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Abstract— Soft continuum robots, characterized by their
inherent compliance and dexterity, are increasingly pivotal
in applications requiring delicate interactions with the envi-
ronment such as the medical field. Despite their advantages,
challenges persist in accurately modeling and controlling their
shape during interactions with surrounding objects. This is
because of the difficulty in modeling the large degrees of
freedom in soft-bodied objects that become more active during
interactions. In this study, we present a deep visual model
to predict the interaction shapes of a soft continuum robot
in contact with surrounding objects. By formulating this task
as a forward-statics problem, the model uses the initial state
images containing the object configuration and future actuation
values to predict interactive state images of the robot under
this actuation condition. We developed and tested the model
in both simulated and physical environments, explored the
model’s predictive capabilities using monocular and binocular
views, and tested the model’s generalization ability on different
datasets. Our results show that deep learning methods are a
promising tool for solving the complex problem of predicting
the shape of a soft continuum robot interacting with the
environment, requiring no prior knowledge about the system
dynamics and explicit mapping of the environment. This study
paves the way for future explorations in robot-environment
interaction modeling and the development of more adaptable
interaction shape control strategies.

I. INTRODUCTION

Soft continuum robots have bodies that are made of soft
and extensible materials [1], enabling them to form curvi-
linear shapes and exhibit high degrees of freedoms (DOFs)
[2]. Unlike their rigid-bodied counterparts, soft continuum
robots with inherent compliance and dexterity are suitable
for complex and interactive tasks. In minimally invasive
surgery (MIS), these robots navigate through tight spaces
within the human body, enabling less invasive procedures
and reduced patient trauma [3]. In rehabilitation, they can
conform around human limbs to provide customized assis-
tance or resistance [4]. Despite these advantages, the shape
modeling of soft continuum robots during interactive tasks
remains a significant challenge [5]. In surgical applications,
a soft robotic tool must delicately maneuver around sensitive
organs and tissues to avoid inadvertent harm. In rehabilitation
applications, the robot must adapt its movements to match
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Fig. 1. An overview of the autoencoder-based network for predicting the
visual state of a soft robot given the actuation signal and environmental
conditions.

the needs of patients and understand its shape changes in
response to external forces. Thus, accurately predicting and
modeling the shape of a soft continuum robot, as well as
its interactions with surrounding objects, become not only
beneficial but essential [6], [7].

The interaction problem in soft continuum robots exem-
plifies a multi-physics challenge. This problem encompasses
the physics of the soft body itself, including its material
properties and the actuation dynamics. Additionally, it in-
volves the physics of the external environment, such as fluid
dynamics or rigid body interactions. The coupling between
these external forces and the soft robot’s structure further
adds to the complexity of the problem [6]. Mathematically,
the interaction problem can be broken down into modeling
the internal mechanics and external interactions, and some
analytical methods have been developed for these. Finite
Element Method (FEM) has been widely used for modeling
internal mechanics. It divides the robot into computational
meshes, and applies continuum solid mechanics to simulate
the robot’s behavior [8] [9]. Rod models, such as Cosserat
rod models, represent the soft robot as a one-dimensional
rod to simplify the complexity of modeling [10] [11]. For
external interactions, solving the contact force between the
actuated robot structures and the surrounding medium is
crucial. This involves applying fluid mechanics to calculate
fluid interaction force [12], or employing contact mechanics
and tribology for solid-robot interactions [13]. Although
these analytical models provide foundational insights into the
complex multi-physics problem, they encounter limitations
because accurate discretization is computationally intensive,
the environment is changing and unknown, and due to
inherent uncertainties of the soft robot in material properties
and actuator behaviors [14] [15]. The advent of machine
learning techniques inspires researchers to implement data-
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Fig. 2. Network architecture: The input consists of initial state images and actuation values. An encoder with convolutional layers and ReLU activations
extracts input features while downsampling spatial dimensions. A decoder with transposed convolutional layers and ReLU activations upsamples the feature
maps to reconstruct the predicted interactive state images under given actuation conditions.

driven methods to understand the dynamics of soft con-
tinuum robots, and learn the transformation from actuation
space to the deformation space of the robot’s body [16] [17]
[18]. These methods adaptively learn from data, capturing the
complex, non-linear relationships inherent in soft robotics
without relying on pre-defined assumptions or analytical
models. To effectively implement data-driven approaches
for soft robot shape modeling, data collection is critical.
Embedding flexible sensors within the robot is a preva-
lent strategy to get real-time, responsive data regarding the
robot’s movements [19]. However, most embedded sensors
do not incorporate well with soft materials and only capture
one DOF movement of robots. An alternative is the use
of camera systems, which can offer multi-DOF movement
tracking without physical integration [20] [21]. To learn the
mapping from actuation space to the deformation space,
neural networks have emerged as the predominant method for
approximating this mapping [22]. Additionally, alternative
regression techniques like locally weighted projection regres-
sion [23] and Gaussian process regression [24] are efficient
in addressing learning issues in soft continuum robots.

