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Unequal distributions of crowdsourced
weather data in England and Wales
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Personal weather stations (PWS) can provide useful data on urban climates by
densifying the number of weather measurements across major cities. They do
so at a lower cost than official weather stations by national meteorological
services. Despite the increasing use of PWS data, little attention has yet been
paid to the underlying socio-economic and environmental inequalities in PWS
coverage. Using social deprivation, demographic, and environmental indica-
tors in England and Wales, we characterize existing inequalities in the current
coverage of PWS. We find that there are fewer PWS in more deprived areas
which also observe higher proportions of ethnic minorities, lower vegetation
coverage, higher building height and building surface fraction, and lower
proportions of inhabitants under 65 years old. This implies that data on urban
climate may be less reliable or more uncertain in particular areas, which may
limit the potential for climate adaptation and empowerment in those
communities.

Cities are complex environments with substantial environmental het-
erogeneities that have a direct impact on their local climates. For
instance, cities affect local temperatures and related relative humidity,
atmospheric circulation, and precipitation regimes1. Particular atten-
tion has been given to urban heat because temperature is a reliably
measuredweather variable, known to have negative impacts on health,
buildings and infrastructure, energy, or biodiversity2–6. Considering
public health alone, hotter urban areas are subject to higher levels of
heat-related mortality and morbidity, such as risk of stroke, exhaus-
tion, and cardiovascular diseases7,8. Therefore, understanding which
urban environments are most associated with extreme heat, and the
underlying vulnerabilities of their inhabitants, is necessary to establish
sustainable and healthy cities. Networks of official weather stations,
such as the national weather station network (MIDAS, Met Office
Integrated Data Archive System) managed by the United Kingdom
(UK) Met Office, may be too sparse to respond to this specific need.
Currently, only 155 MIDAS stations of high accuracy corresponding to
World Meteorological Organization (WMO) and Climate Network
standards recordweather measurements at hourly time steps over the
whole of England and Wales, covering an area of 151 139 km2

(Supplementary Fig. 1). To address this data scarcity new sources of
weather data are needed.

Over recent decades, the number of weather devices operated by
independent individuals who openly share the data collected as a
crowdsourcing activity9 has rapidly increased in European countries,
including the UK10. We refer to these devices as personal weather
stations (PWS) to contrast them with official automatic weather sta-
tions installed by meteorological offices. For instance, during the
extremely hot summer of 2022, 5011 PWS of the Netatmo brand
recorded temperatures, greatly extending the existing coverage of
official temperature sensors (seeMethods; Supplementary Fig. 1). PWS
are therefore increasingly being used in urban climatological studies
and are sought to provide useful complementary data sets for urban
climate services11–17. To deal with higher degrees of uncertainty due to
their inaccuracy18,19 and human factors such as sub-optimal placement,
multiple filtering algorithms have been developed to make this data
more reliable20–23. PWS crowdsourced weather data are quickly
becoming suitable and valuable for urban temperature studies and
evaluation of models24. Pioneering studies have even suggested that
they could be used to develop city-wide heat alarm systems25.
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Little attention has however been given to the underlying socio-
economic and environmental characteristics of the areas in which PWS
are installed. In otherwords, even though PWSoffer anunprecedented
opportunity to study urban heat in places that are deprived of official
sensors, they may well be unequally distributed among the variety of
urban environments that exist in towns and cities. This phenomenon,
named the “sensor desert”, has already been highlighted for other
types of sensors, such as for air pollution26,27. Because sensor deserts
prevent the acquisition of weather data in a representative way (e.g.,
covering all communities existing in the country), the generalization of
urban heat impact studies is limited. Furthermore, studying the heat
exposure across populations with different degrees of vulnerability is
hindered. Understanding where PWS are positioned at a national level
and the implications for urban climate studies and their related impact
studies is therefore important, especially when assessing the suitability
of various heat adaptation and mitigation strategies. After all, such
networks could help to provide adequate guidance to decision-makers
to define national and sub-national guidelines to address the increas-
ing threats caused by extreme heat in inhabited areas as the cli-
mate warms.

