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Abstract
Variational autoencoders (VAEs) are popular likelihood-based generative models which can be efficiently trained bymaximis-
ing an evidence lower bound. There has been much progress in improving the expressiveness of the variational distribution
to obtain tighter variational bounds and increased generative performance. Whilst previous work has leveraged Markov chain
Monte Carlo methods for constructing variational densities, gradient-based methods for adapting the proposal distributions
for deep latent variable models have received less attention. This work suggests an entropy-based adaptation for a short-run
metropolis-adjusted Langevin or Hamiltonian Monte Carlo (HMC) chain while optimising a tighter variational bound to the
log-evidence. Experiments show that this approach yields higher held-out log-likelihoods as well as improved generative
metrics. Our implicit variational density can adapt to complicated posterior geometries of latent hierarchical representations
arising in hierarchical VAEs.

Keywords Adaptive MCMC · Generative models · Hierarchical models · HMC · MALA

1 Introduction

VAEs (Kingma and Welling 2014; Rezende et al. 2014) are
powerful latent variable models that routinely use neural net-
works to parameterise conditional distributions of observa-
tions given a latent representation. This renders suchmodels’
maximum likelihood estimation (MLE) intractable, so one
commonly resorts to extensions of expectation-maximisation
(EM) approaches that maximise a lower bound on the data
log-likelihood. These objectives introduce a variational or
encoding distribution of the latent variables that approxi-
mates the true posterior distribution of the latent variable
given the observation. However, VAEs have shortcomings;
for example, they can struggle to generate high-quality
images. These shortcomings have been attributed to fail-
ures to match corresponding distributions in the latent space.
First, the VAE prior can significantly differ from the aggre-
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gated approximate posterior (Hoffman and Johnson 2016;
Rosca et al. 2018). To alleviate this prior hole phenomenon,
previous work has considered more flexible priors, such as
mixtures (Tomczak and Welling 2017), normalising flows
(Kingma et al. 2016), hierarchical priors (Sønderby et al.
2016; Klushyn et al. 2019), energy-based models (Du and
Mordatch 2019; Aneja et al. 2021) or diffusion models (Vah-
dat et al. 2021; Sinha et al. 2021). Second, the encoding
distribution can be significantly different from the true pos-
terior distribution. It has been an ongoing challenge to reduce
this approximation error by constructing new flexible varia-
tional families such as parametric constructions (Barber and
Bishop 1998; Tran et al. 2015; Han et al. 2016; Guo et al.
2016;Abadi et al. 2016; Louizos andWelling 2016;Locatello
et al. 2018; Louizos and Welling 2017), with normalising
flows (Rezende and Mohamed 2015; Kingma et al. 2016;
Papamakarios et al. 2019) being a popular example. Other
works resort to auxiliary variables (Ranganath et al. 2016)
with implicit (Tran et al. 2017; Mescheder et al. 2017) or
semi-implicit (Yin and Zhou 2018; Molchanov et al. 2019;
Titsias and Ruiz 2019; Yu et al. 2023) models that require
appropriate adjustments to the variational objectives.

This work utilises adaptive MCMC kernels to construct
an implicit variational distribution, that, by the reversibility
of the associated Markov kernel, decreases an upper bound
of the Kullback–Leibler (KL) between an initial encod-
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ing distribution and the true posterior. In summary, this
paper (i) develops gradient-based adaptive MCMC meth-
ods that give rise to flexible implicit variational densities for
training VAEs; (ii) shows that non-diagonal preconditioning
schemes are beneficial for learning hierarchical structures
within VAEs; and (iii) illustrates the improved generative
performance for different data sets andMCMC schemes. Our
code is available at https://github.com/kreouzisv/smvaes.

2 Background

We are interested in learning deep generative latent variable
models usingVAEs. Let X ⊂ R

dx , Z ⊂ R
dz and assume some

prior density pθ (z) for z ∈ Z, with all densities assumed
with respect to the Lebesgue measure. The prior density can
be fixed or made dependent on some parameters θ ∈ �.
Consider a conditional density pθ (x |z), also called decoder,
with z ∈ Z, x ∈ X and parameters also denoted θ . We can
interpret this decoder as a generative network that tries to
explain a data point x using a latent variable z. This latent
structure yields the following generative distribution of the
data

pθ (x) =
∫
X
pθ (x |z)pθ (z)dz.

Assume a ground truth measure pd on X, which can be
seen as the empirical distribution of some observed data
set. We want to maximise the log-likelihood with respect
to pd , i.e. maxθ∈�

∫
X log pθ (x)pd(dx). Variational infer-

ence approaches for maximising this log-likelihood proceed
by introducing so-called encoder distributions qφ(z|x) with
parameter φ ∈ �. These encoder distributions can be used to
construct a tractable surrogate objective which minorises the
log-likelihood and becomes tight if the encoder distribution
coincides with the posterior distribution. In particular, letting
{qφ(z|x) : φ ∈ �} be a parameterised family of encoders, one
can define the so-called evidence lower bound (ELBO),

L(θ, φ, x) = Eqφ(z|x)
[
log pθ (x |z)

] − KL(qφ(z|x)|pθ (z))

averaged over x ∼ μ. Here, KL(q(z)|p(z)) = ∫
Z q(z)

(log q(z) − log p(z)) dz ≥ 0 denotes the Kullback–Leibler
divergence between two densities q and p. Recalling the
posterior density pθ (z|x) ∝ pθ (z)pθ (x |z), one can see
directly that the ELBO constitutes a surrogate objective that
minorises the log-likelihood,

L(θ, φ, x) = log pθ (x) − KL(qφ(z|x)|pθ (z|x)).

3 Related work

Many approaches have been proposed for combiningMCMC
with variational inference. Salimans et al. (2015) and Wolf
et al. (2016) construct a variational bound on an extended
state space that includes multiple samples of the Markov
chain. This was extended in Caterini et al. (2018) using
tempering and illustrated connections with SMC samplers.
Instead of considering variational objectives on augmented
state spaces, our approach follows more closely the work
of Hoffman (2017), Levy et al. (2018), Hoffman et al.
(2019). In particular, we follow their approach to estimate
the gradients of the decoder parameters and the initial vari-
ational distribution. However, our approach considers an
unexplored gradient-based adaptation of the Markov chain
that also allows us to learn, for instance, non-diagonal pre-
conditioning matrices. Titsias (2017) suggested a model
reparameterisation using a transport mapping, while Ruiz
and Titsias (2019) suggested using a variational contrastive
divergence instead of aKLdivergence used herein. Thin et al.
(2020) presented a variational objective on an extended space
of the accept/reject variables that allows for entropy estimates
of the distribution of the final state of the Markov chain.
Nijkamp et al. (2020) have used short-run MCMC approx-
imations based on unadjusted Langevin samplers to train
multi-layer latent variable models without learning an auto-
encodingmodel,with extensions to learn energy-based priors
in Pang et al. (2020). We follow the approach in Pang et al.
(2020) for learning the generative parameters, with the differ-
ence being that we utilise adaptive and Metropolis-adjusted
algorithms, instead of unadjusted Langevin samplers. Ruiz
et al. (2021) used couplings for Markov chains to construct
unbiased estimates of the marginal log-likelihood for VAEs.
The introducedMarkov chains are samples froman extension
of the iterated sampling importance resampling algorithm
(Andrieu et al. 2010) and target an augmentedposterior distri-
bution for the IWAEbound (Burda et al. 2015). Non-adaptive
MCMC transitions have also been utilised inWu et al. (2020)
to build stochastic normalising flows that approximate the
posterior distribution in VAEs, but are trained by minimis-
ing a KL divergence between the forward and backward path
probabilities, see alsoHagemann et al. (2022).More recently,
Taniguchi et al. (2022) considered an amortised energy func-
tionover the encoder parameters andused aMALAalgorithm
to sample from its invariant distribution. In particular, they
considered aMALAalgorithm that operates on the parameter
space of the encoder parameters instead of utilising MCMC
algorithms in the latent space as in ourwork. Peis et al. (2022)
learn an initial encoding distribution based on a sliced Ker-
nel Stein Discrepancy and then apply a non-adapted HMC
algorithm.
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4 Training VAEs withMCMC speedmeasures

In this work, we will construct an approximation to the pos-
terior distribution pθ (z|x) by first sampling from an initial
tractable distribution q0φ0(z|x) and then recursively update z
by applying a sequence of K Markov kernels.More precisely,
for x ∈ X , θ ∈ �,φ ∈ �, let Mk

θ,φk
(·|x) denote a parame-

terised Markov kernel which is reversible with respect to the
posterior pθ (z|x). We then define the following variational
family

Qx = {qK
θ,φ(·|x) = q0φ0(·|x)M1

θ,φ1
(·|x) · · · MK

θ,φK
(·|x) ,

φk ∈ �k, φ = (φ0, . . . , φK ), θ ∈ �},

where (qM)(z′|x) = ∫
Z q(z|x)M(z, z′|x)dz for a condi-

tional density q(·|x) andMarkov kernel M(·|x) that depends
on x . Although qK

θ,φ can be evaluated explicitly for the choice
of Markov kernels considered here (Thin et al. 2020), we
do not require this. Instead, we rely on the fact (Ambrosio
et al. 2005), Lemma 9.5.4, that due to the reversibility of the
Markov kernels with respect to pθ (z|x), it holds that

KL
(
qK
θ,φ(z|x)|pθ (z|x)

)
≤ KL

(
q0φ0(z|x)|pθ (z|x)

)
. (1)

The non-asymptotic convergence of the Markov chain
depends on the posterior distribution as well as on the spe-
cific MCMC algorithm used, see for example Dwivedi et al.
(2019), Mangoubi and Vishnoi (2019), Chewi et al. (2021),
Wu et al. (2022), Altschuler and Chewi (2023), Chen and
Gatmiry (2023) for the MALA case and (Chen et al. 2019b;
Lee et al. 2020, 2021) for HMC often under convexity or
smoothness with isoperimetry assumptions.

