Response and Tone Evoked Phasic Activity 

Except for the N2's sensitivity to regularity, this study observed that N2 amplitude is 

also modulated by TP-COMP performance. High performers exhibit a significantly reduced 

response to REG relative to RND, compared to low performers. The correlation between TP-

COMP task performance and N2, along with sustained response, implies shared or 

interacted neural circuits in these cognitive processes. In an exploratory analysis, the 

relationship between two neural components, both shown to be sensitive to stimulus 

predictability, was examined. The results suggested that the response differences between 

the REG and RND for N2 are inversely related to the sustained responses REG-RND 

differences in the last cycle of REG and the last 10 tones of RND. This may indicate that 

these manifestations are influenced by the shared neural pathways.  To support this, similar 

insights were also suggested by the EEG study in a clinical context. Coffman and colleagues 

investigated the electrophysiological mechanism of how individuals with schizophrenia and 

healthy controls process sequences of grouped tones. Their findings suggested that both 

phase locked N2 and sequence-evoked sustained potential are associated with impaired 

auditory object formation and segmentation in schizophrenia. The result shed light on that 

the disorder which disrupts normal processing and integration of auditory information in 

schizophrenia might be associated with the underlying neural processes (Coffman et al., 

2016, 2018). 
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From the perspective of predictive coding theory, the manifestation of N2 was also 

explained by expectation suppression, which carries the information of prediction error (Han 

et al., 2019). Alternatively, the sequence evoked sustained response may reflects the 

encoded precision of inferred sequence predictability (Zhao et al., 2024). Those slow 

dynamics were hypothesised to be linked to a tonic inhibitory drive that applies gain control 

to prediction error units, thus dampening responses to predictable stimuli.  As a result, the 

prediction errors are weighted based on their precision, which is manifested in the 

attenuated N2 response. This interpretation was further supported by emerging evidence 

suggesting that precision encoding in auditory processing is grounded by an inhibitory 

mechanism (Natan et al., 2015, 2017; Schulz et al., 2021; Richter and Gjorgjieva, 2022; 

Yarden et al., 2022). 

Except for N2, the findings in this study aligned with the Study 2 which demonstrated 

that N1 responses (see Figure 5.4A) are modulated by sequence predictability (Hu et al., 

2024). However, in both two studies, no correlation between N1 and sustained responses 

were statistically significant, a confirmation that those two neural mechanisms are more likely 

to function independently. 

How can one reconcile the differences that were observed between N1 and N2? 

One candidate hypothesis is that the manifestations of prediction errors occur on different 

layers or time scales, as suggested by models proposing that the cortex generates 

predictions at various hierarchical levels (Friston, 2005; Kiebel et al., 2008; Garrido et al., 

2009; Wacongne et al., 2012). Specifically, the neural processes underlying N1 time interval 

might encode prediction errors related to spectral temporal details of the sensory attributes 

(Hosoya et al., 2005; Wacongne et al., 2012). Or the N1 might also encode the low-level 

statistics which operate on short integration window such as local transition probabilities 

(Todorovic and Lange, 2012; Maheu et al., 2019). In contrast, the processes underlying N2 

might encode errors associated with more complex aspects of the auditory sequence that 

operate on an integration window across larger time scales or higher layers. This includes 

the precision of the auditory sequence, as quantified by REG and RND in this study. However, 

since this study is limited by only two conditions and the local statistics were not rigorously 

controlled, future research could more systematically manipulate those statistics and use 

decoding techniques to test this hypothesis. 

 

5.4.4. Temporal Adaptation in N1 

Unlike findings from Study 2 that showed statistically reduced N1 amplitudes only 

in REG condition  (Hu et al., 2024), this study reveals that N1 amplitudes decrease over 

cycles in both the RND and REG conditions. The key to explain this discrepancy may lie in 
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the encoding of the temporal regularities within the RND and REG sequences. In specific, 

despite the spectral unpredictability of the RND sequences, the RND sequences may still 

engage neural mechanisms sensitive to temporal patterns (Costa-Faidella et al., 2011; 

Hofmann-Shen et al., 2020; van Ackooij et al., 2022) because the timing of sensory input is 

an important cue for adaptive behaviour. Furthermore, the lack of N1 reduction of RND in 

Study 2 could be attributed to differences in experimental design, particularly the stimulus 

presentation rate. One explanation is that the slower rate used in this study has allowed the 

auditory system more time to encode and integrate temporal regularities, thereby influencing 

N1 responses. Alternatively, from the perspective of predictive coding, since monitoring slow 

sequences is computationally demanding, the brain may try to suppress these neural 

processes once some information within the sensory inputs become predictable (i.e. 

temporal pattern in this case). This conservation of resources enables it to cope with future 

uncertainties. 