In this study, we empirically investigate the current coverage of
certain PWS that are widely used by consumers and researchers and
that are capable of measuring temperature across England and
Wales. To do so, we: gather data on the existing coverage of com-
monly used PWS from the Netatmo company across England and
Wales during the record-breaking summer of 2022; collect informa-
tion on the urban environment via a set of satellite earth observa-
tions; and pick out key demographic and socio-economic indicators
from the 2011 census in England and Wales (see Methods). We then
analyse how each of these indicators is associated to the presence or
absence of PWS. Our study provides a comprehensive description of
the underlying spatial inequalities in crowdsourced climate data
acquisition and accessibility in English and Welsh urban
environments.

Results
We find that more deprived areas, meaning places with the highest
Index of Multiple Deprivation score (see subsequent subsection), are
generally less covered by PWS than wealthier ones. We also find that,
typically, more densely built areas with higher buildings, lower vege-
tation coverage and albedo (reflective capacity), and areas with higher
proportions of ethnic minorities have lower PWS coverage. Although
areas with higher proportions of adults over 65 years old, and there-
fore most vulnerable to heat mortality and morbidity28–30, are asso-
ciated with increased PWS coverage, the current distribution of PWS
may limit the study of the urban climate and its impact in areas where
populations are the most deprived and have a high proportion of
ethnic minorities. We provide more details on these results below.

Levels of deprivation and sensor coverage
Empirical evidence of an unequal distribution of PWS throughout
England andWales is given by the relative number of people per decile
of Index of Multiple Deprivation (IMD; Fig. 1) who have at least one
PWS in their Lower layer Super-Output Area (LSOA, a kind of census
tract). The IMD is a comprehensive index of socioeconomic depriva-
tion, calculated and simplified as deciles at the LSOA level by the UK
Office of National Statistics that combines socio-economic and
demographic indicators of deprivation (e.g., crime, income, education,
etc.)31. Weuse social deprivationhere as a proxy for the potential social
vulnerability of people to climate hazards30,32–34. We find that 24% of
people living in the least deprived decile (10th decile) have at least one
PWS in their LSOAcompared to 3%of those in themostdepriveddecile
(1st decile). For each increase in the IMD decile, we find an increase of∼
2.3 percentage point in the number of people with at least one PWS in
their LSOA. Interestingly, we also find that official automatic weather
stations from the MIDAS network are less present, if not absent, from
most deprived LSOAs (see Supplementary Fig. 2). At the time of writ-
ing, 13.32% of the population of England and Wales is covered by at
least one PWS while only 0.5% is from a MIDAS weather station. This

Fig. 1 | Percentages of people in England and Wales covered by at least one
personal weather station (PWS) per Lower layer Super-Output Area (LSOA),
per Index of Multiple Deprivation (IMD) decile. Least deprived populations are
better covered by PWS. The total number of people in each IMD decile is given at
the bottom of the figure and shows fluctuation due to some variability in LSOA

population size (∼1500 inhabitants per LSOA; see Methods). The same figure is
given in Supplementary Fig. 2 for official automatic weather stations from the Met
Office Integrated Data Archive System (MIDAS) network handled by the United
Kingdom Met Office and also shows that most deprived populations are less cov-
ered by highly accurate weather stations.
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highlights the extension of weather sensing networks in a variety of
environments offeredby PWSand supports the need to describe them.

Inequalities in the urban-rural continuum
Local Climate Zones (LCZs) are land-use land-cover categories speci-
fically designed for urban climate studies35, with LCZ 1 to 10 repre-
senting built-up classes, and A to G natural classes (see Methods). In
England and Wales, urban LSOAs are mostly composed of Compact
Mid-Rise (LCZ 2), OpenMid-Rise (LCZ 5), Open Low-Rise (LCZ 6), Large
Lowrise (LCZ 8) and Sparsely Built (LCZ 9) environments. Rural LSOAs
are composed of Dense Trees (LCZ A), Scattered Trees (LCZ B), Low
Plants (LCZD), Bare rockor pave (LCZ E) andWater (LCZG)– the latter
canbe typical of coastal areas.When looking at thedensity of PWSover
the LSOAs’ area, we find that LSOAs that are mostly composed of mid-
rise buildings have better PWS coverage than others with ∼ 0.5 PWS
per km2 in LCZ 2 and a peak of 0.64 PWS per km2 in LCZ 5 (Fig. 2a).
Natural areas tend to have a lower proportion of their total area cov-
eredby a PWSwith∼0.03 PWSper km2 onaverage; no PWSare present
in LCZ E. Built-up LCZs, which compose only 11 362 km2 of England and
Wales (7.5 % of the total 151 139 km2), hence concentrate most of the
PWS. The latter confirms that PWS could be regarded as a valuable
palliation to the characteristic climate data scarcity in urban areas10,36.