4.1 Learning the warm start distribution

We consider first a standard ELBO

L0(θ, φ0, x) (2)

= Eq0φ0
(z|x)

[
log pθ (x |z)

] − KL(q0φ0(z|x)|p(z)).

Relation (1) motivates to learn φ0 by maximising L0

(θ, φ0, x). Indeed, due to

KL
(
qK
θ,φ(z|x)|pθ (z|x)

)
≤ KL

(
q0φ0,(z|x)|pθ (z|x)

)

= log pθ (x) − L0(θ, φ0, x),

maximisingL0(θ, φ0, x) decreases an upper bound of theKL
divergence between the variational density qK

θ,φ(·|x) and the
posterior density for fixed θ andφ1, . . . φK .While decreasing
an upper bound of the KL divergence may not necessarily
decrease the actual KL divergence, we found this choice to

work well in practice. It also allows to utilised pre-trained
encoding distributions with parameters φ0 from a standard
VAE as a parameter initialisation. On a high level, upper
and lower bounds on the mixing time of MALA or HMC
for log-concave targets hinge on a well-chosen warm initial
distribution, as well as a small condition number of the target
distribution, adjusted for the preconditioning matrix of the
sampler, see for example Wu et al. (2022); Altschuler and
Chewi (2023). For m-strongly convex and L-smooth targets
pθ (z|x), one can obtain, see Dwivedi et al. (2019), a β-warm
distribution q0φ0(·|x) = N (μ�, L−1 I), i.e. it holds that

sup
A

∫
A q

0
φ0

(z|x)dz∫
pθ (z|x)dz ≤ β

over all measurable sets A for β = κdz/2, with condition
number κ = L/m, where μ� is the mode of pθ (z|x). By
optimising the bound L0(θ, φ0, x), we can expect to find
parameters φ0 so that the mean of the variational distribution
is close to a mode of the true posterior. Because acceptance
probabilities in regions that are unlikely under the target
pθ (z|x) lead to small acceptance probabilities, warm start
distributions lead to faster convergence as they avoid such
bottlenecks in the state space. One can obtain warm starts by
controlling the forward chi-squared divergence

χ2(q0
θ,φ0(z|x)|pθ (z|x)) =

∫
Z

(
pθ (z|x)
q0φ0(z|x)

)2

pθ (z|x))dz,

or more generally a Reny divergence of order strictly larger
than one, see Altschuler and Chewi (2023). Such objec-
tives are more challenging to optimise, with variational
approaches typically requiring multiple Monte Carlo sam-
ples (Hernandez-Lobato et al. 2016; Finke and Thiery 2019;
Geffner andDomke 2021; Li et al. 2023). Itmay be of interest
to explore in future work such different variational objectives
for learning φ0.

4.2 Markov kernels

We also need to specify the Markov kernels. We use repa-
rameterisableMetropolis-Hastings kernelswith the potential
function Uθ (z|x) = − log pθ (x |z) − log pθ (z) correspond-
ing to the target πθ (z) = pθ (z|x) ∝ exp(−Uθ (z|x)). More
precisely, for A ∈ B(Z),

Mk
θ,φ1

(z, A|x) =
∫
Z
ν(dv)

[ (
1 − α(z, z′)

)
δz(A)

+ α(z, z′|x)δz′(A)
]
z′=Tθ,φ1 (v|z,x)

=
∫
Z

[ (
1 − α(z, z′)

)
δz(A)
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+ α(z, z′|x)δz′(A)
]
rθ,φ1(z, z

′|x)dz′

where α(z, z′|x) is an acceptance rate for moving from
state z to z′, Tθ,φ1(·|z, x) is a proposal mapping and ν is a
parameter-free density over Z. Expressing the proposal den-
sity rθ,φ1(z, z

′|x) through a proposal mapping Tθ,φ1(·|z, x)
having as input a parameter-free variable v with density
ν, allows us to apply the reparameterisation trick (Kingma
and Welling 2014; Rezende et al. 2014; Titsias and Lázaro-
Gredilla 2014). Although the different Markov kernels could
have different parameters φk for k ∈ {1, . . . , K }, we assume
for simplicity that they all share the parameters φ1, thereby
helping the method to scale more easily to large values of K .

4.3 Speedmeasure adaptation

For a random walk Markov chain with isotropic proposal
density r(z, ·|x) = N (z, σ 2 I) at position z, the speed mea-
sure (Roberts et al. 1997) is defined as σ 2 × α(z|x), where
a(z|x) = ∫

α(z, z′|x)r(z, z′|x)dz′ is the average acceptance
rate. To encourage fast mixing for the Markov chain across
all dimensions jointly, Titsias and Dellaportas (2019) sug-
gested a generalisation of this speed measure that amounts
to choosing the parameters h andC from the proposal so that
the proposal has both high acceptance rates, but also a high
entropy

Hθ,φ1 = −
∫
Z
rθ,φ1(z, z

′|x) log rθ,φ1(z, z
′|x)dz′.

More precisely, we consider the generalised speed measure

sθ,φ1(z|x) = eβHθ,φ1 × a(z|x)

for some hyper-parameter β > 0. While maximising
sθ,φ1(z|x), or equivalently,

log sθ,φ1(z|x) = log

[∫
Z
α(z, Tθ,φ1(v|z, x))ν(dv)

]

+ βHθ,φ1 ,

is intractable, we follow Titsias and Dellaportas (2019) and
maximise a lower bound thereof due to Jensen’s inequality,

log sθ,φ1(z|x) ≥ F(φ1, z, x)

=
[∫

Z
logα(z, Tθ,φ1(v|z, x))ν(dv) + βHθ,φ1

]
,

averaged over (x, z) ∼ μ(x)q0φ0(z|x) where β > 0 is some
hyper-parameter that can be updated online to achieve a desir-
able average acceptance rate α�.

4.4 MALA

Consider first a Metropolis Adjusted Langevin Algorithm
(MALA). We assume that φ1 parameterises a non-singular
matrix C , possibly dependent on x , which can be, for
instance, a diagonal matrix or a Cholesky factor. In this case,
we can write the proposed state z′ as

z′ = Tθ,φ1(v|z, x) = z − h2

2
CC	∇Uθ (z|x) + hCv (3)

for some step size h > 0 that is part of the parameter
φ1 and where v ∼ ν = N (0, I). The log-acceptance rate
is log a(z, z′) = min{0,−�(v, z, z′)} based on the energy
error

�(v, z, z′) = Uθ (z
′|x) −Uθ (z|x) − 1

2
‖v‖2

+ 1

2

∥∥∥v − h

2
C

{∇Uθ (z|x) + ∇Uθ (z
′|x)}

∥∥∥
2

,

evaluated at z′ = Tθ,φ1(v|z, x). The proposal density of the
Markov kernel

rθ,φ1(z, z
′|x) = N

(
z − h2

2
CC	∇Uθ (z|x), h2CC	

)

can be viewed as the pushforward density of N (0, I) with
respect to the transformation Tθ,φ1(v|z, x). Its entropy is

Hθ,φ1 = −
∫
Z
rθ,φ1(z, z

′|x) log rθ,φ1(z, z
′|x)dz′

= const + log | det(hC)|,

which is constant for z ∈ Z in the standard MALA case,
although it can depend on x for MALAwith state-dependent
proposals.