It is important to emphasise that no significant differences in averaged amplitude of 

N1 activity between REG and RND was seen in Cycle 2 and Cycle 3 after corrected by Cycle 

1, while tested by repeated measures ANOVA. This finding is inconsistent with Study 2 (Hu 

et al., 2024) which demonstrated that the predictability modulates averaged N1 activity. 

However, a detailed analysis of time-domain responses revealed a significantly reduced 

response in the N1 time window, as assessed by bootstrap resampling (Figure 5.4C). This 

was also true for the N2 component, which showed a significantly reduced response in the 

REG condition that sustained over a certain period but was not tested as significant when 

averaged the N2 activity across time. 

These inconsistencies imply that the observed effects in this study are subtle 

because the stimuli used are slower and more challenging to track than those in Study 2. 

Additionally, the participants who effectively responded to the REG pattern were limited in 

sample size, resulting in a lower signal-to-noise ratio compared to Study 2. Moreover, 

averaging over time may not fully capture the temporal dynamics of neural processing, 

especially when the signal-to-noise ratio is low. 

 

5.5. Conclusion 
In summary, this study investigated the brain's response to predictable and 

unpredictable sound sequences in passive listening mode, and the result showed a 

significant connection between implicit auditory processing and short-term memory. 

Performance on the Tone Pattern Comparison Task (TP-COMP) correlated with the 

sustained response to the sound sequence and tone-evoked responses, notably in the N2 

time window. This suggests that individuals with better short-term memory can more 
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effectively distinguish between patterns and random sequences. It implies that the neural 

circuits for sound pattern detection and short-term memory may intersect, with the 

hippocampus being a hypothetical region of overlap. Future research could expand on these 

findings by applying invasive tools with higher spatial resolution to understand the neural 

mechanisms further. Decoding techniques can also be employed to elucidate the statistical 

properties represented by those neural activity. 
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6. General Discussion 

 

6.1. Summary of Main Findings 
This PhD thesis investigated the neural dynamics underlying auditory pattern 

detection process, emphasising the intricate interplay between memory, perception, and 

sensory processing. The first study explored the influence of informational complexity and 

temporal duration on auditory memory's role in pattern detection, revealing a significant 

impact of informational complexity in this cognitive process. Moreover, the behavioural 

results imply that the brain uses different strategies to integrate sensory inputs with fast and 

slow presentation rate, enabling efficient comprehension of the auditory environment.  

In the second study, MEG was used to measure the brain responses to sound 

patterns of varying duration. The results suggested that both rapid and slow auditory 

sequences led to a significant increase in sustained responses to patterned sequences over 

random ones. Interestingly, single tones in random sequences evoked stronger responses 

than those in regular sequences. This highlighted the concurrent but opposing effects on the 

sustained and evoked responses, which jointly shape the neural representation of auditory 

pattern.  

The third study assessed the cognitive factors such as the sustained attention, 

short-term memory, frequency discrimination, and task engagement to determine their 

predictability on individual variability in auditory pattern detection. The results consistently 

indicated that short-term memory capabilities, assessed by the TP-COMP task, significantly 

predict detection performance across various pattern durations. This reaffirmed the 

involvement of short-term memory in this cognitive task.  

The final study extends this exploration to individuals' brain responses to slow 

auditory patterns of 5500ms in passive listening mode. The EEG was employed to record 

the neural responses to patterns, with a particular interest in the correlation between the 

responses and performance in the TP-COMP task. The study found that individuals with 

scores above the median in the TP-COMP task showed significantly enhanced neural 

responses to auditory patterns, compared to those with scores below the median. These 

findings indicate a shared neural architecture that underpins both auditory short-term 

memory and auditory scene analysis, providing novel insights into the interconnectedness 

of perception and cognition. Overall, this series of studies aligns with predictive coding theory 
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and adds new evidence into the neural mechanism involved in complex auditory pattern 

recognition, thereby setting the stage for future research.  