Yet ultimately, because PWS density may simply be related to
population density, it is important to estimate how many individuals
are covered by one sensor to define what is the optimal density of
weather sensors for capturing the variability of population’s exposure
to heat. We find the highest coverage per capita in LCZ 9 environ-
ments, with 35.9% of its population covered by at least one PWS
(Fig. 2b). Overall, 7.9M inhabitants are covered by a PWS out of the
total population of 59.5M living in England andWales. Of these, 4.2M
out of the 42.9M inhabitants that live in mostly built-up LSOAs are
covered by PWS in comparison to the 3.7M out of the remaining
16.6M inhabitants that live in natural areas. In other words, ∼ 22% of
the population in natural areas has at least one PWS in their LSOA, but
for built-up areas this is only the case for∼ 10% of the population. This
suggests that there is an urban-rural inequality in PWS coverage that
cannotbe solely explainedby the larger size of the LSOAs inmore rural
lands. Indeed, as LSOAs are made of the same approximate amount of
inhabitants, the probability of a citizen to buy one PWS should be the
same across all environments.

An urban and demographic sensor desert
We found the existence of an unequal distribution of PWS between
urbanandnatural areas, andbetweenmoreand less deprived locations
in England and Wales. We now further investigate the underlying risk
characteristics of each LSOA. In fact, a wealthier urban LSOA may well
be at higher risks of heat-exposure than a more deprived rural one
because of the urban heat island effect1,37 and therefore require more
PWS coverage to survey the local climate and represent local popula-
tion exposure to heat. Referring to the risk triangle38, we therefore
need to estimate how likely is the hazard of higher air temperatures in
each environment, and how vulnerable the population is to this heat.

Using a set of satellite-based environmental indicators that impact
themicro-scale air temperature, or the hazard (seeMethods; Fig. 3 and
Supplementary Fig. 3), we show that lower proportions of populations
are covered by a PWS in environments that have lower vegetation
coverage (8.1% in the lowest decile against 24.9% in the highest decile)
and higher building heights (8% against 29.3%) and building fractions
(6.9% against 30.1%). This could explain the lower shortwave albedo
where PWS are absent (9.2% against 26.4%)—asphalted and other dark
built surfaces having lower albedos than natural areas on average.
Concerning the vulnerability, we find that lower proportions of the
total population are covered by a sensor when an LSOA has a lower
proportion of peopleolder than 65 years (9.1% against 19.3%) andwhen
ethnic minorities are more present (5.4% against 18%). Overall, this

means that people in England and Wales who live in areas with the
highest vegetation coverage and the lowest proportion of ethnic
minorities are ∼ 3 times more likely to have a PWS measuring their
local climate. PWS sensor deserts in England andWales thereby consist
of places with higher buildings and building fractions, deprived of
vegetation, with a lower solar radiation reflective capacity, and where
younger and more ethnically diverse people live. These demographic
and environmental characteristics of sensors deserts also describe
lower IMD deciles (Fig. 4, Supplementary Table 1). For example, most
deprived LSOAs have higher building heights by ∼ 4m than least
deprived LSOAs on average (Supplementary Table 1), building frac-
tions by ∼ 10%, and proportion of ethnic minorities by ∼ 15%. Also,
lower albedo is observed by ∼ 0.02 (2% less reflective capacity), EVI by
∼ 0.06 (less densely vegetated), and proportion of people aged 65 or
above by ∼ 10%.