4.5 HMC

Consider next a HamiltonianMonte CarloAlgorithm (HMC)
based on a leapfrog or velocity Verlet integrator with L steps
(Hairer et al. 2003; Bou-Rabee and Sanz-Serna 2018). We
assume that φ1 parameterises a Cholesky factor matrix C
of the inverse mass matrix M−1 = CC	. The proposed
state z′ = qL is commonly computed recursively for � ∈
{1, . . . , L} via

p�+ 1
2

= p� − 1

2
∇Uθ (q�|x)

q�+1 = q� + hM−1 p�+ 1
2

p�+1 = p�+ 1
2

− 1

2
∇Uθ (q�+1|x),
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where p� is a sequence of momentum variables initialised
at p0 = C−	v for v ∼ N (0, I). It is possible (Livingstone
et al. 2019; Durmus et al. 2017) to write the proposed state
z′ = Tθ,φ1(v|z, x) in the representation

z′ = z − Lh2

2
CC	∇Uθ (z|x) + LhCv − h2CC	�L(v)

where

�L(v) =
L−1∑
�=1

(L − �)∇Uθ (q�) (4)

is a weighted average of the potential energy gradients along
the leapfrog trajectory. Consequently, the proposal density
can be written as

log rθ,φ1(z, TL(v)) = log ν(v) − d log L − log | detC |
− log |detD�L(v)| ,

where D�L(v) is the Jacobian of the non-linear function �L

in (4). However, the computational complexity of evaluating
the log-determinant of the Jacobian of �L scales poorly for
high dimensional latent variables.We, therefore, consider the
approximation suggested inHirt et al. (2021) based on a local
Gaussian assumption that the Hessian of the potential func-
tion Uθ along the leapfrog trajectory can be approximated
by its value at the mid-point q�L/2
 of the trajectory. Under
this assumption, the log-determinant of the Jacobian can be
written as

log |detD�L(v)|

≈ log

∣∣∣∣det
(
I− L2 − 1

6
C	∇2Uθ (q�L/2
|x)C

)∣∣∣∣ ,

which can be estimated by resorting to Russian roulette
estimators (Behrmann et al. 2019; Chen et al. 2019a). The
above approximation becomes exact for Gaussian targets
with covariance matrix �, since ∇2Uθ (q) = �−1 for any
point q in the state space.

4.6 Learning the generative model

Maximizing the log-likelihood function directly using

∇θ log pθ (x) =
∫
Z
pθ (z|x)∇θ log pθ (x, z)dz

is usually intractable as it requires samples from pθ (z|x).
On the other hand, optimizing the generative parameters by
optimizing the classic variational bound L0(θ, φ0, x) based
on the initial variational distribution does not allow us to
leverage samples from the MCMC chain. Conversely, using

a variational bound based on the implicit variational distribu-
tion qK

θ,φ(z|x) requires more refined approaches to compute
its entropy (Thin et al. 2020). Instead, we use samples from
an MCMC chain in conjunction with a perturbation of the
MLE, as used previously, see, for instance, Han et al. (2017),
Hoffman (2017), Nijkamp et al. (2020). More precisely, at
iteration t , let θ(t) and φ(t) be the current estimate of the
generative and variational parameters. Since maximising the
log-likelihood is equivalent tominimising the KL divergence
loss D(θ) = KL(pd(x)|pθ (x)) over the generative parame-
ters θ , we consider the following perturbed loss function

S(θ) = D(θ) + KL(qK
θ(t),φ(t) (z|x)|pθ (z|x)))

= KL(pd(x)q
K
θ(t),φ(t) (z|x)|pθ (z, x))),

see also Pang et al. (2020), Han et al. (2020). Note first that
S(θ) becomes a tractable objective as it involves joint dis-
tributions over the latent variables and the data, in contrast
to the log-likelihood objective involving marginal distribu-
tions. Second, S(θ) majorises D(θ), that is S(θ) ≥ D(θ).
An EM-type algorithm would update θ(t) to θ(t+1) by min-
imising S(θ) for fixed variational parameters φ(t) so that
S(θ(t+1)) ≤ S(θ(t)). We consider instead an alternating
approach that follows the gradient of ∇S(θ(t)) given by the
average of

∫
Z
qK
θ(t),φ(t) (z|x)

[∇θ log pθ (z) + ∇θ log pθ (x |z)
]
dz

over x ∼ pd , while also updating the variational andMCMC
parameters φ(t) in a single iteration.

4.7 Algorithm

Pseudo-code for the suggested algorithm is given in Algo-
rithm 1 at a given iteration t , for illustration based on a
mini-batch of size one. We have found that pre-training the
decoder and encoder parameters θ , respectively φ0, by opti-
mizing the standard ELBO (2) before applying Algorithm 1,
can decrease the overall training time. While we only con-
sider MALA or HMC proposals in our experiments, other
proposals with a tractable entropy, for instance those sug-
gested in Li et al. (2020), can be used analogously.

5 Extension to hierarchical VAEs

We consider top-down hierarchical VAE (hVAE) architec-
tures. Such models can leverage multiple layers L of latent
variables (z1, . . . , zL), z� ∈ R

n� , where zL is the latent vari-
able at the top and z1 the latent variable at the bottom. Often
n�+1 ≤ n� to account for multiple resolutions. The genera-
tion of the latent variables follows the same order in both the
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Algorithm 1 Single training step for updating the generative
model, initial encoding distribution and MCMC kernel.
Input: Number of Metropolis-Hastings steps K , learning rates

ρ1, ρ2, ρ3, ρ4, current parameters θ(t), φ(t)
0 , φ(t)

1 , β(t) and target
acceptance rate α�.

Sample x ∼ μ.
Sample z0 ∼ q0

φ
(t)
0

(·|x) via reparameterisation.

Set ∇̂
φ

(t)
0
L0

= ∇
φ

(t)
0
log pθ(t) (x |z0) − ∇

φ
(t)
0
log q

φ
(t)
0

(z0|x)
Set ∇̂φ(t)F = 0 and α̂ = 0.
Set z �→ Uθ(t) (z|x) = − log pθ(t) (x |z) − log pθ(t) (z) for any z ∈ Z and
let M

θ(t),φ
(t)
1

be an invariant Markov kernel of e−U
θ(t) (·|x).

for k=1 to K do
Sample zk ∼ M

θ(t),φ
(t)
1

(zk−1, ·|x) via vk ∼ N (0, I) and

zk = T
θ(t),φ

(t)
1

(vk |zk−1, x).

Set α̂ += 1 if zk is accepted.
Set ∇̂

φ
(t)
1
F += ∇

φ
(t)
1

[
logα

θ(t),φ
(t)
1

(zk−1, zk) −
β(t) log r

φ
(t)
1

(zk−1, zk |x)
]
.

Set
∇̂θ(t)G = ∇θ

[
log pθ (x |zK ) + log pθ (zK )

] |θ=θ(t) .
Perform parameter updates:
φ

(t+1)
0 = φ

(t)
0 + ρ1∇̂

φ
(t)
0
L0

φ
(t+1)
1 = φ

(t)
1 + ρ2∇̂

φ
(t)
1
F0

θ(t+1) = θ(t) + ρ3∇̂θ(t)G
β(t+1) = β(t)(1 + ρ4( α̂

K − α�)).

prior

(z1, . . . , zL) ∼ pθ (z
1)pθ (z

2|z1) · · · pθ (z
L |z≤L−1), (5)

for z≤� = (z1, . . . z�), and in the approximate posterior,

(z1, . . . , zL)|x ∼ q0φ0,θ (z
1|x) · · · q0φ0,θ (zL |x, z≤L−1) (6)

cf. Sønderby et al. (2016), Kingma et al. (2016), Nijkamp
et al. (2020), Maaløe et al. (2019), Vahdat and Kautz (2020),
Child (2021). More concretely, to build the auto-regressive
densities, we consider a sequence of variables d� ∈ R

n′
� that

are deterministic given z� and defined recursively as

d� = h�,θ (z
�−1, d�−1) (7)

for some neural network function h�,θ , where the d�−1-
argument is a possible skip connection in a residual archi-
tecture for � > 1 and some constant d1. This implies that the
dependence on all previous latent variables z≤� is imple-
mented via the first-order Markov model of the residual
discrete states d1, . . . , d�. Suppose further that we instanti-
ate (5) in the form

z� = μ�,θ (d
�) + σ�,θ (d

�) � ε� (8)

for some functions μ�,θ and σ�,θ , with ε� denoting iid
Gaussian random variables. This construction leads to the
auto-regressive structure in the prior (5). To describe the
variational approximation in (6), we consider a bottom-up
network that defines deterministic variables d

′� ∈ R
n′

� recur-
sively by setting d

′L+1 = x and d
′� = h′

�,φ0
(d

′�+1) for
1 ≤ � ≤ L for functions h′

�,φ0
. We assume a residual param-

eterisation (Vahdat and Kautz 2020; Vahdat et al. 2021) for
q0φ0(z

�|x, z≤�−1) in the form

z� = μ�,θ (d
�) + σ�,θ (d

�)μ′
�,φ(d�, d

′�)

+ (σ�,θ (d
�)σ ′

�,φ0
(d�, d

′�)) � ε� (9)

for some functions μ′
�,φ0

and σ ′
�,φ0

. This implies that

KL(q0φ0(z
�|x, z≤�−1)|pθ (z

�|z≤�−1)) (10)

= 1

2

[ n�∑
i=1

σ ′
�,φ0

(d�, d
′�)2i − n� + μ′

�,φ(d�, d
′�)2i

+ log σ ′
�,φ0

(d�, d
′�)2i

]
.

The observations x are assumed to depend explicitly only
on zL and dL through some function gθ in the sense that
x |z1, . . . , zL ∼ pθ (x |gθ (zL)). The generative model of the
latent variables z1, . . . zL in (5) is written in a centred param-
eterisation (Papaspiliopoulos et al. 2007) that makes them
dependent a priori. Our experiments will illustrate that these
dependencies can make it challenging to sample from the
posterior distribution for MCMC schemes that are not adap-
tive.