In this paper, we contributed to addressing the challenges
of modeling interactions between soft continuum robots and
the environments using an autoencoder-based convolutional
neural network (CNN), as shown in Fig. 1. We collected data
from both simulated and physical environments, developed
and trained the CNN model to predict the interactive state im-
ages given actuation conditions and initial state images. This
data-driven method can learn the complex input-output rela-
tionship without explicit physics-based modeling. Through
extensive experiments on both simulated and real-world
datasets, we demonstrated the effectiveness of our proposed
approach in predicting interaction shapes of soft continuum
robots under various conditions and highlighted its potential
in terms of prediction accuracy and generalization ability.

II. THEORY

A. Forward Problem

In Cosserat rod theory, a soft continuum robot can be
represented by a continuous stack of rigid cross-sections
along its center curvature [10]. The position of each section
can be defined by a function of X ∈ [0,L], where L is the
length of the rod. It can be represented by the homogeneous

transformation matrix:

g(X) =

(
R(X) t(X)

0T 1

)
(1)

where t(X) ∈R3 is the vector from the origin of the inertial
frame to the section at X , and R(X) ∈ SO(3) is the rotation
matrix representing the orientation of this section. Then the
strains of the rod at X can be denoted as:

ξ (X) = [PT QT ]T (2)

where P(X) ∈ R3 and Q(X) ∈ R3 represent the angular and
linear strains, respectively. The derivative of g with respect
to X can be derived as [25]:

g′ = gξ̂ (3)

where ξ̂ =
( P̂ Q

0T 1

)
, connecting the strain field ξ with the

robot configuration g and its space derivative. The strain field
can be discretized to a finite basis of n vector functions:

ξ (X) = Φξ (X)q+ξ
∗(X) (4)

where Φξ (X) ∈ R6×n is a matrix function and its columns
are the basis of the strain field. The vector q ∈ Rn is the
generalized coordinates expressed in the chosen basis, and
ξ ∗(X) is the reference strain, which is computed at the stress-
free reference configuration g∗(X) [26].

According to [27], the quasi-static equilibrium can be
expressed as :

Kq = B(q)u+Fe (5)

where K is the generalized stiffness matrix calculated from
the strain field. q denotes the generalized coordinates. Matrix
B(q) is the generalized actuation matrix that translates actu-
ation inputs, such as tendon forces or pneumatic pressures,
into movements or deformations. The vector u represents
these actuation parameters. Fe signifies the external forces
acting on the robot, including those arising from interactions
with the environment.

B. Learning of Forward Model

From the quasi-static equilibrium equation (5), the robot’s
generalized coordinates q, influenced by actuation and ex-
ternal forces, is thus given by:

q = K−1(B(q)u+Fe) (6)



this generalized coordinates q describes the robot shape in
its configuration space, which is in turn observable through
visual images I. These static images offer a visual, higher-
dimensional representation of the robot’s shape.

The external force Fe is further modeled as a function of
the actuation parameters u and the initial state images Iη ,
where η is the environment condition:

Fe = f (u,Iη) (7)

So the generalized coordinates q can be represented as a
mapping from the specific actuation value u and the initial
state images Iη , and this relationship is captured by the
function h. The coordinates q can then be observed in the
visual task-space It :

q = h(ut,Iη) It = g(q) (8)

To learn this mapping function g(h()), a convolutional
neural network in Fig. 2 is used. The proposed network com-
prises an encoder that compresses image data and actuation
value data, with a decoder designed to reconstruct the images
depicting the interactive states of the robot.