No deserts are found at similar levels of deprivation
Importantly, we find that within the population living in each IMD
decile no clear distinction between the PWS and no-PWS (absence of
PWS) can be made out of the environmental and demographic indi-
cators. For example, the highest proportion of people living in the
highest IMD decile (10th) live in the 3rd decile of building height (low
buildings) independent of whether PWS are present or absent in their
LSOA (Fig. 4, Supplementary Table 1). This is further confirmed by
calculating the Perkins Skill Scores (PSS) for each covariate in each IMD
decile. The Perkins Skill Score39 is a metric ranging from 0 to 1 that
estimates how similar probability density functions are; a score above
0.7 meaning that the probability density functions are generally
overlapping. Here we compare the probability density functions
between presence and absence of PWS, weighted by the total popu-
lation in each LSOA, and find that in all IMDdeciles, environmental and
demographic indicators of the PWSandno-PWSgroups always overlap
with PSS scores above 0.70—apart from the Enhanced Vegetation
Index in the lowest IMD decile (PSS = 0.69; Supplementary Table 1).

In general, this confirms that no clear empirical signals are found
that would distinguish places with and without PWS within each IMD
decile, and that the links between environmental and demographic
characteristics could equally be described by the levels of deprivation,
or even explained by them. As higher PSS are found in highest IMD
deciles, this suggests that greater dissimilarities between environ-
ments covered and deprived of PWS exist in more deprived LSOAs.
However, this study does not try to explain the causes of the dis-
tribution of PWS across England and Wales but rather characterises
environments with the varying PWS coverage. We simply note that
PWS coverage varieswith area deprivation, and that the environmental
and demographic characteristics also vary with area deprivation.
Therefore the thermal environments experienced in more deprived
areas may not be well studied.

Discussion
In this study, we use a simple method and easily accessible socio-
economic, demographic, and environmental data over England and
Wales to highlight an uneven coverage in crowd-sourced weather data
derived from individually acquired personal weather stations (PWS).
Despite our focus on England and Wales, our analysis proposes a
transposable method to other region that offers indicators of socio-
economic and demographic deprivation, ours being freely down-
loadable in England and Wales40; the environmental data is globally
and freely downloadable31,41,42. Our study highlights these inequalities
and, thereby, nuances the vision that openly accessible and inter-
connected personal devices—often called the Internet of Things43—
could unequivocally mitigate institutional data scarcity in climate
studies.

In face of the increasing demand for denser weather data to
build liveable and sustainable environments and the parallel
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expansion in PWS coverage, PWS are seen as an unprecedented
opportunity to investigate the impact of urban areas on the local
climate and temperatures36,44 Notwithstanding this opportunity,
our study highlights the representativeness and generalizability of
data generated by PWS. Local and national policies and action plans
can protect residents from extreme heat but require identification

of locations and populations that are most at risk45. Even if cities
were to integrate heat mitigation measures such as changes to
building and urban design that would consider local realities in
terms of heat hazards and vulnerabilities only certain neighbour-
hoods and built-up environments would be able to offer the
necessary climatic data.

Fig. 2 | More personal weather stations (PWS) are present in cities but more
people are coveredby at least one PWS in rural areas. PWSper square kilometre
(km²; a) and percentage of total population covered by a PWS (km², b) in each
Local Climate Zone (LCZ). LCZs are landuse land-cover classes specifically

designed for urban climate studies. Total surface covered by each LCZ in England
and Wales is given at the top of panel a and the respective total population at the
top of panel b.
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An important outcome from our study is the empirical demon-
stration that denser, poorly vegetated, and deprived built-up areas
with higher proportions of ethnic minorities and of people under 65
years old lack crowd-sourced PWS data. This has several implications
because denser built-up areas with higher building heights and lower
surface albedo are often hotter due to higher radiation absorption and
trapping, but are not adequately covered by weather sensing devices.