 

6.2. Implications for the Brain Functions 
This thesis emphasises memory as a crucial function in supporting the auditory 

system to accumulate sensory evidence. Notably, the memory processes enables the brain 

to integrate sensory information, and are dynamically modulated based on the duration and 

timing of these inputs. This adaptability corroborates earlier theoretical models suggesting 

that the brain operates with intrinsic neural timescales. Such timescales allow various brain 

regions to process information according to its temporal characteristics, thereby facilitating 

both the swift assimilation of new sensory data and the extended integration of complex 

inputs (Hasson et al., 2008; Kiebel et al., 2008; Cavanagh et al., 2020; Golesorkhi et al., 

2021). Furthermore, the observations from this thesis are consistent with the hierarchical 

predictive coding model, which suggests that the brain is structured into multiple layers of 

processing (Friston, 2008). This structured approach ensures a comprehensive and efficient 

processing system, optimising the brain's ability to interpret and respond to the changing 

environment. 

The findings suggested that the sustained neural response may serves as the 

representation of the generative model during the integration process. Previous research 

hypothesised that these neural correlates were likely to be specific to rapid and continuous 

sound patterns (Barascud et al., 2016; Southwell et al., 2017; Zhao et al., 2024); however, 

this thesis provided the novel insights that the neural process also generalises to the analysis 

of slow and intermittent sound sequences, even when silent gaps are introduced between 

tones. This is a observation of significance, as silent gaps are typically cues for the auditory 

system to group sounds and segment events. Rather than merely reflecting the static source 

of sound or an auditory event, these findings suggested that the sustained response also 

characterises the dynamic actions or temporal evolution inferred from the sound source. 

Essentially, the evidence indicated that the sustained response is a common neural 

mechanism employed by the brain to dynamically generate an internal model, which mirrors 

the environmental soundscape. From the perspective of predictive coding theory, these 

neural correlates align with the concept of precision, indicating the inferred reliability of 

sensory inputs. Psychologically, this is in line with views from a recent review. The review 

suggested that the sustained neural activity evoked by auditory pattern not only represents 

the inferred source of the sound but also the actions associated with it, including the 

temporal predictions (Winkler and Denham, 2024). 
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Interestingly, the observed correlation between the sustained neural response and 

short-term memory capabilities suggests that these processes may utilise shared resources 

or neural pathways. Literatures suggested that the overlapped areas might be sourced to 

the hippocampus, which are actively involved during both auditory working memory task 

(Kumar et al., 2016) and implicit sound pattern detection task (Barascud et al., 2016). Latest 

research by Bonetti and colleagues provide evidence for this hypothesis. In their experiment, 

participants first familiarised themselves with a musical piece. They were then presented with 

the original sequences from this piece, as well as the modified versions from the original 

music pieces. These variations in original piece were introduced at different positions within 

the sequences, designed to test the participants' ability to detect these deviations. The MEG 

data identified different neural patterns for processing familiar and novel musical sequences. 

Multivariate pattern analysis showed that certain brain regions, particularly the superior 

temporal gyrus and frontal areas, had different activity levels depending on whether the 

sequences were familiar or new. When the expected musical patterns were disrupted, the 

auditory cortex quickly generated strong prediction error signals. Furthermore, the 

hippocampus was more active during the recognition of familiar sequences, highlighting its 

role in connecting stored auditory memories with sensory input for effective prediction and 

recognition. The activity in the frontal cortex increased when processing familiar sequences. 

Error signals and adaptations were also observed in the wider frontoparietal networks, which 

is consistent with previous literature (Bonetti et al., 2024). These findings, which coincide 

with the observations in this thesis, highlighted the complex interaction between memory, 

perception, and cognitive processing within the auditory system. Moreover, those processes 

are likely to interact dynamically and adaptively, rather than functioning in parallel or within 

distinct temporal phases.  

Those observations are well-supported by the inherently dynamic nature of the 

auditory environments, which fluctuate according to context and sound sources. Thus, an 

adaptable and flexible processing system is necessary for efficiently responding to new or 

changing auditory conditions. 