1) Encoder: The encoder takes initial state image data
alongside the actuation value data as inputs. The image
channels provide visual information on the robot in an
unactuated state, the object’s geometry, and their relative
positions. The initial state conditions can be mono-vision or
stereo-vision, and the images can be processed in full color
(RGB) or grayscale. The actuation value, which is reshaped
to match the dimension of the input images, provides the
robot’s movement command. The network then applies a
series of convolutional operations to extract essential features
from both the robot’s initial state images and the actuation
parameters into a latent space.

2) Decoder: The decoder of the network serves as an
image reconstruction part. It learns the intricate relationships
among the encoded features that correspond to the robot’s
behavior and internal and external interactions. Through a
sequence of transposed convolutional operations, the decoder
up-samples the condensed feature data to reconstruct images.
Then a regression output layer refines these reconstructions
to align with the dimensions of the original input images.

III. SIMULATION AND RESULTS

A. Simulation Setup

We developed a simulated soft continuum robot in MAT-
LAB using the SoRoSim toolbox [28], which is based on the
Cosserat rod model mentioned in Section II. The simulated
robot has the same parameters as the STIFF-FLOP robot used
in physical experiments, which are detailed in Section IV.
The robot consists of two segments, each with three thread-
like actuators placed equidistantly along the perimeter of the
robot. As such systems exhibit minimal torsion, elongation,
and shear, we parameterized only the two directions of
bending, each with a 4th order Legendre polynomial per
section. This parametrization results in a total of 20 degrees
of freedom for the entire robot.

Main cameraSecond camera

ObjectRobot arm

Ac 1

Ac 3

Ac 2

Ac 4

Ac 6

Ac 5
45°

Fig. 3. Simulated experimental setup: The soft robot arm has 6 actuators
(Ac 1 to Ac 6) depicted as lines. The main camera is positioned facing the
central plane of the robot and object. The second camera is on the same
plane at a 45◦ angle, providing binocular views of the interaction.

To simulate the robot’s interaction with the environment,
we implemented a simple contact model between the soft
robot and a rigid object, as presented in [29]. The contact
is considered to be a concentrated force from the object on
the robot at the point of contact, represented by the Fe term
in equation (5). Readers are referred to [30], [31] for more
details on how concentrated forces are projected onto the
generalized coordinates space. Once the simulation environ-
ment is set up, equation (5) is solved for the system’s static
configuration for different values of actuation, using root-
finding methods implemented in the SoRoSim. A diagram
of the simulation setup is depicted in Fig. 3.

For the training, a mini-batch size of 256 and the Adam
optimizer were employed. The training data were split into
80% and 20% for training and validation, respectively.

B. Prediction Results

The prediction results presented in Fig. 4 demonstrate the
effectiveness of the deep visual model in predicting simulated
interaction shapes. The yellow mask highlights pixels with
significant differences, exceeding a threshold of 10 (on a
scale of 0-255) in all RGB channels, between the predicted
and ground truth images. It provides a clear visual assess-
ment of the model’s performance and uncertainty regions.

When trained only on monocular images from the main
camera (Fig. 4(a)), the model performs well in scenarios
where the deformations are fully visible. However, its perfor-
mance degrades in occlusion scenarios where the object or
robot is partially obscured. The results present two specific
cases where the model struggles with relative position predic-
tion. The uncertainty regions, indicated by the yellow masks,
are primarily located near the robot body, suggesting that the
model struggles to accurately predict the robot’s deformation
and relative position when trained only on monocular data.

To address this limitation, binocular image data was intro-
duced into the training process. The results in Fig. 4(b) show
a notable improvement in the model’s ability to understand
spatial relationships and predict robot deformations, even
in more complex occlusion scenarios. The reduced yellow
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Fig. 4. Prediction results on simulated data. (a) shows predictions from the model trained on monocular image data. (b) shows predictions from the model
trained on binocular image data, including two occlusion scenarios. The yellow mask highlights the pixels with a large difference between the predicted and
ground truth images, indicating prediction uncertainty regions. (c) shows predictions when initial state images change with varying object-robot distance,
but using the same actuation values.

masking in the binocular results compared to the monocular
results demonstrates the enhanced predictive capability of the
model when trained on binocular data.

Furthermore, Fig. 4(c) presents an analysis of the model’s
performance when the initial state images change, specifi-
cally when the distance between the object and the robot
varies while maintaining the same actuation values. The
results indicate that the model can effectively capture the
change in the spatial relationships from initial state images
and predict the interaction shapes accordingly.