Furthermore, the sensor desert may limit quantification of the cooling
induced by vegetated evapotranspiration, the latter being shown to
have positive impacts on heat mitigation and related heat-mortality46.
Lastly, ethnic minorities are often more exposed to asphalted built-up
areas and related surface urban heat islands47,48. This could drive dis-
parities in heat exposure, especially considering that ethnic minorities
tend to comprise younger populations and that people aged above 65
tend to be more susceptible to heat-related health hazards29. It would
therefore be necessary to adequately quantify how vulnerabilities
inducedbydeprivationmay increase the risk todifferent communities,
stratified by age groups.

Fortunately, places with higher concentrations of persons over 65
years old tend to have good PWS coverage. But proportions of elderly
people are still high (above 10%) in the most deprived areas where
sensor deserts are observed. Hence, increasing weather sensors in
these locations is paramount to adequately respond to urban climate
challenges. Combined with additional vulnerabilities associated with
deprivation, including but not limited to obesity, diabetes, workplace
conditions, clothing or accessibility to vegetated cool islands49, these
people could bemore exposed to heat-related risks,whichposes some
important ethical issues.

Responses to increased coverage of these areas might include
developingparallel weather stationnetworks or incentives to purchase
PWS by local populations. To do so, future research should try to
understand how different demographic, socio-economic, cultural and
environmental covariates may explain the distribution of PWS cover-
age. Focal population surveys and large-scale machine learning could
shed further light on the preliminary findings of our study. For
instance, consumer surveys should try to gather information at the
individual level to relate how consumers’ demographic and socio-
economic characteristics are similaror dissimilar to thoseof the area in
which they live (e.g., distance to the average annual income in the
LSOA). It would also be necessary to disentangle how deprivation
explains PWS coverage because other covariates (e.g., built-up density,
population density, or building height) may also have an influence on
PWS coverage that we could not separate from deprivation in this
study. We nonetheless found that despite some similarities in the
distributions of PWS presence across our set of environmental and
demographic characteristics—considered central for urban heat-
related risks—some heterogeneities still exist and need to be
explored. Most importantly, we found that greater differences exist
between environments that are covered and not covered by a PWS
between the most deprived areas, with smaller differences in the least
deprived locations. This could suggest a greater diversity of demo-
graphic, socio-economic and environmental characteristics in more
deprived areas that need to be investigated to better understand the
mechanisms explaining PWS coverage.

We acknowledge that our study suffers from several limitations
and encourage further research to address them. First, its conclusions
are specific to England andWales to benefit from a standardized Index
of Multiple Deprivation between the two countries—something that is
more complex at the supra-national level (e.g., Europe or global) and

Fig. 3 | Percentages of population covered by at least one personal weather
station (PWS) in each decile of key environmental and demographic metrics
for heat-related health risks. From top to bottom: building height, building
fraction, Enhanced Vegetation Index (EVI; proxy for vegetation coverage), short-
wave albedo, population above 65 years old and proportion of ethnic minorities.
For all metrics, the first decile indicates the group with the lowest values and the
tenth the highest values. The total population represented in each decile in given at
the bottom of each panel. On the top left corner of the panels, histograms of each
metrics are plotted (in grey) to give a sense of the data distribution and where
deciles cut-offs are located (vertical orange lines)—full size histograms are provided
in the supplements (Supplementary Fig. 3).
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even at national level of the countries of the United Kingdom—and
should thus be carefully considered for other locations. Challenges
related to the level of aggregation of the socio-economic, demo-
graphic and environmental data will have to be addressed to study the
factors influencing the distribution of PWS at larger scales. For exam-
ple, our presence/absence framework would be irrelevant at Nomen-
clature of Territorial Units for Statistics (NUTS) administrative units as
all would be covered by at least one PWS in England and Wales (see
Supplementary Fig. 4). Second, because of data restriction policies our
study only gathered information from Netatmo PWS and did not
investigate other crowd-sourced weather data providers like the
Weather Observation Website (WOW)50 or Weather Underground
(Wunderground) which could cover areas deprived of Netatmo PWS51.
Third, due to data restrictions we did not study the multivariate
intersections that might have further implications for heat-related
risks, like the proportion of elderly people from ethnic minorities liv-
ing in mostly asphalted areas. Fourth, as touched above, we did not
study how each covariate is correlated and explicative of another—
something that would help in guiding efficient campaigns for weather
data collection and relevant mitigation and adaptation policies. Fifth,
we constrained our analysis to a very small sample of explanatory
variables of heat-related risks and did not look at other common
variables like the proportion of young children below five or the pre-
sence/absence of water bodies52–55. Lastly, we assumed that each sen-
sor would be fully operational and did not look at the data
completeness and uncertainty, something that can now be achieved
via common filtering tools22,23. Census data used was from 2011, as the
2021 census data were not yet available. Further work is required to
unpick what the effect of these sensor deserts is on measurement
uncertainty.