We want to clarify that we interpret a hVAE as a special
case of theVAEwith a hierarchical structure of the latent vari-
ables z = (z1, . . . , zL) ∈ R

n , z� ∈ R
n� , n = ∑L

i=1 n�. An
alternative viewpoint would be to consider the VAE in Sect. 4
that utilisesMCMCsteps as a hierarchical VAEwherein each
step of the Markov chain corresponds to a new layer of an
hVAE, with all latent variables z0, . . . , zK ∈ R

n living in the
same latent space. More precisely, from such an alternative
perspective, the latent variable z0 sampled from the prior pθ

or initial encoder q0φ0 can be seen as the first latent variable of
an hVAE at the bottom layer, while the transition densities in
the generative auto-regressive distributions in (5) are mod-
elled as Metropolis-Hastings kernels. In our viewpoint, we
minimise the KL of the joint latent variables (z1, . . . , zL)

as in (10) for learning the initial variational parameters
φ0 that parameterises the encodings of (z1, . . . , zL) jointly.
However, performing variational inference in the alternative
viewpoint would require different approaches. Our approach
also differs from those in score-based diffusion models that
utilise score functions to transition between hierarchical
latent variables, see Appendix A for details.
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6 Numerical experiments

6.1 Evaluatingmodel performance withmarginal
log likelihood

We start by considering different VAE models and infer-
ence strategies on four standard image data sets (MNIST,
Fashion-MNIST, Omniglot and SVHN) and evaluate their
performance in terms of their test log-likelihood estimates.

6.2 Marginal log-likelihood estimation

We start to evaluate the performance of different variations
of VAEs using the marginal log-likelihood of the model on
a held-out test set for a variety of benchmark datasets. In
doing so, we resort to importance sampling to estimate the
marginal log-likelihood using S importance samples via

log p̂IS(x) = log
1

S

S∑
s=1

pθ (x |zs)pθ (zs)

r(zs |x) , zs ∼ r(·|x),

where r is an importance sampling density. Following Ruiz
and Titsias (2019), in the case of a standard VAE, we choose
r(z|x) = N (μz

φ0
(x), τ�z

φ0
(x)) for some scaling constant

τ ≥ 1, assuming that q0φ0(z0|x) = N (μz
φ0

(x),�z
φ0

(x))
with diagonal covariance matrix �z

φ0
(x). For the case with

MCMC sampling using K steps, we choose r(zs |x) =
N (zK (x), τ�z

φ0
(x)), where zK (x) is an estimate of the pos-

terior mean from the MCMC chain.

6.3 VAEmodels

Using the metric described above, we evaluate our model
and compare it against other popular adjustments of VAEs
for various data sets. In terms of comparing models, we
focused on comparing our model, denoted VAE-gradMALA
andVAE-gradHMC, against i) aVanillaVAE, ii) VAEs utilis-
ingMCMC samplers that are adapted using a dual-averaging
scheme (Hoffman and Gelman 2014; Nesterov 2009) that we
refer to as VAE-gradMALA and VAE-gradHMC. We also
compare against iii) VAEs using more expressive priors such
as a Mixture of Gaussians (MoG), denoted VAE-MoG cf.
Jiang et al. (2017), Dilokthanakul et al. (2016), or a Varia-
tional Mixture of Posteriors Prior (VAMP), see Tomczak and
Welling (2017), denoted VAE-VAMP. For theMNIST exam-
ple, we consider a Bernoulli likelihood with a latent space of
dimension 10. We pre-trained the model for 90 epochs with
a standard VAE, and subsequently trained the model for 10
epochs with MCMC. We used a learning rate of 0.001 for
both algorithms. For the remaining datasets, we pre-trained
for 290 epochs with a standard VAE, followed by training for
10 epochs with MCMC. We used a learning rate of 0.005,

while the dimension of the latent space is 10, 20, and 64
for Fashion-MNIST, Omniglot and SVHN, respectively. For
the SVHN dataset, we considered a 256-logistic likelihood
with a variance fixed at σ 2 = 0.1, see Salimans et al. (2017)
for details. In terms of the neural network architecture used
for the encoder and the decoder, more information can be
found in the codebase. All models use the same decoders
and (initial) encoding distributions. The inference times of
the models trained either with dual-averaging or with the
gradient-based generalised speedmeasure objective are com-
parable. We use K = 10 MCMC steps.

6.4 Experimental results

Table 1 summarises the estimated log-likelihoods for the
different data sets. The results therein show the means of
three independent runs, with their standard deviations in
brackets. For the case of SVHN, the estimate is transformed
to be represented in bits per dimension. We observe that
among the considered methods that utilize MCMC sam-
plers within VAEs, our approach performs better across the
datasetswe explored.We note that for the considered decoder
and encoder architectures, the use of more flexible genera-
tive models by using more flexible priors such as a VAMP
prior, can yield higher log-likelihoods. However, the choice
of more flexible priors is completely complementary to the
inference approach suggested in this work. Indeed, we illus-
trate in Sects. 6.7 and 6.8 that ourMCMC adaptation strategy
performs well for more flexible hierarchical priors.

6.5 Evaluating generative performance with kernel
inception distance (KID)

6.5.1 Generative metrics

The generative performance of our proposed model is addi-
tionally quantitatively assessed by computing the Kernel
Inception Distance (KID) relative to a subset of the ground
truth data. We chose the KID score instead of the more tradi-
tional Fréchet inception distance (FID), due to the inherent
bias of the FID estimator (Bińkowski et al. 2018). To com-
pute the KID score, for each image from a held-out test
set, we sample a latent variable from the prior density and
then pass it through the trained decoder of the correspond-
ing model to generate a synthetic image. Images are resized
to (150,150,3) using the bi-cubic method, followed by a for-
ward pass through an inception-V3model using the Imagenet
weights. This yields a set of Inception features for the syn-
thetic and held-out test set. The computation of theKID score
for these features is based on a polynomial kernel, similarly to
Bińkowski et al. (2018). For all datasets, we utilised a learn-
ing rate of 0.001 for both theVAEandMCMCalgorithms.We
trained theVAE for 100 epochs and performed samplingwith
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Table 1 Importance sampling
estimate of the log-likelihood
(with highest values in bold for
each setup of either a standard
Gaussian or a learnable prior) on
the test set based on S = 10000
and τ = 1.5

Model MNIST Fashion- MNIST Omniglot SVHN

VAE −81.16 (0.2) −116.65 (0.1) −117.46 (0.2) 7.203 (0.005)

VAE- gradMALA −79.94 (0.1) −115.84 (0.1) −116.93 (0.3) 7.209 (0.005)

VAE- dsMALA −80.36 (0.1) −116.32 (0.2) −117.48 (0.2) 7.203 (0.001)

VAE- gradHMC −79.52 (0.2) −115.77(0.1) −116.69(0.3) 7.179 (0.001)

VAE- dsHMC −79.89 (0.1) −116.02 (0.1) −116.88 (0.1) 7.187 (0.003)

VAE- MoG −80.52 (0.1) −116.40 (0.3) −119.14 (0.1) 7.205 (0.001)

VAE-VAMP −78.48 (0.1) −114.30 (0.1) −117.23(0.1) 7.197 (0.001)

The values denote the mean of three independent runs, while the standard deviation is given within brackets.
The MoG and VAMP VAEs use different priors

Table 2 Estimates of KID for
each model considered across
different datasets

Model MNIST Fashion- MNIST SVHN CIFAR-10

VAE 1.084 (0.05) 0.925 (0.03) 0.197 (0.01) 1.348 (0.01)

VAE- gradHMC 0.431 (0.02) 0.852 (0.03) 0.126 (0.01) 1.153 (0.01)

VAE- dsHMC 0.653 (0.01) 0.908 (0.06) 0.183 (0.02) 1.587 (0.10)

VAE- MoG 0.542 (0.01) 0.990 (0.01) 0.190 (0.01) 1.444 (0.01)

VAE-VAMP 0.434 (0.05) 0.610 (0.03) 0.210 (0.01) 1.657 (0.03)

Lowest values in bold for each setup of either a standard Gaussian or a learnable prior
The values denote the mean of three seeds, while the standard deviation is shown within brackets. The MoG
and VAMP VAEs use different priors

the MCMC algorithms for 50 epochs if applicable, yielding
a total training of 150 epochs across all cases. The likelihood
functions used were Bernoulli for the MNIST and Fashion-
MNIST datasets, while the logistic-256 likelihood (Salimans
et al. 2017) was used for the SVHN and Cifar-10 datasets,
with a fixed variance of σ 2 = 0.1 and σ 2 = 0.05, respec-
tively. The dimension of the latent variable was fixed to 10
for theMNIST datasets, while it was set to 64 and 256 for the
SVHN and CIFAR-10 datasets. More details regarding the
neural network architecture used for training the VAE can be
found in the codebase.