Overall, the results highlight the importance of binocular
vision in improving the model’s understanding of spatial
relationships and its ability to predict interaction shapes
accurately in occlusion scenarios. This is because binocular
vision provides more accurate information about the initial
condition which is vital for predicting interaction dynamics.

C. Quantitative Analysis

We use the root mean square error (RMSE) to quanti-
tatively evaluate the prediction performance of the model.
Fig. 5 illustrates the relationship between the size of the
training dataset and the RMSE. As the dataset size increases
from 100 to 1000 samples, the RMSE values consistently

Fig. 5. Effect of dataset size on prediction performance for monocular and
binocular data in simulated environment.
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(c) Images from the second camera

Fig. 6. Physical experimental setup: (a) The STIFF-FLOP robot with an
object. The main camera faces the robot and the object, while the second
camera is positioned at a 45◦ angle. (b) Example grayscale images captured
by the main camera, showing the robot in its initial state (left) and actuated
state (right). (c) Corresponding images captured by the second camera.

decrease for both monocular and binocular datasets. Compar-
ing the monocular and binocular results, the model achieves
only a modest reduction in RMSE. This suggests that the
additional spatial information provided by the side view has
little impact on the model’s numerical prediction accuracy.
However, with the introduction of more diverse objects and
environments, the benefits of stereo vision would become
vital to localize the object with respect to the robot.

IV. PHYSICAL EXPERIMENT AND RESULTS

A. Experiment Setup

To evaluate the model with real-world data, we conducted
a series of experiments using the STIFF-FLOP robot, a
silicone-based, pneumatic-driven soft robotic arm [32] de-
signed for applications in MIS [33]. In our experiment,
we used a fiber-reinforced STIFF-FLOP robot comprising
two segments connected in series. Each robotic segment is
made of highly deformable silicone material (Ecoflex 00-
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Fig. 7. Prediction results on real-world data. (a) shows predictions from the model trained on monocular image data. By applying a threshold to the gray
value, the robot and the object are considered as an entity to mitigate the occlusion problem caused by their relative positions. (b) shows predictions from
the model trained on binocular image data.

50, SmoothOn), featuring a diameter of 25 mm and a total
length of 46 mm. The six actuation chambers of the robot
are reinforced using inextensible threads to constrain the
radial expansion. The design and fabrication details of the
robot are thoroughly presented in a previous work [34].
The actuation system of the robotic platform consists of a
pressurized air compressor (HYUNDAI HY5508), and six
proportional pressure regulators (Camozzi K8P). An Arduino
Due board controls the STIFF-FLOP robot’s motion by
regulating analogue signals to the pressure regulators while
monitoring the real-time pressure.

The configuration of the experimental platform [35] and
the soft continuum robot is shown in Fig. 6. The robot
is placed next to a stationary object at a fixed distance.
Two RGB cameras with a resolution of 1920×1080 are
positioned at specific locations to capture the interactive
state images from different view angles. When the robot
is actuated, the two cameras capture the images together,
and the pressure values read from the pressure regulators are
recorded simultaneously.

B. Data Collection and Preprocess

During the data collection session, the actuation signals
are randomly generated and sent to the robot at a sending
rate of 2 Hz. For each signal, the robot remains actuated,
the pressure values from the regulators are recorded, and
a snapshot trigger simultaneously prompts the cameras to
capture images. The latency between the images captured
by the two cameras is less than 10 milliseconds, ensuring
near-simultaneous data capture. To enrich the dataset, various
interaction objects (cylinder, circular ring, and oblique prism)
were placed at different distances from the robot during
the data collection process. These object shapes represent
a diverse range of geometric constraints that the robot might
encounter in real-world applications.

Following data collection, the captured images are con-
verted to grayscale, and the regions containing the robot and

object are cropped and resized to a dimension of 64× 64.
Each set of image data is paired with its corresponding
pressure data, represented by one-dimensional arrays with
six elements. They are normalized and resized to 64× 64,
and then concatenated with the image data for training.
The training options, such as batch size, optimizer, and
data splitting ratio, are kept the same as those used for the
simulated data.