As a final note, we recognise that even if these data scarcities
would be dealt with at the national level in countries that already offer
a substantial PWS network, global inequalities would still be much
greater. For instance, it is commonly accepted that the African con-
tinent is underprivileged for the acquisition and the installation of
weather stations56,57 despite the gravity of local climate hazards and

inherent challenges that the countries face. Projects like the Trans-
African Hydro-Meteorological Observatory (TAHMO)58 exemplify
ambitious and worthwhile programs that try to reduce these global
weather data inequalities. However, our study shows that individually
acquired personal weather stations do not unequivocally address the
limitations associated with these urban sensor deserts and such sta-
tions in isolation are thus likely not a sufficient answer to urban climate
challenges faced in these countries.

Methods
Data acquisition
In this section, we provide details on the choices of data that was
acquired for this study (Fig. 5), their origin and what each represents.

Netatmo personal weather station
We gather all the necessary Netatmo PWS information using the
“GetPublicData” API via the patatmo python module, namely latitude,
longitude, and sensor ID.We use amovingwindow of 0.2° by 0.2° over
England and Wales. This step ensures that all Netatmo PWS are cap-
tured by the API, since over large domains a reduced number of PWS is
accessible via the API. We ran our data collection on the 22nd of
October 2022.

After all data has been collected, duplicates are filtered out and
only PWS that record temperature are kept. This means that PWS
recording only pressure, humidity or precipitation are not included in
this study. We collect data on PWS only for those active during the
recent summer 2022 (June to August) as this was a record-breaking
year in daily maximium temperature in England and Wales with tem-
peratures going as high as 40.3 ◦C59. This also ensures that a maximum
of PWS are included in the analysis since their number has kept
increasing over the past decade10.

Demographic and indices of multiple deprivation
To understand the potential implications of PWS desert coverage, we
focus on three major demographic and socio-economic indicators
whichwe justify below: the proportion of people over 65 years old, the

Fig. 4 | Histograms of the percentages of the total population living in each
Index of Multiple Deprivation (IMD) decile across deciles of different envir-
onmental and demographic metrics. The population covered by a personal
weather station (PWS) is given in orangewhile the rest of the population is given in

grey (absence of PWS). For all metrics, the first decile indicates the group with the
lowest values and the tenth the highest values. Deciles cut-off values and dis-
tribution of values per variables can be found in Supplementary Fig. 3. The total
population living in each IMD decile is given in Fig. 1.
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proportion of ethnicminorities, and the Index ofMultiple Deprivation.
In the United Kingdom, people over 65 have been shown to be more
vulnerable to the negative impacts of extreme heat especially
mortality60. Recent studies have demonstrated that certain ethnic
minorities are more exposed to higher surface temperatures and are
usually further from a vegetated area where they could find cooler

temperatures47. The Indices of Multiple Deprivation (IMD) developed
in England andWales31 combine multiple indicators of socioeconomic
deprivation, which is thought to be indicative of people’s vulnerability
to climate hazards45—previous studies have found links between low
socioeconomic status and risk of death during a heatwave61. This is
thought to be caused by factors such as quality of housing and general

Fig. 5 | Maps of personal weather stations (PWS) coverage and various factors
related to heat exposure and vulnerability in England and Wales. Presence or
absence of PWS (a) at the Lower layer Super-Output Areas (LSOA; areas that

include ∼1500 inhabitants) level and related socio-economic, demographic, and
environmental indicators correlated to heat-related risks in England and Wales
(b to i).
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health. We collect this information at the Lower layer Super-Output
Areas (LSOA) for both England andWales on the official repositories of
the Office of National Statistics40. LSOAs consist of areas that must
include 1500 inhabitants and are thereby dependent on population
density for their shapes and sizes. Before data treatment, both Wales
and England data were joint using dedicated python packages and
common naming was attributed to each variable.