6.5.2 VAEmodels and quantitative evaluation

Similarly to Sect. 6.1, we perform a series of experiments
that compare our adaptation scheme to other popular VAE
modifications across different data sets. In Table 2, we sum-
marise the results of our experiments reporting mean KID
scores from three different seeds with the standard devia-
tion in brackets. We notice a similar pattern to that from
Sect. 6.1, where our proposed method outperforms other
MCMC-related methods. At the same time, we observe that
models with more expressive priors such as the VAMP prior,
can perform equally or slightly better, particularly in the
case of a low-dimensional latent state space, such as for
MNIST and Fashion-MNIST. However, in the case of higher
dimensional latent space, such as used for CIFAR-10 with
dz = 256, we observe that our method shows considerable
improvement compared to the other methods.

6.5.3 Qualitative results

In addition to computing the KID score, we qualitatively
inspect the reconstructed images and the images sampled
from the model. In Fig. 1, we can see reconstruction for the
best three performingmodels. Figure2 contains uncondition-
ally generated samples for the same models. We observe
that, indeed, KID scores qualitatively correlate with more
expressive generations and reconstructions. In particular, we
observe a slight decrease in blurriness and an increase in the
resolution of smaller details such as the car-light of the red
car in Fig. 1.Moreover, the unconditionally generated images
in Fig. 2 exhibit more expressive colour patterns.

6.6 Evaluatingmodel performance in small sample
size data

6.6.1 Data augmentation task

In addition to testingour proposed approach against the above
benchmark datasets, we also test our approach in a real-world
dataset comprised of complex images that, however, are char-
acterised by a relatively small sample size. We chose the
Alzheimer’sDiseaseNeuroimaging Initiative (ADNI) 1 brain
MRI dataset, which is comprised of 4000 Brain MRI Scans
of individuals suffering fromDementia, and individuals from

1 https://www.kaggle.com/datasets/sachinkumar413/alzheimer-mri-
dataset.
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Fig. 1 Model reconstruction images for the top three performing mod-
els tested on CIFAR-10 in terms of the KID-score evaluated on model
samples. The first two rows illustrate the ground truth, the next two
show reconstructions from the Vanilla VAE model, the next two illus-
trate reconstructions from the dsHMC model, and the last two rows
illustrate reconstructions from the gradHMC coupled VAE

Fig. 2 Model sampled images for the top three performing models
tested on CIFAR-10 in terms of the KID-score evaluated on model
samples. The first three rows illustrate samples from the Vanilla VAE
model, the next three rows illustrate samples from the dsHMC model,
and the last three rows illustrate samples from the gradHMC coupled
VAE

a healthy control group, in a ratio of 1:3, respectively. The
small sample size as well as the imbalance in the dataset pose
a problem for classification tasks that are often addressed by
different data augmentations. We illustrate here that the pro-
posed generative model can be used to generate additional
samples that are representative of each sub-population in the
dataset, namely healthy controls and diseased individuals.
We first trained VAEs for each separate class on the dataset,2

using a VAE learning rate of 0.001 and an MCMC learning
rate of 0.01, whenever applicable.

6.6.2 Generative performance

The VAEs were trained for 2000 epochs with 100 epochs of
MCMC coupled training, whenever it was applicable. The
KID score presented in Table 3 was based on the whole
dataset (that is, including both training and test sets), because
the KID score can under-perform for the small size of the
test set in the minority class. The neural networks utilised
in the encoder and the decoder were similar to those of
Sect. 6.5, consisting of two dense layers of 200 units each
for the decoder and the encoder. Moreover, the latent dimen-
sion for all experiments was fixed at 20, while the likelihood
utilised was a logistic-256 (Salimans et al. 2017) with a
fixed variance of σ 2 = 0.05. After training, a series of 200,
500, 1000, and 2000 images were generated for the minority
class,whichwere then augmentedwith the generated images.
Classification performance for classifier models trained on
this augmented dataset was then compared against classifier
models trained on the non-augmented dataset. More details
regarding the architectures used for the VAE and classifier
models can be found in the codebase. We observed that one
obtains the best performance in terms of the classification
metrics for the dataset augmented with 200 images and we
thus report these values in Table 3. We find that a VAE with
a gradient-based adaptation of the HMC sampler has better
generative performance, particularly for the dementia group.
The minority class, i.e. the dementia group, was augmented
by the addition of synthetic data from the generative models.
Qualitative results showing the generated samples are given
in Fig. 3 for the standard VAE model, in addition to those
VAE models that are combined with MCMC. We notice that
our proposed method captures more brain characteristics for
both the demented and normal patients, due to the presence
of various brain structures throughout the generated samples,
while also capturing class-specific characteristics, such as a
greater degree of brain matter loss in the dementia class.

2 We merged the two classes of the dementia cases to a single dementia
case.
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Table 3 Estimates of the KID score for each respective class in the ADNI brain MRI dataset and classification metrics from the data augmentation
task across different models

Model KID/Dementia KID/Controls Bacc TPR TNR

VAE 12.44 (0.8) 12.64 (2.35) 0.968 (0.01) 0.986 (0.003) 0.950 (0.002)

VAE- gradHMC 10.25 (0.85) 9.76 (1.11) 0.971 (0.01) 0.989 (0.005) 0.954 (0.002)

VAE- dsHMC 12.02 (1.67) 10.81 (1.28) 0.964 (0.01) 0.989 (0.005) 0.940 (0.001)

No- Augmentation – – 0.878 (0.02) 0.824 (0.024) 0.932 (0.025)

Lowest KID values and highest classification metrics in bold
Standard deviations in brackets

Fig. 3 Model samples from VAE variations trained on either demented
(first four columns) or normal patients (last four columns). The first two
rows are samples from the Vanilla VAE model, the next two rows from
the VAE using dual-average adaptation and the last two rows from our
proposed method using a VAE with entropy-based adaptation

6.6.3 Classification results

We performed a classification between the two groups with
results summarised in Table 3. It illustrates first that aug-
menting data with a trained VAE improves the classification
in general, and second, that augmentationswith our proposed
method lead to a small, yet significant increase in Balanced
Accuracy, True Positive Rate (TPR) and True Negative Rate
(TNR). These results are consistent with the improved qual-
ity of the generated samples using our approach and we thus
believe that our method can be leveraged for effective data
augmentations.

6.7 Linear hierarchical VAEs

We consider linear Gaussian models with a Gaussian prior
pθ (z) = N (μz, �z) and a linear decoder mapping so that
pθ (x |z) = N (Wz + b, �x |z) for μz, b ∈ R

dz , W ∈
R
dx×dz and covariance matrices �z and �x |z of appropri-

ate dimension. The resulting generative model corresponds
to a probabilistic PCAmodel (Tipping and Bishop 1999), see

also Dai et al. (2018), Lucas et al. (2019) for further connec-
tions to VAEs. This section aims to illustrate that adaptation
with a non-diagonal pre-conditioning matrix becomes ben-
eficial to account for the dependence structure of the latent
variables prevalent in such hierarchical models.

6.7.1 Hierarchical generative model

We can sample from the Gaussian prior z ∼ N (μz, �z) in a
hierarchical representation using two layers:

z1 ∼ N (0, I), z2|z1 ∼ N (A2z
1 + cμ

2 ,�z2|z1)), (11)

where z = (z1, z2) and �z2|z1 = diag(σ 2
z2|z1). To recover

(11) from the general auto-regressive prior factorisation (5),
assume that d1 = 0 ∈ R

n′
1 , n′

1 = n′
1. For d = (dμ, dσ ),

suppose that μ1,θ (d) = dμ is the projection on the first
n1 components, while σ1,θ (d) = exp(0.5dσ ) describes the
standard deviation based on the last n1 components. Further,
consider the linear top-down mapping

h2,θ : (z1, d1) �→ d2 =
[
A2 B2

0 0

] [
z1

d1

]
+

[
cμ
2
cσ
2

]
,

for the deterministic variables, where cσ
2 = 2 log σz2|z1 . We

assume the same parameterisation for the prior densities of z2

given d2 as in the first layer: μ2,θ (d) = μ1,θ (d) = dμ, and
σ2,θ (d) = σ1,θ (d) = exp(0.5dσ ). We assume further that
the decoder function depends explicitly only on the latent
variables z2 and d2 at the bottom in the form of

pθ (x |z) = N (Wz
2 z

2 + Wd
2 d

2 + b, �x |z)
= N (Wz + b + Wd

2 c
μ
2 , �x |z),

for W = [
Wd

2 A2 Wz
2

]
. Observe that the covariance matrix

of the prior density is

�z =
[
I (A2)

	
A2 A2A	

2 + I

]
.
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Table 4 Condition Number
κ(�−1

z|x ) of the posterior
distribution for a smaller and
larger linear hierarchical VAE
model, each consisting of latent
variables in two layers, having
the dimensions (10,20) and
(50,100), respectively

Model κ(�−1
z|x )(10,20) κ(C	�−1

z|x C)(10,20) κ(�−1
z|x )(50,100) κ(C	�−1

z|x C)(50,100)

hVAE 18.07 (0.45) – 508.55 (12.1) –

gradMALA- D 20.43 (0.99) 19.02 (1.24) 578.05 (84.5) 434.24 (13.0)

dsMALA- D 18.62 (1.34) 18.62 (1.34) 617.36 (48.4) 617.36 (48.4)

gradHMC- D 21.57 (1.48) 22.67 (1.23) 502.41 (36.0) 431.14 (23.4)

dsHMC- D 18.38 (1.27) 18.38 (1.27) 621.1 (54.9) 621.1 (54.9)

gradMALA- LT 23.55 (5.31) 1.67 (0.06) 475.93 (23.7) 2.0 (0.02)

gradHMC- LT 25.57 (2.63) 1.68 (0.15) 483.05 (38.0) 2.24 (0.04)

Condition number of the transformed posterior κ(C	�−1
z|x C)

The marginal distribution of the data is x ∼ N (μx , �x ),
where μx = Wz

2 c
μ
2 + b and

�x = W�zW
	 + �x |z .