C. Prediction Results

The prediction results presented in Fig. 7 demonstrate
the capabilities of the deep visual model in predicting real-
world interaction shapes. Fig. 7(a) shows the prediction
results of the model trained using monocular image data. For
the first two simple interaction scenarios, where the entire
deformation of the robot can be observed from the camera
view, the network’s predictions show only minor differences
compared to the ground truth. This indicates the network’s
effective performance in predicting simple 2D interaction
shapes. However, when the interaction scenarios become
more complex, involving occlusion, the network faces dif-
ficulties in accurately predicting the interaction shape. The
performance is notably worse than the results obtained on
simulated data. The uncertainty region, highlighted in the
masked results, increases along the robot from base to tip,
with the largest uncertainty near the tip.

Several factors may lead to the network’s poor perfor-
mance in occlusion cases, which include inherent challenges
such as hysteresis, lack of information in the initial image,
or network-related issues, such as an improper loss function.
To investigate these factors and mitigate the influence of
occlusion, we applied a grayscale threshold to the images.
This thresholding approach treats the robot and the object as
a single entity within the images. The network was retrained
using the same dataset with this thresholding applied. The
predictions after threshold adjustment show improvements
compared to the raw images, demonstrating the network’s
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Fig. 8. Prediction results on interactions with various objects.

capability to predict robot deformations more accurately
when the effects of occlusion are reduced.

To further investigate whether the errors are happening
because of unobservable initial conditions, an additional
view is integrated to provide the network with more spatial
information. The results in Fig. 7(b) indicate that the model
generally predicts the robot’s deformation well. However,
the uncertainty region, highlighted in yellow, still increases
from the robot’s base towards its tip. This observation can be
attributed to that hysteresis in this soft robot affects the tip
more significantly, and the real robot also exhibits elongated
motion, leading to increased prediction uncertainty in this
part. Additionally, noise in the training data and the inherent
stochasticity of the robot-environment interaction problem
itself make it more challenging for the model to accurately
capture the behavior of the physical robot.

Comparing the binocular results across different objects
(Fig. 8), the model demonstrates a good ability to predict
the robot’s interaction deformations. However, it struggles
to accurately distinguish the relative positions between the
robot and the object, especially when the robot is positioned
in front of the object. This effect is particularly noticeable
with complex object geometries, such as the circular ring.

V. CONCLUSION

Fig. 9 presents the RMSE of the model’s predictions
for monocular and binocular data from both simulated and
physical experiments. The performance on simulated data is
consistently better than on real-world data for both monocu-
lar and binocular datasets. This difference can be attributed
to several factors, including synchronization issues during
the real-world data collection process and the presence of
uncertainties in the physical experiments. In real-world ex-
periments, the data collection process involved coordinating
multiple sensors, including regulators, cameras, and pressure
sensors, which can introduce synchronization errors. These
errors can lead to misalignments between the visual data and
the corresponding actuation values, negatively impacting the
model’s learning ability. The real robot exhibits elongated
motion, which is not considered in the simulation, further
contributing to the discrepancy between the simulated and
real-world results. Additionally, real-world experiments are
subject to various sources of uncertainty, such as camera

Fig. 9. Comparison of prediction performance on simulated and real-world
data.

positions, and external disturbances like environmental light,
which can further degrade the model’s performance.

In conclusion, the comparison result confirms the ob-
servations from the previous sections. The analysis of the
RMSE performance across different dataset sizes highlights
the importance of having a sufficient amount of diverse and
representative training data for accurate interaction shape
prediction. The model’s performance is better on simulated
data than on real-world data, highlighting the impact of real-
world uncertainties and data collection challenges on the
model’s prediction accuracy. Furthermore, the incorporation
of binocular vision provides only a modest improvement
in prediction accuracy compared to monocular vision. The
promising results of this work can be extended to various
applications, such as MIS. Given the CT scan of an internal
cavity (initial condition), this model can be used to predict
the shape and location of the MIS tool, enabling surgeons to
better plan and execute surgical procedures.

Future research could focus on several key areas to
further enhance the model’s performance and applicability.
Firstly, integrating more spatial information from multiple
viewpoints to improve the model’s accuracy in challeng-
ing occlusion scenarios. Secondly, integrating data from
embedded sensors, such as force or tactile sensors, could
provide additional sensing modalities and help the model
better estimate the interaction forces. Thirdly, conducting a
deeper analysis of the outputs from different layers of the
network to get insights into the learned features and their
relevance to the interaction shape prediction task, exploring
techniques such as saliency maps on the output to indirectly
estimate robot-environment contact locations. Furthermore,
leveraging the trained model in a model predictive controller
could enable more adaptable and robust interaction shape
control strategies.
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