Environmental earth observations
To determine which type of environment surrounds each PWS we use
several surface indicators which are considered important for urban
heat variability. First, we collect building surface fraction and building
heights from the Global Human Settlement Layer project provided by
the European Commission42 because building presence and height will
directly influence the radiation trapping and the production of
anthropogenic heat fluxes in urban areas. The two are expected to
change the surface energy balance and therefore lead to different
urban air temperatures. Second, we derive information on the vege-
tation coverage by using the Moderate-Resolution Imaging Spectro-
radiometer (MODIS) MOD09GA v6 Enhanced Vegetation Index (EVI)
product at 500m horizontal resolution62. Vegetation density, type and
fraction are indeed important contributors to the spatio-temporal
variability of heat and is also an indication of the built-up surface
fraction and accessibility to vegetated areas. We chose to use the EVI
over the Normalized Difference Vegetation Index as it reduces the
influence of the atmosphere and the canopy background signal on the
measured index while having an increased sensitivity to the leaf area
index—hence facilitating thediscretisationofdifferent vegetation types
in high biomass locations (like forests)63,64. Lastly, we obtain informa-
tion on the short-wave surface albedo from the MODIS MCD43A3 v6
product41 to explore the capacity of each environment to reflect
incoming solar radiation. This is important as certainbuilt-up areasmay
have higher albedos due to reflective roof coating, for example and
thus be cooler than their neighbouring environments. We consider a
5-year median for albedo and EVI (2018-2022), which we consider
representative of recent PWS deployment in England andWales, of the
other environmental dataset (LCZ, built-up surface, and height) and of
the generic environmental conditions of the summer 2022.

An urban climate land-use and land-cover
In parallel, we also obtain information on the land-use and land-cover
by using the Local Climate Zones (LCZ) European map65, developed
within theWorld Urban Database and Access Portal Tool (WUDAPT)66.
The LCZweremappedat a resolutionof 100mwith anoverall accuracy
above 80% for the whole of Europe making it a valid land use land
cover map for studying urban climate related issues in the region; the
overall accuracy, the Kappa score and the true positive rates for eval-
uating how the urban areas’ extension were consistent with other
products like ESACCI are also above 90% for theUK65. LCZ are land-use
and land-cover classes specifically designed for the study of the urban
climate and consist of continuous urban and natural environments of
several hundreds of meters to few kilometres35. They distinguish each
urban and natural environments archetypes by their built-up density,
building height, building types and uses, and natural coverage.
Although the other variables given above are continuous variables and
more indicative of each environment’s specificities than categorical
LCZ, we still include LCZ in our set of variables to show the actual
coverage of PWS per LCZ and explore if certain LCZ are deprived of
PWS. This is of importance for urban climatological and meteor-
ological studies as LCZ are standardized classes that permit the com-
munication of urban climate studies outcomes globally.

Data post-treatment
Once we gathered all the necessary data, we aggregated all the
necessary information at the LSOA level. Therefore, for each LSOA we:

(i) used the rasterio zonal statspython package to estimate the average
values of building surface fraction, building heights, surface albedo
and EVI in the LSOA; (ii) used the samepackage to get themodal LCZ in
the LSOA (see Supplementary Discussion, Supplementary Fig. 5 and
Supplementary Fig. 6 for more information on the potential loss of
information induced by the use of modal LCZ); (iii) calculated the
proportion of people aged above 65 years old against the total LSOA
population; and (iv) counted the proportion of ethnic minorities per
LSOA by considering all classes that are not “White: English/Welsh/
Scottish/Northern Irish/British” asminorities and counted them against
the total LSOA population. Indices of multiple deprivation are left in
their decile format.