The covariance matrix of the posterior density becomes

�z|x = �z − (W�z)
	�−1

x W�z . (12)

Depending on the conditioning number of �z|x , this matrix
canbepoorly-conditioned,which canhinder the performance
of non-adaptive MCMC methods. Particularly for models
that infer a high dependence between z1 and s2, the prior
covariance �z can be ill-conditioned, which can lead to
ill-conditioned posteriors. By contrast, with suitable precon-
ditioning, we can expect MALA, HMC, and other MCMC
methods to become more performant at sampling from the
posterior distribution.

6.7.2 Encodingmodel

Assume a linear encoder model based on a linear bottom-up
model so that d ′

3 = x , and for 1 ≤ � ≤ 2, suppose that
d

′� = W ′
�d

′�+1 + b′
� are bottom-up deterministic variables.

We construct an encoding distribution by setting

μ′
�,θ : (d�, d

′�) �→ B ′
�

[
d�

d ′
�

]
+ c′

�

and σ ′
�,θ : (d�, d

′�) �→ exp(b′
�) in the residual pasteurisation

(9).

6.7.3 Experimental results

We first test if the adaptation scheme can adapt to the poste-
rior covariance �x |z given in (12) of a linear hVAE model,
i.e. if the condition number of C�x |zC	 becomes small.
As choices of C , we consider (i) a diagonal preconditioning
matrix (denoted D) and (ii) a lower-triangular precondi-
tioning matrix (denoted LT). Note that the dual-averaging

adaptation scheme used here and in Hoffman and Gelman
(2014) adapts only a single step-size parameter, thereby
leaving the condition number unchanged. We tested two
simulated data sets with corresponding latent dimensions
(n1, n2) of (10,20) and (50,100). More specifically, we sim-
ulated datasets with 1000 samples for each configuration,
using the linear observation model with a standard devia-
tion of 0.5. We used a hierarchical VAE with two layers
and a learning rate of 0.001. For the dataset from the model
with a latent dimension of (10,20), we pre-trained the VAE
for 1000 epochs without MCMC, followed by training for
1000 epochs with MCMC. The number of MCMC steps
was fixed at K = 2. For the dataset from the model gen-
erated from a higher dimensional latent space of dimension
(50,100), we increased the number of training epochs from
1000 to 5000, while also increasing the number of MCMC
steps from K = 2 to K = 10. For different choices for the
size of the latent variables, Table 4 shows that both gradient-
based adaptation schemes lead to a very small transformed
condition number κ(C	�−1

z|xC) when a full preconditioning
matrix is learnt, with smallest values in bold for each con-
figuration of the latent dimensions. Notice also that for all
models, the posterior becomes increasingly ill-conditioned
for higher dimensional latent variables, as confirmed by the
large values of κ(�−1

z|x ) in Table 4.
In addition to the condition number, we also investigate

how the adaptation scheme affects the learned model in
terms of the marginal log-likelihood, which is analytically
tractable. The results summarised in Table 5 show that the
gradient-based adaptation schemes indeed achieve a higher
log-likelihood.

6.8 Non-linear hierarchical VAEs

Finally, we investigate the effect of combining MCMC with
hVAE in the general non-linear case for hierarchical mod-
els. More precisely, we follow the general model setup in
Sect. 5, which differs from the linear examples above by the
inclusion of a ReLU activation in the considered neural net-
works. We consider a hVAE with two layers of size 5 and
10. The learning rate of the hVAE and MCMC algorithms
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Table 5 Difference between true and estimated data log-likelihood
log pθ (x) for hierarchical VAEs with two layers and where the dimen-
sion of the latent variables (z1, z2) are set to (10,20) and (50,100),
respectively

Model � log p(x)(10,20) � log p(x)(50,100)

hVAE 24.91 (7.67) 13.08 (0.26)

gradMALA- D 1.54 (1.49) 7.14 (0.11)

dsMALA- D 2.68 (2.04) 8.77 (0.11)

gradHMC- D 1.16 (1.72) 2.19 (0.05)

dsHMC- D 2.59 (1.78) 8.06 (0.48)

gradMALA- LT 1.56 (1.61) 1.96 (0.12)

gradHMC- LT 1.14 (1.53) 1.66 (0.15)

The highest loglikelihood values for each configuration of the latent
dimensions are in bold

Table 6 Estimates of KID for each model considered across different
datasets with lowest KID scores for each dataset in bold

Model MNIST Fashion- MNIST

hVAE 0.496 (0.062) 1.269 (0.037)

gradMALA- D 0.432 (0.057) 1.038 (0.068)

dsMALA- D 0.600 (0.040) 1.312 (0.034)

gradHMC- D 0.447 (0.073 ) 1.079 (0.174)

dsHMC- D 0.490 (0.098) 1.151 (0.223)

gradMALA- LT 0.475 (0.101) 0.939 (0.143)

gradHMC- LT 0.407 (0.030) 0.916 (0.047)

The values denote the mean of three seeds, while the standard deviation
is shown within brackets

was set to 0.001. We use 200 epochs for training overall. For
models that includedMCMC sampling, we used the first 190
epochs for pre-training without MCMC. Additionally, the
prior of the model was trained only during the hVAE portion
of the algorithm. The resulting KID scores for MNIST and
Fashion-MNIST can be found in Table 6. In this scenario,
our proposed method outperforms other sampling schemes
when combined with a hVAE model.

7 Conclusion

Wehave investigated the performance effect of trainingVAEs
and hierarchical VAEswithMCMC speedmeasures and sub-
sequently compared our proposed method with other widely
used adaptiveMCMCadaptations andVAEmodel variations.
Adopting recent advances in the adaptive MCMC literature
that are based on the notion of a generalised speed measure
seem to provide, in the problems and datasets we tested, a
more efficient learning algorithm for VAEs. Future research
directions may focus on using our proposed method in mod-
els with deeper architectures in the encoder and the decoder,
using our method in challenging inpainting problems and

exploring its power at alleviating adversarial attacks as seen
in Kuzina et al. (2022).

A Appendix: Relation to score-based
diffusionmodels

HVAEs can be interpreted as diffusion discretisations (Falck
et al. 2022). Besides, score-based diffusion models (Sohl-
Dickstein et al. 2015; Song and Ermon 2019; Ho et al. 2020;
Song et al. 2020) can be interpreted as a hVAE by intro-
ducing a sequence of latent variables (z1, . . . , zL−1) in the
same space as the data x = zL , where the generative distribu-
tion3 pθ (z1, . . . , zL−1) factories as in (5),while the inference
distribution qφ(z1, . . . zL−1|x) is jointly Gaussian, for any
given x , with known fixed parameters. The discrete-time dif-
fusion model can be learned by maximising a variational
lower bound over θ ,

log pθ (zL)

≥Eqφ(z≤L−1|zL )

[
log pθ (z≤L) − log qφ(zL−1|zL)

]
,

which can be transformed into a denoising score-matching
objective (Vincent 2011),

1

2

L−1∑
�=0

γ�‖∇z� log qφ(z�|x) − sθ (z
�, �)‖2

for suitable weights γ� > 0. Here, sθ is a learned score
model that determines the mean of the generative distribu-
tion pθ (z�+1|z�). More precisely, for suitable choices of the
forward and backward dynamics (Song and Ermon 2019),
one can view the generative path as an unadjusted Langevin
algorithm based on the learned score function sθ . More gen-
eral learning and sampling schemes can be used for such
models, such as incorporating Hamiltonian dynamics with a
fixedmass matrix in damped Langevin diffusions (Dockhorn
et al. 2021; Pandey and Mandt 2023; Singhal et al. 2023).
Diffusion models can also be used in a latent space (Vah-
dat et al. 2021; Rombach et al. 2022). We emphasise that
our work instead considers Metropolis-adjusted Langevin or
Hamiltonian dynamics based on the score function of the pos-
terior∇z log pθ (z|x) = ∇z

[
log pθ (z) + log pθ (x |z)

]
, which

is constant across the different MCMC steps. In the case of
a hVAE, the score function is based on the joint posterior
∇(z1,...zL )

[
log pθ (z1, . . . , zL) + log pθ (x |zL)

]
.