 

6.3. Limitations and Future Directions 

6.3.1. Limitations 

The techniques used in this study, including the EEG and the MEG, are known for 

their excellent temporal resolution. However, their spatial resolution limitations can make it 

difficult to precisely locate brain activity, particularly in deeper structures like the 

hippocampus which cannot be fully measured. Their spatial resolution limitations introduces 

uncertainty on the exact brain regions involved in the observed phenomena.  
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Also, the inherent noise associated with these methods presents a challenge in 

signal processing. It is unlikely to completely remove this noise without potentially erasing 

pertinent signals, and the de-noising techniques (i.e. the DSS method used in this thesis) 

might unintentionally suppress the signal of interest that were not phase locked to the 

presentation of stimulus. Moreover, relying on these specific neuroimaging methods may 

restrict the range of detectable brain activity, possibly missing other relevant neural 

processes that occur simultaneously but are not captured by EEG or MEG. This could result 

in an incomplete understanding of the neural dynamics involved.  

Furthermore, the stimuli used in this study were limited to pure tone pips, which may 

not accurately represent the complexity of real-world soundscapes, as these stimuli typically 

do not consist of simple tones. The stimuli used were chosen for its simplicity, but this choice 

raises concerns about the difficulty of generalising the conclusions to listening conditions in 

natural settings. Therefore, it is essential to utilise stimuli that, while still controlled, more 

closely mimic the spectral and temporal characteristics of natural sounds. This approach will 

help validate the study’s conclusions under more ecologically valid conditions and enhance 

the generalizability of the results. 

 

6.3.2. Future Direction 

The findings of this thesis coincide with the predictive coding framework, supporting 

the coexistence of multiplexed neural representations in analysing the sensory inputs. The 

sustained response elicited by the sound sequence correlates with encoding either the 

predictability of the signal or its precision, while the response evoked by individual tones 

seems to be tied to prediction errors. Although previous study suggests that the dynamics 

of the sustained response reflect the concept of precision as suggested by the Bayesian 

predictive model (Zhao et al., 2024), a quantitative confirmation of this association is still 

pending. Moreover, it is unclear how sensory prediction and precision interact to underpin 

the sustained response elicited by the sound sequence, nor how each of these processes 

contributes to the dynamics observed. The challenge arises as the increased predictability 

is typically associated with enhanced precision, making it difficult to dissociate. Experimental 

paradigms could be refined to introduce variations in sensory prediction—targeting 

intermediate predictability levels—without altering sequence precision or vice versa. This 

approach would facilitate the precise localisation of brain structures and networks that 

exhibit differential activation under these specific conditions. For example, prediction 

representations are more likely to originate from deeper layers, such as the hippocampus, 

where predictions are presumed to be generated by memory. While the precision is likely to 

be projected from hippocampus to cortex (i.e. frontal cortex and auditory cortex) and 

modulate on the post-synapses of prediction error units. Further, employing a regression 
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model with quantitatively defined precision and prediction parameters as regressors would 

allow to accurately predict the contribution of each element in sustained responses 

measured by M/EEG. Alternatively, neural responses often exhibit hierarchical and non-

linear dynamics, and hence approaches such as convolutional neural networks might offer 

more insights for understanding those dynamic interplay between the processes underlying 

sustained response. Decoding techniques such as the multivariate pattern analysis can be 

employed to trace sensory prediction across temporal and spatial dimensions. By modelling 

various layers of prediction—such as transition probabilities, sequence entropy, or 

contextual statistics—it is possible to identify the specific types of information that the brain 

processes at distinct regional or temporal points. 

Another direction for future research can be placed on understanding the interplay 

between the tone-evoked response and sustained responses. Evidence presented in this 

thesis suggests that the N2/N300 component of tone-evoked responses (peak at 300 ms 

relate to tone onset) are inversely correlated with the amplitude of sustained responses 

across subjects. Although this correlation appears to support the hypothesis that precision 

influences prediction error, the two processes are not yet identified as a causal relationship. 

In addition, these observations suggested that the sustained responses are likely to be 

related to inhibitory mechanism, though current evidence from this thesis alone is not 

sufficient to draw definitive conclusions. To investigate and clarify these relationships, future 

research could adapt the experimental paradigm from Study 4 by shortening the pattern 

duration (i.e. 5 tones). This modification would ensure that all participants have sufficient 

memory capacity to effectively track the pattern. Analysis could introduce regression model, 

using the sustained response as the predictor and the tone response as the dependent 

variable. This approach can possibly facilitate a more precise analysis of the causal 

dynamics between these neural activities. Meanwhile, hypotheses related to the types of 

informational representation underlying N2 and the sustained response can be modelled and 

tested using the decoding techniques.  Dynamic causal modelling could be used to identify 

the network connection and specific neurons that are related to those two processes. 
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