Inclusion and ethics statement
We recognise that ethnic groups are not biologically founded and are
sociopolitical constructs to which not all individuals identify. The
groups used in this study are those used during the 2011 Census from
the English and Welsh Office for National Statistics. Since 1991, at the
time of new census (every 10 years), ethnic groups are defined in
consultation with: the users of the census data, such as local institu-
tions and health services; people who complete the census and their
representative interest groups; and the National Records of Scotland
as well as the Northern Ireland Statistics and Research Agency who are
responsible for running the censuses in their respective home nations.
The ethnic groups used in this studywere not designed by the authors.
As the vast majority of individuals living in England and Wales identi-
fied as “White: English/Welsh/Scottish/Northern Irish/British”, we quali-
fied all the other ethnic groups as minorities.

Study’s rationale and framework
In our study, we decided to adopt a simple but robust approach to
depict the unequal distribution of PWS amongst the variety of inhab-
ited environments that compose England and Wales. Most impor-
tantly, we chose not to perform any explanatory variable analysis
because we are not seeking to causally explain the drivers of coverage
in PWS, but rather to describe the current state and the implications
for sensing of the environment. Moreover, explanation of the drivers
of PWS acquisition would bemuchbetter addressed by individual data
rather than area-level data, for example through surveys or interviews.
Machine-learning based studies attempting to explain the distribution
of PWS between areas may be obscured by the spatial correlation
between PWS coverage and urbanization, which would therefore
require extensive studies and analyses that cannot solely be addressed
in this paper.

We focused our analysis to the presence or absence of PWS in an
LSOA as very few LSOAs have more than one PWS, which prevents any
calculation of the relationship between PWS density and the other
covariates. Of the 34632 LSOAs composing England and Wales, 3863
are covered by one PWS, and 539 contain more than one; 434 having
only two. We therefore assume that the population of an LSOA is
covered by a PWS if there is at least one in the LSOA. Because each
LSOA comprises a different number of inhabitants, we weight by LSOA
population. This means that the numbers presented in this study
simply show how many people are covered or not by a PWS.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study have been uploaded on a public GitHub
repository.We collected the data as follows: The European continental
LCZ map was directly downloaded from the World Urban Database
and Access Portal Tool website. MODIS Terra Daily Enhanced Vegeta-
tion Index (EVI) was obtained from Google’s Earth Engine.
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MCD43A3.061 shortwave MODIS Albedo Daily 500m was also
obtained from Google’s Earth Engine here. Global Human Settlement
Layers built-up surfaces (GHS-BUILT-S) and built-up heights (GHS-
BUILT-H) was obtained from the European Commission website. The
ethnic groups were obtained from the Office for National Statistics
2011 census data sheet QS201EW. The population (age and total
population per Lower layer Super-Output Area) was obtained from the
Office forNational Statistics 2011 census datasheet KS102EW. The 2019
Index of Multiple Deprivation (IMD) for England and Wales was
obtained from the Consumer Data Research Centre (CDRC) datasets.
TheMet Office Integrated Data Archive System (MIDAS) metadata was
obtained from the Centre for Environmental Data Analysis (CEDA)
Archive. We used the secured FTP protocol to download it using
WinSCP – this requires an accredited account from CEDA; more info is
available here. The Netatmo metadata was obtained using the
“patatmo” Python API which requires the users to be Netatmo App
developers (see https://dev.netatmo.com/). All necessary information
and links for installation are available at: https://nobodyinperson.
gitlab.io/python3-patatmo/. MIDAS and Netatmo stations metadata
can be obtained on the dedicated websites and through their relative
APIs. The raw Netatmo andMIDASmetadata are protected and cannot
be shared. Publicly sharable data has been released under the Zenodo
repository with https://doi.org/10.5281/zenodo.10950425; the latter is
linked to thepublicGitHub repository.Metadatafiles used in this study
by the authors can be obtained upon reasonable request to Dr. Oscar
Brousse (o.brousse@ucl.ac.uk).

Code availability
All the codes used in this study have beenuploadedon the samepublic
GitHub repository (https://github.com/oscarbrousse/NatComms_
PWS_2024) than the data and are released under the Zenodo reposi-
tory with https://doi.org/10.5281/zen-odo.10950425. Codes for
obtaining Netatmo metada are provided there.
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