3 To be consistent with the hVAE model above, the index ordering of
the latent variables is reversed to the notation employed in many works
on diffusion models.
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Bińkowski, M., Sutherland, D.J., Arbel, M., et al: Demystifying MMD
GANs. (2018) arXiv:1801.01401

Bou-Rabee, N., Sanz-Serna, J.M.: Geometric integrators and theHamil-
tonian Monte Carlo method. Acta Numer 27, 113–206 (2018)

Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoen-
coders. (2015) arXiv:1509.00519

Caterini,A.L.,Doucet,A., Sejdinovic,D.:Hamiltonianvariational auto-
encoder. In: Advances in Neural Information Processing Systems,
pp. 8167–8177 (2018)

Chen, T.Q., Behrmann, J., Duvenaud, D.K., et al: Residual flows for
invertible generative modeling. In: Advances in Neural Informa-
tion Processing Systems, pp. 9913–9923 (2019a)

Chen, Y., Gatmiry, K.: A simple proof of the mixing of metropolis-
adjusted langevin algorithm under smoothness and isoperimetry
(2023). arXiv:2304.04095

Chen, Y., Dwivedi, R., Wainwright, M.J., et al: Fast mixing of
metropolizedHamiltonianMonteCarlo: benefits ofmulti-step gra-
dients (2019b). arXiv:1905.12247

Chewi, S., Lu, C., Ahn, K., et al: Optimal dimension dependence of the
metropolis-adjusted langevin algorithm. In: Conference on Learn-
ing Theory, PMLR, pp. 1260–1300 (2021)

Child, R.: Very deep VAEs generalize autoregressive models and
can outperform them on images. In: International Conference on
Learning Representations (2021)

Dai, B., Wang, Y., Aston, J., et al.: Connections with robust PCA and
the role of emergent sparsity in variational autoencoder models. J.
Mach. Learn. Res. 19(1), 1573–1614 (2018)

Dilokthanakul, N., Mediano, P.A., Garnelo, M., et al: Deep unsuper-
vised clustering with Gaussian mixture Variational Autoencoders
(2016). arXiv:1611.02648

Dockhorn, T., Vahdat, A., Kreis, K.: Score-based generative modeling
with critically-damped langevin diffusion. In: International Con-
ference on Learning Representations (2021)

Du, Y., Mordatch, I.: Implicit generation and modeling with energy
based models. Advances in Neural Information Processing Sys-
tems 32, pp. 3608–3618 (2019)

Durmus, A., Moulines, E., Saksman, E.: On the convergence of Hamil-
tonian Monte Carlo (2017). arXiv:1705.00166

Dwivedi, R., Chen, Y., Wainwright, M.J., et al.: Log-concave sam-
pling:metropolis-hastings algorithms are fast. J.Mach. Learn.Res.
20(183), 1–42 (2019)

Falck, F., Williams, C., Danks, D., et al: A multi-resolution framework
for U-Nets with applications to hierarchical VAEs. In: Advances
in Neural Information Processing Systems (2022)

Finke, A., Thiery, A.H.: On importance-weighted autoencoders (2019).
arXiv:1907.10477

Geffner, T., Domke, J.: On the difficulty of unbiased alpha divergence
minimization. In: International Conference on Machine Learning,
PMLR, pp. 3650–3659 (2021)

Guo, F., Wang, X., Fan, K., et al: Boosting variational inference (2016).
arXiv:1611.05559

Hagemann, P., Hertrich, J., Steidl, G.: Stochastic normalizing flows
for inverse problems: a Markov Chains viewpoint. SIAM/ASA J.
Uncertain. Quantif. 10(3), 1162–1190 (2022)

Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration
illustrated by the Störmer–Verlet method. Acta Numer 12, 399–
450 (2003)

Han, S., Liao, X., Dunson, D., et al: Variational Gaussian copula infer-
ence. In: Artificial Intelligence and Statistics, pp. 829–838 (2016)

Han, T., Lu, Y., Zhu, S.C., et al: Alternating back-propagation for
generator network. In: Proceedings of the AAAI Conference on
Artificial Intelligence (2017)

Han, T., Zhang, J., Wu, Y.N.: From EM-projections to variational auto-
encoder. In: NeurIPS 2020 Workshop: Deep Learning through
Information Geometry (2020)

Hernandez-Lobato, J., Li, Y., Rowland, M., et al: Black-box alpha
divergenceminimization. In: InternationalConference onMachine
Learning, PMLR, pp. 1511–1520 (2016)

Hirt, M., Titsias, M., Dellaportas, P.: Entropy-based adaptive Hamil-
tonian Monte Carlo. Adv. Neural. Inf. Process. Syst. 34, 28482–
28495 (2021)

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models.
Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

Hoffman, M, Sountsov, P., Dillon, J.V., et al: Neutra-lizing bad geom-
etry in Hamiltonian Monte Carlo using neural transport (2019).
arXiv:1903.03704

Hoffman, M.D.: Learning deep latent Gaussian models with Markov
chain Monte Carlo. In: International Conference on Machine
Learning, pp. 1510–1519 (2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1801.01401
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/2304.04095
http://arxiv.org/abs/1905.12247
http://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1705.00166
http://arxiv.org/abs/1907.10477
http://arxiv.org/abs/1611.05559
http://arxiv.org/abs/1903.03704


  164 Page 14 of 15 Statistics and Computing           (2024) 34:164 

Hoffman, M.D., Gelman, A.: The No-U-Turn sampler: adaptively set-
ting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn.
Res. 15(1), 1593–1623 (2014)

Hoffman, M.D., Johnson, M.J.: Elbo surgery: yet another way to
carve up the variational evidence lower bound. In: Workshop in
Advances in Approximate Bayesian Inference, NIPS (2016)

Jiang, Z., Zheng,Y., Tan,H., et al: Variational deep embedding: an unsu-
pervised and generative approach to clustering. In: Proceedings of
the 26th International Joint Conference on Artificial Intelligence,
pp. 1965–1972 (2017)

Kingma, D.P., Welling, M.: Auto-encoding Variational Bayes. In:
Proceedings of the 2nd International Conference on Learning Rep-
resentations (ICLR) (2014)

Kingma, D.P., Salimans, T., Jozefowicz, R., et al: Improved variational
inference with inverse autoregressive flow. In: Advances in Neural
Information Processing Systems, pp. 4743–4751 (2016)

Klushyn, A., Chen, N., Kurle, R., et al: Learning hierarchical priors in
VAEs. Advances in Neural Information Processing Systems 32,
pp. 2870–2879 (2019)

Kuzina, A.,Welling,M., Tomczak, J.M.: Alleviating adversarial attacks
on variational autoencoders with MCMC. In: Advances in Neural
Information Processing Systems (2022)

Lee, Y.T., Shen, R., Tian, K.: Logsmooth gradient concentration and
tighter runtimes for metropolized Hamiltonian Monte Carlo. In:
Conference on Learning Theory, PMLR, pp. 2565–2597 (2020)

Lee, Y.T., Shen, R., Tian, K.: Lower bounds on metropolized sampling
methods for well-conditioned distributions. Adv. Neural. Inf. Pro-
cess. Syst. 34, 18812–18824 (2021)

Levy,D., Hoffman,M.D., Sohl-Dickstein, J.: GeneralizingHamiltonian
Monte Carlo with neural networks. In: International Conference
on Learning Representations (2018)

Li, C., Wang, Y., Li, W., et al Forward chi-squared divergence based
variational importance sampling (2023). arXiv:2311.02516

Li, Z., Chen, Y., Sommer, F.T.P: A neural networkMCMC sampler that
maximizes proposal entropy (2020). arXiv:2010.03587

Livingstone, S., Betancourt, M., Byrne, S., et al.: On the geometric
ergodicity of Hamiltonian Monte Carlo. Bernoulli 25(4A), 3109–
3138 (2019)

Locatello, F., Dresdner, G., Khanna, R., et al Boosting black box vari-
ational inference. In: Advances in Neural Information Processing
Systems, pp. 3401–3411 (2018)

Louizos,C.,Welling,M.: Structured and efficient variational deep learn-
ing with matrix Gaussian posteriors. In: Proceedings of the 33rd
International Conference on Machine Learning (2016)

Louizos, C., Welling, M.: Multiplicative normalizing flows for varia-
tional bayesian neural networks. In: International Conference on
Machine Learning, pp. 2218–2227 (2017)

Lucas, J., Tucker,G.,Grosse,R.B., et al:Don’t blame theELBO! a linear
VAE perspective on posterior collapse. In: Advances in Neural
Information Processing Systems, pp. 9408–9418 (2019)

Maaløe, L., Fraccaro,M., Liévin,V., et al.: Biva: a very deephierarchyof
latent variables for generativemodeling. Adv. Neural. Inf. Process.
Syst. 32, 6551–6562 (2019)

Mangoubi,O.,Vishnoi,N.K.:Nonconvex samplingwith themetropolis-
adjusted langevin algorithm. In: Conference on Learning Theory,
PMLR, pp. 2259–2293 (2019)

Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational Bayes:
unifying variational autoencoders and generative adversarial net-
works. In: International Conference on Machine learning (ICML)
(2017)

Molchanov, D., Kharitonov, V., Sobolev, A., et al: Doubly semi-implicit
variational inference. In: The 22nd International Conference on
Artificial Intelligence andStatistics, PMLR, pp. 2593–2602 (2019)

Nesterov, Y.: Primal-dual subgradient methods for convex problems.
Math. Program. 120(1), 221–259 (2009)

Nijkamp, E., Pang,B.,Han, T., et al: Learningmulti-layer latent variable
model via variational optimization of short runMCMC for approx-
imate inference. In: European Conference on Computer Vision.
Springer, pp. 361–378 (2020)

Pandey, K., Mandt, S.: A complete recipe for diffusion generative mod-
els. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 4261–4272 (2023)

Pang, B., Han, T., Nijkamp, E., et al,: Learning latent space energy-
based prior model. Advances in Neural Information Processing
Systems 33, pp.21994–22008 (2020)

Papamakarios, G., Nalisnick, E., Rezende, D.J., et al: Normal-
izing flows for probabilistic modeling and inference (2019).
arXiv:1912.02762

Papaspiliopoulos, O., Roberts, G.O., Sköld, M.: A general framework
for the parametrization of hierarchical models. Statistical Science,
pp. 59–73 (2007)

Peis, I., Ma, C., Hernández-Lobato, J.M.: Missing data imputation and
acquisition with deep hierarchical models and HamiltonianMonte
Carlo (2022). arXiv:2202.04599

Ranganath, R., Tran, D., Blei, D.M.: Hierarchical variational models.
In: International Conference on Machine Learning (2016)

Rezende, D., Mohamed, S.: Variational inference with normalizing
flows. In: Proceedings of The 32nd International Conference on
Machine Learning, pp. 1530–1538 (2015)

Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation
and approximate inference in deep generativemodels. In: Proceed-
ings of the 31st International Conference on Machine Learning
(ICML-14), pp. 1278–1286 (2014)

Roberts, G., Gelman, A., Gilks, W.: Weak convergence and optimal
scaling of randomwalkmetropolis algorithms. Ann. Appl. Probab.
7(1), 110–120 (1997)

Rombach, R., Blattmann, A., Lorenz, D., et al: High-resolution image
synthesis with latent diffusion models. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 10684–10695 (2022)

Rosca,M., Lakshminarayanan,B.,Mohamed, S.:Distributionmatching
in variational inference (2018). arXiv:1802.06847

Ruiz, F., Titsias,M.:AContrastive divergence for combining variational
inference and MCMC. In: International Conference on Machine
Learning, pp. 5537–5545 (2019)

Ruiz, F.J., Titsias, M.K., Cemgil, T., et al: Unbiased gradient estimation
for variational auto-encoders using coupled Markov chains. In:
Uncertainty in Artificial Intelligence, PMLR, pp. 707–717 (2021)

Salimans, T., Kingma, D.P., Welling, M., et al: Markov Chain Monte
Carlo and variational inference: bridging the gap. In: ICML, pp.
1218–1226 (2015)

Salimans, T., Karpathy, A., Chen, X., et al: Pixelcnn++: improving
the pixelcnn with discretized logistic mixture likelihood and other
modifications. In: International Conference on Learning Repre-
sentations (2017)

Singhal, R., Goldstein, M., Ranganath, R.: Where to diffuse, how to
diffuse and how to get back: automated learning in multivariate
diffusions. In: International Conference on Learning Representa-
tions (2023)

Sinha, A., Song, J.,Meng, C., et al.: D2c: diffusion-decodingmodels for
few-shot conditional generation. Adv. Neural. Inf. Process. Syst.
34, 12533–12548 (2021)

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., et al: Deep
unsupervised learning using nonequilibrium thermodynamics. In:
International Conference onMachine Learning, PMLR, pp. 2256–
2265 (2015)

Sønderby, C.K., Raiko, T., Maaløe, L., et al.: Ladder variational autoen-
coders. Adv. Neural. Inf. Process. Syst. 29, 3738–3746 (2016)

Song, Y., Ermon, S.: Generative modeling by estimating gradients of
the data distribution. Advances in Neural Information Processing
Systems 32, pp. 11918–11930 (2019)

123

http://arxiv.org/abs/2311.02516
http://arxiv.org/abs/2010.03587
http://arxiv.org/abs/1912.02762
http://arxiv.org/abs/2202.04599
http://arxiv.org/abs/1802.06847


Statistics and Computing           (2024) 34:164 Page 15 of 15   164 

Song,Y., Sohl-Dickstein, J., Kingma,D.P., et al: Score-based generative
modeling through stochastic differential equations. In: Interna-
tional Conference on Learning Representations (2020)

Taniguchi, S., Iwasawa, Y., Kumagai, W., et al: Langevin autoencoders
for learning deep latent variable models (2022). arXiv:2209.07036

Thin, A., Kotelevskii, N., Denain, J.S., et al: Metflow: a new efficient
method for bridging the gap between Markov Chain Monte Carlo
and variational inference (2020). arXiv:2002.12253

Tipping, M.E., Bishop, C.M.: Probabilistic principal component analy-
sis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)

Titsias, M., Dellaportas, P.: Gradient-based adaptive Markov chain
Monte Carlo. In: Advances in Neural Information Processing Sys-
tems, pp. 15704–15713 (2019)

Titsias,M., Lázaro-Gredilla,M.:Doubly stochastic variational bayes for
non-conjugate inference. In: Proceedings of the 31st International
Conference on Machine Learning (ICML-14), pp. 1971–1979
(2014)

Titsias MK (2017) Learning model reparametrizations: implicit varia-
tional inference by fittingMCMCdistributions. arXiv:1708.01529

Titsias, M.K., Ruiz, F.: Unbiased implicit variational inference. In: The
22nd international conference on artificial intelligence and statis-
tics, pp. 167–176 (2019)

Tomczak, J.M., Welling, M.: VAE with a VampPrior (2017).
arXiv:1705.07120

Tran, D., Blei, D., Airoldi, E.M.: Copula variational inference. In:
Advances in Neural Information Processing Systems, pp. 3564–
3572 (2015)

Tran, D., Ranganath, R., Blei, D.M.: Deep and hierarchical implicit
models. arXiv:1702.08896 (2017)

Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoen-
coder (2020). arXiv:2007.03898

Vahdat, A., Kreis, K., Kautz, J.: Score-based generative modeling in
latent space. Advances in Neural Information Processing Systems
34 (2021)

Vincent, P.: A connection between score matching and denoising
autoencoders. Neural Comput. 23(7), 1661–1674 (2011)

Wolf, C., Karl, M., van der Smagt, P.: Variational inference with Hamil-
tonian Monte Carlo (2016). arXiv:1609.08203

Wu, H., Köhler, J., Noé, F.: Stochastic normalizing flows. Adv. Neural.
Inf. Process. Syst. 33, 5933–5944 (2020)

Wu, K., Schmidler, S., Chen, Y.: Minimax mixing time of the
metropolis-adjusted Langevin algorithm for log-concave sam-
pling. J. Mach. Learn. Res. 23(270), 1–63 (2022)

Yin,M., Zhou,M.: Semi-implicit variational inference. In: International
Conference on Machine Learning, pp. 5646–5655 (2018)

Yu, L., Xie, T., Zhu, Y., et al: Hierarchical semi-implicit variational
iference with application to diffusion model acceleration. In:
Thirty-SeventhConference onNeural InformationProcessingSys-
tems (2023)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2209.07036
http://arxiv.org/abs/2002.12253
http://arxiv.org/abs/1708.01529
http://arxiv.org/abs/1705.07120
http://arxiv.org/abs/1702.08896
http://arxiv.org/abs/2007.03898
http://arxiv.org/abs/1609.08203

	Learning variational autoencoders via MCMC speed measures
	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Training VAEs with MCMC speed measures
	4.1 Learning the warm start distribution
	4.2 Markov kernels
	4.3 Speed measure adaptation
	4.4 MALA
	4.5 HMC
	4.6 Learning the generative model
	4.7 Algorithm

	5 Extension to hierarchical VAEs
	6 Numerical experiments
	6.1 Evaluating model performance with marginal log likelihood
	6.2 Marginal log-likelihood estimation
	6.3 VAE models
	6.4 Experimental results
	6.5 Evaluating generative performance with kernel inception distance (KID)
	6.5.1 Generative metrics
	6.5.2 VAE models and quantitative evaluation
	6.5.3 Qualitative results

	6.6 Evaluating model performance in small sample size data
	6.6.1 Data augmentation task
	6.6.2 Generative performance
	6.6.3 Classification results

	6.7 Linear hierarchical VAEs
	6.7.1 Hierarchical generative model
	6.7.2 Encoding model
	6.7.3 Experimental results

	6.8 Non-linear hierarchical VAEs

	7 Conclusion
	A Appendix: Relation to score-based diffusion models
	References


